Ga解oway PRELIMINARY DRAINAGE REPORT

GRANDVIEW RESERVE FILING NO. 1

El Paso County, Colorado

PREPARED FOR:
D.R. Horton

9555 S. Kingston Court
Englewood, CO

PREPARED BY:
Galloway \& Company, Inc.
1155 Kelly Johnson Blvd., Suite 305
Colorado Springs, CO 80920
DATE:
December 10, 2021

ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Brady A. Shyrock, PE \#38164
Date
For and on behalf of Galloway \& Company, Inc.

DEVELOPER'S CERTIFICATION

I, The developer, have read and will comply with all of the requirements specified in this drainage report and plan.

By: \qquad
Date
Address: D.R. Horton 9555 S. Kingston Court Englewood, CO

EL PASO COUNTY CERTIFICATION

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Conditions:

TABLE OF CONTENTS

I. Purpose 4
II. General Description 4
III. Drainage Criteria 4
IV. Existing Drainage Conditions 5
V. Four Step Process 6

1. Employ Runoff Reduction Practices 6
2. Stabilize Channels 6
3. Provide Water Quality Capture Volume (WQCV) 6
4. Consider Need for Industrial and Commercial BMPs 6
VI. Proposed Drainage Conditions 6
VII. Storm Sewer System. 14
VIII. Proposed Water Quality Detention Ponds. 14
IX. Proposed Channel Improvements 16
X. Maintenance 16
XI. Wetlands Mitigation 16
XII. Floodplain Statement 16
XIII. Drainage Fees \& Maintenance 16
XIV. Conclusion 16
XV. References 17
Appendices:
A. Exhibits and Figures
B. MDDP \& DBPS Sheet References
C. Hydrologic Computations
D. Hydraulic Computations
E. Water Quality Computations
F. Drainage Maps \& Water Quality Plan

I. Purpose

The purpose of this Preliminary Drainage Report is to identify on and offsite drainage patterns, locate and identify tributary or downstream drainage features and facilities that impact the site, and to identify which types of drainage facilities will be needed and where they will be located. This report will remain in general compliance with the approved MDDP prepared by HR Green, dated November 2020.

II. General Description

The project is a single-family residential development located in the Falcon area of El Paso County, Colorado. The site is located in a portion of the South half of Section 21, the North half of Section 28, Township 12 South, Range 64 West of the $6^{\text {th }}$ Principal Meridian, County of El Paso, State of Colorado. The subject property is bounded by Eastonville Road to the west, the proposed extension of Rex Road to the north, undeveloped land proposed as future development to the east, and undeveloped land within the Waterbury Development to the south. A Vicinity Map is included in Appendix A.

This preliminary drainage report is the basis for the drainage facility design in conformance with the previously approved MDDP for the site prepared by HR Green, Grandview Reserve Master Development Drainage Plan, HR Green, November 2020 (MDDP). The site consists of approximately 189.479 acres and includes 568 dwelling units.

The existing soil types within the proposed site as determined by the NRCS Web Soil Survey for El Paso County Area consist of Columbine gravelly sandy loam (hydrologic soil group A) and Stapleton sandy loam (hydrologic soil group B). See the soils map included in Appendix A.

III. Drainage Criteria

Hydrology calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014.

The drainage calculations were based on the criteria manual Figure 6-5 and IDF equations to determine the intensity and are listed in Table 1 below.

Table 1 - Precipitation Data

Retum Period	One Hour Depth (in).	Intensity (in/ hr)
5 -year	1.50	5.17
100 -year	2.52	8.68

The rational method was used to calculate peak flows as the tributary areas are less than 100 acres. The rational method has been proven to be accurate for basins of this size and is based on the following formula:
$Q=C I A$

Where:

$$
\begin{aligned}
& \text { Q = Peak Discharge (cfs) } \\
& \text { C = Runoff Coefficient } \\
& \text { I = Runoff intensity (inches/hour) } \\
& \text { A = Drainage area (acres) }
\end{aligned}
$$

The runoff coefficients are calculated based on land use, percent imperviousness, and design storm for each basin, as shown in the drainage criteria manual (Table 6-6). Composite percent impervious and C values were calculated using the residential, streets, roofs, and lawns coefficients found in Table 6-6 of the manual.

The 100-year event was used as the major storm event. The 5 -year event was used as the minor event. The UD-Inlets v5.01 spreadsheet was utilized for the sizing of the proposed sump inlets.

The UD-Detention v4.04 spreadsheet was utilized for the design of the proposed on-site water quality ponds, Ponds A, B, C, D, E.

IV. Existing Drainage Conditions

The site is contained fully within one major drainage basin; the Gieck Ranch Drainage Basin and is tributary to Black Squirrel Creek. The site generally drains from north to south with an average slope of 2% outside of the channel. The rational method was used to analyze the individual basins within the site because their size permits it.

There are two (2) major drainageways that currently convey existing on \& off-site flows through the site to the southeast. These are the Main Stem (MS) and Main Stem Tributary Number 2 (MST) as referenced in the MDDP. Both drainageways generally flow to the southeast towards Highway 24, before crossing via existing drainage structures. Currently, these channels receive flows from two off-site basins, one from the west (west of Basin B1 per the MDDP; $0.17 \mathrm{mi}^{2}, \mathrm{Q}_{5}= \pm 67 \mathrm{cfs}, \mathrm{Q}_{100}= \pm 413 \mathrm{cfs}$) and the second from the northwest (northwest of Basin C1 per the MDDP; $0.44 \mathrm{mi}^{2}, \mathrm{Q}_{5}= \pm 59 \mathrm{cfs}, \mathrm{Q}_{100}= \pm 280 \mathrm{cfs}$) and are routed under Eastonville Road via existing pipe culverts. There is an existing 24" CMP that conveys runoff under Eastonville Road at the MS, a location approximately 650 feet north of the proposed Rex Road extension that directs runoff via overtopping Eastonville Road at MST, and a 20 " x $27^{\prime \prime}$ ECMP that directs runoff beneath Eastonville Road at the Falcon Regional Park.

While the MDDP shows a total of 22 basins that were analyzed as part of the overall Grandview Reserve development, for the purposes of this report, 7 of the Basins within the MDDP will be used for analysis. These Basins include A1, B1, B2, C1, B3, and the two off-site Basins situated to the northwest of Eastonville Road.

For a more in-depth analysis of existing tributary conditions as it pertains to this phase of development, an existing basin map has been prepared. The existing map can be found in Appendix F and basins are described below.

Basin EX-1 (105.72 AC, Q $=22.3 \mathrm{cfs}, Q_{100}=159.1 \mathrm{cfs}$): Located on the southwest portion of the site, this basin consists of un-developed land. Runoff from this basin will sheet flow to the southeast before channelizing and eventually out falling into Main Stem channel (DP 1).

Basin EX-2 (57.68 AC, Q $\left.\mathbf{Q}_{5}=13.1 \mathrm{cfs}, \mathrm{Q}_{100}=93.4 \mathrm{cfs}\right)$: Located on the northeast portion of the site, this basin consists of un-developed land. Runoff from this basin will sheet flow to the southeast before channelizing and eventually out falling into Main Stem Tributary \#2 channel (DP 2).

Basin EX-3 (23.35 AC, $\mathrm{Q}_{5}=6.8 \mathrm{cfs}, \mathrm{Q}_{100}=48.4 \mathrm{cfs}$): Located on the southeast portion of the site, this basin consists of un-developed land. Runoff from this basin will sheet flow to the southeast before channelizing and eventually out falling into Main Stem Tributary \#2 channel (DP 3).

V. Four Step Process

The Four Step Process is used to minimize the adverse impacts of urbanization and is a vital component of developing a balanced, sustainable project. Below identifies the approach to the four-step process:

1. Employ Runoff Reduction Practices

This step uses low impact development (LID) practices to reduce runoff at the source. Generally, rather than creating point discharges that are directly connected to impervious areas runoff is routed through pervious areas to promote infiltration. The Impervious Reduction Factor (IRF) method was used and calculations can be found in Appendix E.

2. Stabilize Channels

This step implements stabilization to channels to accommodate deyeloped flows while protecting infrastructure and controlling sediment loading from erosion in the drainageways. Erosion protection in the form of riprap pads at all outfall points to the channel to prevent scouring of the channel from point discharges. The existing channel analysis and design for the MS is to be completed by others and a report for the channel improvements will be submitted for review separately.

3. Provide Water Quality Capture Volume (WQCV)

This step utilizes formalized water quality capture volume to slow the release of runoff from the site. The EURV volume will release in 72 hours, while the WQCV will release in no less than 40 hours. Onsite water quality control volume detention ponds will provide water quality treatment for all of the developed areas, prior to the runoff being released into either of the major drainage ways. Refer to WQCV Plan in Appendix F.

4. Consider Need for Industrial and Commercial BMPs

As this project is all residential development and no commercial or industrial development is proposed, there will be no need for any specialized BMPs which would be associated with an industrial or commercial site.

VI. Proposed Drainage Conditions

The proposed development lies completely within the Gieck Drainage Basin and consists of six (6) basins. Site runoff will be collected via inlets \& pipes and diverted to one of the nine proposed full spectrum detention ponds. All necessary calculations can be found within the appendices of this report.

According to the MDDP, there are two major drainageways that run through the site. As was discussed within the Existing Conditions portion of the report, both the Main Stem (MS) and Main Stem Tributary Number 2 (MST) run through the site conveying runoff from the northwest to the southeast. Presently, these channels receive flows from two off-site basins, one from the west (west of Basin B1 per the MDDP; $0.17 \mathrm{mi}^{2}, \mathrm{Q}_{5}= \pm 67 \mathrm{cfs}, \mathrm{Q}_{100}= \pm 413 \mathrm{cfs}$) and the second from the north (northwest of Basin C1 per
the MDDP; $0.44 \mathrm{mi}^{2}, \mathrm{Q}_{5}= \pm 59 \mathrm{cfs}, \mathrm{Q}_{100}= \pm 280 \mathrm{cfs}$) and are routed under Eastonville Road via existing pipe culverts. There is an existing 24" CMP that conveys runoff under Eastonville Road at the MS, a location approximately 650 feet north of the proposed Rex Road extension that directs runoff via overtopping Eastonville Road at MST, and a 20 " x 27 " ECMP that directs runoff beneath Eastonville Road at the Falcon Regional Park. Developed runoff associated with Eastonville Road will be routed downstream to one of two full spectrum detention facilities on either side of the Main Stem (MS). Runoff will be directed downstream to these two facilities via either roadside swales or storm piping for treatment prior to being released at historic rates upstream form the existing MS and Eastonville Road crossing. Preliminary sizing calculations for the two FSD facilities has been completed with the northern and southern ponds requiring approximately $1.035 \mathrm{ac}-\mathrm{ft}$ and $0.522 \mathrm{ac}-\mathrm{ft}$ of storage capacity, respectively.

There are no proposed major channel improvements for MS associated with this development -however, MST is proposed to be re-routed. The analysis for both channels and design of MST were done by others and a separate report will be submitted for review for all channel improvements.

The site will provide nine (9) Full Spectrum Extended Detention Basins (EDBs). Ponds A, B, C, D, \& E, will discharge treated runoff at historic rates directly into either the MS or MST Channel.

Add others?

As has been mentioned previously, the site is proposed to have a land use of single family residential. The site will consist primarily of $1 / 8$ Acre lots, with some $1 / 4$ Acre and $1 / 3$ Acre lots, public roadways, along with dedicated Tracts for amenity and/or institutional uses.

The proposed institutional use (Sub-basin A-1) area flows have been included in this analysis at a preliminary level only. The Sub-basin is located on the northwest corner of the site, East of Eastonville Rd. \& south of the proposed extension of Rex Rd. It is assumed that the area will have a conservative imperviousness value of 90%. Sub-basin A-1 encompasses an area of 11.23 aces and proposed developed runoff for the site has been calculated to be $Q_{5}=46.4 \mathrm{cfs}, \mathrm{Q}_{100}=90.7 \mathrm{cfs}$. However, in the interim conditions, runoff from this basin ($\mathrm{Q}_{5}=6.5 \mathrm{cfs}, \mathrm{Q}_{100}=12.9 \mathrm{cfs}$) will sheet flow from the northwest to the southeast, to a separate, temporary onsite detention and water quality facility positioned at the southeastern corner of the property, where treated flows will be released to a proposed modified CDOT Type ' C ' inlet on the west side of Road V (DP 1). Flows will then be routed under Road V, via 24" RCP, to the updated Main Stem Tributary 2 chânnel. It is anticipated that the property will be developed at a later date as a fill in subsequent to the proposed development of the majority of this project site. This property will need to submit a separate drainage łeport, complete with an updated water quality and detention design, as part of its development. Installation of an internal storm sewer system separate from the outfall for the property will be required. The development is responsible for ensuring the site drainage, once constructed, will not adversely impact any adjacent properties and downstream facilities. Preliminary pond sizing calculations have been provided in Appendix E for reference. Per the developed conditions map, this area is excluded from water quality and detention per ECM App 1.7. 凡.B.7. As stated above, water quality and detention will be addressed with the future development of the institutional site.

Basin-1 (1.40 AC, $\left.Q_{5}=6.5 \mathrm{cfs}, Q_{100}=12.9 \mathrm{cfs}\right)$: Located at the northern bordel of the site, Basin-1 contains the proposed Phase 1 improvements to Rex Rd. This drainage basin donsists entirely of onsite roadway improvements within the project site. Runoff from this basin will sheet flow to the proposed curb \& gutter along Rex Rd. The flows will then be routed to the east where they will discharge directly into main stem tributary \#2 channel. It is anticipated that these flows will be capture and treated further downstream when the next segment of Rex Rd. is constructed.

No, the flows need to be treated now -

Basin A-2a (4.21 AC, $\mathrm{Q}_{5}=8.1 \mathrm{cfs}, \mathrm{Q}_{100}=18.9 \mathrm{cfs}$): Located on the north portion of the site, this basin consists of residential lots, Road G, and a portion of the north half of Road F. Runoff from this basin will sheet flow from the lots to the adjacent road. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet, located on the northeast side of the intersection of Road G and Road F (DP 2a).

Basin A-2b (2.72 AC, $\mathrm{Q}_{5}=8.3 \mathrm{cfs}, \mathrm{Q}_{100}=16.6 \mathrm{cfs}$): Located on the north portion of the site, this basin consists of residential lots, Road V , and a portion of the north half of Road F . Runoff from this basin will sheet flow from the residential lots to the adjacent Road F and directly from within the ROW of Road V . Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type 'R' inlet in sump conditions, located on the northeast side of the intersection of Road V and Road F (DP 2b).

Basin A-3 ($0.34 \mathrm{AC}, \mathrm{Q}_{5}=1.6 \mathrm{cfs}, \mathrm{Q}_{100}=3.0 \mathrm{cfs}$): Located on the north portion of the site, this basin consists of a portion of the south half of Road F. Flows will be routed, via curb \& gutter, to a proposed (public) 5' CDOT Type ' R ' inlet in sump conditions, located on the southeast side of the intersection of Road V and Road F (DP 3).

Basin A-4a (6.04 AC, Q5 = 9.4 cfs, Q $_{100}=21.8$ cfs): Located on the northwestern portion of the site, this basin consists of residential lots, Road H, and a portion of the west half of Road F. Runoff from this basin will sheet flow from the lots to the adjacent roadways. Flows will then be routed, via curb \& gutter, to a proposed (public) 10’ CDOT Type 'R' at-grade inlet, located on the west side of Road F (DP 4a), between Road H and Road I. Bypass flows will then be routed downstream to a proposed (public) 15’ CDOT Type ' R ' sump inlet, located on the west side of Road F directly across from Road M (DP4). Emergency overflows will be routed downstream via proposed curb and gutter to Design Point 7 within Road M.

Basin A-4b (4.10 AC, $Q_{5}=6.7$ cfs, $Q_{100}=15.6$ cfs): Located on the northwestern portion of the site, this basin consists of residential lots, Road I, and a portion of the west half of Road F. Runoff from this basin will sheet flow from the lots to the adjacent roadways. Flows will then be routed, via curb \& gutter, to a proposed (public) 10’ CDOT Type 'R' at-grade inlet, located on the west side of Road F (DP 4b), between Road H and Road I. Bypass flows will then be routed downstream to a proposed (public) 15' CDOT Type ' R ' sump inlet, located on the west side of Road F directly across from Road M (DP4). Emergency overflows will be routed downstream via proposed curb and gutter to Design Point 7 within Road M.

Basin A-5 ($0.34 \mathrm{AC}, \mathrm{Q}_{5}=1.6 \mathrm{cfs}, \mathrm{Q}_{100}=3.0 \mathrm{cfs}$): Located on the north portion of the site, this basin consists of a portion of the east half of Road F. Flows will be routed, via curb \& gutter, to a proposed (public) 5' CDOT Type 'R' inlet in sump conditions, located on the east side of Road F (DP 5), Just north of the intersection of Road M and Road F .

Basin A-6 (2.67 AC, $\left.\mathrm{Q}_{5}=4.9 \mathrm{cfs}, \mathrm{Q}_{100}=11.5 \mathrm{cfs}\right)$: Located centrally on the site, this basin consists of residential lots, Road N, and a portion of the south half of Road M. Runoff from this basin will sheet flow from the lots to the adjacent road. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type 'R' inlet in sump conditions, located on the south side of Road M (DP 6), Just southeast of the intersection of Road N \& Road M. Emergency overflows will overtop curb and gutter and be routed downstream via an overflow swale to proposed Pond A.
and park facilities?
Basin A-7 (2.91 AC, Q5 = 2.3cfs, Q100 = 8.4 cfs): Located centrally on the site, this basin consists of residential lotsad a portion of the north half of Road M. Runoff from this basin will sheet flow from the lots to the adjacent road. Flows will then be routed, via curb \& gutter, to a proposed (public) 5' CDOT Type ' R ' inlet in sump conditions, located on the north side of Road M (DP 7), Just northeast of the
intersection of Road N \& Road N at DP7a downstream via an overflowswale to proposed Pond A.

Basin A-8 (5.17 AC, $Q_{5}=9.3 \mathrm{cfs}, Q_{100}=21.6 \mathrm{cfs}$): Located in the central portion of the site, directly west from Pond A. This basin consists of residential lots, one-half of Road J, a section of Road O, and a section of the west half of Road M. Runoff from this basin will sheet flow to the proposed roadways, where rythoff will be directed downstream, via curb \& gutter, a proposed (public) 20' CDOT Type 'R' sump inlet.hunoff is then conveyed downstream to DP 7b where additional runoff is added from Sub-basin A-9.

Basin A-9 (1.73 AC, Q5 $=3.0$ cfs, Q $_{100}=6.9$ cfs): Located in the central portion of the site, directly west from Pond A. This basin consists of residential lots and the easter half of a section of Road M. Runoff from this basin will sheet flow to the proposed roadway, where runoff will be directed downstream, via curb \& gutter, a proposed (public) 10' CDOT Type 'R' sump inlet (DP 7b). Runoff is then directed downstream to the northwest corner of Pond A. Flows will then be routed to the outlet structure (DP 8), via a concrete trickle channel, where it will eventually discharge, at historic rates, into the adjacent Main Stem Tributary \#2 channel. Emergency overflows will overtop via an emergency spillway and be routed downstream directly to MST.

and amenity center (account for runoff)

Basin A-10 (6.31 AC, $\left.Q_{5}=1.9 \mathrm{cfs}, Q_{100}=13.4 \mathrm{cfs}\right)$: Located on the eastern limits of the site, edjacent to the proposed Main Stem Tributary \#2 drainageway. This basin consists of a portion of an open-drea amenity and the proposed (private) Full Spectrum Detention Pond A. Runoff from this basin will sheet flow directly to the northwest corner of Pond A. Flows will then be routed to the outlet structure (DP 8), via a concrete trickle channel, where it will eventually discharge, at historic rates, into the adjacent Main Stem Tributary \#2 channel. Emergency overflows will overtop via an emergency spillway and be routed downstream directly to MST.

Basin B-1 (4.02 AC, Q5 $=6.6$ cfs, Q100 = 16.0 cfs): Located on the western limits of the site, adjacent to Eastonville Road. This basin consists of residential lots and the southwest portion of Road J. Runoff from this basin will sheet flow from the lots to the adjacent roadway. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type ' R ' inlet in sump conditions, located at the end of the Cul-De-Sac of Road J (DP 9). Emergency overflows will overtop curb and gutter and be routed downstream via an overflow swale to Road F and then downstream via curb \& gutter to Design Point DR 13.

Basin B-2 (4.16 AC, $Q_{5}=6.5 \mathrm{cfs}, \mathrm{Q}_{100}=15.2 \mathrm{cfs}$): Located on the western limits of the site, partially adjacent to Eastonville Road. This basin consists of residential lots, the northwest portion of Road J and the northwestern portion of Road F. Runoff from this basin will sheet flow from the lots to the adjacent roadways. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet (DP 10a), located on the northwest side of Road F, northeast of Road K. Bypass flows are conveyed downstream via curb \& gutter to DP 10 .

DP11 then to
DP 12b?
Basin B-3 (3.42 AC, $Q_{5}=5.6$ cfs, $Q_{100}=13.0 \mathrm{cfs}$): Located on the western portion of the site, This basin consists of residential lots, the northwest portion of Road F, and Road K Runoff from this basin will sheet flow from the lots to the adjacent roadways. Flows will then be routed, vie curb \& gutter, to a proposed (public) 15' CDOT Type ' R ' sump inlet (DP 10b), located northeast from the intersection of Road F and Road L. on the northwest side of Road F, northeast of Road K. Emergenc, overflows will overtop the crown of the roadway and be conveyed downstream via curb and gutter tolDesign Point DP 13.

Basin B-4 (0.76 AC, Q5 $=3.1$ cfs, $Q_{100}=6.0$ cfs): Located in the west-central portion of the site. This basin consists of the southeast portion of Road F. Runoff from this basin will sheet flow directly to the
curb \& gutter and be directed downstream to a proposed (public) 10' CDOT Type ' R ' inlet in sump conditions, located east of the intersection of Road F \& Road L (DP 11). Emergency overflows will overtop the curb return flowline and be conveyed downstream via curb and gutter to Design Point DP 12b.

Basin B-5 (5.32 AC, $Q_{5}=8.2$ cfs, $Q_{100}=19.2$ cfs): Located centrally on the site, this basin consists of residential lots, Road K, , the northwest portion of Road O, and the southwest portion of Road J. Runoff from this basin will sheet flow from the lots to the adjacent roadways. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet (DP 12a), located on the northwest side of Road O, northeast of the intersection between Road L and Road O. Bypass flows are conveyed downstream via curb \& gutter to DP 12b.

Basin B-6 (2.28 AC, Q5 $=3.7$ cfs, Q100 $=8.6$ cfs): Located centrally on the site. This basin consists of residential lots and the northwest portion of Road P. Runoff from this basin will sheet flow from the lots to the adjacent roadway. Flows will then be routed, via curb \& gutter, to a proposed (public) 10' CDOT Type ' R ' at-grade inlet, located on the northwest side of Road P (DP 14). Bypass flows are conveyed downstream via curb \& gutter to DP 12b.

Basin B-7 (1.94 AC, Q5 $=3.4$ cfs, Q100 $=7.9$ cfs): Located centrally on the site. This basin consists of residential lots and the southeast portion of Road P. Runoff from this basin will sheet flow from the lots to the adjacent roadway. Flows will then be routed, via curb \& gutter, to a proposed (public) 10' CDOT Type ' R ' at-grade inlet, located on the southeast side of Road P (DP 15). Bypass flows are conveyed downstream via curb \& gutter to DP 12b.

Basin B-8 (3.54 AC, Q5 = 5.4 cfs, $\mathrm{Q}_{100}=12.7 \mathrm{cfs}$): Located centrally on the site. This basin consists of residential lots, the southeast portion of Road P, and the northeast portion of Road L. Runoff from this basin will sheet flow from the lots to the adjacent roadways. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type ' R ' sump inlet, located on the southeast side of the intersection between Road P and Road L (DP 12b). Emergency overflows will overtop the crown of the roadway and be conveyed downstream via curb and gutter to Design Point DP 13.

Basin B-9 (2.57 AC, $Q_{5}=4.7$ cfs, $Q_{100}=11.1$ cfs): Located centrally on the site, adjacent to the Main Stem channel. This basin consists residential lots and the southwest portion of Road L. Runoff from this basin will sheet flow from the lots to the adjacent roadway. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type ' R ' sump inlet, located on the southwest side of the intersection between Road P and Road L (DP 13). Emergency overflows will overtop the curb \& gutter of the roadway and be conveyed downstream via a graded swale into Pond B (DP 16).

Basin B-10 (0.87 AC, Q5 $=0.4$ cfs, $\mathrm{Q}_{100}=2.6$ cfs): Located centrally on the site, adjacent to the Main Stem channel. This basin consists of the proposed (private) Full Spectrum Detention Pond B. Runoff from this basin will sheet flow directly to Pond B. Flows will then be routed to the outlet structure (DP 16), via a concrete trickle channel, where it will eventually discharge, at historic rates, into the adjacent Main Stem channel.

Basin C-1 (3.90 AC, $Q_{5}=6.1$ cfs, $Q_{100}=14.1 \mathrm{cfs}$): Located on the east portion of the site, this basin consists of residential lots and the eastern half of a portion of Road O. Runoff from this basin will sheet flow from the lots to the adjacent roadway. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type ' R ' at-grade inlet, located on the southeast side of the intersection of Road R and Road S (DP 17b). Bypass flows are conveyed downstream via curb \& gutter to DP 17e.

Basin C-2 (0.96 AC, $\left.\mathrm{Q}_{5}=1.6 \mathrm{cfs}, \mathrm{Q}_{100}=3.8 \mathrm{cfs}\right)$: Located on the eastern portion of the site, this basin consists of residential lots and the southern portion of Roads O \& R. Runoff from this basin will sheet flow from the lots to the adjacent roadway. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type ' R ' at-grade inlet (DP 17a), located on the southwest side of the intersection of Road R and Road S. Bypass flows are conveyed downstream via curb \& gutter to DP 17c.

Basin C-3 (4.07 AC, Q5 = 6.4 cfs, $\mathrm{Q}_{100}=14.9 \mathrm{cfs}$): Located on the southeast portion of the site, this basin consists of residential lots and the eastern half of Road S. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type ' R ' at-grade inlet (DP 17a), located on the southwest side of the intersection of Road R and Road S. Bypass flows are conveyed downstream via curb \& gutter to DP 17c.

Basin C-4 (3.80 AC, $\mathrm{Q}_{5}=6.0 \mathrm{cfs}, \mathrm{Q}_{100}=13.9 \mathrm{cfs}$): Located on the southeast portion of the site, this basin consists of residential lots and the eastern half of Road T. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet (DP 17c), located on the southwest side of the intersection of Road R and Road T. Bypass flows are conveyed downstream via curb \& gutter to DP 17d.

Basin C-5 (3.19 AC, Q $=5.3$ cfs, $Q_{100}=12.3 \mathrm{cfs}$): Located on the southeast portion of the site, this basin consists of residential lots and the western half of Road R. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet (DP 17d), located on the northwest side of the intersection of Road R and Road Q. Bypass flows are conveyed downstream via curb \& gutter to DP $\mathbf{1 7 g}$.

Basin C-6 (2.99 AC, $\mathrm{Q}_{5}=4.6 \mathrm{cfs}, \mathrm{Q}_{100}=10.6 \mathrm{cfs}$): Located on the southeast portion of the site, this basin consists of residential lots and the eastern half of Road R. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet (DP 17e), located on the northeast side of the intersection of Road R and Road Q. Bypass flows are conveyed downstream via curb \& gutter to DP 17g.

Basin C-7 (5.48 AC, $\mathrm{Q}_{5}=8.3 \mathrm{cfs}, \mathrm{Q}_{100}=19.4 \mathrm{cfs}$): Located in the central portion of the site, this basin consists of residential lots and the eastern half of Road Q. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet (DP 18a), located on the west side of the intersection of Road S and Road Q. Bypass flows are conveyed downstream via curb \& gutter to DP 18b.

Basin C-8 (2.82 AC, $\mathrm{Q}_{5}=4.7 \mathrm{cfs}, \mathrm{Q}_{100}=10.9 \mathrm{cfs}$): Located in the central portion of the site, this basin consists of residential lots, a portion of Road S, and the western half of Road Q. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb \& gutter, to a proposed (public) 15 ' CDOT Type 'R' at-grade inlet (DP 17f), located on the southeast side of the intersection of Road S and Road Q. Bypass flows are conveyed downstream via curb \& gutter to DP 17g.

Basin C-9 (5.96 AC, $\mathrm{Q}_{5}=8.6 \mathrm{cfs}, \mathrm{Q}_{100}=20.2 \mathrm{cfs}$): Located on the southeast corner of the site, this basin consists of residential lots, a portion of Road T, and the northern half of Road Q. Runoff from this basin will sheet flow to the adjacent roadways. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type 'R' sump inlet (DP 17g), located on the north side of Road Q just north of Road U. Emergency overflows will overtop the crown of Road Q and be routed downstream via proposed curb and gutter to Design Point 18b within Road Q.

The swale is 3 lots away from the low point. State that grading along the south side of the road will be elevated above the road to the Grandview Reserve Filing Nogitining of the swale and that the lots in this area require the homes to be a foot above the calculated water surface at DP20 in the FDR. Or provide a swale from the low point to the pond. Basin C-10 (3.67 AC, $Q_{5}=5.8 \mathrm{cfs}, \mathrm{Q}_{100}=13.5 \mathrm{cfs}$): Located on the southeast corner of the site, this basin consists of residential lots and the southern half of Road Q. Ruhoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type 'R' sump inlet (DP 18b), located on the south side of Road Q just north pf Road U. Emergency overflows will overtop the curb \& gutter of Road Q and be routed downstream via a graded grassed swale and curb \& gutter within Road U to Design Point 19 within Road U.

