

PRELIMINARY DRAINAGE REPORT

GRANDVIEW RESERVE FILING NO. 1

El Paso County, Colorado

PREPARED FOR: D.R. Horton 9555 S. Kingston Court Englewood, CO

PREPARED BY:

Galloway & Company, Inc. 1155 Kelly Johnson Blvd., Suite 305 Colorado Springs, CO 80920

DATE:

December 10, 2021

PCD Filing No.: PUDSP2110

ENGINEER'S STATEMENT

to the best of established plan of the o	of my knowledge and belief. Said drainage by the County for drainage reports and sa	under my direction and supervision and a report has been prepared according to th id report is in conformity with the applicab any liability caused by any negligent acts, o	e criteria le master
	yrock, PE #38164 behalf of Galloway & Company, Inc.	Date	
<u>DEVELOPE</u>	R'S CERTIFICATION		
I, The develo	oper, have read and will comply with all o	the requirements specified in this drainag	ge report
Ву:			
Address:	D.R. Horton 9555 S. Kingston Court Englewood, CO	Date	
EL PASO C	OUNTY CERTIFICATION		
	ordance with the requirements of the Drain ineering Criteria Manual and Land Develo	nage Criteria Manual, Volumes 1 and 2, El oment Code as amended.	l Paso
Jennifer Irvir	ne. P.E.	 Date	
	ineer/ECM Administrator	255	
Conditions:			

TABLE OF CONTENTS

l.	Purpos	e	4				
II.	Genera	al Description	4				
III.	Drain	age Criteria	4				
IV.	Existi	ng Drainage Conditions	5				
V.	Four St	tep Process	6				
	1.	Employ Runoff Reduction Practices	6				
	2.	Stabilize Channels	6				
	3.	Provide Water Quality Capture Volume (WQCV)	6				
	4.	Consider Need for Industrial and Commercial BMPs	6				
VI.	Propo	osed Drainage Conditions	6				
VII.	Storm	n Sewer System	14				
VIII.	Propo	osed Water Quality Detention Ponds	14				
IX.	Propo	osed Channel Improvements	16				
Χ.	Mainte	nance	16				
XI.	Wetla	ands Mitigation	16				
XII.	Flood	lplain Statement	16				
XIII.	Drain	age Fees & Maintenance	16				
XIV.	Conc	lusion	16				
ΧV							

Appendices:

- A. Exhibits and Figures
- B. MDDP & DBPS Sheet References
- C. Hydrologic Computations
- D. Hydraulic Computations
- E. Water Quality Computations
- F. Drainage Maps & Water Quality Plan

I. Purpose

The purpose of this Preliminary Drainage Report is to identify on and offsite drainage patterns, locate and identify tributary or downstream drainage features and facilities that impact the site, and to identify which types of drainage facilities will be needed and where they will be located. This report will remain in general compliance with the approved MDDP prepared by HR Green, dated November 2020.

II. General Description

The project is a single-family residential development located in the Falcon area of El Paso County, Colorado. The site is located in a portion of the South half of Section 21, the North half of Section 28, Township 12 South, Range 64 West of the 6th Principal Meridian, County of El Paso, State of Colorado. The subject property is bounded by Eastonville Road to the west, the proposed extension of Rex Road to the north, undeveloped land proposed as future development to the east, and undeveloped land within the Waterbury Development to the south. A Vicinity Map is included in **Appendix A**.

This preliminary drainage report is the basis for the drainage facility design in conformance with the previously approved MDDP for the site prepared by HR Green, *Grandview Reserve Master Development Drainage Plan,* HR Green, November 2020 (**MDDP**). The site consists of approximately 189.479 acres and includes 568 dwelling units.

The existing soil types within the proposed site as determined by the NRCS Web Soil Survey for El Paso County Area consist of Columbine gravelly sandy loam (hydrologic soil group A) and Stapleton sandy loam (hydrologic soil group B). See the soils map included in **Appendix A**.

III. Drainage Criteria

Hydrology calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014.

The drainage calculations were based on the criteria manual Figure 6-5 and IDF equations to determine the intensity and are listed in Table 1 below.

Table 1 - Precipitation Data

Return Period	One Hour Depth (in).	Intensity (in/hr)		
5-year	1.50	5.17		
100-year	2.52	8.68		

The rational method was used to calculate peak flows as the tributary areas are less than 100 acres. The rational method has been proven to be accurate for basins of this size and is based on the following formula:

Q = CIA

Where:

Q = Peak Discharge (cfs)

C = Runoff Coefficient

I = Runoff intensity (inches/hour)

A = Drainage area (acres)

The runoff coefficients are calculated based on land use, percent imperviousness, and design storm for each basin, as shown in the drainage criteria manual (Table 6-6). Composite percent impervious and C values were calculated using the residential, streets, roofs, and lawns coefficients found in Table 6-6 of the manual.

The 100-year event was used as the major storm event. The 5-year event was used as the minor event. The UD-Inlets v5.01 spreadsheet was utilized for the sizing of the proposed sump inlets.

The UD-Detention v4.04 spreadsheet was utilized for the design of the proposed on-site water quality ponds, Ponds A, B, C, D, E.

IV. Existing Drainage Conditions

The site is contained fully within one major drainage basin; the Gieck Ranch Drainage Basin and is tributary to Black Squirrel Creek. The site generally drains from north to south with an average slope of 2% outside of the channel. The rational method was used to analyze the individual basins within the site because their size permits it.

There are two (2) major drainageways that currently convey existing on & off-site flows through the site to the southeast. These are the Main Stem (MS) and Main Stem Tributary Number 2 (MST) as referenced in the **MDDP**. Both drainageways generally flow to the southeast towards Highway 24, before crossing via existing drainage structures. Currently, these channels receive flows from two off-site basins, one from the west (west of Basin B1 per the **MDDP**; 0.17 mi^2 , $Q_5 = \pm 67 \text{ cfs}$, $Q_{100} = \pm 413 \text{ cfs}$) and the second from the northwest (northwest of Basin C1 per the **MDDP**; 0.44 mi^2 , $Q_5 = \pm 59 \text{ cfs}$, $Q_{100} = \pm 280 \text{ cfs}$) and are routed under Eastonville Road via existing pipe culverts. There is an existing 24" CMP that conveys runoff under Eastonville Road at the MS, a location approximately 650 feet north of the proposed Rex Road extension that directs runoff via overtopping Eastonville Road at MST, and a 20" x 27" ECMP that directs runoff beneath Eastonville Road at the Falcon Regional Park.

While the **MDDP** shows a total of 22 basins that were analyzed as part of the overall Grandview Reserve development, for the purposes of this report, 7 of the Basins within the MDDP will be used for analysis. These Basins include A1, B1, B2, C1, B3, and the two off-site Basins situated to the northwest of Eastonville Road.

For a more in-depth analysis of existing tributary conditions as it pertains to this phase of development, an existing basin map has been prepared. The existing map can be found in **Appendix F** and basins are described below.

Basin EX-1 (105.72 AC, $Q_5 = 22.3$ cfs, $Q_{100} = 159.1$ cfs): Located on the southwest portion of the site, this basin consists of un-developed land. Runoff from this basin will sheet flow to the southeast before channelizing and eventually out falling into Main Stem channel (**DP 1**).

There should be at least 7 onsite and offsite existing basins - break these up as appropriate. See Existing Condition plan redlines.

Basin EX-2 (57.68 AC, $Q_5 = 13.1$ cfs, $Q_{100} = 93.4$ cfs): Located on the northeast portion of the site, this basin consists of un-developed land. Runoff from this basin will sheet flow to the southeast before channelizing and eventually out falling into Main Stem Tributary #2 channel (**DP 2**).

Basin EX-3 (23.35 AC, $Q_5 = 6.8$ cfs, $Q_{100} = 48.4$ cfs): Located on the southeast portion of the site, this basin consists of un-developed land. Runoff from this basin will sheet flow to the southeast before channelizing and eventually out falling into Main Stem Tributary #2 channel **(DP 3)**.

V. Four Step Process

2.

The Four Step Process is used to minimize the adverse impacts of urbanization and is a vital component of developing a balanced, sustainable project. Below identifies the approach to the four-step process:

1. Employ Runoff Reduction Practices

This step uses low impact development (LID) practices to reduce runoff at the source. Generally, rather than creating point discharges that are directly connected to impervious areas runoff is routed through pervious areas to promote infiltration. The Impervious Reduction Factor (IRF) method was used and calculations can be found in **Appendix E.**

Stabilize Channels MST?

This step implements stabilization to channels to accommodate developed flows while protecting infrastructure and controlling sediment loading from erosion in the drainageways. Erosion protection in the form of riprap pads at all outfall points to the channel to prevent scouring of the channel from point discharges. The existing channel analysis and design for the MS is to be completed by others and a report for the channel improvements will be submitted for review separately.

3. Provide Water Quality Capture Volume (WQCV)

This step utilizes formalized water quality capture volume to slow the release of runoff from the site. The EURV volume will release in 72 hours, while the WQCV will release in no less than 40 hours. Onsite water quality control volume detention ponds will provide water quality treatment for all of the developed areas, prior to the runoff being released into either of the major drainage ways. Refer to WQCV Plan in **Appendix F.**

not received

4. Consider Need for Industrial and Commercial BMPs

As this project is all residential development and no commercial or industrial development is proposed, there will be no need for any specialized BMPs which would be associated with an industrial or commercial site.

VI. Proposed Drainage Conditions

The proposed development lies completely within the Gieck Drainage Basin and consists of six (6) basins. Site runoff will be collected via inlets & pipes and diverted to one of the nine proposed full spectrum detention ponds. All necessary calculations can be found within the appendices of this report.

According to the **MDDP**, there are two major drainageways that run through the site. As was discussed within the Existing Conditions portion of the report, both the Main Stem (MS) and Main Stem Tributary Number 2 (MST) run through the site conveying runoff from the northwest to the southeast. Presently, these channels receive flows from two off-site basins, one from the west (west of Basin B1 per the **MDDP**; 0.17 mi^2 , $Q_5 = \pm 67 \text{ cfs}$, $Q_{100} = \pm 413 \text{ cfs}$) and the second from the north (northwest of Basin C1 per

Provide sub-basins

the **MDDP**; 0.44 mi^2 , $Q_5 = \pm 59 \text{ cfs}$, $Q_{100} = \pm 280 \text{ cfs}$) and are routed under Eastonville Road via existing pipe culverts. There is an existing 24" CMP that conveys runoff under Eastonville Road at the MS, a location approximately 650 feet north of the proposed Rex Road extension that directs runoff via overtopping Eastonville Road at MST, and a 20" x 27" ECMP that directs runoff beneath Eastonville Road at the Falcon Regional Park. Developed runoff associated with Eastonville Road will be routed downstream to one of two full spectrum detention facilities on either side of the Main Stem (MS). Runoff will be directed downstream to these two facilities via either roadside swales or storm piping for treatment prior to being released at historic rates upstream form the existing MS and Eastonville Road crossing. Preliminary sizing calculations for the two FSD facilities has been completed with the northern and southern ponds requiring approximately 1.035 ac-ft and 0.522 ac-ft of storage capacity, respectively.

There are no proposed major channel improvements for MS associated with this development -however, MST is proposed to be re-routed. The analysis for both channels and design of MST were done by others and a separate report will be submitted for review for all channel improvements.

The site will provide nine (9) Full Spectrum Extended Detention Basins (EDBs). Ponds A, B, C, D, & E, will discharge treated runoff at historic rates directly into either the MS or MST Channel.

Add others?

As has been mentioned previously, the site is proposed to have a land use of single family residential. The site will consist primarily of 1/8 Acre lots, with some 1/4 Acre and 1/3 Acre lots, public roadways, along with dedicated Tracts for amenity and/or institutional uses.

The proposed institutional use (Sub-basin A-1) area flows have been included in this analysis at a preliminary level only. The Sub-basin is located on the northwest corner of the site, East of Eastonville Rd. & south of the proposed extension of Rex Rd. It is assumed that the area will have a conservative imperviousness value of 90%. Sub-basin A-1 encompasses an area of 11.23 aces and proposed developed runoff for the site has been calculated to be Q₅ = 46.4 cfs, Q₁₀₀ = 90.7 cfs. However, in the interim conditions, runoff from this basin (Q₅ = 6.5 cfs, Q₁₀₀ = 12.9 cfs) will sheet flow from the northwest to the southeast, to a separate, temporary onsite detention and water quality facility positioned at the southeastern corner of the property, where treated flows will be released to a proposed modified CDOT Type 'C' inlet on the west side of Road V (DP 1). Flows will then be routed under Road V, via 24" RCP, to the updated Main Stem Tributary 2 channel. It is anticipated that the property will be developed at a later date as a fill in subsequent to the proposed development of the majority of this project site. This property will need to submit a separate drainage report, complete with an updated water quality and detention design, as part of its development. Installation of an internal storm sewer system separate from the outfall for the property will be required. The development is responsible for ensuring the site drainage, once constructed, will not adversely impact any adjacent properties and downstream facilities. Preliminary pond sizing calculations have been provided in Appendix E for reference. Per the developed conditions map, this area is excluded from water quality and detention per ECM App 1.7.1.B.7. As stated above, water quality and detention will be addressed with the future development of the institutional site.

Basin-1 (1.40 AC, $Q_5 = 6.5$ cfs, $Q_{100} = 12.9$ cfs): Located at the northern border of the site, Basin-1 contains the proposed Phase 1 improvements to Rex Rd. This drainage basin consists entirely of onsite roadway improvements within the project site. Runoff from this basin will sheet flow to the proposed curb & gutter along Rex Rd. The flows will then be routed to the east where they will discharge directly into main stem tributary #2 channel. It is anticipated that these flows will be captured and treated further downstream when the next segment of Rex Rd. is constructed.

No, the flows need to be treated now - is a that what the constitution is and filter is for?

Provide road names

Delete this sentence. Future development is not the same as permanent parks or open space.

Page 7 of 23

Basin A-2a (4.21 AC, $Q_5 = 8.1$ cfs, $Q_{100} = 18.9$ cfs): Located on the north portion of the site, this basin consists of residential lots, Road G, and a portion of the north half of Road F. Runoff from this basin will sheet flow from the lots to the adjacent road. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet, located on the northeast side of the intersection of Road G and Road F (**DP 2a**).

Basin A-2b (2.72 AC, $Q_5 = 8.3$ cfs, $Q_{100} = 16.6$ cfs): Located on the north portion of the site, this basin consists of residential lots, Road V, and a portion of the north half of Road F. Runoff from this basin will sheet flow from the residential lots to the adjacent Road F and directly from within the ROW of Road V. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' inlet in sump conditions, located on the northeast side of the intersection of Road V and Road F (**DP 2b**).

Basin A-3 (0.34 AC, $Q_5 = 1.6$ cfs, $Q_{100} = 3.0$ cfs): Located on the north portion of the site, this basin consists of a portion of the south half of Road F. Flows will be routed, via curb & gutter, to a proposed (public) 5' CDOT Type 'R' inlet in sump conditions, located on the southeast side of the intersection of Road V and Road F **(DP 3)**.

Basin A-4a (6.04 AC, $Q_5 = 9.4$ cfs, $Q_{100} = 21.8$ cfs): Located on the northwestern portion of the site, this basin consists of residential lots, Road H, and a portion of the west half of Road F. Runoff from this basin will sheet flow from the lots to the adjacent roadways. Flows will then be routed, via curb & gutter, to a proposed (public) 10' CDOT Type 'R' at-grade inlet, located on the west side of Road F (**DP 4a**), between Road H and Road I. Bypass flows will then be routed downstream to a proposed (public) 15' CDOT Type 'R' sump inlet, located on the west side of Road F directly across from Road M (**DP4**). Emergency overflows will be routed downstream via proposed curb and gutter to Design Point 7 within Road M.

Basin A-4b (4.10 AC, $Q_5 = 6.7$ cfs, $Q_{100} = 15.6$ cfs): Located on the northwestern portion of the site, this basin consists of residential lots, Road I, and a portion of the west half of Road F. Runoff from this basin will sheet flow from the lots to the adjacent roadways. Flows will then be routed, via curb & gutter, to a proposed (public) 10' CDOT Type 'R' at-grade inlet, located on the west side of Road F (**DP 4b**), between Road H and Road I. Bypass flows will then be routed downstream to a proposed (public) 15' CDOT Type 'R' sump inlet, located on the west side of Road F directly across from Road M (**DP4**). Emergency overflows will be routed downstream via proposed curb and gutter to Design Point 7 within Road M.

Basin A-5 (0.34 AC, $Q_5 = 1.6$ cfs, $Q_{100} = 3.0$ cfs): Located on the north portion of the site, this basin consists of a portion of the east half of Road F. Flows will be routed, via curb & gutter, to a proposed (public) 5' CDOT Type 'R' inlet in sump conditions, located on the east side of Road F (**DP 5**), Just north of the intersection of Road M and Road F.

Basin A-6 (2.67 AC, $Q_5 = 4.9$ cfs, $Q_{100} = 11.5$ cfs): Located centrally on the site, this basin consists of residential lots, Road N, and a portion of the south half of Road M. Runoff from this basin will sheet flow from the lots to the adjacent road. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' inlet in sump conditions, located on the south side of Road M (**DP 6**), Just southeast of the intersection of Road N & Road M. Emergency overflows will overtop curb and gutter and be routed downstream via an overflow swale to proposed Pond A.

– and park facilities?

Basin A-7 (2.91 AC, $Q_5 = 2.3$ cfs, $Q_{100} = 8.4$ cfs): Located centrally on the site, this basin consists of residential lots and a portion of the north half of Road M. Runoff from this basin will sheet flow from the lots to the adjacent road. Flows will then be routed, via curb & gutter, to a proposed (public) 5' CDOT Type 'R' inlet in sump conditions, located on the north side of Road M (**DP 7**), Just northeast of the

at DP7a

intersection of Road N & Road M. Emergency overflows will overtop curb and gutter and be routed downstream via an overflow swale to proposed Pond A.

Basin A-8 (5.17 AC, $Q_5 = 9.3$ cfs, $Q_{100} = 21.6$ cfs): Located in the central portion of the site, directly west from Pond A. This basin consists of residential lots, one-half of Road J, a section of Road O, and a section of the west half of Road M. Runoff from this basin will sheet flow to the proposed roadways, where runoff will be directed downstream, via curb & gutter, a proposed (public) 20' CDOT Type 'R' sump inlet. Runoff is then conveyed downstream to **DP 7b** where additional runoff is added from Sub-basin A-9.

Basin A-9 (1.73 AC, $Q_5 = 3.0$ cfs, $Q_{100} = 6.9$ cfs): Located in the central portion of the site, directly west from Pond A. This basin consists of residential lots and the easter half of a section of Road M. Runoff from this basin will sheet flow to the proposed roadway, where runoff will be directed downstream, via curb & gutter, a proposed (public) 10' CDOT Type 'R' sump inlet **(DP 7b)**. Runoff is then directed downstream to the northwest corner of Pond A. Flows will then be routed to the outlet structure **(DP 8)**, via a concrete trickle channel, where it will eventually discharge, at historic rates, into the adjacent Main Stem Tributary #2 channel. Emergency overflows will overtop via an emergency spillway and be routed downstream directly to MST.

and amenity center (account for runoff)

Basin A-10 (6.31 AC, $Q_5 = 1.9$ cfs, $Q_{100} = 13.4$ cfs): Located on the eastern limits of the site, adjacent to the proposed Main Stem Tributary #2 drainageway. This basin consists of a portion of an open area amenity and the proposed (private) Full Spectrum Detention Pond A. Runoff from this basin will sheet flow directly to the northwest corner of Pond A. Flows will then be routed to the outlet structure (**DP 8**), via a concrete trickle channel, where it will eventually discharge, at historic rates, into the adjacent Main Stem Tributary #2 channel. Emergency overflows will overtop via an emergency spillway and be routed downstream directly to MST.

Basin B-1 (4.02 AC, $Q_5 = 6.6$ cfs, $Q_{100} = 16.0$ cfs): Located on the western limits of the site, adjacent to Eastonville Road. This basin consists of residential lots and the southwest portion of Road J. Runoff from this basin will sheet flow from the lots to the adjacent roadway. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' inlet in sump conditions, located at the end of the Cul-De-Sac of Road J (**DP 9**). Emergency overflows will overtop curb and gutter and be routed downstream via an overflow swale to Road F and then downstream via curb & gutter to Design Point **DP 13**.

Basin B-2 (4.16 AC, $Q_5 = 6.5$ cfs, $Q_{100} = 15.2$ cfs): Located on the western limits of the site, partially adjacent to Eastonville Road. This basin consists of residential lots, the northwest portion of Road J and the northwestern portion of Road F. Runoff from this basin will sheet flow from the lots to the adjacent roadways. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet **(DP 10a)**, located on the northwest side of Road F, northeast of Road K. Bypass flows are conveyed downstream via curb & gutter to **DP 10b**.

DP11 then to

DP 12b? Basin B-3 (3.42 AC, $Q_5 = 5.6$ cfs, $Q_{100} = 13.0$ cfs): Located on the western portion of the site, This basin consists of residential lots, the northwest portion of Road F, and Road K. Runoff from this basin will sheet flow from the lots to the adjacent roadways. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' sump inlet **(DP 10b)**, located northeast from the intersection of Road F and Road L. on the northwest side of Road F, northeast of Road K. Emergency overflows will overtop the crown of the roadway and be conveyed downstream via curb and gutter to Design Point **DP 13**.

Basin B-4 (0.76 AC, $Q_5 = 3.1$ cfs, $Q_{100} = 6.0$ cfs): Located in the west-central portion of the site. This basin consists of the southeast portion of Road F. Runoff from this basin will sheet flow directly to the

curb & gutter and be directed downstream to a proposed (public) 10' CDOT Type 'R' inlet in sump conditions, located east of the intersection of Road F & Road L (**DP 11**). Emergency overflows will overtop the curb return flowline and be conveyed downstream via curb and gutter to Design Point **DP 12b**.

Basin B-5 (5.32 AC, $Q_5 = 8.2$ cfs, $Q_{100} = 19.2$ cfs): Located centrally on the site, this basin consists of residential lots, Road K, , the northwest portion of Road O, and the southwest portion of Road J. Runoff from this basin will sheet flow from the lots to the adjacent roadways. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet **(DP 12a)**, located on the northwest side of Road O, northeast of the intersection between Road L and Road O. Bypass flows are conveyed downstream via curb & gutter to **DP 12b**.

Basin B-6 (2.28 AC, $Q_5 = 3.7$ cfs, $Q_{100} = 8.6$ cfs): Located centrally on the site. This basin consists of residential lots and the northwest portion of Road P. Runoff from this basin will sheet flow from the lots to the adjacent roadway. Flows will then be routed, via curb & gutter, to a proposed (public) 10' CDOT Type 'R' at-grade inlet, located on the northwest side of Road P **(DP 14)**. Bypass flows are conveyed downstream via curb & gutter to **DP 12b**.

Basin B-7 (1.94 AC, $Q_5 = 3.4$ cfs, $Q_{100} = 7.9$ cfs): Located centrally on the site. This basin consists of residential lots and the southeast portion of Road P. Runoff from this basin will sheet flow from the lots to the adjacent roadway. Flows will then be routed, via curb & gutter, to a proposed (public) 10' CDOT Type 'R' at-grade inlet, located on the southeast side of Road P **(DP 15)**. Bypass flows are conveyed downstream via curb & gutter to **DP 12b**.

Basin B-8 (3.54 AC, $Q_5 = 5.4$ cfs, $Q_{100} = 12.7$ cfs): Located centrally on the site. This basin consists of residential lots, the southeast portion of Road P, and the northeast portion of Road L. Runoff from this basin will sheet flow from the lots to the adjacent roadways. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' sump inlet, located on the southeast side of the intersection between Road P and Road L (**DP 12b**). Emergency overflows will overtop the crown of the roadway and be conveyed downstream via curb and gutter to Design Point **DP 13**.

Basin B-9 (2.57 AC, $Q_5 = 4.7$ cfs, $Q_{100} = 11.1$ cfs): Located centrally on the site, adjacent to the Main Stem channel. This basin consists residential lots and the southwest portion of Road L. Runoff from this basin will sheet flow from the lots to the adjacent roadway. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' sump inlet, located on the southwest side of the intersection between Road P and Road L (**DP 13**). Emergency overflows will overtop the curb & gutter of the roadway and be conveyed downstream via a graded swale into Pond B (**DP 16**).

Basin B-10 (0.87 AC, $Q_5 = 0.4$ cfs, $Q_{100} = 2.6$ cfs): Located centrally on the site, adjacent to the Main Stem channel. This basin consists of the proposed (private) Full Spectrum Detention Pond B. Runoff from this basin will sheet flow directly to Pond B. Flows will then be routed to the outlet structure **(DP 16)**, via a concrete trickle channel, where it will eventually discharge, at historic rates, into the adjacent Main Stem channel.

Basin C-1 (3.90 AC, $Q_5 = 6.1$ cfs, $Q_{100} = 14.1$ cfs): Located on the east portion of the site, this basin consists of residential lots and the eastern half of a portion of Road O. Runoff from this basin will sheet flow from the lots to the adjacent roadway. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet, located on the southeast side of the intersection of Road R and Road S **(DP 17b)**. Bypass flows are conveyed downstream via curb & gutter to **DP 17e**.

Basin C-2 (0.96 AC, $Q_5 = 1.6$ cfs, $Q_{100} = 3.8$ cfs): Located on the eastern portion of the site, this basin consists of residential lots and the southern portion of Roads O & R. Runoff from this basin will sheet flow from the lots to the adjacent roadway. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet **(DP 17a)**, located on the southwest side of the intersection of Road R and Road S. Bypass flows are conveyed downstream via curb & gutter to **DP 17c**.

Basin C-3 (4.07 AC, $Q_5 = 6.4$ cfs, $Q_{100} = 14.9$ cfs): Located on the southeast portion of the site, this basin consists of residential lots and the eastern half of Road S. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet **(DP 17a)**, located on the southwest side of the intersection of Road R and Road S. Bypass flows are conveyed downstream via curb & gutter to **DP 17c**.

Basin C-4 (3.80 AC, $Q_5 = 6.0$ cfs, $Q_{100} = 13.9$ cfs): Located on the southeast portion of the site, this basin consists of residential lots and the eastern half of Road T. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet **(DP 17c)**, located on the southwest side of the intersection of Road R and Road T. Bypass flows are conveyed downstream via curb & gutter to **DP 17d**.

Basin C-5 (3.19 AC, $Q_5 = 5.3$ cfs, $Q_{100} = 12.3$ cfs): Located on the southeast portion of the site, this basin consists of residential lots and the western half of Road R. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet **(DP 17d)**, located on the northwest side of the intersection of Road R and Road Q. Bypass flows are conveyed downstream via curb & gutter to **DP 17g**.

Basin C-6 (2.99 AC, $Q_5 = 4.6$ cfs, $Q_{100} = 10.6$ cfs): Located on the southeast portion of the site, this basin consists of residential lots and the eastern half of Road R. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet **(DP 17e)**, located on the northeast side of the intersection of Road R and Road Q. Bypass flows are conveyed downstream via curb & gutter to **DP 17g**.

Basin C-7 (5.48 AC, $Q_5 = 8.3$ cfs, $Q_{100} = 19.4$ cfs): Located in the central portion of the site, this basin consists of residential lots and the eastern half of Road Q. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet **(DP 18a)**, located on the west side of the intersection of Road S and Road Q. Bypass flows are conveyed downstream via curb & gutter to **DP 18b**.

Basin C-8 (2.82 AC, $Q_5 = 4.7$ cfs, $Q_{100} = 10.9$ cfs): Located in the central portion of the site, this basin consists of residential lots, a portion of Road S, and the western half of Road Q. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet **(DP 17f)**, located on the southeast side of the intersection of Road S and Road Q. Bypass flows are conveyed downstream via curb & gutter to **DP 17g**.

Basin C-9 (5.96 AC, $Q_5 = 8.6$ cfs, $Q_{100} = 20.2$ cfs): Located on the southeast corner of the site, this basin consists of residential lots, a portion of Road T, and the northern half of Road Q. Runoff from this basin will sheet flow to the adjacent roadways. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' sump inlet **(DP 17g)**, located on the north side of Road Q just north of Road U. Emergency overflows will overtop the crown of Road Q and be routed downstream via proposed curb and gutter to Design Point **18b** within Road Q.

Grandview Reserve F

The swale is 3 lots away from the low point. State that grading along the south side of the road will be elevated above the road to the beginning of the swale and that the lots in this area require the homes to be a foot above the calculated water surface at DP20 in the FDR. Or provide a swale from the low point to the pond.

the FDR. Or provide a swale from the low point to the pond. Basin C-10 (3.67 AC, $Q_5 = 5.8$ cfs, $Q_{100} = 13.5$ cfs): Located on the southeast corner of the site, this basin consists of residential lots and the southern half of Road Q. Ruhoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' sump inlet (DP 18b), located on the south side of Road Q just north of Road U. Emergency overflows will overtop the curb & gutter of Road Q and be routed downstream via a graded grassed swale and curb & gutter within Road U to Design Point 19 within Road U.

Basin C-11 (0.50 AC, $Q_5 = 1.1$ cfs, $Q_{100} = 2.5$ cfs): Located on the southeast corner of the site, this basin consists of a grassed amenity area and the north half of Road U. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb & gutter, to a proposed (public) 5' CDOT Type 'R' sump inlet **(DP 19)**, located on the north side of Road U. Emergency overflows will overtop the crown of Road U and be routed downstream via curb & gutter to Design Point **20** within Road U.

Basin C-12 (1.61 AC, $Q_5 = 2.7$ cfs, $Q_{100} = 6.4$ cfs): Located on the southeast corner of the site, this basin consists of a grassed amenity area and the north half of Road U. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb & gutter, to a proposed (public) 5' CDOT Type 'R' sump inlet **(DP 20)**, located on the south side of Road U. Emergency overflows will overtop the curb & gutter of Road U and be routed downstream via a graded swale to Design Point **21** within Pond C.

Basin C-13 (2.46 AC, $Q_5 = 0.8$ cfs, $Q_{100} = 5.8$ cfs): Located on the southeast corner of the site, adjacent to the Main Stem channel. This basin consists of the proposed (private) Full Spectrum Detention Pond C. Runoff from this basin will sheet flow directly to Pond C. Flows will then be routed to the outlet structure (**DP 21**), via a concrete trickle channel, where it will eventually discharge, at historic rates, into the adjacent Main Stem channel. This area (EX-3 and a large part of what's shown as

Basin C-14 (1.52 AC, $Q_5 = 0.5$ cfs, $Q_{100} = 3.8$ cfs): Located on the southeast corner of the site, adjacent to the Main Stem channel. This basin consists of the undeveloped area outside and downstream of the proposed (private) Full Spectrum Detention Pond C. Runoff from this basin will sheet flow directly to the Main Stem channel (MS).

Basin D-1 (2.46 AC, $Q_5 = 5.2$ cfs, $Q_{100} = 12.0$ cfs): Located on the southwest portion of the site, adjacent to Eastonville Road. This basin consists of residential lots, the west half of Road B, and the north half of Road A. Runoff from this basin will sheet flow to the adjacent roadways. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' inlet in sump conditions, located on the west side of Road B (**DP 22**), just north of the intersection of Road B & Road C. Emergency overflows will overtop the crown of Road B and be routed downstream via curb & gutter to Design Point **23** within Road B.

Basin D-2 (0.75 AC, $Q_5 = 1.5$ cfs, $Q_{100} = 3.4$ cfs): Located on the southwest portion of the site, this basin consists of residential lots and the eastern half of Road B. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb & gutter, to a proposed (public) 5' CDOT Type 'R' inlet in sump conditions, located on the east side of Road B (**DP 23**), just southeast of the intersection of Road B & Road C. Emergency overflows will pool up and be routed around the curb return at the intersection of Road B and Road C downstream via curb & gutter to Design Point **24** within Road C.

Basin D-3 (4.76 AC, $Q_5 = 8.5$ cfs, $Q_{100} = 19.9$ cfs): Located on the southwest portion of the site, this basin consists of residential lots and the eastern half of Road C. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' inlet in sump conditions, located on the west side of Road C (**DP 24**), just southeast of the intersection of

State that Lot 43 will be graded higher than the ponding level.

Road B & Road C. Emergency overflows will overtop the crown and be routed downstream via curb & gutter in Road C to Design Point 25.

Basin D-4 (4.74 AC, $Q_5 = 8.3$ cfs, $Q_{100} = 19.5$ cfs): Located on the southwest portion of the site, this basin consists of residential lots and the eastern half of Road C. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' inlet in sump conditions, located on the east side of Road C (**DP 25**), just southeast of the intersection of Road B & Road C. Emergency overflows will overtop curb & gutter and be routed downstream via a graded swale within the maintenance access path to Pond D at Design Point **26**.

Basin D-5 (0.71 AC, $Q_5 = 0.3$ cfs, $Q_{100} = 2.0$ cfs): Located on the southeast corner of the site, adjacent to the Main Stem channel. This basin consists of the proposed (private) Full Spectrum Detention Pond D. Runoff from this basin will sheet flow directly to Pond D. Flows will then be routed to the outlet structure **(DP 26)**, via a concrete trickle channel, where it will eventually discharge, at historic rates, into the adjacent Main Stem channel.

Basin D-6 (1.00 AC, $Q_5 = 0.3$ cfs, $Q_{100} = 2.5$ cfs): Located on the southwest corner of the site, adjacent to the Main Stem channel. This basin consists of the undeveloped area outside and downstream of the proposed (private) Full Spectrum Detention Pond D. Runoff from this basin will sheet flow directly to the Main Stem channel (MS).

Basin E-1 (5.06 AC, $Q_5 = 7.5$ cfs, $Q_{100} = 17.6$ cfs): Located on the southern portion of the site, this basin consists of residential lots, the southern half of Road A, Road E, and the southern half of Road B. Runoff from this basin will sheet flow to the adjacent roadways. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet, located on the southwest corner of the intersection between Road B and Road D (**DP 28**), just north of the cul-de-sac. Bypass flows are conveyed downstream via curb & gutter to **DP 29**.

Basin E-2 (3.63 AC, $Q_5 = 7.6$ cfs, $Q_{100} = 17.9$ cfs): Located on the southern portion of the site, this basin consists of residential lots, a small portion of Road D, and the north half of Road B. Runoff from this basin will sheet flow to the adjacent roadways. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet, located on the northwest corner of the intersection between Road B and Road D (DP 27), just north of the cul-de-sac. Bypass flows are conveyed downstream via curb & gutter to DP 29.

Basin E-3 (2.97 AC, $Q_5 = 4.5$ cfs, $Q_{100} = 10.5$ cfs): Located on the southern portion of the site, this basin consists of residential lots and the western half of Road D. Run off from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' sump inlet, located just northeast from the cul-de-sac of Road D (**DP 29**). Emergency overflows will overtop the crown of Road D and be routed downstream via curp & gutter to Design Point **30**.

Basin E-4 (6.86 AC, $Q_5 = 9.7$ cfs, $Q_{100} = 22.7$ cfs): Located on the southern portion of the site, this basin consists of residential lots and the eastern half of Road D. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' sump inlet, located just northeast from the cul-de-sac of Road D (**DP 30**). Emergency overflows will overtop the curb & gutter and be routed downstream via a graded swale within the maintenance access to Pond E at Design Point **31**.

Is there aswale in Tract O to convey backyard flows to Road E?

Basin E-5 (0.74 AC, $Q_5 = 0.3$ cfs, $Q_{100} = 2.0$ cfs): Located on the southeast corner of the site, adjacent to the Main Stem channel. This basin consists of the proposed (private) Full Spectrum Detention Pond E. Runoff from this basin will sheet flow directly to Pond E. Flows will then be routed to the outlet structure (**DP 31**), via a concrete trickle channel, where it will eventually discharge, at historic rates, into the adjacent Main Stem channel. **tributary?**

Basin E-6 (0.95 AC, Q₅ = 0.3 cfs, Q₁₀₀ = 2.3 cfs): Located on the southwest corner of the site, adjacent to the Main Stem charmel. This basin consists of the undeveloped area outside and downstream of the proposed (private) Full Spectrum Detention Pond E. Runoff from this basin will sheet flow directly to the Main Stem channel (MS).

Address the Eastonville Road

- basins including the additional

culvert crossing

VII. Storm Sewer System

All development is anticipated to be urban and will include storm sewer & street inlets. Storm sewers collect storm water runoff and convey the water to the water quality facilities prior to discharging. Storm sewer systems will be designed to the 100-year storm and checked with the 5-year storm. Inlets will be placed at sump areas and intersections where street flow is larger than street capacity. UDFCD Inlet spreadsheet has been used to determine the size of all sump inlets.

There will be a minimum of 5 proposed storm systems within the site. Each of the nine storm sewer systems will discharge storm water into its correlated WQCV pond. Each system will consist of reinforced concrete pipe (RCP), CDOT Type 'R' inlets, and storm sewer manholes.

The Final drainage report will include details concerning at-grade inlet locations, street capacity, storm sewer sizing, outlet protection and location. Preliminary sump inlets have been sized and the calculations can be found in **Appendix D**. As mentioned, these sump inlets sizes are preliminary and are currently oversized. It is anticipated that the inlets will reduce in size with the addition of at-grade inlets at the time of the Final Drainage Report.

VIII. Proposed Water Quality Detention Ponds district?

Nine (9) Water Quality Capture Volume Detention Ponds will be provided for the proposed site, two (2) of which are temporary in nature. All of the proposed ponds are private and will be maintained by the HOA, once established. These detention ponds are proposed to be full spectrum and will provide water quality and detention. The WQCV and EURV release will be controlled with an orifice plate. The release rates for the WQCV and EURV will be 40-hours and 72-hours, respectively. The 100-year volume will be controlled by orifice and/or restrictor plate and will be designed to release at or below the pre-development flow rate. Outlet structures, forebays, trickle channels, etc. will be designed with the final drainage report during final plat. The required FSD pond volumes are as described below:

Pond A: Located to the north of the site, just west of the newly routed Main Stem Tributary #2 channel. This pond will discharge into the Main Stem Tributary #2, ultimately merging with Main Stem to the south, off-site. The required volume WQCV and EURV are 0.49 Ac-Ft & 1.090 Ac-Ft, respectively. The total required detention basin volume is 2.55 Ac-Ft.

Pond B: Located centrally on the site, just east of the Main Stem drainage way. This pond will discharge into the Main Stem channel. The required volume WQCV and EURV are 0.52 Ac-Ft & 1.47 Ac-Ft, respectively. The total required detention basin volume is 2.95 Ac-Ft.

Pond C: Located on the southeast portion of the site, between the Main Stem & Main Stem Tributary #2 channels. This pond will discharge into the Main Stem channel. The required volume WQCV and EURV are 0.26 Ac-Ft & 0.57 Ac-Ft, respectively. The total required detention basin volume is 1.35 Ac-Ft.

Pond D: Located centrally on the site, just west of the Main Stem channel. This pond will discharge into the Main Stem channel. The required volume WQCV and EURV are 0.22 Ac-Ft & 0.55 Ac-Ft, respectively. The total required detention basin volume is 1.23 Ac-Ft.

Pond E: Located on the south side of the site, just west of the Main Stem channel. This pond will discharge into the Main Stem channel. The required volume WQCV and EURV are 0.22 Ac-Ft & 0.48 Ac-Ft, respectively. The total required detention basin volume is 1.17 Ac-Ft.

Address the other 4 ponds

Address how the spillways will cross the trails.

Provide discussion and analysis of existing and proposed downstream drainage facilities and their ability to convey developed runoff from the proposed development.

IX. Proposed Channel Improvements

not received?

According to the **MDDP**, there are two major drainage ways that run through the site. As was discussed within the Existing Conditions portion of the report, both the Main Stem channel (MS) and Main Stem Tributary #2 channel (MST) run through the site. There are no proposed major channel improvements for MS -however, MST is proposed to be rerouted. As part of this rerouting of MST, offsite upstream tributary flows will be captured upstream from the proposed Rex Road extension and be conveyed via culvert to the proposed rerouted MST. The analysis for both drainage ways, offsite upstream tributary capture, and design of MST were done by others and a separate report will be submitted for review.

X. Maintenance

After completion of construction and upon the Board of County Commissioners acceptance, it is anticipated all drainage facilities within the public Right-of-Way are to be owned and maintained by El Paso County.

—— and MS drainageway

——

All private detention ponds are to be owned and maintained by the Grandview Reserve Metropolitan District No. 2 (DISTRICT), once established, unless an agreement is reached stating otherwise. The proposed channel (MST) will also be maintained by the DISTRICT. Maintenance access for all full spectrum detention facilities will be provided from public Right-of-Way. Maintenance access for MST will be provided along the eastern top of channel bank within the proposed tract.

XI. Wetlands Mitigation

- Provide report title and date

There are two existing wetlands on site associated with the two major channels, MS and MST. The wetlands are both contained within the existing channels with the wetland in MS being classified as jurisdictional and the wetland in MST classified as non-jurisdictional. The wetlands will be analyzed with the channel report by others. Wetlands maintenance will be the responsibility of the the Grandview Reserve Metropolitan District No. 2 (DISTRICT).

XII. Floodplain Statement

A portion of the project sit lies with Zone A Special Flood Hazard Area as defined by the FIRM Map number 08041C0552G and 08041C0556G effective December 7, 2018. A copy of the FIRM Panel is included in **Appendix A**.

Add: FEMA-approved floodplain elevations

XIII. Drainage Fees & Maintenance are required to be shown on final plats.

Gieck Ranch Basin is not listed as part of the El Paso County drainage basin fee program. Unless otherwise instructed, no drainage fees will be assessed. If it is found drainage basin fees are required, these will be included in the Final Drainage Report.

XIV. Conclusion

The Grandview Reserve residential subdivision lies within the Gieck Ranch Drainage Basin. Water quality for the site is provided in nine on-site Full Spectrum Detention Ponds; Ponds A, B, C, D, & E. All

Add the other four if listing them

determination

drainage facilities within this report were sized according to the EI Paso County Drainage Criteria Manuals. There are two major channels passing through the site Main Stem and Main Stem Tributary #2, which will be addressed by others in a channel improvement report. The nine (9) WQCV ponds will be maintained by a newly established HQA. A Final Drainage Report will be submitted along with the final plat and construction drawings.

XV. References

provide name and date of report

- 1. El Paso County Drainage Criteria Manual, 1990.
- 2. Drainage Criteria Manual, Volume 2, City of Colorado Springs, 2002.
- 3. El Paso County Drainage Criteria Manual Update, 2015.
- 4. El Paso County Engineering Criteria Manual, 2020.
- 5. *Urban Storm Drainage Criteria Manual*, Urban Drainage and Flood Control District, January 2016 (with current revisions).
- 6. Gieck Ranch Drainage Basin Study (DBPS), Drexel Barrell, October 2010 (Not adopted by County).
- 7. Grandview Reserve Master Development Drainage Plan (MDDP), HR Green, November 2020.

GVR Metro District

APPENDIX A Exhibits and Figures

GRANDVIEW RESERVE

-

EASTONVILLE RD SCALE: 1"=2,000' VICINITY MAP

Project No:	HRG1.20
Drawn By:	JDP
Checked By:	RGD
Date:	07/26/2021

1155 Kelly Johnson Blvd., Suite 305 Colorado Springs, CO 80920 719.900.7220 • GallowayUS.com

not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The horizontal datum was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website a http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by El Paso County, Colorado Springs Utilities, City of Fountain, Bureau of Land Management National Oceanic and Atmospheric Administration, United States Geological Survey, and Anderson Consulting Engineers, Inc. These data are current as of 2006.

This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is

Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website a http://www.msc.fema.gov/.

If you have questions about this map or questions concerning the National Floor Insurance Program in general, please call 1-877-FEMA MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

El Paso County Vertical Datum Offset Table

Flooding Source

REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

LEGEND

Floodplain boundary

Floodway boundary

CBRS and OPA boundary

Boundary dividing Special Flood Hazard Areas of different Base

Flood Elevations, flood depths or flood velocities

Base Flood Elevation line and value; elevation in feet*

Base Flood Elevation value where uniform within zone;

Geographic coordinates referenced to the North American

1000-meter Universal Transverse Mercator grid ticks,

5000-foot grid ticks: Colorado State Plane coordinate

Bench mark (see explanation in Notes to Users section of

system, central zone (FIPSZONE 0502),

MAP REPOSITORIES Refer to Map Repositories list on Map Index

EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP

MARCH 17, 1997

MAP SCALE 1" = 500'

PANEL 0552G

FLOOD INSURANCE RATE MAP

AND INCORPORATED AREAS

(SEE MAP INDEX FOR FIRM PANEL LAYOUT)

080059

Notice to User: The Map Number shown below should be used when placing map orders: the Community Number shown above should be used on insurance applications for the subject

Federal Emergency Management Agency

NUMBER PANEL SUFFIX

0552

MAP NUMBER

08041C0552G

MAP REVISED

DECEMBER 7, 2018

EL PASO COUNTY,

COLORADO

PANEL 552 OF 1300

Lambert Conformal Conic Projection

Zone D Boundary

Cross section line

this FIRM panel)

Datum of 1983 (NAD 83)

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or **floodways** have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by **flood control structures**. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The **projection** used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The **horizontal datum** was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by El Paso County, Colorado Springs Utilities, and Anderson Consulting Engineers, Inc. These data are current as of 2008.

This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed **Map Index** for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website at http://www.msc.fema.gov/.

If you have questions about this map or questions concerning the National Flood Insurance Program in general, please call 1-877-FEMA MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

El Paso County Vertical Datum Offset Table

Flooding Source

Flooding Source

Vertical Datum Offset (ft)

REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION

Panel Location Map

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

LEGEND

SPECIAL FLOOD HAZARD AREAS (SFHAS) SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD

The 1% annual chance flood (100-year flood), also known as the base flood, is the flood that has a 1% chance of being equaled or exceeded in any given year. The Special Flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Areas of Special Flood Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The Base Flood Elevation is the water-surface elevation of the 1% annual chance flood.

ZONE A No Base Flood Elevations determined.

ZONE AH Base Flood Elevations determined.

ZONE AH Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations determined.

ZONE AO Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities also determined.

ZONE AR Special Flood Hazard Area Formerly protected from the 1% annual chance flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1% annual chance or greater flood.

ZONE A99 Area to be protected from 1% annual chance flood by a Federal flood protection system under construction; no Base Flood Elevations determined.

ZONE V Coastal flood zone with velocity hazard (wave action); no Base Flood Elevations determined.

ZONE VE Coastal flood zone with velocity hazard (wave action); Base Flood Elevations determined.

FLOODWAY AREAS IN ZONE AE

The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encroachment so that the 1% annual chance flood can be carried without substantial increases in flood heights.

OTHER FLOOD AREAS

Areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood.

OTHER AREAS

DNE X Areas determined to be outside the 0.2% annual chance floodplain.

ZONE D Areas in which flood hazards are undetermined, but possible.

COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS

CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Areas.

Floodplain boundary

OTHERWISE PROTECTED AREAS (OPAs)

Floodway boundary
Zone D Boundary

CBRS and OPA boundary

Boundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood depths or flood velocities.

513 Sase Flood Elevation line and value; elevation in feet*
(EL 987) Base Flood Elevation value where uniform within zone;

elevation in feet*

* Referenced to the North American Vertical Datum of 1988 (NAVD 88)

A Cross section line

23 -----23

97° 07" 30.00" Geographic coordinates referenced to the North American Datum of 1983 (NAD 83)

^{00m}N 1000-meter Universal Transverse Mercator grid ticks, zone 13

00 FT 5000-foot grid ticks: Colorado State Plane coordinate system, central zone (FIPSZONE 0502), Lambert Conformal Conic Projection

DX5510 Bench mark (see explanation in Notes to Users section of this FTRM panel)

M1.5 River Mile

MAP REPOSITORIES
Refer to Map Repositories list on Map Index
EFFECTIVE DATE OF COUNTYWIDE
FLOOD INSURANCE RATE MAP

EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL.

DECEMBER 7, 2018 - to update corporate limits, to change Base Flood Elevations and Special Flood Hazard Areas, to update map format, to add roads and road names, and to incorporate previously issued Letters of Map Revision.

MARCH 17, 1997

For community map revision history prior to countywide mapping, refer to the Community Map History Table located in the Flood Insurance Study report for this jurisdiction.

To determine if flood insurance is available in this community, contact your insurance

agent or call the National Flood Insurance Program at 1-800-638-6620.