Basin C-11 (0.50 AC, $\left.Q_{5}=1.1 \mathrm{cfs}, \mathrm{Q}_{100}=2.5 \mathrm{cfs}\right)$: Located on the southeast \&orner of the site, this basin consists of a grassed amenity area and the north half of Road U. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb \& gutter, to a proposed (public) 5' CDOT Type 'R' sump inlet (DP 19), located on the north side of Road U. Emergency overflowswill overtop the crown of Road U and be routed downstream via curb \& gutter to Design Point 20 within Rdad U.

Basin C-12 (1.61 AC, $Q_{5}=2.7 \mathrm{cfs}, \mathrm{Q}_{100}=6.4 \mathrm{cfs}$): Located on the southeast corner of the site, this basin consists of a grassed amenity area and the north half of Road U. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb \& gutter, to a proposed (public) §' CDOT Type 'R' sump inlet (DP 20), located on the south side of Road U. Emergency overflows will overtop the curb \& gutter of Road U and be routed downstream via a graded swale to Design Point 21 within Pond C.

Basin C-13 (2.46 AC, $\left.\mathrm{Q}_{5}=0.8 \mathrm{cfs}, \mathrm{Q}_{100}=5.8 \mathrm{cfs}\right)$: Located on the southeast corner of the site, adjacent to the Main Stem channel. This basin consists of the proposed (private) Full Spectrum Detention Pond C. Runoff from this basin will sheet flow directly to Pond C . Flows will then be routed to the outlet structure (DP 21), via a concrete trickle channel, where it will eventually discharge, at historic rates, into the adjacent Main Stem channel.
\qquad This area (EX-3 and a large part of what's shown as EX-1) historically drains to the east - the increased
 to the Main Stem channel. This basin consists of the undeveloped area outside and downstream of the Main Stem channel (MS).

Basin D-1 (2.46 AC, $Q_{5}=5.2 \mathrm{cfs}, Q_{100}=12.0 \mathrm{cfs}$): Located on the southwest portion of the site, adjacent to Eastonville Road. This basin consists of residential lots, the west half of Road B, and the north half of Road A. Runoff from this basin will sheet flow to the adjacent roadways. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type 'R' inlet in sump conditions, located on the west side of Road B (DP 22), just north of the intersection of Road B \& Road C. Emergency overflows will overtop the crown of Road B and be routed downstream via curb \& gutter to Design Point 23 within Road B.

Basin D-2 (0.75 AC, $\mathrm{Q}_{5}=1.5 \mathrm{cfs}, \mathrm{Q}_{100}=3.4$ cfs): Located on the southwest portion of the site, this basin consists of residential lots and the eastern half of Road B. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb \& gutter, to a proposed (public) 5' CDOT Type 'R' inlet in sump conditions, located on the east side of Road B (DP 23), just southeast of the intersection of Road B \& Road C. Emergency overflows will pool up and be routed around the curb return at the intersection of Road B and Road C downstream via curb \& gutter to Design Point $\mathbf{2 4}$ within Road C.

Basin D-3 (4.76 AC, Q5 = $8.5 \mathrm{cfs}, \mathrm{Q}_{100}=19.9 \mathrm{cfs}$): Located on the southwest portion of the site, this basin consists of residential lots and the eastern half of Road C. Runoff from this basin will sheef tlow to the adjacent roadway. Flows will then be routed, via curb \& gutter, to a proposed (public) 15 CDOT Type 'R' inlet in sump conditions, located on the west side of Road C (DP 24), just southeast of the intersection of

State that Lot 43 will be graded
 higher than the ponding level.

Road B \& Road C. Emergency overflows will overtop the crown and be routed downstream via curb \& gutter in Road C to Design Point 25.

Basin D-4 (4.74 AC, Q5 = 8.3 cfs, Q $_{100}=19.5$ cfs): Located on the southwest portion of the site, this basin consists of residential lots and the eastern half of Road C. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type 'R' inlet in sump conditions, located on the east side of Road C (DP 25), just southeast of the intersection of Road B \& Road C. Emergency overflows will overtop curb \& gutter and be routed downstream via a graded swale within the maintenance access path to Pond D at Design Point 26.

Basin D-5 (0.71 AC, Q5 $=0.3$ cfs, $\mathrm{Q}_{100}=2.0 \mathrm{cfs}$): Located on the southeast corner of the site, adjacent to the Main Stem channel. This basin consists of the proposed (private) Full Spectrum Detention Pond D. Runoff from this basin will sheet flow directly to Pond D. Flows will then be routed to the outlet structure (DP 26), via a concrete trickle channel, where it will eventually discharge, at historic rates, into the adjacent Main Stem channel.

Basin D-6 (1.00 AC, Q5 = $0.3 \mathrm{cfs}, \mathrm{Q}_{100}=2.5 \mathrm{cfs}$): Located on the southwest corner of the site, adjacent to the Main Stem channel. This basin consists of the undeveloped area outside and downstream of the proposed (private) Full Spectrum Detention Pond D. Runoff from this basin will sheet flow directly to the Main Stem channel (MS).

Basin E-1 (5.06 AC, $Q_{5}=7.5 \mathrm{cfs}, \mathrm{Q}_{100}=17.6 \mathrm{cfs}$): Located on the southern portion of the site, this basin consists of residential lots, the southern half of Road A, Road E, and the southern half of Road B. Runoff from this basin will sheet flow to the adjacent roadways. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type ' R ' at-grade inlet, located on the southwest corner of the intersection between Road B and Road D (DP 28), just north of the cul-de-sac. Bypass flows are conveyed downstream via curb \& gutter to DP 29.
Basin E-2 (3.63 AC, Q5 = 7.6 cfs, $\left.Q_{100}=17.9 \mathrm{cfs}\right)$: Located on the southern portion of the site, this basin consists of residential lots, a small portion of Road D, and the north half of Road B. Runoff from this basin will sheet flow to the adjacent roadways. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet, located on the norhhwest corner of the intersection between Road B and Road D (DP 27), just north of the cul-de-sac. Bypass flows are conveyed downstream via curb \& gutter to DP 29.

Basin E-3 (2.97 AC, $Q_{5}=4.5 \mathrm{cfs}, \mathrm{Q}_{100}=10.5 \mathrm{cfs}$): Located on the southern portion of the site, this basin consists of residential lots and the western half of Road D. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type 'R' sump inlet, located just northeast from the cul-de-sac of Road D (DP 29). Emergency overflows will overtop the crown of Road D and be routed downstream via curp \& gutter to Design Point 30.

Basin E-4 (6.86 AC, $\mathrm{Q}_{5}=9.7 \mathrm{cfs}, \mathrm{Q}_{100}=22.7 \mathrm{cfs}$): Located on the southern portion of the site, this basin consists of residential lots and the eastern half of Road D. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type 'R' sump inlet, located just northeast from the cul-de-sac of Road D (DP 30). Emergency overflows will overtop the curb \& gutter and be routed downstream via a graded swale within the maintenance access to Pond E at Design Point 31.

Is there aswale in
Galloway \& Company, Inc.

Basin E-5 ($0.74 \mathrm{AC}, \mathrm{Q}_{5}=0.3 \mathrm{cfs}, \mathrm{Q}_{100}=2.0 \mathrm{cfs}$): Located on the southeast corner of the site, adjacent to the Main Stem channel. This basin consists of the proposed (private) Full Spectrum Detention Pond E. Runoff from this basin will sheet flow directly to Pond E. Flows will then be routed to the outlet structure (DP 31), via a concrete trickle channel, where it will eventually discharge, at historic rates, into the adjacent Main Stem channel.

Basin E-6 ($0.95 \mathrm{AC}, \mathrm{Q}=0.3 \mathrm{cfs}, \mathrm{Q}_{100}=2.3 \mathrm{cfs}$): Located on the southwest corner of the site, adjacent to the Main Stem champel. This basin consists of the undeveloped area outside and downstream of the proposed (private) Full Spectrum Detention Pond E. Runoff from this basin will sheet flow directly to the Main Stem channel (MS).

Address the Eastonville Road

VII. Storm Sewer System

All development is anticipated to be urban and will include storm sewer \& street inlets. Storm sewers collect storm water runoff and convey the water to the water quality facilities prior to discharging. Storm sewer systems will be designed to the 100-year storm and checked with the 5 -year storm. Inlets will be placed at sump areas and intersections where street flow is larger than street capacity. UDFCD Inlet spreadsheet has been used to determine the size of all sump inlets.

There will be a minimum of 5 proposed storm systems within the site. Each of the nine storm sewer systems will discharge storm water into its correlated WQCV pond. Each system will consist of reinforced concrete pipe (RCP), CDOT Type ' R ' inlets, and storm sewer manholes.

The Final drainage report will include details concerning at-grade inlet locations, street capacity, storm sewer sizing, outlet protection and location. Preliminary sump inlets have been sized and the calculations can be found in Appendix D. As mentioned, these sump inlets sizes are preliminary and are currently oversized. It is anticipated that the inlets will reduce in size with the addition of at-grade inlets at the time of the Final Drainage Report.

VIII. Proposed Water Quality Detention Ponds district?

Nine (9) Water Quality Capture Volume Detention Ponds will be provided for the proposed site, two (2) of which are temporary in nature. All of the proposed ponds are private and will be maintained by the $H \otimes A$, once established. These detention ponds are proposed to be full spectrum and will provide water quality and detention. The WQCV and EURV release will be controlled with an orifice plate. The release rates for the WQCV and EURV will be 40 -hours and 72 -hours, respectively. The 100 -year volume will be controlled by orifice and/or restrictor plate and will be designed to release at or below the pre-development flow rate. Outlet structures, forebays, trickle channels, etc. will be designed with the final drainage report during final plat. The required FSD pond volumes are as described below:

Pond A: Located to the north of the site, just west of the newly routed Main Stem Tributary \#2 channel. This pond will discharge into the Main Stem Tributary \#2, ultimately merging with Main Stem to the south, off-site. The required volume WQCV and EURV are 0.49 Ac -Ft \& 1.090 Ac-Ft, respectively. The total required detention basin volume is $2.55 \mathrm{Ac}-\mathrm{Ft}$.

Pond B: Located centrally on the site, just east of the Main Stem drainage way. This pond will discharge into the Main Stem channel. The required volume WQCV and EURV are $0.52 \mathrm{Ac}-\mathrm{Ft} \& 1.47 \mathrm{Ac}-\mathrm{Ft}$, respectively. The total required detention basin volume is $2.95 \mathrm{Ac}-\mathrm{Ft}$.

Pond C: Located on the southeast portion of the site, between the Main Stem \& Main Stem Tributary \#2 channels. This pond will discharge into the Main Stem channel. The required volume WQCV and EURV are $0.26 \mathrm{Ac}-\mathrm{Ft} \& 0.57 \mathrm{Ac}-\mathrm{Ft}$, respectively. The total required detention basin volume is $1.35 \mathrm{Ac}-\mathrm{Ft}$.

Pond D: Located centrally on the site, just west of the Main Stem channel. This pond will discharge into the Main Stem channel. The required volume WQCV and EURV are $0.22 \mathrm{Ac}-\mathrm{Ft} \& 0.55 \mathrm{Ac}-\mathrm{Ft}$, respectively. The total required detention basin volume is $1.23 \mathrm{Ac}-\mathrm{Ft}$.

Pond E: Located on the south side of the site, just west of the Main Stem channel. This pond will discharge into the Main Stem channel. The required volume WQCV and EURV are 0.22 Ac-Ft \& 0.48 AcFt , respectively. The total required detention basin volume is 1.17 Ac -Ft.

Address the other 4 ponds

Address how the spillways will cross the trails.

IX. Proposed Channel Improvements

not received?
According to the MDDP, there are two major drainage ways that run through the site.| As was discussed within the Existing Conditions portion of the report, both the Main Stem channel (MS) and Main Stem Tributary \#2 channel (MST) run through the site. There are no proposed major channel improvements for MS -however, MST is proposed to be rerouted. As part of this rerouting of MSX, offsite upstream tributary flows will be captured upstream from the proposed Rex Road extension and be conveyed via culvert to the proposed rerouted MST. The analysis for both drainage ways, offsite upstream tributary capture, and design of MST were done by others and a separate report will be submitted for review.

Analysis of downstream drainage facilities is bpyond the scope of this project. This development will capture developed runoff in full spectrum detention facilities and release at historic levels. Therefore, there will be no adverse impact to downstream facilities.__ required per ECM 3.2.4

X. Maintenance

After completion of construction and upon the Board of County Commissioners acceptance, it is anticipated all drainage facilities within the public Right-of-Way are to be owned and maintained by El Paso County.

and MS drainageway

All private detention ponds are lo be owned and maintained by the Grandview Reserve Metropolitan District No. 2 (DISTRICT), once established, unless an agreement is reached stating otherwise. The proposed channel (MST) Wall also be maintained by the DISTRICT. Maintenance access for all tork spectrum detention facilities will be provided from public Right-of-Way. Maintenance access for MS \mp will be provided along the eastern top of channel bank within the proposed tract.

XI. Wetlands Mitigation Provide report title and date

There are two existing wetlands on site associated with the two major channels, MS and MST. The wetlands are both contained within the existing channels with the wetland in MS being classified as jurisdictional and the wetland in MST classified as non-jurisdictional. The wetlands will be analyzed with the channel report by others. Wetlands maintenance will be the responsibility of the the Grandview Reserve Metropolitan District No. 2 (DISTRICT).

XII. Floodplain Statement

A portion of the project sit lies with Zone A Special Flood Hazard Area as defined by the FIRM Map number 08041C0552G and 08041C0556G effective December 7, 2018. A copy of the FIRM Panel is included in Appendix A. \longleftarrow Add: FEMA-approved floodplain elevations

XIII. Drainage Fees \& Maintenance

Gieck Ranch Basin is not listed as part of the El Paso County drainage basin fee program. Unless otherwise instructed, no drainage fees will be assessed. If it is found drainage basin fees are required, these will be included in the Final Drainage Report.

XIV. Conclusion

The Grandview Reserve residential subdivision lies within the Gieck Ranch Drainage Basin. Water quality for the site is provided in nine on-site Full Spectrum Detention Ponds; Ponds A, B, C, D, \& E. All
drainage facilities within this report were sized according to the EI Paso County Drainage Criteria Manuals. There are two major channels passing through the site Main Stem and Main Stem Tributary \#2, which will be addressed by others in a channel improvement report. The nine (9) WQCV ponds will be maintained by a newly established HRA. A Final Drainage Report will be submitted along with the final plat and construction drawings.

XV. References

1. El Paso County Drainage Criteria Manual, 1990.
2. Drainage Criteria Manual, Volume \& City of Colorado Springs, 2002.
3. El Paso County Drainage Criteria Manual Update, 2015.
4. El Paso County Engineering Criteria Manual, 2020.
5. Urban Storm Drainage Criteria Manua,, Urban Drainage and Flood Control District, January 2016 (with current revisions).
6. Gieck Ranch Drainage Basin Study (DBRS), Drexel Barrell, October 2010 (Not adopted by County).
7. Grandview Reserve Master Development Dpainage Plan (MDDP), HR Green, November 2020.

GVR Metro District

APPENDIX A

Exhibits and Figures

MAP LEGEND

Area of Interest (AOI)	\square	C
Area of Interest (AOI)	\square	C/D
Soils		
Soil Rating Polygons		
A	\square	Not rated or not available
A/D	Water F	res
	\sim	Streams and Canals
B		
	Transpo	ion
B/D	+ +	Rails
C	\sim	Interstate Highways
C/D	(2)	US Routes
D	\approx	Major Roads
Not rated or not available	\cdots	Local Roads
Soil Rating Lines	Backgro	
$\cdots \mathrm{A}$		Aerial Photography
\cdots A/D		
\cdots B		
$\cdots 3 / D$		
$\cdots \mathrm{C}$		
$\cdots \mathrm{C} / \mathrm{D}$		
\cdots D		
* Not rated or not available		
Soil Rating Points		
$\square \quad \mathrm{A}$		
$\square \mathrm{A} / \mathrm{D}$		
$\square \quad \mathrm{B}$		
- B/D		

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 17, Sep 13, 2019

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Sep 8, 2018-May 26, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	22.4	2.6\%
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	450.7	52.5\%
83	Stapleton sandy loam, 3 to 8 percent slopes	B	385.4	44.9\%
Totals for Area of Interest			858.5	100.0\%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C / D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

NOAA Atlas 14, Volume 8, Version 2
Location name: Peyton, Colorado, USA*
Latitude: 38.985°, Longitude: $\mathbf{- 1 0 4 . 5 6 5}{ }^{\circ}$
Elevation: 6975.71 ft**

* source: ESRI Maps
** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland
PF tabular | PF_graphical | Maps \& aerials
PF tabular

PDS-based point precipitation frequency estimates with 90\% confidence intervals (in inches) ${ }^{1}$										
Duration	Average recurrence interval (years)									
	1	2	5	10	25	50	100	200	500	1000
5-min	$\begin{array}{r} \mathbf{0 . 2} \\ (0.189 \end{array}$	$\begin{array}{\|c\|} \hline \mathbf{0 . 2 9 1} \\ (0.231-0.370) \\ \hline \end{array}$	0.381 $(0.301-0.486)$	$\mathbf{0 . 4 6 1}$ $(0.361-0.589)$	$\begin{array}{c\|} \mathbf{0 . 5 7 6} \\ (0.440-0.768) \\ \hline \end{array}$	$\begin{array}{c\|} \hline \mathbf{0 . 6 7 1} \\ (0.499-0.904) \\ \hline \end{array}$	$\mathbf{0 . 7 7 0}$ $(0.554-1.06)$	$\begin{gathered} \hline 0.875 \\ (0.604-1.24) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 1.02 \\ (0.678-1.48) \\ \hline \end{array}$	$\begin{array}{c\|} \hline 1.14 \\ (0.733-1.67) \\ \hline \hline \end{array}$
10-1	0.350 $(0.277-0.444)$	0.426 $(0.338-0.542)$	0.558 $(0.441-0.711)$	0.674 $(0.529-0.863)$	0.844 $(0.644-1.13)$	0.982 $(0.731-1.32)$	1.13 $(0.811-1.56)$	$\begin{gathered} \hline \hline 1.28 \\ (0.884-1.81) \\ \hline \end{gathered}$	$\begin{gathered} 1.49 \\ (0.992-2.17) \end{gathered}$	$\begin{gathered} 1.66 \\ (1.07-2.44) \end{gathered}$
15	$\begin{gathered} \mathbf{0 . 4 2 6} \\ 0.338-0.541 \end{gathered}$	0.520 $(0.412-0.660)$	$\begin{array}{r} 0 \\ (0.5 \end{array}$	$\begin{gathered} \hline 0.823 \\ (0.645-1.05) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.03 \\ (0.785-1.37) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 1.20 \\ (0.891-1.62) \\ \hline \end{array}$	$\begin{gathered} 1.37 \\ (0.988-1.9 \\ \hline \end{gathered}$	$\begin{gathered} 1.56 \\ (1.08-2.21) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \hline 1.82 \\ (1.21-2.65) \\ \hline \end{array}$	$\begin{gathered} 2.03 \\ (1.31-2.98) \\ \hline \end{gathered}$
30-m	0.608 $(0.482-0.771)$	$\begin{gathered} \mathbf{0 . 7 4 0} \\ (0.586-0.940) \\ \hline \end{gathered}$	$\begin{gathered} 0.968 \\ (0.764-1.23) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.17 \\ (0.916-1.49) \\ \hline \end{gathered}$	$\begin{gathered} 1.46 \\ (1.11-1.94) \end{gathered}$	$\begin{gathered} 1.70 \\ (1.26-2.29) \end{gathered}$	$\begin{gathered} 1.94 \\ (1.40-2.68) \end{gathered}$	$\begin{gathered} 2.21 \\ (1.52-3.12) \end{gathered}$	$\begin{gathered} 2.57 \\ (1.71-3.73) \end{gathered}$	$\begin{gathered} 2.86 \\ (1.85-4.19) \end{gathered}$
60	0.775 $(0.615-0.984)$	$\begin{gathered} 0.933 \\ (0.739-1.19) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 1.21 \\ (0.956-1.54) \end{gathered}$	$\begin{gathered} \hline 1.46 \\ (1.15-1.87) \\ \hline \end{gathered}$	1.84	$\begin{gathered} 2.16 \\ (1.61-2.92) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 2.49 \\ (1.80-3.45) \\ \hline \end{array}$	$\begin{gathered} 2.85 \\ (1.97-4.05) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 3.37 \\ \hline(2.24-4.90) \\ \hline \end{array}$	$\begin{gathered} \hline 3.78 \\ (2.44-5.55) \\ \hline \end{gathered}$
2-hr	$\begin{gathered} 0.943 \\ (0.754-1.19) \\ \hline \hline \end{gathered}$	$\begin{gathered} 1.13 \\ (0.898-1.42) \\ \hline \hline \end{gathered}$	$\begin{gathered} 1.46 \\ (1.16-1.84) \\ \hline \end{gathered}$	$\begin{gathered} 1.76 \\ (1.39-2.23) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 2 2} \\ (1.72-2.97) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 6 2} \\ (1.97-3.52) \\ \hline \end{gathered}$	$\begin{gathered} 3.04 \\ (2.21-4.19) \\ \hline \end{gathered}$	$\begin{gathered} 3.50 \\ (2.45-4.95) \\ \hline \end{gathered}$	$\begin{gathered} 4.16 \\ (2.80-6.03) \\ \hline \end{gathered}$	$\begin{gathered} 4.70 \\ (3.06-6.85) \\ \hline \end{gathered}$
3-hr	$\begin{gathered} 1.03 \\ (0.829-1.29) \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline 1.22 \\ (0.978-1.53) \end{gathered}$	$\begin{gathered} 1.57 \\ (1.25-1.97) \\ \hline \end{gathered}$	$\begin{gathered} 1.90 \\ (1.51-2.40) \\ \hline \end{gathered}$		$\begin{gathered} 2.86 \\ (2.17-3.84) \\ \hline \end{gathered}$			$\begin{gathered} \hline 4.66 \\ (3.15-6.74) \end{gathered}$	$\begin{gathered} 5.29 \\ (3.46-7.69) \\ \hline \end{gathered}$
6-h	$\begin{gathered} 1.20 \\ (0.968-1.49) \\ \hline \end{gathered}$	$\begin{gathered} 1.40 \\ (1.13-1.74) \\ \hline \end{gathered}$	$\begin{gathered} 1.78 \\ (1.44-2.22) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 1 6} \\ (1.73-2.70) \\ \hline \end{gathered}$	$\begin{gathered} 2.76 \\ (2.18-3.66) \\ \hline \end{gathered}$	$\begin{gathered} 3.28 \\ (2.52-4.39) \\ \hline \end{gathered}$	$\begin{gathered} 3.86 \\ (2.86-5.29) \\ \hline \end{gathered}$	$\begin{gathered} 4.51 \\ (3.21-6.34) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 5.46 \\ (3.73-7.86) \\ \hline \end{array}$	$\begin{gathered} 6.24 \\ (4.12-9.01) \\ \hline \end{gathered}$
12-h	$\begin{gathered} 1.38 \\ (1.13-1.70) \\ \hline \end{gathered}$	$\begin{gathered} 1.61 \\ (1.31-1.98) \\ \hline \end{gathered}$	$\begin{gathered} 2.05 \\ (1.67-2.53) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 4 8} \\ (2.00-3.07) \\ \hline \end{gathered}$	$\begin{gathered} 3.15 \\ (2.51-4.15) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.74 \\ (2.89-4.96) \\ \hline \end{gathered}$		$\begin{gathered} 5.12 \\ (3.67-7.13) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 6.17 \\ (4.25-8.82) \\ \hline \hline \end{array}$	$\begin{gathered} 7.04 \\ (4.69-10.1) \\ \hline \end{gathered}$
24-hr	$\begin{gathered} 1.60 \\ (1.31-1.95) \\ \hline \end{gathered}$	$\begin{gathered} 1.87 \\ (1.54-2.28) \\ \hline \end{gathered}$	$\begin{gathered} 2.38 \\ (1.94-2.91) \\ \hline \end{gathered}$	$\begin{gathered} 2.85 \\ (2.32-3.51) \\ \hline \end{gathered}$	$\begin{gathered} 3.60 \\ (2.88-4.67) \\ \hline \end{gathered}$	$\begin{gathered} 4.24 \\ (3.29-5.56) \end{gathered}$	$\begin{gathered} \hline 4.94 \\ (3.71-6.63) \\ \hline \end{gathered}$	$\begin{gathered} 5.71 \\ (4.12-7.87) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.82 \\ (4.73-9.66) \\ \hline \end{gathered}$	$\begin{gathered} 7.73 \\ (5.20-11.0) \\ \hline \end{gathered}$
2-day	$\begin{gathered} 1.85 \\ (1.54-2.24) \\ \hline \end{gathered}$	$\begin{gathered} 2.18 \\ (1.80-2.63) \\ \hline \end{gathered}$	$\begin{gathered} 2.76 \\ (2.28-3.35) \\ \hline \end{gathered}$	$\begin{gathered} 3.29 \\ (2.70-4.01) \\ \hline \end{gathered}$	$\begin{gathered} 4.11 \\ (3.30-5.27) \\ \hline \end{gathered}$			$\begin{gathered} 6.35 \\ (4.62-8.68) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 7.50 \\ (5.25-10.5) \\ \hline \end{array}$	$\begin{gathered} 8.44 \\ (5.73-11.9) \\ \hline \end{gathered}$
3-da	$\begin{gathered} 2.03 \\ (1.69-2.44) \end{gathered}$	$\begin{gathered} \mathbf{2 . 3 9} \\ (1.98-2.87) \\ \hline \end{gathered}$	$\begin{gathered} 3.02 \\ (2.50-3.64) \\ \hline \end{gathered}$	$\begin{gathered} 3.60 \\ (2.97-4.36) \end{gathered}$	$\begin{gathered} 4.47 \\ (3.60-5.69) \\ \hline \end{gathered}$	$\begin{gathered} 5.20 \\ (4.09-6.70) \end{gathered}$	$\begin{gathered} 5.98 \\ (4.55-7.90) \\ \hline \end{gathered}$	$\begin{gathered} 6.83 \\ (4.99-9.28) \\ \hline \end{gathered}$	$\begin{gathered} 8.03 \\ (5.65-11.2) \\ \hline \end{gathered}$	$\begin{gathered} 9.00 \\ (6.15-12.7) \\ \hline \end{gathered}$
4-day	$\begin{gathered} 2.18 \\ (1.82-2.61) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.56 \\ (2.13-3.06) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.22 \\ (2.68-3.87) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.82 \\ (3.16-4.62) \\ \hline \end{gathered}$	$\begin{gathered} 4.73 \\ (3.83-6.00) \\ \hline \end{gathered}$	$\begin{gathered} 5.49 \\ (4.33-7.04) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.30 \\ (4.81-8.30) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.18 \\ (5.26-9.72) \\ \hline \end{gathered}$	$\begin{gathered} 8.43 \\ (5.95-11.7) \\ \hline \end{gathered}$	$\begin{gathered} 9.43 \\ (6.46-13.3) \\ \hline \end{gathered}$
7-day	$\begin{gathered} 2.58 \\ (2.17-3.07) \\ \hline \end{gathered}$	$\begin{gathered} 2.98 \\ (2.50-3.54) \\ \hline \end{gathered}$	$\begin{gathered} 3.68 \\ (3.08-4.39) \\ \hline \end{gathered}$	$\begin{gathered} 4.32 \\ (3.60-5.18) \\ \hline \end{gathered}$	$\begin{gathered} 5.29 \\ (4.31-6.65) \\ \hline \end{gathered}$	$\begin{gathered} 6.09 \\ (4.84-7.76) \\ \hline \end{gathered}$	$\begin{gathered} 6.96 \\ (5.34-9.09) \\ \hline \end{gathered}$	$\begin{gathered} 7.89 \\ (5.82-10.6) \\ \hline \end{gathered}$	$\begin{gathered} \hline 9.21 \\ (6.55-12.8) \\ \hline \end{gathered}$	$\begin{gathered} 10.3 \\ (7.10-14.4) \\ \hline \end{gathered}$
10-day	$\begin{gathered} 2.93 \\ (2.48-3.47) \\ \hline \end{gathered}$	$\begin{gathered} 3.37 \\ (2.84-3.98) \\ \hline \end{gathered}$	$\begin{gathered} 4.13 \\ (3.47-4.90) \\ \hline \end{gathered}$	$\begin{gathered} 4.81 \\ (4.02-5.74) \\ \hline \end{gathered}$	$\begin{gathered} 5.83 \\ (4.76-7.29) \\ \hline \end{gathered}$	$\begin{gathered} 6.68 \\ (5.32-8.45) \\ \hline \end{gathered}$	$\begin{gathered} 7.58 \\ (5.85-9.86) \\ \hline \end{gathered}$	$\begin{gathered} 8.55 \\ (6.34-11.4) \\ \hline \end{gathered}$	$\begin{gathered} 9.92 \\ (7.09-13.7) \\ \hline \end{gathered}$	$\begin{gathered} 11.0 \\ (7.65-15.4) \\ \hline \end{gathered}$
20-day	$\begin{gathered} 3.91 \\ (3.33-4.58) \\ \hline \end{gathered}$	$\begin{gathered} 4.51 \\ (3.84-5.29) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{5 . 5 2} \\ (4.68-6.50) \\ \hline \end{gathered}$	$\begin{gathered} 6.39 \\ (5.39-7.55) \\ \hline \end{gathered}$	$\begin{gathered} 7.63 \\ (6.25-9.37) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{8 . 6 2} \\ (6.90-10.8) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{9 . 6 4} \\ (7.47-12.4) \\ \hline \end{gathered}$	$\begin{gathered} 10.7 \\ (7.98-14.1) \\ \hline \end{gathered}$	$\begin{gathered} 12.2 \\ (8.74-16.6) \\ \hline \end{gathered}$	$\begin{gathered} 13.3 \\ (9.31-18.4) \\ \hline \end{gathered}$
30-day	$\begin{gathered} 4.70 \\ (4.02-5.47) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{5 . 4 4} \\ (4.65-6.34) \\ \hline \end{gathered}$	$\begin{gathered} 6.65 \\ (5.66-7.78) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.66 \\ (6.49-9.00) \\ \hline \end{gathered}$	$\begin{gathered} 9.06 \\ (7.44-11.0) \\ \hline \end{gathered}$	$\begin{gathered} 10.1 \\ (8.15-12.5) \\ \hline \end{gathered}$	$\begin{gathered} 11.2 \\ (8.74-14.3) \\ \hline \end{gathered}$	$\begin{gathered} 12.3 \\ (9.24-16.2) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 13.8 \\ (9.98-18.7) \\ \hline \hline \end{array}$	$\begin{gathered} 15.0 \\ (10.5-20.6) \\ \hline \end{gathered}$
45-day	$\begin{gathered} 5.67 \\ (4.88-6.57) \\ \hline \end{gathered}$	$\begin{gathered} 6.55 \\ (5.63-7.60) \\ \hline \end{gathered}$	$\begin{gathered} 7.97 \\ (6.82-9.27) \\ \hline \end{gathered}$	$\begin{gathered} 9.12 \\ (7.77-10.7) \\ \hline \end{gathered}$	$\begin{gathered} 10.7 \\ (8.79-12.9) \\ \hline \end{gathered}$	$\begin{gathered} 11.9 \\ (9.56-14.5) \\ \hline \end{gathered}$	$\begin{gathered} 13.0 \\ (10.2-16.4) \\ \hline \end{gathered}$	$\begin{gathered} 14.2 \\ (10.6-18.4) \\ \hline \end{gathered}$	$\begin{gathered} 15.6 \\ (11.3-21.0) \\ \hline \end{gathered}$	$\begin{gathered} 16.7 \\ (11.9-23.0) \\ \hline \end{gathered}$
60-day	$\begin{gathered} 6.49 \\ (5.60-7.48) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.46 \\ (6.43-8.62) \\ \hline \end{gathered}$	$\begin{gathered} 9.01 \\ (7.74-10.4) \\ \hline \end{gathered}$	$\begin{gathered} 10.3 \\ (8.77-11.9) \\ \hline \end{gathered}$	$\begin{gathered} 11.9 \\ (9.82-14.3) \\ \hline \end{gathered}$	$\begin{gathered} 13.1 \\ (10.6-16.0) \\ \hline \end{gathered}$	$\begin{gathered} 14.3 \\ (11.2-18.0) \\ \hline \end{gathered}$	$\begin{gathered} 15.5 \\ (11.7-20.0) \\ \hline \end{gathered}$	$\begin{gathered} 16.9 \\ (12.3-22.6) \\ \hline \end{gathered}$	$\begin{gathered} 18.0 \\ (12.8-24.6) \\ \hline \end{gathered}$
1^{1} Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS). Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.										

PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 38.9850°, Longitude: -104.5650°

Average recurrence interval (years)
-1
-2
-5
-10
-25
-50
-100
-200
-1000

NOAA Atlas 14, Volume 8, Version 2
Created (GMT): Thu Dec 2 17:16:51 2021
Back to Top
Maps \& aerials

Small scale terrain

Large scale aerial

Back to Top

US Department of Commerce

National Oceanic and Atmospheric Administration
National Weather Service
National Water Center 1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov
Disclaimer

APPENDIX B

MDDP \& DBPS Sheet References

APPENDIX C

Hydrologic Computations

\qquad
Provide for all

				rovide															Date:	2/10/21			
				xistin	bas							16	17	18		20			23			26	27
		${ }^{\text {Pa }}$	ed/Gravel Re			nssUndevelo			tial - $1 / 8$			tial - $1 / 4$	cre		ial-1/3	cre	Res	tial -1/2			ntial - 1 A		Basins Total
Basin ID	Total Area (ac)	\% Imp.	Area (ac)	$\begin{aligned} & \text { Weighted } \\ & \text { \% Imp. } \end{aligned}$	\% Imp.	Area (ac)	$\begin{aligned} & \text { Weighted } \\ & \text { \% Imp. } \end{aligned}$	\% Imp.	Area (ac)	$\begin{aligned} & \text { Weighted } \\ & \text { \% Imp. } \end{aligned}$	\% Imp.	Area (ac)	$\begin{aligned} & \text { Weighted ded } \\ & \% \text { Imm. } \end{aligned}$	\% Imp.	Area (ac)	$\begin{aligned} & \text { Weighted ded } \\ & \text { \% Imp. } \end{aligned}$	\% Imp.	Area (ac)	$\begin{aligned} & \text { Weighted d } \\ & \text { \% Imp. } \end{aligned}$	\% Imp.	Area (ac)	$\begin{array}{\|l\|l\|} \hline \text { Weighted d } \\ \text { \% Imp. } \end{array}$	Weighted \% Imp.
ExISting	7																						
os-w	108.																						55*
OS-NW	205.72																						56^{*}
EX-1	105.72	100	0	0	2	105.72	2	65	0	0	40	0	0	30	0	0	25	0	0	20	0	0	2
Ex-2	57.68	100	0	0	2	57.68	2	65	0	0	40	0	0	30	0	0	25	0	0	20	0	0	2
Ex-3	23.35	100	0	0	2	23.35	2	65	0	0	40	0	0	30	0	0	25	0	0	20	0	0	2
PROPOSED																							
Basin-1	1.4	100	1.40	100.0	2	0.27	${ }_{0} 0.4$	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	100.4
A-1	11.23	100	0.00	0.0	2	11.23	2.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	2.0
A-2a	4.21	100	0.00	$\stackrel{0}{0.0}$	2	0.00	0.0	65.0	4.21	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
A-2b	2.72	100	1.77	65.1	2	0.00	0.0	65.0	0.95	22.7	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	87.8
A.3	0.34	100	0.34	100.0	2	0.00	0.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	${ }^{20}$	0.00	0.0	100.0
A-4a	6.04	100	0.00	0.0	2	0.00	0.0	65.0	6.04	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
A-4b	4.10	100	0.00	0.0	2	0.00	0.0	65.0	4.10	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
A.5	0.34	100	0.34	100.0	2	0.00	0.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	100.0
A-6	2.67	100	0.00	0.0	2	0.00	0.0	65.0	2.67	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
A.7	2.91	100	0.28	9.6	2	2.23	1.5	65.0	0.40	8.9	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	20.0
A.-8	5.17	100	0.00	0.0	2	0.00	0.0	65.0	5.17	65.0	40	0.00	0.0	30	0.00	0.0	${ }^{25}$	0.00	0.0	20	0.00	0.0	65.0
A-9	1.73	100	0.00	0.0	2	0.00	0.0	65.0	1.73	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
A-10	6.31	100	0.00	0.0	2	6.31	2.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	2.0
B-1	4.02	100	0.00	0.0	2	0.00	0.0	65.0	4.02	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
B-2	4.16	100	0.00	0.0	2	0.00	0.0	65.0	4.16	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
B-3	3.42	100	0.00	0.0	3	0.00	0.0	65.0	3.42	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
B-4	0.76	100	0.76	100.0	2	0.00	0.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	100.0
B-5	5.32	100	0.00	0.0	2	0.00	0.0	65.0	5.32	65.0	40	0.00	0.0	30	0.00	0.0	${ }^{25}$	0.00	0.0	${ }^{20}$	0.00	0.0	65.0
B-6	2.28	100	0.00	0.0	3	0.00	0.0	65.0	2.28	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
B-7	1.94	100	0.00	0.0	4	0.00	0.0	65.0	1.94	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
B-8	3.54	100	0.00	0.0	5	0.00	0.0	65.0	3.54	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
B.9	2.57	100	0.00	0.0	2	0.00	0.0	65.0	2.57	65.0	40	0.00	0.0	30	0.00	0.0	${ }^{25}$	0.00	0.0	20	0.00	0.0	65.0
B-10	0.87	100	0.00	0.0	2	0.87	2.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	2.0
C-1	3.90	100	0.00	0.0	2	0.00	0.0	65.0	3.90	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
C-2	0.96	100	0.00	0.0	2	0.00	0.0	65.0	0.96	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
C.3	4.07	100	0.00	0.0	2	0.00	0.0	65.0	4.07	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
${ }^{\text {C-4 }}$	3.8	100	0.00	0.0	2	0.00	0.0	65.0	3.80	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
${ }^{\text {C.5 }}$	3.19	100	0.00	0.0	2	0.00	0.0	65.0	3.19	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
C-6	2.99	100	0.00	0.0	3	0.00	${ }^{0.0}$	${ }_{6}^{65.0}$	$\frac{2.99}{5.98}$	${ }_{65.0}^{60}$	40	0.00	${ }^{0.0}$	30	0.00	0.0	25	0.00	${ }^{0.0}$	20	0.00	${ }^{0.0}$	$\stackrel{65.0}{6.0}$
C-7	5.48	100	0.00	0.0	4	0.00	0.0	65.0	5.48	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
C-8	2.82 5.96	100 100	0.00 0.00	0.0 0.0	5	0.00 0.00	0.0 0.0	65.0 65.0	2.82 5.96	65.0 65.0	${ }_{40}^{40}$	0.00 0.00	0.0 0.0	30 30	0.00 0.00	0.0 0.0	$\frac{25}{25}$	0.00 0.00	0.0 0.0	$\stackrel{20}{20}$	0.00 0.00	0.0 0.0	65.0 65.0
C-10	3.67	100	0.00	0.0	7	$\stackrel{0}{0.00}$	0.0	65.0	${ }_{3} 3.67$	65.0	40	0.00	0.0	30	O.00	0.0	25	0.00	0.0	20	0.00	0	65.0
C-11	0.5	100	0.00	0.0	8	0.00	0.0	65.0	0.50	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
C-12	1.61	100	0.00	0.0	9	0.00	0.0	65.0	1.61	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
C-13	2.46	100	0.00	0.0	10	2.46	10.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	10.0
C-14	1.52	100	0.00	0.0	11	1.52	11.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	11.0
D-1	2.46	100	0.00	0.0	2	0.00	0.0	65.0	2.46	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
D-2	0.75	100	0.00	0.0	2	0.00	0.0	65.0	0.75	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	${ }^{20}$	0.00	0.0	65.0
D-3	4.76	100	0.00	0.0	2	0.00	0.0	65.0 650	4.76	65.0 650	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
D.	${ }_{0}^{4.74}$	$\stackrel{100}{100}$	0.00 0.00	${ }_{0}^{0.0}$	2	0.00 0.71	${ }_{0}^{0.0}$	${ }_{65}^{650}$	4.74 0.00	65.0 00	${ }_{40}^{40}$	0.00 0.00	$\stackrel{0.0}{0.0}$	30 30	0.00 0.00	$\stackrel{0.0}{0.0}$	$\stackrel{25}{25}$	0.00 0.00	$\stackrel{0.0}{0.0}$	$\stackrel{20}{20}$	0.00 0.00	${ }_{0}^{0.0}$	$\stackrel{65.0}{20}$
D-6	1	100	0.00	0.0	3	1.00	3.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	3.0
E-1	5.06	100	0.00	0.0	2	0.00	0.0	65.0	5.06	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
E-2	3.63	100	0.00	0.0	2	0.00	0.0	65.0	3.63	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
$\stackrel{\text { E.3 }}{\text { E-4 }}$	2.97	100	0.00	0.0	3	0.00	0.0	65.0	2.97	65.0	40	0.00	0.0	30	0.00	0.0	${ }^{25}$	0.00	0.0	20	0.00	0.0	65.0
E-5	6.86	100 100	0.00 0.00	0.0 0.0	4	0.00 0.74	0.0 5.0	65.0 65.0	6.86 0.00	65.0 0.0	40 40	0.00 0.00	0.0 0.0	30 30	0.00	0.0 0.0	${ }_{25}^{25}$	0	$\stackrel{0.0}{0.0}$	20	0.00 0.00	${ }_{0}^{0.0}$	$\frac{65.0}{50}$
E-6	0.95	100	0.00	0.0	2	0.95	2.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	2.0

Loot Type Identification:	
0-8,167	1/8 Acre
$8,168-12,704$	$1 / 4$ Acre
$12,705-18,149$ 180	$1 / 3 \mathrm{Ac}$
18,150-32,670	$1 / 2 \mathrm{Ac}$
32,671-43,560	1 Acre

Basin ID	Total Area (ac)	Paved/Gravel Roads			Lawns/Undeveloped			$\frac{10}{\text { Roofs }}$			$\frac{12}{12}{ }_{\text {Residential }-1 / 8 \mathrm{Acre}}{ }^{14}$			${ }^{15} \frac{16}{\text { Residential }-1 / 4 \text { Acre }}$			$\frac{18}{18} \frac{19}{\text { Residential }-1 / 3 \text { Acre }}$			$\frac{21}{21}{ }^{22}{ }^{22}{ }^{22}{ }^{2}$			24	${ }^{24}{ }_{\text {Residential-1 Acre }}{ }^{25}$		$27 \quad 28$	
							Composite																				
		c_{5}	C_{100}	Area (ac)				c_{5}	C_{100}	Area (ac)	Composite C_{5}	${ }_{\text {Criog }}$															
EXISTING																											
os-w	108.8																										55.04*
OS-NW	105.72																										56.49^{*}
EX-1	105.72	0.90	0.96	0.00	0.09	0.36	105.72	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
${ }_{\text {EX-2 }}^{\text {EX-3 }}$	57.68	0.90	0.96	0.00	0.09	0.36	$\frac{57.68}{235}$	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
PROPOSED																											
Basin-1	1.40	0.90	0.96	1.40	0.09	0.36	0.27	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.92	1.03
A-1	11.23	0.90	0.96	0.00	0.09	0.36	11.23	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
A-2a	4.21	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	4.21	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
A-2b	2.72	0.90	0.96	1.77	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	0.95	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.74	0.83
A-3	0.34	0.90	0.96	0.34	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.90	0.96
A-4a	6.04	0.90	0.96	0.00	0.09	0.36	0.00	${ }_{0}^{0.73}$	${ }_{0}^{0.81}$	0.00	${ }_{0}^{0.45}$	0.59	${ }_{6}^{6.04}$	${ }^{0.30}$	0.50	0.00	0.25	0.47	0.00	0.22	${ }^{0.46}$	0.00	${ }_{0}^{0.20}$	0.44 0.44	0.00	0.45	0.59
A-4b	4.10	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	4.10	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
A.5	0.34	0.90	0.96	0.34	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.90	0.96
${ }^{\text {A-6 }}$	2.67	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	2.67	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
A-7	2.91	0.90	0.96	0.28	0.09	0.36	2.23	0.73	0.81	0.00	0.45	0.59	0.40	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.22	0.45
A-8	5.17	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	5.17	0.30 0.0 0	0.50 0.50	0.00	0.25	0.47	0.00	0.22	${ }_{0}^{0.46}$	${ }_{0}^{0.00}$	0.20	0.44 0.44	0.00	0.45	0.59
$\stackrel{\text { A-9 }}{\text { A-10 }}$	1.73 631	0.90 0.90	0.96	0.00	0.099	0.36	0.00 6.31	${ }_{0}^{0.73}$	0.81 0.81 0.	0.00 0.00	0.45 0.45	0.59 0.59	1.73 0.00	0.30 0.30	0.50 0.50 0	0.00 0.00	0.25 0.25	0.47 0.47	0.00 0.00	$\frac{0.22}{0.22}$	${ }_{0}^{0.46}$	0.00 0.00	0.20 0.20	0.44 0.44	0.00 0.00	0.45 0.09	0.59
A-1	4.02	0.90	0.96	0.00	0.09 0.09 0	0.36 0.36	$\underline{6.00}$	${ }_{0} 0.73$	$\stackrel{0.81}{0 .}$	0.00	0.45	0.59	0.02	0.30	0.50	O.000	0.25	$\stackrel{0.47}{ }$	0.00	0.22	${ }_{0} 0.46$	$\stackrel{0}{0.00}$	0.20	0.44	$\stackrel{0}{0.00}$	0.45	0.36
B-2	4.16	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	4.16	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
B-3	3.42	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	3.42	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
B-4	$\stackrel{0.76}{5.32}$	0.90 0.90	0.96 0.96	0.76 0.00	0.09 0.09	0.36 0.36	0.00 0.00	${ }_{0}^{0.73}$	0.81 0.81	0.00 0.00	0.45 0.45	0.59 0.59	0.00 5.32	0.30 0.30	0.50 0.50	0.00 0.00	0.25 0.25	0.47 0.47	0.00 0.00	0.22 0.22	0.46 0.46	0.00 0.00	0.20 0.20	0.44 0.44	0.00 0.00	0.90	0.96
B-6	2.28	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	2.28	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	${ }_{0}$	0.20	0.44	0.00	0.45	0.59
B-7	1.94	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	1.94	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
B-8	3.54	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	3.54	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
B.9	2.57	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	2.57	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
B-10	0.87	0.90	0.96	0.00	0.09	0.36	0.87	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
C-1	3.90	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	3.90	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
C-2	0.96	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	0.96	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
C-3	4.07	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	4.07	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
C-4	3.80	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	3.80	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
C-5	3.19	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	3.19	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
C-6	2.99	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	2.99	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
C-7	5.48	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	5.48	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
C-8	2.82	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	2.82	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
C-9	5.96	0.90	0.96	0.00	0.09	0.36 0.36	0.00	${ }_{0}^{0.73}$	0.81	0.00	0.45	0.59	5.96				0.25							0.44			
C-10	3.67 0.50	0.90 0.90	0.96 0.96	0.00 0.00	0.09 0.09 0	0.36 0.36	0.00 0.00	0.73 0.73	0.81 0.81	0.00 0.00	0.45 0.45	0.59 0.59	3.67 0.50	0.30 0.30	0.50 0.50	0.00 0.00	0.25 0.25	0.47 0.47	0.00 0.00	0.22 0.22	0.46 0.46 0	0.00 0.00	0.20 0.20	0.44 0.44	0.00 0.00	0.45 0.45	0.59 0.59
C-12	1.61	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	1.61	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
C-13	2.46	0.90	0.96	0.00	0.09	0.36	2.46	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
C-14	1.52	0.90	0.96	0.00	0.09	0.36	1.52	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
D-1	2.46	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	2.46	0.30	0.50	0.00	0.25	0.47	0.00	${ }^{0.22}$	0.46	0.00	0.20	0.44	0.00	0.45	0.59
D-2	0.75	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	0.75	0.30	0.50	0.00	0.25	0.47	0.00	${ }_{0}^{0.22}$	0.46	0.00	0.20	0.44	0.00	0.45	0.59
D-3	4.76	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	4.76	0.30	0.50	0.00	0.25	0.47	0.00	${ }_{0}^{0.22}$	0.46	0.00	0.20	0.44	0.00	0.45	0.59
$\frac{\mathrm{D}-4}{\text { D. } 5}$	4.74	0.90 0.90	0.96 0.96	0.00 0.00	0.09 0.09	0.36 0.36	0.00 0.71	0.73 0.73	0.81 0.81	0.00 0.00	0.45 0.45	0.59 0.59	4.74 0.00	0.30 0.30	0.50 0.50	0.00 0.00	0.25 0.25	0.47 0.47	0.00 0.00	$\frac{0.22}{0.22}$	0.46 0.46	0.00 0.00	0.20 0.20	0.44 0.44	0.00 0.00	0.0	0.0 .59
D-6	1.00	0.90	0.96	0.00	0.09	0.36	1.00	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
E-1	5.06	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	5.06	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
E-2	3.63	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	3.63	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
E-3	2.97	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	2.97	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
E-4	${ }^{6.86}$	$\frac{0.90}{0.90}$	${ }_{0}^{0.96}$	0.00 0.00	0.09 0.09	0.36 0.36	0.00	${ }_{0}^{0.73}$	$\frac{0.81}{0.81}$	0	$\frac{0.45}{0.45}$	0.59 0.59	${ }^{6.86}$	0.30 0.30	0.50 0.50	0.00 0.00	0.25 0.25	0.47	0.000	$\frac{0.22}{022}$	${ }_{0}^{0.46}$	0.00 0.00	$\frac{0.20}{020}$	0.44 0.44	0.00	0.45	
${ }_{\text {E-6 }}^{\text {E- }}$	$\frac{0.74}{0.95}$	$\frac{0.90}{0.90}$	${ }_{0}^{0.96}$	0.00	0	0	$\stackrel{0.74}{0.95}$	0.73	$\frac{0.81}{0.81}$	0.00	${ }_{0}^{0.45}$	0.5	$\stackrel{0.00}{0.00}$	0.30	$\frac{0.50}{0.50}$	$\stackrel{0}{0.00}$	${ }_{0}^{0.25}$	0.47	0.00	${ }_{0}^{0.22}$	0.46	0	0.20	${ }_{0}^{0.44}$	$\stackrel{0}{0.00}$	0.09	0.36

Lot Type Identification:	
Lot Siee (SF)	Lot Siee (Acre)
0-8,167	4/1/8 Acre
8,168 -12,704	1/4 Acre
12,705-18,149	$1 / 3$ Acre
18,150-32,670	1/2 Acre
32,671-43,560	1 A

STANDARD FORM SF－3：EXISTING \＆PROPOSED

 STORM DRAINAGE SYSTEM DESIGNNot checked on this review

Project Name：Grandview Subdivision PDR
Project No．：HRG01
Calculated By：TJE
Checked By：BAS

$$
\text { Date: } 12 / 10 / 21
$$

STREET		DIRECT RUNOFF							TOTAL RUNOFF				STREET		PIPE			TRAVEL TIME			REMARKS
			$\begin{aligned} & \frac{0}{4} \\ & \text { KiNy } \\ & \hline \end{aligned}$			$$	気	$\frac{\hat{\pi}}{0}$	$\begin{aligned} & \hat{e} \\ & \text { 曾 } \\ & \hline \end{aligned}$	$\begin{gathered} \stackrel{0}{4} \\ \stackrel{y}{4} \\ \hline \end{gathered}$	E.	$\frac{\stackrel{y}{0}}{0}$	$\begin{array}{r} \text { 厅. } \\ \frac{\stackrel{0}{6}}{6} \\ \hline \end{array}$			$\begin{array}{r} \text { O} \\ \frac{0}{0} \\ \frac{0}{0} \\ \hline \end{array}$				㟺	
EXISTING																					
		OS－W	108.80																		Sheet flow to Main Stem Channel
												67.0									Total Flow－Q（5）＝67 cfs（from MDDP）
		OS－NW	105.72									59.0									Sheet flow to Main Stem Tributary \＃2 Channel Total Flow－Q（5）＝59 cfs（from MDDP）
	1	EX－1	105.72	0.09	31.7	9.51	2.35	22.3				89.3									Sheet flow to Main Stem Tributary \＃2 Channel Total Flow－Incl．Offsite flow of Q（5）＝67 cfs（from MDDP）
	2	EX－2	57.68	0.09	27.8	5.19	2.53	13.1				72.1									Sheet flow to Main Stem Channel Total Flow－Incl．Offsite flow of $\mathrm{Q}(5)=59$ cfs（from MDDP）
	3	EX－3	23.35	0.09	17.4	2.10	3.23	6.8													Sheet flow offiste－outfalls to Main Stem Tributary \＃2 Channel
PROPOSED																					
		Basin－1	1.40	0.92	5.2	1.29	5.05	6.5													
	1	A－1	11.23	0.09	9.6	1.01	4.16	4.2													Institutional Tract
	2a	A－2a	4.21	0.45	8.8	1.89	4.29	8.1													Basin will have own water quality \＆detention pond On－Grade 15 5^{\prime} CDOT Type R Inlet（0．1 cfs bypass to DP 2b）
	2b	A－2b	2.72	0.74	9.9	2.01	4.13	8.3				8.4									Sump 15＇CDOT Type R Inlet（Receives 0.1 cfs upstream bypass）
	3	A－3	0.34	0.90	5.0	0.31	5.10	1.6													Sump 5＇CDOT Type R Inlet
	4 a	${ }^{\text {A－4a }}$	6.04	0.45	15.2	2.72	3.44	9.4													On－Grade 10＇CDOT Type R Inlet（2．4 cfs bypass to DP 2）
	4 b	A－4b	4.10	0.45	13.5	1.85	3.63	6.7													On－Grade 10＇CDOT Type R Inlet（0．9 cfs bypass to DP 2）
	4											10.0									Sump 15＇CDOT Type R Inlet（Receives 3.3 cfs upstream bypass）
	5	A－5	${ }^{0.34}$	0.90	5.0	0.31	5.10	1.6													Sump 5＇CDOT Type R Inlet
	6	A－6	2.67	0.45	10.1	1.20	4.08	4.9													Sump 15＇CDOT Type R Inlet
	7	A－7	2.91	0.22	13.8	0.64	3.60	2.3													Sump 5＇CDOT Type R Inlet
	7 a	A－8	5.17	0.45	10.8	2.33	3.98	9.3													Sump 20＇CDOT Type R Inlet
	7 b	A－9	1.73	0.45	12.1	0.78	3.80	3.0													Sump 10＇CDOT Type R Inlet
		A－10	6.31	0.09	16.5	0.57	3.31	1.9													
	8	B－1	4.02	0.45	12.6	1.81	3.74	6.8	6.3												Total of flows to Pond A
	10a	B－2	4.16	0.45	14.7	1.87	3.50	6.5													On－Grade 15＇CDOT Type R Inlet（0．0 cfs bypass to DP 10b）
	10b	B－3	3.42	0.45	13.5	1.54	3.63	5.6				5.6									Sump 15＇CDOT Type R Inlet（Receives 0.0 cfs of upstream bypass）
	${ }^{11}$	B－4	0.76	0.90	7.2	0.68	4.59	3.1													Sump 10＇CDOT Type R Inlet
	12a	B－5	5.32	0.45	15.4	2.39	3.42	8.2													On－Grade 15＇CDOT Type R Inlet（0．2 cfs bypass to DP 12b）
	14	B－6	2.28	0.45	13.9	1.03	3.59	3.7													On－Grade 10＇CDOT Type R Inlet（0．0 cfs bypass to DP 12b）
	15	B－7	1.94	0.45	11.4	0.87	3.89	3.4													On－Grade 10° CDOT Type R Inlet（ 0.0 cfs bypass to DP 12b）
	12b	B－8	3.54	0.45	15.4	1.59	3.42	5.4				5.6									Sump 15＇CDOT Type R Inlet（Receives 0.2 cfs of upstream bypass）
	13	B－9	2.57	0.45	10.1	1.16	4.08	4.7													Sump 15＇CDOT Type R Inlet
	16	B－10	0.87	0.09	6.7	0.08	4.70	0.4	15.4	13.02	3.42	44.5									Total of flows to Pond B

HRG01＿Pr．Drainage Calcs Update－12．02．2021．xlsm

Project Name：Grandview Subdivision PDR
Project No．：HRG01
Calculated By：TJE
Checked By：BAS