MAP SCALE 1" = 500'
250 0 500 1000
HHH FEET

PANEL 0556G **FIRM** FLOOD INSURANCE RATE MAP EL PASO COUNTY, COLORADO AND INCORPORATED AREAS PANEL 556 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) CONTAINS: COMMUNITY NUMBER PANEL SUFFIX EL PASO COUNTY 080059 0556 Notice to User. The Map Number shown below should be used when placing map orders: the Community Number shown above should be used on insurance applications for the MAP NUMBER 08041C0556G MAP REVISED

DECEMBER 7, 2018

Federal Emergency Management Agency

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Please rely on the bar scale on each map sheet for map Soils D measurements. Soil Rating Polygons Not rated or not available Α Source of Map: Natural Resources Conservation Service Web Soil Survey URL: **Water Features** A/D Coordinate System: Web Mercator (EPSG:3857) Streams and Canals В Maps from the Web Soil Survey are based on the Web Mercator Transportation projection, which preserves direction and shape but distorts B/D Rails --distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more Interstate Highways accurate calculations of distance or area are required. C/D **US Routes** This product is generated from the USDA-NRCS certified data as D Major Roads of the version date(s) listed below. Not rated or not available -Local Roads Soil Survey Area: El Paso County Area, Colorado Soil Rating Lines Survey Area Data: Version 17, Sep 13, 2019 Background Aerial Photography Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. A/D Date(s) aerial images were photographed: Sep 8, 2018—May 26, 2019 B/D The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor C/D shifting of map unit boundaries may be evident. D Not rated or not available **Soil Rating Points** A/D B/D

Hydrologic Soil Group

Map unit symbol Map unit name		Rating	Acres in AOI	Percent of AOI	
8	Blakeland loamy sand, 1 to 9 percent slopes	А	22.4	2.6%	
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	450.7	52.5%	
83	Stapleton sandy loam, 3 to 8 percent slopes	В	385.4	44.9%	
Totals for Area of Inter	rest	858.5	100.0%		

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

Tie-break Rule: Higher

NOAA Atlas 14, Volume 8, Version 2 Location name: Peyton, Colorado, USA* Latitude: 38.985°, Longitude: -104.565° Elevation: 6975.71 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹								hes) ¹		
Duration	Average recurrence interval (years)									
Buration	1	2	5	10	25	50	100	200	500	1000
5-min	0.239 (0.189-0.303)	0.291 (0.231-0.370)	0.381 (0.301-0.486)	0.461 (0.361-0.589)	0.576 (0.440-0.768)	0.671 (0.499-0.904)	0.770 (0.554-1.06)	0.875 (0.604-1.24)	1.02 (0.678-1.48)	1.14 (0.733-1.67)
10-min	0.350 (0.277-0.444)	0.426 (0.338-0.542)	0.558 (0.441-0.711)	0.674 (0.529-0.863)	0.844 (0.644-1.13)	0.982 (0.731-1.32)	1.13 (0.811-1.56)	1.28 (0.884-1.81)	1.49 (0.992-2.17)	1.66 (1.07-2.44)
15-min	0.426 (0.338-0.541)	0.520 (0.412-0.660)	0.681 (0.537-0.867)	0.823 (0.645-1.05)	1.03 (0.785-1.37)	1.20 (0.891-1.62)	1.37 (0.988-1.90)	1.56 (1.08-2.21)	1.82 (1.21-2.65)	2.03 (1.31-2.98)
30-min	0.608 (0.482-0.771)	0.740 (0.586-0.940)	0.968 (0.764-1.23)	1.17 (0.916-1.49)	1.46 (1.11-1.94)	1.70 (1.26-2.29)	1.94 (1.40-2.68)	2.21 (1.52-3.12)	2.57 (1.71-3.73)	2.86 (1.85-4.19)
60-min	0.775 (0.615-0.984)	0.933 (0.739-1.19)	1.21 (0.956-1.54)	1.46 (1.15-1.87)	1.84 (1.41-2.47)	2.16 (1.61-2.92)	2.49 (1.80-3.45)	2.85 (1.97-4.05)	3.37 (2.24-4.90)	3.78 (2.44-5.55)
2-hr	0.943 (0.754-1.19)	1.13 (0.898-1.42)	1.46 (1.16-1.84)	1.76 (1.39-2.23)	2.22 (1.72-2.97)	2.62 (1.97-3.52)	3.04 (2.21-4.19)	3.50 (2.45-4.95)	4.16 (2.80-6.03)	4.70 (3.06-6.85)
3-hr	1.03 (0.829-1.29)	1.22 (0.978-1.53)	1.57 (1.25-1.97)	1.90 (1.51-2.40)	2.41 (1.88-3.22)	2.86 (2.17-3.84)	3.35 (2.45-4.60)	3.88 (2.73-5.48)	4.66 (3.15-6.74)	5.29 (3.46-7.69)
6-hr	1.20 (0.968-1.49)	1.40 (1.13-1.74)	1.78 (1.44-2.22)	2.16 (1.73-2.70)	2.76 (2.18-3.66)	3.28 (2.52-4.39)	3.86 (2.86-5.29)	4.51 (3.21-6.34)	5.46 (3.73-7.86)	6.24 (4.12-9.01)
12-hr	1.38 (1.13-1.70)	1.61 (1.31-1.98)	2.05 (1.67-2.53)	2.48 (2.00-3.07)	3.15 (2.51-4.15)	3.74 (2.89-4.96)	4.39 (3.28-5.96)	5.12 (3.67-7.13)	6.17 (4 25-8 82)	7.04 (4.69-10.1)
24-hr	1.60 (1.31-1.95)	1.87 (1.54-2.28)	2.38 (1.94-2.91)	2.85 (2.32-3.51)	3.60 (2.88-4.67)	4.24 (3.29-5.56)	4.94 (3.71-6.63)	5.71 (4.12-7.87)	6.82 (4.73-9.66)	7.73 (5.20-11.0)
2-day	1.85 (1.54-2.24)	2.18 (1.80-2.63)	2.76 (2.28-3.35)	3.29 (2.70-4.01)	4.11 (3.30-5.27)	4.80 (3.76-6.22)	5.54 (4.19-7.36)	6.35 (4.62-8.68)	7.50 (5.25-10.5)	8.44 (5.73-11.9)
3-day	2.03 (1.69-2.44)	2.39 (1.98-2.87)	3.02 (2.50-3.64)	3.60 (2.97-4.36)	4.47 (3.60-5.69)	5.20 (4.09-6.70)	5.98 (4.55-7.90)	6.83 (4.99-9.28)	8.03 (5.65-11.2)	9.00 (6.15-12.7)
4-day	2.18 (1.82-2.61)	2.56 (2.13-3.06)	3.22 (2.68-3.87)	3.82 (3.16-4.62)	4.73 (3.83-6.00)	5.49 (4.33-7.04)	6.30 (4.81-8.30)	7.18 (5.26-9.72)	8.43 (5.95-11.7)	9.43 (6.46-13.3)
7-day	2.58 (2.17-3.07)	2.98 (2.50-3.54)	3.68 (3.08-4.39)	4.32 (3.60-5.18)	5.29 (4.31-6.65)	6.09 (4.84-7.76)	6.96 (5.34-9.09)	7.89 (5.82-10.6)	9.21 (6.55-12.8)	10.3 (7.10-14.4)
10-day	2.93 (2.48-3.47)	3.37 (2.84-3.98)	4.13 (3.47-4.90)	4.81 (4.02-5.74)	5.83 (4.76-7.29)	6.68 (5.32-8.45)	7.58 (5.85-9.86)	8.55 (6.34-11.4)	9.92 (7.09-13.7)	11.0 (7.65-15.4)
20-day	3.91 (3.33-4.58)	4.51 (3.84-5.29)	5.52 (4.68-6.50)	6.39 (5.39-7.55)	7.63 (6.25-9.37)	8.62 (6.90-10.8)	9.64 (7.47-12.4)	10.7 (7.98-14.1)	12.2 (8.74-16.6)	13.3 (9.31-18.4)
30-day	4.70 (4.02-5.47)	5.44 (4.65-6.34)	6.65 (5.66-7.78)	7.66 (6.49-9.00)	9.06 (7.44-11.0)	10.1 (8.15-12.5)	11.2 (8.74-14.3)	12.3 (9.24-16.2)	13.8 (9.98-18.7)	15.0 (10.5-20.6)
45-day	5.67 (4.88-6.57)	6.55 (5.63-7.60)	7.97 (6.82-9.27)	9.12 (7.77-10.7)	10.7 (8.79-12.9)	11.9 (9.56-14.5)	13.0 (10.2-16.4)	14.2 (10.6-18.4)	15.6 (11.3-21.0)	16.7 (11.9-23.0)
60-day	6.49 (5.60-7.48)	7.46 (6.43-8.62)	9.01 (7.74-10.4)	10.3 (8.77-11.9)	11.9 (9.82-14.3)	13.1 (10.6-16.0)	14.3 (11.2-18.0)	15.5 (11.7-20.0)	16.9 (12.3-22.6)	18.0 (12.8-24.6)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 38.9850°, Longitude: -104.5650°

NOAA Atlas 14, Volume 8, Version 2

Created (GMT): Thu Dec 2 17:16:51 2021

Back to Top

Maps & aerials

Small scale terrain

Average recurrence interval (years)

Large scale aerial

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

<u>Disclaimer</u>

APPENDIX B MDDP & DBPS Sheet References

APPENDIX C Hydrologic Computations

COMPOSITE % IMPERVIOUS CALCULATIONS: EXISTING & PROPOSED

Subdivision: Grandview Reserve
Location: CO, El Paso County

Project Name: Grandview Subdivision PDR
Project No.: HRG01
Calculated By: TJE
Checked By: BAS
Date: 12/10/21

Provide for all

		. /	e	existing	g basir	าร						4.0		40	40						25		
1	2	Pay	ed/Gravel Ro			wns/Undevelo	ned 8	12 Res	13 idential - 1/8 .	14 Acre	15 Resi	16 idential - 1/4	17 Acre	18 Resi	19 idential - 1/3 A	20 Acre	21 Res	22 idential - 1/2	Acre 23	24 Re	25 sidential - 1 A	26 Acre	27 Basins Total
Basin ID	Total Area (ac)	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	Weighted % Imp.
EXISTING				/0 1mp.			/0 Imp.			/0 Imp.			70 mp.			/0 mp.			/0 mp.			/0 IIIp.	mp.
OS-W	108.8																			1			55*
OS-NW	105.72																						56*
EX-1	105.72	100	0	0	2	105.72	2	65	0	0	40	0	0	30	0	0	25	0	0	20	0	0	2
EX-2	57.68	100	0	0	2	57.68	2	65	0	0	40	0	0	30	0	0	25	0	0	20	0	0	2
EX-3	23.35	100	0	0	2	23.35	2	65	0	0	40	0	0	30	0	0	25	0	0	20	0	0	2
PROPOSED					T .														1	T		T	
Basin-1 A-1	1.4 11.23	100	0.00	100.0 0.0	2 2	0.27 11.23	0.4 2.0	65.0 65.0	0.00	0.0	40 40	0.00	0.0	30	0.00	0.0	25 25	0.00	0.0	20	0.00	0.0	2.0
A-2a	4.21	100	0.00	0.0	2	0.00	0.0	65.0	4.21	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
A-2b	2.72	100	1.77	65.1	2	0.00	0.0	65.0	0.95	22.7	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	87.8
A-3 A-4a	0.34 6.04	100	0.34	100.0 0.0	2	0.00	0.0	65.0 65.0	0.00 6.04	0.0 65.0	40	0.00	0.0	30	0.00	0.0	25 25	0.00	0.0	20	0.00	0.0	100.0 65.0
A-4a A-4b	4.10	100	0.00	0.0	2	0.00	0.0	65.0	4.10	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
A-5	0.34	100	0.34	100.0	2	0.00	0.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	100.0
A-6	2.67	100	0.00	0.0	2	0.00	0.0	65.0	2.67	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
A-7 A-8	2.91 5.17	100	0.28	9.6 0.0	2	2.23 0.00	1.5 0.0	65.0 65.0	0.40 5.17	8.9 65.0	40	0.00	0.0	30	0.00	0.0	25 25	0.00	0.0	20	0.00	0.0	20.0 65.0
A-9	1.73	100	0.00	0.0	2	0.00	0.0	65.0	1.73	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
A-10	6.31	100	0.00	0.0	2	6.31	2.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	2.0
B-1	4.02	100	0.00	0.0	2	0.00	0.0	65.0	4.02	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
B-2 B-3	4.16 3.42	100	0.00	0.0	3	0.00	0.0	65.0 65.0	4.16 3.42	65.0 65.0	40	0.00	0.0	30	0.00	0.0	25 25	0.00	0.0	20	0.00	0.0	65.0 65.0
B-4	0.76	100	0.76	100.0	2	0.00	0.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	100.0
B-5	5.32	100	0.00	0.0	2	0.00	0.0	65.0	5.32	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
B-6	2.28 1.94	100	0.00	0.0	3 4	0.00	0.0	65.0	2.28 1.94	65.0	40 40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
B-7 B-8	3.54	100	0.00	0.0	5	0.00	0.0	65.0 65.0	3.54	65.0 65.0	40	0.00	0.0	30	0.00	0.0	25 25	0.00	0.0	20 20	0.00	0.0	65.0 65.0
B-9	2.57	100	0.00	0.0	2	0.00	0.0	65.0	2.57	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
B-10	0.87	100	0.00	0.0	2	0.87	2.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	2.0
C-1 C-2	3.90 0.96	100	0.00	0.0	2 2	0.00	0.0	65.0 65.0	3.90 0.96	65.0 65.0	40 40	0.00	0.0	30	0.00	0.0	25 25	0.00	0.0	20 20	0.00	0.0	65.0 65.0
C-3	4.07	100	0.00	0.0	2	0.00	0.0	65.0	4.07	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
C-4	3.8	100	0.00	0.0	2	0.00	0.0	65.0	3.80	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
C-5	3.19	100	0.00	0.0	2	0.00	0.0	65.0	3.19	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
C-6 C-7	2.99 5.48	100	0.00	0.0	3 4	0.00	0.0	65.0 65.0	2.99 5.48	65.0 65.0	40 40	0.00	0.0	30	0.00	0.0	25 25	0.00	0.0	20 20	0.00	0.0	65.0 65.0
C-8	2.82	100	0.00	0.0	5	0.00	0.0	65.0	2.82	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
C-9	5.96	100	0.00	0.0	6	0.00	0.0	65.0	5.96	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
C-10	3.67 0.5	100	0.00	0.0	7	0.00	0.0	65.0	3.67	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
C-11 C-12	0.5 1.61	100	0.00	0.0	8	0.00	0.0	65.0 65.0	0.50 1.61	65.0 65.0	40 40	0.00	0.0	30	0.00	0.0	25 25	0.00	0.0	20 20	0.00	0.0	65.0 65.0
C-12	2.46	100	0.00	0.0	10	2.46	10.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	10.0
C-14	1.52	100	0.00	0.0	11	1.52	11.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	11.0
D-1 D-2	2.46 0.75	100	0.00	0.0	2	0.00	0.0	65.0	2.46	65.0 65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0 65.0
D-2 D-3	4.76	100	0.00	0.0	2 2	0.00	0.0	65.0 65.0	0.75 4.76	65.0	40	0.00	0.0	30	0.00	0.0	25 25	0.00	0.0	20	0.00	0.0	65.0
D-4	4.74	100	0.00	0.0	2	0.00	0.0	65.0	4.74	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
D-5	0.71	100	0.00	0.0	2	0.71	2.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	2.0
D-6 E-1	5.06	100	0.00	0.0	2	1.00 0.00	3.0 0.0	65.0 65.0	0.00 5.06	0.0 65.0	40	0.00	0.0	30	0.00	0.0	25 25	0.00	0.0	20	0.00	0.0	3.0 65.0
E-1 E-2	3.63	100	0.00	0.0	2	0.00	0.0	65.0	3.63	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
E-3	2.97	100	0.00	0.0	3	0.00	0.0	65.0	2.97	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
E-4	6.86	100	0.00	0.0	4	0.00	0.0	65.0	6.86	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0
E-5 E-6	0.74 0.95	100	0.00	0.0	5 2	0.74 0.95	5.0 2.0	65.0 65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25 25	0.00	0.0	20	0.00	0.0	5.0 2.0
E-0	0.93	100	0.00	0.0		0.93	2.0	05.0	0.00	0.0	70	0.00	0.0	30	0.00	0.0	43	0.00	0.0	20	0.00	0.0	2.0

Lot Type Id	entification:
Lot Size (SF)	Lot Size (Acre)
0 - 8,167	1/8 Acre
8,168 - 12,704	1/4 Acre
12,705 - 18,149	1/3 Acre
18,150 - 32,670	1/2 Acre
32,671 - 43,560	1 Acre

% Impervious values are taken directly from Table 6-6 in the Colorado Springs DCM Vol. 1. CH. 6 (Referencing UDFCD 2001)
*: Taken from NRCS Curve Numbers within HR Green MDDP

COMPOSITE RUNOFF COEFFICIENT CALCULATIONS: EXISTING & PROPOSED

Subdivision: Grandview Reserve Location: CO, El Paso County

Project Name: Grandview Subdivision PDR
Project No.: HRG01

Calculated By: TJE
Checked By: BAS
12/10/21

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
		Pa	ved/Gravel Ro	oads	Lav	wns/Undevel	oped		Roofs		_	idential - 1/8			idential - 1/4			idential - 1/3			idential - 1/2			esidential - 1 A	cre	I	1
Basin ID	Total Area (ac)	C ₅	C ₁₀₀	Area (ac)	C ₅	C ₁₀₀	Area (ac)	C ₅	C ₁₀₀	Area (ac)	C ₅	C ₁₀₀	Area (ac)	C ₅	C ₁₀₀	Area (ac)	C ₅	C ₁₀₀	Area (ac)	C ₅	C ₁₀₀	Area (ac)	C ₅	C ₁₀₀	Area (ac)	Composite C ₅	Composite C ₁₀₀
EXISTING																											
OS-W	108.8																										55.04*
OS-NW	105.72																										56.49*
EX-1	105.72	0.90	0.96	0.00	0.09	0.36	105.72	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
EX-2	57.68	0.90	0.96	0.00	0.09	0.36	57.68	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
EX-3	23.35	0.90	0.96	0.00	0.09	0.36	23.35	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
PROPOSED																											
Basin-1	1.40	0.90	0.96	1.40	0.09	0.36	0.27	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.92	1.03
A-1	11.23	0.90	0.96	0.00	0.09	0.36	11.23	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36 0.59
A-2a A-2b	4.21 2.72	0.90	0.96	0.00 1.77	0.09	0.36	0.00	0.73 0.73	0.81	0.00	0.45 0.45	0.59	4.21 0.95	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45 0.74	0.83
A-20 A-3	0.34	0.90	0.96	0.34	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	0.93	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.90	0.83
A-4a	6.04	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	6.04	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
A-4b	4.10	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	4.10	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
A-5	0.34	0.90	0.96	0.34	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.90	0.96
A-6	2.67	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	2.67	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
A-7	2.91	0.90	0.96	0.28	0.09	0.36	2.23	0.73	0.81	0.00	0.45	0.59	0.40	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.22	0.45
A-8	5.17	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	5.17	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
A-9	1.73	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	1.73	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
A-10	6.31	0.90	0.96	0.00	0.09	0.36	6.31	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
B-1 B-2	4.02 4.16	0.90	0.96	0.00	0.09	0.36	0.00	0.73 0.73	0.81	0.00	0.45 0.45	0.59	4.02	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45 0.45	0.59 0.59
B-3	3.42	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	3.42	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
B-4	0.76	0.90	0.96	0.76	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.90	0.96
B-5	5.32	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	5.32	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
B-6	2.28	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	2.28	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
B-7	1.94	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	1.94	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
B-8	3.54	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	3.54	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
B-9	2.57	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	2.57	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
B-10	0.87	0.90	0.96	0.00	0.09	0.36	0.87	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
C-1	3.90	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	3.90	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
C-2 C-3	0.96 4.07	0.90	0.96	0.00	0.09	0.36	0.00	0.73 0.73	0.81	0.00	0.45 0.45	0.59	0.96 4.07	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45 0.45	0.59 0.59
C-3	3.80	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	3.80	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
C-5	3.19	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	3.19	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
C-6	2.99	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	2.99	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
C-7	5.48	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	5.48	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
C-8	2.82	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	2.82	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
C-9	5.96	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	5.96	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
C-10	3.67	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	3.67	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
C-11	0.50	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	0.50	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
C-12 C-13	1.61 2.46	0.90	0.96	0.00	0.09	0.36	0.00	0.73 0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59 0.36
C-13 C-14	1.52	0.90	0.96	0.00	0.09	0.36	2.46 1.52	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
D-1	2.46	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	2.46	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.59
D-2	0.75	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	0.75	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
D-3	4.76	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	4.76	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
D-4	4.74	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	4.74	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
D-5	0.71	0.90	0.96	0.00	0.09	0.36	0.71	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
D-6	1.00	0.90	0.96	0.00	0.09	0.36	1.00	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
E-1	5.06	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	5.06	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
E-2	3.63	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	3.63	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
E-3	2.97	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	2.97	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
E-4 E-5	6.86 0.74	0.90	0.96	0.00	0.09	0.36	0.00	0.73 0.73	0.81	0.00	0.45 0.45	0.59	6.86 0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59 0.36
E-6	0.74	0.90	0.96	0.00	0.09	0.36	0.74	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
12-0	0.73	0.70	0.70	0.00	0.07	0.50	1 0.73	0.73	0.01	0.00	0.43	0.33	0.00	0.30	0.50	0.00	0.23	I 0.47	0.00	0.22	0.40	1 0.00	0.20	J 0.++	0.00	0.07	0.50

Lot Type Ide	entification:
Lot Size (SF)	Lot Size (Acre)
0 - 8,167	= 1/8 Acre</th
8,168 - 12,704	1/4 Acre
12,705 - 18,149	1/3 Acre
18,150 - 32,670	1/2 Acre
32,671 - 43,560	1 Acre

C values are taken directly from Table 6-6 in the Colorado Springs DCM Vol. 1. CH. 6 (Referencing UDFCD 2001)

Coeffficients use HSG A&B soils - Refer to "Appendix A: Exhibits and Figures" for soil map
*: SCS Curve Number from HR Green MDDP

STANDARD FORM SF-2: EXISTING & PROPOSED TIME OF CONCENTRATION

Subdivision: Grandview Reserve

Location: CO, El Paso County

Project Name: Grandview Subdivision PDR

Project No.: HRG01
Calculated By: TJE
Checked By: BAS

Date: 12/10/21

14 15 16 17 18

		3		5	6	7	8	9	10	11	12	13	14	15	16	17	18
		SUB-BA				INITIA	AL/OVER	LAND		TR	AVEL TI	ME			Te CHECH	ζ	
L		DAT					(T _i)				(T _t)				(T _c)		FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C_{100}	L	S	Ti	L	S	Cv	VEL.	T _t	COMP. T _e	TOTAL	Calculated T _c	T _c
ID	(AC)	Soils Group	(%)			(FT)	(%)	(MIN)	(FT)	(%)		(FPS)	(MIN)	(MIN)	LENGTH(FT)	(MIN)	(MIN)
EXISTING																	
OS-W																	
OS-NW																	
EX-1	105.72	A	2.0	0.09	0.36	300	2.2	24.6	3603	2.2	15	2.2	26.9	51.5	3903.0	31.7	31.7
EX-2	57.68	A	2.0	0.09	0.36	300	1.7	27.1	2906	2.2	15	2.2	21.8	48.8	3206.0	27.8	27.8
EX-3	23.35	A	2.0	0.09	0.36	300	3.4	21.3	1029	2.2	15	2.2	7.7	29.0	1329.0	17.4	17.4
PROPOSED																	
Basin-1	1.40	A	100.4	0.92	1.03	46	2.0	1.8	556	1.8	20	2.7	3.5	5.2	602.0	13.3	5.2
A-1	11.23	A	2.0	0.09	0.36	50	10.0	6.1	957	5.0	20	4.5	3.6	9.6	1007.0	15.6	9.6
A-2a	4.21	A	65.0	0.45	0.59	50	5.0	4.9	742	2.5	20	3.2	3.9	8.8	792.0	14.4	8.8
A-2b	2.72	A	87.8	0.74	0.83	250	2.0	8.3	300	2.5	20	3.2	1.6	9.9	550.0	13.1	9.9
A-3	0.34	A	100.0	0.90	0.96	18	2.0	1.2	560	1.9	20	2.8	3.4	4.6	578.0	13.2	5.0
A-4a	6.04	A	65.0	0.45	0.59	230	2.0	14.3	700	2.5	20	3.2	3.7	18.0	930.0	15.2	15.2
A-4b	4.10	A	65.0	0.45	0.59	100	2.0	9.4	770	2.5	20	3.2	4.1	13.5	870.0	14.8	13.5
A-5	0.34	A	100.0	0.90	0.96	18	2.0	1.2	332	1.4	20	2.4	2.3	3.6	350.0	11.9	5.0
A-6	2.67	A	65.0	0.45	0.59	207	10.0	8.0	340	1.7	20	2.6	2.2	10.1	547.0	13.0	10.1
A-7	2.91	A	20.0	0.22	0.45	327	5.0	17.0	351	3.3	20	3.6	1.6	18.7	678.0	13.8	13.8
A-8	5.17	A	65.0	0.45	0.59	50	5.0	4.9	996	2.0	20	2.8	5.9	10.8	1046.0	15.8	10.8
A-9	1.73	A	65.0	0.45	0.59	134	2.0	10.9	251	2.0	20	2.8	1.5	12.4	385.0	12.1	12.1
A-10	6.31	A	2.0	0.09	0.36	450	5.0	22.9	718	8.0	20	5.7	2.1	25.1	1168.0	16.5	16.5
B-1	4.02	A	65.0	0.45	0.59	147	5.0	8.4	648	1.7	20	2.6	4.1	12.6	795.0	14.4	12.6
B-2	4.16	A	65.0	0.45	0.59	228	5.0	10.5	633	1.6	20	2.5	4.2	14.7	861.0	14.8	14.7
B-3	3.42	A	65.0	0.45	0.59	228	5.0	10.5	450	1.6	20	2.5	3.0	13.5	678.0	13.8	13.5
B-4	0.76	A	100.0	0.90	0.96	18	2.0	1.2	721	1.0	20	2.0	6.0	7.2	739.0	14.1	7.2
B-5	5.32	A	65.0	0.45	0.59	165	2.0	12.1	800	2.0	20	2.8	4.7	16.8	965.0	15.4	15.4
B-6	2.28	A	65.0	0.45	0.59	179	2.0	12.6	515	2.0	20	2.8	3.0	15.7	694.0	13.9	13.9
B-7	1.94	A	65.0	0.45	0.59	79	2.0	8.4	515	2.0	20	2.8	3.0	11.4	594.0	13.3	11.4
B-8	3.54	A	65.0	0.45	0.59	166	2.0	12.2	805	2.0	20	2.8	4.7	16.9	971.0	15.4	15.4
B-9	2.57	A	65.0	0.45	0.59	79	2.0	8.4	292	2.0	20	2.8	1.7	10.1	371.0	12.1	10.1
B-10	0.87	A	2.0	0.09	0.36	66	25.0	5.1	187	1.0	20	2.0	1.6	6.7	253.0	11.4	6.7
C-1	3.90	A	65.0	0.45	0.59	70	2.0	7.9	1000	1.3	20	2.3	7.3	15.2	1070.0	15.9	15.2
C-2	0.96	A	65.0	0.45	0.59	70	2.0	7.9	645	1.3	20	2.3	4.7	12.6	715.0	14.0	12.6
C-3	4.07	A	65.0	0.45	0.59	175	2.5	11.6	680	1.0	20	2.0	5.7	17.3	855.0	14.8	14.8
C-4	3.80	A	65.0	0.45	0.59	175	2.5	11.6	680	1.0	20	2.0	5.7	17.3	855.0	14.8	14.8
C-5	3.19	A	65.0	0.45	0.59	70	2.0	7.9	770	1.5	20	2.4	5.2	13.1	840.0	14.7	13.1
C-6	2.99	A	65.0	0.45	0.59	70	2.0	7.9	1160	1.5	20	2.4	7.9	15.8	1230.0	16.8	15.8
C-7	5.48	A	65.0	0.45	0.59	175	2.0	12.5	870	2.2	20	3.0	4.9	17.4	1045.0	15.8	15.8
C-8	2.82	A	65.0	0.45	0.59	70	2.0	7.9	890	2.2	20	3.0	5.0	12.9	960.0	15.3	12.9
C-9	5.96	A	65.0	0.45	0.59	175	2.0	12.5	1180	1.8	20	2.7	7.3	19.8	1355.0	17.5	17.5
C-10	3.67	A	65.0	0.45	0.59	70	2.0	7.9	1100	1.8	20	2.7	6.8	14.7	1170.0	16.5	14.7
C-11	0.50	A	65.0	0.45	0.59	24	2.0	4.6	253	1.2	20	2.2	1.9	6.6	277.0	11.5	6.6
C-12	1.61	A	65.0	0.45	0.59	132	2.0	10.9	272	0.9	20	1.9	2.4	13.2	404.0	12.2	12.2
C-13	2.46	A	10.0	0.09	0.36	225	15.0	11.3	352	1.0	20	2.0	2.9	14.2	577.0	13.2	13.2
C-14	1.52	A	11.0	0.09	0.36	300	5.0	18.7	0	0.0	10	0.0	0.0	18.7	300.0	11.7	11.7
D-1	2.46	A	65.0	0.45	0.59	32	4.6	4.0	446	1.7	20	2.6	2.9	6.9	478.0	12.7	6.9
D-2	0.75	A	65.0	0.45	0.59	66	2.7	6.9	291	1.8	20	2.7	1.8	8.8	357.0	12.0	8.8
D-3	4.76	A	65.0	0.45	0.59	69	4.8	5.9	802	1.8	20	2.7	5.0	10.8	871.0	14.8	10.8
D-4	4.74	A	65.0	0.45	0.59	69	4.8	5.9	841	1.7	20	2.6	5.4	11.2	910.0	15.1	11.2
D-5	0.71	A	2.0	0.09	0.36	110	25.0	6.6	201	1.0	20	2.0	1.7	8.3	311.0	11.7	8.3
D-6	1.00	A	3.0	0.09	0.36	300	5.0	18.7	0	0.0	10	0.0	0.0	18.7	300.0	11.7	11.7
E-1	5.06	A	65.0	0.45	0.59	200	5.0	9.8	1150	2.0	20	2.8	6.8	16.6	1350.0	17.5	16.6
E-2	3.63	A	65.0	0.45	0.59	0	0.0	0.0	1150	2.0	20	2.8	6.8	6.8	1150.0	16.4	6.8
E-3	2.97	A	65.0	0.45	0.59	80	2.0	8.4	1000	1.0	20	2.0	8.3	16.8	1080.0	16.0	16.0
E-4	6.86	A	65.0	0.45	0.59	300	2.0	16.4	1200	1.0	20	2.0	10.0	26.4	1500.0	18.3	18.3
E-5	0.74	A	5.0	0.09	0.36	127	25.0	7.1	315	1.0	20	2.0	2.6	9.8	442.0	12.5	9.8
E-6	0.95	A	2.0	0.09	0.36	350	2.0	27.5	113	2.0	10	1.4	1.3	28.8	463.0	12.6	12.6

NOTES

 $T_i = (0.395*(1.1 - C_5)*(L)^0.5)/((S)^0.33)$, S in ft/ft

T_t=L/60V (Velocity From Fig. 501)

Velocity V=Cv*S^0.5, S in ft/ft

Tc Check = 10+L/180

For Urbanized basins a minimum T_c of 5.0 minutes is required.

For non-urbanized basins a minimum T_c of 10.0 minutes is required

the computed value needs to be used for existing conditions (the area isn't urbanized yet)

HRG01_Pr. Drainage Calcs Update-12.02.2021.xlsm

STANDARD FORM SF-3: EXISTING & PROPOSED STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

Not checked on this review

Subdivision: Grandview Reserve
Location: CO, El Paso County Design Storm: 5-Year

Project Name: Grandview Subdivision PDR
Project No.: HRG01
Calculated By: TJE
Checked By: BAS
Date: 12/10/21

				DIRE	ECT RU	NOFF				TOTAL	RUNOF	F	STF	REET		PIPE		TRAV	/EL T	IME	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	Tc (min)	C*A (Ac)	I (in/hr)	Q (cfs)	Tc (min)	C*A (Ac)	I (in/hr)	Q (cfs)	Slope (%)	Street Flow (cfs)	Design Flow (cfs)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	Tt (min)	REMARKS
EXISTING		00.14/	I 400 00	1	1				1			1			_						
		OS-W	108.80									67.0									Sheet flow to Main Stem Channel Total Flow - Q(5)=67 cfs (from MDDP)
		OS-NW	105.72									59.0									Sheet flow to Main Stem Tributary #2 Channel Total Flow - Q(5)=59 cfs (from MDDP)
		EX-1	105.72	0.09	31.7	9.51	2.35	22.3				59.0			 						Sheet flow to Main Stem Tributary #2 Channel
	1	EX-2	57.68	0.09	27.8	5.19	2.53	13.1				89.3	<u> </u>		-						Total Flow - Incl. Offsite flow of Q(5)=67 cfs (from MDDP) Sheet flow to Main Stem Channel
	2											72.1									Total Flow - Incl. Offsite flow of Q(5)=59 cfs (from MDDP)
	3	EX-3	23.35	0.09	17.4	2.10	3.23	6.8													Sheet flow offiste - outfalls to Main Stem Tributary #2 Channel
PROPOSED			ı									·			•						
	T	Basin-1	1.40	0.92	5.2	1.29	5.05	6.5	Ι				Π	Ι	П						
	1	A-1	11.23	0.09	9.6	1.01	4.16	4.2							-						Institutional Tract
	2a	A-2a	4.21	0.45	8.8	1.89	4.29	8.1							<u> </u>						Basin will have own water quality & detention pond On-Grade 15' CDOT Type R Inlet (0.1 cfs bypass to DP 2b)
	Za																				On-Grade 13 CDO1 Type R Iniet (0.1 cis bypass to DP 26)
	2b	A-2b	2.72	0.74	9.9	2.01	4.13	8.3				8.4									Sump 15' CDOT Type R Inlet (Receives 0.1 cfs upstream bypass)
	3	A-3	0.34	0.90	5.0	0.31	5.10	1.6													Sump 5' CDOT Type R Inlet
	4a	A-4a	6.04	0.45	15.2	2.72	3.44	9.4													On-Grade 10' CDOT Type R Inlet (2.4 cfs bypass to DP 2)
	4b 4	A-4b	4.10	0.45	13.5	1.85	3.63	6.7				10.0									On-Grade 10' CDOT Type R Inlet (0.9 cfs bypass to DP 2)
	5	A-5	0.34	0.90	5.0	0.31	5.10	1.6				10.0									Sump 15' CDOT Type R Inlet (Receives 3.3 cfs upstream bypass) Sump 5' CDOT Type R Inlet
	6	A-6	2.67	0.45	10.1	1.20	4.08	4.9													Sump 15' CDOT Type R Inlet
	7	A-7	2.91	0.22	13.8	0.64	3.60	2.3													Sump 5' CDOT Type R Inlet
	7a	A-8	5.17	0.45	10.8	2.33	3.98	9.3													Sump 20' CDOT Type R Inlet
	7b	A-9	1.73	0.45	12.1	0.78	3.80	3.0													Sump 10' CDOT Type R Inlet
		A-10	6.31	0.09	16.5	0.57	3.31	1.9	(2	14.61	4.70	70.0									T. J. C.T D. J.A.
	9	B-1	4.02	0.45	12.6	1.81	3.74	6.8	6.3	14.61	4.79	70.0									Total of flows to Pond A Sump 15' CDOT Type R Inlet
	10a	B-2	4.16	0.45	14.7	1.87	3.50	6.5							-						On-Grade 15' CDOT Type R Inlet (0.0 cfs bypass to DP 10b)
		B-3	3.42	0.45	13.5	1.54	3.63	5.6	-	-			_	-	₩						
	10b	B-4	0.76	0.90	7.2	0.68	4.59	3.1				5.6			├						Sump 15' CDOT Type R Inlet (Receives 0.0 cfs of upstream bypass) Sump 10' CDOT Type R Inlet
	12a	B-5	5.32	0.45	15.4	2.39	3.42	8.2													On-Grade 15' CDOT Type R Inlet (0.2 cfs bypass to DP 12b)
	14	B-6	2.28	0.45	13.9	1.03	3.59	3.7													On-Grade 10' CDOT Type R Inlet (0.0 cfs bypass to DP 12b)
	15	B-7	1.94	0.45	11.4	0.87	3.89	3.4													On-Grade 10' CDOT Type R Inlet (0.0 cfs bypass to DP 12b)
	121	B-8	3.54	0.45	15.4	1.59	3.42	5.4				5.6									Summ 151 CDOT Type P Inlet (Pennings 0.2 of of materials burners)
	12b 13	B-9	2.57	0.45	10.1	1.16	4.08	4.7				5.6		<u> </u>	\dagger						Sump 15' CDOT Type R Inlet (Receives 0.2 cfs of upstream bypass) Sump 15' CDOT Type R Inlet
		B-10	0.87	0.09	6.7	0.08	4.70	0.4	1	10.00	2 :2	4									
1	16	I	I	I	I]			15.4	13.02	3.42	44.5	I	I	I	I		l			Total of flows to Pond B

STANDARD FORM SF-3: EXISTING & PROPOSED

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

		Project Name:	Grandview Subdivision PDR
Subdivision:	Grandview Reserve	Project No.	: HRG01
Location:	CO, El Paso County	Calculated By:	TJE
Design Storm:	5-Year	Checked By:	BAS
		Date:	12/10/21

				DIRI	ECT RU	NOFF			,	ГОТАL	RUNOF	F	STR	EET		PIPE		TRAV	EL T	ME	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	Tc (min)	C*A (Ac)	í (in/hr)	Q (cfs)	Tc (min)	C*A (Ac)	I (in/hr)	Q (cfs)	Slope (%)	Street Flow (cfs)	Design Flow (cfs)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	Tt (min)	REMARKS
	17b	C-1	3.90	0.45	15.2	1.76	3.44	6.1				6.1	- 0,	0,		0,					On-Grade 15' CDOT Type R (0.0 cfs bypass to DP 17e)
		C-2	0.96	0.45	12.6	0.43	3.74	1.6													
	17a	C-3	4.07	0.45	14.8	1.83	3.49	6.4	14.8	2.26	3.49	7.9									On-Grade 15' CDOT Type R (0.1 cfs bypass to DP 17c)
	17c	C-4	3.80	0.45	14.8	1.71	3.49	6.0				6.1									Receives 0.1 cfs of Bypass from DP 17a On-Grade 15' CDOT Type R (0.0 cfs bypass to DP 17d)
	17d	C-5	3.19	0.45	13.1	1.44	3.67	5.3				5.3									On-Grade 15' CDOT Type R (0.0 cfs bypass to DP 17g)
	17e	C-6	2.99	0.45	15.8	1.35	3.38	4.6				4.6									On-Grade 15' CDOT Type R (0.0 cfs bypass to DP 17g)
	17f	C-8	2.82	0.45	12.9	1.27	3.70	4.7				4.7									On-Grade 15' CDOT Type R (0.0 cfs bypass to DP 17g)
	17g	C-9	5.96	0.45	17.5	2.68	3.22	8.6				8.6									Sump 15' CDOT Type R (Receives 0.0 cfs of upstream bypass)
	18a	C-7	5.48	0.45	15.8	2.47	3.38	8.3				8.3									On-Grade 15' CDOT Type R (0.2 cfs bypass to DP 18b)
	18b	C-10	3.67	0.45	14.7	1.65	3.49	5.8				6.0									Sump 15' CDOT Type R (Receives 0.2 cfs of upstream bypass)
	19	C-11	0.50	0.45	6.6	0.23	4.74	1.1				1.1									Sump 5' CDOT Type R (Receives 0.0 cfs of upstream bypass)
	20	C-12	1.61	0.45	12.2	0.72	3.78	2.7				2.7									Sump 5' CDOT Type R (Receives 0.0 cfs of upstream bypass)
	21a	C-13	2.46	0.09	13.2	0.22	3.66	0.8	17.5	17.76	3.22	57.2									Total combined flows to Pond C
	21b	C-14	1.52	0.09	11.7	0.14	3.86	0.5													Un-developed area - Sheet flows to MS 2
	22	D-1	2.46	0.45	6.9	1.11	4.66	5.2													Sump 15' CDOT Type R Inlet
	23	D-2	0.75	0.45	8.8	0.34	4.31	1.5													Sump 5' CDOT Type R Inlet
	24	D-3	4.76	0.45	10.8	2.14	3.98	8.5													Sump 15' CDOT Type R Inlet
	25	D-4	4.74	0.45	11.2	2.13	3.92	8.3													Sump 15' CDOT Type R Inlet
	26	D-5	0.71	0.09	8.3	0.06	4.39	0.3	11.2	5.78	3.92	22.7									Total of flows to Pond D
	27	D-6	1.00	0.09	11.7	0.09	3.86	0.3													Un-developed area - Sheet flows to MS
	27	E-1 E-2	5.06 3.63	0.45	16.6	2.28	3.30	7.5													On-Grade 15' CDOT Type R Inlet (0.1 cfs bypass to DP 29)
	28	E-2 E-3	2.97	0.45	16.0	1.63	3.36	4.5													On-Grade 15' CDOT Type R Inlet (0.1 cfs bypass to DP 29)
	29	E-3	6.86	0.45	18.3	3.09	3.36	9.7				4.7									Sump 15' CDOT Type R Inlet (Receives 0.2 cfs of upstream bypass) Sump 15' CDOT Type R Inlet
	30	E-4 E-5	0.74	0.45	9.8	0.07	4.14	0.3													Bump 12 CDO1 Type K miet
	31	E-6	0.74	0.09	12.6	0.07	3.74	0.3	18.3	8.41	3.15	26.5									Total of flows to Pond E Un-developed area - Sheet flows to MS
		L-0	0.73	0.09	12.0	0.09	3.74	0.5													on-developed area - Sheet flows to MS

Page 2 of 2 12/10/2021

STANDARD FORM SF-3: EXISTING & PROPOSED

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

Subdivision: Grandview Reserve
Location: CO, El Paso County Design Storm: 100-Year

Project Name: Grandview Subdivision PDR
Project No.: HRG01
Calculated By: TJE
Checked By: BAS
Date: 12/10/21

				DIR	ECT RU	NOFF				ΓΟΤΑL	RUNOF	F	ST	REET		PIPE		TRA	VEL TI	ЛЕ
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	Tc (min)	C*A (Ac)	I (in/hr)	Q (cfs)	Tc (min)	C*A (Ac)	I (in/hr)	Q (cfs)	Slope (%)	Street Flow (cfs)	Design Flow (cfs)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	REMARKS
EXISTING																				
	1	EX-1	105.72	0.36	31.7	38.06	4.18	159.1				572.1								Sheet flow to Main Stem Tributary #2 Channel Total Flow - Incl. Offsite flow of Q(100)=413 cfs (from MDDP)
	<u> </u>	EX-2	57.68	0.36	27.8	20.76	4.50	93.4												Sheet flow to Main Stem Channel
	3	EX-3	23.35	0.36	17.4	8.41	5.75	48.4				373.4								Total Flow - Incl. Offsite flow of Q(100)=280 cfs (from MDDP) Sheet flow offsite - outfalls to Main Stem Tributary #2 Channel
	-																			·
PROPOSED																				
		OS-W	108.80									413.0								Sheet flow to Main Stem Channel Total Flow - Q(5)=413 cfs (from MDDP)
		OS-NW	105.72																\vdash	Sheet flow to Main Stem Tributary #2 Channel
	+	Basin-1	1.40	1.03	5.2	1.44	8.98	12.9				280.0	_						\vdash	Total Flow - Q(5)=280 cfs (from MDDP)
	_																		\sqcup	Total attract
	1	A-1	11.23	0.36	9.6	4.04	7.40	29.9												Institutional Tract Basin will have own water quality & detention pond
	2a	A-2a	4.21	0.59	8.8	2.48	7.64	18.9												On-Grade 15' CDOT Type R Inlet (5.2 cfs bypass to DP 2b)
	21	A-2b	2.72	0.83	9.9	2.26	7.34	16.6				21.8								C ICODOTT BILLOR : 52 C ()
	2b 3	A-3	0.34	0.96	5.0	0.33	9.09	3.0				21.8								Sump 15' CDOT Type R Inlet (Receives 5.2 cfs upstream bypass) Sump 5' CDOT Type R Inlet
	4a	A-4a	6.04	0.59	15.2	3.56	6.13	21.8											\vdash	On-Grade 10' CDOT Type R Inlet (11.3 cfs bypass to DP 2)
	4b	A-4b	4.10	0.59	13.5	2.42	6.46	15.6											\vdash	On-Grade 10' CDOT Type R Inlet (6.6 cfs bypass to DP 2)
	4											17.9								Sump 15' CDOT Type R Inlet (Receives 17.9 cfs upstream bypass)
	5	A-5	0.34	0.96	5.0	0.33	9.09	3.0												Sump 5' CDOT Type R Inlet
	6	A-6	2.67	0.59	10.1	1.58	7.27	11.5												Sump 15' CDOT Type R Inlet
	7	A-7	2.91	0.45	13.8	1.31	6.40	8.4												Sump 5' CDOT Type R Inlet
	7a	A-8	5.17	0.59	10.8	3.05	7.09	21.6												Sump 20' CDOT Type R Inlet
	7b	A-9	1.73	0.59	12.1	1.02	6.76	6.9												Sump 10' CDOT Type R Inlet
		A-10	6.31	0.36	16.5	2.27	5.90	13.4											\vdash	
	8 9	B-1	4.02	0.59	12.6	2.37	6.66	15.8	16.5	20.61	5.90	121.6								Total of flows to Pond A Sump 15' CDOT Type R Inlet
	10a	B-2	4.16	0.59	14.7	2.45	6.22	15.2												On-Grade 15' CDOT Type R Inlet (3.1 cfs bypass to DP 10b)
	10b	B-3	3.42	0.59	13.5	2.02	6.46	13.0				16.1								Sump 15' CDOT Type R Inlet (Receives 3.1 cfs of upstream bypass)
	11	B-4	0.76	0.96	7.2	0.73	8.17	6.0												Sump 10' CDOT Type R Inlet
	12a	B-5	5.32	0.59	15.4	3.14	6.10	19.2											+	On-Grade 15' CDOT Type R Inlet (5.4 cfs bypass to DP 12b)
	14	B-6	2.28	0.59	13.9	1.35	6.39	8.6					<u> </u>						++	On-Grade 10' CDOT Type R Inlet (2.0 cfs bypass to DP 12b)
	15	B-7	1.94	0.59	11.4	1.14	6.93	7.9											\vdash	On-Grade 10' CDOT Type R Inlet (1.6 cfs bypass to DP 12b)
		B-8	3.54	0.59	15.4	2.09		12.7											\sqcup	, J ₁ (, ,
	12b						6.09					21.7								Sump 15' CDOT Type R Inlet (Receives 9.0 cfs of upstream bypass)
	13	B-9	2.57	0.59	10.1	1.52	7.27	11.1												Sump 15' CDOT Type R Inlet
	16	B-10	0.87	0.36	6.7	0.31	8.37	2.6	15.4	17.12	6.09	104.3								Total of flows to Pond B
L	10	ı							15.7	17.12	0.07	104.5		L					-	Total of nows to I till D

STANDARD FORM SF-3: EXISTING & PROPOSED

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

Subdivision: Grandview Reserve

Location: CO, El Paso County

Design Storm: 100-Year

 Project Name:
 Grandview Subdivision PDR

 Project No.:
 HRG01

 Calculated By:
 TJE

 BAS

Date: 12/10/21

				DIR	ECT RU	NOFF				TOTAL	RUNOF	F	ST	REET		PIPE]	TRA	VEL T	IME	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	Tc (min)	C*A (Ac)	I (in/hr)	Q (cfs)	Tc (min)	C*A (Ac)	I (in/hr)	Q (cfs)	Slope (%)	Street Flow (cfs)	Design Flow (cfs)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	Tt (min)	REMARKS
	17b	C-1	3.90	0.59	15.2	2.30	6.12	14.1				14.1									On-Grade 15' CDOT Type R (2.5 cfs bypass to DP 17e)
		C-2	0.96	0.59	12.6	0.57	6.65	3.8													
	17a	C-3	4.07	0.59	14.8	2.40	6.21	14.9	14.8	2.97	6.21	18.4									On-Grade 15' CDOT Type R (5.1 cfs bypass to DP 17c)
	17c	C-4	3.80	0.59	14.8	2.24	6.21	13.9				19.0									Receives 5.1 cfs of Bypass from DP 17a On-Grade 15' CDOT Type R (5.4 cfs bypass to DP 17d)
	17d	C-5 C-6	2.99	0.59	15.1	1.88	6.02	10.6				17.7									Recieves 5.4 cfs of Bypass from DP 17c On-Grade 15' CDOT Type R (4.5 cfs bypass to DP 17g) Receives 2.5 cfs bypass from DP 17b
	17e	C-8	2.82	0.59	12.9	1.66	6.59	10.6				13.1									On-Grade 15' CDOT Type R (2.0 cfs bypass to DP 17g)
	17f	C-9	5.96	0.59	17.5	3.52	5.73	20.2				10.9									On-Grade 15' CDOT Type R (1.3 cfs bypass to DP 17g)
	17g	C-7	5.48	0.59	17.3	3.32	6.02	19.4				28.0			-						Sump 15' CDOT Type R (Receives 7.8 cfs of upstream bypass)
	18a	C-10	3.67	0.59	14.7	2.17	6.21	13.5				19.4				-					On-Grade 15' CDOT Type R (5.5 cfs bypass to DP 18b)
	18b 19	C-11	0.50	0.59	6.6	0.30	8.43	2.5				19.0									Sump 15' CDOT Type R (Receives 5.5 cfs of upstream bypass)
	20	C-12	1.61	0.59	12.2	0.95	6.73	6.4				2.5									Sump 5' CDOT Type R (Receives 0.0 cfs of upstream bypass)
	-	C-13	2.46	0.36	13.2	0.89	6.52	5.8				6.4			-						Sump 5' CDOT Type R (Receives 0.0 cfs of upstream bypass)
	21a 21b	C-14	1.52	0.36	11.7	0.55	6.87	3.8	17.5	23.87	5.73	136.8									Total combined flows to Pond C Un-developed area - Sheet flows to MS 2
	22	D-1	2.46	0.59	6.9	1.45	8.30	12.0								-					Sump 15' CDOT Type R Inlet
	23	D-2	0.75	0.59	8.8	0.44	7.67	3.4							1						Sump 5' CDOT Type R Inlet
	24	D-3	4.76	0.59	10.8	2.81	7.08	19.9													Sump 15' CDOT Type R Inlet
	25	D-4	4.74	0.59	11.2	2.80	6.98	19.5													Sump 15' CDOT Type R Inlet
	26	D-5	0.71	0.36	8.3	0.26	7.81	2.0	11.2	7.76	6.98	54.2									Tall Co. and D. ID.
	26	D-6	1.00	0.36	11.7	0.36	6.87	2.5	11.2	7.76	6.98	54.2									Total of flows to Pond D Un-developed area - Sheet flows to MS
	27	E-1	5.06	0.59	16.6	2.99	5.88	17.6													On-Grade 15' CDOT Type R Inlet (4.4 cfs bypass to DP 29)
	28	E-2	3.63	0.59	6.8	2.14	8.35	17.9													On-Grade 15' CDOT Type R Inlet (4.6 cfs bypass to DP 29)
	29	E-3	2.97	0.59	16.0	1.75	5.98	10.5				19.5									Sump 15' CDOT Type R Inlet (Receives 9.0 cfs of upstream bypass)
	30	E-4	6.86	0.59	18.3	4.05	5.60	22.7													
	31	E-5	0.74	0.36	9.8	0.27	7.37	2.0	18.3	11.20	5.60	62.7									Total of flows to Pond E
		E-6	0.95	0.36	12.6	0.34	6.66	2.3													Un-developed area - Sheet flows to MS

Page 2 of 2 12/10/2021

APPENDIX D Hydraulic Computations

Inlets not checked with this review.