STREET		DIRECT RUNOFF							TOTAL RUNOFF				STREET		PIPE			TRAVEL TIME			
		$\begin{aligned} & \text { 寿 } \\ & \text { 品 } \\ & \end{aligned}$		$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & 0 \\ & 4 \\ & 0 \\ & \# \end{aligned}$		$\frac{\stackrel{y}{4}}{\frac{1}{4}}$	$\frac{\text { E. }}{\text { E }}$	$\frac{\sqrt[x]{e}}{0}$	䡖		E.E	$\frac{\stackrel{\pi}{6}}{0}$	$\begin{aligned} & \text { è } \\ & \stackrel{0}{0} \\ & \stackrel{0}{6} \\ & \hline \end{aligned}$			$\begin{aligned} & \text { 厄̀ } \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$		$\begin{aligned} & 巴 \\ & \text { E. } \\ & \text { E. } \end{aligned}$		会	REMARKS
	17b	C－1	3.90	0.45	15.2	1.76	3.44	6.1				6.1									On－Grade 15＇CDOT Type R（0．0 cfs bypass to DP 17 e ）
		C－2	0.96	0.45	12.6	0.43	3.74	1.6													
	17a	C－3	4.07	0.45	14.8	1.83	3.49	6.4	14.8	2.26	3.49	7.9									On－Grade 15＇CDOT Tyne R（0）${ }^{\text {c fs bypass to DP }} 17 \mathrm{c}$ ）
	17c	C－4	3.80	0.45	14.8	1.71	3.49	6.0				6.1									Receives 0.1 cfs of Bypass from DP 17 a On－Grade 15^{\prime} CDOT Type R（ 0.0 cfs bypass to DP 17d）
	17d	C－5	3.19	0.45	13.1	1.44	3.67	5.3				5.3									On－Grade 15＇CDOT Type R（ 0.0 cfs bypass to DP 17g）
	17 e	C－6	2.99	0.45	15.8	1.35	3.38	4.6				4.6									On－Grade 15＇${ }^{\prime}$ CDOT Type R（0．0 cfs bypass to DP 178
	17f	C－8	2.82	0.45	12.9	1.27	3.70	4.7				4.7									On－Grade 15＇CDOT Type R（0．0 cfs bypass to DP 17g）
	17g	C－9	5.96	0.45	17.5	2.68	3.22	8.6				8.6									Sump 15＇CDOT Type R（Receives 0.0 cfs of upstream bypass）
		C－7	5.48	0.45	15.8	2.47	3.38	${ }^{8.3}$													
	18a											8.3									On－Grade 15＇CDOT Type R（0．2 cfs bypass to DP 18b）
	18b	C－10	3.67	0.45	14.7	1.65	3.49	5.8				6.0									Sump 15＇CDOT Type R（Receives 0.2 cfs of upstream bypass）
	19	C－11	0.50	0.45	6.6	0.23	4.74	1.1				1.1									Sump 5^{\prime} CDOT Type R（Receives 0.0 cfs of upstream bypass）
	20	C－12	1.61	0.45	12.2	0.72	3.78	2.7				2.7									Sump 5^{\prime} CDOT Type R（Receives 0.0 cfs of upstream bypass）
		C－13	2.46	0.09	13.2	0.22	3.66	0.8													
	21 a								17.5	17.76	3.22	57.2									Total combined flows to Pond C
	21b	C－14	1.52	0.09	11.7	0.14	3.86	0.5													Un－developed area－Sheet flows to MS 2
	22	D－1	2.46	0.45	6.9	1.11	4.66	5.2													Sump 15＇CDOT Type R Inlet
	23	D－2	0.75	0.45	8.8	0.34	4.31	1.5													Sump 5＇CDOT Type R Inlet
	24	D－3	4.76	0.45	10.8	2.14	3.98	8.5													Sump 15＇CDOT Type R Inlet
	25	D－4	4.74	0.45	11.2	2.13	3.92	${ }^{8.3}$													Sump 15＇CDOT Type R Inlet
	26	D－5	0.71	0.09	8.3	0.06	4.39	0.3	11.2	578	3.92	22.7									Total of flows to Pond D
		D－6	1.00	0.09	11.7	0.09	3.86	0.3													Un－developed area－Sheet flows to MS
	27	E－1	5.06	0.45	16.6	2.28	3.30	7.5													On－Grade 15＇CDOT Type R Inlet（0．1 cfs bypass to DP 29 ）
	28	E－2	3.63	0.45	6.8	1.63	4.69	7.6													On－Grade 15＇CDOT Type R Inlet（0．1 cfs bypass to DP 29）
	29	E－3	2.97	0.45	16.0	1.34	3.36	4.5				4.7									Sump 15＇CDOT Type R Inlet（Receives 0.2 cfs of upstream bypass）
	30	E－4	6.86	0.45	18.3	3.09	3.15	9.7													Sump 15＇CDOT Type R Inlet
	31	E－5	0.74	0.09	9.8	0.07	4.14	0.3	18.3	8.41	3.15	26.5									Total of flows to Pond E
		E－6	0.95	0.09	12.6	0.09	3.74	0.3													Un－developed area－Sheet flows to MS

Project Name：Grandview Subdivision PDR Project No．： HRG01
Calculated By：TJE
Checked By：
Date：$\frac{\text { BAS }}{12 / 10 / 21}$

	$\begin{aligned} & \text { 若 } \\ & \text { a } \\ & \text { 哥 } \\ & \text { on } \\ & \hline \end{aligned}$	DIRECT RUNOFF							TOTAL RUNOFF				STREET		PIPE			TRAVEL TIME			
STREET				$\begin{aligned} & 4 \\ & \text { \# } \\ & 0 \\ & \text { O } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{gathered} \stackrel{S}{\dot{4}} \\ \stackrel{4}{4} \\ \hline \end{gathered}$	E.E	$\frac{\hat{\pi}}{0}$		$$	$\frac{\widehat{y}}{\underline{y}}$	$\frac{\stackrel{\pi}{8}}{0}$	厄®			$\begin{aligned} & \overparen{0} \\ & \stackrel{0}{0} \\ & \frac{0}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \frac{0}{0} \\ & \frac{0}{6} \\ & \stackrel{3}{3} \\ & \stackrel{N}{\hat{W}} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 总 } \\ & \text { 2 } \\ & \text { 20 } \\ & \frac{0}{0} \\ & \hline \end{aligned}$	蕆	REMARKS
EXISTING																					
	1	EX－1	105.72	0.36	31.7	38.06	4.18	159.1				572.1									Sheet flow to Main Stem Tributary \＃2 Channel Total Flow－Incl．Offsite flow of $\mathrm{Q}(100)=413 \mathrm{cfs}$（from MDDP）
	2	EX－2	57.68	0.36	27.8	20.76	4.50	93.4				373.4									Sheet flow to Main Stem Channel Total Flow－Incl．Offsite flow of $Q(100)=280 \mathrm{cfs}$（from MDDP）
	3	EX－3	23.35	0.36	17.4	8.41	5.75	48.4													Sheet flow offiste－outfalls to Main Stem Tributary \＃2 Channel
PROPOSED																					
		OS－W	108.80									413.0									Sheet flow to Main Stem Channel Total Flow－ $\mathrm{Q}(5)=413 \mathrm{cfs}$（from MDDP）
		OS－NW	105.72									280.0									Sheet flow to Main Stem Tributary \＃2 Channel Total Flow－ $\mathrm{Q}(5)=280 \mathrm{cfs}$（from MDDP）
		Basin－1	1.40	1.03	5.2	1.44	8.98	12.9													
	1	A－1	11.23	0.36	9.6	4.04	7.40	29.9													Institutional Tract Basin will have own water quality \＆detention pond
	${ }^{2 a}$	A－2a	4.21	0.59	8.8	2.48	7.64	18.9													On－Grade 15＇CDOT Type R Inlet（5．2 cfs bypass to DP 2b）
	2b	A－2b	2.72	0.83	9.9	2.26	7.34	16.6				21.8									Sump 15＇CDOT Type R Inlet（Receives 5.2 cfs upstream bypass）
	3	A－3	0.34	0.96	5.0	0.33	9.09	3.0													Sump 5＇CDOT Type R Inlet
	4a	A－4a	6.04	0.59	15.2	3.56	6.13	21.8													On－Grade 10＇CDOT Type R Inlet（11．3 cfs bypass to DP 2）
	4 b 4	A－4b	4.10	0.59	13.5	2.42	6.46	15.6				17.9									On－Grade 10^{\prime} CDOT Type R Inlet（6．6 cfs bypass to DP 2） Sump 15＇CDOT Type R Inlet（Receives 179 cfs upstream bypass）
	5	A－5	0.34	0.96	5.0	0.33	9.09	3.0													Sump 5＇CDOT Type R Inlet（
	6	A－6	2.67	0.59	10.1	1.58	7.27	11.5													Sump 15＇CDOT Type R Inlet
	7	A－7	2.91	0.45	13.8	1.31	6.40	8.4													Sump 5＇CDOT Type R Inlet
	7 a	A－8	5.17	0.59	10.8	3.05	7.09	21.6													Sump 20＇CDOT Type R Inlet
	7 b	A－9	1.73	0.59	12.1	1.02	6.76	6.9													Sump 10＇CDOT Type R Inlet
	8	A－10	6.31	0.36	16.5	2.27	5.90	13.4	165	20.61	590	1216									Total of flows to Pond A
	9	B－1	4.02	0.59	12.6	2.37	6.66	15.8													Sump 15＇CDOT Type R Inlet
	10a	B－2	4.16	0.59	14.7	2.45	6.22	15.2													On－Grade 15＇CDOT Type R Inlet（3．1 cfs bypass to DP 10b）
		B－3	3.42	0.59	13.5	2.02	6.46	13.0													
	10 b											16.1									Sump 15＇CDOT Type R Inlet（Receives 3.1 cfs of upstream bypass）
	11	B－4	0.76	0.96	7.2	0.73	8.17	6.0													Sump 10＇CDOT Type R Inlet
	12a	B－5	5.32	0.59	15.4	3.14	6.10	19.2													On－Grade 15＇CDOT Type R Inlet（5．4 cfs bypass to DP 12b）
	14	B－6	2.28	0.59	13.9	1.35	6.39	8.6													On－Grade 10＇CDOT Type R Inlet（ 2.0 cfs bypass to DP 12b）
	15	B－7	1.94	0.59	11.4	1.14	6.93	7.9													On－Grade 10＇CDOT Type R Inlet（1．6 cfs bypass to DP 12b）
		B－8	3.54	0.59	15.4	2.09	6.09	12.7													
	12b											21.7									Sump 15＇CDOT Type R Inlet（Receives 9.0 cfs of upstream bypass）
	13	B－9	2.57	0.59	10.1	1.52	7.27	11.1													Sump 15＇CDOT Type R Inlet
	16	B－10	0.87	0.36	6.7	0.31	8.37	2.6	15.4	17.12	6.09	104.3									Total of flows to Pond B

HRG01＿Pr．Drainage Calcs Update－－12．02．2021．x｜sm

Subdivision： | Grandview Reserve |
| :--- |
| \quad Location： |
| Des，El Paso County |
| Dtorm： | 100－Year

Project Name：Grandview Subdivision PDR Project No．：HRG01
Calculated By：TJE
Checked By：BAS
Date： $12 / 10 / 21$

STREET		DIRECT RUNOFF							TOTAL RUNOFF				STREET		PIPE			TRAVEL TIME			
		$\begin{aligned} & \text { 寿 } \\ & \text { 品 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 氐 } \\ & \text { 毕 } \\ & \hline \end{aligned}$			$\begin{gathered} \frac{\hat{y}}{4} \\ \frac{4}{4} \\ \hline \end{gathered}$	$\frac{\hat{E}}{\underline{E}}$	$\begin{aligned} & \frac{\hat{\pi}}{3} \\ & \hline 0 \\ & \hline \end{aligned}$			E.	$\begin{aligned} & \frac{\pi}{6} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ®o } \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$			$\begin{aligned} & \text { 厄i } \\ & \frac{0}{0} \\ & \frac{0}{0} \\ & \hline \end{aligned}$				会	REMARKS
	17b	C－1	3.90	0.59	15.2	2.30	6.12	14.1				14.1									On－Grade 15＇CDOT Type R（2．5 cfs bypass to DP 17e）
		C－2	0.96	0.59	12.6	0.57	6.65	3.8													
	17a	C－3	4.07	0.59	14.8	2.40	6.21	14.9	14.8	2.97	6.21	18.4									On－Grade 15＇CDOT Type R（5．1 cfs bypass to DP 17c）
	17c	C－4	3.80	0.59	14.8	2.24	6.21	13.9				19.0									Receives 5.1 cfs of Bypass from DP 17a On－Grade 15＇CDOT Type R（ 5.4 cfs bypass to DP 17 d ）
	17d	C－5	3.19	0.59	13.1	1.88	6.54	12.3				17.7									Recieves 5.4 cfs of Bypass from DP 17 c On－Grade 15^{\prime} CDOT Type R（ 4.5 cfs bypass to DP 17 g ）
	17 e	C－6	2.99	0.59	15.8	1.76	6.02	10.6				13.1									Receives 2.5 cfs bypass from DP 17b On－Grade 15＇CDOT Type R（ 2.0 cfs bypass to DP 17 g ）
	17 f	C－8	2.82	0.59	12.9	1.66	6.59	10.9				10.9									On－Grade 15＇CDOT Type R（1．3 cfs bypass to DP 17g）
	17g	C－9	5.96	0.59	17.5	3.52	5.73	20.2				28.0									Sump 15＇CDOT Type R（Receives 7.8 cfs of upstream bypass）
	18a	C－7	5.48	0.59	15.8	3.23	6.02	19.4				19.4									On－Grade 15＇CDOT Type R（ 5.5 cff bypass to DP 18b）
	18 b	C－10	3.67	0.59	14.7	2.17	6.21	13.5				19.0									Sump 15＇CDOT Type R（Receives 5.5 cfs of upstream bypass）
	19	C－11	0.50	0.59	6.6	0.30	8.43	2.5				2.5									Sump 5^{\prime} CDOT Type R（Receives 0.0 cfs of upstream bypass）
	20	C－12	1.61	0.59	12.2	0.95	6.73	6.4				6.4									Sump 5＇CDOT Type R（Receives 0.0 cfs of upstream bypass）
	21a	C－13	2.46	0.36	13.2	0.89	6.52	5.8	17.5	23.87	5.73	136.8									Total combined flows to Pond C
	21 b	C－14	1.52	0.36	11.7	0.55	6.87	3.8													Un－developed area－Sheet flows to MS 2
	22	D－1	2.46	0.59	6.9	1.45	8.30	12.0													Sump 15＇CDOT Type R Inlet
	23	D－2	0.75	0.59	${ }^{8.8}$	0.44	7.67	3.4													Sump 5＇CDOT Type R Inlet
	24	D－3	4.76	0.59	10.8	2.81	7.08	19.9													Sump 15＇CDOT Type R Inlet
	25	D－4	4.74	0.59	11.2	2.80	6.98	19.5													Sump 15＇CDOT Type R Inlet
	26	D－5	0.71	0.36	8.3	0.26	7.81	2.0	11.2	7.76	6.98	54.2									Total of flows to Pond D
		D－6	1.00	0.36	11.7	0.36	6.87	2.5													Un－developed area－Sheet flows to MS
	27	E－1	5.06	0.59	16.6	2.99	5.88	17.6													On－Grade 15＇CDOT Type R Inlet（4．4 cfs bypass to DP 29）
	28	E－2	3.63	0.59	6.8	2.14	8.35	17.9													On－Grade 15＇CDOT Type R Inlet（4．6 cfs bypass to DP 29）
	29	E－3	2.97	0.59	16.0	1.75	5.98	10.5				19.5									Sump 15＇CDOT Type R Inlet（Receives 9.0 cfs of upstream bypass）
	30	E－4	6.86	0.59	18.3	4.05	5.60	22.7													
	31	E－5	0.74	0.36	9.8	0.27	7.37	2.0	18.3	11.20	5.60	62.7									Total of flows to Pond E
		E－6	0.95	0.36	12.6	0.34	6.66	2.3													Un－developed area－Sheet flows to MS

APPENDIX D

Hydraulic Computations

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin A-2a (DP2a)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

Maximum Capacity for $1 / 2$ Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(d_{C}-\left(W * S_{x} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{x}
Discharge within the Gutter Section $W\left(Q_{T}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth

Theoretical Water Spread
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T-W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{X} \text { TH }}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section W $\left(Q_{d}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($d \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)

MINOR STORM Allowable Capacity is based on Spread Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion

	Minor Storm	Major Storm	
$\mathrm{T}_{\text {TH }}=$	18.7	27.0	ft
$\mathrm{T}_{\mathrm{XTH}}=$	16.7	25.0	ft
$\mathrm{E}_{\mathrm{O}}=$	0.318	0.216	
$\mathrm{Qx}_{\text {TH }}=$	14.9	43.7	cfs
$\mathrm{Q}_{\mathrm{x}}=$	14.8	39.9	cfs
$\mathrm{Q}_{\mathrm{w}}=$	6.9	12.1	cfs
$\mathrm{Q}_{\text {BACK }}=$	0.0	2.9	cfs
Q =	21.7	54.9	cfs
$\mathrm{V}=$	8.3	10.3	fps
V * $\mathrm{d}=$	4.1	6.9	
$\mathrm{R}=$	0.86	0.70	
$\mathbf{Q}_{\text {d }}=$	18.7	38.3	cfs
$\mathrm{d}=$	5.74	7.15	inches
$\mathrm{d}_{\text {CROWN }}=$	0.15	1.56	inches

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.01 (April 2021)

Desiqn Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening -	Type $=$	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{F}} \mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - 0 < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$\mathrm{Q}_{0}=$	8.1	18.9	cfs
Water Spread Width	$\mathrm{T}=$	12.5	17.0	ft
Water Depth at Flowline (outside of local depression)	$\mathrm{d}=$	4.5	5.8	inches
Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$)	$\mathrm{d}_{\text {crown }}=$	0.0	0.2	inches
Ratio of Gutter Flow to Design Flow	$\mathrm{E}_{0}=$	0.475	0.337	
Discharge outside the Gutter Section W, carried in Section T_{x}	$\mathrm{Q}_{\mathrm{x}}=$	4.3	12.5	cfs
Discharge within the Gutter Section W	$\mathrm{Q}_{\mathrm{w}}=$	3.9	6.4	cfs
Discharge Behind the Curb Face	$\mathrm{Q}_{\text {back }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$\mathrm{A}_{\mathrm{w}}=$	0.58	0.79	sq ft
Velocity within the Gutter Section W	$\mathrm{V}_{\mathrm{w}}=$	6.6	8.0	fps
Water Depth for Design Condition	$\mathrm{d}_{\text {IOCAL }}=$	7.5	8.8	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	$\mathrm{L}=$	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$\mathrm{E}_{0 \text {-GRATE }}=$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$\mathrm{L}_{\mathrm{e}}=$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q}_{\mathrm{a}}=$	N/A	N/A	cfs
Carry-Over Flow $=\mathrm{Q}_{0}-\mathrm{Q}_{\text {a }}$ (to be applied to curb opening or next d/s inlet)	$\mathrm{Q}_{\mathrm{b}}=$	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S_{e} (based on grate carry-over)	$\mathrm{S}_{\mathrm{e}}=$	0.109	0.083	$\mathrm{ft} / \mathrm{ft}$
Required Length L_{T} to Have 100\% Interception	$\mathrm{L}_{T}=$	16.54	28.87	ft
Under No-Clogging Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of $\mathrm{L}, \mathrm{L}_{\mathrm{T}}$)	$\mathrm{L}=$	15.00	15.00	ft
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	8.0	13.8	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef =	1.31	1.31	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	
Effective (Unclogged) Length	$\mathrm{L}_{\mathrm{e}}=$	14.34	14.34	ft
Actual Interception Capacity	$\mathrm{Q}_{\mathrm{a}}=$	8.0	13.7	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {b(grate }}-\mathrm{Q}_{\mathrm{a}}$	$\mathrm{Q}_{\mathrm{b}}=$	0.1	5.2	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.0	13.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.1	5.2	cfs
Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$	$\mathrm{C} \%=$	98	73	\%

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin A-2b (DP2b)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

Maximum Capacity for $1 / 2$ Street based On Allowable Spread
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section $W\left(Q_{T}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section $W\left(\mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION
 MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet ${ }_{\text {l }}$	Type $=$	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	S	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	5.1	8.0	inches
Grate Information		MINOR	MAJOR	\sqrt{V} Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{Cf}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{oi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$Q_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	
Clogging Factor for Multiple Units	Clog $=$	0.04	0.04	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	9.0	29.4	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	8.6	28.1	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0}=$	27.1	33.6	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	25.9	32.1	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	14.5	29.2	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	13.9	27.9	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$\mathbf{Q}_{\text {curb }}=$	8.6	27.9	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	15.0	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.0	2.4	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.26	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.48	0.75	
Curb Opening Performance Reduction Factor for Long Inlets	RFcurb $=$	0.73	0.89	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathbf{a}}=$	8.6	27.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$\mathrm{Q}_{\text {peak required }}=$	8.4	21.8	cfs

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin A-3 (DP3)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

Maximum Capacity for $1 / 2$ Street based On Allowable Spread
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section $W\left(Q_{T}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section $W\left(\mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION
 MHFD-Inlet, Version 5.01 (April 2021)

$\sqrt{\text { Design Information (Input) }} \backslash$ CDOT Type R Curb Opening	Type =	MINOR	$\overline{\text { MAJOR }}$	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No $=$	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	4.3	5.6	inches
Grate Information		MINOR	MAJOR	\sqrt{V} Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{wi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{oi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$Q_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	
Clogging Factor for Multiple Units	Clog $=$	0.10	0.10	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{wi}}=$	2.6	5.1	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	2.3	4.6	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{oi}}=$	8.3	9.4	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	7.5	8.5	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	4.3	6.4	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	3.9	5.8	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$Q_{\text {curb }}=$	2.3	4.6	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	5.00	5.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	11.5	17.0	
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.0	0.0	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.19	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Combination }}=$	0.55	0.72	
Curb Opening Performance Reduction Factor for Long Inlets	RF curb $^{\text {a }}$	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$R F_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathrm{a}}=$	2.3	4.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$\mathrm{Q}_{\text {peak required }}=$	1.6	3.0	cfs

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin A-4a (DP4a)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

Maximum Capacity for 1/2 Street based On Allowable Spread

 Water Depth without Gutter Depression (Eq. ST-2)Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section W ($\mathrm{Q}_{\mathrm{T}}-\mathrm{Q}_{\mathrm{X}}$)
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth

Maximum Capacity for $1 / 2$
Theoretical Water Spread

Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section $W\left(Q_{d}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Spread Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.01 (April 2021)

Desian Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type $=$	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	2	2	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{F}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{f}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - 0 < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$\mathrm{Q}_{0}=$	9.4	21.8	cfs
Water Spread Width	$\mathrm{T}=$	13.3	17.0	ft
Water Depth at Flowline (outside of local depression)	$\mathrm{d}=$	4.7	6.0	inches
Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$)	$\mathrm{d}_{\text {CROWN }}=$	0.0	0.4	inches
Ratio of Gutter Flow to Design Flow	$\mathrm{E}_{0}=$	0.447	0.318	
Discharge outside the Gutter Section W, carried in Section T_{x}	$\mathrm{Q}_{\mathrm{x}}=$	5.2	14.9	cfs
Discharge within the Gutter Section W	$\mathrm{Q}_{\mathrm{w}}=$	4.2	6.9	cfs
Discharge Behind the Curb Face	$\mathrm{Q}_{\text {back }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$\mathrm{A}_{\mathrm{w}}=$	0.62	0.84	sq ft
Velocity within the Gutter Section W	$\mathrm{V}_{\mathrm{w}}=$	6.8	8.3	fps
Water Depth for Design Condition	$\mathrm{d}_{\text {IOCAL }}=$	7.7	9.0	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	$\mathrm{L}=$	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$\mathrm{E}_{0 \text {-GRATE }}=$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef $=$	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$\mathrm{L}_{\mathrm{e}}=$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q}_{\mathbf{a}}=$	N/A	N/A	cfs
Carry-Over Flow $=\mathrm{Q}_{0}-\mathrm{Q}_{\text {a }}$ (to be applied to curb opening or next d/s inlet)	$\mathbf{Q}_{\mathrm{b}}=$	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S_{e} (based on grate carry-over)	$\mathrm{S}_{\mathrm{e}}=$	0.104	0.080	$\mathrm{ft} / \mathrm{ft}$
Required Length L_{T} to Have 100\% Interception	$\mathrm{L}_{T}=$	18.25	31.68	ft
Under No-Clogging Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of $\mathrm{L}, \mathrm{L}_{\top}$)	L	10.00	10.00	ft
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	7.1	10.8	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef $=$	1.25	1.25	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	
Effective (Unclogged) Length	$\mathrm{L}_{\mathrm{e}}=$	9.37	9.37	ft
Actual Interception Capacity	$\mathbf{Q}_{\mathbf{a}}=$	7.0	10.5	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {bigrate) }}-\mathrm{Q}_{\mathrm{a}}$	$\mathbf{Q}_{\mathrm{b}}=$	2.4	11.3	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.0	10.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathbf{Q}_{\mathrm{b}}=$	2.4	11.3	cfs
Capture Percentage $=\mathrm{Q}_{2} / \mathrm{Q}_{0}=$	C\% $=$	74	48	\%

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin A-4b (DP4b)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

Maximum Capacity for 1/2 Street based On Allowable Spread

 Water Depth without Gutter Depression (Eq. ST-2)Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section W ($\mathrm{Q}_{\mathrm{T}}-\mathrm{Q}_{\mathrm{X}}$)
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section W $\left(\mathrm{Q}_{d}-\mathrm{Q}_{\mathrm{x}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Spread Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion

| Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' |
| :--- | :--- |
| Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' |

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.01 (April 2021)

Desiqn Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening -	Type $=$	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	2	2	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{F}} \mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - 0 < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$\mathrm{Q}_{0}=$	6.7	15.6	cfs
Water Spread Width	$\mathrm{T}=$	11.5	16.4	ft
Water Depth at Flowline (outside of local depression)	$\mathrm{d}=$	4.3	5.4	inches
Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$)	$\mathrm{d}_{\text {crown }}=$	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	$\mathrm{E}_{0}=$	0.513	0.364	
Discharge outside the Gutter Section W, carried in Section T_{x}	$\mathrm{Q}_{\mathrm{x}}=$	3.3	9.9	cfs
Discharge within the Gutter Section W	$\mathrm{Q}_{\mathrm{w}}=$	3.4	5.7	cfs
Discharge Behind the Curb Face	$\mathrm{Q}_{\text {back }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$\mathrm{A}_{\mathrm{w}}=$	0.54	0.74	sq ft
Velocity within the Gutter Section W	$\mathrm{V}_{\mathrm{w}}=$	6.3	7.7	fps
Water Depth for Design Condition	$\mathrm{d}_{\text {IOCAL }}=$	7.3	8.4	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	$\mathrm{L}=$	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$\mathrm{E}_{0 \text {-GRATE }}=$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$\mathrm{L}_{\mathrm{e}}=$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q}_{\mathrm{a}}=$	N/A	N/A	cfs
Carry-Over Flow $=\mathrm{Q}_{0}-\mathrm{Q}_{\text {a }}$ (to be applied to curb opening or next d/s inlet)	$\mathrm{Q}_{\mathrm{b}}=$	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S_{e} (based on grate carry-over)	$\mathrm{S}_{\mathrm{e}}=$	0.116	0.088	$\mathrm{ft} / \mathrm{ft}$
Required Length L_{T} to Have 100\% Interception	$\mathrm{L}_{T}=$	14.59	25.47	ft
Under No-Clogging Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of $\mathrm{L}, \mathrm{L}_{\mathrm{T}}$)	$\mathrm{L}=$	10.00	10.00	ft
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	5.9	9.2	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef =	1.25	1.25	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	
Effective (Unclogged) Length	$\mathrm{L}_{\mathrm{e}}=$	9.37	9.37	ft
Actual Interception Capacity	$\mathrm{Q}_{\mathrm{a}}=$	5.8	9.0	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {b(grate }}-\mathrm{Q}_{\mathrm{a}}$	$\mathrm{Q}_{\mathrm{b}}=$	0.9	6.6	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	5.8	9.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.9	6.6	cfs
Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$	$\mathrm{C} \%=$	86	58	\%

INLET IN A SUMP OR SAG LOCATION
 MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet ${ }_{\text {l }}$	Type $=$	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	4.3	8.0	inches
Grate Information		MINOR	MAJOR	\sqrt{V} Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{Cf}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{oi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$\mathbf{Q}_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	
Clogging Factor for Multiple Units	Clog $=$	0.04	0.04	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	5.1	29.4	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	4.9	28.1	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0}=$	24.9	33.6	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	23.8	32.1	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	10.5	29.2	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	10.0	27.9	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$Q_{\text {curb }}=$	4.9	27.9	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	11.5	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.0	2.4	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.19	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.40	0.75	
Curb Opening Performance Reduction Factor for Long Inlets	RFcurb $=$	0.66	0.89	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathbf{a}}=$	4.9	27.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$\mathrm{Q}_{\text {peak required }}=$	3.3	17.9	cfs

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin A-5 (DP5)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

Maximum Capacity for $1 / 2$ Street based On Allowable Spread
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section $W\left(Q_{T}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section $W\left(\mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION
 MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet ${ }_{\text {l }}$	Type $=$	CDOT Ty	Openin	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	4.3	5.6	inches
Grate Information		MINOR	MAJOR	\sqrt{V} Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{Cf}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{oi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$Q_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	
Clogging Factor for Multiple Units	Clog $=$	0.10	0.10	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	2.6	5.1	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	2.3	4.6	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0}=$	8.3	9.4	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	7.5	8.5	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	4.3	6.4	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	3.9	5.8	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$\mathbf{Q}_{\text {curb }}=$	2.3	4.6	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	5.00	5.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	11.5	17.0	
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.0	0.0	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.19	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.55	0.72	
Curb Opening Performance Reduction Factor for Long Inlets	RFcurb $=$	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathbf{a}}=$	2.3	4.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$\mathrm{Q}_{\text {peak required }}=$	1.6	3.0	cfs

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin A-6 (DP6)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

Maximum Capacity for $1 / 2$ Street based On Allowable Spread
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section $W\left(Q_{T}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section $W\left(\mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION
 MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet ${ }_{\text {l }}$	Type $=$	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	4.4	8.0	inches
Grate Information		MINOR	MAJOR	\sqrt{V} Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{Cf}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{oi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$Q_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	
Clogging Factor for Multiple Units	Clog $=$	0.04	0.04	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	5.6	29.4	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	5.4	28.1	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0}=$	25.3	33.6	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	24.2	32.1	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	11.1	29.2	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	10.6	27.9	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$Q_{\text {curb }}=$	5.4	27.9	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	12.0	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.0	2.4	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.20	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.42	0.75	
Curb Opening Performance Reduction Factor for Long Inlets	RFcurb $=$	0.67	0.89	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathbf{a}}=$	5.4	27.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$\mathrm{Q}_{\text {peak required }}=$	4.9	11.5	cfs

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin A-7 (DP7)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

Maximum Capacity for $1 / 2$ Street based On Allowable Spread
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section $W\left(Q_{T}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section $W\left(\mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION
 MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet ${ }_{\text {l }}$	Type $=$	CDOT Ty	Openin	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	4.3	8.0	inches
Grate Information		MINOR	MAJOR	\sqrt{V} Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{Cf}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{oi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$Q_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	
Clogging Factor for Multiple Units	Clog $=$	0.10	0.10	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	2.6	11.0	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	2.3	9.9	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0}=$	8.3	11.2	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	7.5	10.1	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	4.3	10.3	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	3.9	9.3	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$\mathbf{Q}_{\text {curb }}=$	2.3	9.3	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	5.00	5.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	11.5	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.0	2.4	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.19	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.55	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RFcurb $=$	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathbf{a}}=$	2.3	9.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$\mathrm{Q}_{\text {peak required }}=$	2.3	8.4	cfs

INLET IN A SUMP OR SAG LOCATION
 MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet ${ }_{\text {l }}$	Type $=$	CDOT Ty	Openin	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	4	4	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	4.9	8.0	inches
Grate Information		MINOR	MAJOR	\sqrt{V} Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{Cf}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{oi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$Q_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.33	1.33	
Clogging Factor for Multiple Units	Clog $=$	0.03	0.03	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	10.3	39.2	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	10.0	37.9	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0}=$	35.4	44.8	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	34.2	43.3	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	17.8	38.9	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	17.2	37.6	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$\mathbf{Q}_{\text {curb }}=$	10.0	37.6	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	20.00	20.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	14.0	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.0	2.4	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.24	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.46	0.75	
Curb Opening Performance Reduction Factor for Long Inlets	RFcurb $=$	0.71	0.89	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathbf{a}}=$	10.0	37.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$\mathrm{Q}_{\text {peak required }}=$	9.3	21.6	cfs

INLET IN A SUMP OR SAG LOCATION
 MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet ${ }_{\text {l }}$	Type $=$	CDOT Ty	Openin	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	4.3	8.0	inches
Grate Information		MINOR	MAJOR	\sqrt{V} Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{Cf}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{oi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$Q_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	
Clogging Factor for Multiple Units	Clog $=$	0.06	0.06	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	4.2	21.9	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	3.9	20.6	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0}=$	16.6	22.4	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	15.6	21.0	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	7.7	20.6	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	7.3	19.3	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$\mathbf{Q}_{\text {curb }}=$	3.9	19.3	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	10.00	10.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	11.5	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.0	2.4	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.19	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.40	0.75	
Curb Opening Performance Reduction Factor for Long Inlets	RFcurb $=$	0.81	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathbf{a}}=$	3.9	19.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$\mathrm{Q}_{\text {peak required }}=$	3.0	6.9	cfs

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin B-1 (DP 9)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

Maximum Capacity for $1 / 2$ Street based On Allowable Spread
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section $W\left(Q_{T}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section $W\left(\mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION
 MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet ${ }_{\text {l }}$	Type $=$	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	4.8	8.0	inches
Grate Information		MINOR	MAJOR	\sqrt{V} Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{Cf}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{oi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$Q_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	
Clogging Factor for Multiple Units	Clog $=$	0.04	0.04	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	7.2	29.4	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	6.9	28.1	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0}=$	26.2	33.6	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	25.1	32.1	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	12.8	29.2	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	12.2	27.9	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$\mathbf{Q}_{\text {curb }}=$	6.9	27.9	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	13.5	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.0	2.4	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.23	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.45	0.75	
Curb Opening Performance Reduction Factor for Long Inlets	RFcurb $=$	0.70	0.89	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathbf{a}}=$	6.9	27.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$\mathrm{Q}_{\text {peak required }}=$	6.8	15.8	cfs

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin B-2 (DP 10a)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

Maximum Capacity for 1/2 Street based On Allowable Spread

 Water Depth without Gutter Depression (Eq. ST-2)Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression ($\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)$)
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section W ($\mathrm{Q}_{\mathrm{T}}-\mathrm{Q}_{\mathrm{X}}$)
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section W $\left(\mathrm{Q}_{d}-\mathrm{Q}_{\mathrm{x}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Spread Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion

| Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' |
| :--- | :--- |
| Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' |

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.01 (April 2021)

Desiqn Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening -	Type $=$	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{F}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{F}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - 0 < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$\mathrm{Q}_{0}=$	6.5	15.2	cfs
Water Spread Width	$\mathrm{T}=$	11.9	16.9	ft
Water Depth at Flowline (outside of local depression)	$\mathrm{d}=$	4.4	5.6	inches
Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$)	$\mathrm{d}_{\text {CROWN }}=$	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	$\mathrm{E}_{0}=$	0.496	0.352	
Discharge outside the Gutter Section W, carried in Section T_{x}	$\mathrm{Q}_{\mathrm{x}}=$	3.3	9.9	cfs
Discharge within the Gutter Section W	$\mathrm{Q}_{\mathrm{w}}=$	3.2	5.3	cfs
Discharge Behind the Curb Face	$\mathrm{Q}_{\text {back }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$\mathrm{A}_{\mathrm{w}}=$	0.56	0.76	sq ft
Velocity within the Gutter Section W	$\mathrm{V}_{\mathrm{w}}=$	5.8	7.0	fps
Water Depth for Design Condition	$\mathrm{d}_{\text {IOCAL }}=$	7.4	8.6	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	$\mathrm{L}=$	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$\mathrm{E}_{0 \text {-GRATE }}=$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef $=$	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$\mathrm{L}_{\mathrm{e}}=$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q}_{\mathbf{a}}=$	N/A	N/A	cfs
Carry-Over Flow $=\mathrm{Q}_{0}-\mathrm{Q}_{\text {a }}$ (to be applied to curb opening or next d/s inlet)	$\mathbf{Q}_{\mathrm{b}}=$	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S_{e} (based on grate carry-over)	$\mathrm{S}_{\mathrm{e}}=$	0.113	0.086	$\mathrm{ft} / \mathrm{ft}$
Required Length L_{T} to Have 100\% Interception	$\mathrm{L}_{T}=$	14.36	25.12	ft
Under No-Clogging Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of $\mathrm{L}, \mathrm{L}_{\mathrm{T}}$)	$\mathrm{L}=$	14.36	15.00	ft
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	6.5	12.2	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef $=$	1.31	1.31	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog $=$	0.04	0.04	
Effective (Unclogged) Length	$\mathrm{L}_{\mathrm{e}}=$	14.34	14.34	ft
Actual Interception Capacity	$\mathrm{Q}_{\mathrm{a}}=$	6.5	12.1	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {b(grate }}-\mathrm{Q}_{\mathrm{a}}$	$\mathbf{Q}_{\mathrm{b}}=$	0.0	3.1	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	6.5	12.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathbf{Q}_{\mathrm{b}}=$	0.0	3.1	cfs
Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$	C\% $=$	100	80	\%

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin B-3 (DP 10b)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

Maximum Capacity for $1 / 2$ Street based On Allowable Spread
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section W ($\mathrm{Q}_{\mathrm{T}}-\mathrm{Q}_{\mathrm{X}}$)
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\text {XTH }}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section $W\left(\mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION
 MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type $=$	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	4.5	8.0	inches
Grate Information		MINOR	MAJOR	\sqrt{V} Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {trroat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{wi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0 \mathrm{i}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$\mathbf{Q}_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	
Clogging Factor for Multiple Units	Clog =	0.04	0.04	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	6.1	29.4	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	5.8	28.1	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0 \mathrm{i}}=$	25.6	33.6	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	24.5	32.1	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	11.6	29.2	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	11.1	27.9	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$Q_{\text {curb }}=$	5.8	27.9	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	12.5	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.0	2.4	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.21	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Combination }}=$	0.43	0.75	
Curb Opening Performance Reduction Factor for Long Inlets	RFCurb $=$	0.68	0.89	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathbf{a}}=$	5.8	27.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(PQ PEAK) $^{\text {a }}$	$\mathrm{Q}_{\text {peak required }}=$	5.6	16.1	cfs

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin B-4 (DP 11)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

Maximum Capacity for $1 / 2$ Street based On Allowable Spread
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section $W\left(Q_{T}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section $W\left(\mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION
 MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input) ${ }^{\text {The }}$ / CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet -	Type =	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	4.3	5.6	inches
Grate Information		MINOR	MAJOR	Γ Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{wi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{oi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$Q_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	
Clogging Factor for Multiple Units	Clog $=$	0.06	0.06	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{wi}}=$	4.2	9.3	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	3.9	8.7	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{oi}}=$	16.6	18.9	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	15.6	17.7	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	7.7	12.3	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	7.3	11.5	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$Q_{\text {curb }}=$	3.9	8.7	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	10.00	10.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	11.5	17.0	
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.0	0.0	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.19	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Combination }}=$	0.40	0.53	
Curb Opening Performance Reduction Factor for Long Inlets	RF curb $^{\text {a }}$	0.81	0.91	
Grated Inlet Performance Reduction Factor for Long Inlets	$R F_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathrm{a}}=$	3.9	8.7	cfs
Inlet Capacity IS GOOD for Minor and Major Storms($>$ Q PEAK)	$\mathrm{Q}_{\text {peak required }}=$	3.1	6.0	cfs

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin B-5 (DP 12a)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

Maximum Capacity for 1/2 Street based On Allowable Spread

 Water Depth without Gutter Depression (Eq. ST-2)Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression ($\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)$)
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section W $\left(\mathrm{Q}_{\mathrm{T}}-\mathrm{Q}_{\mathrm{X}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section W $\left(\mathrm{Q}_{d}-\mathrm{Q}_{\mathrm{x}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Spread Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion

| Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' |
| :--- | :--- |
| Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' |

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.01 (April 2021)

Desiqn Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening -	Type $=$	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{F}} \mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - 0 < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$\mathrm{Q}_{0}=$	8.2	19.2	cfs
Water Spread Width	$\mathrm{T}=$	13.1	17.0	ft
Water Depth at Flowline (outside of local depression)	$\mathrm{d}=$	4.7	6.0	inches
Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$)	$\mathrm{d}_{\text {crown }}=$	0.0	0.4	inches
Ratio of Gutter Flow to Design Flow	$\mathrm{E}_{0}=$	0.452	0.320	
Discharge outside the Gutter Section W, carried in Section T_{x}	$\mathrm{Q}_{\mathrm{x}}=$	4.5	13.1	cfs
Discharge within the Gutter Section W	$\mathrm{Q}_{\mathrm{w}}=$	3.7	6.1	cfs
Discharge Behind the Curb Face	$\mathrm{Q}_{\text {back }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$\mathrm{A}_{\mathrm{w}}=$	0.61	0.83	sq ft
Velocity within the Gutter Section W	$\mathrm{V}_{\mathrm{w}}=$	6.1	7.4	fps
Water Depth for Design Condition	$\mathrm{d}_{\text {IOCAL }}=$	7.7	9.0	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	$\mathrm{L}=$	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$\mathrm{E}_{0 \text {-GRATE }}=$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$\mathrm{L}_{\mathrm{e}}=$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q}_{\mathrm{a}}=$	N/A	N/A	cfs
Carry-Over Flow $=\mathrm{Q}_{0}-\mathrm{Q}_{\text {a }}$ (to be applied to curb opening or next d/s inlet)	$\mathrm{Q}_{\mathrm{b}}=$	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S_{e} (based on grate carry-over)	$\mathrm{S}_{\mathrm{e}}=$	0.105	0.080	$\mathrm{ft} / \mathrm{ft}$
Required Length L_{T} to Have 100\% Interception	$\mathrm{L}_{T}=$	16.74	29.25	ft
Under No-Clogging Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of $\mathrm{L}, \mathrm{L}_{\mathrm{T}}$)	$\mathrm{L}=$	15.00	15.00	ft
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	8.1	13.9	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef =	1.31	1.31	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	
Effective (Unclogged) Length	$\mathrm{L}_{\mathrm{e}}=$	14.34	14.34	ft
Actual Interception Capacity	$\mathrm{Q}_{\mathrm{a}}=$	8.0	13.8	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {b(grate }}-\mathrm{Q}_{\mathrm{a}}$	$\mathrm{Q}_{\mathrm{b}}=$	0.2	5.4	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.0	13.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.2	5.4	cfs
Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$	$\mathrm{C} \%=$	98	72	\%

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin B-6 (DP 14)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

Maximum Capacity for 1/2 Street based On Allowable Spread

 Water Depth without Gutter Depression (Eq. ST-2)Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression ($\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)$)
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section W $\left(\mathrm{Q}_{T}-\mathrm{Q}_{\mathrm{X}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section W $\left(\mathrm{Q}_{d}-\mathrm{Q}_{\mathrm{x}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Spread Criterion
MAJOR STORM Allowable Capacity is based on Spread Criterion
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.01 (April 2021)

Desiqn Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type $=$	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	2	2	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{F}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{F}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - 0 < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$\mathrm{Q}_{0}=$	3.7	8.6	cfs
Water Spread Width	$\mathrm{T}=$	9.2	13.4	ft
Water Depth at Flowline (outside of local depression)	$\mathrm{d}=$	3.7	4.7	inches
Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$)	$\mathrm{d}_{\text {CROWN }}=$	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	$\mathrm{E}_{0}=$	0.619	0.444	
Discharge outside the Gutter Section W, carried in Section T_{x}	$\mathrm{Q}_{\mathrm{x}}=$	1.4	4.8	cfs
Discharge within the Gutter Section W	$\mathrm{Q}_{\mathrm{w}}=$	2.3	3.8	cfs
Discharge Behind the Curb Face	$\mathrm{Q}_{\text {back }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$\mathrm{A}_{\mathrm{w}}=$	0.45	0.62	sq ft
Velocity within the Gutter Section W	$\mathrm{V}_{\mathrm{w}}=$	5.0	6.1	fps
Water Depth for Design Condition	$\mathrm{d}_{\text {IOCAL }}=$	6.7	7.7	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	$\mathrm{L}=$	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$\mathrm{E}_{0 \text {-GRATE }}=$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef $=$	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$\mathrm{L}_{\mathrm{e}}=$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q}_{\mathbf{a}}=$	N/A	N/A	cfs
Carry-Over Flow $=\mathrm{Q}_{0}-\mathrm{Q}_{\text {a }}$ (to be applied to curb opening or next d/s inlet)	$\mathbf{Q}_{\mathrm{b}}=$	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S_{e} (based on grate carry-over)	$\mathrm{S}_{\mathrm{e}}=$	0.136	0.103	$\mathrm{ft} / \mathrm{ft}$
Required Length L_{T} to Have 100\% Interception	$\mathrm{L}_{T}=$	9.90	17.27	ft
Under No-Clogging Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of $\mathrm{L}, \mathrm{L}_{\mathrm{T}}$)	$\mathrm{L}=$	9.90	10.00	ft
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	3.7	6.8	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef $=$	1.25	1.25	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog $=$	0.06	0.06	
Effective (Unclogged) Length	$\mathrm{L}_{\mathrm{e}}=$	9.37	9.37	ft
Actual Interception Capacity	$\mathrm{Q}_{\mathrm{a}}=$	3.7	6.6	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {b(grate }}-\mathrm{Q}_{\mathrm{a}}$	$\mathbf{Q}_{\mathrm{b}}=$	0.0	2.0	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.7	6.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathbf{Q}_{\mathrm{b}}=$	0.0	2.0	cfs
Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$	C\% $=$	100	77	\%

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin B-7 (DP 15)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

Maximum Capacity for 1/2 Street based On Allowable Spread

 Water Depth without Gutter Depression (Eq. ST-2)Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression ($\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)$)
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section W $\left(\mathrm{Q}_{T}-\mathrm{Q}_{\mathrm{X}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth

Maximum Capacity for 1
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section W $\left(\mathrm{Q}_{d}-\mathrm{Q}_{\mathrm{x}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Spread Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.01 (April 2021)

Desiqn Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type $=$	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	2	2	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{F}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{F}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - 0 < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$\mathrm{Q}_{0}=$	3.4	7.9	cfs
Water Spread Width	$\mathrm{T}=$	8.9	12.9	ft
Water Depth at Flowline (outside of local depression)	$\mathrm{d}=$	3.6	4.6	inches
Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$)	$\mathrm{d}_{\text {CROWN }}=$	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	$\mathrm{E}_{0}=$	0.639	0.459	
Discharge outside the Gutter Section W, carried in Section T_{x}	$\mathrm{Q}_{\mathrm{x}}=$	1.2	4.3	cfs
Discharge within the Gutter Section W	$\mathrm{Q}_{\mathrm{w}}=$	2.2	3.6	cfs
Discharge Behind the Curb Face	$\mathrm{Q}_{\text {back }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$\mathrm{A}_{\mathrm{w}}=$	0.44	0.60	sq ft
Velocity within the Gutter Section W	$\mathrm{V}_{\mathrm{w}}=$	4.9	6.0	fps
Water Depth for Design Condition	$\mathrm{d}_{\text {IOCAL }}=$	6.6	7.6	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	$\mathrm{L}=$	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$\mathrm{E}_{0 \text {-GRATE }}=$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef $=$	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$\mathrm{L}_{\mathrm{e}}=$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q}_{\mathbf{a}}=$	N/A	N/A	cfs
Carry-Over Flow $=\mathrm{Q}_{0}-\mathrm{Q}_{\text {a }}$ (to be applied to curb opening or next d/s inlet)	$\mathbf{Q}_{\mathrm{b}}=$	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S_{e} (based on grate carry-over)	$\mathrm{S}_{\mathrm{e}}=$	0.140	0.106	$\mathrm{ft} / \mathrm{ft}$
Required Length L_{T} to Have 100\% Interception	$\mathrm{L}_{T}=$	9.36	16.33	ft
Under No-Clogging Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of $\mathrm{L}, \mathrm{L}_{\mathrm{T}}$)	$\mathrm{L}=$	9.36	10.00	ft
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	3.4	6.5	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef $=$	1.25	1.25	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog $=$	0.06	0.06	
Effective (Unclogged) Length	$\mathrm{L}_{\mathrm{e}}=$	9.37	9.37	ft
Actual Interception Capacity	$\mathrm{Q}_{\mathrm{a}}=$	3.4	6.3	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {b(grate }}-\mathrm{Q}_{\mathrm{a}}$	$\mathbf{Q}_{\mathrm{b}}=$	0.0	1.6	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.4	6.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathbf{Q}_{\mathrm{b}}=$	0.0	1.6	cfs
Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$	C\% $=$	100	80	\%

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin B-8 (DP 12b)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

Maximum Capacity for $1 / 2$ Street based On Allowable Spread
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section $W\left(Q_{T}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section $W\left(\mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION
 MHFD-Inlet, Version 5.01 (April 2021)

$\sqrt{\text { Design Information (Input) }} \backslash$ CDOT Type R Curb Opening	Type =	MINOR	$\overline{\text { MAJOR }}$	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	4.6	8.0	inches
Grate Information		MINOR	MAJOR	\sqrt{V} Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{wi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{oi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$Q_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	
Clogging Factor for Multiple Units	Clog $=$	0.04	0.04	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{wi}}=$	6.6	29.4	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	6.3	28.1	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{oi}}=$	25.9	33.6	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	24.8	32.1	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	12.2	29.2	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	11.6	27.9	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$Q_{\text {curb }}=$	6.3	27.9	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	13.0	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.0	2.4	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.22	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Combination }}=$	0.44	0.75	
Curb Opening Performance Reduction Factor for Long Inlets	RF curb $^{\text {a }}$	0.69	0.89	
Grated Inlet Performance Reduction Factor for Long Inlets	$R F_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathrm{a}}=$	6.3	27.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$\mathrm{Q}_{\text {peak required }}=$	5.6	21.7	cfs

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin B-9 (DP 13)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

Maximum Capacity for $1 / 2$ Street based On Allowable Spread
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section $W\left(Q_{T}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section $W\left(\mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION
 MHFD-Inlet, Version 5.01 (April 2021)

$\sqrt{\text { Design Information (Input) }} \backslash$ CDOT Type R Curb Opening	Type =	MINOR	$\overline{\text { MAJOR }}$	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	4.3	8.0	inches
Grate Information		MINOR	MAJOR	\sqrt{V} Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{wi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{oi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$Q_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	
Clogging Factor for Multiple Units	Clog $=$	0.04	0.04	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{wi}}=$	5.1	29.4	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	4.9	28.1	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{oi}}=$	24.9	33.6	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	23.8	32.1	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	10.5	29.2	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	10.0	27.9	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$Q_{\text {curb }}=$	4.9	27.9	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	11.5	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.0	2.4	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.19	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Combination }}=$	0.40	0.75	
Curb Opening Performance Reduction Factor for Long Inlets	RF curb $^{\text {a }}$	0.66	0.89	
Grated Inlet Performance Reduction Factor for Long Inlets	$R F_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathrm{a}}=$	4.9	27.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$\mathrm{Q}_{\text {Peak required }}=$	4.7	11.1	cfs

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin C-1 (DP 17b)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

Maximum Capacity for 1/2 Street based On Allowable Spread

 Water Depth without Gutter Depression (Eq. ST-2)Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression ($\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)$)
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section W $\left(\mathrm{Q}_{T}-\mathrm{Q}_{\mathrm{X}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section W $\left(Q_{d}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Spread Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion

| Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' |
| :--- | :--- |
| Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' |

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.01 (April 2021)

Desiqn Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening -	Type $=$	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{F}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{F}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - 0 < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$\mathrm{Q}_{0}=$	6.1	14.1	cfs
Water Spread Width	$\mathrm{T}=$	11.0	15.7	ft
Water Depth at Flowline (outside of local depression)	$\mathrm{d}=$	4.2	5.3	inches
Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$)	$\mathrm{d}_{\text {CROWN }}=$	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	$\mathrm{E}_{0}=$	0.532	0.380	
Discharge outside the Gutter Section W, carried in Section T_{x}	$\mathrm{Q}_{\mathrm{x}}=$	2.9	8.8	cfs
Discharge within the Gutter Section W	$\mathrm{Q}_{\mathrm{w}}=$	3.2	5.4	cfs
Discharge Behind the Curb Face	$\mathrm{Q}_{\text {back }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$\mathrm{A}_{\mathrm{w}}=$	0.53	0.71	sq ft
Velocity within the Gutter Section W	$\mathrm{V}_{\mathrm{w}}=$	6.2	7.5	fps
Water Depth for Design Condition	$\mathrm{d}_{\text {IOCAL }}=$	7.2	8.3	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	$\mathrm{L}=$	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$\mathrm{E}_{0 \text {-GRATE }}=$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef $=$	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$\mathrm{L}_{\mathrm{e}}=$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q}_{\mathbf{a}}=$	N/A	N/A	cfs
Carry-Over Flow $=\mathrm{Q}_{0}-\mathrm{Q}_{\text {a }}$ (to be applied to curb opening or next d/s inlet)	$\mathbf{Q}_{\mathrm{b}}=$	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S_{e} (based on grate carry-over)	$\mathrm{S}_{\mathrm{e}}=$	0.120	0.091	$\mathrm{ft} / \mathrm{ft}$
Required Length L_{T} to Have 100\% Interception	$\mathrm{L}_{T}=$	13.71	23.84	ft
Under No-Clogging Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of $\mathrm{L}, \mathrm{L}_{\mathrm{T}}$)	$\mathrm{L}=$	13.71	15.00	ft
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	6.1	11.7	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef $=$	1.31	1.31	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog $=$	0.04	0.04	
Effective (Unclogged) Length	$\mathrm{L}_{\mathrm{e}}=$	14.34	14.34	ft
Actual Interception Capacity	$\mathrm{Q}_{\mathrm{a}}=$	6.1	11.6	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {b(grate }}-\mathrm{Q}_{\mathrm{a}}$	$\mathbf{Q}_{\mathrm{b}}=$	0.0	2.5	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	6.1	11.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathbf{Q}_{\mathrm{b}}=$	0.0	2.5	cfs
Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$	C\% $=$	100	82	\%

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin C-2 (DP 17a)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

Maximum Capacity for 1/2 Street based On Allowable Spread

 Water Depth without Gutter Depression (Eq. ST-2)Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(d_{C}-\left(W * S_{x} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section W $\left(\mathrm{Q}_{T}-\mathrm{Q}_{\mathrm{x}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section W $\left(\mathrm{Q}_{d}-\mathrm{Q}_{\mathrm{x}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Spread Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion

| Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' |
| :--- | :--- |
| Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' |

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.01 (April 2021)

Desiqn Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening -	Type $=$	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{F}} \mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - 0 < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$\mathrm{Q}_{0}=$	8.0	18.7	cfs
Water Spread Width	$\mathrm{T}=$	12.4	17.0	ft
Water Depth at Flowline (outside of local depression)	$\mathrm{d}=$	4.5	5.7	inches
Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$)	$\mathrm{d}_{\text {crown }}=$	0.0	0.1	inches
Ratio of Gutter Flow to Design Flow	$\mathrm{E}_{0}=$	0.477	0.338	
Discharge outside the Gutter Section W, carried in Section T_{x}	$\mathrm{Q}_{\mathrm{x}}=$	4.2	12.4	cfs
Discharge within the Gutter Section W	$\mathrm{Q}_{\mathrm{w}}=$	3.8	6.3	cfs
Discharge Behind the Curb Face	$\mathrm{Q}_{\text {back }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$\mathrm{A}_{\mathrm{w}}=$	0.58	0.79	sq ft
Velocity within the Gutter Section W	$\mathrm{V}_{\mathrm{w}}=$	6.6	8.0	fps
Water Depth for Design Condition	$\mathrm{d}_{\text {IOCAL }}=$	7.5	8.7	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	$\mathrm{L}=$	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$\mathrm{E}_{0 \text {-GRATE }}=$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$\mathrm{L}_{\mathrm{e}}=$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q}_{\mathrm{a}}=$	N/A	N/A	cfs
Carry-Over Flow $=\mathrm{Q}_{0}-\mathrm{Q}_{\text {a }}$ (to be applied to curb opening or next d/s inlet)	$\mathrm{Q}_{\mathrm{b}}=$	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S_{e} (based on grate carry-over)	$\mathrm{S}_{\mathrm{e}}=$	0.110	0.084	$\mathrm{ft} / \mathrm{ft}$
Required Length L_{T} to Have 100\% Interception	$\mathrm{L}_{T}=$	16.40	28.67	ft
Under No-Clogging Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of $\mathrm{L}, \mathrm{L}_{\mathrm{T}}$)	$\mathrm{L}=$	15.00	15.00	ft
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	7.9	13.8	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef =	1.31	1.31	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	
Effective (Unclogged) Length	$\mathrm{L}_{\mathrm{e}}=$	14.34	14.34	ft
Actual Interception Capacity	$\mathrm{Q}_{\mathrm{a}}=$	7.9	13.6	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {b(grate }}-\mathrm{Q}_{\mathrm{a}}$	$\mathrm{Q}_{\mathrm{b}}=$	0.1	5.1	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.9	13.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.1	5.1	cfs
Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$	$\mathrm{C} \%=$	98	73	\%

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin C-4 (DP 17c)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

Maximum Capacity for 1/2 Street based On Allowable Spread

 Water Depth without Gutter Depression (Eq. ST-2)Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression ($\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)$)
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section W $\left(\mathrm{Q}_{T}-\mathrm{Q}_{\mathrm{X}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth

Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section W $\left(\mathrm{Q}_{d}-\mathrm{Q}_{\mathrm{x}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Spread Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.01 (April 2021)

Desiqn Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening -	Type $=$	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{F}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{F}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - 0 < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$\mathrm{Q}_{0}=$	6.0	19.0	cfs
Water Spread Width	$\mathrm{T}=$	11.5	17.0	ft
Water Depth at Flowline (outside of local depression)	$\mathrm{d}=$	4.3	6.0	inches
Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$)	$\mathrm{d}_{\text {CROWN }}=$	0.0	0.4	inches
Ratio of Gutter Flow to Design Flow	$\mathrm{E}_{0}=$	0.512	0.321	
Discharge outside the Gutter Section W, carried in Section T_{x}	$\mathrm{Q}_{\mathrm{x}}=$	2.9	12.9	cfs
Discharge within the Gutter Section W	$\mathrm{Q}_{\mathrm{w}}=$	3.1	6.1	cfs
Discharge Behind the Curb Face	$\mathrm{Q}_{\text {back }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$\mathrm{A}_{\mathrm{w}}=$	0.54	0.83	sq ft
Velocity within the Gutter Section W	$\mathrm{V}_{\mathrm{w}}=$	5.7	7.4	fps
Water Depth for Design Condition	$\mathrm{d}_{\text {IOCAL }}=$	7.3	9.0	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	$\mathrm{L}=$	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$\mathrm{E}_{0 \text {-GRATE }}=$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef $=$	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$\mathrm{L}_{\mathrm{e}}=$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q}_{\mathbf{a}}=$	N/A	N/A	cfs
Carry-Over Flow $=\mathrm{Q}_{0}-\mathrm{Q}_{\text {a }}$ (to be applied to curb opening or next d/s inlet)	$\mathbf{Q}_{\mathrm{b}}=$	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S_{e} (based on grate carry-over)	$\mathrm{S}_{\mathrm{e}}=$	0.116	0.080	$\mathrm{ft} / \mathrm{ft}$
Required Length L_{T} to Have 100\% Interception	$\mathrm{L}_{T}=$	13.62	29.05	ft
Under No-Clogging Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of $\mathrm{L}, \mathrm{L}_{\mathrm{T}}$)	$\mathrm{L}=$	13.62	15.00	ft
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	6.0	13.9	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef $=$	1.31	1.31	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog $=$	0.04	0.04	
Effective (Unclogged) Length	$\mathrm{L}_{\mathrm{e}}=$	14.34	14.34	ft
Actual Interception Capacity	$\mathrm{Q}_{\mathrm{a}}=$	6.0	13.7	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {b(grate }}-\mathrm{Q}_{\mathrm{a}}$	$\mathbf{Q}_{\mathrm{b}}=$	0.0	5.3	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	6.0	13.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathbf{Q}_{\mathrm{b}}=$	0.0	5.3	cfs
Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$	C\% $=$	100	72	\%