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin A-2a (DP2a)

1 0 5				
Gutter Geometry:			7-	
Maximum Allowable Width for Spread Behind Curb	$T_{BACK} =$	8.0	ft	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	$S_{BACK} =$	0.020	ft/ft	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	$n_{BACK} = [$	0.013]	
Height of Curb at Gutter Flow Line	H _{CURB} =	6.00	inches	
Distance from Curb Face to Street Crown	T _{CROWN} =	17.0	ft	
Gutter Width	W =	2.00	ft	
Street Transverse Slope	S _x =	0.020	ft/ft	
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	S _w =	0.083	ft/ft	
Street Longitudinal Slope - Enter 0 for sump condition	S ₀ =	0.025	ft/ft	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{STREET} =	0.016] '	
		Minor Storm	Major Storm	
Max. Allowable Spread for Minor & Major Storm	$T_{MAX} = [$	12.5	17.0]ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	d _{MAX} =	6.0	8.0	inches
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)	- PIAX		✓	
Maximum Capacity for 1/2 Street based On Allowable Spread		Minor Storm	Major Storm	
Water Depth without Gutter Depression (Eq. ST-2)	y = [3.00	4.08	linches
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")	d _C =	2.0	2.0	inches
Gutter Depression (d _C - (W * S _x * 12))	a = 1	1.51	1.51	inches
Water Depth at Gutter Flowline	d =	4.51	5.59	inches
Allowable Spread for Discharge outside the Gutter Section W (T - W)	T _x =	10.5	15.0	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.473	0.350	- '`
Discharge outside the Gutter Section W, carried in Section T _x	$Q_X =$	4.3	11.2	cfs
Discharge within the Gutter Section W ($Q_T - Q_X$)	$Q_{W} = $	3.9	6.0	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)				cfs
Maximum Flow Based On Allowable Spread	Q _{BACK} =	0.0 8.2	0.0 17.2	cfs
Flow Velocity within the Gutter Section	Q _T =	6.6		→
V*d Product: Flow Velocity times Gutter Flowline Depth	v = V*d =	2.5	7.9	fps
	-			-
Maximum Capacity for 1/2 Street based on Allowable Depth		Minor Storm	Major Storm	٦.
Theoretical Water Spread	_T _{TH} =	18.7	27.0	_ft
Theoretical Spread for Discharge outside the Gutter Section W (T - W)	T _{X TH} =	16.7	25.0	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.318	0.216	4.
Theoretical Discharge outside the Gutter Section W, carried in Section T_{XTH}	$Q_{XTH} =$	14.9	43.7	cfs
Actual Discharge outside the Gutter Section W, (limited by distance T _{CROWN})	$Q_X =$	14.8	39.9	cfs
Discharge within the Gutter Section W (Q_d - Q_X)	$Q_W = $	6.9	12.1	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	$Q_{BACK} =$	0.0	2.9	cfs
Total Discharge for Major & Minor Storm (Pre-Safety Factor)	Q =[21.7	54.9	cfs
Average Flow Velocity Within the Gutter Section	V =	8.3	10.3	fps
V*d Product: Flow Velocity Times Gutter Flowline Depth	V*d =	4.1	6.9	_
Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm	R =	0.86	0.70	
Max Flow Based on Allowable Depth (Safety Factor Applied)	$Q_d =$	18.7	38.3	cfs
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)	d =	5.74	7.15	inches
Resultant Flow Depth at Street Crown (Safety Factor Applied)	$d_{CROWN} =$	0.15	1.56	inches
MINOR STORM Allowable Capacity is based on Spread Criterion		Minor Storm	Major Storm	
MAJOR STORM Allowable Capacity is based on Depth Criterion	$Q_{allow} = [$	8.2	38.3	cfs

INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	7 I
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	T
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	5.00	5.00	⊣ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	w _o =	N/A	N/A	T _{ft}
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	⊣ "
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from <i>Inlet Management</i>)	$Q_o = $	8.1	18.9	ີ່⊓cfs
Water Spread Width	T =	12.5	17.0	⊣ft I
Water Depth at Flowline (outside of local depression)	d =	4.5	5.8	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.2	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.475	0.337	T
Discharge outside the Gutter Section W, carried in Section T _v	O _v =	4.3	12.5	cfs
Discharge within the Gutter Section W	$Q_w = 1$	3.9	6.4	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	$A_W = \begin{bmatrix} A_W & A_W \end{bmatrix}$	0.58	0.79	sq ft
Velocity within the Gutter Section W	V _w =	6.6	8.0	fps
Water Depth for Design Condition	d _{LOCAL} =	7.5	8.8	inches
Grate Analysis (Calculated)	GIOCAI - I	MINOR	MAJOR	Inches
Total Length of Inlet Grate Opening	L = [N/A	N/A	∃ft I
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	⊣'' ∥
Under No-Clogging Condition	Lo-GRATE -	MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	∏fps
Interception Rate of Frontal Flow	V ₀ – R _f =	N/A	N/A	-l'193
Interception Rate of Flow	$R_x = $	N/A	N/A	┥
Interception Rate of Side Flow Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition	Qi -[MINOR	MAJOR	Jus
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	ا ا
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	┥
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	⊣ _{ft} ∥
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	V ₀ – R _f =	N/A	N/A	⊣ ¹¹⁹³
Interception Rate of Flow	$R_x = R_x$	N/A	N/A	
Actual Interception Capacity	$Q_a =$	N/A	N/A	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet)	Q _a = Q _b =	N/A N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	Q _b −1	MINOR	MAJOR	ICIS
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.109	0.083	∏rt/ft
Required Length L_T to Have 100% Interception	S _e - L _T = l	16.54	28.87	Ift
Under No-Clogging Condition	LT -[MINOR	MAJOR	ا ''
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L _T)	L = [15.00	15.00	Πft
Interception Capacity	Q _i =	8.0	13.8	cfs
Under Cloaging Condition	Ų −[MINOR	MAJOR	Ju₃
Clogging Coefficient	CurbCoef =	1.31	1.31	٦ ا
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	┥ ║
Effective (Unclogged) Length	Curbciog = L	14.34	14.34	⊣ _{ft} ∥
Actual Interception Capacity	- ·	8.0	13.7	cfs
Carry-Over Flow = Q _{b/GRATE/} -Q _a	Q _a =	0.1	5.2	crs cfs
	Q _b =	MINOR	MAJOR	juis
Summary Total Inlet Interception Capacity	0-1	8.0	13.7	cfs
1 ' ' '	Q =			cfs
Total Inlet Carry-Over Flow (flow bypassing inlet) Capture Percentage = Q_A/Q_0 =	Qь = С% =	0.1 98	5.2 73	- crs %
Capture rescentage = Qa/Qn =	C-70 =	70	13	70

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin A-2b (DP2b)

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) $S_{BACK} =$ 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $n_{BACK} =$ 0.013 Height of Curb at Gutter Flow Line 6.00 H_{CURB} : inches Distance from Curb Face to Street Crown T_{CROWN} = 17.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_0 ft/ft 0.000 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.016 $n_{STREET} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 15.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm linches $d_{MAX} =$ 6.0 8.0 Check boxes are not applicable in SUMP conditions Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) 3.60 4.08 inches Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") inches d_C = 2.0 2.0 Gutter Depression (d_C - (W * S_x * 12)) a 1.51 inches Water Depth at Gutter Flowline d = 5.11 5.59 inches Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) $T_X =$ 13.0 15.0 ft $E_0 =$ 0.397 0.350 Discharge outside the Gutter Section W, carried in Section T_x Q_X = 0.0 0.0 cfs Discharge within the Gutter Section W $(Q_T - Q_X)$ Q_W = cfs 0.0 0.0 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Orack = cfs 0.0 0.0 Maximum Flow Based On Allowable Spread Q_T = cfs SUMP SUMP Flow Velocity within the Gutter Section 0.0 0.0 fps V*d Product: Flow Velocity times Gutter Flowline Depth V*d = 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread T_{TH} = 18.7 27.0 25.0 Theoretical Spread for Discharge outside the Gutter Section W (T - W) T_{X TH} = 16.7 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E_o = 0.318 0.216 Theoretical Discharge outside the Gutter Section W, carried in Section $T_{X\,TH}$ Q_{X TH} = cfs 0.0 0.0 Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) 0.0 cfs $Q_x =$ 0.0 Discharge within the Gutter Section W (Q_d - Q_X) cfs Q_W = 0.0 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) cfs Q_{BACK} = 0.0 0.0 Total Discharge for Major & Minor Storm (Pre-Safety Factor) Q = 0.0 cfs 0.0 Average Flow Velocity Within the Gutter Section fps 0.0 0.0 V*d Product: Flow Velocity Times Gutter Flowline Depth V*d = 0.0 0.0 Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm R = SUMP SUMP Max Flow Based on Allowable Depth (Safety Factor Applied) $Q_d =$ SUMP SUMP cfs Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) d = inches Resultant Flow Depth at Street Crown (Safety Factor Applied) d_{CROWN} = linches MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP cfs

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	†
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.1	8.0	inches
Grate Information	· .	MINOR	MAJOR	Override Depths
Length of a Unit Grate	L₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	7
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_o(C) = $	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p = $	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	_
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C ₀ (C) =	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	ا ا
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	<u> </u>
Clogging Factor for Multiple Units	Clog =	N/A	N/A	_
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	٦.
Interception without Clogging	$Q_{wi} = $	N/A	N/A	cfs
Interception with Clogging	$Q_{wa} = L$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	٦.
Interception without Clogging	$Q_{oi} = $	N/A	N/A	cfs
Interception with Clogging	$Q_{oa} = L$	N/A	N/A	cfs
Grate Capacity as Mixed Flow	۰ ٦	MINOR	MAJOR	٦,
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A N/A	N/A N/A	cfs cfs
Resulting Grate Capacity (assumes cloqged condition)	Q _{Grate} =	MINOR	MAJOR	CIS
Curb Opening Flow Analysis (Calculated)	C6 [٦ - ا
Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units	Coef = Cloq =	1.31 0.04	1.31 0.04	-
Curb Opening as a Weir (based on Modified HEC22 Method)	ciog = [MINOR	MAJOR	_
Interception without Clogging	$Q_{wi} = \Gamma$	9.0	29.4	ີ່ cfs
Interception with Clogging	Q _{wi} = Q _{wa} =	8.6	28.1	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)	Qwa - L	MINOR	MAJOR	الانام
Interception without Clogging	Q _{oi} =	27.1	33.6	ີ່ cfs
Interception without clogging Interception with Clogging	Q _{oi} = Q _{oa} =	25.9	32.1	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	J
Interception without Clogging	$Q_{mi} = \Gamma$	14.5	29.2	ີ່ lcfs
Interception with Clogging	Q _{mi} = Q _{ma} =	13.9	27.9	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	8.6	27.9	cfs
Resultant Street Conditions		MINOR	MAJOR	•
Total Inlet Length	L = [15.00	15.00	Tfeet
Resultant Street Flow Spread (based on street geometry from above)	T=	15.0	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	2.4	inches
	- CROWN _			
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	∃ft I
Depth for Curb Opening Weir Equation	d _{Curb} =	0.26	0.50	ft I
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.48	0.75	╡ !
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.73	0.89	╡
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	╡ !
	Grate L			-
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a = [8.6	27.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	8.4	21.8	cfs

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin A-3 (DP3)

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) $S_{BACK} =$ 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $n_{BACK} =$ 0.013 Height of Curb at Gutter Flow Line 6.00 H_{CURB} : inches Distance from Curb Face to Street Crown T_{CROWN} = 17.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_0 ft/ft 0.000 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.016 $n_{STREET} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 11.5 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm linches $d_{MAX} =$ 6.0 8.0 Check boxes are not applicable in SUMP conditions Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) 2.76 4.08 inches Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") inches d_C = 2.0 2.0 Gutter Depression (d_C - (W * S_x * 12)) 1.51 inches a Water Depth at Gutter Flowline d = 4.27 5.59 inches Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) $T_X =$ 9.5 15.0 ft $E_0 =$ 0.511 0.350 Discharge outside the Gutter Section W, carried in Section T_x Q_X = 0.0 0.0 cfs Discharge within the Gutter Section W $(Q_T - Q_X)$ Q_W = cfs 0.0 0.0 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Orack = cfs 0.0 0.0 Maximum Flow Based On Allowable Spread Q_T = cfs SUMP SUMP Flow Velocity within the Gutter Section 0.0 0.0 fps V*d Product: Flow Velocity times Gutter Flowline Depth V*d = 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread T_{TH} = 18.7 27.0 25.0 Theoretical Spread for Discharge outside the Gutter Section W (T - W) T_{X TH} = 16.7 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E_o = 0.318 0.216 Theoretical Discharge outside the Gutter Section W, carried in Section $T_{X\,TH}$ Q_{X TH} = cfs 0.0 0.0 Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) 0.0 cfs $Q_x =$ 0.0 Discharge within the Gutter Section W (Q_d - Q_X) cfs Q_W = 0.0 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) cfs Q_{BACK} = 0.0 0.0 Total Discharge for Major & Minor Storm (Pre-Safety Factor) Q = 0.0 cfs 0.0 Average Flow Velocity Within the Gutter Section fps 0.0 0.0 V*d Product: Flow Velocity Times Gutter Flowline Depth V*d = 0.0 0.0 Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm R = SUMP SUMP Max Flow Based on Allowable Depth (Safety Factor Applied) $Q_d =$ SUMP SUMP cfs Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) d = inches Resultant Flow Depth at Street Crown (Safety Factor Applied) d_{CROWN} = linches MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP cfs

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	1
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.3	5.6	inches
Grate Information	· .	MINOR	MAJOR	Override Depths
Length of a Unit Grate	L₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	7
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) = $	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_o(C) = $	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p = $	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	<u> </u>
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	ا ا
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	<u> </u>
Clogging Factor for Multiple Units	Clog =	N/A	N/A	_
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	٦ .
Interception without Clogging	$Q_{wi} = $	N/A	N/A	cfs
Interception with Clogging	$Q_{wa} = L$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	٦.
Interception without Clogging	$Q_{oi} = $	N/A	N/A	cfs
Interception with Clogging	$Q_{oa} = L$	N/A	N/A	cfs
Grate Capacity as Mixed Flow	۰ ٦	MINOR	MAJOR	٦,
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A N/A	N/A N/A	cfs cfs
Resulting Grate Capacity (assumes cloqged condition)	Q _{Grate} =	MINOR	MAJOR	CIS
Curb Opening Flow Analysis (Calculated)	C6 [٦ - ا
Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units	Coef = Cloq =	1.00 0.10	1.00 0.10	-
Curb Opening as a Weir (based on Modified HEC22 Method)	ciog = [MINOR	MAJOR	_
Interception without Clogging	$Q_{wi} = \Gamma$	2.6	5.1	ີ່ cfs
Interception with Clogging	Q _{wi} = Q _{wa} =	2.3	4.6	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)	Qwa - L	MINOR	MAJOR	Jus
Interception without Clogging	Q _{oi} =	8.3	9.4	☐cfs
Interception with Clogging	Q _{oa} =	7.5	8.5	cfs
Curb Opening Capacity as Mixed Flow	Q0a − [MINOR	MAJOR	703
Interception without Clogging	$Q_{mi} = \Gamma$	4.3	6.4	7cfs
Interception with Clogging	Q _{mi} = Q _{ma} =	3.9	5.8	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	2.3	4.6	cfs
Resultant Street Conditions		MINOR	MAJOR	•
Total Inlet Length	L = [5.00	5.00	Treet
Resultant Street Flow Spread (based on street geometry from above)	T=1	11.5	17.0	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
	- CROWN _			
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	∏ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.19	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.55	0.72	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	1
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	1
	Grate L			-
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a = [2.3	4.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.6	3.0	cfs

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin A-4a (DP4a)

<u> </u>				
Gutter Geometry:			1	
Maximum Allowable Width for Spread Behind Curb	$T_{BACK} = $	8.0	ft	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	$S_{BACK} =$	0.020	ft/ft	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	$n_{BACK} = [$	0.013]	
Height of Curb at Gutter Flow Line	H _{CURB} =	6.00	inches	
Distance from Curb Face to Street Crown	T _{CROWN} =	17.0	ft	
Gutter Width	W =	2.00	ft	
Street Transverse Slope	S _x =	0.020	ft/ft	
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	S _w =	0.083	ft/ft	
Street Longitudinal Slope - Enter 0 for sump condition	$S_0 = 1$	0.025	ft/ft	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{STREET} =	0.016	1.4.0	
		Minor Storm	Major Storm	
Max. Allowable Spread for Minor & Major Storm	$T_{MAX} = [$	13.5	17.0	Πft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	d _{MAX} =	6.0	8.0	inches
· · · · · · · · · · · · · · · · · · ·	u _{MAX} — L			Tiliciles
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)			~	
Maximum Capacity for 1/2 Street based On Allowable Spread		Minor Storm	Major Storm	
Water Depth without Gutter Depression (Eq. ST-2)	y =	3.24	4.08	inches
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")	$d_C = $	2.0	2.0	inches
Gutter Depression (d_C - (W * S_x * 12))	a =	1.51	1.51	inches
Water Depth at Gutter Flowline	d =	4.75	5.59	inches
Allowable Spread for Discharge outside the Gutter Section W (T - W)	T _X =	11.5	15.0	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.440	0.350	7
Discharge outside the Gutter Section W, carried in Section T _x	$Q_X =$	5.5	11.2	cfs
Discharge within the Gutter Section W (Q _T - Q _X)	$Q_{W} = 1$	4.3	6.0	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	0.0	cfs
Maximum Flow Based On Allowable Spread	$\mathbf{Q}_{T} = \mathbf{Q}_{T}$	9.8	17.2	cfs
Flow Velocity within the Gutter Section	V =	6.9	7.9	fps
V*d Product: Flow Velocity times Gutter Flowline Depth	V*d =	2.7	3.7]
Maximum Capacity for 1/2 Street based on Allowable Depth		Minor Storm	Major Storm	
Theoretical Water Spread	T _{TH} = [18.7	27.0	Πft
Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W)	T _{X TH} =	16.7	25.0	- ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)			0.216	⊣'՝
Theoretical Discharge outside the Gutter Section W, carried in Section T _{XTH}	E ₀ =	0.318 14.9	43.7	cfs
	Q _{X TH} =			cfs
Actual Discharge outside the Gutter Section W, (limited by distance T _{CROWN})	Q _X =	14.8	39.9	cfs
Discharge within the Gutter Section W (Q _d - Q _X)	$Q_W =$	6.9	12.1	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	2.9	⊣ ***
Total Discharge for Major & Minor Storm (Pre-Safety Factor)	Q =	21.7	54.9	cfs
Average Flow Velocity Within the Gutter Section	V =	8.3	10.3	fps
V*d Product: Flow Velocity Times Gutter Flowline Depth	V*d =	4.1	6.9	4
Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm	R =	0.86	0.70	↓ _
Max Flow Based on Allowable Depth (Safety Factor Applied)	$Q_d = $	18.7	38.3	cfs
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)	d =	5.74	7.15	inches
	$d_{CROWN} = $	0.15	1.56	inches
Resultant Flow Depth at Street Crown (Safety Factor Applied)				
Resultant Flow Depth at Street Crown (Safety Factor Applied) MINOR STORM Allowable Capacity is based on Spread Criterion		Minor Storm	Major Storm	
	Q _{allow} = [Minor Storm 9.8	Major Storm 38.3	cfs

INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	7 I
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	2	2	T
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	5.00	5.00	⊣ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\overrightarrow{W_0} =$	N/A	N/A	T _{ft}
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	⊣ "
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	- I
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from <i>Inlet Management</i>)	$Q_o = $	9.4	21.8	ີ່⊓cfs
Water Spread Width	T =	13.3	17.0	⊣ft I
Water Depth at Flowline (outside of local depression)	d =	4.7	6.0	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.4	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.447	0.318	T
Discharge outside the Gutter Section W, carried in Section T _v	O _v =	5.2	14.9	cfs
Discharge within the Gutter Section W	$Q_w = 1$	4.2	6.9	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	$A_W = \begin{bmatrix} A_W & A_W \end{bmatrix}$	0.62	0.84	sq ft
Velocity within the Gutter Section W	V _w =	6.8	8.3	fps
Water Depth for Design Condition	d _{LOCAL} =	7.7	9.0	inches
Grate Analysis (Calculated)	GIOCAL - I	MINOR	MAJOR	Inches
Total Length of Inlet Grate Opening	L = [N/A	N/A	∃ft I
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	⊣'' ∥
Under No-Clogging Condition	Lo-GRATE -	MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	∏fps
Interception Rate of Frontal Flow	V ₀ – R _f =	N/A	N/A	-l'193
Interception Rate of Flow	$R_x = $	N/A	N/A	┥
Interception Rate of Side Flow Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition	Qi -[MINOR	MAJOR	Jus
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	ا ا
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	┥
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	⊣ _{ft} ∥
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	V ₀ – R _f =	N/A	N/A	⊣ ¹¹⁹³
Interception Rate of Flow	$R_x = R_x$	N/A	N/A	
Actual Interception Capacity	$Q_a =$	N/A	N/A	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet)	Q _a = Q _b =	N/A N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	<u> </u>	MINOR	MAJOR	ICIS
Equivalent Slope S_e (based on grate carry-over)	S _e =	0.104	0.080	∏rt/ft
Required Length L_T to Have 100% Interception	S _e - L _T =	18.25	31.68	Ift
Under No-Clogging Condition	LT -[MINOR	MAJOR	ا ''
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L _T)	L = [10.00	10.00	Πft
Interception Capacity	Q _i =	7.1	10.00	cfs
Under Cloaging Condition	Q _i -[MINOR	MAJOR	اا
Clogging Coefficient	CurbCoef =	1.25	1.25	٦ ا
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	
Effective (Unclogged) Length	L _e =	9.37	9.37	⊣ _{ft} ∥
Actual Interception Capacity	· .	7.0	10.5	cfs
Carry-Over Flow = Q _{MGRATEI} -Q _a	Q _a =	2.4	11.3	crs cfs
	Q _b =	MINOR	MAJOR	juis
Summary Total Inlet Interception Capacity	0-1	7.0	10.5	cfs
1 ' ' '	Q =			cfs
Total Inlet Carry-Over Flow (flow bypassing inlet) Capture Percentage = Q_a/Q_0 =	Qь = С% =	2.4 74	11.3 48	- crs %
Capture rescentage = Qa/Qn =	C-70 =	/4	1 40	70

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin A-4b (DP4b)

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) $S_{BACK} =$ 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $n_{BACK} =$ 0.013 Height of Curb at Gutter Flow Line 6.00 H_{CURB} : inches Distance from Curb Face to Street Crown T_{CROWN} = 17.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition So ft/ft 0.025 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.016 $n_{STREET} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 11.5 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm linches $d_{MAX} =$ 6.0 8.0 Allow Flow Depth at Street Crown (check box for yes, leave blank for no) V Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) 2.76 4.08 inches Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") inches d_C = 2.0 2.0 Gutter Depression (d_C - (W * S_x * 12)) 1.51 inches Water Depth at Gutter Flowline d = 4.27 5.59 inches Allowable Spread for Discharge outside the Gutter Section W (T - W) $T_X =$ 9.5 15.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) $E_0 =$ 0.511 0.350 Discharge outside the Gutter Section W, carried in Section T_x Q_X = 3.3 3.4 11.2 cfs Discharge within the Gutter Section W $(Q_T - Q_X)$ Q_W = cfs 6.0 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Orack = 0.0 cfs 0.0 Maximum Flow Based On Allowable Spread Q_T = 6.8 cfs 17.2 Flow Velocity within the Gutter Section 6.3 7.9 fps V*d Product: Flow Velocity times Gutter Flowline Depth V*d = Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm T_{TH} = Theoretical Water Spread 27.0 25.0 18.7 Theoretical Spread for Discharge outside the Gutter Section W (T - W) T_{X TH} = 16.7 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E_o = 0.318 0.216 Theoretical Discharge outside the Gutter Section W, carried in Section $T_{X\,TH}$ cfs Q_{X TH} = 14.9 43.7 Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) cfs $Q_x =$ 14.8 39.9 Discharge within the Gutter Section W (Q_d - Q_X) cfs Q_W = 6.9 12.1 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) cfs Q_{BACK} = 0.0 2.9 Total Discharge for Major & Minor Storm (Pre-Safety Factor) 54.9 Q = cfs 21.7 Average Flow Velocity Within the Gutter Section fps 8.3 10.3 V*d Product: Flow Velocity Times Gutter Flowline Depth V*d = 4.1 6.9 Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm R = 0.86 0.70 Max Flow Based on Allowable Depth (Safety Factor Applied) $Q_d =$ 18.7 38.3 cfs Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) d = inches Resultant Flow Depth at Street Crown (Safety Factor Applied) $d_{CROWN} =$ 0.15 1.56 linches MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Q_{allow} = 6.8 38.3 cfs Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management lajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.01 (April 2021)

Desire Information (Insul)		MINOD	MAJOR	-
Design Information (Input) CDOT Type R Curb Opening	T [MINOR	MAJOR Curb Opening	- I
Type of Inlet	Type =	CDOT Type R		
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	_	2	-l _a
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	5.00	5.00	_ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	- 1	MINOR	MAJOR	ا ا
Design Discharge for Half of Street (from <i>Inlet Management</i>)	$Q_o =$	6.7	15.6	cfs
Water Spread Width	T =	11.5	16.4	ft
Water Depth at Flowline (outside of local depression)	d =	4.3	5.4	inches
Water Depth at Street Crown (or at T _{MAX})	$d_{CROWN} =$	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.513	0.364	
Discharge outside the Gutter Section W, carried in Section T _x	$Q_x =$	3.3	9.9	cfs
Discharge within the Gutter Section W	$Q_w = [$	3.4	5.7	cfs
Discharge Behind the Curb Face	$Q_{BACK} = $	0.0	0.0	cfs
Flow Area within the Gutter Section W	$A_W = $	0.54	0.74	sq ft
Velocity within the Gutter Section W	V _W =	6.3	7.7	fps
Water Depth for Design Condition	d _{LOCAL} =	7.3	8.4	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =[N/A	N/A	∃ft I
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	† I
Under No-Clogging Condition	0 0,0112	MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	T _{fps}
Interception Rate of Frontal Flow	R _f =	N/A	N/A	T ⁻ F ²
Interception Rate of Side Flow	R _x =	N/A	N/A	1
Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition	ا تھ	MINOR	MAJOR	J.,,
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	¬
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	⊣ _{ft}
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	V ₀ – R _f =	N/A	N/A	-l' ^{ips}
Interception Rate of Frontal Flow			N/A	-
Actual Interception Capacity	R _x =	N/A N/A	N/A	cfs
	Q _a =			cfs
Carry-Over Flow = Q ₀ -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A MINOR	N/A MAJOR	CTS
Curb or Slotted Inlet Opening Analysis (Calculated)	ا ء	MINOR	MAJOR	٦٥,,,
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.116	0.088	ft/ft
Required Length L _T to Have 100% Interception	$L_T = [$	14.59	25.47	_lft
Under No-Clogging Condition	, 1	MINOR	MAJOR	ا ،
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	10.00	10.00	_ft
Interception Capacity	$Q_i = [$	5.9	9.2	cfs
Under Clogging Condition		MINOR	MAJOR	ا ا
Clogging Coefficient	CurbCoef =	1.25	1.25	.
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	<u> </u>
Effective (Unclogged) Length	L _e =	9.37	9.37	ft
Actual Interception Capacity	Q _a =	5.8	9.0	cfs
Carry-Over Flow = $Q_{b(GRATE)}$ - Q_a	Q _b =	0.9	6.6	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =[5.8	9.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.9	6.6	cfs
Capture Percentage = Q _a /Q _o =	C% =	86	58	%
· · · · · · · · · · · · · · · · · · ·				

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	7
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.3	8.0	inches
Grate Information		MINOR	MAJOR	✓ Override Depths
Length of a Unit Grate	$L_{n}(G) = \Gamma$	N/A	N/A	feet
Width of a Unit Grate	$W_0 = $	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	7
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	7
Grate Orifice Coefficient (typical value 0.60 - 0.80)	Ċ₀ (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	$L_{0}(C) = \Gamma$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_n =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	1
Grate Flow Analysis (Calculated)	•	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
Clogging Factor for Multiple Units	Clog =	N/A	N/A	1 !
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	-
Interception without Clogging	$Q_{wi} = \Gamma$	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	-
Interception without Clogging	$Q_{oi} = \Gamma$	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	-
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	7
Clogging Factor for Multiple Units	Clog =	0.04	0.04	7
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	-
Interception without Clogging	$Q_{wi} = \Gamma$	5.1	29.4	cfs
Interception with Clogging	Q _{wa} =	4.9	28.1	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	-
Interception without Clogging	Q _{oi} =	24.9	33.6	cfs
Interception with Clogging	Q _{oa} =	23.8	32.1	cfs
Curb Opening Capacity as Mixed Flow	·· -	MINOR	MAJOR	_
Interception without Clogging	$Q_{mi} = $	10.5	29.2	cfs
Interception with Clogging	Q _{ma} =	10.0	27.9	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	4.9	27.9	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	L =	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	11.5	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	2.4	inches
	_		-	_
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	_
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A]ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.19	0.50	_ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.40	0.75]
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.66	0.89	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	_
	· -		<u> </u>	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.9	27.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.3	17.9	cfs
	·	·	·	

MHFD-A Basin Inlets_v5.01.xlsm, DP 4 12/9/2021, 4:51 PM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin A-5 (DP5)

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) ft/ft $S_{BACK} =$ 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $n_{BACK} =$ 0.013 Height of Curb at Gutter Flow Line 6.00 H_{CURB} : inches Distance from Curb Face to Street Crown T_{CROWN} = 17.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_0 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.016 $n_{STREET} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 11.5 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm linches $d_{MAX} =$ 6.0 8.0 Check boxes are not applicable in SUMP conditions Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (d_C - (W * S_x * 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section T_x

Discharge within the Gutter Section W $(Q_T - Q_X)$ Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V*d Product: Flow Velocity times Gutter Flowline Depth

Maximum Capacity for 1/2 Street based on Allowable Depth Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section T_{XTH} Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) Discharge within the Gutter Section W $(Q_d - Q_X)$ Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre-Safety Factor) Average Flow Velocity Within the Gutter Section

V*d Product: Flow Velocity Times Gutter Flowline Depth Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied)

Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied)

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

	Minor Storm	Major Storm	_
y =	2.76	4.08	inches
d _C =	2.0	2.0	inches
a =	1.51	1.51	inches
d =	4.27	5.59	inches
T _X =	9.5	15.0]ft
$E_0 =$	0.511	0.350	1
$Q_X =$	0.0	0.0	cfs
$Q_W =$	0.0	0.0	cfs
$Q_{BACK} =$	0.0	0.0	cfs
$Q_T =$	SUMP	SUMP	cfs
V =	0.0	0.0	fps
V*d =	0.0	0.0]
			-

	Minor Storm	Major Storm	
T _{TH} =	18.7	27.0	ft
T _{X TH} =	16.7	25.0	ft
E ₀ =	0.318	0.216]
$Q_{XTH} =$	0.0	0.0	cfs
$Q_X = $	0.0	0.0	cfs
$Q_W =$	0.0	0.0	cfs
$Q_{BACK} = $	0.0	0.0	cfs
Q =	0.0	0.0	cfs
V =	0.0	0.0	fps
V*d =	0.0	0.0	
R =	SUMP	SUMP]
$Q_d =$	SUMP	SUMP	cfs
d =			inches
$d_{CROWN} = $			inches

Minor Storm Major Storm cfs

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

Type					
Vige of Intel Coard Depression (additional to continuous gutter depression 'a' from above) Acces 3.00 3.00 3.00 Number of Unit Tinets (Grate or Curb Opening) Inches 1.00	Design Information (Input) CDOT Type R Curb Opening	_ =	MINOR	MAJOR	, l
Number Of Unit Inlets (Grate or Curb Opening)	Type or Inlet				<u>.</u>
Water Depth at Flowline (outside of local depression)				3.00	inches
MINOR MAJOR Comise Depths Lagft of a Unit Grate Wight of Conference Wight of W				1	<u> </u>
Lingth of a Unit Grate Lingth of a Unit Grate Way		Ponding Depth =			
Wighth of a Unit Crate Wight of a Unit Crate N/A N/A N/A Area Qoeping Ratior for a Single Grate (typical value 0.50 - 0.70) C, (G) = N/A N/A N/A Crate Weir Coefficient (typical value 2.15 - 3.60) C, (G) = N/A N/A N/A Grate Orifice Coefficient (typical value 0.60 - 0.80) C, (G) = N/A N/A N/A Length of a Unit Curb Opening In Inches Horizon (Grate Coefficient (typical value 0.60) L, (C) = 5.00 5.00 feet Height of Vertical Curb Opening In Inches Horizon (Grate Coefficient (typical value 0.60) 6.00 6.00 inches Height of Vertical Gee USDOM Figure ST-5) Theta (G. 6.00 6.00 inches Height of Vertical Great (Striptic Coefficient (typical value 0.10) C (C) = 0.10 0.10 1.00 Cologing Factor for a Single Curb Opening (typical value 0.10) C (C) = 0.10 0.10 1.00 Curb Opening Officia Coefficient (typical value 0.60 - 0.70) C (C) = 0.10 0.10 1.00 Curb Opening Officia Value 0.60 - 0.70) C (C) = 0.10 0.10 1.00 Curb Opening Officia Coefficient (typical value 0.60 - 0.70) C (C) = 0.10 0.0		-			
Area Opening Ratio for a Grate (typical values 0.15-0.90)					
Cogging Factor for a Single Grate (typical value 0.50 - 0.70) C ₁ (6) = N/A				/	feet
Carte Coefficient (typical value 0.60 - 0.80) C, (G) = N/A				11/11	
Grate Orifice Coefficient (typical value 0.60 - 0.80)					
Curb Opening Information					
Length of a Unit Curb Opening Lo, (C) = 5.00 5.00 feet Height of Vertical Curb Opening in Inches Height of Curb Orifice Throat in Inches Height of Curb Orifice Throat in Inches Heyens		$C_o(G) = L$,]
Height of Vertical Curb Opening in Inches Hunt		_		MAJOR	_
Height of Curb Orifice Timota in Inches Angle of Timota (see USDOK Pigure ST-5) Theta = 6.3.40 6.3.40 degrees		$L_{o}(C) = L$			-
Angle of Throat (see USDCM Figure ST-5) Theta		$H_{vert} =$			
Side Width for Depression Pan (typically the gutter width of 2 feet) Qoging Factor for a Single Curb Opening (typical value 0.10) C ₁ (C) = 0.10 0.					→ ' ' ' '
Cogging Factor for a Single Curb Opening (typical value 0.10)					
Curb Opening Weir Coefficient (typical value 2.3-3.7)	Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p = $	2.00		feet
Curb Opening Orffice Coefficient (typical value 0.60 - 0.70) Coefficient For Multiple Units Coefficient For				0.10	
State Flow Analysis (Calculated)		$C_w(C) =$			
Cogging Coefficient for Multiple Units Cogging Factor for Multiple Units Cogging Community Community Cogging C		$C_o(C) =$	0.67	0.67	
Cogging Factor for Multiple Units Cogging	Grate Flow Analysis (Calculated)	_	MINOR	MAJOR	_
Grate Capacity as a Weir (based on Modified HEC22 Method) Interception with Ologging Q _{vit} = N/A N/A Cfs Interception with Ologging Q _{vit} = N/A N/A Cfs Interception with Ologging Q _{vit} = N/A N/A Cfs Interception with Ologging Q _{vit} = N/A N/A Cfs Interception with Ologging Q _{vit} = N/A N/A Cfs Interception with Ologging Q _{vit} = N/A N/A Cfs Interception with Ologging Q _{vit} = N/A N/A Cfs Interception with Ologging Q _{vit} = N/A N/A Cfs Interception with Ologging Q _{vit} = N/A N/A N/A Cfs Interception with Ologging Q _{vit} = N/A N/A N/A Cfs Interception with Ologging Q _{vit} = N/A N/A N/A Cfs Interception with Ologging Q _{vit} = N/A N/A Cfs Interception with Ologging Q _{vit} = N/A N/A Cfs Interception with Ologging Q _{vit} = N/A N/A Cfs Interception with Ologging Q _{vit} = N/A N/A Cfs Interception with Ologging Q _{vit} = N/A N/A Cfs Interception with Ologging Q _{vit} = Olog		Coef =			
Interception with Clogging		Clog =			
Interception with Clogging Q _{va} = N/A N/A ofs MINOR MAJOR MAJ	Grate Capacity as a Weir (based on Modified HEC22 Method)				
Grate Capacity as a Orifice (based on Modified HEC22 Method) Ninor Major	Interception without Clogging	$Q_{wi} = $	N/A	N/A	cfs
Interception without Clogging	Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Interception with Clagging	Grate Capacity as a Orifice (based on Modified HEC22 Method)	_	MINOR	MAJOR	_
Grate Capacity as Mixed Flow Interception without Clogging Q _{mil} = N/A N/A N/A cfs N/A N/A	Interception without Clogging	$Q_{oi} = $	N/A	N/A	cfs
Interception without Clogging	Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Interception with Clogging	Grate Capacity as Mixed Flow	_	MINOR	MAJOR	
Interception with Clogging Qreater N/A N/A Cfs	Interception without Clogging	$Q_{mi} = \Gamma$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	Interception with Clogging		N/A	N/A	cfs
Clogging Coefficient for Multiple Units	Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Clogging Factor for Multiple Units Curb Opening as a Weir (based on Modified HEC22 Method) Interception without Clogging Interception with Clogging Curb Opening as an Orifice (based on Modified HEC22 Method) Interception with Clogging Curb Opening as an Orifice (based on Modified HEC22 Method) Interception with Clogging Interception with Clogging Interception with Clogging Curb Opening Capacity as Mixed Flow Interception with Clogging Interception with Clogging Curb Opening Capacity as Mixed Flow Interception with Clogging Interception with Clogging Qual 8.3 9.4 cfs MINOR MAJOR Interception with Clogging Qual 8.3 9.4 cfs Qual 8.3 p.4 cfs Qual 8.3 p.4 cfs Qual 8.3 p.4 cfs Qual 9.1 p.1 p.1 p.1 p.	Curb Opening Flow Analysis (Calculated)	_	MINOR	MAJOR	
Curb Opening as a Weir (based on Modified HEC22 Method) Qwi = 2.6 5.1 cfs	Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	1
Interception with Clogging $Q_{wi} = \frac{2.6}{2.3} \frac{5.1}{4.6} \text{ cfs}$ Interception with Clogging $Q_{wa} = \frac{2.6}{2.3} \frac{5.1}{4.6} \text{ cfs}$ Curb Opening as an Orifice (based on Modified HEC22 Method)} $Q_{oa} = \frac{8.3}{1000} \frac{9.4}{1000} \text{ MINOR}$ MAJOR Interception with Clogging $Q_{oa} = \frac{8.3}{7.5} \frac{9.4}{8.5} \text{ cfs}$ Interception with Clogging $Q_{oa} = \frac{7.5}{7.5} \frac{8.5}{8.5} \text{ cfs}$ $\frac{Curb Opening Capacity as Mixed Flow}{1000000000000000000000000000000000000$	Clogging Factor for Multiple Units	Clog =	0.10	0.10	
Interception with Clogging $Q_{wa} = 2.3$ 4.6 cfs $Q_{wa} = 2.3$ 4.	Curb Opening as a Weir (based on Modified HEC22 Method)	_	MINOR	MAJOR	_
Curb Opening as an Orifice (based on Modified HEC22 Method) MINOR MAJOR	Interception without Clogging	$Q_{wi} = $	2.6	5.1	cfs
Interception without Clogging $Q_{oa} = \begin{bmatrix} 8.3 & 9.4 & cfs \\ 7.5 & 8.5 & cfs \end{bmatrix}$ Interception with Clogging $Q_{oa} = \begin{bmatrix} 7.5 & 8.5 & cfs \\ 7.5 & 8.5 & cfs \end{bmatrix}$ Curb Opening Capacity as Mixed Flow $Q_{mi} = \begin{bmatrix} 4.3 & 6.4 & cfs \\ 4.3 & 6.4 & cfs \\ 8.8 & 6.4 & cfs \end{bmatrix}$ Interception with Clogging $Q_{ma} = \begin{bmatrix} 3.9 & 5.8 & cfs \\ 2.3 & 4.6 & cfs \end{bmatrix}$ Resulting Curb Opening Capacity (assumes cloqged condition) $Q_{curb} = \begin{bmatrix} 8.3 & 9.4 & cfs \\ 1.3 & 6.4 & cfs \\ 9.4 & 3.9 & 5.8 & cfs \\ 9.4 & 9.8 & 9.4 & 6.4 & 6.4 \\ 9.4 & 9.8 & 9.4 & 6.4 & 6.4 \\ 9.4 & 9.8 & 9.8 & 6.4 & 6.4 & 6.4 \\ 9.4 & 9.8 & 9.8 & 6.4 & 6.4 & 6.4 \\ 9.4 & 9.8 & 9.8 & 6.4 & 6.4 & 6.4 \\ 9.4 & 9.8 & 9.8 & 6.4 & 6.4 & 6.4 \\ 9.4 & 9.8 & 9.8 & 9.8 & 6.4 & 6.4 \\ 9.4 & 9.8 & 9.8 & 6.4 & 6.4 \\ 9.4 & 9.8 & 9.8 & 6.4 & 6.4 \\ 9.4 & 9.8 & 9.8 & 9.8 & 6.4 \\ 9.4 & 9.8 & 9.8 & 9.8 & 6.4 \\ 9.5 & 9.8 & 9.8 & 6.4 \\ 9.5 & 9.8 & 9.8 & 6.4 \\ 9.5 & 9.8 & 9.8 & 6.4 \\ 9.5 & 9.8 & 9.8 & 6.4 \\ 9.6 & 9.8 & 9.8 & 9.8 \\ 9.8 & 9.8 & 9.8 & 9.8 \\ 9.8 & 9.8 & 9.8 & 9.8 \\ 9.8 & 9.8 & 9.8 & 9.8 \\$	Interception with Clogging	Q _{wa} =	2.3	4.6	cfs
Interception with Clogging $Q_{oa} = 7.5$ 8.5 cfs $Q_{curb} = 7.5$ 8.5	Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
	Interception without Clogging	Q _{oi} =	8.3	9.4	cfs
Interception without Clogging Interception with Clogging Interception with Clogging Resulting Curb Opening Capacity (assumes cloqged condition) Resultant Street Conditions Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated) Depth for Grate Midwidth Depth for Grate Midwidth Depth for Grate Midwidth Combination Inlet Performance Reduction Factor for Long Inlets Grated Inlet Performance Reduction Factor for Long Inlets Resultant Flow Depth at Street Crown MINOR MAJOR Resultant Flow Depth at Street Crown MINOR Resultant Flow Depth at Street Crown MINOR MAJOR Total Inlet Interception Capacity (assumes clogged condition) Qa = 2.3 4.6 cfs	Interception with Clogging	Q _{oa} =	7.5	8.5	cfs
Interception with Clogging Resulting Curb Opening Capacity (assumes cloqqed condition) Quant = 3.9 5.8 cfs Resultant Street Conditions Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated) Depth for Grate Midwidth Depth for Grate Midwidth Depth for Curb Opening Weir Equation Combination Inlet Performance Reduction Factor for Long Inlets Grated Inlet Performance Reduction Factor for Long Inlets Resultant Flow Depth at Street Crown MINOR MAJOR MAJOR Resultant Street Flow Spread (based on street geometry from above) A Grown = 0.0 0.0 0.0 inches MINOR MAJOR Resultant Street Flow Spread (based on street geometry from above) A Grown = 0.0 0.0 0.0 inches MINOR Resultant Street Flow Spread (based on street geometry from above) A Grown = 0.0 0.0 0.0 inches A Grown = 0.0 0.0 0.0 inches A Flow = 0.19 0.30 ft Combination Inlet Performance Reduction Factor for Long Inlets Resultant Street Flow Spread (based on street geometry from above) A Grown = 0.0 0.0 0.0 inches A Flow = 0.19 0.30 ft Combination Inlet Performance Reduction Factor for Long Inlets Resultant Street Flow Spread (based on street geometry from above) A Grown = 0.0 0.0 0.0 inches A Flow = 0.19 0.30 ft Combination Inlet Performance Reduction Factor for Long Inlets Resultant Street Flow Spread (based on street geometry from above) A Grown = 0.0 0.0 0.0 inches A Flow = 0.19 0.30 ft Combination Inlet Performance Reduction Factor for Long Inlets Resultant Street Flow Spread (based on street geometry from above) A Grown = 0.0 0.0 0.0 inches A Flow = 0.19 0.30 ft Combination Inlet Performance Reduction Factor for Long Inlets Resultant Street Flow Spread (based on street geometry from above) A Grown = 0.0 0.0 0.0 inches A Flow = 0.19 0.30 ft Combination Inlet Performance Reduction Factor for Long Inlets A Flow = 0.19 0.0 inches A Flow = 0.10	Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	_
Resulting Curb Opening Capacity (assumes clogged condition) Resultant Street Conditions Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated) Depth for Grate Midwidth Depth for Curb Opening Weir Equation Combination Inlet Performance Reduction Factor for Long Inlets RFCombination Factor For Long Inlets RFComb	Interception without Clogging	$Q_{mi} = \Gamma$			
Resultant Street Conditions Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction (Calculated) Depth for Grate Midwidth Depth for Carbe Opening Weir Equation Combination Inlet Performance Reduction Factor for Long Inlets RFCombination Flow Depth Grate Midwidth RFCombination Flow Depth Grate Reduction Factor for Long Inlets RFCombination Flow Depth Grate Reduction Factor for Long Inlets RFCombination Flow Depth Grate Reduction Factor for Long Inlets RFCombination Flow Depth Grate Reduction Factor for Long Inlets RFCombination Flow Depth Grate Reduction Factor for Long Inlets RFCombination Flow Depth Grate Reduction Factor for Long Inlets RFCombination Flow Depth Grate Reduction Factor for Long Inlets RFCombination Flow Depth Grate Reduction Flow Flow Flow Flow Flow Flow Flow Flow	Interception with Clogging				
Total Inlet Length Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown $ \begin{array}{cccccccccccccccccccccccccccccccccc$	Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =		4.6	cfs
Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown $ \begin{array}{c} T = 11.5 & 17.0 \\ d_{CROWN} = 0.0 & 0.0 \end{array} $ The post of Grate Midwidth of the performance Reduction (Calculated) Depth for Grate Midwidth of Grate Midwidth of Combination Inlet Performance Reduction Factor for Long Inlets Combination Inlet Performance Reduction Factor for Long Inlets Resultant Street Flow Spread (based on Street geometry from above) MINOR MAJOR of the performance Reduction Factor for Long Inlets Resultant Street Flow Spread (based on Street geometry from above) MINOR MAJOR of the performance Reduction Factor for Long Inlets Resultant Street Flow Spread (based on Street geometry from above) Total Inlet Interception Capacity (assumes clogged condition) Total Inlet Interception Capacity (assumes clogged condition)	Resultant Street Conditions	_	MINOR	MAJOR	
Resultant Flow Depth at Street Crown	Total Inlet Length	L =	5.00	5.00	feet
	Resultant Street Flow Spread (based on street geometry from above)	T =			ft
Depth for Grate Midwidth	Resultant Flow Depth at Street Crown	$d_{CROWN} =$	0.0	0.0	inches
Depth for Grate Midwidth		_			
Depth for Curb Opening Weir Equation	Low Head Performance Reduction (Calculated)	_			
Depth for Curb Opening Weir Equation	The state of the s				⊣
Curb Opening Performance Reduction Factor for Long Inlets Grated Inlet Performance Reduction Factor for Long Inlets $RF_{Curb} = 1.00 1.00$ $RF_{Grate} = N/A N/A$ MINOR MAJOR Total Inlet Interception Capacity (assumes clogged condition) $Q_a = 2.3 4.6$ ofs	Depth for Curb Opening Weir Equation		0.19		ft
Curb Opening Performance Reduction Factor for Long Inlets Grated Inlet Performance Reduction Factor for Long Inlets $RF_{Curb} = 1.00 1.00$ $RF_{Grate} = N/A N/A$ MINOR MAJOR Total Inlet Interception Capacity (assumes clogged condition) $Q_a = 2.3 4.6$ ofs	Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.55	0.72	j
Grated Inlet Performance Reduction Factor for Long Inlets $RF_{Grate} = $	Curb Opening Performance Reduction Factor for Long Inlets		1.00	1.00	
Total Inlet Interception Capacity (assumes clogged condition) MINOR MAJOR Cfs Cfs	Grated Inlet Performance Reduction Factor for Long Inlets		N/A	N/A]
Total Inlet Interception Capacity (assumes clogged condition) Q _a = 2.3 4.6 cfs		- · · · · ·			_
		_	MINOR	MAJOR	_
Tolet Capacity IS GOOD for Minor and Major Storms (>O PEAK) O PEAK REQUIRED = 1.6 3.0 cfs					
Annet capacity to coop for randor and ridger sterming(>Q FLAR) CTEM required 1 210 510 615	Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.6	3.0	cfs

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin A-6 (DP6)

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) ft/ft $S_{BACK} =$ 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $n_{BACK} =$ 0.013 Height of Curb at Gutter Flow Line 6.00 H_{CURB} : inches Distance from Curb Face to Street Crown T_{CROWN} = 17.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_0 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.016 $n_{STREET} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 12.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm linches $d_{MAX} =$ 6.0 8.0 Check boxes are not applicable in SUMP conditions Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (d_C - (W * S_x * 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)

Discharge outside the Gutter Section W, carried in Section T_x Discharge within the Gutter Section W $(Q_T - Q_X)$ Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V*d Product: Flow Velocity times Gutter Flowline Depth

Maximum Capacity for 1/2 Street based on Allowable Depth Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section T_{XTH}

Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) Discharge within the Gutter Section W $(Q_d - Q_X)$ Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)

Total Discharge for Major & Minor Storm (Pre-Safety Factor) Average Flow Velocity Within the Gutter Section

V*d Product: Flow Velocity Times Gutter Flowline Depth

Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied)

Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied)

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

	Minor Storm	Major Storm	
			٦
y =	2.88	4.08	inches
$d_C =$	2.0	2.0	inches
a =	1.51	1.51	inches
d =	4.39	5.59	inches
$T_X =$	10.0	15.0	ft
E _o =	0.491	0.350	
$Q_X =$	0.0	0.0	cfs
$Q_W =$	0.0	0.0	cfs
Q _{BACK} =	0.0	0.0	cfs
$Q_T =$	SUMP	SUMP	cfs
V =	0.0	0.0	fps
V*d =	0.0	0.0	

$ \begin{aligned} T_{TH} &= & 18.7 & 27.0 & \text{ft} \\ T_{XTH} &= & 16.7 & 25.0 & \text{ft} \\ E_O &= & 0.318 & 0.216 & \\ Q_{XTH} &= & 0.0 & 0.0 & \text{cfs} \\ Q_X &= & 0.0 & 0.0 & \text{cfs} \\ Q_W &= & 0.0 & 0.0 & \text{cfs} \\ Q_{BACK} &= & 0.0 & 0.0 & \text{cfs} \\ \end{aligned} $		Minor Storm	Major Storm	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T _{TH} =	18.7	27.0	ft
$\begin{array}{c} Q_{XTH} = & 0.0 & 0.0 & cfs \\ Q_{X} = & 0.0 & 0.0 & cfs \\ Q_{W} = & 0.0 & 0.0 & cfs \\ Q_{BACK} = & 0.0 & 0.0 & cfs \end{array}$	T _{X TH} =	16.7	25.0	ft
$ \begin{array}{c ccccc} Q_X = & 0.0 & 0.0 & cfs \\ Q_W = & 0.0 & 0.0 & cfs \\ Q_{BACK} = & 0.0 & 0.0 & cfs \\ \end{array} $	E ₀ =	0.318	0.216]
$Q_{W} = $	$Q_{XTH} =$	0.0	0.0	cfs
$Q_{BACK} = 0.0$ 0.0 cfs	$Q_X = $	0.0	0.0	cfs
CEMER 515	Q _W =	0.0	0.0	cfs
0 - 00 00 cfc	$Q_{BACK} =$	0.0	0.0	cfs
Q - L 0.0 LIS	Q =	0.0	0.0	cfs
V = 0.0 0.0 fps		0.0	0.0	fps
V*d = 0.0 0.0	V*d =	0.0	0.0	
R = SUMP SUMP	R =	SUMP	SUMP]
Q _d = SUMP SUMP cfs	$Q_d = $	SUMP	SUMP	cfs
d = inches	d =			inches
d _{CROWN} = inches	$d_{CROWN} = $	_		inches