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin C-5 (DP 17d)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

Maximum Capacity for 1/2 Street based On Allowable Spread

 Water Depth without Gutter Depression (Eq. ST-2)Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression ($\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)$)
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section $W\left(Q_{T}-Q_{X}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth

Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\text {XTH }}$
Actual Discharge outside the Gutter Section W, (limited by distance $\mathrm{T}_{\text {CROWN }}$)
Discharge within the Gutter Section W $\left(\mathrm{Q}_{d}-\mathrm{Q}_{\mathrm{x}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Spread Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.01 (April 2021)

Desiqn Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening -	Type $=$	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{F}} \mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - 0 < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$\mathrm{Q}_{0}=$	5.3	17.7	cfs
Water Spread Width	$\mathrm{T}=$	11.6	17.0	ft
Water Depth at Flowline (outside of local depression)	$\mathrm{d}=$	4.3	6.1	inches
Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$)	$\mathrm{d}_{\text {crown }}=$	0.0	0.5	inches
Ratio of Gutter Flow to Design Flow	$\mathrm{E}_{0}=$	0.508	0.312	
Discharge outside the Gutter Section W, carried in Section T_{x}	$\mathrm{Q}_{\mathrm{x}}=$	2.6	12.2	cfs
Discharge within the Gutter Section W	$\mathrm{Q}_{\mathrm{w}}=$	2.7	5.5	cfs
Discharge Behind the Curb Face	$\mathrm{Q}_{\text {back }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$\mathrm{A}_{\mathrm{w}}=$	0.55	0.85	sq ft
Velocity within the Gutter Section W	$\mathrm{V}_{\mathrm{w}}=$	4.9	6.5	fps
Water Depth for Design Condition	$\mathrm{d}_{\text {IOCAL }}=$	7.3	9.1	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	$\mathrm{L}=$	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$\mathrm{E}_{0 \text {-GRATE }}=$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$\mathrm{L}_{\mathrm{e}}=$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q}_{\mathrm{a}}=$	N/A	N/A	cfs
Carry-Over Flow $=\mathrm{Q}_{0}-\mathrm{Q}_{\text {a }}$ (to be applied to curb opening or next d/s inlet)	$\mathrm{Q}_{\mathrm{b}}=$	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S_{e} (based on grate carry-over)	$\mathrm{S}_{\mathrm{e}}=$	0.116	0.079	$\mathrm{ft} / \mathrm{ft}$
Required Length L_{T} to Have 100\% Interception	$\mathrm{L}_{T}=$	12.61	27.83	ft
Under No-Clogging Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of $\mathrm{L}, \mathrm{L}_{\mathrm{T}}$)	$\mathrm{L}=$	12.61	15.00	ft
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	5.3	13.3	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef =	1.31	1.31	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	
Effective (Unclogged) Length	$\mathrm{L}_{\mathrm{e}}=$	14.34	14.34	ft
Actual Interception Capacity	$\mathrm{Q}_{\mathrm{a}}=$	5.3	13.2	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {b(grate }}-\mathrm{Q}_{\mathrm{a}}$	$\mathrm{Q}_{\mathrm{b}}=$	0.0	4.5	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	5.3	13.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.0	4.5	cfs
Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$	$\mathrm{C} \%=$	100	74	\%

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin C-6 (DP 17e)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

Maximum Capacity for 1/2 Street based On Allowable Spread

 Water Depth without Gutter Depression (Eq. ST-2)Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression ($\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)$)
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section W $\left(\mathrm{Q}_{T}-\mathrm{Q}_{\mathrm{X}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section W $\left(\mathrm{Q}_{d}-\mathrm{Q}_{\mathrm{x}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Spread Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion

| Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' |
| :--- | :--- |
| Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' |

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.01 (April 2021)

Desiqn Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening -	Type $=$	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{F}} \mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - 0 < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$\mathrm{Q}_{0}=$	4.6	13.1	cfs
Water Spread Width	$\mathrm{T}=$	10.9	16.9	ft
Water Depth at Flowline (outside of local depression)	$\mathrm{d}=$	4.1	5.6	inches
Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$)	$\mathrm{d}_{\text {crown }}=$	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	$\mathrm{E}_{0}=$	0.538	0.353	
Discharge outside the Gutter Section W, carried in Section T_{x}	$\mathrm{Q}_{\mathrm{x}}=$	2.1	8.5	cfs
Discharge within the Gutter Section W	$\mathrm{Q}_{\mathrm{w}}=$	2.5	4.6	cfs
Discharge Behind the Curb Face	$\mathrm{Q}_{\text {back }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$\mathrm{A}_{\mathrm{w}}=$	0.52	0.76	sq ft
Velocity within the Gutter Section W	$\mathrm{V}_{\mathrm{w}}=$	4.8	6.1	fps
Water Depth for Design Condition	$\mathrm{d}_{\text {IOCAL }}=$	7.1	8.6	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	$\mathrm{L}=$	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$\mathrm{E}_{0 \text {-GRATE }}=$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$\mathrm{L}_{\mathrm{e}}=$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q}_{\mathrm{a}}=$	N/A	N/A	cfs
Carry-Over Flow $=\mathrm{Q}_{0}-\mathrm{Q}_{\text {a }}$ (to be applied to curb opening or next d/s inlet)	$\mathrm{Q}_{\mathrm{b}}=$	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S_{e} (based on grate carry-over)	$\mathrm{S}_{\mathrm{e}}=$	0.121	0.086	$\mathrm{ft} / \mathrm{ft}$
Required Length L_{T} to Have 100\% Interception	$\mathrm{L}_{T}=$	11.48	22.88	ft
Under No-Clogging Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of $\mathrm{L}, \mathrm{L}_{\mathrm{T}}$)	$\mathrm{L}=$	11.48	15.00	ft
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	4.6	11.2	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef =	1.31	1.31	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	
Effective (Unclogged) Length	$\mathrm{L}_{\mathrm{e}}=$	14.34	14.34	ft
Actual Interception Capacity	$\mathrm{Q}_{\mathrm{a}}=$	4.6	11.1	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {b(grate }}-\mathrm{Q}_{\mathrm{a}}$	$\mathrm{Q}_{\mathrm{b}}=$	0.0	2.0	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	4.6	11.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.0	2.0	cfs
Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$	$\mathrm{C} \%=$	100	85	\%

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin C-8 (DP 17f)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

Maximum Capacity for 1/2 Street based On Allowable Spread

 Water Depth without Gutter Depression (Eq. ST-2)Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(d_{C}-\left(W * S_{x} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section W $\left(\mathrm{Q}_{T}-\mathrm{Q}_{\mathrm{x}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section W $\left(\mathrm{Q}_{d}-\mathrm{Q}_{\mathrm{x}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Spread Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion

| Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' |
| :--- | :--- |
| Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' |

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.01 (April 2021)

Desiqn Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening -	Type $=$	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{F}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{F}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - 0 < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$\mathrm{Q}_{0}=$	5.0	11.5	cfs
Water Spread Width	$\mathrm{T}=$	10.4	14.8	ft
Water Depth at Flowline (outside of local depression)	$\mathrm{d}=$	4.0	5.1	inches
Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$)	$\mathrm{d}_{\text {CROWN }}=$	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	$\mathrm{E}_{0}=$	0.561	0.402	
Discharge outside the Gutter Section W, carried in Section T_{x}	$\mathrm{Q}_{\mathrm{x}}=$	2.2	6.9	cfs
Discharge within the Gutter Section W	$\mathrm{Q}_{\mathrm{w}}=$	2.8	4.6	cfs
Discharge Behind the Curb Face	$\mathrm{Q}_{\text {back }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$\mathrm{A}_{\mathrm{w}}=$	0.50	0.68	sq ft
Velocity within the Gutter Section W	$\mathrm{V}_{\mathrm{w}}=$	5.6	6.8	fps
Water Depth for Design Condition	$\mathrm{d}_{\text {IOCAL }}=$	7.0	8.1	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	$\mathrm{L}=$	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$\mathrm{E}_{0 \text {-GRATE }}=$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef $=$	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$\mathrm{L}_{\mathrm{e}}=$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q}_{\mathbf{a}}=$	N/A	N/A	cfs
Carry-Over Flow $=\mathrm{O}_{0}-\mathrm{O}_{\text {a }}$ (to be applied to curb opening or next d/s inlet)	$\mathrm{O}_{\mathrm{b}}=$	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S_{e} (based on grate carry-over)	$\mathrm{S}_{\mathrm{e}}=$	0.125	0.096	$\mathrm{ft} / \mathrm{ft}$
Required Length L_{T} to Have 100\% Interception	$\mathrm{L}_{T}=$	12.05	20.89	ft
Under No-Clogging Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of $\mathrm{L}, \mathrm{L}_{\mathrm{T}}$)	$\mathrm{L}=$	12.05	15.00	ft
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	5.0	10.3	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef $=$	1.31	1.31	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog $=$	0.04	0.04	
Effective (Unclogged) Length	$\mathrm{L}_{\mathrm{e}}=$	14.34	14.34	ft
Actual Interception Capacity	$\mathrm{Q}_{\mathrm{a}}=$	5.0	10.2	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {b(grate }}-\mathrm{Q}_{\mathrm{a}}$	$\mathbf{Q}_{\mathrm{b}}=$	0.0	1.3	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	5.0	10.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathbf{Q}_{\mathrm{b}}=$	0.0	1.3	cfs
Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$	C\% $=$	100	89	\%

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin C-9 (DP 17g)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

Maximum Capacity for $1 / 2$ Street based On Allowable Spread
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section $W\left(Q_{T}-Q_{X}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\text {XTH }}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section $W\left(\mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION
 MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet ${ }_{\text {l }}$	Type $=$	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	10.0	inches
Grate Information		MINOR	MAJOR	\sqrt{V} Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{Cf}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{oi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$Q_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	
Clogging Factor for Multiple Units	Clog $=$	0.04	0.04	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	14.1	49.2	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	13.5	47.0	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0}=$	29.3	37.4	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	28.0	35.8	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	18.9	39.9	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	18.1	38.1	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$\mathbf{Q}_{\text {curb }}=$	13.5	35.8	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	20.6	39.1	ft.>T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.8	4.8	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.33	0.67	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.57	0.94	
Curb Opening Performance Reduction Factor for Long Inlets	RFcurb $=$	0.79	0.97	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathbf{a}}=$	13.5	35.8	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(PO PEAK) $^{\text {a }}$	$\mathrm{Q}_{\text {peak required }}=$	8.6	28.0	cfs

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin C-7 (DP 18a)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

Maximum Capacity for 1/2 Street based On Allowable Spread

 Water Depth without Gutter Depression (Eq. ST-2)Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section W ($\mathrm{Q}_{\mathrm{T}}-\mathrm{Q}_{\mathrm{X}}$)
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section W $\left(\mathrm{Q}_{d}-\mathrm{Q}_{\mathrm{x}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Spread Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion

| Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' |
| :--- | :--- |
| Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' |

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.01 (April 2021)

Desiqn Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening -	Type $=$	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{F}} \mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - 0 < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$\mathrm{Q}_{0}=$	8.3	19.4	cfs
Water Spread Width	$\mathrm{T}=$	12.9	17.0	ft
Water Depth at Flowline (outside of local depression)	$\mathrm{d}=$	4.6	5.9	inches
Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$)	$\mathrm{d}_{\text {crown }}=$	0.0	0.3	inches
Ratio of Gutter Flow to Design Flow	$\mathrm{E}_{0}=$	0.459	0.325	
Discharge outside the Gutter Section W, carried in Section T_{x}	$\mathrm{Q}_{\mathrm{x}}=$	4.5	13.1	cfs
Discharge within the Gutter Section W	$\mathrm{Q}_{\mathrm{w}}=$	3.8	6.3	cfs
Discharge Behind the Curb Face	$\mathrm{Q}_{\text {back }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$\mathrm{A}_{\mathrm{w}}=$	0.60	0.82	sq ft
Velocity within the Gutter Section W	$\mathrm{V}_{\mathrm{w}}=$	6.3	7.7	fps
Water Depth for Design Condition	$\mathrm{d}_{\text {IOCAL }}=$	7.6	8.9	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	$\mathrm{L}=$	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$\mathrm{E}_{0 \text {-GRATE }}=$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$\mathrm{L}_{\mathrm{e}}=$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q}_{\mathrm{a}}=$	N/A	N/A	cfs
Carry-Over Flow $=\mathrm{O}_{0}-\mathrm{O}_{\text {a }}$ (to be applied to curb opening or next d/s inlet)	$\mathrm{O}_{\mathrm{b}}=$	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S_{e} (based on grate carry-over)	$\mathrm{S}_{\mathrm{e}}=$	0.106	0.081	$\mathrm{ft} / \mathrm{ft}$
Required Length L_{T} to Have 100\% Interception	$\mathrm{L}_{T}=$	16.85	29.42	ft
Under No-Clogging Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of $\mathrm{L}, \mathrm{L}_{\mathrm{T}}$)	$\mathrm{L}=$	15.00	15.00	ft
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	8.1	14.0	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef =	1.31	1.31	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	
Effective (Unclogged) Length	$\mathrm{L}_{\mathrm{e}}=$	14.34	14.34	ft
Actual Interception Capacity	$\mathrm{Q}_{\mathrm{a}}=$	8.1	13.9	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {b(grate }}-\mathrm{Q}_{\mathrm{a}}$	$\mathrm{Q}_{\mathrm{b}}=$	0.2	5.5	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.1	13.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.2	5.5	cfs
Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$	$\mathrm{C} \%=$	98	72	\%

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin C-10 (DP 18b)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

Maximum Capacity for $1 / 2$ Street based On Allowable Spread
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section $W\left(Q_{T}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section $W\left(\mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION
 MHFD-Inlet, Version 5.01 (April 2021)

$\sqrt{\text { Design Information (Input) }} \backslash$ CDOT Type R Curb Opening	Type =	MINOR	MAJOR	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	10.0	inches
Grate Information		MINOR	MAJOR	\sqrt{V} Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value $0.60-0.80$)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{Cf}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef $=$	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{wi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{oi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\mathrm{ma}}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$\mathbf{Q}_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef $=$	1.31	1.31	
Clogging Factor for Multiple Units	$\mathrm{Clog}=$	0.04	0.04	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	14.1	49.2	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	13.5	47.0	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{oi}}=$	29.3	37.4	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	28.0	35.8	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	18.9	39.9	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	18.1	38.1	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$\mathbf{Q}_{\text {curb }}=$	13.5	35.8	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T	18.7	35.4	ft.>T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.4	4.4	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {Curb }}=$	0.33	0.67	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.57	0.94	
Curb Opening Performance Reduction Factor for Long Inlets	RF curb $=$	0.79	0.97	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q a}_{\mathbf{a}}=$	13.5	35.8	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$\mathrm{Q}_{\text {peak required }}=$	6.0	19.0	cfs

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin C-11 (DP 19)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

Maximum Capacity for $1 / 2$ Street based On Allowable Spread
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section $W\left(Q_{T}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section $W\left(\mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION
 MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet ${ }_{\text {l }}$	Type $=$	CDOT Ty	Openin	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	4.3	5.6	inches
Grate Information		MINOR	MAJOR	\sqrt{V} Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{Cf}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{oi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$Q_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	
Clogging Factor for Multiple Units	Clog $=$	0.10	0.10	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	2.6	5.1	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	2.3	4.6	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0}=$	8.3	9.4	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	7.5	8.5	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	4.3	6.4	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	3.9	5.8	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$\mathbf{Q}_{\text {curb }}=$	2.3	4.6	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	5.00	5.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	11.5	17.0	
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.0	0.0	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.19	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.55	0.72	
Curb Opening Performance Reduction Factor for Long Inlets	RFcurb $=$	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathbf{a}}=$	2.3	4.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$\mathrm{Q}_{\text {peak required }}=$	0.9	2.5	cfs

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin C-12 (DP 20)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

Maximum Capacity for $1 / 2$ Street based On Allowable Spread
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section $W\left(Q_{T}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section $W\left(\mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION
 MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet ${ }_{\text {l }}$	Type $=$	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	5.0	8.0	inches
Grate Information		MINOR	MAJOR	\sqrt{V} Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{Cf}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{oi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$Q_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	
Clogging Factor for Multiple Units	Clog $=$	0.10	0.10	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	3.9	11.0	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	3.5	9.9	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0}=$	8.9	11.2	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	8.1	10.1	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	5.5	10.3	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	4.9	9.3	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$\mathbf{Q}_{\text {curb }}=$	3.5	9.3	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	5.00	5.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	14.5	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.0	2.4	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.25	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.64	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RFcurb $=$	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathbf{a}}=$	3.5	9.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$\mathrm{Q}_{\text {peak required }}=$	3.0	6.8	cfs

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin D-1 (DP 22)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

Maximum Capacity for $1 / 2$ Street based On Allowable Spread
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section $W\left(Q_{T}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section $W\left(\mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION
 MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type $=$	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	4.5	8.0	inches
Grate Information		MINOR	MAJOR	\sqrt{V} Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {trroat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{wi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0 \mathrm{i}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$\mathbf{Q}_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	
Clogging Factor for Multiple Units	Clog =	0.04	0.04	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	6.0	29.4	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	5.8	28.1	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0 \mathrm{i}}=$	25.6	33.6	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	24.4	32.1	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	11.6	29.2	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	11.0	27.9	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$Q_{\text {curb }}=$	5.8	27.9	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	12.5	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.0	2.4	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.21	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Combination }}=$	0.42	0.75	
Curb Opening Performance Reduction Factor for Long Inlets	RFCurb $=$	0.68	0.89	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathbf{a}}=$	5.8	27.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(PQ PEAK) $^{\text {a }}$	$\mathrm{Q}_{\text {peak required }}=$	5.2	12.0	cfs

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin D-2 (DP 23)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

Maximum Capacity for $1 / 2$ Street based On Allowable Spread
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section $W\left(Q_{T}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section $W\left(\mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION
 MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet ${ }_{\text {l }}$	Type $=$	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	4.5	8.0	inches
Grate Information		MINOR	MAJOR	\sqrt{V} Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{Cf}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{oi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$Q_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	
Clogging Factor for Multiple Units	Clog $=$	0.10	0.10	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	3.0	11.0	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	2.7	9.9	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0}=$	8.5	11.2	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	7.7	10.1	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	4.7	10.3	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	4.2	9.3	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$\mathbf{Q}_{\text {curb }}=$	2.7	9.3	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	5.00	5.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	12.5	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.0	2.4	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.21	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.58	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RFcurb $=$	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathbf{a}}=$	2.7	9.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$\mathrm{Q}_{\text {peak required }}=$	1.5	3.4	cfs

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin D-3 (DP 24)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

Maximum Capacity for $1 / 2$ Street based On Allowable Spread
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section $W\left(Q_{T}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section $W\left(\mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION
 MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet ${ }_{\text {l }}$	Type $=$	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	S	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	5.1	8.0	inches
Grate Information		MINOR	MAJOR	\sqrt{V} Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{Cf}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{oi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$Q_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	
Clogging Factor for Multiple Units	Clog $=$	0.04	0.04	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	8.9	29.4	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	8.5	28.1	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0}=$	27.1	33.6	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	25.9	32.1	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	14.4	29.2	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	13.8	27.9	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$\mathbf{Q}_{\text {curb }}=$	8.5	27.9	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	15.0	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.0	2.4	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.26	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.48	0.75	
Curb Opening Performance Reduction Factor for Long Inlets	RFcurb $=$	0.73	0.89	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathbf{a}}=$	8.5	27.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$\mathrm{Q}_{\text {peak required }}=$	8.5	19.9	cfs

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin D-4 (DP 25)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

Maximum Capacity for $1 / 2$ Street based On Allowable Spread
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section $W\left(Q_{T}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section $W\left(\mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION
 MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet ${ }_{\text {l }}$	Type $=$	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	S	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	5.1	8.0	inches
Grate Information		MINOR	MAJOR	\sqrt{V} Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{Cf}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{oi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$\mathbf{Q}_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	
Clogging Factor for Multiple Units	Clog $=$	0.04	0.04	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	8.9	29.4	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	8.5	28.1	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0}=$	27.1	33.6	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	25.9	32.1	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	14.4	29.2	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	13.8	27.9	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$Q_{\text {curb }}=$	8.5	27.9	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	15.0	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.0	2.4	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.26	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.48	0.75	
Curb Opening Performance Reduction Factor for Long Inlets	RFcurb $=$	0.73	0.89	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathbf{a}}=$	8.5	27.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$\mathrm{Q}_{\text {peak required }}=$	8.3	19.5	cfs

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin E-1 (DP 27)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

Maximum Capacity for $1 / 2$ Street based On Allowable Spread
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression ($\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)$)
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section W $\left(\mathrm{Q}_{T}-\mathrm{Q}_{\mathrm{X}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth

Maximum Capacity for 1
Theoretical Water Spread

Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section W $\left(\mathrm{Q}_{d}-\mathrm{Q}_{\mathrm{x}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Spread Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.01 (April 2021)

Desiqn Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening -	Type $=$	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{F}} \mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - 0 < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$\mathrm{Q}_{0}=$	7.5	17.6	cfs
Water Spread Width	$\mathrm{T}=$	12.7	17.0	ft
Water Depth at Flowline (outside of local depression)	$\mathrm{d}=$	4.6	5.8	inches
Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$)	$\mathrm{d}_{\text {crown }}=$	0.0	0.2	inches
Ratio of Gutter Flow to Design Flow	$\mathrm{E}_{0}=$	0.469	0.331	
Discharge outside the Gutter Section W, carried in Section T_{x}	$\mathrm{Q}_{\mathrm{x}}=$	4.0	11.8	cfs
Discharge within the Gutter Section W	$\mathrm{Q}_{\mathrm{w}}=$	3.5	5.8	cfs
Discharge Behind the Curb Face	$\mathrm{Q}_{\text {back }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$\mathrm{A}_{\mathrm{w}}=$	0.59	0.80	sq ft
Velocity within the Gutter Section W	$\mathrm{V}_{\mathrm{w}}=$	5.9	7.3	fps
Water Depth for Design Condition	$\mathrm{d}_{\text {LOCAL }}=$	7.6	8.8	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	$\mathrm{L}=$	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$\mathrm{E}_{0 \text {-GRATE }}=$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$\mathrm{L}_{\mathrm{e}}=$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q}_{\mathrm{a}}=$	N/A	N/A	cfs
Carry-Over Flow $=\mathrm{Q}_{0}-\mathrm{Q}_{\text {a }}$ (to be applied to curb opening or next d/s inlet)	$\mathrm{Q}_{\mathrm{b}}=$	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S_{e} (based on grate carry-over)	$\mathrm{S}_{\mathrm{e}}=$	0.108	0.082	$\mathrm{ft} / \mathrm{ft}$
Required Length L_{T} to Have 100\% Interception	$\mathrm{L}_{T}=$	15.78	27.64	ft
Under No-Clogging Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of $\mathrm{L}, \mathrm{L}_{\mathrm{T}}$)	$\mathrm{L}=$	15.00	15.00	ft
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	7.5	13.3	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef =	1.31	1.31	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	
Effective (Unclogged) Length	$\mathrm{L}_{\mathrm{e}}=$	14.34	14.34	ft
Actual Interception Capacity	$\mathrm{Q}_{\mathrm{a}}=$	7.4	13.2	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {b(grate }}-\mathrm{Q}_{\mathrm{a}}$	$\mathrm{Q}_{\mathrm{b}}=$	0.1	4.4	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.4	13.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.1	4.4	cfs
Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$	$\mathrm{C} \%=$	99	75	\%

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin E-2 (DP 28)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

Maximum Capacity for $1 / 2$ Street based On Allowable Spread
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression ($\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)$)
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section W $\left(\mathrm{Q}_{T}-\mathrm{Q}_{\mathrm{X}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth

Maximum Capacity for 1
Theoretical Water Spread

Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section W $\left(\mathrm{Q}_{d}-\mathrm{Q}_{\mathrm{x}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Spread Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.01 (April 2021)

Desiqn Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening -	Type $=$	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{F}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{F}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - 0 < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$\mathrm{Q}_{0}=$	7.6	17.9	cfs
Water Spread Width	$\mathrm{T}=$	12.7	17.0	ft
Water Depth at Flowline (outside of local depression)	$\mathrm{d}=$	4.6	5.9	inches
Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$)	$\mathrm{d}_{\text {CROWN }}=$	0.0	0.3	inches
Ratio of Gutter Flow to Design Flow	$\mathrm{E}_{0}=$	0.466	0.329	
Discharge outside the Gutter Section W, carried in Section T_{x}	$\mathrm{Q}_{\mathrm{x}}=$	4.1	12.0	cfs
Discharge within the Gutter Section W	$\mathrm{Q}_{\mathrm{w}}=$	3.5	5.9	cfs
Discharge Behind the Curb Face	$\mathrm{Q}_{\text {back }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$\mathrm{A}_{\mathrm{w}}=$	0.59	0.81	sq ft
Velocity within the Gutter Section W	$\mathrm{V}_{\mathrm{w}}=$	6.0	7.3	fps
Water Depth for Design Condition	$\mathrm{d}_{\text {IOCAL }}=$	7.6	8.9	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	$\mathrm{L}=$	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$\mathrm{E}_{0 \text {-GRATE }}=$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef $=$	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$\mathrm{L}_{\mathrm{e}}=$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q}_{\mathbf{a}}=$	N/A	N/A	cfs
Carry-Over Flow $=\mathrm{Q}_{0}-\mathrm{Q}_{\text {a }}$ (to be applied to curb opening or next d/s inlet)	$\mathbf{Q}_{\mathrm{b}}=$	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S_{e} (based on grate carry-over)	$\mathrm{S}_{\mathrm{e}}=$	0.108	0.082	$\mathrm{ft} / \mathrm{ft}$
Required Length L_{T} to Have 100\% Interception	$\mathrm{L}_{T}=$	15.92	27.95	ft
Under No-Clogging Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of $\mathrm{L}, \mathrm{L}_{\mathrm{T}}$)	$\mathrm{L}=$	15.00	15.00	ft
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	7.6	13.4	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef $=$	1.31	1.31	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog $=$	0.04	0.04	
Effective (Unclogged) Length	$\mathrm{L}_{\mathrm{e}}=$	14.34	14.34	ft
Actual Interception Capacity	$\mathrm{Q}_{\mathrm{a}}=$	7.5	13.3	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {b(grate }}-\mathrm{Q}_{\mathrm{a}}$	$\mathbf{Q}_{\mathrm{b}}=$	0.1	4.6	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.5	13.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathbf{Q}_{\mathrm{b}}=$	0.1	4.6	cfs
Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$	C\% $=$	99	74	\%

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin E-3 (DP 29)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

Maximum Capacity for $1 / 2$ Street based On Allowable Spread
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section $W\left(Q_{T}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section $W\left(\mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION
 MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet ${ }_{\text {l }}$	Type $=$	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	4.3	8.0	inches
Grate Information		MINOR	MAJOR	\sqrt{V} Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{Cf}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{oi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$\mathbf{Q}_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	
Clogging Factor for Multiple Units	Clog $=$	0.04	0.04	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	5.1	29.4	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	4.9	28.1	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0}=$	24.9	33.6	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	23.8	32.1	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	10.5	29.2	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	10.0	27.9	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$Q_{\text {curb }}=$	4.9	27.9	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	11.5	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.0	2.4	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.19	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.40	0.75	
Curb Opening Performance Reduction Factor for Long Inlets	RFcurb $=$	0.66	0.89	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathbf{a}}=$	4.9	27.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$\mathrm{Q}_{\text {peak required }}=$	4.7	19.5	cfs

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin E-4 (DP 30)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

Maximum Capacity for $1 / 2$ Street based On Allowable Spread
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section $W\left(Q_{T}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section $W\left(\mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION
 MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type $=$	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	5.4	8.0	inches
Grate Information		MINOR	MAJOR	\sqrt{V} Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {trroat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{wi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0 \mathrm{i}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$\mathbf{Q}_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	
Clogging Factor for Multiple Units	Clog =	0.04	0.04	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	10.5	29.4	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	10.1	28.1	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0 \mathrm{i}}=$	27.8	33.6	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	26.6	32.1	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	15.9	29.2	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	15.2	27.9	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$Q_{\text {curb }}=$	10.1	27.9	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	16.2	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.0	2.4	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.28	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.51	0.75	
Curb Opening Performance Reduction Factor for Long Inlets	RFCurb $=$	0.75	0.89	
Grated Inlet Performance Reduction Factor for Long Inlets	$R F_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathbf{a}}=$	10.1	27.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(PQ PEAK) $^{\text {a }}$	$\mathrm{Q}_{\text {peak required }}=$	9.7	22.7	cfs

Provide box culvert and channel calculations in this report or separate report as an appendix.

APPENDIX E

Water Quality Computations

Detention Pond Tributary Areas

Subdivision: Grandview Reserve
Location: CO, El Paso County

Project Name: Grandview Reserve
Project No.: HRG01
Calculated By: TJE
Checked By: BAS
Date: $12 / 10 / 21$

Pond A

Basin	Area	\% Imp
A-2a	4.21	65
A-2b	2.72	87.8
A-3	0.34	100
A-4a	6.04	65
A-4b	4.10	65
A-5	0.34	100
A-6	2.67	65
A-7	2.91	20
A-8	5.17	65
A-9	1.73	65
A-10	6.31	2
Total	$\mathbf{3 6 . 5 4}$	$\mathbf{5 2 . 9}$

Not checked with this review provide the additional 4 ponds also

Pond B

Basin	Area	\% Imp
B-1	4.02	65
B-2	4.16	65
B-3	3.42	65
B-4	0.76	100
B-5	5.32	65
B-6	2.28	65
B-7	1.94	65
B-8	3.54	65
B-9	2.57	65
B-10	0.87	2
Total	$\mathbf{2 8 . 8 8}$	$\mathbf{6 4 . 0}$

Pond C

Basin	Area	\% Imp
C-1	3.90	65
C-2	0.96	65
C-3	4.07	65
C-4	3.80	65
C-5	3.19	65
C-6	2.99	65
C-7	5.48	65
C-8	2.82	65
C-9	5.96	65
C-10	3.67	65
C-11	0.50	65
C-12	1.61	65
C-13	2.46	10
Total	$\mathbf{4 1 . 4 1}$	$\mathbf{6 1 . 7}$

Pond D

Basin	Area	\% Imp
D-1	2.46	65
D-2	0.75	65
D-3	4.76	65
D-4	4.74	65
D-5	0.71	2
Total	$\mathbf{1 3 . 4 2}$	$\mathbf{6 1 . 7}$

Pond E

Basin	Area	\% Imp
E-1	5.06	65
E-2	3.63	65
E-3	2.97	65
E-4	6.86	65
E-5	0.74	5
Total	$\mathbf{1 9 . 2 6}$	$\mathbf{6 2 . 7}$

Site-Level Low Impact Development (LID) Design Effective Impervious Calculator

Designer:	TJE
Company:	Galloway \& Co.
Date:	December 10, 2021
Proect:	Grandviewe Reserve
Location:	Pond A

Gtinformation (USER-INPUT)

CALCULATED RESUITS (OUTPUT)

LID / EFFECTVVE IMPERVIOUSNESS CREDITI
\square

Tota Site Imperviousness:	52.9%

Total Site Effective Imperiousness for WQCV Event: $\quad 52.9 \%$ Total Site Effective Impenviousness for 5 -Year Event: $\quad 52.9 \%$

Notes:
Flood con-Ampt average infiltration rate values from Table 3-3.
Hood control detention volume creditis based on empirical equations from Storage Chapter of USDCM,
Total Site Effective Impeniou unness for Optional User Defined Stor

Site-Level Low Impact Development (LID) Design Effective Impervious Calculator

Designer:	TJE
Compary:	Galloway \& Co.
Date:	December 10, 2021
Project:	Grandview Reserve
Location:	Pond B

ste information (USER-INPUT)

CALCULATED RESULTS (OUTPUT)

Total Calculated Area (ac, check against input)	4.020	4.160	3.420	0.760	5.320	2.280	1.940	3.540	2.570	0.870				
Directly Conneted I Impervious frea (DCAA, \%)	65.0\%	65.0\%	65.0\%	100.0\%	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	2.0\%				
Unconnected Imperivius Area (UAA, \%)	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%				
Receiving Perious Area (RPA, \%)	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%				
Separate Pervius Area (SPA, \%)	35.0\%	35.0\%	35.0\%	0.0\%	35.0\%	35.0\%	35.0\%	35.0\%	35.0\%	98.0\%				
A_{R} (RPA/ /UA)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000				
$1{ }_{1}$ Check	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000				
f/ / for wocv Event:	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7				
f/ / for 5 -Year Event:	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5				
f / f for 100-Year Event:	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3				
f/ I for Optional User Defined Storm CUHP:														
IRF for Wocv Event:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
IRF for 5 --ear Event:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
IRF for 100-Year Event:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
IRF for Optional User Defined Storm CUHP:	65.0\%	65.0\%	65.0\%	100.0\%	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	2.0\%				
Effective Imperviousness for WQCV Event:	65.0\%	65.0\%	65.0\%	100.0\%	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	2.0\%				
Effective Imperviousness for 5. -ear Event:	65.0\%	65.0\%	65.0\%	100.0\%	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	2.0\%				
Effective Imperviousness for 100 -Year Event: iousness for Optional User Defined Storm CuHP:	65.0\%	65.0\%	65.0\%	100.0\%	65.0\%	65.0\%	65.0\%	65.0\%	65.\%	2.0\%				

LD/ EFFECTVE IM PERVVIOUSNESS CREDTIS

Total Site Imperiousness:

Total Site Efiective Imperviousness for WQCV Event: Total Site Effective Impenviousness for 5 -Year Event: $\quad 64.0 \%$	Total Site Effective Impeniousness for $100-$-erer Event:	
	64.0%	

Notes:
Fse Green-Ampt average infiltration rate values from Table 3 -3
"Flood control detention volume credits based on empirical equations from Storage Chapter of USDCM.
$* * *$ Method assumes that 1 -hour rainfall depth is equivalent to 1 -hour intensity for calculation purposed

Site-Level Low Impact Development (LID) Design Effective Impervious Calculator UD Credit by Impervious Reduction Factor (IRF) Method

Designer:	TJE
Company:	Galloway \& Co.
Date:	December 10, 2021
Project:	Grandview Reserve
Location:	Pond C

Ite INFormation (USER-INPUT)

Sub-basin Identifier Receiving Pervious Area Soil Type	C. 1	C. 2	C. 3	C. 4	C. 5	c. 6	C.7	C.8	c. 9	C. 10	C. 11	C.12	C. 13	
	Sandy Loam													
Total Area (ac., Sum of DCIA, UIA, RPA, \& SPA) Directly Connected Impervious Area (DCIA, acres)	3.900	0.960	4.070	3.800	3.190	2.990	5.480	2.820	5.960	3.670	0.500	1.610	2.460	
	2.535	0.624	2.645	2.470	2.073	1.943	3.562	1.833	3.874	2.385	0.325	1.046	0.246	
Unconnected Impervious Area (UAA, acres) Receiving Pervious Area (RPA, acres)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Separate Pervious Area (SPA, acres)	1.365	0.336	1.425	1.330	1.117	1.047	1.918	0.987	2.086	1.285	0.175	0.564	2.214	
RPA Treatment Type: Conveyance (C), Volume (V), or Permeable Pavement (PP)	c	c	c	c	c	c	c	c	c	c	c	c	c	

CALCULATED RESULTS (OUTPUT)

Total Calculated Area ac, check against input)	3.900	0.960	4.070	3.800	3.190	2.990	5.880	2.820	5.960	3.670	0.500	1.610	2.460		
Directil Connected Impervios Area ($(\mathrm{CCIA}, \%)$	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	10.0\%		
Uncoonected Imperious Area (UAA, \%)	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%		
Receiving Perious Area (PPA, \%)	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%		
Separate Pervius Area (SPA, \%)	35.0\%	35.0\%	35.0\%	35.0\%	35.0\%	35.0\%	35.0\%	35.0\%	35.0\%	35.0\%	35.0\%	35.0\%	90.0\%		
A_{R} (RPA / UIA)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
$1{ }_{3}$ Check	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
f/ / for Wocv Event:	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7		
f/ / for 5 -Year Event:	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
f / I for 100-Year Event:	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3		
f/ I for Optional User Defined Storm CUHP:															
IRF for Wocv Event:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
IRF for 5 --ear Event:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
IRF for 100-Year Event:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
IRF for Optional User Defined Storm CUHP:															
Total Site Imperviousness: $I_{\text {total }}$ Effective Imperviousness for WQCV Event:	65.0\%	65.0\%	65.0\%	65.0\%	65.0\% 65.0%	65.0\%	65.0\%	65.0\% 65.0%	65.0\% 65.0\%	65.0\%	65.0\%	65.0\%	10.0\% 10.0\%		
	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	10.0\%		
Effective Imperviouness for 100 -Year Event:	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	65.0\%	10.0\%		
Viousess for Optional User Defined Storm CUHP:															

LD/ EFFECTVVE IMPERVIOUSNESS CREDIT

WOCV Event CREDIT: Reduce Detention By:	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	\%	0.0\%	0.0\%	0\%	0.0\%	N/A
This line only for 10 -Year Event	N/A													
REDIT**: Redure Detention By:	0.0\%	\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.1\%	0\%	0.1\%	N/A

Notes:
*Flood den-Ampt average infiltration rate values from Table 3-3
"Flood control detention volume creditis based on empirical equations from Storage Chapter of USDCM,
$* * *$ Method assumes that 1 -hour rainfall depth is equivalent to 1 -hour intensity for calculation purposed

Site-Level Low Impact Development (LD) Design Effective Impervious Calculator LD Credit by Impervious Reduction Factor (IRF) Method

ID-BM (Version 3.06, November 2016)
te nformation (USER-INPUT)

Location: Pond D

Stie mformaton (UsER.NPut)														
Sub.basid dentifier	0.1	0.2	0.3	0.4	0.5									
Receiving Pervious Area Soil Type	Sandy Lom	Sanyy Loam	Sany Loam	Sandy Loam	Sany Loam									
	2.460	0.750	4.760	4.740	0.710									
Direty Cometeded menerios	1.599	0.488	3.09	3.081	0.014									
	0.000	0.000	0.000	0.000	0.000									
	0.000	0.000	0.000	0.000	0.000									
	0.861	0.263	1.666	1.659	0.966									
RPA Treatment Type: Conveyance (C), Volume (V), or Permeable Pavement (PP)	c	c	c	c	c									
Calculateo Resuls (output														
Total Calculated Area (ac, check against input) Directly Connected Impervious Area (DCIA, \%) Unconnected Impervious Area (UIA, \%) Receiving Pervious Area (RPA, \%)	2.460	0.750	4.760	4.740	0.710									
	65.0\%	65.0\%	65.0\%	65.0\%	2.0\%									
	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%									
	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%									
	35.\%	35.0\%	35.0\%	35.\%	98.0\%									
	0.000	0.000	0.000	0.000	0.000									
	1.000	1.000	1.000	1.000	1.000									
	1.7	1.7	1.7	1.7	1.7									
	0.5	0.5	0.5	0.5	0.5									
	0.3	0.3	0.3	0.3	0.3									
f/ I for Optional User Defined Storm CUHP: IRF for WQCV Event	100	100												
	1.00	1.00	1.00	1.00	1.00									
	1.00	1.00	1.00	1.00	1.00									
Total Site mpeniusuness hean	650\%	650\%	65.0\%	650\%	2.0\%									
Effective Imperviousness for WQCV Event: Effective Imperviousness for 5-Year Event:	65.0\%	655.\%	${ }^{65.0 \%}$	${ }^{6550 \%}$	2.0\%									
	65.\%	65.\%	65.0\%	65.0\%	2.0\%									
Effective Imperviousness for 100-Year Event: Effective Imperviousness for Optional User Defined Storm CUHP:	65.\%	65.\%	65.0\%	65.\%	2.0\%									
WQCV Event CREDIT: Reduce Detention By:This line only for 10 -Year Event100 -Year Event CREDIT**: Reduce Detention By:User Defined CUHP CREDIT: Reduce Detention By:											N/A	N/A	N/A	N/A
	0.0\%	0.0\%	0.0%	0.0\%	-564.5\%	N/A	N/A	N/A	NA	NA	NA	NA	N/A	\cdots
Total 5 Site Impeniussess:			61.7\%	Notes:										
			61.7\%	* Use Green-Amp averase fifitratio nate values fom Table 3.3.										
Total Site Effective Imperviousness for 5-Year Event:Total Site Effective Imperviousness for 100-Year Event: Total Site Effective Imperviousness for Optional User Defined Storm CUHP:			$\frac{6.1 .7 \%}{61.7 \%}$	"Flood control detention volume credits based on empirical equations from Storage Chapter of USCCM. *** M ethod assumes that 1-hour rainfall depth is equivalent to 1 -hour intensity for calculation purposed										

Site-Level Low Impact Development (LD) Design Effective Impervious Calculator LD Credit by Impervious Reduction Factor (IRF) Method

D. BM P (Version 3.06, November 2010

Designer:	TJE
Company:	Galloway \& Co.
Date:	December 10, 2021
Project:	Grandview Reserve
Location:	Pond E

SITE INFORMATON (USER-NPUT

Sub-basin Identifier	E.	E-2	E-3	E-4	E.5									
Receiving Pervius Area Soil Type	Sandy Loam													
Total Area (ac, Sum of DCIA, U1A, RPA, \& SPA)	5.060	3.630	2.970	6.860	0.740									
Directil Connected Imperviou Area (DCIA, acres)	3.289	2.359	1.930	4.459	0.037									
Unconnected Impervious Area (UA, acres)	0.000	0.000	0.000	0.000	0.000									
Receiving Pervious frea (RPA, acres)	0.000	0.000	0.000	0.000	0.000									
Separate Pervious Area (SPA, acres)	1.771	1.271	1.040	2.401	0.703									
RPA Treatment Type: Conveyance (C), Volume (V), or Permeable Pavement (PP)	c	c	c	c	c									

CALCULATED RESULTS (OUTPUT)

Total Calculated Area (ac, check aginst inut)	5.060	3.630	2.970	6.860	0.740									
Directly Connected Impervious Area (DCAA, \%)	65.0\%	65.0\%	65.0\%	65.0\%	5.0\%									
Unconnected Impervious Area (UA, \%)	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%									
Receiving Pervious frea (RPA, \%)	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%									
Separate Pervious Area (SPA, \%)	35.0\%	35.0\%	35.0\%	35.0\%	95.0\%									
A_{R} (RPA/UAA)	0.000	0.000	0.000	0.000	0.000									
1_{s} Check	1.000	1.000	1.000	1.000	1.000									
f/ / for WQCV Event:	1.7	1.7	1.7	1.7	1.7									
f/ / for 5 -Year Event:	0.5	0.5	0.5	0.5	0.5									
f / I for 100 -eara Event:	0.3	0.3	0.3	0.3	0.3									
$\mathrm{f} / /$ for Optional User Defined Storm CUHP:														
IRF for WQCV Event:	1.00	1.00	1.00	1.00	1.00									
IRF for 5 -Year Event:	1.00	1.00	1.00	1.00	1.00									
IRF for 100-Year Event:	1.00	1.00	1.00	1.00	1.00									
IRF for Optional User Defined Storm CUHP:														
Total Ste imperviousness: Loast	65.0\%	65.0\%	65.0\%	65.0\%	5.0\%									
Effective Imperviussess for Wocv Event:	65.0\%	65.0\%	65.0\%	65.0\%	5.0\%									
Effective Imperviousness for 5 -Year Event:	65.0\%	65.0\%	65.0\%	65.0\%	5.0\%									
Effective Imperviusness for 100-Year Event:	65.0\%	65.0\%	65.0\%	65.0\%	5.0\%									
iousness for Optional User Defined Storm CUHP:														

UD / EFFECTVE IM PERVIOUSNESS CREDTIS

Total Site Imperviousness:	62.7

 Tota Site Effective Imperviousness for 5 -Year Event: 62.7% Total Site Effective Imperiousness for 100.Year Event: 62.7%

Notes:
Fslood con-Ampt average infiltration rate values from Table 3-3
"Flood control detention volume creditis based on empirical equations from Sorage Chapter of USDCM.
$* * *$ Method assumes that 1 -hour rainfall depth is equivalent to 1 -hour intensity for calculation purposed

Site-Level Low Impact Development (LID) Design Effective Impervious Calculator IID Credit by Impervious Reduction Factor (IRF) Method

$$
\begin{aligned}
\text { Designer: } & \text { TJE } \\
\text { Company: } & \text { Galloway \& Co. } \\
\text { Date: } & \text { December 10, 2021 } \\
\text { Project: } & \text { Grandview Reserve } \\
\text { Location: } & \text { Sub-basin A-1 }
\end{aligned}
$$

STIE INFORMATON (USER-NPPUT

CALCULATED RESULTS (OUTPUT)

UD/ EFFECTVE IM PERVIOUSNESS CREDTTS

Tota Stite Imperviousness:	2.0%

Total Site Effective Imperiousness for 5 -Year Event: $\quad 2.0 \%$			

Notes:
Flood con-Ampt average infiltration rate values from Table 3-3
Flood control detention volume creditis based on empirical equations from Storage Chapter of USDCM.
$* * *$ Method assumes that 1 -hour rainfall depth is equivalent to 1 -hour intensity for calculation purposed

Site-Level Low Impact Development (LID) Design Effective Impervious Calculator UD Credit by Impervious Reduction Factor (IRF) Method

	User Input		inches
	Calculated cells		
-"Design Storm: 1-Hour Rain Depth	Wocvevent	0.60	
"-M Minor Storm: 1-Hour Rain Depth	5.-Yar Event	1.50	inches
"-M Majo Storm: 1-Hour Rain Depth	100-Year Event	2.52	inches
Optional User Defined Storm	CUHP		
(CUHP) NOAA 1 Hour Rainfall Depth and Frequency $\begin{aligned} & \text { for User Defined Storm }\end{aligned}$	100-Year Event		
Max Intenstity for Optional User Defined Storm	0		

Designer:	TJE
Company:	Galloway \& Co.
Date:	December 10, 2021
Project:	Grandview Reserve
Location:	Rex Rd Pond

ennormaton (user-INput)

Pond calculations not checked in detail this review

DETENTION BASIN OUTLET STRUCTURE DESIGN

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.11	2.21					
Orifice Area (sq. inches)	0.75	2.85	4.65					

Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
User Input: Vertical Orifice (Circular or Rectanqular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft})$ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) \quadVertical Orifice Area $=$ inches				Calculated Parameters for Vertical Orifice	
	Zone 2 Circular	Not Selected					Zone 2 Circular	Not Selected
Invert of Vertical Orifice $=$	4.00	N/A					0.20	N/A
Depth at top of Zone using Vertical Orifice $=$	5.41	N/A					0.25	N/A
Vertical Orifice Diameter $=$	6.00	N/A						

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

put: Overflow Weir (Dropbox with Fla	oped Grate a	Ppe	ngular/Trapezoidal Weir (and No O	Pipe)	Iculated Par	s for Overflow	
	Zone 3 Weir	Not Selected			Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	6.25	N/A	ft (relative to basin bottom at Stage $=0$	Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$	6.25	N/A	feet
Overflow Weir Front Edge Length =	6.00	N/A	feet	Overflow Weir Slope Length =	4.00	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	$\mathrm{H}: \mathrm{V}$	Open Area / 100-yr Orifice Area $=$	9.66	N/A	
Horiz. Length of Weir Sides =	4.00	N/A	feet Ove	low Grate Open Area w/o Debris =	16.70	N/A	ft^{2}
Overflow Grate Type =	Type C Grate	N/A		flow Grate Open Area w/ Debris =	8.35	N/A	ft^{2}
Debris Clogging \% =	50\%	N/A	\%				

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectanqular Orifice)

m at Stage $=0 \mathrm{ft}$)	Outlet Orifice Area $=$	Zone 3 Restrictor	Not Selected	ft^{2}
		1.73	N/A	
		0.73	N/A	feet
Half-Central Ang	estrictor Plate on Pipe $=$	2.67	N/A	radians

Spillway Invert Stage=	6.10	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Spillway Crest Length =	60.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface $=$	1.00	feet

	Calculated Parameters for Spillw	
Spillway Design Flow Depth=	0.50	feet
Stage at Top of Freeboard =	7.60	feet
Basin Area at Top of Freeboard =	1.18	acres
Basin Volume at Top of Freeboard =	3.55	acre-ft

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program

	SOU	CUHP	UH							
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.23	0.02	1.37
	0:15:00	0.00	0.00	2.01	3.27	4.07	2.74	3.48	3.36	6.41
	0:20:00	0.00	0.00	7.57	10.05	11.90	7.57	8.89	9.46	15.13
	0:25:00	0.00	0.00	16.11	21.82	26.59	16.04	18.54	20.10	33.41
	0:30:00	0.00	0.00	20.65	27.60	32.94	34.92	42.82	49.13	86.29
	0:35:00	0.00	0.00	20.49	26.93	31.79	44.07	53.98	65.80	113.37
	0:40:00	0.00	0.00	19.03	24.58	28.87	44.48	54.43	66.95	114.71
	0:45:00	0.00	0.00	17.07	22.18	26.09	40.86	49.81	62.60	107.72
	0:50:00	0.00	0.00	15.39	20.26	23.66	37.28	45.18	56.71	98.24
	0:55:00	0.00	0.00	13.95	18.38	21.48	33.32	40.19	50.91	88.59
	1:00:00	0.00	0.00	12.63	16.57	19.46	29.70	35.65	45.95	80.21
	1:05:00	0.00	0.00	11.49	15.00	17.70	26.48	31.65	41.54	72.80
	1:10:00	0.00	0.00	10.33	13.86	16.48	23.20	27.55	35.73	62.23
	1:15:00	0.00	0.00	9.41	12.89	15.68	20.66	24.43	30.91	53.56
	1:20:00	0.00	0.00	8.64	11.90	14.63	18.45	21.74	26.72	45.97
	1:25:00	0.00	0.00	7.95	10.94	13.26	16.52	19.38	23.11	39.36
	1:30:00	0.00	0.00	7.29	10.03	11.89	14.54	17.00	19.95	33.61
	1:35:00	0.00	0.00	6.65	9.16	10.61	12.66	14.73	17.04	28.36
	1:40:00	0.00	0.00	6.01	8.01	9.42	10.92	12.63	14.34	23.51
	1:45:00	0.00	0.00	5.45	6.95	8.40	9.33	10.70	11.87	19.10
	1:50:00	0.00	0.00	5.05	6.13	7.67	7.97	9.04	9.75	15.35
	1:55:00	0.00	0.00	4.51	5.65	7.18	6.98	7.88	8.25	12.85
	2:00:00	0.00	0.00	4.04	5.26	6.64	6.42	7.24	7.39	11.37
	2:05:00	0.00	0.00	3.34	4.37	5.52	5.28	5.94	5.97	9.09
	2:10:00	0.00	0.00	2.68	3.50	4.43	4.18	4.69	4.65	6.99
	2:15:00	0.00	0.00	2.14	2.78	3.53	3.29	3.69	3.59	5.34
	2:20:00	0.00	0.00	1.69	2.21	2.80	2.59	2.90	2.77	4.06
	2:25:00	0.00	0.00	1.34	1.75	2.20	2.03	2.28	2.13	3.09
	2:30:00	0.00	0.00	1.05	1.37	1.71	1.58	1.76	1.64	2.36
	2:35:00	0.00	0.00	0.82	1.05	1.31	1.21	1.35	1.26	1.81
	2:40:00	0.00	0.00	0.63	0.80	1.00	0.92	1.03	0.97	1.39
	2:45:00	0.00	0.00	0.49	0.61	0.77	0.71	0.79	0.75	1.08
	2:50:00	0.00	0.00	0.36	0.46	0.59	0.54	0.61	0.58	0.82
	2:55:00	0.00	0.00	0.26	0.33	0.43	0.40	0.44	0.42	0.60
	3:00:00	0.00	0.00	0.17	0.23	0.29	0.28	0.31	0.29	0.41
	3:05:00	0.00	0.00	0.11	0.15	0.18	0.18	0.20	0.19	0.26
	3:10:00	0.00	0.00	0.05	0.08	0.10	0.10	0.11	0.10	0.14
	3:15:00	0.00	0.00	0.02	0.04	0.04	0.05	0.05	0.05	0.06
	3:20:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

| | Row 1 (required) | Row 2 (optional) | Row 3 (optional) | Row 4 (optional) | Row 5 (optional) | Row 6 (optional) | Row 7 (optional) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Row 8 (optional) 1

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

put: Overflow Weir (Dr	Soped Grate a	S	ngular/Trapezoidal Weir (and No O	Pipe)	Iculated Paran	s for Overflow	
	Zone 3 Weir	Not Selected			Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, $\mathrm{Ho}=$	6.20	N/A	ft (relative to basin bottom at Stage $=0$	Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$	6.20	N/A	feet
Overflow Weir Front Edge Length =	5.00	N/A	feet	Overflow Weir Slope Length =	4.00	N/A	eet
Overflow Weir Grate Slope =	0.00	N/A	$\mathrm{H}: \mathrm{V}$	Open Area / 100-yr Orifice Area $=$	14.52	N/A	
Horiz. Length of Weir Sides =	4.00	N/A	feet Ove	flow Grate Open Area w/o Debris =	13.92	N/A	ft^{2}
Overflow Grate Type =	Type C Grate	N/A		rflow Grate Open Area w/ Debris =	6.96	N/A	t^{2}
Debris Clogging \% =	50\%	N/A	\%				

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectanqular Orifice)

	Calculated Parameters for Spillway	
Spillway Design Flow Depth=	0.50	feet
Stage at Top of Freeboard =	8.70	feet
Basin Area at Top of Freeboard $=$	0.75	acres
Basin Volume at Top of Freeboard =	3.56	acre-ft

Routed Hydrograph Results
The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).

Routed Hydrograph Results	can	the default CU	hydrographs an	unoff volumes	ntering new vas	s in the Inflow Hy	ographs table (Ca	mns W through	
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.68
CUHP Runoff Volume (acre-ft) =	0.602	2.284	1.687	2.214	2.637	3.194	3.741	4.408	7.189
Inflow Hydrograph Volume (acre-ft) $=$	N/A	N/A	1.687	2.214	2.637	3.194	3.741	4.408	7.189
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.2	0.4	0.5	4.9	9.9	16.1	41.9
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.01	0.02	0.17	0.34	0.56	1.45
Peak Inflow Q (cfs) =	N/A	N/A	26.5	34.6	40.7	52.2	62.2	75.1	122.9
Peak Outflow Q ((ffs) $=$	0.2	0.9	0.7	0.8	0.9	4.7	10.4	14.0	32.6
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	2.1	1.7	0.9	1.1	0.9	0.8
Structure Controlling Flow $=$	Plate	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	N/A
Max Velocity through Grate 1 (fps) $=$	N/A	N/A	N/A	N/A	N/A	0.3	0.7	0.9	0.9
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	40	72	66	72	77	78	77	76	70
Time to Drain 99% of Inflow Volume (hours) $=$	42	78	70	78	83	86	85	84	81
Maximum Ponding Depth (ft) =	2.74	5.59	4.48	5.29	5.90	6.45	6.67	7.17	7.40
Area at Maximum Ponding Depth (acres) $=$	0.52	0.66	0.60	0.64	0.67	0.70	0.71	0.74	0.75
Maximum Volume Stored (acre-ft) $=$	0.607	2.287	1.586	2.085	2.494	2.872	3.028	3.383	3.561

DETENTION BASIN OUTLET STRUCTURE DESIGN

S-A-V-D Chart Axis Override	Left Y-Axis	Right Y-Axis	
$\begin{array}{r}\text { minimum bound } \\ \text { maximum bound }\end{array}$			

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

TME	WCV [cs]		[
0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.36	0.04	2.15
0:15:00	0.00	0.00	3.20	5.20	6.45	4.34	5.41	5.29	9.61
0:20:00	0.00	0.00	11.37	14.90	17.52	11.06	12.87	13.80	21.57
0:25:00	0.00	0.00	22.96	30.34	36.58	22.70	25.89	27.86	45.00
0:30:00	0.00	0.00	26.46	34.63	40.68	46.32	55.47	62.87	104.88
0:35:00	0.00	0.00	23.97	30.84	35.90	52.16	62.23	75.09	122.87
0:40:00	0.00	0.00	20.99	26.46	30.70	48.52	57.80	69.88	114.06
0:45:00	0.00	0.00	17.68	22.64	26.44	41.77	49.58	61.59	101.06
0:50:00	0.00	0.00	14.91	19.54	22.49	36.62	43.31	53.46	88.26
0:55:00	0.00	0.00	12.88	16.83	19.50	30.64	36.01	45.24	74.68
1:00:00	0.00	0.00	11.54	14.97	17.57	25.93	30.29	38.95	64.50
1:05:00	0.00	0.00	10.44	13.49	15.97	22.72	26.43	34.80	57.90
1:10:00	0.00	0.00	8.87	12.07	14.39	19.40	22.47	28.76	47.43
1:15:00	0.00	0.00	7.41	10.40	12.91	16.43	18.93	23.35	38.09
1:20:00	0.00	0.00	6.24	8.81	11.15	13.34	15.28	17.96	28.92
1:25:00	0.00	0.00	5.50	7.78	9.53	10.81	12.27	13.49	21.38
1:30:00	0.00	0.00	5.11	7.25	8.54	8.83	9.98	10.52	16.49
1:35:00	0.00	0.00	4.90	6.93	7.90	7.61	8.58	8.81	13.62
1:40:00	0.00	0.00	4.78	6.25	7.44	6.85	7.71	7.74	11.80
1:45:00	0.00	0.00	4.70	5.70	7.11	6.34	7.13	7.02	10.54
1:50:00	0.00	0.00	4.63	5.30	6.88	6.00	6.74	6.52	9.68
1:55:00	0.00	0.00	4.05	5.00	6.55	5.76	6.47	6.17	9.07
2:00:00	0.00	0.00	3.56	4.64	5.95	5.59	6.29	5.94	8.68
2:05:00	0.00	0.00	2.67	3.48	4.45	4.22	4.74	4.46	6.51
2:10:00	0.00	0.00	1.94	2.52	3.20	3.03	3.41	3.21	4.67
2:15:00	0.00	0.00	1.40	1.82	2.30	2.19	2.46	2.33	3.39
2:20:00	0.00	0.00	1.00	1.29	1.65	1.57	1.76	1.68	2.43
2:25:00	0.00	0.00	0.70	0.89	1.15	1.10	1.23	1.17	1.70
2:30:00	0.00	0.00	0.47	0.60	0.80	0.76	0.85	0.81	1.17
2:35:00	0.00	0.00	0.31	0.41	0.54	0.52	0.58	0.56	0.80
2:40:00	0.00	0.00	0.18	0.26	0.33	0.33	0.37	0.35	0.50
2:45:00	0.00	0.00	0.09	0.14	0.17	0.18	0.20	0.19	0.27
2:50:00	0.00	0.00	0.03	0.06	0.07	0.08	0.08	0.08	0.11
2:55:00	0.00	0.00	0.01	0.01	0.01	0.02	0.02	0.01	0.02
3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.37	0.75					
Orifice Area (sq. inches)	7.50	8.00	8.16					

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

put: Overflow Weir (Dr	Soped Grate a	S	ngular/Trapezoidal Weir (and No O	Pipe)	Iculated Paran	s for Overflow	
	Zone 3 Weir	Not Selected			Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, $\mathrm{Ho}=$	4.50	N/A	ft (relative to basin bottom at Stage $=0$	Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$	4.50	N/A	feet
Overflow Weir Front Edge Length =	4.00	N/A	feet	Overflow Weir Slope Length =	4.00	N/A	eet
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate	Open Area / 100-yr Orifice Area $=$	6.15	N/A	
Horiz. Length of Weir Sides =	4.00	N/A	feet Ove	flow Grate Open Area w/o Debris =	11.14	N/A	ft^{2}
Overflow Grate Type =	Type C Grate	N/A		rflow Grate Open Area w/ Debris =	5.57	N/A	ft^{2}
Debris Clogging \% =	50\%	N/A	\%				

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectanqular Orifice)

	Calculated Parameters for Spillway
Spillway Design Flow Depth	$=0.94$
Stage at Top of Freeboard	$=$
	feet
Basin Area at Top of Freeboard	$=1.22$
feet	acres
Basin Volume at Top of Freeboard	$=4.85$
	acre-ft

Routed Hydrograph Results
The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).