	Minor Storm	Major Storm	
$Q_{allow} = [$	SUMP	SUMP	cfs

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.4	8.0	inches
Grate Information	, <u>.</u>	MINOR	MAJOR	Override Depths
Length of a Unit Grate	L₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	$W_o =$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	7
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	$C_w(G) =$	N/A	N/A	7
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C₀ (G) =	N/A	N/A	1
Curb Opening Information	_	MINOR	MAJOR	-
Length of a Unit Curb Opening	L₀ (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p = $	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	1
Grate Capacity as a Weir (based on Modified HEC22 Method)	_	MINOR	MAJOR	
Interception without Clogging	$Q_{wi} = \Gamma$	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)	_	MINOR	MAJOR	_
Interception without Clogging	$Q_{oi} = $	N/A	N/A	cfs
Interception with Clogging	$Q_{oa} = $	N/A	N/A	cfs
Grate Capacity as Mixed Flow	_	MINOR	MAJOR	
Interception without Clogging	$Q_{mi} = $	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	_	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	1
Clogging Factor for Multiple Units	Clog =	0.04	0.04]
Curb Opening as a Weir (based on Modified HEC22 Method)	_	MINOR	MAJOR	_
Interception without Clogging	$Q_{wi} = L$	5.6	29.4	cfs
Interception with Clogging	$Q_{wa} = L$	5.4	28.1	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)	_	MINOR	MAJOR	_
Interception without Clogging	$Q_{oi} =$	25.3	33.6	cfs
Interception with Clogging	$Q_{oa} = L$	24.2	32.1	cfs
<u>Curb Opening Capacity as Mixed Flow</u>	_	MINOR	MAJOR	_
Interception without Clogging	$Q_{mi} =$	11.1	29.2	cfs
Interception with Clogging	Q _{ma} =	10.6	27.9	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	5.4	27.9	cfs
Resultant Street Conditions	-	MINOR	MAJOR	_
Total Inlet Length	<u>L</u> = <u> </u>	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	12.0	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	$d_{CROWN} =$	0.0	2.4	inches
Low Head Performance Reduction (Calculated)	-	MINOR	MAJOR	ا ا
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	_ft
Depth for Curb Opening Weir Equation	$d_{Curb} =$	0.20	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.42	0.75	_
Curb Opening Performance Reduction Factor for Long Inlets	$RF_{Curb} =$	0.67	0.89	_
Grated Inlet Performance Reduction Factor for Long Inlets	$RF_{Grate} = $	N/A	N/A	_
		MINOR	MAJOR	ا ا
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	27.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	4.9	11.5	cfs

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin A-7 (DP7)

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) $S_{BACK} =$ 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $n_{BACK} =$ 0.013 Height of Curb at Gutter Flow Line 6.00 HCURR inches Distance from Curb Face to Street Crown T_{CROWN} = 17.0 Gutter Width W 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_0 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.016 $n_{STREET} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 11.5 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm linches $d_{MAX} =$ 6.0 8.0 Check boxes are not applicable in SUMP conditions Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (d_C - (W * S_x * 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section T_x Discharge within the Gutter Section W $(Q_T - Q_X)$ Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V*d Product: Flow Velocity times Gutter Flowline Depth Maximum Capacity for 1/2 Street based on Allowable Depth

Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section T_{XTH} Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) Discharge within the Gutter Section W $(Q_d - Q_X)$ Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre-Safety Factor) Average Flow Velocity Within the Gutter Section V*d Product: Flow Velocity Times Gutter Flowline Depth Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)

Resultant Flow Depth at Street Crown (Safety Factor Applied) MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

y =	2.76	4.08	inches
$d_C =$	2.0	2.0	inches
a =	1.51	1.51	inches
d =	4.27	5.59	inches
$T_X = E_0 =$	9.5	15.0	ft
E _o =	0.511	0.350	
$Q_X =$	0.0	0.0	cfs
$Q_W =$	0.0	0.0	cfs
$Q_{BACK} =$	0.0	0.0	cfs
$Q_T =$	SUMP	SUMP	cfs
V =	0.0	0.0	fps
V*d =	0.0	0.0	
			_
	Minor Storm	Major Storm	
T	19.7	27.0	Π _{ft+}

	Minor Storm	Major Storm	
$T_{TH} =$	18.7	27.0	ft
$T_{XTH} = $	16.7	25.0	ft
E ₀ =	0.318	0.216	
$Q_{XTH} =$	0.0	0.0	cfs
$Q_X = [$	0.0	0.0	cfs
Q _W =	0.0	0.0	cfs
$Q_{BACK} = $	0.0	0.0	cfs
Q =	0.0	0.0	cfs
V =[0.0	0.0	fps
V*d =	0.0	0.0	
R =	SUMP	SUMP	1
$Q_d = [$	SUMP	SUMP	cfs
d =			inches
$d_{CROWN} = $			inches

Minor Storm Major Storm cfs

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R		1
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	-
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.3	8.0	inches
Grate Information	ronanig pepar [MINOR	MAJOR	✓ Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	lfeet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	I
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	-
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C ₀ (G) =	N/A	N/A	-
Curb Opening Information	C₀ (G) −[MINOR	MAJOR	ا ا
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	Tfeet
Height of Vertical Curb Opening in Inches		6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{vert} =	6.00	6.00	inches
"	H _{throat} =			-l · · · · l
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40 2.00	degrees feet
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00		reet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	- I
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) = C _o (C) =	3.60 0.67	3.60	- I
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C₀ (C) =		0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	ا ا
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	4 l
Clogging Factor for Multiple Units	Clog =	N/A	N/A	_
Grate Capacity as a Weir (based on Modified HEC22 Method)	- 1	MINOR	MAJOR	٦. ا
Interception without Clogging	$Q_{wi} =$	N/A	N/A	cfs
Interception with Clogging	$Q_{wa} = [$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)	- 1	MINOR	MAJOR	٦. ا
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	$Q_{oa} = $	N/A	N/A	cfs
Grate Capacity as Mixed Flow	,	MINOR	MAJOR	, l
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
<u>Curb Opening Flow Analysis (Calculated)</u>	,	MINOR	MAJOR	, l
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	_
Clogging Factor for Multiple Units	Clog =	0.10	0.10]
Curb Opening as a Weir (based on Modified HEC22 Method)	,	MINOR	MAJOR	_ I
Interception without Clogging	$Q_{wi} = $	2.6	11.0	cfs
Interception with Clogging	$Q_{wa} = $	2.3	9.9	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	_
Interception without Clogging	Q _{oi} =	8.3	11.2	cfs
Interception with Clogging	$Q_{oa} =$	7.5	10.1	cfs
<u>Curb Opening Capacity as Mixed Flow</u>	,	MINOR	MAJOR	_
Interception without Clogging	$Q_{mi} =$	4.3	10.3	cfs
Interception with Clogging	Q _{ma} =	3.9	9.3	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	2.3	9.3	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	L =	5.00	5.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	11.5	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	$d_{CROWN} = $	0.0	2.4	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	_
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.19	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.55	1.00	<u> </u>
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	<u> </u>
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	j l
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	2.3	9.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.3	8.4	cfs
· · · · · · · · · · · · · · · · · · ·				-

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	4	4	†
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.9	8.0	inches
Grate Information	, <u>.</u>	MINOR	MAJOR	Override Depths
Length of a Unit Grate	L₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	$W_o =$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	7
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
<u>Curb Opening Information</u>		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) = L$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p = $	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	_
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C ₀ (C) =	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	ا ا
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	<u> </u>
Clogging Factor for Multiple Units	Clog =	N/A	N/A	_
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	٦.
Interception without Clogging	$Q_{wi} = $	N/A	N/A	cfs
Interception with Clogging	$Q_{wa} = L$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	٦.
Interception without Clogging	$Q_{oi} =$	N/A	N/A	cfs
Interception with Clogging	$Q_{oa} = L$	N/A	N/A	cfs
Grate Capacity as Mixed Flow	۰ ٦	MINOR	MAJOR	٦,
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A N/A	N/A N/A	cfs cfs
Resulting Grate Capacity (assumes cloqued condition)	Q _{Grate} =	MINOR	MAJOR	CIS
Curb Opening Flow Analysis (Calculated)	C [٦ - ا
Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units	Coef = Clog =	1.33 0.03	1.33 0.03	-
Curb Opening as a Weir (based on Modified HEC22 Method)	clog = [MINOR	MAJOR	_
Interception without Clogging	$Q_{wi} = \Gamma$	10.3	39.2	ີ່ cfs
Interception with Clogging	Q _{wi} = Q _{wa} =	10.0	37.9	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)	Qwa – L	MINOR	MAJOR	الانام
Interception without Clogging	$Q_{oi} = \Gamma$	35.4	44.8	ີ່ cfs
Interception with Clogging	Q _{oa} =	34.2	43.3	cfs
Curb Opening Capacity as Mixed Flow	₹0a L	MINOR	MAJOR	٦٠٠٥
Interception without Clogging	$Q_{mi} = \Gamma$	17.8	38.9	ີ່ lcfs
Interception with Clogging	Q _{ma} =	17.2	37.6	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	10.0	37.6	cfs
Resultant Street Conditions		MINOR	MAJOR	•
Total Inlet Length	L = [20.00	20.00]feet
Resultant Street Flow Spread (based on street geometry from above)		14.0	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	2.4	inches
<u> </u>				_
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	_
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.24	0.50	 ft ∣
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.46	0.75	_
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.71	0.89	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	_
	_			
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	$Q_a =$	10.0	37.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	9.3	21.6	cfs
		-		

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input)		MINOR	MAJOR	1
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	1 I
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	† · · · ·
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.3	8.0	inches
Grate Information	· · · · · · · · · · · · · · · · · · ·	MINOR	MAJOR	✓ Override Depths
Length of a Unit Grate	$L_{0}(G) = \Gamma$	N/A	N/A	feet
Width of a Unit Grate	$W_0 = $	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	† · · · ·
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	-
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information	-0 (-7 [MINOR	MAJOR	-
Length of a Unit Curb Opening	$L_{0}(C) = \Gamma$	5.00	5.00	∏feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _n =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	1.000
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	-
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C ₀ (C) =	0.67	0.67	┪
Grate Flow Analysis (Calculated)	-0 (-/	MINOR	MAJOR	<u>'</u>
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
Clogging Factor for Multiple Units	Clog =	N/A	N/A	1
Grate Capacity as a Weir (based on Modified HEC22 Method)	Glog – L	MINOR	MAJOR	-
Interception without Clogging	$Q_{wi} = \Gamma$	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)	Qwa – L	MINOR	MAJOR	Ja. 3
Interception without Clogging	$Q_{oi} = \Gamma$	N/A	N/A	7cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	Q _{oa} – L	MINOR	MAJOR	Jus
Interception without Clogging	0 -[N/A	N/A	7cfs
Interception without clogging Interception with Clogging	Q _{mi} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes cloqged condition)	$Q_{ma} = $ $Q_{Grate} = $	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	₹Grate -	MINOR	MAJOR	CIS
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	¬
Clogging Factor for Multiple Units	Clog =	0.06	0.06	- ∥
Curb Opening as a Weir (based on Modified HEC22 Method)	ciog – L	MINOR	MAJOR	-
Interception without Clogging	$Q_{wi} = \Gamma$	4.2	21.9	ີ່ cfs
Interception without clogging Interception with Clogging	Q _{wi} = Q _{wa} =	3.9	20.6	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)	Qwa - L	MINOR	MAJOR	Jus
Interception without Clogging	$Q_{oi} = \Gamma$	16.6	22.4	ີ່ cfs
Interception without clogging Interception with Clogging		15.6	21.0	cfs
	$Q_{oa} = L$	MINOR	MAJOR	Jus
Curb Opening Capacity as Mixed Flow Interception without Clogging	Λ -Γ	7.7	20.6	7cfs
Interception with Clogging Interception with Clogging	Q _{mi} =	7.7	19.3	cfs
	Q _{ma} = Q_{curb} =	7.3 3.9	19.3 19.3	cfs
Resulting Curb Opening Capacity (assumes clogged condition) Resultant Street Conditions	*Curb =	MINOR	MAJOR	10.0
Total Inlet Length	L = [10.00	10.00	lfeet
Resultant Street Flow Spread (based on street geometry from above)	L= - T=	11.5	27.0	ft.>T-Crown
Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown	-	0.0	27.0	inches
Resultant Flow Depth at Street Crown	$d_{CROWN} = L$	0.0	2.4	Jiliches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	a _F	N/A	MAJOR N/A	Πft
H '	d _{Grate} =			Int
Depth for Curb Opening Weir Equation	d _{Curb} =	0.19	0.50	- '`
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.40	0.75	- ∥
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.81	1.00	- ∥
Grated Inlet Performance Reduction Factor for Long Inlets	$RF_{Grate} = L$	N/A	N/A	」
		MINOR	MAJOR	
Takal Talak Tutayaantian Canasity (assumes alegged condition)	o = [3.9	19.3	□cfs
Total Inlet Interception Capacity (assumes clogged condition)	$Q_a = Q_b$ $Q_{PEAK REQUIRED} = Q_b$	3.0	6.9	crs cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	✓ PEAK REQUIRED —	3.0	۳.0	LIS

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin B-1 (DP 9)

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) ft/ft $S_{BACK} =$ 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $n_{BACK} =$ 0.013 Height of Curb at Gutter Flow Line 6.00 H_{CURB} : inches Distance from Curb Face to Street Crown T_{CROWN} = 17.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_0 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.016 $n_{STREET} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 13.5 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm linches $d_{MAX} =$ 6.0 8.0 Check boxes are not applicable in SUMP conditions Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (d_C - (W * S_x * 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section T_x Discharge within the Gutter Section W $(Q_T - Q_X)$

Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V*d Product: Flow Velocity times Gutter Flowline Depth

, , , , , , , , , , , , , , , , , , ,
Maximum Capacity for 1/2 Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section T_{XTH}
Actual Discharge outside the Gutter Section W, (limited by distance T _{CROWN})
Discharge within the Gutter Section W (Q _d - Q _X)
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)

Total Discharge for Major & Minor Storm (Pre-Safety Factor) Average Flow Velocity Within the Gutter Section V*d Product: Flow Velocity Times Gutter Flowline Depth

Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)

Resultant Flow Depth at Street Crown (Safety Factor Applied) MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

	Minor Storm	Major Storm	
y =	3.24	4.08	inches
$d_C =$	2.0	2.0	inches
a =	1.51	1.51	inches
d =	4.75	5.59	inches
$T_X =$	11.5	15.0	ft
E _o =	0.440	0.350	
$Q_X =$	0.0	0.0	cfs
$Q_W =$	0.0	0.0	cfs
Q _{BACK} =	0.0	0.0	cfs
$Q_T =$	SUMP	SUMP	cfs
V =	0.0	0.0	fps
V*d =	0.0	0.0]
		-	_

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Minor Storm	Major Storm	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$T_{TH} = $	18.7	27.0	ft
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$T_{XTH} = [$	16.7	25.0	ft
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$E_0 = [$	0.318	0.216	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Q_{XTH} = [$	0.0	0.0	cfs
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Q_X = [$	0.0	0.0	cfs
Q = 0.0 0.0 cfs V = 0.0 0.0 fps V*d = 0.0 0.0 cfs R = SUMP SUMP SUMP Q _d = SUMP SUMP cfs d = inches	$Q_W = [$	0.0	0.0	cfs
$ \begin{array}{c cccc} V = & 0.0 & 0.0 & \text{fps} \\ V^*d = & 0.0 & 0.0 & \\ R = & SUMP & SUMP & \\ \mathbf{Q_d} = & SUMP & SUMP & \text{cfs} \\ d = & & & & \text{inches} \\ \end{array} $	$Q_{BACK} = [$	0.0	0.0	cfs
V*d = 0.0 0.0 R = SUMP SUMP Q _d = SUMP SUMP cfs d = inches	Q =[0.0	0.0	cfs
$ \begin{array}{c cccc} R = & SUMP & SUMP \\ \textbf{Q}_d = & SUMP & SUMP \\ d = & & & inches \end{array} $	V =[0.0	0.0	fps
Q _d = SUMP SUMP cfs inches	V*d =	0.0	0.0	
d = inches	R =	SUMP	SUMP	1
	$Q_d = [$	SUMP	SUMP	cfs
d _{CROWN} = inches	d =[inches
	$d_{CROWN} = [$			inches

	Minor Storm	Major Storm	
$Q_{allow} =$	SUMP	SUMP	cfs

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Inn. t)		MINIOD	MAJOR	
Design Information (Input) CDOT Type R Curb Opening	T.ma _ [MINOR	MAJOR Curb Opening	1
Type of Inlet	Type =	3.00	3.00	inches
Local Depression (additional to continuous gutter depression 'a' from above) Number of Unit Inlets (Grate or Curb Opening)	a _{local} = No =	3.00	3.00	Inches
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.8	8.0	inches
Grate Information	Politiling Deptil - [MINOR	MAJOR	☐ Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	Ifeet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	-1'
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	$C_w(G) =$	N/A	N/A	-
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C ₀ (G) =	N/A	N/A	†
Curb Opening Information	G ₀ (G) - [MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_{0}(C) = [$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _n =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	1
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
Clogging Factor for Multiple Units	Clog =	N/A	N/A	1
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	_
Interception without Clogging	$Q_{wi} = \Gamma$	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	-
Interception without Clogging	$Q_{oi} = $	N/A	N/A	cfs
Interception with Clogging	$Q_{oa} = $	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	-
Interception without Clogging	$Q_{mi} = [$	N/A	N/A	cfs
Interception with Clogging	$Q_{ma} =$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	_	MINOR	MAJOR	_
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	
Clogging Factor for Multiple Units	Clog =	0.04	0.04	_
Curb Opening as a Weir (based on Modified HEC22 Method)	_	MINOR	MAJOR	_
Interception without Clogging	$Q_{wi} = L$	7.2	29.4	cfs
Interception with Clogging	$Q_{wa} = L$	6.9	28.1	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)	-	MINOR	MAJOR	_
Interception without Clogging	$Q_{oi} =$	26.2	33.6	cfs
Interception with Clogging	$Q_{oa} = L$	25.1	32.1	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	٦.
Interception without Clogging	$Q_{mi} = $	12.8	29.2	cfs
Interception with Clogging	Q _{ma} =	12.2 6.9	27.9 27.9	cfs cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =			crs
Resultant Street Conditions	. г	MINOR	MAJOR	٦, .
Total Inlet Length	L = T =	15.00 13.5	15.00 27.0	feet ft.>T-Crown
Resultant Street Flow Spread (based on street geometry from above)	-	0.0	27.0	inches
Resultant Flow Depth at Street Crown	$d_{CROWN} = L$	0.0	2.4	Inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	ہ _ ۔	N/A	N/A	Πft
Depth for Curb Opening Weir Equation	$d_{Grate} = d_{Curb} = d_{Curb}$	0.23	0.50	- it
Combination Inlet Performance Reduction Factor for Long Inlets		0.23	0.50	⊣ '`
Curb Opening Performance Reduction Factor for Long Inlets	$RF_{Combination} = RF_{Curb} = RF_{Curb}$	0.45	0.75	-
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	1
gorated inject renormance reduction ractor for Long Injects	N Grate - L	IN/A	111/71	_
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$Q_a = \lceil$	6.9	27.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	6.8	15.8	cfs
	e. Dat ALQUINED	0		1

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin B-2 (DP 10a)

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) $S_{BACK} =$ 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $n_{BACK} =$ 0.013 Height of Curb at Gutter Flow Line 6.00 H_{CURB} : inches Distance from Curb Face to Street Crown T_{CROWN} = 17.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition So ft/ft 0.020 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.016 $n_{STREET} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 12.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm linches $d_{MAX} =$ 6.0 8.0 Allow Flow Depth at Street Crown (check box for yes, leave blank for no) V Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) 2.88 4.08 inches Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") inches d_C = 2.0 2.0 Gutter Depression (d_C - (W * S_x * 12)) 1.51 inches Water Depth at Gutter Flowline d = 4.39 5.59 inches Allowable Spread for Discharge outside the Gutter Section W (T - W) $T_X =$ 10.0 15.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) $E_0 =$ 0.491 0.350 Discharge outside the Gutter Section W, carried in Section T_x Q_X = 3.4 10.0 cfs Discharge within the Gutter Section W $(Q_T - Q_X)$ Q_W = 3.3 cfs 5.4 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Orack = 0.0 0.0 cfs Maximum Flow Based On Allowable Spread Q_T = 6.7 15.4 cfs Flow Velocity within the Gutter Section 5.8 7.0 fps V*d Product: Flow Velocity times Gutter Flowline Depth V*d = Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread T_{TH} = 18.7 27.0 25.0 Theoretical Spread for Discharge outside the Gutter Section W (T - W) T_{X TH} = 16.7 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E_o = 0.318 0.216 Theoretical Discharge outside the Gutter Section W, carried in Section $T_{X\,TH}$ cfs Q_{X TH} = 13.3 39.1 Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) cfs $Q_x =$ 13.3 35.7 Discharge within the Gutter Section W (Q_d - Q_X) cfs Q_W = 6.2 10.8 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) cfs Q_{BACK} = 0.0 2.6 Total Discharge for Major & Minor Storm (Pre-Safety Factor) Q = 49.1 cfs 19.5 Average Flow Velocity Within the Gutter Section fps 7.4 9.3 V*d Product: Flow Velocity Times Gutter Flowline Depth V*d = 3.7 6.2 Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm 1.00 R = 0.83 Max Flow Based on Allowable Depth (Safety Factor Applied) $Q_d =$ 19.5 40.9 cfs Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) d = 6.00 inches Resultant Flow Depth at Street Crown (Safety Factor Applied) 0.41 1.97 linches MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Q_{allow} = 6.7 40.9 cfs Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management lajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R		1 I
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	∃
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	5.00	5.00	⊣ft I
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	⊣ft I
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	∃ ``
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from <i>Inlet Management</i>)	$Q_o = [$	6.5	15.2	ີ່ cfs
Water Spread Width	T = 1	11.9	16.9	dft I
Water Depth at Flowline (outside of local depression)	d = l	4.4	5.6	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.496	0.352	T
Discharge outside the Gutter Section W, carried in Section T _v	Q _v =	3.3	9.9	cfs
Discharge within the Gutter Section W	$Q_w = 1$	3.2	5.3	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.56	0.76	sq ft
Velocity within the Gutter Section W	V _w =	5.8	7.0	fps
Water Depth for Design Condition	d _{lOCAL} =	7.4	8.6	inches
Grate Analysis (Calculated)	GIOLAI I	MINOR	MAJOR	Interior
Total Length of Inlet Grate Opening	L = [N/A	N/A	∃ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	∃'`
Under No-Clogging Condition	-o-graft [MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V _o = [N/A	N/A	fps
Interception Rate of Frontal Flow	$R_f = $	N/A	N/A	ا ا
Interception Rate of Side Flow	R _x =	N/A	N/A	-
Interception Capacity	$Q_i = $	N/A	N/A	cfs
Under Clogging Condition	4ı −[MINOR	MAJOR	J ⁶¹³
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	¬
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	-
Effective (uncloqued) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	⊣ _{ft}
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	$R_f = 1$	N/A	N/A	ا ا
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q a =	N/A	N/A	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	,
Equivalent Slope S _e (based on grate carry-over)	$S_e = [$	0.113	0.086	∏ft/ft
Required Length L _T to Have 100% Interception	L _T =	14.36	25.12	T _{ft} I
Under No-Clogging Condition	-ı L	MINOR	MAJOR	- ∥
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L _T)	L = [14.36	15.00	∃ft
Interception Capacity	$Q_i =$	6.5	12.2	cfs
Under Clogging Condition		MINOR	MAJOR	- ' '
Clogging Coefficient	CurbCoef =	1.31	1.31	7 I
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	
Effective (Unclogged) Length	L _e =	14.34	14.34	⊣ _{ft}
Actual Interception Capacity	Qa =	6.5	12.1	cfs
Carry-Over Flow = $Q_{h/GRATE}$ - Q_a	Q _b =	0.0	3.1	cfs
Summary	32.0	MINOR	MAJOR	1
Total Inlet Interception Capacity	Q = [6.5	12.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	3.1	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	80	∃‰ ∥
	<u> </u>			1

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin B-3 (DP 10b)

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) ft/ft $S_{BACK} =$ 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $n_{BACK} =$ 0.013 Height of Curb at Gutter Flow Line 6.00 H_{CURB} : inches Distance from Curb Face to Street Crown T_{CROWN} = 17.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_0 ft/ft 0.000 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.016 $n_{STREET} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 12.5 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm linches $d_{MAX} =$ 6.0 8.0 Check boxes are not applicable in SUMP conditions Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) inches 3.00 4.08 Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") inches d_C = 2.0 2.0 Gutter Depression (d_C - (W * S_x * 12)) a inches Water Depth at Gutter Flowline d = 4.51 5.59 inches Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) $T_X =$ 10.5 15.0 ft $E_0 =$ 0.473 0.350 Discharge outside the Gutter Section W, carried in Section T_x Q_X = 0.0 0.0 cfs Discharge within the Gutter Section W $(Q_T - Q_X)$ Q_W = cfs 0.0 0.0 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Orack = cfs 0.0 0.0 Maximum Flow Based On Allowable Spread Q_T = cfs SUMP SUMP Flow Velocity within the Gutter Section 0.0 0.0 fps V*d Product: Flow Velocity times Gutter Flowline Depth V*d = 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread T_{TH} = 18.7 27.0 25.0 Theoretical Spread for Discharge outside the Gutter Section W (T - W) $T_{XTH} =$ 16.7 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E_o = 0.318 0.216 Theoretical Discharge outside the Gutter Section W, carried in Section $T_{X\,TH}$ cfs $Q_{XTH} =$ 0.0 0.0 Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) 0.0 cfs $Q_X =$ 0.0 Discharge within the Gutter Section W $(Q_d - Q_X)$ Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre-Safety Factor)

Average Flow Velocity Within the Gutter Section V*d Product: Flow Velocity Times Gutter Flowline Depth Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied)

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

$Q_{allow} =$	SUMP	SUMP	cfs
	Minor Storm	Major Storm	_
d _{CROWN} =			inches
d =			inches
$Q_d =$	SUMP	SUMP	cfs
R =	SUMP	SUMP]
V*d =	0.0	0.0]
V =	0.0	0.0	fps
Q =	0.0	0.0	cfs
$Q_{BACK} =$	0.0	0.0	cfs
₹w −	0.0	0.0	10.0

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Inn. t)		MINIOD	MAJOR	
Design Information (Input) CDOT Type R Curb Opening	T.ma _ [MINOR	MAJOR Curb Opening	1
Type of Inlet	Type =	3.00	3.00	inches
Local Depression (additional to continuous gutter depression 'a' from above) Number of Unit Inlets (Grate or Curb Opening)	a _{local} = No =	3.00	3.00	Inches
Water Depth at Flowline (outside of local depression)	Ponding Depth =	3 4.5	8.0	inches
Grate Information	Politiling Deptil - [MINOR	MAJOR	☐ Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	Ifeet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	-1'
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	$C_w(G) =$	N/A	N/A	-
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C ₀ (G) =	N/A	N/A	†
Curb Opening Information	G ₀ (G) - [MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_{0}(C) = [$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _n =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	1
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	1
Grate Flow Analysis (Calculated)	•	MINOR	MAJOR	•
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
Clogging Factor for Multiple Units	Clog =	N/A	N/A	1
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	_
Interception without Clogging	$Q_{wi} = \Gamma$	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	-
Interception without Clogging	$Q_{oi} = $	N/A	N/A	cfs
Interception with Clogging	$Q_{oa} = $	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	-
Interception without Clogging	$Q_{mi} = [$	N/A	N/A	cfs
Interception with Clogging	$Q_{ma} =$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	_	MINOR	MAJOR	_
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	
Clogging Factor for Multiple Units	Clog =	0.04	0.04	_
Curb Opening as a Weir (based on Modified HEC22 Method)	_	MINOR	MAJOR	_
Interception without Clogging	$Q_{wi} = $	6.1	29.4	cfs
Interception with Clogging	$Q_{wa} = L$	5.8	28.1	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)	-	MINOR	MAJOR	_
Interception without Clogging	$Q_{oi} =$	25.6	33.6	cfs
Interception with Clogging	$Q_{oa} = L$	24.5	32.1	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	٦,
Interception without Clogging	$Q_{mi} = $	11.6	29.2	cfs
Interception with Clogging	Q _{ma} =	11.1 5.8	27.9 27.9	cfs cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =			LIS
Resultant Street Conditions Tabel Joint Longth	, г	MINOR	MAJOR	Teast
Total Inlet Length	L = T =	15.00 12.5	15.00 27.0	feet ft.>T-Crown
Resultant Street Flow Spread (based on street geometry from above)	-	0.0	27.0	
Resultant Flow Depth at Street Crown	$d_{CROWN} = L$	0.0	L 2.4	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	a _F	N/A	N/A	Πft
Depth for Curb Opening Weir Equation	$d_{Grate} = d_{Curb} = d_{Curb}$	0.21	0.50	- it
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.21	0.50	⊣ '`
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.68	0.89	┥
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	┥
Grates Inici i cromance reduction ractor for Long Inicis	Grate —	11/7	111/7	_
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$Q_a = \lceil$	5.8	27.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	5.6	16.1	cfs
Times deposity to doop for rimor and ridger sterning/ V FERT			0.1	1

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin B-4 (DP 11)

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) $S_{BACK} =$ 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $n_{BACK} =$ 0.013 Height of Curb at Gutter Flow Line 6.00 H_{CURB} : inches Distance from Curb Face to Street Crown T_{CROWN} = 17.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_0 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.016 $n_{STREET} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 11.5 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm linches $d_{MAX} =$ 6.0 8.0 Check boxes are not applicable in SUMP conditions Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) inches 2.76 4.08 Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") inches d_C = 2.0 2.0 Gutter Depression (d_C - (W * S_x * 12)) a 1.51 inches Water Depth at Gutter Flowline d = 4.27 5.59 inches Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) $T_X =$ 9.5 15.0 ft $E_0 =$ 0.511 0.350 Discharge outside the Gutter Section W, carried in Section T_x Q_X = 0.0 0.0 cfs Discharge within the Gutter Section W $(Q_T - Q_X)$ Q_W = cfs 0.0 0.0 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Orack = cfs 0.0 0.0 Maximum Flow Based On Allowable Spread Q_T = cfs SUMP SUMP Flow Velocity within the Gutter Section 0.0 0.0 fps V*d Product: Flow Velocity times Gutter Flowline Depth V*d = Maximum Capacity for 1/2 Street based on Allowable Depth Theoretical Water Spread

Theoretical Spread for Discharge outside the Gutter Section W (T - W)

Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section T_{XTH} Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) Discharge within the Gutter Section W (Q_d - Q_X)

Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre-Safety Factor) Average Flow Velocity Within the Gutter Section

V*d Product: Flow Velocity Times Gutter Flowline Depth

Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm

Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied)

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

_	Minor Storm	Major Storm	_
$T_{TH} =$	18.7	27.0	ft
T _{XTH} =	16.7	25.0	ft
E _o =	0.318	0.216	
Q _{X TH} =	0.0	0.0	cfs
$Q_X = $	0.0	0.0	cfs
$Q_W =$	0.0	0.0	cfs
$Q_{BACK} =$	0.0	0.0	cfs
Q =	0.0	0.0	cfs
V =	0.0	0.0	fps
V*d =	0.0	0.0	
R =	SUMP	SUMP	
$Q_d = $	SUMP	SUMP	cfs
d =			inches
$d_{CROWN} =$			inches

Minor Storm Major Storm cfs

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	7
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.3	5.6	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{n}(G) = \Gamma$	N/A	N/A	feet
Width of a Unit Grate	$W_0 = $	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	7
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	7
Grate Orifice Coefficient (typical value 0.60 - 0.80)	Ċ₀ (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	$L_0(C) = \Gamma$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p = $	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	<u> </u>
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
Clogging Factor for Multiple Units	Clog =	N/A	N/A	7
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	-
Interception without Clogging	$Q_{wi} = \Gamma$	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	-
Interception without Clogging	$Q_{oi} = $	N/A	N/A	cfs
Interception with Clogging	$Q_{oa} = $	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	-
Interception without Clogging	$Q_{mi} = [$	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	_	MINOR	MAJOR	_
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	
Clogging Factor for Multiple Units	Clog =	0.06	0.06	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$Q_{wi} =$	4.2	9.3	cfs
Interception with Clogging	$Q_{wa} =$	3.9	8.7	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$Q_{oi} =$	16.6	18.9	cfs
Interception with Clogging	Q _{oa} =	15.6	17.7	cfs
Curb Opening Capacity as Mixed Flow	_	MINOR	MAJOR	_
Interception without Clogging	Q _{mi} =	7.7	12.3	cfs
Interception with Clogging	Q _{ma} =	7.3	11.5	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	3.9	8.7	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	L =	10.00	10.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	11.5	17.0	ft
Resultant Flow Depth at Street Crown	$d_{CROWN} =$	0.0	0.0	inches
Low Head Performance Reduction (Calculated)	_	MINOR	MAJOR	_
Depth for Grate Midwidth	$d_{Grate} =$	N/A	N/A	_ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.19	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.40	0.53	」
Curb Opening Performance Reduction Factor for Long Inlets	$RF_{Curb} =$	0.81	0.91	_
Grated Inlet Performance Reduction Factor for Long Inlets	$RF_{Grate} =$	N/A	N/A	」
	-	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.9	8.7	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.1	6.0	cfs

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin B-5 (DP 12a)

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) $S_{BACK} =$ 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $n_{BACK} =$ 0.013 Height of Curb at Gutter Flow Line 6.00 H_{CURB} : inches Distance from Curb Face to Street Crown T_{CROWN} = 17.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition So ft/ft 0.020 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.016 $n_{STREET} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 14.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm linches $d_{MAX} =$ 6.0 8.0 Allow Flow Depth at Street Crown (check box for yes, leave blank for no) V Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) 3.36 4.08 inches Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") inches d_C = 2.0 2.0 Gutter Depression (d_C - (W * S_x * 12)) 1.51 inches Water Depth at Gutter Flowline d = 4.87 5.59 inches Allowable Spread for Discharge outside the Gutter Section W (T - W) $T_X =$ 12.0 15.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) $E_0 =$ 0.425 0.350 Discharge outside the Gutter Section W, carried in Section T_x Q_X = 5.5 10.0 cfs Discharge within the Gutter Section W $(Q_T - Q_X)$ Q_W = cfs 4.1 5.4 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Orack = 0.0 0.0 cfs Maximum Flow Based On Allowable Spread Q_T = 9.6 15.4 cfs Flow Velocity within the Gutter Section 6.3 7.0 fps V*d Product: Flow Velocity times Gutter Flowline Depth V*d = Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread T_{TH} = 18.7 27.0 25.0 Theoretical Spread for Discharge outside the Gutter Section W (T - W) T_{X TH} = 16.7 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E_o = 0.318 0.216 Theoretical Discharge outside the Gutter Section W, carried in Section $T_{X\,TH}$ cfs Q_{X TH} = 13.3 39.1 Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) cfs $Q_x =$ 13.3 35.7 Discharge within the Gutter Section W (Q_d - Q_X) cfs Q_W = 6.2 10.8 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) cfs Q_{BACK} = 0.0 2.6 Total Discharge for Major & Minor Storm (Pre-Safety Factor) Q = 49.1 cfs 19.5 Average Flow Velocity Within the Gutter Section fps 7.4 9.3 V*d Product: Flow Velocity Times Gutter Flowline Depth V*d = 3.7 6.2 Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm 1.00 R = 0.83 Max Flow Based on Allowable Depth (Safety Factor Applied) $Q_d =$ 19.5 40.9 cfs Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) d = 6.00 inches Resultant Flow Depth at Street Crown (Safety Factor Applied) 0.41 1.97 linches MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion Q_{allow} = 9.6 40.9 cfs Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management lajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	† · · · ·
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	5.00	5.00	⊣ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	T _{ft}
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	⊣ "
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	-
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from <i>Inlet Management</i>)	$Q_o = [$	8.2	19.2	ີ່⊓cfs
Water Spread Width	T = 1	13.1	17.0	⊣ft I
Water Depth at Flowline (outside of local depression)	d =	4.7	6.0	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.4	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.452	0.320	T
Discharge outside the Gutter Section W, carried in Section T _v	O _v =	4.5	13.1	cfs
Discharge within the Gutter Section W	$Q_w = $	3.7	6.1	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	$A_W = \begin{bmatrix} A_W & A_W \end{bmatrix}$	0.61	0.83	sq ft
Velocity within the Gutter Section W	V _w =	6.1	7.4	fps
Water Depth for Design Condition	d _{LOCAL} =	7.7	9.0	inches
Grate Analysis (Calculated)	GIDIAI - I	MINOR	MAJOR	Illeries
Total Length of Inlet Grate Opening	L = [N/A	N/A	∃ft I
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	⊣'' ∥
Under No-Clogging Condition	LO-GRATE - L	MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V _o = [N/A	N/A	∏fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	-l'193
Interception Rate of Flow	R _x =	N/A	N/A	┥
Interception Rate of Side Flow Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	Qi - L	MINOR	MAJOR	Jus
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	ا ا
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	┥
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	⊣ _{ft} ∥
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	⊣ ¹¹⁹³
Interception Rate of Flow	$R_x = R_x$	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q_a} = \begin{bmatrix} \mathbf{Q_a} \\ \mathbf{Q_a} \end{bmatrix}$	N/A	N/A	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet)	Q _a = Q _b =	N/A N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	Q _b −	MINOR	MAJOR	CIS
Equivalent Slope S_e (based on grate carry-over)	$S_e = [$	0.105	0.080	∏rt/ft
Required Length L_T to Have 100% Interception	J _e - L _T =	16.74	29.25	Ift
Under No-Clogging Condition	LT - [MINOR	MAJOR	ا ''
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L _T)	L = [15.00	15.00	Πft
Interception Capacity	Q _i =	8.1	13.00	- 'Cfs
Under Clogging Condition	Ų − [MINOR	MAJOR	Ju₃
Clogging Coefficient	CurbCoef =	1.31	1.31	٦ ا
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	┥ ║
Effective (Unclogged) Length	Curbciog = [L _e = [14.34	14.34	⊣ _{ft} ∥
Actual Interception Capacity		8.0	13.8	cfs
Carry-Over Flow = Q _{MGRATE} -Q _a	Q _a =	0.2	5.4	crs cfs
	Q _b =	MINOR	MAJOR	lcis
Summary Total Inlet Interception Capacity	0-1	8.0	13.8	cfs
''''	Q =	0.2	5.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet) Capture Percentage = Q_a/Q_0 =	Qь = С% =	98	72	- crs %
Capture rescentage = Q _a /Q ₀ =	C70 =	70	12	70

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin B-6 (DP 14)

Gutter Geometry:	_		_	
Maximum Allowable Width for Spread Behind Curb	$T_{BACK} =$	8.0	ft	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	S _{BACK} =	0.020	ft/ft	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} =	0.013]	
			1	
Height of Curb at Gutter Flow Line	H _{CURB} =	6.00	inches	
Distance from Curb Face to Street Crown	$T_{CROWN} =$	17.0	ft	
Gutter Width	W = [2.00	ft	
Street Transverse Slope	$S_X = $	0.020	ft/ft	
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	$S_W = L$	0.083	ft/ft	
Street Longitudinal Slope - Enter 0 for sump condition	$S_0 = $	0.020	ft/ft	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{STREET} =	0.016		
		Minor Storm	Major Storm	
Max. Allowable Spread for Minor & Major Storm	$T_{MAX} = \Gamma$	11.5	17.0	ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	d _{MAX} =	6.0	8.0	inches
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)	GMAX L			
Maximum Capacity for 1/2 Street based On Allowable Spread		Minor Storm	Major Storm	
Water Depth without Gutter Depression (Eq. ST-2)	y =	2.76	4.08	inches
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")	$d_C =$	2.0	2.0	inches
Gutter Depression (d _C - (W * S _x * 12))	a =	1.51	1.51	inches
Water Depth at Gutter Flowline	d =	4.27	5.59	inches
Allowable Spread for Discharge outside the Gutter Section W (T - W)	$T_X = $	9.5	15.0	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ = [0.511	0.350	
Discharge outside the Gutter Section W, carried in Section T _X	$Q_X =$	3.0	10.0	cfs
Discharge within the Gutter Section W ($Q_T - Q_X$)	$Q_W =$	3.1	5.4	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	$Q_{BACK} =$	0.0	0.0	cfs
Maximum Flow Based On Allowable Spread	$Q_T =$	6.0	15.4	cfs
Flow Velocity within the Gutter Section	V =	5.6	7.0	fps
V*d Product: Flow Velocity times Gutter Flowline Depth	V*d =[2.0	3.3	
Maximum Capacity for 1/2 Street based on Allowable Depth		Minor Storm	Major Storm	
Theoretical Water Spread	T _{TH} = [18.7	27.0	ft
Theoretical Spread for Discharge outside the Gutter Section W (T - W)	T _{X TH} =	16.7	25.0	⊢lt l
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.318	0.216	⊣"
Theoretical Discharge outside the Gutter Section W, carried in Section T _{X TH}	Q _{X TH} =	13.3	39.1	cfs
Actual Discharge outside the Gutter Section W, (limited by distance T _{CROWN})	$Q_X = $	13.3	35.7	cfs
Discharge within the Gutter Section W (Q _d - Q _x)	Q _x =	6.2	10.8	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)		0.0	2.6	cfs
Total Discharge for Major & Minor Storm (Pre-Safety Factor)	Q _{BACK} =	19.5	49.1	cfs
. , ,	Q = V =			
Average Flow Velocity Within the Gutter Section	· -	7.4	9.3	fps
V*d Product: Flow Velocity Times Gutter Flowline Depth	V*d =	3.7	6.2	-
Slope-Based Depth Safety Reduction Factor for Major & Minor (d ≥ 6") Storm	R =	1.00	0.83	
Max Flow Based on Allowable Depth (Safety Factor Applied)	Q _d =	19.5	40.9	cfs
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)	d =	6.00	7.56	inches
Resultant Flow Depth at Street Crown (Safety Factor Applied)	$d_{CROWN} = [$	0.41	1.97	inches
MINOR STORM Allowable Capacity is based on Spread Criterion		Minor Storm	Major Storm	
MAJOR STORM Allowable Capacity is based on Spread Criterion	$Q_{allow} = [$	6.0	15.4	cfs
Minor storm max. allowable capacity GOOD - greater than the design flow gi				_
Major storm max. allowable capacity GOOD - greater than the design flow gi				

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	2	2	T
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	5.00	5.00	⊣ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\overrightarrow{W_o} =$	N/A	N/A	T _{ft}
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	⊣ "
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	-
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from <i>Inlet Management</i>)	$Q_o = $	3.7	8.6	ີ່⊓cfs
Water Spread Width	T =	9.2	13.4	⊣ft I
Water Depth at Flowline (outside of local depression)	d =	3.7	4.7	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.619	0.444	T
Discharge outside the Gutter Section W, carried in Section T _v	O _v =	1.4	4.8	cfs
Discharge within the Gutter Section W	$Q_w = $	2.3	3.8	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	$A_W = \begin{bmatrix} A_W & A_W \end{bmatrix}$	0.45	0.62	sq ft
Velocity within the Gutter Section W	V _w =	5.0	6.1	fps
Water Depth for Design Condition	d _{LOCAL} =	6.7	7.7	inches
Grate Analysis (Calculated)	GIOCAL - I	MINOR	MAJOR	Inches
Total Length of Inlet Grate Opening	L = [N/A	N/A	∃ft I
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	⊣'' ∥
Under No-Clogging Condition	LO-GRATE -	MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	∏fps
Interception Rate of Frontal Flow	V ₀ – R _f =	N/A	N/A	-l'193
Interception Rate of Flow	R _x =	N/A	N/A	┥
Interception Rate of Side Flow Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition	Qi -[MINOR	MAJOR	Jus
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	٦ ا
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	┥
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	⊣ _{ft} ∥
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	⊣ ¹¹⁹³
Interception Rate of Flow	R _x =	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q_a} = \begin{bmatrix} \mathbf{Q_a} \\ \mathbf{Q_a} \end{bmatrix}$	N/A	N/A	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet)	Q _a = Q _b =	N/A N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	Q _b −	MINOR	MAJOR	CIS
Equivalent Slope S_e (based on grate carry-over)	S _e = [0.136	0.103	∏rt/ft
Required Length L_T to Have 100% Interception	J _e - L _T =	9.90	17.27	Ift
Under No-Clogging Condition	LT -[MINOR	MAJOR	ا ''
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L _T)	L = [9.90	10.00	Πft
Interception Capacity	Q _i =	3.7	6.8	- 'Cfs
Under Clogging Condition	Qi −[MINOR	MAJOR	Ju₃
Clogging Coefficient	CurbCoef =	1.25	1.25	٦ ا
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	┥ ║
Effective (Unclogged) Length	Curbciog = L _e =	9.37	9.37	⊣ _{ft} ∥
Actual Interception Capacity	- ·	9.37 3.7	6.6	cfs
Carry-Over Flow = Q _{h/GRATE} -Q _a	Q _a =	0.0	2.0	crs cfs
	Q _b =	MINOR	MAJOR	lcis
Summary Total Inlet Interception Capacity	0-1	3.7	6.6	cfs
ll ' ' '	Q =			cfs
Total Inlet Carry-Over Flow (flow bypassing inlet) Capture Percentage = Q_a/Q_0 =	Qь = С% =	0.0 100	2.0 77	- crs %
Capture rescentage = Q _a /Q ₀ =	C70 =	100		70

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin B-7 (DP 15)

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) $S_{BACK} =$ 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $n_{BACK} =$ 0.013 Height of Curb at Gutter Flow Line 6.00 H_{CURB} : inches Distance from Curb Face to Street Crown T_{CROWN} = 17.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition So ft/ft 0.020 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.016 $n_{STREET} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 11.5 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm linches $d_{MAX} =$ 6.0 8.0 Allow Flow Depth at Street Crown (check box for yes, leave blank for no) V Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) 2.76 4.08 inches Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") inches d_C = 2.0 2.0 Gutter Depression (d_C - (W * S_x * 12)) inches 1.51 Water Depth at Gutter Flowline d = 4.27 5.59 inches Allowable Spread for Discharge outside the Gutter Section W (T - W) $T_X =$ 9.5 15.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) $E_0 =$ 0.511 0.350 Discharge outside the Gutter Section W, carried in Section T_x Q_X = 3.0 10.0 cfs Discharge within the Gutter Section W $(Q_T - Q_X)$ Q_W = cfs 3.1 5.4 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Orack = 0.0 0.0 cfs Maximum Flow Based On Allowable Spread Q_T = 6.0 15.4 cfs Flow Velocity within the Gutter Section 5.6 7.0 fps V*d Product: Flow Velocity times Gutter Flowline Depth V*d = Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm T_{TH} = Theoretical Water Spread 18.7 27.0 25.0 Theoretical Spread for Discharge outside the Gutter Section W (T - W) T_{X TH} = 16.7 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E_o = 0.318 0.216 Theoretical Discharge outside the Gutter Section W, carried in Section $T_{X\,TH}$ cfs Q_{X TH} = 13.3 39.1 Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) cfs $Q_x =$ 13.3 35.7 Discharge within the Gutter Section W (Q_d - Q_X) cfs Q_W = 6.2 10.8 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) cfs Q_{BACK} = 0.0 2.6 Total Discharge for Major & Minor Storm (Pre-Safety Factor) Q = 49.1 cfs 19.5 Average Flow Velocity Within the Gutter Section fps 7.4 9.3 V*d Product: Flow Velocity Times Gutter Flowline Depth V*d = 3.7 6.2 Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm 1.00 R = 0.83 Max Flow Based on Allowable Depth (Safety Factor Applied) $Q_d =$ 19.5 40.9 cfs Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) d = 6.00 inches Resultant Flow Depth at Street Crown (Safety Factor Applied) 0.41 1.97 linches MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 6.0 40.9 cfs Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management lajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	2	2	∃
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	5.00	5.00	∃ft I
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\overrightarrow{W_0} = $	N/A	N/A	⊣ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	∃ ``
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from <i>Inlet Management</i>)	$Q_o = [$	3.4	7.9	□cfs
Water Spread Width	T = 1	8.9	12.9	dft I
Water Depth at Flowline (outside of local depression)	d =	3.6	4.6	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.639	0.459	T
Discharge outside the Gutter Section W, carried in Section T _v	O _v =	1.2	4.3	cfs
Discharge within the Gutter Section W	$Q_w = 1$	2.2	3.6	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	$A_W = \begin{bmatrix} A_W & A_W \end{bmatrix}$	0.44	0.60	sq ft
Velocity within the Gutter Section W	V _w =	4.9	6.0	fps
Water Depth for Design Condition	d _{LOCAL} =	6.6	7.6	inches
Grate Analysis (Calculated)	GIDIAI - I	MINOR	MAJOR	Interies
Total Length of Inlet Grate Opening	L = [N/A	N/A	∃ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	∃'`
Under No-Clogging Condition	LO-GRATE - L	MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V _o = [N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	∃ ^{''ps}
Interception Rate of Flow	R _x =	N/A	N/A	-
Interception Rate of Side Flow Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition	Qi - L	MINOR	MAJOR	ا ا
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	٦
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	-
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	⊣ _{ft}
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	∃ ^{''ps}
Interception Rate of Flow	$R_x = R_x$	N/A	N/A	-
Actual Interception Capacity	$\mathbf{Q_a} = \begin{bmatrix} \mathbf{Q_a} \\ \mathbf{Q_a} \end{bmatrix}$	N/A	N/A	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet)	Q _a = Q _b =	N/A N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	Q _b −	MINOR	MAJOR	CIS
Equivalent Slope S _e (based on grate carry-over)	$S_e = [$	0.140	0.106	∏ft/ft
Required Length L_T to Have 100% Interception	J _e - L _T =	9.36	16.33	ft I
Under No-Clogging Condition	rt - [MINOR	MAJOR	⊣ ''
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L _T)	L = [9.36	10.00	T _{ft} I
Interception Capacity	L = Q _i =	3.4	6.5	cfs
Under Clogging Condition	Ų − [MINOR	MAJOR	الاما
Clogging Coefficient	CurbCoef =	1.25	1.25	¬
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	
Effective (Unclogged) Length		9.37	9.37	- _{ft}
	L _e =			⊣ ``
Actual Interception Capacity Carry-Over Flow = Q _{h(GRATE)} -Q _a	Q _a =	3.4 0.0	6.3 1.6	_cfs cfs
	Q _b =	MINOR	MAJOR	CIS
Summary Total Inlet Interception Capacity	0-1	3.4	6.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q =	0.0	1.6	cfs
Capture Percentage = Q _a /Q _o =	Qь = С% =	100	80	crs
Capture rescentage = Q _a /Q ₀ =	C70 =	100	00	70