Routed Hydrograph Results	can	the default CU	gra	unoff volumes	entering new va	s in the Inflow Hy	ographs table (Ca	W throug	
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.68
CUHP Runoff Volume (acre-ft) =	0.844	3.120	2.326	3.065	3.657	4.467	5.266	6.250	10.360
Inflow Hydrograph Volume (acre-ft) $=$	N/A	N/A	2.326	3.065	3.657	4.467	5.266	6.250	10.360
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.3	0.6	0.8	7.5	15.0	24.6	64.1
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.01	0.02	0.18	0.35	0.57	1.49
Peak Inflow Q (cfs) =	N/A	N/A	36.0	47.5	56.1	73.0	87.9	106.7	177.7
Peak Outflow Q ((ffs) $=$	0.6	1.4	1.2	1.3	1.5	1.6	7.4	10.8	10.8
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	2.3	1.8	0.2	0.5	0.4	0.2
Structure Controlling Flow $=$	Plate	Vertical Orifice 1	Plate	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Overflow Weir 1	N/A	N/A
Max Velocity through Grate 1 (fps) $=$	N/A	N/A	N/A	N/A	N/A	N/A	0.5	0.8	0.8
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97% of Inflow Volume (hours) $=$	40	58	54	58	62	65	65	63	59
Time to Drain 99% of Inflow Volume (hours) $=$	43	65	60	66	70	75	75	75	75
Maximum Ponding Depth (ft) =	1.10	3.52	2.59	3.27	3.78	4.47	4.87	5.00	5.00
Area at Maximum Ponding Depth (acres) $=$	0.50	1.10	1.02	1.08	1.12	1.18	1.21	1.22	1.22
Maximum Volume Stored (acre-ft) =	0.846	3.130	2.143	2.847	3.418	4.210	4.675	4.845	4.845

DETENTION BASIN OUTLET STRUCTURE DESIGN

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program

тı,	QCV [cfs]	EURV [cis]	Year [cis]	5 Year [cfs]	10 Year [cfs]	5 Year [cfs]	Y	100 Year [css]	500 Year [crs]
0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.47	0.05	2.81
0:15:00	0.00	0.00	4.17	6.77	8.40	5.66	7.09	6.91	12.73
0:20:00	0.00	0.00	15.07	19.83	23.36	14.77	17.23	18.45	28.93
0:25:00	0.00	0.00	30.78	40.69	49.25	30.44	34.74	37.34	60.91
0:30:00	0.00	0.00	36.01	47.52	56.15	62.91	75.99	86.56	147.13
0:35:00	0.00	0.00	32.92	42.73	49.93	72.97	87.91	106.71	177.72
0:40:00	0.00	0.00	28.90	36.71	42.72	68.29	82.11	100.20	166.15
0:45:00	0.00	0.00	24.50	31.53	36.89	58.84	70.48	88.19	147.15
0:50:00	0.00	0.00	20.71	27.27	31.49	51.58	61.52	76.61	128.82
0:55:00	0.00	0.00	17.86	23.44	27.20	43.36	51.38	64.96	109.27
1:00:00	0.00	0.00	16.01	20.86	24.51	36.54	42.97	55.58	93.83
1:05:00	0.00	0.00	14.56	18.88	22.37	32.00	37.44	49.53	84.16
1:10:00	0.00	0.00	12.49	17.00	20.27	27.49	32.00	41.28	69.47
1:15:00	0.00	0.00	10.51	14.74	18.24	23.39	27.09	33.65	55.92
1:20:00	0.00	0.00	8.86	12.50	15.79	19.13	22.01	26.13	42.83
1:25:00	0.00	0.00	7.72	10.90	13.37	15.53	17.71	19.74	31.81
1:30:00	0.00	0.00	7.11	10.08	11.90	12.52	14.18	15.14	24.07
1:35:00	0.00	0.00	6.80	9.63	10.99	10.70	12.07	12.49	19.57
1:40:00	0.00	0.00	6.63	8.71	10.35	9.59	10.79	10.92	16.82
1:45:00	0.00	0.00	6.51	7.93	9.87	8.85	9.96	9.85	14.92
1:50:00	0.00	0.00	6.42	7.37	9.55	8.35	9.39	9.13	13.63
1:55:00	0.00	0.00	5.66	6.96	9.10	8.01	9.00	8.61	12.71
2:00:00	0.00	0.00	4.96	6.46	8.30	7.77	8.73	8.27	12.11
2:05:00	0.00	0.00	3.77	4.92	6.29	5.95	6.69	6.30	9.19
2:10:00	0.00	0.00	2.75	3.57	4.54	4.29	4.82	4.54	6.61
2:15:00	0.00	0.00	2.00	2.59	3.28	3.11	3.49	3.30	4.80
2:20:00	0.00	0.00	1.44	1.86	2.36	2.25	2.52	2.40	3.48
2:25:00	0.00	0.00	1.02	1.29	1.67	1.58	1.77	1.69	2.44
2:30:00	0.00	0.00	0.69	0.88	1.16	1.10	1.23	1.18	1.70
2:35:00	0.00	0.00	0.46	0.60	0.79	0.77	0.86	0.82	1.18
2:40:00	0.00	0.00	0.28	0.39	0.50	0.50	0.55	0.53	0.75
2:45:00	0.00	0.00	0.14	0.22	0.27	0.28	0.31	0.30	0.42
2:50:00	0.00	0.00	0.06	0.10	0.12	0.13	0.14	0.13	0.18
2:55:00	0.00	0.00	0.02	0.03	0.03	0.04	0.04	0.03	0.04
3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

| | Row 1 (required) | Row 2 (optional) | Row 3 (optional) | Row 4 (optional) | Row 5 (optional) | Row 6 (optional) | Row 7 (optional) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Row 8 (optional) 1

Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
User Input: Vertical Orifice (Circular or Rectanqular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft})$ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) \quadVertical Orifice Area $=$ inches				Calculated Parameters for Vertical Orifice	
	Zone 2 Circular	Not Selected					Zone 2 Circular	Not Selected
Invert of Vertical Orifice $=$	3.50	N/A					0.01	N/A
Depth at top of Zone using Vertical Orifice $=$	3.94	N/A					0.05	N/A
Vertical Orifice Diameter $=$	1.25	N/A						

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

put: Overflow Weir (Dropbox with Flat	eed Grat	t Pipe OR	angular/Trapezoidal Weir (and No Outlet Pipe)	Iculated Par	for Overflow	
	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	4.75	N/A	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$	4.75	N/A	feet
Overflow Weir Front Edge Length =	3.00	N/A	feet Overflow Weir Slope Length =	3.00	N/A	feet
Overflow Weir Grate Slope $=$	0.00	N/A	$\mathrm{H}: \mathrm{V}$, Grate Open Area / 100-yr Orifice Area $=$	10.89	N/A	
Horiz. Length of Weir Sides $=$	3.00	N/A	feet Overflow Grate Open Area w/o Debris =	6.26	N/A	ft^{2}
Overflow Grate Type =	Type C Grate	N/A	Overflow Grate Open Area w/ Debris $=$	3.13	N/A	ft^{2}
Debris Clogging \% =	50\%	N/A	\%			

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectanqular Orifice)

m at Stage $=0 \mathrm{ft}$)	$\begin{array}{r} \text { Outlet Orifice Area }= \\ \text { Outlet Orifice Centroid }= \end{array}$	Zone 3 Restrictor	Not Selected	ft^{2}
		0.58	N/A	
		0.32	N/A	feet radians
Half-Central Ang	Restrictor Plate on Pipe $=$	1.29	N/A	

Spillway Invert Stage=	5.25	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Spillway Crest Length =	29.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface $=$	1.00	feet

	Calculated Parameters for Spillw	
Spillway Design Flow Depth=	0.50	feet
Stage at Top of Freeboard =	6.75	feet
Basin Area at Top of Freeboard =	0.46	acres
Basin Volume at Top of Freeboard =	1.82	acre-ft

Routed Hydrograph Results
The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).

Routed Hydrograph Results	er can	the default CU	gra	unoff volumes	entering new va	s in the Inflow Hy	ographs table (Ca	W throu	
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.68
CUHP Runoff Volume (acre-ft) =	0.269	0.963	0.710	0.938	1.120	1.383	1.641	1.963	3.306
Inflow Hydrograph Volume (acre-ft) $=$	N/A	N/A	0.710	0.938	1.120	1.383	1.641	1.963	3.306
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.1	0.2	0.3	2.5	5.0	8.2	21.1
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.01	0.02	0.17	0.35	0.57	1.46
Peak Inflow Q (cfs) =	N/A	N/A	10.6	14.0	16.6	22.0	26.7	32.7	55.3
Peak Outflow Q ((ffs) $=$	0.1	0.3	0.2	0.3	0.3	0.8	3.4	8.7	35.4
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	1.4	1.1	0.3	0.7	1.1	1.7
Structure Controlling Flow $=$	Plate	Vertical Orifice 1	Plate	Vertical Orifice 1	Vertical Orifice 1	Overflow Weir 1	Overflow Weir 1	Spillway	Spillway
Max Velocity through Grate 1 (fps) $=$	N/A	N/A	N/A	N/A	N/A	0.1	0.5	1.2	1.2
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	40	73	63	72	78	85	84	82	75
Time to Drain 99% of Inflow Volume (hours) $=$	43	79	69	79	85	92	92	91	87
Maximum Ponding Depth (ft) =	1.77	3.94	3.09	3.74	4.22	4.84	5.04	5.30	5.70
Area at Maximum Ponding Depth (acres) $=$	0.28	0.37	0.33	0.36	0.38	0.41	0.42	0.43	0.45
Maximum Volume Stored (acre-ft) =	0.271	0.966	0.670	0.890	1.067	1.310	1.396	1.506	1.681

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.14	0.01	0.86
	0:15:00	0.00	0.00	1.28	2.07	2.58	1.73	2.16	2.12	3.84
	0:20:00	0.00	0.00	4.51	5.91	6.95	4.39	5.12	5.49	8.60
	0:25:00	0.00	0.00	9.11	12.23	14.88	9.04	10.34	11.21	18.51
	0:30:00	0.00	0.00	10.59	14.04	16.61	19.23	23.51	26.99	46.79
	0:35:00	0.00	0.00	9.70	12.64	14.82	21.97	26.68	32.72	55.28
	0:40:00	0.00	0.00	8.63	11.01	12.85	20.68	25.09	30.79	51.90
	0:45:00	0.00	0.00	7.40	9.57	11.24	17.94	21.67	27.35	46.43
	0:50:00	0.00	0.00	6.34	8.38	9.69	15.93	19.15	23.96	41.05
	0:55:00	0.00	0.00	5.50	7.22	8.38	13.49	16.11	20.51	35.15
	1:00:00	0.00	0.00	4.94	6.45	7.58	11.41	13.49	17.56	30.21
	1:05:00	0.00	0.00	4.53	5.89	6.99	10.04	11.83	15.71	27.25
	1:10:00	0.00	0.00	3.95	5.39	6.42	8.72	10.23	13.22	22.69
	1:15:00	0.00	0.00	3.40	4.75	5.85	7.55	8.81	11.01	18.66
	1:20:00	0.00	0.00	2.91	4.06	5.08	6.29	7.29	8.75	14.64
	1:25:00	0.00	0.00	2.50	3.51	4.26	5.18	5.96	6.80	11.18
	1:30:00	0.00	0.00	2.24	3.15	3.70	4.12	4.69	5.15	8.28
	1:35:00	0.00	0.00	2.10	2.97	3.39	3.42	3.87	4.10	6.50
	1:40:00	0.00	0.00	2.03	2.67	3.19	3.01	3.40	3.51	5.49
	1:45:00	0.00	0.00	1.99	2.44	3.03	2.76	3.10	3.12	4.80
	1:50:00	0.00	0.00	1.96	2.27	2.93	2.59	2.91	2.87	4.33
	1:55:00	0.00	0.00	1.73	2.15	2.79	2.47	2.77	2.69	4.00
	2:00:00	0.00	0.00	1.52	1.99	2.55	2.39	2.68	2.56	3.76
	2:05:00	0.00	0.00	1.16	1.52	1.94	1.82	2.05	1.93	2.81
	2:10:00	0.00	0.00	0.87	1.13	1.43	1.35	1.51	1.42	2.06
	2:15:00	0.00	0.00	0.65	0.84	1.06	0.99	1.11	1.05	1.52
	2:20:00	0.00	0.00	0.48	0.62	0.78	0.73	0.82	0.78	1.12
	2:25:00	0.00	0.00	0.35	0.44	0.56	0.53	0.59	0.56	0.81
	2:30:00	0.00	0.00	0.25	0.31	0.40	0.38	0.42	0.40	0.57
	2:35:00	0.00	0.00	0.17	0.22	0.29	0.27	0.30	0.29	0.41
	2:40:00	0.00	0.00	0.11	0.15	0.19	0.19	0.21	0.20	0.28
	2:45:00	0.00	0.00	0.07	0.09	0.12	0.12	0.13	0.12	0.17
	2:50:00	0.00	0.00	0.03	0.05	0.06	0.06	0.07	0.07	0.09
	2:55:00	0.00	0.00	0.01	0.02	0.02	0.03	0.03	0.03	0.03
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	. 0	. 0	. 0	00	. 00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

| | Row 1 (required) | Row 2 (optional) | Row 3 (optional) | Row 4 (optional) | Row 5 (optional) | Row 6 (optional) | Row 7 (optional) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Row 8 (optional) 1

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectanqular Orifice)

Spillway Invert Stage=	6.73	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Spillway Crest Length =	30.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface $=$	1.00	feet

	Calculated Parameters for Spillway	
Spillway Design Flow Depth=	0.50	feet
Stage at Top of Freeboard =	8.23	feet
Basin Area at Top of Freeboard =	0.44	acre
Basin Volume at Top of Freeboard =	2.02	acre-ft

MHFD-Detention, Version 4.04 (February 2021)

S-A-V-D Chart Axis Override			
minimum bound	X-axis	Left Y-Axis	Right Y-Axis
maximum bound			

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.11	0.01	0.64
	0:15:00	0.00	0.00	0.93	1.53	1.90	1.28	1.62	1.57	2.95
	0:20:00	0.00	0.00	3.44	4.56	5.40	3.43	4.03	4.30	6.87
	0:25:00	0.00	0.00	7.35	10.21	12.52	7.26	8.66	9.41	16.51
	0:30:00	0.00	0.00	9.51	12.78	15.29	17.40	21.55	24.91	44.89
	0:35:00	0.00	0.00	9.46	12.49	14.85	21.97	27.00	33.16	57.95
	0:40:00	0.00	0.00	8.88	11.51	13.62	22.50	27.62	34.05	59.11
	0:45:00	0.00	0.00	8.04	10.51	12.45	20.82	25.44	32.34	56.26
	0:50:00	0.00	0.00	7.32	9.67	11.36	19.21	23.36	29.79	52.16
	0:55:00	0.00	0.00	6.74	8.89	10.46	17.20	20.87	26.92	47.52
	1:00:00	0.00	0.00	6.21	8.15	9.62	15.50	18.77	24.52	43.71
	1:05:00	0.00	0.00	5.70	7.45	8.82	14.00	16.92	22.49	40.38
	1:10:00	0.00	0.00	5.10	6.83	8.12	12.39	14.89	19.57	34.96
	1:15:00	0.00	0.00	4.62	6.30	7.67	10.91	13.02	16.81	29.84
	1:20:00	0.00	0.00	4.28	5.86	7.20	9.69	11.54	14.51	25.68
	1:25:00	0.00	0.00	3.99	5.47	6.63	8.74	10.37	12.71	22.33
	1:30:00	0.00	0.00	3.73	5.11	6.07	7.83	9.26	11.18	19.46
	1:35:00	0.00	0.00	3.48	4.76	5.55	6.99	8.23	9.83	16.91
	1:40:00	0.00	0.00	3.23	4.28	5.06	6.21	7.28	8.57	14.55
	1:45:00	0.00	0.00	2.97	3.80	4.58	5.46	6.36	7.37	12.32
	1:50:00	0.00	0.00	2.73	3.35	4.13	4.75	5.50	6.24	10.25
	1:55:00	0.00	0.00	2.36	2.97	3.70	4.11	4.70	5.22	8.39
	2:00:00	0.00	0.00	2.05	2.65	3.31	3.54	4.01	4.32	6.77
	2:05:00	0.00	0.00	1.68	2.20	2.75	2.79	3.15	3.33	5.23
	2:10:00	0.00	0.00	1.37	1.79	2.25	2.20	2.48	2.58	4.04
	2:15:00	0.00	0.00	1.12	1.46	1.84	1.75	1.98	2.01	3.11
	2:20:00	0.00	0.00	0.91	1.19	1.49	1.40	1.58	1.57	2.39
	2:25:00	0.00	0.00	0.74	0.96	1.21	1.12	1.26	1.22	1.83
	2:30:00	0.00	0.00	0.59	0.78	0.97	0.89	1.00	0.95	1.38
	2:35:00	0.00	0.00	0.47	0.62	0.77	0.70	0.78	0.73	1.04
	2:40:00	0.00	0.00	0.38	0.48	0.60	0.55	0.61	0.56	0.81
	2:45:00	0.00	0.00	0.30	0.38	0.47	0.43	0.47	0.44	0.63
	2:50:00	0.00	0.00	0.24	0.30	0.37	0.34	0.37	0.35	0.50
	2:55:00	0.00	0.00	0.18	0.23	0.29	0.26	0.29	0.28	0.39
	3:00:00	0.00	0.00	0.14	0.17	0.22	0.20	0.22	0.21	0.29
	3:05:00	0.00	0.00	0.10	0.12	0.16	0.15	0.16	0.15	0.21
	3:10:00	0.00	0.00	0.06	0.08	0.11	0.10	0.11	0.10	0.14
	3:15:00	0.00	0.00	0.04	0.05	0.06	0.06	0.07	0.06	0.08
	3:20:00	0.00	0.00	0.02	0.03	0.03	0.03	0.04	0.03	0.04
	3:25:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	. 0	. 0	00	00	. 00	0.00

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (optional)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	N/A							
Orifice Area (sq. inches)	N/A							

Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
	N/A							
	N/A							

User Input: Vertical Orifice (Circular or Rectanqular

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

Routed Hydrograph Results

The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).

	Wo	Cun dit	hydrographs	崖	etering new V	In the Infow	50 Y	5 W throug	
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
Design Storm Return Period $=$ One-Hour Rainfall Depth (in) $=$ CUHP Runoff Volume (acre-ft) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.68
	0.011	0.011	0.006	0.011	0.016	0.141	0.283	0.478	1.400
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.006	0.011	0.016	0.141	0.283	0.478	1.400
CUHP Predevelopment Peak Q (cfs) $=$ OPTIONAL Override Predevelopment Peak Q (cfs) $=$	N/A	N/A	0.1	0.2	0.2	2.2	4.4	7.2	18.3
	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.02	0.02	0.20	0.39	0.64	1.63
	N/A	N/A	0.1	0.2	0.2	2.2	4.4	7.2	18.3
Peak Outflow Q (cfs) $=$ Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	N/A	N/A	N/A	0.1	0.0	0.0	0.0	0.0	0.0
Structure Controlling Flow =	Filtration Media	N/A	N/A	N/A					
Max Velocity through Grate 1 (fps) $=$ Max Velocity through Grate 2 (fps) $=$	N/A								
	N/A								
Time to Drain 97% of Inflow Volume (hours) $=$	12	12	7	13	17	118	>120	>120	>120
Time to Drain 99\% of Inflow Volume (hours) =	12	12	7	13	18	>120	>120	>120	>120
Maximum Ponding Depth $(\mathrm{ft})=$ Area at Maximum Ponding Depth (acres) $=$	0.56	0.56	0.28	0.49	0.66	3.32	4.00	4.00	4.00
	0.03	0.03	0.02	0.03	0.03	0.07	0.08	0.08	0.08
Maximum Volume Stored (acre-ft) $=$	0.011	0.011	0.004	0.009	0.014	0.138	0.188	0.188	0.188

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program

	SOURCE	CUHP	UH							
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	0:25:00	0.00	0.00	0.05	0.12	0.17	0.03	0.06	0.09	0.28
	0:30:00	0.00	0.00	0.09	0.18	0.24	0.97	2.51	3.80	11.55
	0:35:00	0.00	0.00	0.09	0.17	0.24	2.11	4.12	6.68	16.94
	0:40:00	0.00	0.00	0.08	0.15	0.21	2.20	4.39	7.19	18.27
	0:45:00	0.00	0.00	0.07	0.13	0.18	2.00	3.96	6.76	17.72
	0:50:00	0.00	0.00	0.06	0.11	0.16	1.76	3.49	5.98	16.60
	0:55:00	0.00	0.00	0.05	0.10	0.14	1.54	3.07	5.27	15.15
	1:00:00	0.00	0.00	0.05	0.09	0.12	1.35	2.68	4.61	13.80
	1:05:00	0.00	0.00	0.04	0.08	0.11	1.19	2.37	4.08	12.86
	1:10:00	0.00	0.00	0.04	0.07	0.10	1.06	2.10	3.63	11.50
	1:15:00	0.00	0.00	0.03	0.06	0.09	0.94	1.87	3.21	10.17
	1:20:00	0.00	0.00	0.03	0.05	0.08	0.82	1.63	2.81	8.87
	1:25:00	0.00	0.00	0.02	0.04	0.07	0.70	1.39	2.41	7.64
	1:30:00	0.00	0.00	0.02	0.04	0.06	0.59	1.16	2.01	6.43
	1:35:00	0.00	0.00	0.02	0.04	0.05	0.50	0.99	1.71	5.54
	1:40:00	0.00	0.00	0.02	0.03	0.05	0.44	0.88	1.51	4.90
	1:45:00	0.00	0.00	0.02	0.03	0.04	0.40	0.79	1.36	4.36
	1:50:00	0.00	0.00	0.01	0.03	0.04	0.36	0.71	1.22	3.87
	1:55:00	0.00	0.00	0.01	0.02	0.03	0.32	0.63	1.09	3.42
	2:00:00	0.00	0.00	0.01	0.02	0.03	0.28	0.55	0.95	2.99
	2:05:00	0.00	0.00	0.01	0.02	0.02	0.24	0.47	0.82	2.57
	2:10:00	0.00	0.00	0.01	0.01	0.02	0.20	0.40	0.68	2.18
	2:15:00	0.00	0.00	0.01	0.01	0.01	0.16	0.32	0.55	1.79
	2:20:00	0.00	0.00	0.00	0.01	0.01	0.12	0.24	0.42	1.40
	2:25:00	0.00	0.00	0.00	0.00	0.01	0.08	0.16	0.29	1.01
	2:30:00	0.00	0.00	0.00	0.00	0.00	0.04	0.08	0.15	0.62
	2:35:00	0.00	0.00	0.00	0.00	0.00	0.02	0.03	0.06	0.35
	2:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.21
	2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.13
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

| | Row 1 (optional) | Row 2 (optional) | Row 3 (optional) | Row 4 (optional) | Row 5 (optional) | Row 6 (optional) | Row 7 (optional) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Row 8 (optional) 1

Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
	N/A							
	N/A							

User Input: Vertical Orifice (Circular or Rectangular)

	Not Selected	Not Selected	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
	N/A	N/A	
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Vertical Orifice Diameter $=$	N/A	N/A	inches

	Calculated Parameters for Vertical Orifice		
	Not Selected	Not Selected	
Vertical Orifice Area $=$	N/A	N/A	ft^{2}
Vertical Orifice Centroid $=$	N/A	N/A	

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

	Zone 2 Weir	Zone 3 Weir	t (relat
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	4.80	0.00	
	3.00		feet
Overflow Weir Grate Slope =	0.00		$\mathrm{H}: \mathrm{V}$
Horiz. Length of Weir Sides $=$	3.00		eet
Overflow Grate Type =	Type C Grate		
Debris Clogging \% =	50\%		\%

Spillway Invert Stage=	5.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Spillway Crest Length =	2.10	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface $=$	1.00	feet

DETENTION BASIN OUTLET STRUCTURE DESIGN
MHFD-Detention, Version 4.04 (February 2021)

S-A-V-D Chart Axis Override	Left Y-Axis	Right Y-Axis	
$\begin{array}{c}\text { minimum bound } \\ \text { maximum bound }\end{array}$			

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.14
	0:15:00	0.00	0.00	0.22	0.35	0.43	0.29	0.36	0.35	0.64
	0:20:00	0.00	0.00	0.77	1.01	1.18	0.74	0.86	0.92	1.44
	0:25:00	0.00	0.00	1.56	1.99	2.33	1.54	1.75	1.85	2.78
	0:30:00	0.00	0.00	1.82	2.27	2.60	2.81	3.18	3.47	5.13
	0:35:00	0.00	0.00	1.71	2.12	2.41	3.09	3.49	3.99	5.88
	0:40:00	0.00	0.00	1.57	1.92	2.19	3.01	3.39	3.88	5.70
	0:45:00	0.00	0.00	1.39	1.72	1.98	2.75	3.10	3.62	5.32
	0:50:00	0.00	0.00	1.23	1.56	1.77	2.53	2.86	3.33	4.88
	0:55:00	0.00	0.00	1.09	1.38	1.58	2.25	2.54	3.00	4.40
	1:00:00	0.00	0.00	0.97	1.23	1.43	1.99	2.24	2.71	3.98
	1:05:00	0.00	0.00	0.90	1.14	1.33	1.78	2.01	2.47	3.62
	1:10:00	0.00	0.00	0.81	1.07	1.26	1.59	1.79	2.16	3.16
	1:15:00	0.00	0.00	0.72	0.98	1.19	1.44	1.62	1.90	2.78
	1:20:00	0.00	0.00	0.65	0.88	1.09	1.27	1.43	1.62	2.37
	1:25:00	0.00	0.00	0.58	0.79	0.95	1.11	1.25	1.37	2.01
	1:30:00	0.00	0.00	0.51	0.70	0.83	0.95	1.07	1.15	1.69
	1:35:00	0.00	0.00	0.45	0.63	0.72	0.80	0.90	0.96	1.40
	1:40:00	0.00	0.00	0.42	0.55	0.66	0.68	0.76	0.80	1.17
	1:45:00	0.00	0.00	0.40	0.50	0.61	0.60	0.67	0.68	1.00
	1:50:00	0.00	0.00	0.39	0.46	0.59	0.54	0.61	0.61	0.90
	1:55:00	0.00	0.00	0.35	0.43	0.56	0.51	0.57	0.57	0.83
	2:00:00	0.00	0.00	0.31	0.40	0.51	0.49	0.55	0.53	0.78
	2:05:00	0.00	0.00	0.24	0.32	0.41	0.38	0.43	0.42	0.61
	2:10:00	0.00	0.00	0.19	0.25	0.32	0.30	0.33	0.32	0.47
	2:15:00	0.00	0.00	0.15	0.19	0.25	0.23	0.26	0.24	0.36
	2:20:00	0.00	0.00	0.11	0.15	0.19	0.18	0.20	0.19	0.27
	2:25:00	0.00	0.00	0.09	0.11	0.14	0.13	0.15	0.14	0.21
	2:30:00	0.00	0.00	0.07	0.08	0.11	0.10	0.11	0.11	0.16
	2:35:00	0.00	0.00	0.05	0.06	0.08	0.07	0.08	0.08	0.12
	2:40:00	0.00	0.00	0.04	0.05	0.06	0.06	0.06	0.06	0.09
	2:45:00	0.00	0.00	0.03	0.03	0.04	0.04	0.05	0.05	0.07
	2:50:00	0.00	0.00	0.02	0.02	0.03	0.03	0.03	0.03	0.05
	2:55:00	0.00	0.00	0.01	0.01	0.02	0.02	0.02	0.02	0.03
	3:00:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

APPENDIX F

Drainage Maps