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin B-8 (DP 12b)

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) $S_{BACK} =$ 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $n_{BACK} =$ 0.013 Height of Curb at Gutter Flow Line 6.00 H_{CURB} : inches Distance from Curb Face to Street Crown T_{CROWN} = 17.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_0 ft/ft 0.000 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.016 $n_{STREET} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 13.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm linches $d_{MAX} =$ 6.0 8.0 Check boxes are not applicable in SUMP conditions Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) 3.12 4.08 inches Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") inches d_C = 2.0 2.0 Gutter Depression (d_C - (W * S_x * 12)) a 1.51 inches Water Depth at Gutter Flowline d = 4.63 5.59 inches Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) $T_X =$ 11.0 15.0 ft $E_0 =$ 0.456 0.350 Discharge outside the Gutter Section W, carried in Section T_x Q_X = 0.0 0.0 cfs Discharge within the Gutter Section W $(Q_T - Q_X)$ Q_W = cfs 0.0 0.0 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Orack = cfs 0.0 0.0 Maximum Flow Based On Allowable Spread Q_T = cfs SUMP SUMP Flow Velocity within the Gutter Section 0.0 0.0 fps V*d Product: Flow Velocity times Gutter Flowline Depth V*d = 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread T_{TH} = 18.7 27.0 25.0 Theoretical Spread for Discharge outside the Gutter Section W (T - W) T_{X TH} = 16.7 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E_o = 0.318 0.216 Theoretical Discharge outside the Gutter Section W, carried in Section $T_{X\,TH}$ cfs Q_{X TH} = 0.0 0.0 Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) 0.0 cfs $Q_x =$ 0.0 Discharge within the Gutter Section W (Q_d - Q_X) cfs Q_W = 0.0 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) cfs Q_{BACK} = 0.0 0.0 Total Discharge for Major & Minor Storm (Pre-Safety Factor) Q = 0.0 cfs 0.0 Average Flow Velocity Within the Gutter Section fps 0.0 0.0 V*d Product: Flow Velocity Times Gutter Flowline Depth V*d = 0.0 0.0 Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm R = SUMP SUMP Max Flow Based on Allowable Depth (Safety Factor Applied) $Q_d =$ SUMP SUMP cfs Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) d = inches Resultant Flow Depth at Street Crown (Safety Factor Applied) d_{CROWN} = linches MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP cfs

Design Information (Input) CDOT Type R Curb Opening	_ =	MINOR	MAJOR	-
Type of Inlet	Type =	CDOT Type R		4
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	<u>.</u> .
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.6	8.0	inches
Grate Information Length of a Unit Grate	L (C) - F	MINOR N/A	MAJOR	Override Depths
Width of a Unit Grate	L _o (G) = W _o =	N/A N/A	N/A N/A	feet feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)		N/A N/A	N/A	Treet
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$A_{ratio} = C_f(G) = C_f(G)$	N/A	N/A	-
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	-
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	+
Curb Opening Information	ا (۵) د	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_{0}(C) = $	5.00	5.00	∏feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _D =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	_
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	_
Grate Capacity as a Weir (based on Modified HEC22 Method)	-	MINOR	MAJOR	_
Interception without Clogging	$Q_{wi} = $	N/A	N/A	cfs
Interception with Clogging	$Q_{wa} = \lfloor$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)	۰ ۲	MINOR	MAJOR	٦,
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	$Q_{oa} = $	N/A	N/A	cfs
Grate Capacity as Mixed Flow Interception without Clogging	ο -Γ	MINOR N/A	MAJOR N/A	ا مور مور
Interception without dogging Interception with Clogging	$Q_{mi} = Q_{ma} = Q_{ma}$	N/A N/A	N/A	cfs cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	*CGrate	MINOR	MAJOR	1013
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	٦
Clogging Factor for Multiple Units	Clog =	0.04	0.04	†
Curb Opening as a Weir (based on Modified HEC22 Method)	0.09	MINOR	MAJOR	-
Interception without Clogging	$Q_{wi} = \Gamma$	6.6	29.4	☐cfs
Interception with Clogging	Q _{wa} =	6.3	28.1	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)	- L	MINOR	MAJOR	_
Interception without Clogging	Q _{oi} =	25.9	33.6	cfs
Interception with Clogging	$Q_{oa} = $	24.8	32.1	cfs
Curb Opening Capacity as Mixed Flow	_	MINOR	MAJOR	_
Interception without Clogging	Q _{mi} =	12.2	29.2	cfs
Interception with Clogging	Q _{ma} =	11.6	27.9	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	6.3	27.9	cfs
Resultant Street Conditions	-	MINOR	MAJOR	٦.
Total Inlet Length	L = L	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	_ T =	13.0	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	$d_{CROWN} = $	0.0	2.4	inches
Low Hood Performance Reduction (Calculated)		MINOR	MAJOR	
Low Head Performance Reduction (Calculated) Depth for Grate Midwidth	а _Г	MINOR N/A	MAJOR N/A	Πft
Depth for Curb Opening Weir Equation	d _{Grate} = d _{Curb} =	0.22	0.50	Ift
Combination Inlet Performance Reduction Factor for Long Inlets		0.22	0.50	- '`
Curb Opening Performance Reduction Factor for Long Inlets	$RF_{Combination} = $ $RF_{Curb} = $	0.69	0.75	-
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	0.69 N/A	N/A	┥
States 2.1.50 Ferrormance reduction Factor for Long Inicia	Grate -	11/17	14/75	_
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$Q_a = \lceil$	6.3	27.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	5.6	21.7	cfs
	· L			•

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin B-9 (DP 13)

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) $S_{BACK} =$ 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $n_{BACK} =$ 0.013 Height of Curb at Gutter Flow Line 6.00 H_{CURB} : inches Distance from Curb Face to Street Crown T_{CROWN} = 17.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_0 ft/ft 0.000 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.016 $n_{STREET} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 11.5 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm linches $d_{MAX} =$ 6.0 8.0 Check boxes are not applicable in SUMP conditions Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) 2.76 4.08 inches Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") inches d_C = 2.0 2.0 Gutter Depression (d_C - (W * S_x * 12)) 1.51 inches a Water Depth at Gutter Flowline d = 4.27 5.59 inches Allowable Spread for Discharge outside the Gutter Section W (T - W) $T_X =$ 9.5 15.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) $E_0 =$ 0.511 0.350 Discharge outside the Gutter Section W, carried in Section T_x Q_X = 0.0 0.0 cfs Discharge within the Gutter Section W $(Q_T - Q_X)$ Q_W = cfs 0.0 0.0 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Orack = cfs 0.0 0.0 Maximum Flow Based On Allowable Spread Q_T = cfs SUMP SUMP Flow Velocity within the Gutter Section 0.0 0.0 fps V*d Product: Flow Velocity times Gutter Flowline Depth V*d = 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread T_{TH} = 18.7 27.0 25.0 Theoretical Spread for Discharge outside the Gutter Section W (T - W) T_{X TH} = 16.7 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E_o = 0.318 0.216 Theoretical Discharge outside the Gutter Section W, carried in Section $T_{X\,TH}$ cfs Q_{X TH} = 0.0 0.0 Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) 0.0 cfs $Q_x =$ 0.0 Discharge within the Gutter Section W (Q_d - Q_X) cfs Q_W = 0.0 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) cfs Q_{BACK} = 0.0 0.0 Total Discharge for Major & Minor Storm (Pre-Safety Factor) Q = 0.0 cfs 0.0 Average Flow Velocity Within the Gutter Section fps 0.0 0.0 V*d Product: Flow Velocity Times Gutter Flowline Depth V*d = 0.0 0.0 Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm R = SUMP SUMP Max Flow Based on Allowable Depth (Safety Factor Applied) $Q_d =$ SUMP SUMP cfs Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) d = inches Resultant Flow Depth at Street Crown (Safety Factor Applied) d_{CROWN} = linches MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP cfs

Design Information (Inn. t)		MINIOD	MAJOR	
Design Information (Input) CDOT Type R Curb Opening	T.ma _ [MINOR	MAJOR Curb Opening	1
Type of Inlet	Type =	3.00	3.00	inches
Local Depression (additional to continuous gutter depression 'a' from above) Number of Unit Inlets (Grate or Curb Opening)	a _{local} = No =	3.00	3.00	Inches
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.3	8.0	inches
Grate Information	Politiling Deptil - [MINOR	MAJOR	☐ Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	Ifeet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	-1'
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	$C_w(G) =$	N/A	N/A	-
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C ₀ (G) =	N/A	N/A	†
Curb Opening Information	G ₀ (G) - [MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_{0}(C) = $	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _n =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	1
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
Clogging Factor for Multiple Units	Clog =	N/A	N/A	1
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	_
Interception without Clogging	$Q_{wi} = \Gamma$	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	-
Interception without Clogging	$Q_{oi} = $	N/A	N/A	cfs
Interception with Clogging	$Q_{oa} = $	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	-
Interception without Clogging	$Q_{mi} = [$	N/A	N/A	cfs
Interception with Clogging	$Q_{ma} =$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	_	MINOR	MAJOR	_
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	
Clogging Factor for Multiple Units	Clog =	0.04	0.04	_
Curb Opening as a Weir (based on Modified HEC22 Method)	_	MINOR	MAJOR	_
Interception without Clogging	$Q_{wi} = $	5.1	29.4	cfs
Interception with Clogging	$Q_{wa} = L$	4.9	28.1	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)	-	MINOR	MAJOR	_
Interception without Clogging	$Q_{oi} =$	24.9	33.6	cfs
Interception with Clogging	$Q_{oa} = L$	23.8	32.1	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	٦,
Interception without Clogging	$Q_{mi} = $	10.5	29.2	cfs
Interception with Clogging	Q _{ma} =	10.0 4.9	27.9 27.9	cfs cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =			crs
Resultant Street Conditions	. г	MINOR	MAJOR	٦, .
Total Inlet Length	L = T =	15.00 11.5	15.00 27.0	feet ft.>T-Crown
Resultant Street Flow Spread (based on street geometry from above)	-	0.0	27.0	inches
Resultant Flow Depth at Street Crown	$d_{CROWN} = L$	0.0	2.4	Inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	ہ _ ۔	N/A	N/A	Πft
Depth for Curb Opening Weir Equation	$d_{Grate} = d_{Curb} = d_{Curb}$	0.19	0.50	- it
Combination Inlet Performance Reduction Factor for Long Inlets		0.19	0.50	⊣ '`
Curb Opening Performance Reduction Factor for Long Inlets	$RF_{Combination} = RF_{Curb} = RF_{Curb}$	0.40	0.75	-
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	1
gorated inject renormance reduction ractor for Long Injects	N Grate - L	IN/A	111/71	_
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$Q_a = \lceil$	4.9	27.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	4.7	11.1	cfs
	e. Dat ALQUINED			1

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin C-1 (DP 17b)

,				
Gutter Geometry:				
Maximum Allowable Width for Spread Behind Curb	$T_{BACK} = [$	8.0	ft	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	S _{BACK} =	0.020	ft/ft	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} =	0.013	1	
			-	
Height of Curb at Gutter Flow Line	$H_{CURB} = [$	6.00	inches	
Distance from Curb Face to Street Crown	$T_{CROWN} = $	17.0	ft	
Gutter Width	W =	2.00	ft	
Street Transverse Slope	S _X =	0.020	ft/ft	
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	$S_W = [$	0.083	ft/ft	
Street Longitudinal Slope - Enter 0 for sump condition	$S_0 = $	0.025	ft/ft	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{STREET} =	0.016]	
May Allayahla Cayand fay Minay 9 Majay Chayes	F	Minor Storm	Major Storm	٦۵
Max. Allowable Spread for Minor & Major Storm	T _{MAX} =	11.5	17.0	ft inches
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	$d_{MAX} = [$	6.0	8.0	Inches
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)			✓	
Maximum Capacity for 1/2 Street based On Allowable Spread		Minor Storm	Major Storm	
Water Depth without Gutter Depression (Eq. ST-2)	y = [2.76	4.08	inches
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")	$d_{C} = 1$	2.0	2.0	linches
Gutter Depression (d _C - (W * S _x * 12))	a =	1.51	1.51	inches
Water Depth at Gutter Flowline	d =	4.27	5.59	inches
Allowable Spread for Discharge outside the Gutter Section W (T - W)	T _x =	9.5	15.0	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E _o =	0.511	0.350	┪``
Discharge outside the Gutter Section W, carried in Section T _x	$Q_{x} = 1$	3.3	11.2	cfs
Discharge within the Gutter Section W ($Q_T - Q_X$)	$Q_{W} = 1$	3.4	6.0	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	0.0	cfs
Maximum Flow Based On Allowable Spread	$\mathbf{Q}_{T} = \mathbf{Q}_{T}$	6.8	17.2	cfs
Flow Velocity within the Gutter Section	V =	6.3	7.9	fps
V*d Product: Flow Velocity times Gutter Flowline Depth	V*d =	2.2	3.7	٦' ا
Throadel Flow Velocity times dated Flowline Depart	• u - L	2.2	3.,	_
Maximum Capacity for 1/2 Street based on Allowable Depth	_	Minor Storm	Major Storm	
Theoretical Water Spread	$T_{TH} = [$	18.7	27.0	ft
Theoretical Spread for Discharge outside the Gutter Section W (T - W)	$T_{XTH} = [$	16.7	25.0	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.318	0.216	
Theoretical Discharge outside the Gutter Section W, carried in Section T_{XTH}	$Q_{XTH} = $	14.9	43.7	cfs
Actual Discharge outside the Gutter Section W, (limited by distance T _{CROWN})	$Q_X = $	14.8	39.9	cfs
Discharge within the Gutter Section W (Q _d - Q _X)	$Q_W =$	6.9	12.1	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	2.9	cfs
Total Discharge for Major & Minor Storm (Pre-Safety Factor)	Q =	21.7	54.9	cfs
Average Flow Velocity Within the Gutter Section	v =	8.3	10.3	fps
V*d Product: Flow Velocity Times Gutter Flowline Depth	V*d =	4.1	6.9	7
Slope-Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm	R =	0.86	0.70	1
Max Flow Based on Allowable Depth (Safety Factor Applied)	$Q_d =$	18.7	38.3	cfs
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)	d =	5.74	7.15	inches
Resultant Flow Depth at Street Crown (Safety Factor Applied)	d _{CROWN} =	0.15	1.56	inches
	-			
MINOR STORM Allowable Capacity is based on Spread Criterion		Minor Storm	Major Storm	٦.
MINOR STORM Allowable Capacity is based on Spread Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion Minor storm max. allowable capacity GOOD - greater than the design flow o	$Q_{allow} = [$	6.8	38.3	cfs

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	† · · · ·
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	5.00	5.00	⊣ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\overrightarrow{W_o} =$	N/A	N/A	T _{ft}
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	⊣ "
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	- I
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from <i>Inlet Management</i>)	$Q_o = $	6.1	14.1	ີ່⊓cfs
Water Spread Width	T =	11.0	15.7	⊣ft I
Water Depth at Flowline (outside of local depression)	d =	4.2	5.3	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.532	0.380	T
Discharge outside the Gutter Section W, carried in Section T _v	O _v =	2.9	8.8	cfs
Discharge within the Gutter Section W	$Q_{w} = $	3.2	5.4	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	$A_W = \begin{bmatrix} A_W & A_W \end{bmatrix}$	0.53	0.71	sq ft
Velocity within the Gutter Section W	V _w =	6.2	7.5	fps
Water Depth for Design Condition	d _{LOCAL} =	7.2	8.3	inches
Grate Analysis (Calculated)	MIDIAI - I	MINOR	MAJOR	Illeries
Total Length of Inlet Grate Opening	L = [N/A	N/A	∃ft I
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	⊣'' I
Under No-Clogging Condition	Lo-GRATE -	MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	∏fps
Interception Rate of Frontal Flow	V ₀ – R _f =	N/A	N/A	- ^{1 05}
Interception Rate of Flow	$R_{x} = R_{x}$	N/A	N/A	┥
Interception Rate of Side Flow Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition	Qi -[MINOR	MAJOR	Jus
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	ا ا
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	┥
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	⊣ _{ft} ∥
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	⊣ ¹¹⁹³
Interception Rate of Flow	R _x =	N/A	N/A	┥
Actual Interception Capacity	$\mathbf{Q_a} = \begin{bmatrix} \mathbf{Q_a} \\ \mathbf{Q_a} \end{bmatrix}$	N/A	N/A	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet)	Q _a = Q _b =	N/A N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	Q _b − 1	MINOR	MAJOR	CIS
Equivalent Slope S _e (based on grate carry-over)	S _e = [0.120	0.091	∏rt/ft
Required Length L_T to Have 100% Interception	S _e - L _T =	13.71	23.84	Ift
Under No-Clogging Condition	LT -[MINOR	MAJOR	ا"،
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L _T)	L = [13.71	15.00	Πft
Interception Capacity	L = Q _i =	6.1	11.7	cfs
Under Clogging Condition	Qi −[MINOR	MAJOR	Ju₃
Clogging Coefficient	CurbCoef =	1.31	1.31	٦ ا
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	┥ ║
Effective (Unclogged) Length	Curbciog = [14.34	14.34	⊣ _{ft} ∥
Actual Interception Capacity	· .	6.1	11.6	cfs
Carry-Over Flow = Q _{MGRATEI} -Q _a	Q _a =	0.0	2.5	crs cfs
	Q _b =	MINOR	MAJOR	lcis
Summary Total Inlet Interception Capacity	0-1	6.1	11.6	cfs
' ' /	Q =	0.0	2.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet) Capture Percentage = Q_a/Q_0 =	Qь = С% =	100	82 82	- crs %
Capture rescentage = Q _a /Q ₀ =	C70 =	100	02	70

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin C-2 (DP 17a)

,				
Gutter Geometry:				
Maximum Allowable Width for Spread Behind Curb	$T_{BACK} = [$	8.0	ft	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	S _{BACK} =	0.020	ft/ft	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} =	0.013	1	
			-	
Height of Curb at Gutter Flow Line	$H_{CURB} = [$	6.00	inches	
Distance from Curb Face to Street Crown	T _{CROWN} =	17.0	ft	
Gutter Width	W =	2.00	ft	
Street Transverse Slope	S _X =	0.020	ft/ft	
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	S _W =	0.083	ft/ft	
Street Longitudinal Slope - Enter 0 for sump condition	S ₀ =	0.025	ft/ft	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{STREET} =	0.016	1	
			_	
		Minor Storm	Major Storm	-
Max. Allowable Spread for Minor & Major Storm	$T_{MAX} = $	12.5	17.0	_ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	$d_{MAX} = [$	6.0	8.0	inches
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)			~	
Maximum Capacity for 1/2 Street based On Allowable Spread		Minor Storm	Major Storm	
Water Depth without Gutter Depression (Eq. ST-2)	y = [3.00	4.08	linches
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")	d _C =	2.0	2.0	inches
Gutter Depression (d_C - (W * S_x * 12))	a =	1.51	1.51	inches
Water Depth at Gutter Flowline	d =	4.51	5.59	inches
Allowable Spread for Discharge outside the Gutter Section W (T - W)	u - T _x =	10.5	15.0	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	^ 1	0.473	0.350	- ''
Discharge outside the Gutter Section W, carried in Section T _x	E ₀ =		11.2	cfs
, , ,	Q _X =	4.3		cfs
Discharge within the Gutter Section W (Q _T - Q _X)	$Q_W =$	3.9	6.0	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	0.0	cfs
Maximum Flow Based On Allowable Spread	Q _T =	8.2	17.2	→ ' ' '
Flow Velocity within the Gutter Section	V =	6.6	7.9	fps
V*d Product: Flow Velocity times Gutter Flowline Depth	V*d =[2.5	3.7	_
Maximum Capacity for 1/2 Street based on Allowable Depth		Minor Storm	Major Storm	
Theoretical Water Spread	T _{TH} = [18.7	27.0	Πft
Theoretical Spread for Discharge outside the Gutter Section W (T - W)	T _{X TH} =	16.7	25.0	†ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.318	0.216	7
Theoretical Discharge outside the Gutter Section W, carried in Section T _{XTH}	Q _{x TH} =	14.9	43.7	cfs
Actual Discharge outside the Gutter Section W, (limited by distance T _{CROWN})	Q _x =	14.8	39.9	cfs
Discharge within the Gutter Section W (Q _d - Q _X)	$Q_W = 1$	6.9	12.1	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	2.9	cfs
Total Discharge for Major & Minor Storm (Pre-Safety Factor)	Q =	21.7	54.9	cfs
Average Flow Velocity Within the Gutter Section	V =	8.3	10.3	fps
V*d Product: Flow Velocity Times Gutter Flowline Depth	V*d =	4.1	6.9	٦,٢,
Slope-Based Depth Safety Reduction Factor for Major & Minor (d > 6") Storm	V · u = R =	0.86	0.70	1
Max Flow Based on Allowable Depth (Safety Factor Applied)	-	18.7	38.3	cfs
INDA LION DUSCU ON ANOMADIC DEDUT CONTENT AUCTOL ADDITEUT	Q _d = d = d = d = d = d = d = d = d = d =	5.74		inches
	a = j		7.15 1.56	linches linches
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)	1_ ہ			HILLIES
	$d_{CROWN} = [$	0.15	1.30	
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)	d _{CROWN} =	0.15 Minor Storm	Major Storm	_
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied)	$d_{CROWN} = [$ $\mathbf{Q_{allow}} = [$			_ ∏cfs

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	T
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	5.00	5.00	⊣ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\overrightarrow{W_o} =$	N/A	N/A	T _{ft}
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	⊣ "
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	-
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from <i>Inlet Management</i>)	$Q_o = $	8.0	18.7	ີ່⊓cfs
Water Spread Width	T =	12.4	17.0	⊣ft I
Water Depth at Flowline (outside of local depression)	d =	4.5	5.7	inches
Water Depth at Street Crown (or at T _{Max})	d _{CROWN} =	0.0	0.1	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.477	0.338	T
Discharge outside the Gutter Section W, carried in Section T _x	O _v =	4.2	12.4	cfs
Discharge within the Gutter Section W	$Q_w = 1$	3.8	6.3	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	$A_W = \begin{bmatrix} A_W & A_W \end{bmatrix}$	0.58	0.79	sq ft
Velocity within the Gutter Section W	V _w =	6.6	8.0	fps
Water Depth for Design Condition	d _{LOCAL} =	7.5	8.7	inches
Grate Analysis (Calculated)	UIOCAI -I	MINOR	MAJOR	Inches
Total Length of Inlet Grate Opening	L = [N/A	N/A	∃ft I
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	⊣'' I
Under No-Clogging Condition	Lo-GRATE -	MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	∏fps
Interception Rate of Frontal Flow	V ₀ – R _f =	N/A	N/A	- ^{1 05}
Interception Rate of Flow	$R_{x} = R_{x}$	N/A	N/A	┥
Interception Rate of Side Flow Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition	Qi -[MINOR	MAJOR	Jus
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	ا ا
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	┥
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	⊣ _{ft} ∥
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	⊣ ¹¹⁹³
Interception Rate of Flow	R _x =	N/A	N/A	┥
Actual Interception Capacity	$\mathbf{Q_a} = \begin{bmatrix} \mathbf{Q_a} \\ \mathbf{Q_b} \end{bmatrix}$	N/A	N/A	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet)	Q _a = Q _b =	N/A N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	<u> </u>	MINOR	MAJOR	ICIS
Equivalent Slope S_e (based on grate carry-over)	$S_e = $	0.110	0.084	∏rt/ft
Required Length L_T to Have 100% Interception	J _e – L _T =	16.40	28.67	Ift
Under No-Clogging Condition	LT -[MINOR	MAJOR	ا ''
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L _T)	L = [15.00	15.00	Πft
Interception Capacity	L = Q _i =	7.9	13.8	cfs
Under Clogging Condition	Qi −[7.9 MINOR	MAJOR	Ju₃
Clogging Coefficient	CurbCoef =	1.31	1.31	٦ ا
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	
Effective (Unclogged) Length	L _e =	14.34	14.34	⊣ _{ft} ∥
Actual Interception Capacity	· .	7.9	13.6	cfs
Carry-Over Flow = Q _{b/GRATE)} -Q _a	Q _a = Q _b =	0.1	5.1	cfs
	Q _b =	MINOR	MAJOR	UI3
Summary Total Inlet Interception Capacity	Q =	7.9	13.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)		0.1	5.1	cfs
Capture Percentage = Q_a/Q_0 =	Qь = С% =	98	73	- crs %
Capture rescentage = Qa/Qn =	C70 =	70	/3	70

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin C-4 (DP 17c)

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) $S_{BACK} =$ 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $n_{BACK} =$ 0.013 Height of Curb at Gutter Flow Line 6.00 H_{CURB} : inches Distance from Curb Face to Street Crown T_{CROWN} = 17.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition So ft/ft 0.020 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.016 $n_{STREET} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 11.5 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm linches $d_{MAX} =$ 6.0 8.0 Allow Flow Depth at Street Crown (check box for yes, leave blank for no) V Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) 2.76 4.08 inches Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") inches d_C = 2.0 2.0 Gutter Depression (d_C - (W * S_x * 12)) 1.51 inches Water Depth at Gutter Flowline d = 4.27 5.59 inches Allowable Spread for Discharge outside the Gutter Section W (T - W) $T_X =$ 9.5 15.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) $E_0 =$ 0.511 0.350 Discharge outside the Gutter Section W, carried in Section T_x Q_X = 3.0 10.0 cfs Discharge within the Gutter Section W $(Q_T - Q_X)$ Q_W = cfs 3.1 5.4 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Orack = 0.0 0.0 cfs Maximum Flow Based On Allowable Spread Q_T = 6.0 15.4 cfs Flow Velocity within the Gutter Section 5.6 7.0 fps V*d Product: Flow Velocity times Gutter Flowline Depth V*d = Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm T_{TH} = Theoretical Water Spread 18.7 27.0 25.0 Theoretical Spread for Discharge outside the Gutter Section W (T - W) T_{X TH} = 16.7 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E_o = 0.318 0.216 Theoretical Discharge outside the Gutter Section W, carried in Section $T_{X\,TH}$ cfs Q_{X TH} = 13.3 39.1 Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) cfs $Q_x =$ 13.3 35.7 Discharge within the Gutter Section W (Q_d - Q_X) cfs Q_W = 6.2 10.8 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) cfs Q_{BACK} = 0.0 2.6 Total Discharge for Major & Minor Storm (Pre-Safety Factor) Q = 49.1 cfs 19.5 Average Flow Velocity Within the Gutter Section fps 7.4 9.3 V*d Product: Flow Velocity Times Gutter Flowline Depth V*d = 3.7 6.2 Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm 1.00 R = 0.83 Max Flow Based on Allowable Depth (Safety Factor Applied) $Q_d =$ 19.5 40.9 cfs Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) d = 6.00 inches Resultant Flow Depth at Street Crown (Safety Factor Applied) $d_{CROWN} =$ 0.41 1.97 linches MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 6.0 40.9 cfs Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management lajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	7 I
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	T
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	5.00	5.00	⊣ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\overrightarrow{W_0} =$	N/A	N/A	T _{ft}
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	⊣ "
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from <i>Inlet Management</i>)	$Q_o = $	6.0	19.0	ີ່⊓cfs
Water Spread Width	T =	11.5	17.0	⊣ft I
Water Depth at Flowline (outside of local depression)	d =	4.3	6.0	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.4	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.512	0.321	T
Discharge outside the Gutter Section W, carried in Section T _v	O _v =	2.9	12.9	cfs
Discharge within the Gutter Section W	$Q_w = 1$	3.1	6.1	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	$A_W = \begin{bmatrix} A_W & A_W \end{bmatrix}$	0.54	0.83	sq ft
Velocity within the Gutter Section W	V _w =	5.7	7.4	fps
Water Depth for Design Condition	d _{LOCAL} =	7.3	9.0	inches
Grate Analysis (Calculated)	GIOCAL - I	MINOR	MAJOR	Inches
Total Length of Inlet Grate Opening	L = [N/A	N/A	∃ft I
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	⊣'' I
Under No-Clogging Condition	Lo-GRATE -	MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	∏fps
Interception Rate of Frontal Flow	V ₀ – R _f =	N/A	N/A	- ^{1 05}
Interception Rate of Flow	$R_x = R_x$	N/A	N/A	┥
Interception Rate of Side Flow Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition	Qi -[MINOR	MAJOR	Jus
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	ا ا
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	┥
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	⊣ _{ft} ∥
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	V ₀ – R _f =	N/A	N/A	⊣ ¹¹⁹³
Interception Rate of Flow	$R_x = R_x$	N/A	N/A	
Actual Interception Capacity		N/A	N/A	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet)	Q _a =	N/A N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	Q _b =	MINOR	MAJOR	CIS
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.116	0.080	∏rt/ft
Required Length L_T to Have 100% Interception	S _e - L _T =	13.62	29.05	Ift
Under No-Clogging Condition	LT -[MINOR	MAJOR	ا ''
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L _T)	L = [13.62	15.00	Πft
Interception Capacity	Q _i =	6.0	13.9	cfs
Under Clogging Condition	Q _i = [MINOR	MAJOR	_lus ∥
Clogging Coefficient	CurbCoef =	1.31	1.31	٦ ا
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	┥ ║
Effective (Unclogged) Length	٠,	14.34	14.34	⊣ _{ft} ∥
	L _e =			⊣ ∵ ∥
Actual Interception Capacity Carry-Over Flow = Q _{h(GRATE)} -Q _a	Q _a =	6.0 0.0	13.7 5.3	_cfs cfs
	Q _b =	MINOR	MAJOR	juis
Summary Total Inlet Interception Capacity	0-1	6.0	13.7	cfs
1 ' ' '	Q =			cfs
Total Inlet Carry-Over Flow (flow bypassing inlet) Capture Percentage = Q_a/Q_0 =	Qь = С% =	0.0 100	5.3 72	- crs %
Capture rescentage = Qa/Qn =	C-70 =	100	12	70

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin C-5 (DP 17d)

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) $S_{BACK} =$ 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $n_{BACK} =$ 0.013 Height of Curb at Gutter Flow Line 6.00 H_{CURB} : inches Distance from Curb Face to Street Crown T_{CROWN} = 17.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition So ft/ft 0.015 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.016 $n_{STREET} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 12.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm linches $d_{MAX} =$ 6.0 8.0 Allow Flow Depth at Street Crown (check box for yes, leave blank for no) V Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) 2.88 4.08 inches Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") inches d_C = 2.0 2.0 Gutter Depression (d_C - (W * S_x * 12)) 1.51 inches Water Depth at Gutter Flowline d = 4.39 5.59 inches Allowable Spread for Discharge outside the Gutter Section W (T - W) $T_X =$ 10.0 15.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) $E_0 =$ 0.491 0.350 Discharge outside the Gutter Section W, carried in Section T_x Q_X = 2.9 8.6 cfs Discharge within the Gutter Section W $(Q_T - Q_X)$ Q_W = 2.8 cfs 4.7 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Orack = 0.0 cfs 0.0 Maximum Flow Based On Allowable Spread Q_T = 5.8 cfs 13.3 Flow Velocity within the Gutter Section 5.0 6.1 fps V*d Product: Flow Velocity times Gutter Flowline Depth V*d = Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm T_{TH} = Theoretical Water Spread 18.7 27.0 25.0 Theoretical Spread for Discharge outside the Gutter Section W (T - W) T_{X TH} = 16.7 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E_o = 0.318 0.216 Theoretical Discharge outside the Gutter Section W, carried in Section $T_{X\,TH}$ cfs Q_{X TH} = 11.5 33.9 Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) cfs $Q_x =$ 11.5 30.9 Discharge within the Gutter Section W (Q_d - Q_X) 5.4 cfs Q_W = 9.4 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) cfs Q_{BACK} = 0.0 2.2 Total Discharge for Major & Minor Storm (Pre-Safety Factor) Q = 42.5 cfs 16.8 Average Flow Velocity Within the Gutter Section fps 6.4 8.0 V*d Product: Flow Velocity Times Gutter Flowline Depth V*d = 3.2 5.3 Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm R = 1.00 1.00 Max Flow Based on Allowable Depth (Safety Factor Applied) $Q_d =$ 16.8 42.5 cfs Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) d = 6.00 8.00 inches Resultant Flow Depth at Street Crown (Safety Factor Applied) $d_{CROWN} =$ 0.41 2.41 linches MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 5.8 42.5 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management lajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

Design Information (Insul)		MINOD	MAJOR	-
Design Information (Input) CDOT Type R Curb Opening	I	MINOR	MAJOR Curb Opening	- I
Type of Inlet	Type =	CDOT Type R		
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	-l _a
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	5.00	5.00	_ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	٦. ا
Design Discharge for Half of Street (from <i>Inlet Management</i>)	$Q_o =$	5.3	17.7	cfs
Water Spread Width	T =	11.6	17.0	ft
Water Depth at Flowline (outside of local depression)	d =	4.3	6.1	inches
Water Depth at Street Crown (or at T _{MAX})	$d_{CROWN} =$	0.0	0.5	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.508	0.312	
Discharge outside the Gutter Section W, carried in Section T _x	$Q_x =$	2.6	12.2	cfs
Discharge within the Gutter Section W	$Q_w =$	2.7	5.5	cfs
Discharge Behind the Curb Face	$Q_{BACK} =$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$A_W = $	0.55	0.85	sq ft
Velocity within the Gutter Section W	V _w =	4.9	6.5	fps
Water Depth for Design Condition	d _{LOCAL} =	7.3	9.1	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =[N/A	N/A	∃ft I
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	† I
Under No-Clogging Condition	0 0,01,12	MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	T _{fps}
Interception Rate of Frontal Flow	R _f =	N/A	N/A	T ⁻¹⁻⁵⁻⁵
Interception Rate of Side Flow	R _x =	N/A	N/A	1
Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition	ا تھ	MINOR	MAJOR	J.,,
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	¬
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	⊣ _{ft}
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	V ₀ – R _f =	N/A	N/A	-l' ^{ips}
Interception Rate of Side Flow			N/A N/A	-
Actual Interception Capacity	R _x =	N/A N/A	N/A	cfs
	Q _a =			cfs
Carry-Over Flow = Q ₀ -Q ₃ (to be applied to curb opening or next d/s inlet)	Q _b =	N/A MINOR	N/A	CTS
Curb or Slotted Inlet Opening Analysis (Calculated)	ا ء	MINOR	MAJOR	٦٥,,,
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.116	0.079	ft/ft
Required Length L _T to Have 100% Interception	$L_T = [$	12.61	27.83	_lft
Under No-Clogging Condition	. 1	MINOR	MAJOR	ا ،
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	12.61	15.00	_ft
Interception Capacity	$Q_i = [$	5.3	13.3	cfs
<u>Under Clogging Condition</u>		MINOR	MAJOR	ا ا
Clogging Coefficient	CurbCoef =	1.31	1.31	.
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	<u> </u>
Effective (Unclogged) Length	L _e =	14.34	14.34	ft
Actual Interception Capacity	Q _a =	5.3	13.2	cfs
Carry-Over Flow = $Q_{b(GRATE)}$ - Q_a	Q _b =	0.0	4.5	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =[5.3	13.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	4.5	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	74	%
h				

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin C-6 (DP 17e)

Gutter Geometry:	_		_	
Maximum Allowable Width for Spread Behind Curb	$T_{BACK} =$	8.0	ft	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	S _{BACK} =	0.020	ft/ft	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} =	0.013]	
W. I. (0 I 10 W FL 1)			1	
Height of Curb at Gutter Flow Line	_H _{CURB} =	6.00	inches	
Distance from Curb Face to Street Crown	T _{CROWN} =	17.0	ft	
Gutter Width	W =	2.00	ft	
Street Transverse Slope	$S_X = $	0.020	ft/ft	
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	$S_W = $	0.083	ft/ft	
Street Longitudinal Slope - Enter 0 for sump condition	$S_0 = $	0.015	ft/ft	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{STREET} =	0.016]	
		Minor Storm	Major Storm	
Max. Allowable Spread for Minor & Major Storm	$T_{MAX} = \Gamma$	11.0	17.0	∏ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	d _{MAX} =	6.0	8.0	inches
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)	GMAX -	0.0		
THOW FIRM DEPARTED DICCE CHOWIT (CHECK DON TOT YES, ICAVE DIGITATION TOT 110)			i.e.	
Maximum Capacity for 1/2 Street based On Allowable Spread	-	Minor Storm	Major Storm	
Water Depth without Gutter Depression (Eq. ST-2)	y =	2.64	4.08	inches
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")	d _C =	2.0	2.0	inches
Gutter Depression (d _C - (W * S _x * 12))	a =[1.51	1.51	inches
Water Depth at Gutter Flowline	d =	4.15	5.59	inches
Allowable Spread for Discharge outside the Gutter Section W (T - W)	T _X =	9.0	15.0]ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.532	0.350	7
Discharge outside the Gutter Section W, carried in Section T _x	$Q_X = $	2.2	8.6	cfs
Discharge within the Gutter Section W (Q _T - Q _X)	$Q_{W} = 1$	2.5	4.7	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	0.0	cfs
Maximum Flow Based On Allowable Spread	$\mathbf{Q}_{T} =$	4.7	13.3	cfs
Flow Velocity within the Gutter Section	v = 1	4.8	6.1	fps
V*d Product: Flow Velocity times Gutter Flowline Depth	V*d =	1.7	2.8	J. F.
Mayirayan Canasity for 1/2 Church based on Allewahla Doubh		Min ou Chouse	Mada - Charma	
Maximum Capacity for 1/2 Street based on Allowable Depth	- r	Minor Storm	Major Storm	٦۵
Theoretical Water Spread	_T _{TH} =	18.7	27.0	ft
Theoretical Spread for Discharge outside the Gutter Section W (T - W)	T _{X TH} =	16.7	25.0	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.318	0.216	↓ ,
Theoretical Discharge outside the Gutter Section W, carried in Section T _{X TH}	$Q_{XTH} =$	11.5	33.9	cfs
Actual Discharge outside the Gutter Section W, (limited by distance T _{CROWN})	$Q_X = $	11.5	30.9	cfs
Discharge within the Gutter Section W (Q_d - Q_X)	$Q_W = $	5.4	9.4	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	$Q_{BACK} =$	0.0	2.2	cfs
Total Discharge for Major & Minor Storm (Pre-Safety Factor)	Q =	16.8	42.5	cfs
Average Flow Velocity Within the Gutter Section	V =	6.4	8.0	fps
V*d Product: Flow Velocity Times Gutter Flowline Depth	V*d =	3.2	5.3	_
Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm	R =	1.00	1.00	
Max Flow Based on Allowable Depth (Safety Factor Applied)	$Q_d =$	16.8	42.5	cfs
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)	d =	6.00	8.00	inches
Resultant Flow Depth at Street Crown (Safety Factor Applied)	d _{CROWN} =	0.41	2.41	inches
MINOR STORM Allowable Capacity is based on Spread Criterion		Minor Storm	Major Storm	
MAJOR STORM Allowable Capacity is based on Spread Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion	O F	4.7	42.5	cfs
Minor storm max. allowable capacity GOOD - greater than the design flow g	Q _{allow} = [اداء

Danier Information (Insul)		MINOD	MAJOR	-
Design Information (Input) CDOT Type R Curb Opening	T [MINOR	MAJOR Curb Opening	- I
Type of Inlet	Type =	CDOT Type R		
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	- <u> </u>
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	4 I
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	٦. ا
Design Discharge for Half of Street (from <i>Inlet Management</i>)	$Q_o =$	4.6	13.1	cfs
Water Spread Width	T =	10.9	16.9	ft
Water Depth at Flowline (outside of local depression)	d =	4.1	5.6	inches
Water Depth at Street Crown (or at T _{MAX})	$d_{CROWN} =$	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.538	0.353	
Discharge outside the Gutter Section W, carried in Section T _x	$Q_x =$	2.1	8.5	cfs
Discharge within the Gutter Section W	$Q_w =$	2.5	4.6	cfs
Discharge Behind the Curb Face	$Q_{BACK} =$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$A_W = $	0.52	0.76	sq ft
Velocity within the Gutter Section W	V _W =	4.8	6.1	fps
Water Depth for Design Condition	d _{LOCAL} =	7.1	8.6	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =[N/A	N/A	ןft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	1
Under No-Clogging Condition	0 0,0112	MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	∃'' ^{5°}
Interception Rate of Side Flow	R _x =	N/A	N/A	1
Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition	ا تھ	MINOR	MAJOR	J.,,
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	ا ا
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	-
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft I
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	V ₀ – R _f =	N/A	N/A	-l' ^{ips}
'				-l
Interception Rate of Side Flow	R _x =	N/A N/A	N/A N/A	ا ۔۔۔
Actual Interception Capacity	Q _a =			cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	ا ء	MINOR	MAJOR	ا مر
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.121	0.086	ft/ft
Required Length L _T to Have 100% Interception	$L_T = [$	11.48	22.88	_ft
Under No-Clogging Condition	, 1	MINOR	MAJOR	ا ،
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L _T)	L =	11.48	15.00	_ft
Interception Capacity	$Q_i = [$	4.6	11.2	cfs
Under Clogging Condition		MINOR	MAJOR	ا ا
Clogging Coefficient	CurbCoef =	1.31	1.31	<u> </u>
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	<u> </u>
Effective (Unclogged) Length	L _e =	14.34	14.34	ft
Actual Interception Capacity	Q _a =	4.6	11.1	cfs
Carry-Over Flow = $Q_{b(GRATE)}$ - Q_a	Q _b =	0.0	2.0	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =[4.6	11.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	2.0	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	85	%
·				

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin C-8 (DP 17f)

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) $S_{BACK} =$ 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $n_{BACK} =$ 0.013 Height of Curb at Gutter Flow Line 6.00 H_{CURB} : inches Distance from Curb Face to Street Crown T_{CROWN} = 17.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition So ft/ft 0.022 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.016 $n_{STREET} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 10.5 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm linches $d_{MAX} =$ 6.0 8.0 Allow Flow Depth at Street Crown (check box for yes, leave blank for no) V Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) 4.08 inches 2.52 Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") inches d_C = 2.0 2.0 Gutter Depression (d_C - (W * S_x * 12)) inches Water Depth at Gutter Flowline d = 4.03 5.59 inches Allowable Spread for Discharge outside the Gutter Section W (T - W) $T_X =$ 8.5 15.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) $E_0 =$ 0.554 0.350 Discharge outside the Gutter Section W, carried in Section T_x Q_X = 2.3 10.5 cfs Discharge within the Gutter Section W $(Q_T - Q_X)$ 2.9 Q_W = cfs 5.6 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Orack = 0.0 0.0 cfs Maximum Flow Based On Allowable Spread Q_T = 5.2 cfs 16.1 Flow Velocity within the Gutter Section 5.6 7.4 fps V*d Product: Flow Velocity times Gutter Flowline Depth V*d = Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm T_{TH} = Theoretical Water Spread 18.7 27.0 25.0 Theoretical Spread for Discharge outside the Gutter Section W (T - W) T_{X TH} = 16.7 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E_o = 0.318 0.216 Theoretical Discharge outside the Gutter Section W, carried in Section $T_{X\,TH}$ cfs Q_{X TH} = 13.9 41.0 Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) cfs $Q_x =$ 13.9 37.4 6.5 Discharge within the Gutter Section W (Q_d - Q_X) cfs Q_W = 11.3 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) cfs Q_{BACK} = 0.0 2.7 Total Discharge for Major & Minor Storm (Pre-Safety Factor) 51.5 Q = cfs 20.4 Average Flow Velocity Within the Gutter Section fps 7.8 9.7 V*d Product: Flow Velocity Times Gutter Flowline Depth V*d = 3.9 6.5 Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm R = 0.95 0.77 Max Flow Based on Allowable Depth (Safety Factor Applied) $Q_d =$ 19.5 39.8 cfs Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) d = inches Resultant Flow Depth at Street Crown (Safety Factor Applied) $d_{CROWN} =$ 0.33 1.79 linches MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 5.2 39.8 cfs Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management lajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

Daving Information (Inna)		MINOD	MAJOR	1
Design Information (Input) CDOT Type R Curb Opening	I	MINOR	MAJOR Curb Opening	- I
Type of Inlet	Type =	CDOT Type R		
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	-
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	5.00	5.00	_ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	4
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	٦. ا
Design Discharge for Half of Street (from <i>Inlet Management</i>)	$Q_o =$	5.0	11.5	cfs
Water Spread Width	T =	10.4	14.8	_lft
Water Depth at Flowline (outside of local depression)	d =	4.0	5.1	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.561	0.402	」
Discharge outside the Gutter Section W, carried in Section T _x	$Q_x = $	2.2	6.9	cfs
Discharge within the Gutter Section W	$Q_w =$	2.8	4.6	cfs
Discharge Behind the Curb Face	$Q_{BACK} =$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$A_W = [$	0.50	0.68	sq ft
Velocity within the Gutter Section W	V _w =[5.6	6.8	fps
Water Depth for Design Condition	d _{lOCAL} =	7.0	8.1	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	∏ft ∥
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	7
Under No-Clogging Condition		MINOR	MAJOR	-
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	∃''
Interception Rate of Side Flow	R _x =	N/A	N/A	┪
Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition	٠ ١	MINOR	MAJOR	J
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	٦ ا
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	┪
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	⊣ _{ft} ∥
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	-l' ¹
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	$Q_a =$	N/A	N/A	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet)		N/A N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	Q _b =	MINOR	MAJOR	CIS
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.125	0.096	∏ft/ft
Required Length L _T to Have 100% Interception	- 1	12.05	20.89	Hrt I
	$L_T = [$			J ^{II} L
Under No-Clogging Condition		MINOR	MAJOR	ا ہ
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L _T)	L =	12.05	15.00	_ft
Interception Capacity	$Q_i = $	5.0	10.3	cfs
<u>Under Clogging Condition</u>	0	MINOR	MAJOR	ا ا
Clogging Coefficient	CurbCoef =	1.31	1.31	4
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	↓ .
Effective (Unclogged) Length	L _e =	14.34	14.34	_lft
Actual Interception Capacity	Q _a =	5.0	10.2	cfs
Carry-Over Flow = Q _{h/GRATE)} -Q _a	Q _b =	0.0	1.3	cfs
<u>Summary</u>		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	5.0	10.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	89	%
·				

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin C-9 (DP 17g)

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) $S_{BACK} =$ 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $n_{BACK} =$ 0.013 Height of Curb at Gutter Flow Line 6.00 H_{CURB} : inches Distance from Curb Face to Street Crown T_{CROWN} = 17.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.018 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft S_W 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_0 ft/ft 0.000 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.016 $n_{STREET} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 11.5 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm linches $d_{MAX} =$ 6.0 10.0 Check boxes are not applicable in SUMP conditions Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) 2.48 3.67 inches Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") inches d_C = 2.0 2.0 Gutter Depression (d_C - (W * S_x * 12)) 1.56 inches a Water Depth at Gutter Flowline d = 4.04 inches Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) $T_X =$ 9.5 15.0 ft $E_0 =$ 0.525 0.360 Discharge outside the Gutter Section W, carried in Section T_x Q_X = 0.0 0.0 cfs Discharge within the Gutter Section W $(Q_T - Q_X)$ Q_W = cfs 0.0 0.0 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Orack = cfs 0.0 0.0 Maximum Flow Based On Allowable Spread Q_T = cfs SUMP SUMP Flow Velocity within the Gutter Section 0.0 0.0 fps V*d Product: Flow Velocity times Gutter Flowline Depth V*d = 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread T_{TH} = 20.6 39.1 Theoretical Spread for Discharge outside the Gutter Section W (T - W) T_{X TH} = 18.6 37.1 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E_o = 0.295 0.149 Theoretical Discharge outside the Gutter Section W, carried in Section $T_{X\,TH}$ Q_{X TH} = cfs 0.0 0.0 Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) 0.0 cfs $Q_x =$ 0.0 Discharge within the Gutter Section W (Q_d - Q_X) cfs Q_W = 0.0 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) cfs Q_{BACK} = 0.0 0.0 Total Discharge for Major & Minor Storm (Pre-Safety Factor) Q = 0.0 cfs 0.0 Average Flow Velocity Within the Gutter Section fps 0.0 0.0 V*d Product: Flow Velocity Times Gutter Flowline Depth V*d = 0.0 0.0 Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm SUMP SUMP R = Max Flow Based on Allowable Depth (Safety Factor Applied) $Q_d =$ SUMP SUMP cfs Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) d = inches Resultant Flow Depth at Street Crown (Safety Factor Applied) d_{CROWN} = linches MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP cfs

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	1
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	10.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	$W_0 = $	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	1
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	1
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	7
Grate Orifice Coefficient (typical value 0.60 - 0.80)	Ċ₀ (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	$L_0(C) = \Gamma$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p = $	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	<u></u>
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	1
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	-
Interception without Clogging	$Q_{wi} = \Gamma$	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)	-	MINOR	MAJOR	-
Interception without Clogging	$Q_{oi} = $	N/A	N/A	cfs
Interception with Clogging	$Q_{oa} = $	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	-
Interception without Clogging	$Q_{mi} = [$	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	_	MINOR	MAJOR	_
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	
Clogging Factor for Multiple Units	Clog =	0.04	0.04	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$Q_{wi} =$	14.1	49.2	cfs
Interception with Clogging	$Q_{wa} =$	13.5	47.0	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$Q_{oi} =$	29.3	37.4	cfs
Interception with Clogging	Q _{oa} =	28.0	35.8	cfs
<u>Curb Opening Capacity as Mixed Flow</u>	_	MINOR	MAJOR	_
Interception without Clogging	Q _{mi} =	18.9	39.9	cfs
Interception with Clogging	Q _{ma} =	18.1	38.1	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	13.5	35.8	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	L =	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	20.6	39.1	ft.>T-Crown
Resultant Flow Depth at Street Crown	$d_{CROWN} =$	0.8	4.8	inches
Low Head Performance Reduction (Calculated)	_	MINOR	MAJOR	_
Depth for Grate Midwidth	$d_{Grate} =$	N/A	N/A	_ft
Depth for Curb Opening Weir Equation	$d_{Curb} =$	0.33	0.67	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.94	」
Curb Opening Performance Reduction Factor for Long Inlets	$RF_{Curb} =$	0.79	0.97	_
Grated Inlet Performance Reduction Factor for Long Inlets	$RF_{Grate} =$	N/A	N/A	_
	-	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	13.5	35.8	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	8.6	28.0	cfs

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin C-7 (DP 18a)

Gutter Geometry:			_	
Maximum Allowable Width for Spread Behind Curb	T _{BACK} =	8.0]ft	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	S _{BACK} =	0.020	ft/ft	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} =	0.013]	
			1	
Height of Curb at Gutter Flow Line	H _{CURB} =	6.00	inches	
Distance from Curb Face to Street Crown	T _{CROWN} =	17.0	ft	
Gutter Width	W =	2.00	ft	
Street Transverse Slope	$S_X =$	0.020	ft/ft	
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	$S_W = $	0.083	ft/ft	
Street Longitudinal Slope - Enter 0 for sump condition	$S_0 = $	0.022	ft/ft	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{STREET} =	0.016	1	
		Minor Storm	Major Storm	
Max. Allowable Spread for Minor & Major Storm	$T_{MAX} = \Gamma$	13.0	17.0	ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	d _{MAX} =	6.0	8.0	inches
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)	GMAX L		V	
			12.0	
Maximum Capacity for 1/2 Street based On Allowable Spread		Minor Storm	Major Storm	
Water Depth without Gutter Depression (Eq. ST-2)	y = _	3.12	4.08	inches
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")	$d_C =$	2.0	2.0	inches
Gutter Depression (d _C - (W * S _x * 12))	a =	1.51	1.51	inches
Water Depth at Gutter Flowline	d =	4.63	5.59	inches
Allowable Spread for Discharge outside the Gutter Section W (T - W)	$T_X =$	11.0	15.0	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	$E_0 = $	0.456	0.350	
Discharge outside the Gutter Section W, carried in Section T_X	$Q_X = $	4.6	10.5	cfs
Discharge within the Gutter Section W ($Q_T - Q_X$)	$Q_W = L$	3.8	5.6	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	$Q_{BACK} =$	0.0	0.0	cfs
Maximum Flow Based On Allowable Spread	$Q_T = $	8.4	16.1	cfs
Flow Velocity within the Gutter Section	V =	6.3	7.4	fps
V*d Product: Flow Velocity times Gutter Flowline Depth	V*d = [2.4	3.4	
Maximum Capacity for 1/2 Street based on Allowable Depth		Minor Storm	Major Storm	
Theoretical Water Spread	T _{TH} = [18.7	27.0	∏ft
Theoretical Spread for Discharge outside the Gutter Section W (T - W)	T _{XTH} =	16.7	25.0	⊢ft .
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	^;;; = [0.318	0.216	-
Theoretical Discharge outside the Gutter Section W, carried in Section T _{X TH}	Q _{X TH} =	13.9	41.0	cfs
Actual Discharge outside the Gutter Section W, (limited by distance T _{CROWN})	Q _X =	13.9	37.4	cfs
Discharge within the Gutter Section W (Q _d - Q _X)	$Q_{W} = 1$	6.5	11.3	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	2.7	cfs
Total Discharge for Major & Minor Storm (Pre-Safety Factor)	Q =	20.4	51.5	cfs
Average Flow Velocity Within the Gutter Section	v = l	7.8	9.7	fps
V*d Product: Flow Velocity Times Gutter Flowline Depth	V*d =	3.9	6.5	7.
Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm	R =	0.95	0.77	
Max Flow Based on Allowable Depth (Safety Factor Applied)	$Q_d =$	19.5	39.8	cfs
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)	d =	5.92	7.38	inches
Resultant Flow Depth at Street Crown (Safety Factor Applied)	d _{CROWN} =	0.33	1.79	inches
L				
MINOR STORM Allowable Capacity is based on Spread Criterion	•	Minor Storm	Major Storm	
MAJOR STORM Allowable Capacity is based on Depth Criterion	$Q_{allow} = $	8.4	39.8	cfs
Minor storm max. allowable capacity GOOD - greater than the design flow gi Major storm max. allowable capacity GOOD - greater than the design flow gi				

Danier Information (Insul)		MINOD	MAJOD	-
Design Information (Input) CDOT Type R Curb Opening	T [MINOR	MAJOR Curb Opening	- I
Type of Inlet	Type =	CDOT Type R		
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	-l _a
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	5.00	5.00	_ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	٦. ا
Design Discharge for Half of Street (from <i>Inlet Management</i>)	$Q_o =$	8.3	19.4	cfs
Water Spread Width	T =	12.9	17.0	ft
Water Depth at Flowline (outside of local depression)	d =	4.6	5.9	inches
Water Depth at Street Crown (or at T _{MAX})	$d_{CROWN} =$	0.0	0.3	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.459	0.325	
Discharge outside the Gutter Section W, carried in Section T _x	$Q_x =$	4.5	13.1	cfs
Discharge within the Gutter Section W	$Q_w = [$	3.8	6.3	cfs
Discharge Behind the Curb Face	$Q_{BACK} = $	0.0	0.0	cfs
Flow Area within the Gutter Section W	$A_W = $	0.60	0.82	sq ft
Velocity within the Gutter Section W	V _W =	6.3	7.7	fps
Water Depth for Design Condition	d _{LOCAL} =	7.6	8.9	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =[N/A	N/A	∃ft I
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	† I
Under No-Clogging Condition	0 0,0112	MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	T _{fps}
Interception Rate of Frontal Flow	R _f =	N/A	N/A	T ⁻ F ²
Interception Rate of Side Flow	R _x =	N/A	N/A	1
Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition	ا تھ	MINOR	MAJOR	J.,,
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	¬
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	⊣ _{ft}
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	V ₀ – R _f =	N/A	N/A	-l' ^{ips}
ll '				-
Interception Rate of Side Flow	R _x =	N/A N/A	N/A N/A	I
Actual Interception Capacity	Q _a =			cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	ا ء	MINOR	MAJOR	٦٥,,,
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.106	0.081	ft/ft
Required Length L _T to Have 100% Interception	$L_T = [$	16.85	29.42	_lft
Under No-Clogging Condition	, 1	MINOR	MAJOR	ا ،
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	15.00	15.00	_ft
Interception Capacity	$Q_i = [$	8.1	14.0	cfs
Under Clogging Condition		MINOR	MAJOR	ا ا
Clogging Coefficient	CurbCoef =	1.31	1.31	.
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	<u> </u>
Effective (Unclogged) Length	L _e =	14.34	14.34	ft
Actual Interception Capacity	Q _a =	8.1	13.9	cfs
Carry-Over Flow = $Q_{b(GRATE)}$ - Q_a	Q _b =	0.2	5.5	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =[8.1	13.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.2	5.5	cfs
Capture Percentage = Q _a /Q _o =	C% =	98	72	%
· · · · · · · · · · · · · · · · · · ·				

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin C-10 (DP 18b)

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) $S_{BACK} =$ 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $n_{BACK} =$ 0.013 Height of Curb at Gutter Flow Line 6.00 H_{CURB} : inches Distance from Curb Face to Street Crown T_{CROWN} = 17.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_0 ft/ft 0.000 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.016 $n_{STREET} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 11.5 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm linches $d_{MAX} =$ 6.0 10.0 Check boxes are not applicable in SUMP conditions Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) 2.76 4.08 inches Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") inches d_C = 2.0 2.0 Gutter Depression (d_C - (W * S_x * 12)) 1.51 inches a Water Depth at Gutter Flowline d = 4.27 5.59 inches Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) $T_X =$ 9.5 15.0 ft $E_0 =$ 0.511 0.350 Discharge outside the Gutter Section W, carried in Section T_x Q_X = 0.0 0.0 cfs Discharge within the Gutter Section W $(Q_T - Q_X)$ Q_W = cfs 0.0 0.0 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Orack = cfs 0.0 0.0 Maximum Flow Based On Allowable Spread Q_T = cfs SUMP SUMP Flow Velocity within the Gutter Section 0.0 0.0 fps V*d Product: Flow Velocity times Gutter Flowline Depth V*d = 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread T_{TH} = 18.7 35.4 Theoretical Spread for Discharge outside the Gutter Section W (T - W) T_{X TH} = 16.7 33.4 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E_o = 0.318 0.163 Theoretical Discharge outside the Gutter Section W, carried in Section $T_{X\,TH}$ cfs Q_{X TH} = 0.0 0.0 Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) 0.0 cfs $Q_x =$ 0.0 Discharge within the Gutter Section W (Q_d - Q_X) cfs Q_W = 0.0 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) cfs Q_{BACK} = 0.0 0.0 Total Discharge for Major & Minor Storm (Pre-Safety Factor) Q = 0.0 cfs 0.0 Average Flow Velocity Within the Gutter Section fps 0.0 0.0 V*d Product: Flow Velocity Times Gutter Flowline Depth V*d = 0.0 0.0 Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm R = SUMP SUMP Max Flow Based on Allowable Depth (Safety Factor Applied) $Q_d =$ SUMP SUMP cfs Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) d = inches Resultant Flow Depth at Street Crown (Safety Factor Applied) d_{CROWN} = linches MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP cfs

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	1 I
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	10.0	inches
Grate Information	ronaing Depar –	MINOR	MAJOR	✓ Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	lfeet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	-
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	- I
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	- I
		N/A N/A	/	-
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =		N/A	J
Curb Opening Information		MINOR	MAJOR	76
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C ₀ (C) =	0.67	0.67	
Grate Flow Analysis (Calculated)	,	MINOR	MAJOR	_
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$Q_{wi} =$	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)	•	MINOR	MAJOR	
Interception without Clogging	$Q_{oi} = [$	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	-
Interception without Clogging	$Q_{mi} = [$	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	7 I
Clogging Factor for Multiple Units	Clog =	0.04	0.04	1
Curb Opening as a Weir (based on Modified HEC22 Method)	clog – [MINOR	MAJOR	-
Interception without Clogging	$Q_{wi} = $	14.1	49.2	Tcfs T
Interception with Clogging	Q _{wa} =	13.5	47.0	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)	Qwa − [MINOR	MAJOR]
Interception without Clogging	$Q_{oi} = $	29.3	37.4	cfs
Interception with Clogging	$Q_{oa} = $	28.0	35.8	cfs
Curb Opening Capacity as Mixed Flow	Q _{0a} - [MINOR	MAJOR	ا
Interception without Clogging	0 -1	18.9	39.9	Tcfs T
Interception with Clogging	Q _{mi} =	18.1	38.1	cfs
' 33 3	$Q_{ma} = $ $Q_{Curb} = $	13.5	35.8	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	4 Curb –			CIS
Resultant Street Conditions Table Locath	, 1	MINOR	MAJOR	Treet
Total Inlet Length	L = T =	15.00 18.7	15.00 35.4	ft.>T-Crown
Resultant Street Flow Spread (based on street geometry from above)			35.4 4.4	
Resultant Flow Depth at Street Crown	$d_{CROWN} = [$	0.4	1 4.4	inches
Low Hood Postormones Deduction (Colorated)		MINIOD	MA300	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	ا م
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.67	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.94	↓
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.79	0.97	4
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	_
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	13.5	35.8	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	6.0	19.0	cfs

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin C-11 (DP 19)

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) ft/ft $S_{BACK} =$ 0.020 $n_{BACK} =$ 0.013 Height of Curb at Gutter Flow Line 6.00 H_{CURB} : inches Distance from Curb Face to Street Crown T_{CROWN} = 17.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_W 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_0 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} = 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 11.5 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm linches $d_{MAX} =$ 6.0 8.0 Check boxes are not applicable in SUMP conditions Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) inches 2.76 4.08 Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") d_C = inches 2.0 2.0 Gutter Depression (d_C - (W * S_x * 12)) a 1.51 inches Water Depth at Gutter Flowline d = 4.27 5.59 inches Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) $T_X =$ 9.5 15.0 ft $E_0 =$ 0.511 0.350 Discharge outside the Gutter Section W, carried in Section T_x Q_X = 0.0 0.0 cfs Discharge within the Gutter Section W $(Q_T - Q_X)$ Q_W = cfs 0.0 0.0 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Orack = 0.0 0.0 cfs Maximum Flow Based On Allowable Spread Q_T = cfs SUMP SUMP Flow Velocity within the Gutter Section 0.0 0.0 fps V*d = V*d Product: Flow Velocity times Gutter Flowline Depth 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Theoretical Water Spread

	Theoretical Spread for Discharge outside the Gutter Section W (T - W)
	Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
	Theoretical Discharge outside the Gutter Section W, carried in Section T_{XTH}
	Actual Discharge outside the Gutter Section W, (limited by distance T _{CROWN})
	Discharge within the Gutter Section W (Q_d - Q_X)
	Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)
	Total Discharge for Major & Minor Storm (Pre-Safety Factor)
	Average Flow Velocity Within the Gutter Section
	V*d Product: Flow Velocity Times Gutter Flowline Depth
	Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm
	Max Flow Based on Allowable Depth (Safety Factor Applied)
ı	Bosultant Flow Donth at Cuttor Flowling (Safaty Factor Applied)

Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion

	Minor Storm	orm Major Storm	
$T_{TH} = [$	18.7	27.0	ft
$T_{XTH} = [$	16.7	25.0	ft
$E_0 = [$	0.318	0.216	
$Q_{XTH} = [$	0.0	0.0	cfs
$Q_X = [$	0.0	0.0	cfs
$Q_W = [$	0.0	0.0	cfs
$Q_{BACK} = [$	0.0	0.0	cfs
Q =[0.0	0.0	cfs
V =	0.0	0.0	fps
V*d =	0.0	0.0	
R =	SUMP	SUMP	
Q _d = SUMP SUMI		SUMP	cfs
d =[inches
$d_{CROWN} = [$			inches

Q_{allow} = Minor Storm Major Storm Cfs

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	1
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.3	5.6	inches
Grate Information	, <u>.</u>	MINOR	MAJOR	Override Depths
Length of a Unit Grate	L₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	$W_o =$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	7
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) = $	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
<u>Curb Opening Information</u>		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) = L$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p = $	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	<u> </u>
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	ا ا
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	<u> </u>
Clogging Factor for Multiple Units	Clog =	N/A	N/A	_
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	٦ .
Interception without Clogging	$Q_{wi} = $	N/A	N/A	cfs
Interception with Clogging	$Q_{wa} = L$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	٦.
Interception without Clogging	$Q_{oi} =$	N/A	N/A	cfs
Interception with Clogging	$Q_{oa} = L$	N/A	N/A	cfs
Grate Capacity as Mixed Flow	۰	MINOR	MAJOR	٦,
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A N/A	N/A N/A	cfs cfs
Resulting Grate Capacity (assumes cloqued condition)	Q _{Grate} =	MINOR	MAJOR	CIS
Curb Opening Flow Analysis (Calculated)	C4 [٦ - ا
Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units	Coef = Clog =	1.00 0.10	1.00 0.10	-
Curb Opening as a Weir (based on Modified HEC22 Method)	clog = [MINOR	MAJOR	_
Interception without Clogging	$Q_{wi} = \Gamma$	2.6	5.1	ີ່ cfs
Interception with Clogging	Q _{wi} = Q _{wa} =	2.3	4.6	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)	Qwa – L	MINOR	MAJOR	Jus
Interception without Clogging	$Q_{oi} = \Gamma$	8.3	9.4	ີ່ cfs
Interception with Clogging	Q _{oa} =	7.5	8.5	cfs
Curb Opening Capacity as Mixed Flow	40a − [MINOR	MAJOR	J
Interception without Clogging	$Q_{mi} = \Gamma$	4.3	6.4	7cfs
Interception with Clogging	Q _{ma} =	3.9	5.8	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	2.3	4.6	cfs
Resultant Street Conditions		MINOR	MAJOR	-
Total Inlet Length	L = [5.00	5.00	feet
Resultant Street Flow Spread (based on street geometry from above)		11.5	17.0	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
·				-
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.19	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.55	0.72	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
				_
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a = [2.3	4.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	0.9	2.5	cfs
			-	

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin C-12 (DP 20)

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) $S_{BACK} =$ 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $n_{BACK} =$ 0.013 Height of Curb at Gutter Flow Line 6.00 H_{CURB} : inches Distance from Curb Face to Street Crown T_{CROWN} = 17.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_0 ft/ft 0.000 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.016 $n_{STREET} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 14.5 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm linches $d_{MAX} =$ 6.0 8.0 Check boxes are not applicable in SUMP conditions Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) 3.48 4.08 inches Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") inches d_C = 2.0 2.0 Gutter Depression (d_C - (W * S_x * 12)) a 1.51 inches Water Depth at Gutter Flowline d = 4.99 5.59 inches Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) $T_X =$ 12.5 15.0 ft $E_0 =$ 0.410 0.350 Discharge outside the Gutter Section W, carried in Section T_x Q_X = 0.0 0.0 cfs Discharge within the Gutter Section W $(Q_T - Q_X)$ Q_W = cfs 0.0 0.0 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Orack = cfs 0.0 0.0 Maximum Flow Based On Allowable Spread Q_T = cfs SUMP SUMP Flow Velocity within the Gutter Section 0.0 0.0 fps V*d Product: Flow Velocity times Gutter Flowline Depth V*d = 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread T_{TH} = 18.7 27.0 25.0 Theoretical Spread for Discharge outside the Gutter Section W (T - W) T_{X TH} = 16.7 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E_o = 0.318 0.216 Theoretical Discharge outside the Gutter Section W, carried in Section $T_{X\,TH}$ cfs Q_{X TH} = 0.0 0.0 Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) 0.0 cfs $Q_x =$ 0.0 Discharge within the Gutter Section W (Q_d - Q_X) cfs Q_W = 0.0 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) cfs Q_{BACK} = 0.0 0.0 Total Discharge for Major & Minor Storm (Pre-Safety Factor) Q = 0.0 cfs 0.0 Average Flow Velocity Within the Gutter Section fps 0.0 0.0 V*d Product: Flow Velocity Times Gutter Flowline Depth V*d = 0.0 0.0 Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm R = SUMP SUMP Max Flow Based on Allowable Depth (Safety Factor Applied) $Q_d =$ SUMP SUMP cfs Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) d = inches Resultant Flow Depth at Street Crown (Safety Factor Applied) d_{CROWN} = linches MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP cfs

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.0	8.0	inches
Grate Information	, <u>.</u>	MINOR	MAJOR	Override Depths
Length of a Unit Grate	L₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	$W_o =$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	7
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
<u>Curb Opening Information</u>		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) = L$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p = $	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	<u> </u>
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	ا ا
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	<u> </u>
Clogging Factor for Multiple Units	Clog =	N/A	N/A	_
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	٦ .
Interception without Clogging	$Q_{wi} = $	N/A	N/A	cfs
Interception with Clogging	$Q_{wa} = L$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	٦.
Interception without Clogging	$Q_{oi} =$	N/A	N/A	cfs
Interception with Clogging	$Q_{oa} = L$	N/A	N/A	cfs
Grate Capacity as Mixed Flow	۰	MINOR	MAJOR	٦,
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A N/A	N/A N/A	cfs cfs
Resulting Grate Capacity (assumes cloqued condition)	Q _{Grate} =	MINOR	MAJOR	CIS
Curb Opening Flow Analysis (Calculated)	C4 [٦ - ا
Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units	Coef = Clog =	1.00 0.10	1.00 0.10	-
Curb Opening as a Weir (based on Modified HEC22 Method)	clog = [MINOR	MAJOR	_
Interception without Clogging	$Q_{wi} = \Gamma$	3.9	11.0	ີ່ cfs
Interception with Clogging	Q _{wi} = Q _{wa} =	3.5	9.9	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)	Qwa – L	MINOR	MAJOR	Jus
Interception without Clogging	$Q_{oi} = \Gamma$	8.9	11.2	ີ່ cfs
Interception with Clogging	Q _{oa} =	8.1	10.1	cfs
Curb Opening Capacity as Mixed Flow	₹0a L	MINOR	MAJOR	7
Interception without Clogging	$Q_{mi} = [$	5.5	10.3	7cfs
Interception with Clogging	Q _{ma} =	4.9	9.3	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	3.5	9.3	cfs
Resultant Street Conditions		MINOR	MAJOR	-
Total Inlet Length	L = [5.00	5.00	feet
Resultant Street Flow Spread (based on street geometry from above)		14.5	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	2.4	inches
<u> </u>				_
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	_
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	_ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.25	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.64	1.00	_
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	_
	_			
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.5	9.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.0	6.8	cfs

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin D-1 (DP 22)

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) $S_{BACK} =$ 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $n_{BACK} =$ 0.013 Height of Curb at Gutter Flow Line 6.00 H_{CURB} : inches Distance from Curb Face to Street Crown T_{CROWN} = 17.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_0 ft/ft 0.000 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.016 $n_{STREET} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 11.5 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm linches $d_{MAX} =$ 6.0 8.0 Check boxes are not applicable in SUMP conditions Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) 2.76 4.08 inches Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") inches d_C = 2.0 2.0 Gutter Depression (d_C - (W * S_x * 12)) a 1.51 inches Water Depth at Gutter Flowline d = 4.27 5.59 inches Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) $T_X =$ 9.5 15.0 ft $E_0 =$ 0.511 0.350 Discharge outside the Gutter Section W, carried in Section T_x Q_X = 0.0 0.0 cfs Discharge within the Gutter Section W $(Q_T - Q_X)$ Q_W = cfs 0.0 0.0 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Orack = cfs 0.0 0.0 Maximum Flow Based On Allowable Spread Q_T = cfs SUMP SUMP Flow Velocity within the Gutter Section 0.0 0.0 fps V*d Product: Flow Velocity times Gutter Flowline Depth V*d = 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread T_{TH} = 18.7 27.0 25.0 Theoretical Spread for Discharge outside the Gutter Section W (T - W) T_{X TH} = 16.7 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E_o = 0.318 0.216 Theoretical Discharge outside the Gutter Section W, carried in Section $T_{X\,TH}$ Q_{X TH} = cfs 0.0 0.0 Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) 0.0 cfs $Q_x =$ 0.0 Discharge within the Gutter Section W (Q_d - Q_X) cfs Q_W = 0.0 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) cfs Q_{BACK} = 0.0 0.0 Total Discharge for Major & Minor Storm (Pre-Safety Factor) Q = 0.0 cfs 0.0 Average Flow Velocity Within the Gutter Section fps 0.0 0.0 V*d Product: Flow Velocity Times Gutter Flowline Depth V*d = 0.0 0.0 Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm R = SUMP SUMP Max Flow Based on Allowable Depth (Safety Factor Applied) $Q_d =$ SUMP SUMP cfs Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) d = inches Resultant Flow Depth at Street Crown (Safety Factor Applied) d_{CROWN} = linches MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP cfs

Design Information (Input) CDOT Type R Curb Opening	_ =	MINOR	MAJOR	-
Type of Inlet	Type =	CDOT Type R		. .
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	_
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.5	8.0	inches
Grate Information	_	MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_o(G) =$	N/A	N/A	feet
Width of a Unit Grate	$W_o =$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	_
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
<u>Curb Opening Information</u>	-	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_{o}(C) = $	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$H_{vert} =$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p = $	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Grate Flow Analysis (Calculated)	-	MINOR	MAJOR	٦
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	-
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)	-	MINOR	MAJOR	_
Interception without Clogging	$Q_{wi} = $	N/A	N/A	cfs
Interception with Clogging	$Q_{wa} = \lfloor$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	٦.
Interception without Clogging	$Q_{oi} = $	N/A	N/A	cfs
Interception with Clogging	$Q_{oa} = L$	N/A	N/A	cfs
Grate Capacity as Mixed Flow	-	MINOR	MAJOR	_
Interception without Clogging	$Q_{mi} = $	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes cloqged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	٦ .
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	_
Clogging Factor for Multiple Units	Clog =	0.04	0.04	_
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	٦.
Interception without Clogging	$Q_{wi} = $	6.0	29.4	cfs
Interception with Clogging	$Q_{wa} = L$	5.8	28.1	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	٦.
Interception without Clogging	$Q_{oi} =$	25.6	33.6	cfs
Interception with Clogging	$Q_{oa} = $	24.4	32.1	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	٦,
Interception without Clogging	Q _{mi} =	11.6	29.2	cfs
Interception with Clogging	Q _{ma} =	11.0	27.9	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	5.8	27.9	cfs
Resultant Street Conditions		MINOR	MAJOR	٦, .
Total Inlet Length	<u> </u>	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	_ T =	12.5	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	$d_{CROWN} = $	0.0	2.4	inches
Low Head Performance Reduction (Calculated)		MINOD	MAJOR	
Low Head Performance Reduction (Calculated)	ء د	MINOR	MAJOR	٦
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.21	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.42	0.75	-
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.68	0.89	-
Grated Inlet Performance Reduction Factor for Long Inlets	$RF_{Grate} = $	N/A	N/A	_
		MINOR	MAJOR	
Tatal Talet Interception Conseits (accumes alogged condition)	o _ [MINOR 5.8	MAJOR 27.9	cfs
Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q _a = Q _{PEAK REQUIRED} =	5.8 5.2	12.0	cfs
THICK Capacity 13 GOOD for Millor and Major Storms(2Q PEAK)	-C PEAK REQUIRED -	J.L	12.0	1013

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin D-2 (DP 23)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.5	8.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	$W_o =$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	7
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
<u>Curb Opening Information</u>		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) = L$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p = $	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	<u> </u>
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	ا ا
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	↓
Clogging Factor for Multiple Units	Clog =	N/A	N/A	_
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	٦ .
Interception without Clogging	$Q_{wi} = $	N/A	N/A	cfs
Interception with Clogging	$Q_{wa} = L$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	٦.
Interception without Clogging	$Q_{oi} =$	N/A	N/A	cfs
Interception with Clogging	$Q_{oa} = L$	N/A	N/A	cfs
Grate Capacity as Mixed Flow	۰	MINOR	MAJOR	٦,
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A N/A	N/A N/A	cfs cfs
Resulting Grate Capacity (assumes cloqged condition)	Q _{Grate} =	MINOR	MAJOR	CIS
Curb Opening Flow Analysis (Calculated)	C4 [1.00	٦ - ا
Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units	Coef = Clog =	1.00 0.10	0.10	-
Curb Opening as a Weir (based on Modified HEC22 Method)	ciog = [MINOR	MAJOR	_
Interception without Clogging	ο -Γ	3.0	11.0	ີ່ cfs
Interception with Clogging	Q _{wi} =	2.7	9.9	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)	$Q_{wa} = L$	MINOR	MAJOR	Jus
Interception without Clogging	$Q_{oi} = \Gamma$	8.5	11.2	ີ່ cfs
Interception with Clogging	Q _{oa} =	7.7	10.1	cfs
Curb Opening Capacity as Mixed Flow	Q0a − [MINOR	MAJOR	703
Interception without Clogging	$Q_{mi} = [$	4.7	10.3	7cfs
Interception with Clogging	Q _{mi} = Q _{ma} =	4.2	9.3	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	2.7	9.3	cfs
Resultant Street Conditions		MINOR	MAJOR	•
Total Inlet Length	L = [5.00	5.00	Treet
Resultant Street Flow Spread (based on street geometry from above)	T=	12.5	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	2.4	inches
	- CNOWN _			
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	∏ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.21	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.58	1.00	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	1
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	1
	Gratte L			-
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a = [2.7	9.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.5	3.4	cfs

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin D-3 (DP 24)

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) ft/ft $S_{BACK} =$ 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $n_{BACK} =$ 0.013 Height of Curb at Gutter Flow Line 6.00 H_{CURB} : inches Distance from Curb Face to Street Crown T_{CROWN} = 17.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_0 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.016 $n_{STREET} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 15.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm linches $d_{MAX} =$ 6.0 8.0 Check boxes are not applicable in SUMP conditions Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (d_C - (W * S_x * 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section T_x

Discharge within the Gutter Section W $(Q_T - Q_X)$ Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section V*d Product: Flow Velocity times Gutter Flowline Depth

Maximum Capacity for 1/2 Street based on Allowable Depth Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section T_{XTH} Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) Discharge within the Gutter Section W $(Q_d - Q_X)$ Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Total Discharge for Major & Minor Storm (Pre-Safety Factor) Average Flow Velocity Within the Gutter Section V*d Product: Flow Velocity Times Gutter Flowline Depth Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)

Resultant Flow Depth at Street Crown (Safety Factor Applied) MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

	Minor Storm	Major Storm	
y =[3.60	4.08	inches
$d_C =$	2.0	2.0	inches
a =[1.51	1.51	inches
d =	5.11	5.59	inches
$T_X = [$	13.0	15.0	ft
$E_0 = $	0.397	0.350	
$Q_X =$	0.0	0.0	cfs
$Q_W = $	0.0	0.0	cfs
$Q_{BACK} = [$	0.0	0.0	cfs
$Q_T = [$	SUMP	SUMP	cfs
V =[0.0	0.0	fps
V*d =	0.0	0.0	
-			_

	Minor Storm	Major Storm	
T _{TH} =	18.7	27.0	ft
$T_{XTH} =$	16.7	25.0	ft
E ₀ =	0.318	0.216	
$Q_{XTH} =$	0.0	0.0	cfs
$Q_X = [$	0.0	0.0	cfs
Q _W =	0.0	0.0	cfs
$Q_{BACK} = $	0.0	0.0	cfs
Q =	0.0	0.0	cfs
V =[0.0	0.0	fps
V*d =	0.0	0.0	
R =	SUMP	SUMP]
$Q_d =$	SUMP	SUMP	cfs
d =			inches
$d_{CROWN} = $			inches

	Minor Storm	Major Storm	
$Q_{allow} = [$	SUMP	SUMP	cfs

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	1 I
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	-
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.1	8.0	inches
Grate Information	ronding Depth - [MINOR	MAJOR	✓ Override Depths
Length of a Unit Grate	1 (0) -1	N/A	N/A	Ifeet
Width of a Unit Grate	L₀ (G) =	N/A	N/A	feet
	W _o =	,	,	-lieet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	-
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	4
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	4
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) = $	N/A	N/A	<u> </u>
<u>Curb Opening Information</u>	,	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_o(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	7 I
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	1
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7 I
Clogging Factor for Multiple Units	Clog =	N/A	N/A	1
Grate Capacity as a Weir (based on Modified HEC22 Method)	clog – [MINOR	MAJOR	_
Interception without Clogging	$Q_{wi} = [$	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)	Qwa - [MINOR	MAJOR	Jus
Interception without Clogging	0 -1	N/A	N/A	7cfs
	Q _{oi} =			
Interception with Clogging	$Q_{oa} = $	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	٦. ا
Interception without Clogging	$Q_{mi} =$	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	,	MINOR	MAJOR	, l
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	<u> </u>
Clogging Factor for Multiple Units	Clog =	0.04	0.04	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	_
Interception without Clogging	$Q_{wi} =$	8.9	29.4	cfs
Interception with Clogging	$Q_{wa} =$	8.5	28.1	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	_
Interception without Clogging	$Q_{oi} =$	27.1	33.6	cfs
Interception with Clogging	Q _{oa} =	25.9	32.1	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	-
Interception without Clogging	$Q_{mi} =$	14.4	29.2	l cfs
Interception with Clogging	Q _{ma} =	13.8	27.9	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	8.5	27.9	cfs
Resultant Street Conditions		MINOR	MAJOR	'
Total Inlet Length	L = [15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	15.00	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	2.4	inches
incontaint flow Depart at Street Grown	GCROWN -	0.0	2.1	Jinenes
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _1	N/A	N/A	٦ft I
Depth for Curb Opening Weir Equation	d _{Grate} =	0.26		- t
	d _{Curb} =		0.50	- ''
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.48	0.75	4
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.73	0.89	4
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	」 ┃
	_ ,	MINOR	MAJOR	٦ .
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.5	27.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	8.5	19.9	cfs
	-			

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin D-4 (DP 25)

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) $S_{BACK} =$ 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $n_{BACK} =$ 0.013 Height of Curb at Gutter Flow Line 6.00 H_{CURB} : inches Distance from Curb Face to Street Crown T_{CROWN} = 17.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_0 ft/ft 0.000 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.016 $n_{STREET} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 11.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm linches $d_{MAX} =$ 6.0 8.0 Check boxes are not applicable in SUMP conditions Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) 2.64 4.08 inches Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") inches d_C = 2.0 2.0 Gutter Depression (d_C - (W * S_x * 12)) 1.51 inches a Water Depth at Gutter Flowline d = 4.15 5.59 inches Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) $T_X =$ 9.0 15.0 ft $E_0 =$ 0.532 0.350 Discharge outside the Gutter Section W, carried in Section T_x Q_X = 0.0 0.0 cfs Discharge within the Gutter Section W $(Q_T - Q_X)$ Q_W = cfs 0.0 0.0 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Orack = cfs 0.0 0.0 Maximum Flow Based On Allowable Spread Q_T = cfs SUMP SUMP Flow Velocity within the Gutter Section 0.0 0.0 fps V*d Product: Flow Velocity times Gutter Flowline Depth V*d = 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread T_{TH} = 18.7 27.0 25.0 Theoretical Spread for Discharge outside the Gutter Section W (T - W) T_{X TH} = 16.7 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E_o = 0.318 0.216 Theoretical Discharge outside the Gutter Section W, carried in Section $T_{X\,TH}$ Q_{X TH} = cfs 0.0 0.0 Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) 0.0 cfs $Q_x =$ 0.0 Discharge within the Gutter Section W (Q_d - Q_X) cfs Q_W = 0.0 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) cfs Q_{BACK} = 0.0 0.0 Total Discharge for Major & Minor Storm (Pre-Safety Factor) Q = 0.0 cfs 0.0 Average Flow Velocity Within the Gutter Section fps 0.0 0.0 V*d Product: Flow Velocity Times Gutter Flowline Depth V*d = 0.0 0.0 Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm R = SUMP SUMP Max Flow Based on Allowable Depth (Safety Factor Applied) $Q_d =$ SUMP SUMP cfs Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) d = inches Resultant Flow Depth at Street Crown (Safety Factor Applied) d_{CROWN} = linches MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP cfs

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	1 I
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	-
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.1	8.0	inches
Grate Information	ronding Depth - [MINOR	MAJOR	✓ Override Depths
Length of a Unit Grate	L (C) _[N/A	N/A	Ifeet
Width of a Unit Grate	L₀ (G) =	N/A	N/A	feet
	W _o =	,	,	-l'eet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	- ∥
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	4
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	.
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) = $	N/A	N/A	」 ∥
<u>Curb Opening Information</u>		MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_o(C) = $	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p = $	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	T
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C; (C) =	0.67	0.67	† I
Grate Flow Analysis (Calculated)	•	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7 I
Clogging Factor for Multiple Units	Clog =	N/A	N/A	1 ∥
Grate Capacity as a Weir (based on Modified HEC22 Method)	clog – [MINOR	MAJOR	-
Interception without Clogging	1- 0	N/A	N/A	cfs
Interception without clogging Interception with Clogging	$Q_{wi} = $	N/A	N/A	cfs
	$Q_{wa} = [$	MINOR	MAJOR	Jus
Grate Capacity as a Orifice (based on Modified HEC22 Method)	0 [7-6-
Interception without Clogging	$Q_{oi} =$	N/A	N/A	cfs
Interception with Clogging	$Q_{oa} = [$	N/A	N/A	cfs
Grate Capacity as Mixed Flow	,	MINOR	MAJOR	_
Interception without Clogging	$Q_{mi} =$	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
<u>Curb Opening Flow Analysis (Calculated)</u>		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	_
Clogging Factor for Multiple Units	Clog =	0.04	0.04	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$Q_{wi} = $	8.9	29.4	cfs
Interception with Clogging	$Q_{wa} =$	8.5	28.1	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)	•	MINOR	MAJOR	- I
Interception without Clogging	$Q_{oi} = $	27.1	33.6	cfs
Interception with Clogging	Q _{oa} =	25.9	32.1	T _{cfs}
Curb Opening Capacity as Mixed Flow	coa [MINOR	MAJOR	-
Interception without Clogging	$Q_{mi} = [$	14.4	29.2	ີ່ lcfs
Interception with Clogging	Q _{ma} =	13.8	27.9	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	8.5	27.9	cfs
Resultant Street Conditions	CCUID	MINOR	MAJOR	1
Total Inlet Length	L = [15.00	15.00	lfeet
Resultant Street Flow Spread (based on street geometry from above)	L = T =	15.00	27.0	ft.>T-Crown
	. 1	0.0	2.4	inches
Resultant Flow Depth at Street Crown	$d_{CROWN} = [$	0.0	2.4	Jinches
Low Hood Postormones Deduction (Colorated)		MINIOD	MA300	
Low Head Performance Reduction (Calculated)	. г	MINOR	MAJOR	ا ا
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.26	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.48	0.75	」
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.73	0.89	_
Grated Inlet Performance Reduction Factor for Long Inlets	$RF_{Grate} = [$	N/A	N/A	_
	•			
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	$Q_a = [$	8.5	27.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	8.3	19.5	cfs
U				

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin E-1 (DP 27)

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) $S_{BACK} =$ 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $n_{BACK} =$ 0.013 Height of Curb at Gutter Flow Line 6.00 H_{CURB} : inches Distance from Curb Face to Street Crown T_{CROWN} = 17.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition So ft/ft 0.020 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.016 $n_{STREET} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 13.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm linches $d_{MAX} =$ 6.0 8.0 Allow Flow Depth at Street Crown (check box for yes, leave blank for no) V Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) 3.12 4.08 inches Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") inches d_C = 2.0 2.0 Gutter Depression (d_C - (W * S_x * 12)) 1.51 inches Water Depth at Gutter Flowline d = 4.63 5.59 inches Allowable Spread for Discharge outside the Gutter Section W (T - W) $T_X =$ 11.0 15.0 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) $E_0 =$ 0.456 0.350 Discharge outside the Gutter Section W, carried in Section T_x Q_X = 4.4 10.0 cfs Discharge within the Gutter Section W $(Q_T - Q_X)$ Q_W = 3.7 cfs 5.4 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Orack = 0.0 0.0 cfs Maximum Flow Based On Allowable Spread Q_T = 8.0 15.4 cfs Flow Velocity within the Gutter Section 6.0 7.0 fps V*d Product: Flow Velocity times Gutter Flowline Depth V*d = Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm T_{TH} = Theoretical Water Spread 18.7 27.0 25.0 Theoretical Spread for Discharge outside the Gutter Section W (T - W) T_{X TH} = 16.7 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E_o = 0.318 0.216 Theoretical Discharge outside the Gutter Section W, carried in Section $T_{X\,TH}$ cfs Q_{X TH} = 13.3 39.1 Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) cfs $Q_x =$ 13.3 35.7 Discharge within the Gutter Section W (Q_d - Q_X) cfs Q_W = 6.2 10.8 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) cfs Q_{BACK} = 0.0 2.6 Total Discharge for Major & Minor Storm (Pre-Safety Factor) Q = 49.1 cfs 19.5 Average Flow Velocity Within the Gutter Section fps 7.4 9.3 V*d Product: Flow Velocity Times Gutter Flowline Depth V*d = 3.7 6.2 Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm 1.00 R = 0.83 Max Flow Based on Allowable Depth (Safety Factor Applied) $Q_d =$ 19.5 40.9 cfs Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) d = 6.00 inches Resultant Flow Depth at Street Crown (Safety Factor Applied) $d_{CROWN} =$ 0.41 1.97 linches MINOR STORM Allowable Capacity is based on Spread Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 8.0 40.9 cfs Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management lajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.01 (April 2021)

Daring Information (Inner)		MINOD	MAJOR	-
Design Information (Input) CDOT Type R Curb Opening	I	MINOR	MAJOR Curb Opening	- I
Type of Inlet	Type =	CDOT Type R		
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	-l _a
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	5.00	5.00	_ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	٦. ا
Design Discharge for Half of Street (from Inlet Management)	$Q_o =$	7.5	17.6	cfs
Water Spread Width	T =	12.7	17.0	ft
Water Depth at Flowline (outside of local depression)	d =	4.6	5.8	inches
Water Depth at Street Crown (or at T _{MAX})	$d_{CROWN} =$	0.0	0.2	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.469	0.331	
Discharge outside the Gutter Section W, carried in Section T _x	$Q_x =$	4.0	11.8	cfs
Discharge within the Gutter Section W	$Q_w =$	3.5	5.8	cfs
Discharge Behind the Curb Face	$Q_{BACK} =$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$A_W = $	0.59	0.80	sq ft
Velocity within the Gutter Section W	V _W =	5.9	7.3	fps
Water Depth for Design Condition	d _{LOCAL} =	7.6	8.8	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =[N/A	N/A	∃ft I
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	† I
Under No-Clogging Condition	0 0,0112	MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	T _{fps}
Interception Rate of Frontal Flow	R _f =	N/A	N/A	T ⁻¹⁻⁵⁻⁵
Interception Rate of Side Flow	R _x =	N/A	N/A	1
Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition	ا ته	MINOR	MAJOR	J.,,
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	¬
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	⊣ _{ft}
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	-l' ¹
Interception Rate of Frontal Flow			N/A	-
Actual Interception Capacity	R _x =	N/A N/A	N/A	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet)	Q _a =	N/A N/A	N/A	cfs
	Q _b =	MINOR	MAJOR	CIS
Curb or Slotted Inlet Opening Analysis (Calculated)	ا ے			ا مرم
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.108	0.082 27.64	_ft/ft ft
Required Length L _T to Have 100% Interception	$L_T = [$	15.78		Jπ
Under No-Clogging Condition	, ,	MINOR	MAJOR	ا ہ
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L _T)	L =	15.00	15.00	_ft
Interception Capacity	$Q_i = [$	7.5	13.3	cfs
<u>Under Clogging Condition</u>	0.00.1	MINOR	MAJOR	ا ا
Clogging Coefficient	CurbCoef =	1.31	1.31	4
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	↓ _
Effective (Unclogged) Length	L _e =	14.34	14.34	_lftl
Actual Interception Capacity	Q _a =	7.4	13.2	cfs
Carry-Over Flow = Q _{h(GRATE)} -Q _a	Q _b =	0.1	4.4	cfs
<u>Summary</u>		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	7.4	13.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.1	4.4	cfs
Capture Percentage = Q _a /Q _o =	C% =	99	75	%
·				

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin E-2 (DP 28)

Gutter Geometry:			1.	
Maximum Allowable Width for Spread Behind Curb	$T_{BACK} = $	8.0	ft	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	$S_{BACK} = $	0.020	ft/ft	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	$n_{BACK} = L$	0.013]	
Height of Curb at Gutter Flow Line	H _{CURB} =	6.00	linches	
Distance from Curb Face to Street Crown	T _{CROWN} =	17.0	ft	
Gutter Width	W =	2.00	ft	
Street Transverse Slope	S _x =	0.020	ft/ft	
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	S _W =	0.083	ft/ft	
Street Longitudinal Slope - Enter 0 for sump condition	S ₀ =	0.020	ft/ft	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{STREET} =	0.016]'''	
		Minor Storm	Major Storm	
Max. Allowable Spread for Minor & Major Storm	$T_{MAX} = [$	13.0	17.0	∏ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm		6.0	8.0	inches
·	$d_{MAX} = \lfloor$			Tillclies
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)			~	
Maximum Capacity for 1/2 Street based On Allowable Spread	-	Minor Storm	Major Storm	
Water Depth without Gutter Depression (Eq. ST-2)	y =	3.12	4.08	inches
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")	$d_C =$	2.0	2.0	inches
Gutter Depression (d_C - (W * S_x * 12))	a =[1.51	1.51	inches
Water Depth at Gutter Flowline	d =	4.63	5.59	inches
Allowable Spread for Discharge outside the Gutter Section W (T - W)	T _X =	11.0	15.0	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.456	0.350	7
Discharge outside the Gutter Section W, carried in Section T _x	$Q_X =$	4.4	10.0	cfs
Discharge within the Gutter Section W (Q _T - Q _X)	$Q_{W} = 1$	3.7	5.4	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	0.0	cfs
Maximum Flow Based On Allowable Spread	$\mathbf{Q}_{T} =$	8.0	15.4	cfs
Flow Velocity within the Gutter Section	v =	6.0	7.0	fps
V*d Product: Flow Velocity times Gutter Flowline Depth	V*d =	2.3	3.3]
Maximum Capacity for 1/2 Street based on Allowable Depth		Minor Storm	Major Storm	
Theoretical Water Spread	T _{TH} = [18.7	27.0	∏ft
Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W)	T _{X TH} =	16.7	25.0	⊣¦t
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E _O =	0.318	0.216	 ՝`
Theoretical Discharge outside the Gutter Section W, carried in Section T_{XTH}		13.3	39.1	cfs
Actual Discharge outside the Gutter Section W, (limited by distance T _{CROWN})	Q _{X TH} =		35.7	cfs
Discharge within the Gutter Section W ($Q_d - Q_X$)	Q _x =	13.3 6.2	10.8	cfs
	Qw =			cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	2.6	⊣ ""
Total Discharge for Major & Minor Storm (Pre-Safety Factor)	Q =	19.5	49.1	cfs
Average Flow Velocity Within the Gutter Section	V =	7.4	9.3	fps
V*d Product: Flow Velocity Times Gutter Flowline Depth	V*d =	3.7	6.2	4
Slope-Based Depth Safety Reduction Factor for Major & Minor (d ≥ 6") Storm	R =	1.00	0.83	٠,
Max Flow Based on Allowable Depth (Safety Factor Applied)	$Q_d = $	19.5	40.9	cfs
	_ d = _	6.00	7.56	inches
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)	a _	0.41	1.97	inches
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied)	$d_{CROWN} = L$		•	
	u _{CROWN} = L	Minor Storm	Major Storm	
Resultant Flow Depth at Street Crown (Safety Factor Applied)	$\mathbf{q}_{CROWN} = [$ $\mathbf{Q}_{allow} = [$		Major Storm 40.9	cfs

INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	T
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	5.00	5.00	⊣ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\overrightarrow{W_0} = $	N/A	N/A	T _{ft}
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	⊣ "
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	- I
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from <i>Inlet Management</i>)	$Q_o = [$	7.6	17.9	ີ່⊓cfs
Water Spread Width	T = 1	12.7	17.0	⊣ft I
Water Depth at Flowline (outside of local depression)	d =	4.6	5.9	inches
Water Depth at Street Crown (or at T _{Max})	d _{CROWN} =	0.0	0.3	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.466	0.329	T
Discharge outside the Gutter Section W, carried in Section T _x	O _v =	4.1	12.0	cfs
Discharge within the Gutter Section W	$Q_w = $	3.5	5.9	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	$A_W = \begin{bmatrix} A_W & A_W \end{bmatrix}$	0.59	0.81	sq ft
Velocity within the Gutter Section W	V _w =	6.0	7.3	fps
Water Depth for Design Condition	d _{LOCAL} =	7.6	8.9	inches
Grate Analysis (Calculated)	uiocai – i	MINOR	MAJOR	Inches
Total Length of Inlet Grate Opening	L = [N/A	N/A	∃ft I
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	⊣'' I
Under No-Clogging Condition	LO-GRATE - L	MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V _o = [N/A	N/A	∏fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	- ^{1 05}
Interception Rate of Flow	R _x =	N/A	N/A	┥
Interception Rate of Side Flow Interception Capacity	$Q_i =$	N/A	N/A	cfs
Under Clogging Condition	Qi - L	MINOR	MAJOR	Jus
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	ا ا
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	┥
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	⊣ _{ft} ∥
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	⊣ ¹¹⁹³
Interception Rate of Flow	R _x =	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q_a} = \begin{bmatrix} \mathbf{Q_a} \\ \mathbf{Q_a} \end{bmatrix}$	N/A	N/A	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet)	Q _a = Q _b =	N/A N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	Q _b −	MINOR	MAJOR	CIS
Equivalent Slope S _e (based on grate carry-over)	$S_e = [$	0.108	0.082	∏rt/ft
Required Length L_T to Have 100% Interception	J _e - L _T =	15.92	27.95	Ift
Under No-Clogging Condition	r.t. – [MINOR	MAJOR	ا ''
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L _T)	L = [15.00	15.00	Πft
Interception Capacity	Q _i =	7.6	13.4	- 'Cfs
Under Clogging Condition	Qi −L	MINOR	MAJOR	Ju₃
Clogging Coefficient	CurbCoef =	1.31	1.31	٦ ا
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	┥ ║
Effective (Unclogged) Length	Curbciog = L	14.34	14.34	⊣ _{ft} ∥
Actual Interception Capacity		7.5	13.3	cfs
Carry-Over Flow = Q _{MGRATE} -Q _a	Q _a =	7.5 0.1	4.6	crs cfs
	Q _b =	MINOR	MAJOR	juis
Summary Total Inlet Interception Capacity	0-	7.5	13.3	cfs
1 ' ' '	Q =			cfs
Total Inlet Carry-Over Flow (flow bypassing inlet) Capture Percentage = Q_a/Q_0 =	Qь = С% =	0.1 99	4.6 74	- crs %
Capture Fercentage = Q ₃ /Q ₀ =	C70 =	22	/4	70

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin E-3 (DP 29)

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) $S_{BACK} =$ 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $n_{BACK} =$ 0.013 Height of Curb at Gutter Flow Line 6.00 H_{CURB} : inches Distance from Curb Face to Street Crown T_{CROWN} = 17.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_0 ft/ft 0.000 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.016 $n_{STREET} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 11.5 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm linches $d_{MAX} =$ 6.0 8.0 Check boxes are not applicable in SUMP conditions Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) 2.76 4.08 inches Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") inches d_C = 2.0 2.0 Gutter Depression (d_C - (W * S_x * 12)) a 1.51 inches Water Depth at Gutter Flowline d = 4.27 5.59 inches Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) $T_X =$ 9.5 15.0 ft $E_0 =$ 0.511 0.350 Discharge outside the Gutter Section W, carried in Section T_x Q_X = 0.0 0.0 cfs Discharge within the Gutter Section W $(Q_T - Q_X)$ Q_W = cfs 0.0 0.0 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Orack = cfs 0.0 0.0 Maximum Flow Based On Allowable Spread Q_T = cfs SUMP SUMP Flow Velocity within the Gutter Section 0.0 0.0 fps V*d Product: Flow Velocity times Gutter Flowline Depth V*d = 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread T_{TH} = 18.7 27.0 25.0 Theoretical Spread for Discharge outside the Gutter Section W (T - W) T_{X TH} = 16.7 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E_o = 0.318 0.216 Theoretical Discharge outside the Gutter Section W, carried in Section $T_{X\,TH}$ Q_{X TH} = cfs 0.0 0.0 Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) 0.0 cfs $Q_x =$ 0.0 Discharge within the Gutter Section W (Q_d - Q_X) cfs Q_W = 0.0 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) cfs Q_{BACK} = 0.0 0.0 Total Discharge for Major & Minor Storm (Pre-Safety Factor) Q = 0.0 cfs 0.0 Average Flow Velocity Within the Gutter Section fps 0.0 0.0 V*d Product: Flow Velocity Times Gutter Flowline Depth V*d = 0.0 0.0 Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm R = SUMP SUMP Max Flow Based on Allowable Depth (Safety Factor Applied) $Q_d =$ SUMP SUMP cfs Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) d = inches Resultant Flow Depth at Street Crown (Safety Factor Applied) d_{CROWN} = linches MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP cfs

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input) CDOT Type R Curb Opening	_ =	MINOR	MAJOR	-
Type of Inlet	Type =	CDOT Type R		
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	_
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.3	8.0	inches
Grate Information	_	MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_o(G) =$	N/A	N/A	feet
Width of a Unit Grate	$W_o =$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
<u>Curb Opening Information</u>	-	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_{o}(C) = $	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$H_{vert} =$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p = $	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Grate Flow Analysis (Calculated)	-	MINOR	MAJOR	٦ ا
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	_
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)	-	MINOR	MAJOR	_
Interception without Clogging	$Q_{wi} = $	N/A	N/A	cfs
Interception with Clogging	$Q_{wa} = \lfloor$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	٦.
Interception without Clogging	$Q_{oi} = $	N/A	N/A	cfs
Interception with Clogging	$Q_{oa} = L$	N/A	N/A	cfs
Grate Capacity as Mixed Flow	-	MINOR	MAJOR	_
Interception without Clogging	$Q_{mi} = $	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes cloqged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	٦
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	_
Clogging Factor for Multiple Units	Clog =	0.04	0.04	_
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	٦.
Interception without Clogging	$Q_{wi} = $	5.1	29.4	cfs
Interception with Clogging	$Q_{wa} = L$	4.9	28.1	_cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	٦.
Interception without Clogging	$Q_{oi} =$	24.9	33.6	cfs
Interception with Clogging	$Q_{oa} = L$	23.8	32.1	_cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	٦,
Interception without Clogging	Q _{mi} =	10.5	29.2	cfs
Interception with Clogging	Q _{ma} =	10.0	27.9	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	4.9	27.9	cfs
Resultant Street Conditions		MINOR	MAJOR	٦, .
Total Inlet Length	<u> </u>	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	_ T =	11.5	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	$d_{CROWN} = $	0.0	2.4	inches
Low Head Performance Reduction (Calculated)		MINOD	MAJOR	
Low Head Performance Reduction (Calculated)	, -	MINOR	MAJOR	٦۵
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.19	0.50	_ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.40	0.75	-
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.66	0.89	-
Grated Inlet Performance Reduction Factor for Long Inlets	$RF_{Grate} = $	N/A	N/A	_
		MINOR	MAJOR	
Tatal Talet Interception Conseits (accumes alogged condition)	o _ [MINOR 4.9	MAJOR 27.9	cfs
Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q _a = Q _{PEAK REQUIRED} =	4.9 4.7	27.9 19.5	cfs
Initial Capacity 13 GOOD for Millor and Major Storms(2Q PEAK)	-C PEAK REQUIRED -	7.7	17.5	1013

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Grandview Reserve
Inlet ID: Basin E-4 (DP 30)

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) $S_{BACK} =$ 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $n_{BACK} =$ 0.013 Height of Curb at Gutter Flow Line 6.00 H_{CURB} : inches Distance from Curb Face to Street Crown T_{CROWN} = 17.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_0 ft/ft 0.000 Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.016 $n_{STREET} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 16.5 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm linches $d_{MAX} =$ 6.0 8.0 Check boxes are not applicable in SUMP conditions Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) 3.96 4.08 inches Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") inches d_C = 2.0 2.0 Gutter Depression (d_C - (W * S_x * 12)) a 1.51 inches Water Depth at Gutter Flowline d = 5.47 5.59 inches Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) $T_X =$ 14.5 15.0 ft $E_0 =$ 0.361 0.350 Discharge outside the Gutter Section W, carried in Section T_x Q_X = 0.0 0.0 cfs Discharge within the Gutter Section W $(Q_T - Q_X)$ Q_W = cfs 0.0 0.0 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Orack = cfs 0.0 0.0 Maximum Flow Based On Allowable Spread Q_T = cfs SUMP SUMP Flow Velocity within the Gutter Section 0.0 0.0 fps V*d Product: Flow Velocity times Gutter Flowline Depth V*d = 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread T_{TH} = 18.7 27.0 25.0 Theoretical Spread for Discharge outside the Gutter Section W (T - W) T_{X TH} = 16.7 ft Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E_o = 0.318 0.216 Theoretical Discharge outside the Gutter Section W, carried in Section $T_{X\,TH}$ Q_{X TH} = cfs 0.0 0.0 Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) 0.0 cfs $Q_x =$ 0.0 Discharge within the Gutter Section W (Q_d - Q_X) cfs Q_W = 0.0 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) cfs Q_{BACK} = 0.0 0.0 Total Discharge for Major & Minor Storm (Pre-Safety Factor) Q = 0.0 cfs 0.0 Average Flow Velocity Within the Gutter Section fps 0.0 0.0 V*d Product: Flow Velocity Times Gutter Flowline Depth V*d = 0.0 0.0 Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm R = SUMP SUMP Max Flow Based on Allowable Depth (Safety Factor Applied) $Q_d =$ SUMP SUMP cfs Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) d = inches Resultant Flow Depth at Street Crown (Safety Factor Applied) d_{CROWN} = linches MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP cfs

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input) CDOT Type R Curb Opening	_ =	MINOR	MAJOR	-
Type of Inlet	Type =		Curb Opening	4
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	-
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.4	8.0	inches
Grate Information Length of a Unit Grate	L (C) -	MINOR N/A	MAJOR	Override Depths
Width of a Unit Grate	L _o (G) = W _o =	N/A N/A	N/A N/A	feet feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)		N/A	N/A	- leet
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$A_{ratio} = C_f(G) = C_f(G)$	N/A	N/A	-
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	7
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	+
Curb Opening Information	C ₀ (G) -	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_0(C) = $	5.00	5.00	Tfeet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_n =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)	_	MINOR	MAJOR	_
Interception without Clogging	$Q_{wi} = $	N/A	N/A	cfs
Interception with Clogging	$Q_{wa} = L$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)	-	MINOR	MAJOR	_
Interception without Clogging	$Q_{oi} = $	N/A	N/A	cfs
Interception with Clogging	$Q_{oa} = L$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	٦.
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A N/A	N/A N/A	cfs cfs
Resulting Grate Capacity (assumes clogged condition) Curb Opening Flow Analysis (Calculated)	Q _{Grate} =	MINOR	MAJOR	cis
· · · · · · · · · · · · · · · · · · ·	Coof -	1.31	1.31	٦ - ا
Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units	Coef = Clog =	0.04	0.04	+
Curb Opening as a Weir (based on Modified HEC22 Method)	ciog – [MINOR	MAJOR	_
Interception without Clogging	$Q_{wi} = \Gamma$	10.5	29.4	ີ່ cfs
Interception with Clogging	Q _{wa} =	10.1	28.1	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)	Qwa — L	MINOR	MAJOR	7613
Interception without Clogging	$Q_{oi} = \Gamma$	27.8	33.6	ີ່ cfs
Interception with Clogging	Q _{oa} =	26.6	32.1	cfs
Curb Opening Capacity as Mixed Flow	C00 L	MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	15.9	29.2	cfs
Interception with Clogging	Q _{ma} =	15.2	27.9	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	10.1	27.9	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	L =	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	16.2	27.0	ft.>T-Crown
Resultant Flow Depth at Street Crown	$d_{CROWN} =$	0.0	2.4	inches
Low Head Performance Reduction (Calculated)	-	MINOR	MAJOR	٦.
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	dft -
Depth for Curb Opening Weir Equation	d _{Curb} =	0.28	0.50	_lft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.51	0.75	4
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.75	0.89	4
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	_
		MINOD	MAJOR	
Tatal Talet Interception Conseits (accumes alogged condition)	o _ [MINOR 10.1	MAJOR 27.9	cfs
Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q _a = Q _{PEAK REQUIRED} =	9.7	27.9	cfs
THE Capacity 13 GOOD TO PHILO AND PLAJO STOTHIS (>Q PEAK)	-C PEAK REQUIRED -	J./	44.7	1013

Provide box culvert and channel calculations in this report or separate report as an appendix.

APPENDIX E Water Quality Computations

Detention Pond Tributary Areas

Subdivision: Grandview Reserve Project Name: Grandview Reserve

 Location:
 CO, El Paso County
 Project No.:
 HRG01

 Calculated By:
 TJE

 Checked By:
 BAS

 Date:
 12/10/21

Pond A

Basin	Area	% Imp
A-2a	4.21	65
A-2b	2.72	87.8
A-3	0.34	100
A-4a	6.04	65
A-4b	4.10	65
A-5	0.34	100
A-6	2.67	65
A-7	2.91	20
A-8	5.17	65
A-9	1.73	65
A-10	6.31	2
Total	36.54	52.9

Not checked with this review provide the additional 4 ponds also

Pond B

Basin	Area	% Imp
B-1	4.02	65
B-2	4.16	65
B-3	3.42	65
B-4	0.76	100
B-5	5.32	65
B-6	2.28	65
B-7	1.94	65
B-8	3.54	65
B-9	2.57	65
B-10	0.87	2
Total	28.88	64.0

Pond C

Basin	Area	% Imp
C-1	3.90	65
C-2	0.96	65
C-3	4.07	65
C-4	3.80	65
C-5	3.19	65
C-6	2.99	65
C-7	5.48	65
C-8	2.82	65
C-9	5.96	65
C-10	3.67	65
C-11	0.50	65
C-12	1.61	65
C-13	2.46	10
Total	41.41	61.7

Pond D

Basin	Area	% Imp
D-1	2.46	65
D-2	0.75	65
D-3	4.76	65
D-4	4.74	65
D-5	0.71	2
Total	13.42	61.7

Pond E

Basin	Area	% Imp
E-1	5.06	65
E-2	3.63	65
E-3	2.97	65
E-4	6.86	65
E-5	0.74	5
Total	19.26	62.7

Site-Level Low Impact Development (LID) Design Effective Impervious Calculator LID Credit by Impervious Reduction Factor (IRF) Method UD-BMP (Version 3.06, November 2016) User Input Calculated cells Designer: TJE Galloway & Co. Company: ***Design Storm: 1-Hour Rain Depth WQCV Event 0.60 December 10, 2021 inches ···Minor Storm: 1-Hour Rain Depth 5-Year Event 1.50 inches Project: Grandviewe Reserve 100-Year Event 2.52 Pond A ***Major Storm: 1-Hour Rain Depth inches Location: Optional User Defined Storm (CUHP) NOAA 1 Hour Rainfall Depth and Frequency 100-Year Event Max Intensity for Optional User Defined Storm SITE INFORMATION (USER-INPUT) Sub-basin Identifier A-2a A-2b A-3 A-4a A-4b A-6 Receiving Pervious Area Soil Type Sandy Loam Sandy Loan andy Loam Sandy Loam Sandy Loam Sandy Loam Sandy Loam andy Loam Sandy Loam Sandy Loam Sandy Loam Total Area (ac., Sum of DCIA, UIA, RPA, & SPA) 0.340 6.310 4.210 2.720 6.040 4.100 0.340 2.670 2.910 5.170 1.730 Directly Connected Impervious Area (DCIA, acres) 2.736 2.388 0.340 3.926 2.665 0.340 1.735 0.582 3.360 1.124 0.126 0.000 0.000 0.000 0.000 Unconnected Impervious Area (UIA, acres) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Receiving Pervious Area (RPA, acres) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Separate Pervious Area (SPA, acres) 1.474 0.332 0.000 2.114 1.435 0.000 0.935 2.328 1.810 0.606 6.184 RPA Treatment Type: Conveyance (C) С С С С С С С С С С Volume (V), or Permeable Pavement (PP) CALCULATED RESULTS (OUTPUT) Total Calculated Area (ac, check against input) 4.210 2.720 0.340 6.040 4.100 0.340 2.670 2.910 5.170 1.730 6.310 Directly Connected Impervious Area (DCIA. %) 65.0% 87.8% 100.0% 65.0% 65.0% 100.0% 65.0% 20.0% 65.0% 65.0% 2.0% Unconnected Impervious Area (UIA, %) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Receiving Pervious Area (RPA, %) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Separate Pervious Area (SPA, %) 35.0% 12.2% 0.0% 35.0% 35.0% 0.0% 35.0% 80.0% 35.0% 35.0% 98.0% A_R (RPA / UIA) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1 000 1 000 1 000 1 000 1 000 I, Check 1 000 1 000 1 000 1 000 1 000 f / I for WQCV Event: 1.7 1.7 1.7 1.7 1.7 1.7 f / I for 5-Year Event: 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 f / I for 100-Year Event: 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 f / I for Optional User Defined Storm CUHP: IRF for WQCV Event: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 IRE for 5-Year Event: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 IRF for 100-Year Event: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 IRF for Optional User Defined Storm CUHP: Total Site Imperviousness: I_{tota} 65.0% 87.8% 100.0% 65.0% 65.0% 100.0% 65.0% 20.0% 65.0% 65.0% 2.0% Effective Imperviousness for WQCV Event: 65.0% 87.8% 100.0% 65.0% 65.0% 100.0% 65.0% 20.0% 65.0% 65.0% 2.0% Effective Imperviousness for 5-Year Event: 65.0% 87.8% 100.0% 65.0% 65.0% 100.0% 65.0% 20.0% 65.0% 65.0% 2.0% 65.0% 87.8% 100.0% 65.0% 65.0% 100.0% 65.0% 20.0% 65.0% 65.0% 2.0% Effective Imperviousness for 100-Year Event: Effective Imperviousness for Optional User Defined Storm CUHP. LID / EFFECTIVE IMPERVIOUSNESS CREDITS WQCV Event CREDIT: Reduce Detention By: N/A 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% N/A N/A 0.0% 0.0% This line only for 10-Year Event N/A 100-Year Event CREDIT**: Reduce Detention By: N/A 0.0% 0.0% 0.1% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% -63.5% N/A N/A User Defined CUHP CREDIT: Reduce Detention By 52.9% Total Site Imperviousness: Total Site Effective Imperviousness for WQCV Event: 52.9% Use Green-Ampt average infiltration rate values from Table 3-3. Total Site Effective Imperviousness for 5-Year Event: 52.9% "Flood control detention volume credits based on empirical equations from Storage Chapter of USDCM. Total Site Effective Imperviousness for 100-Year Event: *** Method assumes that 1-hour rainfall depth is equivalent to 1-hour intensity for calculation purposed Total Site Effective Imperviousness for Optional User Defined Storm CUHP.

HRG01_IRF Calcs Pond A.xlsm, IRF

Site-Level Low Impact Development (LID) Design Effective Impervious Calculator LID Credit by Impervious Reduction Factor (IRF) Method UD-BMP (Version 3.06, November 2016) User Input Calculated cells Designer: TJE Galloway & Co. Company: ***Design Storm: 1-Hour Rain Depth WQCV Event 0.60 December 10, 2021 inches ···Minor Storm: 1-Hour Rain Depth 5-Year Event 1.50 inches Project: Grandview Reserve 100-Year Event 2.52 Pond B ***Major Storm: 1-Hour Rain Depth inches Location: Optional User Defined Storm (CUHP) NOAA 1 Hour Rainfall Depth and Frequency 100-Year Event Max Intensity for Optional User Defined Storm SITE INFORMATION (USER-INPUT) Sub-basin Identifier B-1 B-2 B-4 B-5 B-6 B-7 B-8 Receiving Pervious Area Soil Type Sandy Loam Sandy Loam Sandy Loan andy Loam Sandy Loam Sandy Loam Sandy Loam Sandy Loam andy Loam Sandy Loan Total Area (ac., Sum of DCIA, UIA, RPA, & SPA) 4.020 4.160 3.420 0.760 5.320 2.280 1.940 3.540 2.570 0.870 Directly Connected Impervious Area (DCIA, acres) 2.613 2.704 0.760 3.458 1.482 1.261 2.301 1.671 0.017 0.000 0.000 0.000 0.000 0.000 Unconnected Impervious Area (UIA, acres) 0.000 0.000 0.000 0.000 0.000 Receiving Pervious Area (RPA, acres) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Separate Pervious Area (SPA, acres) 1.407 1.456 1.197 0.000 1.862 0.798 0.679 1.239 0.900 0.853 RPA Treatment Type: Conveyance (C) С С С С С С С С Volume (V), or Permeable Pavement (PP) CALCULATED RESULTS (OUTPUT) Total Calculated Area (ac, check against input) 4.020 4.160 3.420 0.760 5.320 2.280 1.940 3.540 2.570 0.870 Directly Connected Impervious Area (DCIA, %) 65.0% 65.0% 65.0% 100.0% 65.0% 65.0% 65.0% 65.0% 65.0% 2.0% Unconnected Impervious Area (UIA, %) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Receiving Pervious Area (RPA, %) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Separate Pervious Area (SPA, %) 35.0% 35.0% 35.0% 0.0% 35.0% 35.0% 35.0% 35.0% 98.0% 35.0% A_R (RPA / UIA) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1 000 1 000 1 000 1 000 I, Check 1 000 1 000 1 000 1 000 1 000 f / I for WQCV Event: 1.7 1.7 1.7 1.7 1.7 1.7 f / I for 5-Year Event: 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 f / I for 100-Year Event: 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 f / I for Optional User Defined Storm CUHP: IRF for WQCV Event: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 IRE for 5-Year Event: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 IRF for 100-Year Event: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 IRF for Optional User Defined Storm CUHP: Total Site Imperviousness: I_{total} 65.0% 65.0% 65.0% 100.0% 65.0% 65.0% 65.0% 65.0% 65.0% 2.0% Effective Imperviousness for WQCV Event: 65.0% 65.0% 65.0% 100.0% 65.0% 65.0% 65.0% 65.0% 65.0% 2.0% Effective Imperviousness for 5-Year Event: 65.0% 65.0% 65.0% 100.0% 65.0% 65.0% 65.0% 65.0% 65.0% 2.0% Effective Imperviousness for 100-Year Event: 65.0% 100.0% 65.0% 65.0% 65.0% 65.0% 65.0% 2.0% 65.0% 65.0% Effective Imperviousness for Optional User Defined Storm CUHP. LID / EFFECTIVE IMPERVIOUSNESS CREDITS WQCV Event CREDIT: Reduce Detention By: 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% N/A N/A N/A N/A 0.0% 0.0% 0.0% 0.0% This line only for 10-Year Event N/A 100-Year Event CREDIT**: Reduce Detention By: 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -460.7% N/A N/A N/A N/A User Defined CUHP CREDIT: Reduce Detention By 64.0% Total Site Imperviousness: Total Site Effective Imperviousness for WQCV Event: 64.0% Use Green-Ampt average infiltration rate values from Table 3-3. Total Site Effective Imperviousness for 5-Year Event: 64.0% ** Flood control detention volume credits based on empirical equations from Storage Chapter of USDCM. Total Site Effective Imperviousness for 100-Year Event: *** Method assumes that 1-hour rainfall depth is equivalent to 1-hour intensity for calculation purposed Total Site Effective Imperviousness for Optional User Defined Storm CUHP.

HRG01_IRF Calcs Pond B.xlsm, IRF

Site-Level Low Impact Development (LID) Design Effective Impervious Calculator LID Credit by Impervious Reduction Factor (IRF) Method UD-BMP (Version 3.06, November 2016) User Input Calculated cells Designer: TJE Company: Galloway & Co. ***Design Storm: 1-Hour Rain Depth WQCV Event 0.60 December 10, 2021 inches ···Minor Storm: 1-Hour Rain Depth 5-Year Event 1.50 inches Project: Grandview Reserve 100-Year Event 2.52 ···Major Storm: 1-Hour Rain Depth inches Location: Pond C Optional User Defined Storm (CUHP) NOAA 1 Hour Rainfall Depth and Frequency 100-Year Event Max Intensity for Optional User Defined Storm SITE INFORMATION (USER-INPUT) Sub-basin Identifier C-1 C-2 C-3 C-4 C-5 C-6 C-8 C-13 Receiving Pervious Area Soil Type Sandy Loam Sandy Loam Sandy Loan andy Loam Sandy Loam Sandy Loam Sandy Loam Sandy Loam Sandy Loam Sandy Loar Sandy Loan Sandy Loam andy Loam Total Area (ac., Sum of DCIA, UIA, RPA, & SPA) 3.900 0.960 4.070 3.800 3.190 2.990 5.480 2.820 5.960 3.670 0.500 1.610 2.460 Directly Connected Impervious Area (DCIA, acres) 2.535 0.624 2.645 2.470 2.073 1.943 3.562 1.833 3.874 2.385 0.325 1.046 0.246 0.000 0.000 Unconnected Impervious Area (UIA, acres) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Receiving Pervious Area (RPA, acres) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Separate Pervious Area (SPA, acres) 1.365 0.336 1.425 1.330 1.117 1.047 1.918 0.987 2.086 1.285 0.175 0.564 2.214 RPA Treatment Type: Conveyance (C) С С С С С С С С С С С Volume (V), or Permeable Pavement (PP) CALCULATED RESULTS (OUTPUT) Total Calculated Area (ac, check against input) 3.900 0.960 4.070 3.800 3.190 2.990 5.480 2.820 5.960 3.670 0.500 1.610 2.460 Directly Connected Impervious Area (DCIA. %) 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 10.0% Unconnected Impervious Area (UIA, %) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Receiving Pervious Area (RPA, %) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Separate Pervious Area (SPA, %) 35.0% 35.0% 35.0% 35.0% 35.0% 35.0% 35.0% 35.0% 35.0% 35.0% 90.0% 35.0% 35.0% A_R (RPA / UIA) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 000 I, Check 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 f / I for WQCV Event: 1.7 1.7 1.7 1.7 1.7 f / I for 5-Year Event: 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 f / I for 100-Year Event: 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 f / I for Optional User Defined Storm CUHP: IRF for WQCV Event: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 IRE for 5-Year Event: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 IRF for 100-Year Event: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 IRF for Optional User Defined Storm CUHP: Total Site Imperviousness: Inter-65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 10.0% Effective Imperviousness for WQCV Event: 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 10.0% Effective Imperviousness for 5-Year Event: 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 10.0% Effective Imperviousness for 100-Year Event: 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 65.0% 10.0% 65.0% 65.0% Effective Imperviousness for Optional User Defined Storm CUHP. LID / EFFECTIVE IMPERVIOUSNESS CREDITS WQCV Event CREDIT: Reduce Detention By: 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% N/A 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% This line only for 10-Year Event N/A 100-Year Event CREDIT**: Reduce Detention By: 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.1% N/A User Defined CUHP CREDIT: Reduce Detention By 61.7% Total Site Imperviousness: Total Site Effective Imperviousness for WQCV Event: Use Green-Ampt average infiltration rate values from Table 3-3. Total Site Effective Imperviousness for 5-Year Event: 61.7% "Flood control detention volume credits based on empirical equations from Storage Chapter of USDCM. Total Site Effective Imperviousness for 100-Year Event: *** Method assumes that 1-hour rainfall depth is equivalent to 1-hour intensity for calculation purposed Total Site Effective Imperviousness for Optional User Defined Storm CUHP.

HRG01_IRF Calcs Pond C.vism, IRF

Site-Level Low Impact Development (LID) Design Effective Impervious Calculator LID Credit by Impervious Reduction Factor (IRF) Method UD-BMP (Version 3.06, November 2016) User Input Calculated cells Designer: TJE Company: Galloway & Co. ***Design Storm: 1-Hour Rain Depth WQCV Event 0.60 December 10, 2021 inches ···Minor Storm: 1-Hour Rain Depth 5-Year Event 1.50 inches Project: Grandview Reserve 100-Year Event 2.52 Pond D ***Major Storm: 1-Hour Rain Depth inches Location: Optional User Defined Storm (CUHP) NOAA 1 Hour Rainfall Depth and Frequency 100-Year Event Max Intensity for Optional User Defined Storm SITE INFORMATION (USER-INPUT) Sub-basin Identifier D-1 D-2 D-3 D-4 D-5 Receiving Pervious Area Soil Type Sandy Loam Sandy Loam Sandy Loan andy Loam Sandy Loam Total Area (ac., Sum of DCIA, UIA, RPA, & SPA) 4.740 2.460 0.750 4.760 0.710 Directly Connected Impervious Area (DCIA, acres) 1.599 0.488 3.094 3.081 0.014 Unconnected Impervious Area (UIA, acres) 0.000 0.000 0.000 0.000 0.000 Receiving Pervious Area (RPA, acres) 0.000 0.000 0.000 0.000 0.000 Separate Pervious Area (SPA, acres) 0.861 0.263 1.666 1.659 0.696 RPA Treatment Type: Conveyance (C) С С С Volume (V), or Permeable Pavement (PP) CALCULATED RESULTS (OUTPUT) 4.740 Total Calculated Area (ac, check against input) 2.460 0.750 4.760 0.710 Directly Connected Impervious Area (DCIA, %) 65.0% 65.0% 65.0% 65.0% 2.0% Unconnected Impervious Area (UIA, %) 0.0% 0.0% 0.0% 0.0% 0.0% Receiving Pervious Area (RPA, %) 0.0% 0.0% 0.0% 0.0% 0.0% Separate Pervious Area (SPA, %) 35.0% 35.0% 35.0% 35.0% 98.0% A_R (RPA / UIA) 0.000 0.000 0.000 0.000 1.000 1.000 1.000 I, Check 1 000 1 000 f / I for WQCV Event: 1.7 1.7 1.7 f / I for 5-Year Event 0.5 0.5 0.5 0.5 0.5 f / I for 100-Year Event: 0.3 0.3 0.3 0.3 0.3 f / I for Optional User Defined Storm CUHP. IRF for WQCV Event: 1.00 1.00 1.00 1.00 1.00 1.00 IRE for 5-Year Event: 1.00 1.00 1.00 1.00 IRF for 100-Year Event: 1.00 1.00 1.00 1.00 1.00 IRF for Optional User Defined Storm CUHP: Total Site Imperviousness: I_{total} 65.0% 65.0% 65.0% 65.0% 2.0% Effective Imperviousness for WQCV Event: 65.0% 65.0% 65.0% 65.0% 2.0% Effective Imperviousness for 5-Year Event: 65.0% 65.0% 65.0% 65.0% 2.0% Effective Imperviousness for 100-Year Event: 65.0% 65.0% 65.0% 2.0% 65.0% Effective Imperviousness for Optional User Defined Storm CUHP. LID / EFFECTIVE IMPERVIOUSNESS CREDITS WQCV Event CREDIT: Reduce Detention By: 0.0% 0.0% 0.0% 0.0% 0.0% N/A N/A N/A N/A N/A N/A N/A N/A N/A This line only for 10-Year Event N/A 100-Year Event CREDIT**: Reduce Detention By: 0.0% 0.0% 0.0% 0.0% -564.5% N/A N/A N/A N/A N/A N/A N/A N/A N/A User Defined CUHP CREDIT: Reduce Detention By 61.7% Total Site Imperviousness: Notes: Total Site Effective Imperviousness for WQCV Event: 61.7% Use Green-Ampt average infiltration rate values from Table 3-3. Total Site Effective Imperviousness for 5-Year Event: 61.7% ** Flood control detention volume credits based on empirical equations from Storage Chapter of USDCM. *** Method assumes that 1-hour rainfall depth is equivalent to 1-hour intensity for calculation purposed Total Site Effective Imperviousness for 100-Year Event: Total Site Effective Imperviousness for Optional User Defined Storm CUHP.

HRG01_IRF Calcs Pond D.vlsm, IRF

Site-Level Low Impact Development (LID) Design Effective Impervious Calculator LID Credit by Impervious Reduction Factor (IRF) Method UD-BMP (Version 3.06, November 2016) User Input Calculated cells Designer: TJE Galloway & Co. Company: ***Design Storm: 1-Hour Rain Depth WQCV Event 0.60 December 10, 2021 inches ···Minor Storm: 1-Hour Rain Depth 5-Year Event 1.50 inches Project: Grandview Reserve 100-Year Event 2.52 Pond E ***Major Storm: 1-Hour Rain Depth inches Location: Optional User Defined Storm (CUHP) NOAA 1 Hour Rainfall Depth and Frequency 100-Year Event Max Intensity for Optional User Defined Storm SITE INFORMATION (USER-INPUT) Sub-basin Identifier E-2 E-4 E-5 Receiving Pervious Area Soil Type Sandy Loam Sandy Loam Sandy Loan andy Loam Sandy Loam Total Area (ac., Sum of DCIA, UIA, RPA, & SPA) 5.060 6.860 0.740 3.630 2.970 Directly Connected Impervious Area (DCIA, acres) 3.289 2.359 1.930 4.459 0.037 Unconnected Impervious Area (UIA, acres) 0.000 0.000 0.000 0.000 0.000 Receiving Pervious Area (RPA, acres) 0.000 0.000 0.000 0.000 0.000 Separate Pervious Area (SPA, acres) 1.771 1.271 1.040 2.401 0.703 RPA Treatment Type: Conveyance (C) С С С Volume (V), or Permeable Pavement (PP) CALCULATED RESULTS (OUTPUT) Total Calculated Area (ac, check against input) 5.060 3.630 2.970 6.860 0.740 Directly Connected Impervious Area (DCIA, %) 65.0% 65.0% 65.0% 65.0% 5.0% Unconnected Impervious Area (UIA, %) 0.0% 0.0% 0.0% 0.0% 0.0% Receiving Pervious Area (RPA, %) 0.0% 0.0% 0.0% 0.0% 0.0% Separate Pervious Area (SPA, %) 35.0% 35.0% 35.0% 35.0% 95.0% A_R (RPA / UIA) 0.000 0.000 0.000 0.000 1.000 1.000 1.000 I, Check 1 000 1 000 f / I for WQCV Event: 1.7 1.7 1.7 f / I for 5-Year Event 0.5 0.5 0.5 0.5 0.5 f / I for 100-Year Event: 0.3 0.3 0.3 0.3 0.3 f / I for Optional User Defined Storm CUHP. IRF for WQCV Event: 1.00 1.00 1.00 1.00 1.00 1.00 IRE for 5-Year Event: 1.00 1.00 1.00 1.00 IRF for 100-Year Event: 1.00 1.00 1.00 1.00 1.00 IRF for Optional User Defined Storm CUHP: Total Site Imperviousness: I_{total} 65.0% 65.0% 65.0% 65.0% 5.0% Effective Imperviousness for WQCV Event: 65.0% 65.0% 65.0% 65.0% 5.0% Effective Imperviousness for 5-Year Event: 65.0% 65.0% 65.0% 65.0% 5.0% Effective Imperviousness for 100-Year Event: 65.0% 65.0% 65.0% 5.0% 65.0% Effective Imperviousness for Optional User Defined Storm CUHP. LID / EFFECTIVE IMPERVIOUSNESS CREDITS WQCV Event CREDIT: Reduce Detention By: 0.0% 0.0% 0.0% 0.0% 0.0% N/A N/A N/A N/A N/A N/A N/A N/A N/A This line only for 10-Year Event N/A 100-Year Event CREDIT**: Reduce Detention By: 0.0% 0.0% 0.0% 0.0% 0.8% N/A N/A N/A N/A N/A N/A N/A N/A N/A User Defined CUHP CREDIT: Reduce Detention By Total Site Imperviousness: 62.7% Total Site Effective Imperviousness for WQCV Event: 62.7% Use Green-Ampt average infiltration rate values from Table 3-3. Total Site Effective Imperviousness for 5-Year Event: 62.7% **Flood control detention volume credits based on empirical equations from Storage Chapter of USDCM. *** Method assumes that 1-hour rainfall depth is equivalent to 1-hour intensity for calculation purposed Total Site Effective Imperviousness for 100-Year Event: Total Site Effective Imperviousness for Optional User Defined Storm CUHP.

HRG01_IRF Calcs Pond E.xtsm, IRF

Site-Level Low Impact Development (LID) Design Effective Impervious Calculator LID Credit by Impervious Reduction Factor (IRF) Method UD-BMP (Version 3.06, November 2016) User Input Calculated cells Designer: TJE Galloway & Co. Company: ***Design Storm: 1-Hour Rain Depth WQCV Event 0.60 inches December 10, 2021 ···Minor Storm: 1-Hour Rain Depth 5-Year Event 1.50 inches Project: Grandview Reserve ···Major Storm: 1-Hour Rain Depth 100-Year Event 2.52 Sub-basin A-1 inches Location: Optional User Defined Storm (CUHP) NOAA 1 Hour Rainfall Depth and Frequency 100-Year Event Max Intensity for Optional User Defined Storm SITE INFORMATION (USER-INPUT) Sub-basin Identifier A-1 Receiving Pervious Area Soil Type Sandy Loam Total Area (ac., Sum of DCIA, UIA, RPA, & SPA) 11.230 Directly Connected Impervious Area (DCIA, acres) 0.225 Unconnected Impervious Area (UIA, acres) 0.000 Receiving Pervious Area (RPA, acres) 0.000 Separate Pervious Area (SPA, acres) 11.005 RPA Treatment Type: Conveyance (C) С Volume (V), or Permeable Pavement (PP) CALCULATED RESULTS (OUTPUT) 11.230 Total Calculated Area (ac, check against input) Directly Connected Impervious Area (DCIA, %) 2.0% Unconnected Impervious Area (UIA, %) 0.0% Receiving Pervious Area (RPA, %) 0.0% Separate Pervious Area (SPA, %) 98.0% A_R (RPA / UIA) 0.000 I, Check 1 000 f / I for WQCV Event: 1.7 f / I for 5-Year Event: 0.5 f / I for 100-Year Event: 0.3 f / I for Optional User Defined Storm CUHP. IRF for WQCV Event: 1.00 IRF for 5-Year Event: 1.00 IRF for 100-Year Event: 1.00 IRF for Optional User Defined Storm CUHP. Total Site Imperviousness: I_{total} 2.0% Effective Imperviousness for WQCV Event: 2.0% Effective Imperviousness for 5-Year Event: 2.0% Effective Imperviousness for 100-Year Event: 2.0% Effective Imperviousness for Optional User Defined Storm CUHP LID / EFFECTIVE IMPERVIOUSNESS CREDITS WQCV Event CREDIT: Reduce Detention By: 0.0% N/A This line only for 10-Year Event N/A 100-Year Event CREDIT**: Reduce Detention By: 0.0% N/A User Defined CUHP CREDIT: Reduce Detention By 2.0% Total Site Imperviousness: Notes: Total Site Effective Imperviousness for WQCV Event: 2.0% Use Green-Ampt average infiltration rate values from Table 3-3. Total Site Effective Imperviousness for 5-Year Event: 2.0% ** Flood control detention volume credits based on empirical equations from Storage Chapter of USDCM. Total Site Effective Imperviousness for 100-Year Event: *** Method assumes that 1-hour rainfall depth is equivalent to 1-hour intensity for calculation purposed Total Site Effective Imperviousness for Optional User Defined Storm CUHP:

HRG01_IRF Calcs Sub-basin A-1.xism, IRF

Site-Level Low Impact Development (LID) Design Effective Impervious Calculator LID Credit by Impervious Reduction Factor (IRF) Method UD-BMP (Version 3.06, November 2016) User Input Calculated cells Designer: TJE Galloway & Co. Company: ***Design Storm: 1-Hour Rain Depth WQCV Event 0.60 inches December 10, 2021 ···Minor Storm: 1-Hour Rain Depth 5-Year Event 1.50 inches Project: Grandview Reserve ·--Major Storm: 1-Hour Rain Depth 100-Year Event 2.52 Rex Rd Pond inches Location: Optional User Defined Storm (CUHP) NOAA 1 Hour Rainfall Depth and Frequency 100-Year Event Max Intensity for Optional User Defined Storm SITE INFORMATION (USER-INPUT) Sub-basin Identifier Basin-1 Receiving Pervious Area Soil Type Sandy Loam Total Area (ac., Sum of DCIA, UIA, RPA, & SPA) 1.400 Directly Connected Impervious Area (DCIA, acres) 1.260 Unconnected Impervious Area (UIA, acres) 0.000 Receiving Pervious Area (RPA, acres) 0.000 Separate Pervious Area (SPA, acres) 0.140 RPA Treatment Type: Conveyance (C) С Volume (V), or Permeable Pavement (PP) CALCULATED RESULTS (OUTPUT) 1.400 Total Calculated Area (ac, check against input) Directly Connected Impervious Area (DCIA, %) 90.0% Unconnected Impervious Area (UIA, %) 0.0% Receiving Pervious Area (RPA, %) 0.0% Separate Pervious Area (SPA, %) 10.0% A_R (RPA / UIA) 0.000 I, Check 1 000 f / I for WQCV Event: 1.7 f / I for 5-Year Event 0.5 f / I for 100-Year Event: 0.3 f / I for Optional User Defined Storm CUHP. IRF for WQCV Event: 1.00 IRF for 5-Year Event: 1.00 IRF for 100-Year Event: 1.00 IRF for Optional User Defined Storm CUHP. Total Site Imperviousness: I_{total} 90.0% Effective Imperviousness for WQCV Event: 90.0% Effective Imperviousness for 5-Year Event: 90.0% Effective Imperviousness for 100-Year Event: 90.0% Effective Imperviousness for Optional User Defined Storm CUHP LID / EFFECTIVE IMPERVIOUSNESS CREDITS WQCV Event CREDIT: Reduce Detention By: 0.0% N/A This line only for 10-Year Event N/A 100-Year Event CREDIT**: Reduce Detention By: 0.0% N/A User Defined CUHP CREDIT: Reduce Detention By Total Site Imperviousness: 90.0% Notes: Total Site Effective Imperviousness for WQCV Event: 90.0% Use Green-Ampt average infiltration rate values from Table 3-3. Total Site Effective Imperviousness for 5-Year Event: 90.0% ** Flood control detention volume credits based on empirical equations from Storage Chapter of USDCM. Total Site Effective Imperviousness for 100-Year Event: *** Method assumes that 1-hour rainfall depth is equivalent to 1-hour intensity for calculation purposed Total Site Effective Imperviousness for Optional User Defined Storm CUHP:

HRG01_IRF Calcs Rex Rd Pond.xlsm, IRF

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	36.54	acres
Watershed Length =	2,360	ft
Watershed Length to Centroid =	1,180	ft
Watershed Slope =	0.020	ft/ft
Watershed Imperviousness =	52.90%	percent
Percentage Hydrologic Soil Group A =	100.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1 br Dainfall Donths	Hear Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using

the embedded Colorado Urban Hydrograph Procedure.							
Water Quality Capture Volume (WQCV) =	0.653	acre-feet					
Excess Urban Runoff Volume (EURV) =	2.264	acre-feet					
2-yr Runoff Volume (P1 = 1.19 in.) =	1.700	acre-feet					
5-yr Runoff Volume (P1 = 1.5 in.) =	2.253	acre-feet					
10-yr Runoff Volume (P1 = 1.75 in.) =	2.695	acre-feet					
25-yr Runoff Volume (P1 = 2 in.) =	3.364	acre-feet					
50-yr Runoff Volume (P1 = 2.25 in.) =	4.018	acre-feet					
100-yr Runoff Volume (P1 = 2.52 in.) =	4.841	acre-feet					
500-yr Runoff Volume (P1 = 3.68 in.) =	8.271	acre-feet					
Approximate 2-yr Detention Volume =	1.460	acre-feet					
Approximate 5-yr Detention Volume =	1.919	acre-feet					
Approximate 10-yr Detention Volume =	2.335	acre-feet					
Approximate 25-yr Detention Volume =	2.847	acre-feet					
Approximate 50-yr Detention Volume =	3.168	acre-feet					
Approximate 100-yr Detention Volume =	3.546	acre-feet					

Optional User Overrides					
	acre-feet				
	acre-feet				
1.19	inches				
1.50	inches				
1.75	inches				
2.00	inches				
2.25	inches				
2.52	inches				
3.68	inches				

Define Zones and Basin Geometry

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor (W_{FLOOR}) =	user	ft
Area of Basin Floor (A_{FLOOR}) =		ft ²
Volume of Basin Floor (V_{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W_{MAIN}) =		ft
Area of Main Basin (A _{MAIN}) =		ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-feet

Pond calculations not checked in detail this review

Ct Ct	C+	Optional	1	Width	Area	Optional		Volume	V-I
Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	(ft 2)	Override Area (ft ²)	Area (acre)	(ft 3)	Volur (ac-f
Top of Micropool		0.00				35	0.001	(11)	(ac-i
rop or wicropoor									
		0.20				4	0.000	4	0.00
		0.40				59	0.001	10	0.00
		0.60				273	0.006	43	0.00
		0.80				773	0.018	148	0.00
		1.00	1			1,667	0.038	392	0.00
		1.20				2,910	0.067	849	0.01
		1.40				4,128	0.095	1,553	0.03
		1.60				5,715	0.131	2,537	0.05
		1.80				7,669	0.176	3,876	0.08
		2.00				9,987	0.176	5,641	0.08
		2.20				12,671	0.291	7,907	0.18
		2.40				15,733	0.361	10,748	0.24
		2.60				19,171	0.440	14,238	0.32
		2.80				22,903	0.526	18,445	0.42
		3.00				26,972	0.619	23,433	0.53
		3.20				31,516	0.724	29,282	0.67
		3.40				36,912	0.847	36,125	0.82
		3.60				41,174	0.945	43,933	1.00
		3.80				41,990	0.964	52,250	1.19
		4.00				42,809	0.983	60,729	1.39
		4.20				43,633	1.002	69,374	1.59
		4.40				44,461	1.021	78,183	1.79
		4.60				45,292	1.040	87,158	2.00
							1.040		
		4.80				46,128		96,300	2.21
		5.00				46,698	1.072	105,583	2.42
		5.20				47,811	1.098	115,034	2.64
		5.40				48,659	1.117	124,681	2.86
		5.60	-	-		49,511	1.137	134,498	3.08
		5.80	-			50,366	1.156	144,485	3.31
		6.00				51,226	1.176	154,645	3.55
								1	
									—
									—
									-
									<u> </u>
									<u> </u>
			-						
									l
			-						
									—
									—
									-
									<u> </u>
									—
									1
								1	
								-	—
								1	
								1	<u> </u>
								 	-
								1	
								1	-
			-						
								L	\vdash
								-	—
								1	<u> </u>
								1	—
								1	
								_	\vdash
								1	—
				-				1	
								_	\vdash
								1	—
								1	
								<u> </u>	\vdash
								 	—
			-						
								L	\vdash
								-	—
								1	
							-		
									<u> </u>

MHPD-Detention_v4.04 - Pond A.xism, Basin 12/10/2021, 12:44 PM

MHFD-Detention_v4.04 - Pond A.ysm, Basin 12/10/2021, 12-44 PM

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)

	Estimated	Estimated	
	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	3.18	0.653	Orifice Plate
Zone 2 (EURV)	4.86	1.612	Circular Orifice
one 3 (100-year)	6.00	1.282	Weir&Pipe (Restrict
	Total (all zones)	3.546	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Diameter = N/A inches

	Calculated Parameters for Underdrain				
Underdrain Orifice Area =	N/A	ft ²			
Underdrain Orifice Centroid =	N/A	feet			

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

0.00 Invert of Lowest Orifice = ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Orifice Plate 3.32 ft (relative to basin bottom at Stage = 0 ft) Orifice Plate: Orifice Vertical Spacing = 13.30 inches Orifice Plate: Orifice Area per Row = N/A inches

BMP)	Calculated Parame	ters for Plate
WQ Orifice Area per Row =	N/A	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.11	2.21					
Orifice Area (sq. inches)	0.75	2.85	4.65					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Zone 2 Circular	Not Selected	
Invert of Vertical Orifice =	4.00	N/A	ft (relat
Depth at top of Zone using Vertical Orifice =	5.41	N/A	ft (relat
Vertical Orifice Diameter =	6.00	N/A	inches

ft (relative to basin bottom at Stage = 0 ft) ft (relative to basin bottom at Stage = 0 ft)

Calculated Parameters for Vertical Orifice Zone 2 Circular Not Selected Vertical Orifice Area 0.20 N/A Vertical Orifice Centroid : N/A

Zone 3 Weir

6.25

4.00

9.66

16.70 8.35

Calculated Parameters for Overflow Weir

Not Selected

N/A

N/A

N/A N/A

N/A

feet

feet

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	6.25	N/A	ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t
Overflow Weir Front Edge Length =	6.00	N/A	feet Overflow Weir Slope Length
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area
Horiz. Length of Weir Sides =	4.00	N/A	feet Overflow Grate Open Area w/o Debris
Overflow Grate Type =	Type C Grate	N/A	Overflow Grate Open Area w/ Debris
Debris Clogging % =	50%	N/A	%

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Zone 3 Restrictor Not Selected

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate					
Zone 3 Restrictor Not Selected					
Outlet Orifice Area =	1.73	N/A	ft ²		
Outlet Orifice Centroid =	0.73	N/A	feet		

Depth to Invert of Outlet Pipe =	2.50	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	1.73	N/A	ft ²
Outlet Pipe Diameter =	18.00	N/A	inches	Outlet Orifice Centroid =	0.73	N/A	feet
Restrictor Plate Height Above Pipe Invert =	17.00		inches Half-Central Angle	of Restrictor Plate on Pipe =	2.67	N/A	radians

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	6.10	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	60.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet

	Calculated Parame	ters for Spillway
Spillway Design Flow Depth=	0.50	feet
Stage at Top of Freeboard =	7.60	feet
Basin Area at Top of Freeboard =	1.18	acres
Basin Volume at Top of Freeboard =	3.55	acre-ft

Routed Hydrograph Results	The user can ove	rride the default CUI	HP hydrographs and	d runoff volumes by	v entering new value	es in the Inflow Hyd	lrographs table (Co	olumns W through A	<i>F</i>).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.68
CUHP Runoff Volume (acre-ft) =	0.653	2.264	1.700	2.253	2.695	3.364	4.018	4.841	8.271
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	1.700	2.253	2.695	3.364	4.018	4.841	8.271
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.2	0.4	0.6	5.1	10.3	17.2	44.7
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.01	0.02	0.14	0.28	0.47	1.22
Peak Inflow Q (cfs) =	N/A	N/A	20.6	27.6	32.9	44.5	54.4	67.0	114.7
Peak Outflow Q (cfs) =	0.3	1.2	0.5	1.1	1.4	1.7	1.8	1.8	1.8
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	2.8	2.4	0.3	0.2	0.1	0.0
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	N/A	N/A	N/A
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	40	71	67	72	75	78	80	83	98
Time to Drain 99% of Inflow Volume (hours) =	45	78	73	79	95	86	89	93	112
Maximum Ponding Depth (ft) =	3.18	4.86	4.22	4.70	5.07	5.63	6.00	6.00	6.00
Area at Maximum Ponding Depth (acres) =	0.71	1.06	1.00	1.05	1.08	1.14	1.18	1.18	1.18
Maximum Volume Stored (acre-ft) =	0.658	2.274	1.603	2.095	2.499	3.122	3.550	3.550	3.550

These need to be 1 or less

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00 0:15:00	0.00	0.00	0.00 2.01	0.00 3.27	0.00 4.07	0.00 2.74	0.23 3.48	0.02 3.36	6.41
	0:20:00	0.00	0.00	7.57	10.05	11.90	7.57	8.89	9.46	15.13
	0:25:00	0.00	0.00	16.11	21.82	26.59	16.04	18.54	20.10	33.41
	0:30:00	0.00	0.00	20.65	27.60	32.94	34.92	42.82	49.13	86.29
	0:35:00	0.00	0.00	20.49 19.03	26.93 24.58	31.79 28.87	44.07 44.48	53.98 54.43	65.80 66.95	113.37 114.71
	0:45:00	0.00	0.00	17.07	22.18	26.09	40.86	49.81	62.60	107.72
	0:50:00	0.00	0.00	15.39	20.26	23.66	37.28	45.18	56.71	98.24
	0:55:00	0.00	0.00	13.95	18.38	21.48	33.32	40.19	50.91	88.59
	1:00:00	0.00	0.00	12.63 11.49	16.57 15.00	19.46 17.70	29.70 26.48	35.65 31.65	45.95 41.54	80.21 72.80
	1:10:00	0.00	0.00	10.33	13.86	16.48	23.20	27.55	35.73	62.23
	1:15:00	0.00	0.00	9.41	12.89	15.68	20.66	24.43	30.91	53.56
	1:20:00 1:25:00	0.00	0.00	8.64	11.90	14.63	18.45	21.74	26.72	45.97
	1:25:00	0.00	0.00	7.95 7.29	10.94	13.26 11.89	16.52 14.54	19.38 17.00	23.11 19.95	39.36 33.61
	1:35:00	0.00	0.00	6.65	9.16	10.61	12.66	14.73	17.04	28.36
	1:40:00	0.00	0.00	6.01	8.01	9.42	10.92	12.63	14.34	23.51
	1:45:00 1:50:00	0.00	0.00	5.45 5.05	6.95 6.13	8.40 7.67	9.33 7.97	10.70 9.04	11.87 9.75	19.10 15.35
	1:55:00	0.00	0.00	4.51	5.65	7.18	6.98	7.88	8.25	12.85
	2:00:00	0.00	0.00	4.04	5.26	6.64	6.42	7.24	7.39	11.37
	2:05:00	0.00	0.00	3.34	4.37	5.52	5.28	5.94	5.97	9.09
	2:10:00 2:15:00	0.00	0.00	2.68	3.50 2.78	4.43 3.53	4.18 3.29	4.69 3.69	4.65 3.59	6.99 5.34
	2:20:00	0.00	0.00	1.69	2.70	2.80	2.59	2.90	2.77	4.06
	2:25:00	0.00	0.00	1.34	1.75	2.20	2.03	2.28	2.13	3.09
	2:30:00	0.00	0.00	1.05	1.37	1.71	1.58	1.76	1.64	2.36
	2:35:00 2:40:00	0.00	0.00	0.82	1.05 0.80	1.31	1.21 0.92	1.35	1.26 0.97	1.81
	2:45:00	0.00	0.00	0.49	0.61	0.77	0.71	0.79	0.75	1.08
	2:50:00	0.00	0.00	0.36	0.46	0.59	0.54	0.61	0.58	0.82
	2:55:00 3:00:00	0.00	0.00	0.26 0.17	0.33	0.43	0.40	0.44	0.42	0.60
	3:05:00	0.00	0.00	0.17	0.25	0.18	0.28	0.20	0.19	0.41
	3:10:00	0.00	0.00	0.05	0.08	0.10	0.10	0.11	0.10	0.14
	3:15:00 3:20:00	0.00	0.00	0.02	0.04	0.04	0.05	0.05	0.05	0.06
	3:25:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00 3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00 4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00 4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00 4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00 5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00 5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

Watershed Information

EDB	
28.88	acres
1,700	ft
850	ft
0.020	ft/ft
64.00%	percent
100.0%	percent
0.0%	percent
0.0%	percent
40.0	hours
User Input	
	28.88 1,700 850 0.020 64.00% 100.0% 0.0%

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using

the embedded Colorado Urban Hydro	graph Procedu	ire.
Water Quality Capture Volume (WQCV) =	0.602	acre-feet
Excess Urban Runoff Volume (EURV) =	2.284	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	1.687	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	2.214	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	2.637	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	3.194	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	3.741	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	4.408	acre-feet
500-yr Runoff Volume (P1 = 3.68 in.) =	7.189	acre-feet
Approximate 2-yr Detention Volume =	1.485	acre-feet
Approximate 5-yr Detention Volume =	1.942	acre-feet
Approximate 10-yr Detention Volume =	2.342	acre-feet
Approximate 25-yr Detention Volume =	2.821	acre-feet
Approximate 50-yr Detention Volume =	3.111	acre-feet
Approximate 100-yr Detention Volume =	3.415	acre-feet

	acre-feet
1.19	inches
1.50	inches
1.75	inches
2.00	inches
2.25	inches
2.52	inches
3.68	inches

Define Zones and Basin Geometry

Define Zones and Dasin Ocometry		
Zone 1 Volume (WQCV) =	0.602	acre-f
Zone 2 Volume (EURV - Zone 1) =	1.681	acre-f
Zone 3 Volume (100-year - Zones 1 & 2) =	1.131	acre-fe
Total Detention Basin Volume =	3.415	acre-fe
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (Htotal) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H_{FLOOR}) =	user	ft
Length of Basin Floor (LFLOOR) =	user	ft
Width of Basin Floor (W_{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (Vtotal) =	user	acre-feet

Depth Increment =	0.20	ft							
Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft 2)	Area (ft 2)	(acre)	(ft 3)	(ac-ft)
Top of Micropool		0.00				35	0.001		
		0.20				185	0.004	22	0.001
		0.40				704 1,235	0.016	111 305	0.003
		0.80				2,152	0.028	644	0.007
		1.00				3,515	0.081	1,210	0.028
		1.20				5,395	0.124	2,101	0.048
		1.40				7,850	0.180	3,426	0.079
		1.60				10,782	0.248	5,289	0.121
		1.80 2.00				13,887 17,131	0.319	7,756 10,858	0.178
		2.20				20,512	0.471	14,622	0.336
		2.40				21,923	0.503	18,865	0.433
	-	2.60	-			22,349	0.513	23,292	0.535
		2.80				22,775	0.523	27,805	0.638
		3.00				23,200	0.533	32,402	0.744
		3.20 3.40				23,626 24,052	0.542	37,085 41,853	0.851
		3.60				24,478	0.562	46,706	1.072
		3.80				24,904	0.572	51,644	1.186
		4.00				25,330	0.582	56,668	1.301
		4.20				25,756	0.591	61,776	1.418
		4.40				26,182	0.601	66,970	1.537
		4.60 4.80				26,608 27,035	0.611	72,249 77,613	1.659 1.782
		5.00				27,461	0.630	83,063	1.907
		5.20				27,887	0.640	88,598	2.034
		5.40				28,313	0.650	94,218	2.163
		5.60				28,739	0.660	99,923	2.294
		5.80	-			29,165 29,592	0.670	105,713 111,589	2.427 2.562
		6.00				30,018	0.689	111,589	2.562
		6.40				30,444	0.699	123,596	2.837
		6.60	-			30,870	0.709	129,728	2.978
		6.80	-			31,297	0.718	135,944	3.121
		7.00				31,723	0.728	142,246	3.266
		7.20 7.40				32,150 32,576	0.738	148,633 155,106	3.412 3.561
		7.40				32,370	0.740	155,100	3.301
			-						
							-		
			-						
									-
			-						
			-						
			-						
			1 1						

MHFD-Detention_v4.04 - Pond B.xism, Basin 12/10/2021, 1:39 PM

MHFD-Detention_v4.04 - Pond B./sm, Basin 12/10/2021, 1:39 PM

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)

	Estimated	Estimated	
	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.74	0.602	Orifice Plate
Zone 2 (EURV)	5.59	1.681	Circular Orifice
one 3 (100-year)	7.21	1.131	Weir&Pipe (Restric
	Total (all zones)	3.415	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Diameter = N/A inches

	Calculated Parame	ters for Underdrain
Underdrain Orifice Area =	N/A	ft ²
Underdrain Orifice Centroid =	N/A	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

0.00 Invert of Lowest Orifice = ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Orifice Plate = 2.74 ft (relative to basin bottom at Stage = 0 ft) Orifice Plate: Orifice Vertical Spacing = N/A inches Orifice Plate: Orifice Area per Row = N/A inches

BMP)	Calculated Parame	ters for Plate
WQ Orifice Area per Row =	N/A	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.70	1.40					
Orifice Area (sq. inches)	1.60	1.81	1.81					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Zone 2 Circular	Not Selected
Invert of Vertical Orifice =	3.00	N/A
Depth at top of Zone using Vertical Orifice =	5.64	N/A
Vertical Orifice Diameter =	3 40	N/A

ft (relative to basin bottom at Stage = 0 ft) ft (relative to basin bottom at Stage = 0 ft) inches

Calculated Parameters for Vertical Orifice Zone 2 Circular Not Selected Vertical Orifice Area 0.06 N/A Vertical Orifice Centroid : 0.14 N/A

er Input: Overflow Weir (Dropbox with Flat or	tangular/Trapezoidal Weir (and No Outlet Pipe)	Calculated Parameters for Overflow Weir				
	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected	1
Overflow Weir Front Edge Height, Ho =	6.20	N/A	ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t =	6.20	N/A	feet
Overflow Weir Front Edge Length =	5.00	N/A	feet Overflow Weir Slope Length =	4.00	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	14.52	N/A	li .
Horiz. Length of Weir Sides =	4.00	N/A	feet Overflow Grate Open Area w/o Debris =	13.92	N/A	ft ²
Overflow Grate Type =	Type C Grate	N/A	Overflow Grate Open Area w/ Debris =	6.96	N/A	ft ²
Debris Clogging % =	50%	N/A	%	•	<u> </u>	

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

Calculated	Parameters	for	Outlet	Pipe	w/	Flow	Restriction	Plate

	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	2.50	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	0.96	N/A	ft ²
Outlet Pipe Diameter =	18.00	N/A	inches	Outlet Orifice Centroid =	0.46	N/A	feet
Restrictor Plate Height Above Pipe Invert =	9.60		inches Half-Central Angle of	of Restrictor Plate on Pipe =	1.64	N/A	radians

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	7.20	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	68.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet

Calculated Parameters for Spillway Spillway Design Flow Depth= 0.50 feet Stage at Top of Freeboard = 8 70 feet Basin Area at Top of Freeboard 0.75 acres Basin Volume at Top of Freeboard = 3.56 acre-ft

Routed Hydrograph Results	The user can ove	erride the default CUI	HP hydrographs and	d runoff volumes by	entering new valu	es in the Inflow Hyd	drographs table (Co	lumns W through A	F).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.68
CUHP Runoff Volume (acre-ft) =	0.602	2.284	1.687	2.214	2.637	3.194	3.741	4.408	7.189
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	1.687	2.214	2.637	3.194	3.741	4.408	7.189
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.2	0.4	0.5	4.9	9.9	16.1	41.9
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.01	0.02	0.17	0.34	0.56	1.45
Peak Inflow Q (cfs) =	N/A	N/A	26.5	34.6	40.7	52.2	62.2	75.1	122.9
Peak Outflow Q (cfs) =	0.2	0.9	0.7	0.8	0.9	4.7	10.4	14.0	32.6
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	2.1	1.7	0.9	1.1	0.9	0.8
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	N/A
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	0.3	0.7	0.9	0.9
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	40	72	66	72	77	78	77	76	70
Time to Drain 99% of Inflow Volume (hours) =	42	78	70	78	83	86	85	84	81
Maximum Ponding Depth (ft) =	2.74	5.59	4.48	5.29	5.90	6.45	6.67	7.17	7.40
Area at Maximum Ponding Depth (acres) =	0.52	0.66	0.60	0.64	0.67	0.70	0.71	0.74	0.75
Maximum Volume Stored (acre-ft) =	0.607	2.287	1.586	2.085	2.494	2.872	3.028	3.383	3.561

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME									
		WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]			100 Year [cfs]	
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00 0:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.36	0.04	2.15
	0:15:00	0.00	0.00	3.20 11.37	5.20 14.90	6.45 17.52	4.34 11.06	5.41 12.87	5.29 13.80	9.61 21.57
	0:25:00	0.00	0.00	22.96	30.34	36.58	22.70	25.89	27.86	45.00
	0:30:00	0.00	0.00	26.46	34.63	40.68	46.32	55.47	62.87	104.88
	0:35:00	0.00	0.00	23.97	30.84	35.90	52.16	62.23	75.09	122.87
	0:40:00	0.00	0.00	20.99	26.46	30.70	48.52	57.80	69.88	114.06
	0:45:00	0.00	0.00	17.68	22.64	26.44	41.77	49.58	61.59	101.06
	0:50:00	0.00	0.00	14.91	19.54	22.49	36.62	43.31	53.46	88.26
	0:55:00	0.00	0.00	12.88	16.83	19.50	30.64	36.01	45.24	74.68
	1:00:00	0.00	0.00	11.54	14.97	17.57	25.93	30.29	38.95	64.50
	1:05:00	0.00	0.00	10.44	13.49 12.07	15.97 14.39	22.72 19.40	26.43	34.80	57.90 47.43
	1:15:00	0.00	0.00	8.87 7.41	10.40	12.91	16.43	22.47 18.93	28.76 23.35	38.09
	1:20:00	0.00	0.00	6.24	8.81	11.15	13.34	15.28	17.96	28.92
	1:25:00	0.00	0.00	5.50	7.78	9.53	10.81	12.27	13.49	21.38
	1:30:00	0.00	0.00	5.11	7.25	8.54	8.83	9.98	10.52	16.49
	1:35:00	0.00	0.00	4.90	6.93	7.90	7.61	8.58	8.81	13.62
	1:40:00	0.00	0.00	4.78	6.25	7.44	6.85	7.71	7.74	11.80
	1:45:00	0.00	0.00	4.70	5.70	7.11	6.34	7.13	7.02	10.54
	1:50:00	0.00	0.00	4.63	5.30	6.88	6.00	6.74	6.52	9.68
	1:55:00	0.00	0.00	4.05	5.00	6.55	5.76	6.47	6.17	9.07
	2:00:00	0.00	0.00	3.56 2.67	4.64 3.48	5.95 4.45	5.59 4.22	6.29 4.74	5.94 4.46	8.68 6.51
	2:10:00	0.00	0.00	1.94	2.52	3.20	3.03	3.41	3.21	4.67
	2:15:00	0.00	0.00	1.40	1.82	2.30	2.19	2.46	2.33	3.39
	2:20:00	0.00	0.00	1.00	1.29	1.65	1.57	1.76	1.68	2.43
	2:25:00	0.00	0.00	0.70	0.89	1.15	1.10	1.23	1.17	1.70
	2:30:00	0.00	0.00	0.47	0.60	0.80	0.76	0.85	0.81	1.17
	2:35:00	0.00	0.00	0.31	0.41	0.54	0.52	0.58	0.56	0.80
	2:40:00	0.00	0.00	0.18	0.26	0.33	0.33	0.37	0.35	0.50
	2:45:00 2:50:00	0.00	0.00	0.09	0.14	0.17	0.18	0.20	0.19	0.27
	2:55:00	0.00	0.00	0.03	0.06	0.07	0.08	0.08	0.08	0.11
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00 3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00 4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00 4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00 4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00 5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00 5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

acre-feet acre-feet Inches

1.50 inches 1.75 inches 2.00 inches

2.25 inches 2.52 inches 3.68 inches

MHFD-Detention, Version 4.04 (February 2021)

Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	42.94	acres
Watershed Length =	1,890	ft
Watershed Length to Centroid =	1,050	ft
Watershed Slope =	0.020	ft/ft
Watershed Imperviousness =	59.90%	percent
Percentage Hydrologic Soil Group A =	100.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1 br Dainfall Donths	Hear Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using

the embedded Colorado Urban Hydro	graph Procedu	ıre.
Water Quality Capture Volume (WQCV) =	0.844	acre-feet
Excess Urban Runoff Volume (EURV) =	3.120	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	2.326	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	3.065	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	3.657	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	4.467	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	5.266	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	6.250	acre-feet
500-yr Runoff Volume (P1 = 3.68 in.) =	10.360	acre-feet
Approximate 2-yr Detention Volume =	2.022	acre-feet
Approximate 5-yr Detention Volume =	2.649	acre-feet
Approximate 10-yr Detention Volume =	3.206	acre-feet
Approximate 25-yr Detention Volume =	3.878	acre-feet
Approximate 50-yr Detention Volume =	4.288	acre-feet
Approximate 100-yr Detention Volume =	4.738	acre-feet

Define Zones and Basin Geometry

Zone 1 Volume (WQCV) =	0.844	acre-fe
Zone 2 Volume (EURV - Zone 1) =	2.276	acre-fe
Zone 3 Volume (100-year - Zones 1 & 2) =	1.618	acre-fe
Total Detention Basin Volume =	4.738	acre-fe
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (LISV) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H_{FLOOR}) =	user	ft
Length of Basin Floor (LFLOOR) =	user	ft
Width of Basin Floor (W_{FLOOR}) =	user	ft
Area of Basin Floor (A_{FLOOR}) =	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (Vtotal) =	user	acre-feet

Depth Increment =	0.20	ft							
Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft 2)	Area (ft 2)	(acre)	(ft 3)	(ac-ft)
Top of Micropool		0.00				35	0.001		
		0.20				35,292	0.810	3,528	0.081
		0.40				37,407	0.859	10,798	0.248
		0.60				38,047	0.873	18,343	0.421
		1.00				38,691 39,340	0.888	26,017 33,820	0.597
		1.20				3,992	0.092	38,152	0.876
		1.40				40,649	0.933	42,614	0.978
		1.60				41,309	0.948	50,810	1.166
		1.80				41,974	0.964	59,138	1.358
		2.00				42,642	0.979	67,600	1.552
		2.20				43,315	0.994 1.010	76,195	1.749
		2.40				43,991 44,672	1.010	84,926 93,792	2.153
		2.80				45,357	1.041	102,795	2.360
		3.00				46,045	1.057	111,935	2.570
		3.20				46,738	1.073	121,213	2.783
		3.40				47,435	1.089	130,631	2.999
		3.60				48,135	1.105	140,188	3.218
		3.80 4.00				48,840 49,549	1.121	149,885 159,724	3.441
		4.00				50,262	1.154	169,705	3.896
	-	4.40				50,979	1.170	179,829	4.128
		4.60				51,669	1.186	190,094	4.364
		4.80				52,424	1.203	200,503	4.603
		5.00				53,153	1.220	211,061	4.845
			-						
			-						
			1						
			-						
			-						
			1						
			1 1						
			-						
			-						
			-						
			-						
			-						
	-		-						

MHPD-Detention_v4.04 - Pond Cx/sm, Basin 12/9/2021, 3:56 PM

MHFD-Detention_v4.04 - Pond Cx/sm, Basin 12/9/2021, 3:56 PM

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)

	Estimated	Estimated	
	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	1.10	0.844	Orifice Plate
Zone 2 (EURV)	3.52	2.276	Circular Orifice
one 3 (100-year)	4.92	1.618	Weir&Pipe (Restrict
	Total (all zones)	4.738	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

N/A ft (distance below the filtration media surface) Underdrain Orifice Invert Depth = Underdrain Orifice Diameter = N/A inches

	Calculated Parameters for Underdrain				
Underdrain Orifice Area =	N/A	ft ²			
Underdrain Orifice Centroid =	N/A	feet			

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Orifice Plate 1.10 ft (relative to basin bottom at Stage = 0 ft) Orifice Plate: Orifice Vertical Spacing : N/A inches Orifice Plate: Orifice Area per Row = N/A inches

BMP)	Calculated Parame	ters for Plate
WQ Orifice Area per Row =	N/A	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.37	0.75					
Orifice Area (sq. inches)	7.50	8.00	8.16					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Zone 2 Circular	Not Selected	
Invert of Vertical Orifice =	3.25	N/A	ft (rela
Depth at top of Zone using Vertical Orifice =	3.52	N/A	ft (rela
Vertical Orifice Diameter =	1.00	N/A	inches

ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifi
ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice (

	Calculated Parameters for Vertical Orifice				
	Zone 2 Circular	Not Selected			
Vertical Orifice Area =	0.01	N/A	ft ²		
ertical Orifice Centroid =	0.04	N/A	feet		

Calculated Parameters for Overflow Weir

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Tragezoidal Weir (and No Outlet Pipe)

Not Selected

N/A

N/A

inches

inches

	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	4.50	N/A	ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t =	4.50	N/A	feet
Overflow Weir Front Edge Length =	4.00	N/A	feet Overflow Weir Slope Length =	4.00	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	6.15	N/A	
Horiz. Length of Weir Sides =	4.00	N/A	feet Overflow Grate Open Area w/o Debris =	11.14	N/A	ft ²
Overflow Grate Type =	Type C Grate	N/A	Overflow Grate Open Area w/ Debris =	5.57	N/A	ft ²
Debris Clogging % =	50%	N/A	%			_

ft (distance below basin bottom at Stage = 0 ft)

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

Zone 3 Restrictor

2.50

21.00

	Calculated Parameters	for Outlet Pipe w/	Flow Restriction Plant	ate
		Zone 3 Restrictor	Not Selected	
om at Stage = 0 ft)	Outlet Orifice Area =	1.81	N/A	ft ²
	Outlet Orifice Centroid =	0.69	N/A	feet
Half-Central Angle of	of Restrictor Plate on Pipe =	1.99	N/A	radians

Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert = 14.80

Depth to Invert of Outlet Pipe

User Input: Emergency Spillway (Rectangular or Trapezoidal)							
Spillway Invert Stage=	5.00	ft (relative to basin bottom at Stage = 0 ft)					
Spillway Crest Length =	36.00	feet					
Spillway End Slopes =	4.00	H:V					
Freehoard above May Water Surface -	1.00	feet					

	Calculated Parameters for Spillway		
Spillway Design Flow Depth=	0.94	feet	
Stage at Top of Freeboard =	6.94	feet	
Basin Area at Top of Freeboard =	1.22	acres	
Basin Volume at Top of Freeboard =	4.85	acre-ft	

Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF Design Storm Return Period WOCV 5 Year 10 Yea 50 Year 100 Ye 500 Year One-Hour Rainfall Depth (in) N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 3.68 CUHP Runoff Volume (acre-ft) 0.844 3.120 2.326 3.065 3.657 4.467 5.266 10.360 Inflow Hydrograph Volume (acre-ft) N/A N/A 3.065 4.467 10.360 2.326 3.657 5.266 6.250 CUHP Predevelopment Peak Q (cfs) N/A 0.3 0.6 8.0 7.5 15.0 24.6 64.1 OPTIONAL Override Predevelopment Peak Q (cfs) N/A N/A Predevelopment Unit Peak Flow, q (cfs/acre) N/A N/A 0.01 0.01 0.02 0.18 0.35 0.57 1.49 177.7 Peak Inflow Q (cfs) 87.9 N/A N/A 36.0 47.5 56.1 73.0 106.7 Peak Outflow Q (cfs) 0.6 1.4 1.6 7.4 10.8 1.2 10.8 Ratio Peak Outflow to Predevelopment Q N/A N/A N/A 0.2 0.5 0.4 0.2 Structure Controlling Flow Plate tical Orifice Plate Vertical Orifice 1 Vertical Orifice 1 Vertical Orific Overflow Weir N/A N/A Max Velocity through Grate 1 (fps) N/A N/A N/A N/A N/A N/A 0.5 0.8 0.8 Max Velocity through Grate 2 (fps) N/A N/A N/A N/A N/A N/A N/A N/A N/A Time to Drain 97% of Inflow Volume (hours) 58 40 58 54 63 62 65 65 75 Time to Drain 99% of Inflow Volume (hours) 43 65 60 66 70 75 75 75 Maximum Ponding Depth (ft) 1.10 3.52 2.59 3.27 3.78 4.47 4.87 5.00 5.00 Area at Maximum Ponding Depth (acres) 0.50 1.10 1.02 1.08 1.12 1.18 1.21 Maximum Volume Stored (acre-ft) 0.846 3.130 2.143 2.847 3.418 4.210 4.675 4 84 4.845

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00 0:15:00	0.00	0.00	0.00 4.17	0.00 6.77	0.00 8.40	0.00 5.66	7.09	0.05 6.91	2.81 12.73
	0:20:00	0.00	0.00	15.07	19.83	23.36	14.77	17.23	18.45	28.93
	0:25:00	0.00	0.00	30.78	40.69	49.25	30.44	34.74	37.34	60.91
	0:30:00	0.00	0.00	36.01	47.52	56.15	62.91	75.99	86.56	147.13
	0:35:00	0.00	0.00	32.92 28.90	42.73 36.71	49.93 42.72	72.97 68.29	87.91 82.11	106.71 100.20	177.72 166.15
	0:45:00	0.00	0.00	24.50	31.53	36.89	58.84	70.48	88.19	147.15
	0:50:00	0.00	0.00	20.71	27.27	31.49	51.58	61.52	76.61	128.82
	0:55:00	0.00	0.00	17.86	23.44	27.20	43.36	51.38	64.96	109.27
	1:00:00	0.00	0.00	16.01 14.56	20.86 18.88	24.51 22.37	36.54 32.00	42.97 37.44	55.58 49.53	93.83 84.16
	1:10:00	0.00	0.00	12.49	17.00	20.27	27.49	32.00	41.28	69.47
	1:15:00	0.00	0.00	10.51	14.74	18.24	23.39	27.09	33.65	55.92
	1:20:00 1:25:00	0.00	0.00	8.86	12.50	15.79	19.13	22.01	26.13	42.83
	1:30:00	0.00	0.00	7.72 7.11	10.90	13.37 11.90	15.53 12.52	17.71 14.18	19.74 15.14	31.81 24.07
	1:35:00	0.00	0.00	6.80	9.63	10.99	10.70	12.07	12.49	19.57
	1:40:00	0.00	0.00	6.63	8.71	10.35	9.59	10.79	10.92	16.82
	1:45:00 1:50:00	0.00	0.00	6.51 6.42	7.93 7.37	9.87 9.55	8.85 8.35	9.96 9.39	9.85 9.13	14.92 13.63
	1:55:00	0.00	0.00	5.66	6.96	9.10	8.01	9.00	8.61	12.71
	2:00:00	0.00	0.00	4.96	6.46	8.30	7.77	8.73	8.27	12.11
	2:05:00 2:10:00	0.00	0.00	3.77	4.92	6.29	5.95	6.69	6.30	9.19
	2:15:00	0.00	0.00	2.75	3.57 2.59	4.54 3.28	4.29 3.11	4.82 3.49	4.54 3.30	6.61 4.80
	2:20:00	0.00	0.00	1.44	1.86	2.36	2.25	2.52	2.40	3.48
	2:25:00	0.00	0.00	1.02	1.29	1.67	1.58	1.77	1.69	2.44
	2:30:00 2:35:00	0.00	0.00	0.69	0.88	1.16 0.79	1.10 0.77	1.23 0.86	1.18 0.82	1.70 1.18
	2:40:00	0.00	0.00	0.48	0.39	0.50	0.50	0.55	0.53	0.75
	2:45:00	0.00	0.00	0.14	0.22	0.27	0.28	0.31	0.30	0.42
	2:50:00 2:55:00	0.00	0.00	0.06	0.10	0.12	0.13	0.14	0.13	0.18
	3:00:00	0.00	0.00	0.02	0.03	0.03	0.04	0.04	0.03	0.04
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00 3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00 3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00 4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00 4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00 4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00 5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00 5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00 5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00 5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MHFD-Detention, Version 4.04 (February 2021)

Watershed Information

EDB							
14.42	acres						
1,200	ft						
600	ft						
0.020	ft/ft						
56.10%	percent						
100.0%	percent						
0.0%	percent						
0.0%	percent						
40.0	hours						
Location for 1-hr Rainfall Depths = User Input							
	14.42 1,200 600 0.020 56.10% 100.0% 0.0% 40.0						

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using

the embedded Colorado Urban Hydro	graph Proced	lure.
Water Quality Capture Volume (WQCV) =	0.269	acre-feet
Excess Urban Runoff Volume (EURV) =	0.963	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.710	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	0.938	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	1.120	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	1.383	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	1.641	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	1.963	acre-feet
500-yr Runoff Volume (P1 = 3.68 in.) =	3.306	acre-feet
Approximate 2-yr Detention Volume =	0.623	acre-feet
Approximate 5-yr Detention Volume =	0.817	acre-feet
Approximate 10-yr Detention Volume =	0.992	acre-feet
Approximate 25-yr Detention Volume =	1.205	acre-feet
Approximate 50-yr Detention Volume =	1.336	acre-feet
Approximate 100-yr Detention Volume =	1.486	acre-feet
		_

c	Optional User Overrides								
		acre-feet							
		acre-feet							
	1.19	inches							
	1.50	inches							
	1.75	inches							
	2.00	inches							
	2.25	inches							
	2.52	inches							
	3.68	inches							

Define Zones and Basin Geometri

Define Zones and basin Geometry		
Zone 1 Volume (WQCV) =	0.269	acre-fe
Zone 2 Volume (EURV - Zone 1) =	0.694	acre-f
Zone 3 Volume (100-year - Zones 1 & 2) =	0.523	acre-f
Total Detention Basin Volume =	1.486	acre-f
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (Htotal) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	
		•

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (LISV) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A_{FLOOR}) =		ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin $(W_{MAIN}) =$	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume $(V_{total}) =$	user	acre-feet

Depth Increment =	0.20	ft							
Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft 2)	Area (ft 2)	(acre)	(ft 3)	(ac-ft)
Top of Micropool		0.00				35	0.001		
		0.20				487	0.011	52	0.001
		0.40				1,450	0.033	246 701	0.006
		0.80				3,097 5,608	0.071	1,571	0.016
		1.00				9,701	0.223	3,102	0.071
		1.20				11,110	0.255	5,183	0.119
		1.40				11,438	0.263	7,438	0.171
		1.60				11,770	0.270	9,759	0.224
		1.80 2.00				12,106 12,446	0.278	12,146 14,602	0.279
		2.20				12,791	0.294	17,125	0.333
		2.40				13,139	0.302	19,718	0.453
	-	2.60	-			13,491	0.310	22,381	0.514
		2.80				13,847	0.318	25,115	0.577
		3.00				14,207	0.326	27,920	0.641
		3.20 3.40				14,572 14,940	0.335	30,798 33,749	0.707 0.775
		3.60				15,312	0.352	36,775	0.844
		3.80				15,688	0.360	39,875	0.915
		4.00				16,069	0.369	43,050	0.988
		4.20				16,453	0.378	46,303	1.063
		4.40				16,842	0.387	49,632	1.139
		4.60 4.80				17,234 17,630	0.396	53,040 56,526	1.218
		5.00				18,031	0.405	60,092	1.298
		5.20				18,435	0.423	63,739	1.463
		5.40				18,844	0.433	67,466	1.549
		5.60				19,256	0.442	71,276	1.636
		5.80				19,673	0.452	75,169	1.726
		6.00				20,093	0.461	79,146	1.817
			-						-
					**				
	1		1						
	-								
	-		-						
			1 1						
			-						
	-		-						
			-						
	-								
									-
			-						
			-						
								1	L

MHFD-Detention_v4.04 - Pond D./sm, Basin 12/7/2021, 10:54 AM

MHFD-Detention_v4.04 - Pond D./sm, Basin 127/2021, 10:54 AM

MHFD-Detention, Version 4.04 (February 2021)

	Estimated	Estimated	
	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	1.77	0.269	Orifice Plate
Zone 2 (EURV)	3.94	0.694	Circular Orifice
ne 3 (100-year)	5.26	0.523	Weir&Pipe (Restrict
•	Total (all zones)	1.486	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Diameter = N/A inches

Calculated Parameters for Underdrain Underdrain Orifice Area N/A Underdrain Orifice Centroid : N/A feet

Calculated Parameters for Plate

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

0.00 Invert of Lowest Orifice = ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Orifice Plate 1.77 ft (relative to basin bottom at Stage = 0 ft) Orifice Plate: Orifice Vertical Spacing N/A inches Orifice Plate: Orifice Area per Row = N/A inches

WQ Orifice Area per Row N/A Elliptical Half-Width N/A feet Elliptical Slot Centroid : N/A feet Elliptical Slot Area N/A

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.59	1.25					
Orifice Area (sq. inches)	1.15	1.30	2.00					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Zone 2 Circular	Not Selected
Invert of Vertical Orifice =	3.50	N/A
Depth at top of Zone using Vertical Orifice =	3.94	N/A
Vertical Orifice Diameter =	1 25	N/A

ft (relative to basin bottom at Stage = 0 ft) ft (relative to basin bottom at Stage = 0 ft) inches

Calculated Parameters for Vertical Orifice Zone 2 Circular Not Selected Vertical Orifice Area 0.01 N/A Vertical Orifice Centroid : 0.05 N/A

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

r Input: Overflow Weir (Dropbox with Flat or	Sloped Grate and	Outlet Pipe OR Rec	tangular/Trapezoidal Weir (and No Outlet Pipe)	Calculated Paramet	ers for Overflow W	eir_
	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	4.75	N/A	ft (relative to basin bottom at Stage = 0 ft) $$ Height of Grate Upper Edge, $H_t =$	4.75	N/A	feet
Overflow Weir Front Edge Length =	3.00	N/A	feet Overflow Weir Slope Length =	3.00	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	10.89	N/A	
Horiz. Length of Weir Sides =	3.00	N/A	feet Overflow Grate Open Area w/o Debris =	6.26	N/A	ft ²
Overflow Grate Type =	Type C Grate	N/A	Overflow Grate Open Area w/ Debris =	3.13	N/A	ft ²
Debris Clogging % =	50%	N/A	%			

<u>User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)</u>

Calculated	Parameters	for	Outlet	Pipe w	/ Flow	Restriction	Plate

	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	2.50	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	0.58	N/A	ft ²
Outlet Pipe Diameter =	18.00	N/A	inches	Outlet Orifice Centroid =	0.32	N/A	feet
Restrictor Plate Height Above Pipe Invert =	6.50		inches Half-Central Angle	of Restrictor Plate on Pipe =	1.29	N/A	radians

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	5.25	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	29.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet

Spillway Design Flow Depth= 0.50 feet

Stage at Top of Freeboard =	6.75	feet
Basin Area at Top of Freeboard =	0.46	acres
Basin Volume at Top of Freeboard =	1.82	acre-f
		-

Routed Hydrograph Results	The user can ove	erride the default CUH	IP hydrographs ar	nd runoff volumes by	v entering new value	es in the Inflow Hyd	drographs table (Co	lumns W through A	4 <i>F).</i>
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.68
CUHP Runoff Volume (acre-ft) =	0.269	0.963	0.710	0.938	1.120	1.383	1.641	1.963	3.306
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.710	0.938	1.120	1.383	1.641	1.963	3.306
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.1	0.2	0.3	2.5	5.0	8.2	21.1
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.01	0.02	0.17	0.35	0.57	1.46
Peak Inflow Q (cfs) =	N/A	N/A	10.6	14.0	16.6	22.0	26.7	32.7	55.3
Peak Outflow Q (cfs) =	0.1	0.3	0.2	0.3	0.3	0.8	3.4	8.7	35.4
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	1.4	1.1	0.3	0.7	1.1	1.7
Structure Controlling Flow =	Plate	Vertical Orifice 1	Plate	Vertical Orifice 1	Vertical Orifice 1	Overflow Weir 1	Overflow Weir 1	Spillway	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	0.1	0.5	1.2	1.2
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	40	73	63	72	78	85	84	82	75
Time to Drain 99% of Inflow Volume (hours) =	43	79	69	79	85	92	92	91	87
Maximum Ponding Depth (ft) =	1.77	3.94	3.09	3.74	4.22	4.84	5.04	5.30	5.70
Area at Maximum Ponding Depth (acres) =	0.28	0.37	0.33	0.36	0.38	0.41	0.42	0.43	0.45
Maximum Volume Stored (acre-ft) =	0.271	0.966	0.670	0.890	1.067	1.310	1.396	1.506	1.681

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME									
		WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]			100 Year [cfs]	
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.14	0.01	0.86
	0:20:00	0.00	0.00	1.28 4.51	2.07 5.91	2.58 6.95	1.73 4.39	2.16 5.12	2.12 5.49	3.84 8.60
	0:25:00	0.00	0.00	9.11	12.23	14.88	9.04	10.34	11.21	18.51
	0:30:00	0.00	0.00	10.59	14.04	16.61	19.23	23.51	26.99	46.79
	0:35:00	0.00	0.00	9.70	12.64	14.82	21.97	26.68	32.72	55.28
	0:40:00	0.00	0.00	8.63	11.01	12.85	20.68	25.09	30.79	51.90
	0:45:00	0.00	0.00	7.40	9.57	11.24	17.94	21.67	27.35	46.43
	0:50:00	0.00	0.00	6.34	8.38	9.69	15.93	19.15	23.96	41.05
	0:55:00	0.00	0.00	5.50	7.22	8.38	13.49	16.11	20.51	35.15
	1:05:00	0.00	0.00	4.94 4.53	6.45 5.89	7.58 6.99	11.41	13.49 11.83	17.56 15.71	30.21 27.25
	1:10:00	0.00	0.00	3.95	5.39	6.42	8.72	10.23	13.22	22.69
	1:15:00	0.00	0.00	3.40	4.75	5.85	7.55	8.81	11.01	18.66
	1:20:00	0.00	0.00	2.91	4.06	5.08	6.29	7.29	8.75	14.64
	1:25:00	0.00	0.00	2.50	3.51	4.26	5.18	5.96	6.80	11.18
	1:30:00	0.00	0.00	2.24	3.15	3.70	4.12	4.69	5.15	8.28
	1:35:00	0.00	0.00	2.10	2.97	3.39	3.42	3.87	4.10	6.50
	1:40:00	0.00	0.00	2.03 1.99	2.67	3.19	3.01 2.76	3.40	3.51	5.49 4.80
	1:50:00	0.00	0.00	1.96	2.44	2.93	2.76	2.91	3.12 2.87	4.80
	1:55:00	0.00	0.00	1.73	2.15	2.79	2.47	2.77	2.69	4.00
	2:00:00	0.00	0.00	1.52	1.99	2.55	2.39	2.68	2.56	3.76
	2:05:00	0.00	0.00	1.16	1.52	1.94	1.82	2.05	1.93	2.81
	2:10:00	0.00	0.00	0.87	1.13	1.43	1.35	1.51	1.42	2.06
	2:15:00	0.00	0.00	0.65	0.84	1.06	0.99	1.11	1.05	1.52
	2:20:00	0.00	0.00	0.48	0.62	0.78	0.73	0.82	0.78	1.12
	2:30:00	0.00	0.00	0.35 0.25	0.44	0.56	0.53	0.59	0.56	0.81
	2:35:00	0.00	0.00	0.23	0.22	0.40	0.27	0.42	0.40	0.41
	2:40:00	0.00	0.00	0.11	0.15	0.19	0.19	0.21	0.20	0.28
	2:45:00	0.00	0.00	0.07	0.09	0.12	0.12	0.13	0.12	0.17
	2:50:00	0.00	0.00	0.03	0.05	0.06	0.06	0.07	0.07	0.09
	2:55:00	0.00	0.00	0.01	0.02	0.02	0.03	0.03	0.03	0.03
	3:00:00 3:05:00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00 3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00 4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00 4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00 4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00 5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00 5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00 6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

acre-feet acre-feet Inches

1.50 inches 1.75 inches 2.00 inches

2.25 inches 2.52 inches 3.68 inches

MHFD-Detention, Version 4.04 (February 2021)

Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	20.23	acres
Watershed Length =	1,800	ft
Watershed Length to Centroid =	900	ft
Watershed Slope =	0.020	ft/ft
Watershed Imperviousness =	47.20%	percent
Percentage Hydrologic Soil Group A =	90.0%	percent
Percentage Hydrologic Soil Group B =	10.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using

the embedded Colorado Urban Hydro	graph Procedu	ire.
Water Quality Capture Volume (WQCV) =	0.335	acre-feet
Excess Urban Runoff Volume (EURV) =	1.077	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.830	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	1.102	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	1.322	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	1.751	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	2.105	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	2.578	acre-feet
500-yr Runoff Volume (P1 = 3.68 in.) =	4.494	acre-feet
Approximate 2-yr Detention Volume =	0.702	acre-feet
Approximate 5-yr Detention Volume =	0.929	acre-feet
Approximate 10-yr Detention Volume =	1.149	acre-feet
Approximate 25-yr Detention Volume =	1.393	acre-feet
Approximate 50-yr Detention Volume =	1.549	acre-feet
Approximate 100-yr Detention Volume =	1.756	acre-feet

Define Zones and Basin Geometry

CHITC ZONCS and Dasin Ocomically		
Zone 1 Volume (WQCV) =	0.335	acre-fee
Zone 2 Volume (EURV - Zone 1) =	0.742	acre-fee
Zone 3 Volume (100-year - Zones 1 & 2) =	0.679	acre-fee
Total Detention Basin Volume =	1.756	acre-fee
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A_{FLOOR}) =		ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =		ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (Vtotal) =	user	acre-feet

Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Optional Override Area (ft ²)	Area (acre)	Volume (ft 3)	Volume (ac-ft)
op of Micropool		0.00				35	0.001		
		0.20				213	0.005	25	0.001
		0.40				864	0.020	132	0.003
		0.60				2.063	0.047	425	0.010
		0.80				3,918	0.047	1,023	0.010
		1.00							
		1.00				7,325 8,522	0.168	2,147 3,732	0.049
									_
		1.40				8,810	0.202	5,465	0.125
		1.60				9,102	0.209	7,256	0.167
		1.80				9,398	0.216	9,106	0.209
		2.00				9,697	0.223	11,016	0.253
		2.20				10,001	0.230	12,986	0.298
		2.40				10,309	0.237	15,017	0.345
		2.60				10,621	0.244	17,110	0.393
		2.80				10,937	0.251	19,266	0.442
		3.00				11,257	0.258	21,485	0.493
		3.20				11,581	0.266	23,769	0.546
		3.40				11,909	0.273	26,118	0.600
		3.60				12,241	0.281	28,533	0.655
		3.80				12,577	0.289	31,014	0.712
		4.00				12,917	0.297	33,564	0.771
		4.20				13,261	0.304	36,182	0.831
		4.40			-	13,609	0.312	38,869	0.892
		4.60				13,961	0.321	41,626	0.956
		4.80				14,317	0.329	44,453	1.021
		5.00				14,677	0.337	47,353	1.087
		5.20				15,042	0.345	50,325	1.155
		5.40				15,410	0.354	53,370	1.225
		5.60				15,782	0.362	56,489	1.297
		5.80				16,158	0.371	59,683	1.370
		6.00				16,538	0.380	62,953	1.445
		6.20				16,923	0.388	66,299	1.522
		6.40				17,311	0.397	69,722	1.601
		6.60				17,703	0.406	73,223	1.681
		6.80				18,100	0.416	76,804	1.763
		7.00				18,500	0.425	80,464	1.847
		7.20				18,905	0.434	84,204	1.933
		7.40				19,313	0.443	88,026	2.021
					-				
								 	
								 	
									
								-	
								-	
								1	-
							_		1
									<u> </u>
	**								
								1	
								1	
								1	-
									
	-				-				
									
									
								1	
							_	1	
									-

MHPD-Detention_v4.04 - Pond Exism, Basin 127/2021, 10:49 AM

MHFD-Detention_v4.04 - Pond E.xism, Basin 12/7/2021, 10.49 AM

MHFD-Detention, Version 4.04 (February 2021)

	Estimated	Estimated	
	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.36	0.335	Orifice Plate
Zone 2 (EURV)	4.97	0.742	Circular Orifice
ne 3 (100-year)	6.79	0.679	Weir&Pipe (Restrict)
	Total (all zones)	1.756	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface)
Underdrain Orifice Diameter = N/A inches

Underdrain Orifice Area = N/A ft²

Underdrain Orifice Centroid = N/A feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WOCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft)

Depth at top of Zone using Orifice Plate = 2.36 ft (relative to basin bottom at Stage = 0 ft)

Orifice Plate: Orifice Vertical Spacing = N/A inches

Orifice Plate: Orifice Area per Row = N/A inches

 NA
 State

 WQ Orifice Area per Row =
 N/A
 ft²

 Elliptical Half-Width =
 N/A
 feet

 Elliptical Slot Centroid =
 N/A
 feet

 Elliptical Slot Area =
 N/A
 ft²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.75	1.50					
Orifice Area (sq. inches)	1.30	1.30	1.30					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Zone 2 Circular	Not Selected
Invert of Vertical Orifice =	2.36	N/A
Depth at top of Zone using Vertical Orifice =	4.97	N/A
Vertical Orifice Diameter =	1 25	N/A

ft (relative to basin bottom at Stage = 0 ft)
ft (relative to basin bottom at Stage = 0 ft)
inches

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	6.00	N/A	ft (
Overflow Weir Front Edge Length =	3.00	N/A	fee
Overflow Weir Grate Slope =	0.00	N/A	H:\
Horiz. Length of Weir Sides =	3.00	N/A	fee
Overflow Grate Type =	Type C Grate	N/A	
Debris Clogging % =	50%	N/A	%

Calculated Parameters for Overflow Weir Zone 3 Weir Not Selected N/A (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, Ht 6.00 feet et Overflow Weir Slope Length 3.00 N/A feet ٧ Grate Open Area / 100-yr Orifice Area : N/A 8.83 et Overflow Grate Open Area w/o Debris 6.26 N/A Overflow Grate Open Area w/ Debris : 3 13 N/A

<u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

	Zone 3 Restrictor	Not Selected
Depth to Invert of Outlet Pipe =	2.50	N/A
Outlet Pipe Diameter =	18.00	N/A
Restrictor Plate Height Above Pipe Invert =	7.60	

ft (distance below basin bottom at Stage = 0 ft) inches

7.1

0.35

11.1

0.55

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	6.73	ft (re
Spillway Crest Length =		feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet

ft (relative to basin bottom at Stage = 0 ft)

inches

	Calculated Parameters for Spilly		
Spillway Design Flow Depth=	0.50	feet	
Stage at Top of Freeboard =	8.23	feet	
Basin Area at Top of Freeboard =	0.44	acres	
Basin Volume at Top of Freeboard =	2.02	acre-ft	

Routed Hydrograph Results lumns W through AF. Design Storm Return Period 500 Year One-Hour Rainfall Depth (in) N/A N/A 1.19 1.50 1.75 2.00 2.25 3.68 CUHP Runoff Volume (acre-ft) 0.335 1.077 0.830 1.102 1.322 2.105 4.494 1.322 Inflow Hydrograph Volume (acre-ft) N/A N/A 0.830 1.102 1.751 2.105 4.494 2.578

0.1

0.01

CUHP Predevelopment Peak Q (cfs)

OPTIONAL Override Predevelopment Peak Q (cfs)

 Peak Outflow Q (cfs) =
 0.2
 0.3
 0.3

 9 Predevelopment Q =
 N/A
 N/A
 N/A

 ure Controlling Flow =
 Plate
 Vertical Orifice 1
 Vertical Orifice

 nrough Grate 1 (fps) =
 N/A
 N/A
 N/A

 nrough Grate 2 (fps) =
 N/A
 N/A
 N/A

 nlow Volume (hours) =
 42
 70
 63

 flow Volume (hours) =
 44
 76
 69

N/A

N/A

N/A

N/A

NI/Δ

9.5 34.1 59.1 12.8 15.3 22.5 27.6 0.3 0.4 45.3 1.0 0.7 1.0 Vertical Ori tical Orific rflow Wei Overflow Wei pillway Spillway N/A N/A 0.4 1 1 1.6 1.6 N/A N/A N/A N/A N/A N/A 81 78 83 70 69 78 85 90 89 88 84 7.24 4.02 4.86 5.48 6.27 6.82 0.44 0.30 0.33 0.36 0.39 0.40 0.42 1 040 1 549 1.641 1.950

4.3

0.21

Revise sizing to reduce these to 1 or less

0.3

0.01

0.3

0.02

26.6

1.32

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

So	OURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min 0	:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
):10:00):15:00	0.00	0.00	0.00	0.00 1.53	0.00 1.90	0.00 1.28	0.11 1.62	0.01 1.57	0.64 2.95
	:20:00	0.00	0.00	3.44	4.56	5.40	3.43	4.03	4.30	6.87
0	:25:00	0.00	0.00	7.35	10.21	12.52	7.26	8.66	9.41	16.51
	:30:00	0.00	0.00	9.51	12.78	15.29	17.40	21.55	24.91	44.89
	:35:00 :40:00	0.00	0.00	9.46 8.88	12.49 11.51	14.85 13.62	21.97 22.50	27.00 27.62	33.16 34.05	57.95 59.11
	:45:00	0.00	0.00	8.04	10.51	12.45	20.82	25.44	32.34	56.26
0	:50:00	0.00	0.00	7.32	9.67	11.36	19.21	23.36	29.79	52.16
	:55:00	0.00	0.00	6.74	8.89	10.46	17.20	20.87	26.92	47.52
	:00:00	0.00	0.00	6.21 5.70	8.15 7.45	9.62 8.82	15.50 14.00	18.77 16.92	24.52 22.49	43.71
	:10:00	0.00	0.00	5.10	6.83	8.12	12.39	14.89	19.57	34.96
	:15:00	0.00	0.00	4.62	6.30	7.67	10.91	13.02	16.81	29.84
	:20:00	0.00	0.00	4.28	5.86	7.20	9.69	11.54	14.51	25.68
	:30:00	0.00	0.00	3.99	5.47 5.11	6.63	8.74 7.83	10.37 9.26	12.71 11.18	22.33 19.46
	:35:00	0.00	0.00	3.48	4.76	5.55	6.99	8.23	9.83	16.91
	:40:00	0.00	0.00	3.23	4.28	5.06	6.21	7.28	8.57	14.55
	:45:00 :50:00	0.00	0.00	2.97 2.73	3.80 3.35	4.58 4.13	5.46 4.75	6.36 5.50	7.37 6.24	12.32 10.25
	:55:00	0.00	0.00	2.73	2.97	3.70	4.73	4.70	5.22	8.39
2	:00:00	0.00	0.00	2.05	2.65	3.31	3.54	4.01	4.32	6.77
	:05:00	0.00	0.00	1.68	2.20	2.75	2.79	3.15	3.33	5.23
	::10:00 ::15:00	0.00	0.00	1.37	1.79	2.25 1.84	2.20 1.75	2.48 1.98	2.58	4.04 3.11
	:20:00	0.00	0.00	0.91	1.19	1.49	1.40	1.58	1.57	2.39
	:25:00	0.00	0.00	0.74	0.96	1.21	1.12	1.26	1.22	1.83
	:30:00	0.00	0.00	0.59	0.78	0.97	0.89	1.00	0.95	1.38
	:35:00	0.00	0.00	0.47	0.62	0.77	0.70 0.55	0.78	0.73 0.56	1.04 0.81
	:45:00	0.00	0.00	0.30	0.38	0.47	0.43	0.47	0.44	0.63
	:50:00	0.00	0.00	0.24	0.30	0.37	0.34	0.37	0.35	0.50
	:55:00	0.00	0.00	0.18	0.23	0.29	0.26	0.29	0.28	0.39
	:05:00	0.00	0.00	0.10	0.17	0.16	0.20	0.22	0.15	0.24
3	:10:00	0.00	0.00	0.06	0.08	0.11	0.10	0.11	0.10	0.14
	:15:00	0.00	0.00	0.04	0.05	0.06	0.06	0.07	0.06	0.08
	:25:00	0.00	0.00	0.02	0.03	0.03	0.03	0.04	0.03	0.04
3	:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	:40:00 :45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	:15:00 :20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	:35:00 :40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	:50:00 :55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	:00:00 :05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	:15:00 :20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	:30:00 :35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	:50:00 :55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MHFD-Detention, Version 4.04 (February 2021)

Watershed Information

Selected BMP Type =	SF	
Watershed Area =	11.23	acres
Watershed Length =	930	ft
Watershed Length to Centroid =	465	ft
Watershed Slope =	0.020	ft/ft
Watershed Imperviousness =	2.00%	percent
Percentage Hydrologic Soil Group A =	100.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	12.0	hours
Location for 1 br Painfall Denths -	Hear Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using

the embedded Colorado Urban Hydrograph Procedure.					
Water Quality Capture Volume (WQCV) =	0.011	acre-feet			
Excess Urban Runoff Volume (EURV) =	0.011	acre-feet			
2-yr Runoff Volume (P1 = 1.19 in.) =	0.006	acre-feet			
5-yr Runoff Volume (P1 = 1.5 in.) =	0.011	acre-feet			
10-yr Runoff Volume (P1 = 1.75 in.) =	0.016	acre-feet			
25-yr Runoff Volume (P1 = 2 in.) =	0.141	acre-feet			
50-yr Runoff Volume (P1 = 2.25 in.) =	0.283	acre-feet			
100-yr Runoff Volume (P1 = 2.52 in.) =	0.478	acre-feet			
500-yr Runoff Volume (P1 = 3.68 in.) =	1.400	acre-feet			
Approximate 2-yr Detention Volume =	0.006	acre-feet			
Approximate 5-yr Detention Volume =	0.008	acre-feet			
Approximate 10-yr Detention Volume =	0.012	acre-feet			
Approximate 25-yr Detention Volume =	0.018	acre-feet			
Approximate 50-yr Detention Volume =	0.044	acre-feet			
Approximate 100-yr Detention Volume =	0.121	acre-feet			

	acre-feet
	acre-feet
1.19	inches
1.50	inches
1.75	inches
2.00	inches
2.25	inches
2.52	inches
3.68	inches
	1.50 1.75 2.00 2.25 2.52

Optional User Overrides

Define Zones and Basin Geometry

Jerine Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.011	acre-fee
Select Zone 2 Storage Volume (Optional) =		acre-fee
Zone 3 Volume (100-year - Zones 1 & 2) =	0.110	acre-fee
Total Detention Basin Volume =	0.121	acre-fee
Initial Surcharge Volume (ISV) =	N/A	ft ³
Initial Surcharge Depth (ISD) =	N/A	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	N/A	ft
Slope of Trickle Channel (S _{TC}) =	N/A	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	Ì

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (LISV) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor (W_{FLOOR}) =		ft
Area of Basin Floor (A_{FLOOR}) =	user	ft ²
Volume of Basin Floor $(V_{FLOOR}) =$	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =		ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-feet

		7							
Depth Increment =	0.20	ft Optional		ı	ı	Optional		1	1
Stage - Storage	Stage	Override	Length	Width	Area (ft 2)	Override	Area	Volume (ft 3)	Volume
Description Media Surface	(ft) 	Stage (ft) 0.00	(ft) 	(ft)		Area (ft 2)	(acre) 0.001	(11)	(ac-ft)
		0.20				979	0.022	101	0.002
		0.40				1,076	0.025	307	0.007
		0.60				1,178	0.027	532	0.012
		0.80				1,284	0.029	778	0.018
		1.00				1,394	0.032	1,046	0.024
		1.20				1,508	0.035	1,336 1,650	0.031
		1.60				1,626 1,748	0.037	1,987	0.038
		1.80				1,874	0.043	2,349	0.054
		2.00	-			2,003	0.046	2,737	0.063
		2.20				2,138	0.049	3,151	0.072
		2.40				2,276	0.052	3,592	0.082
		2.60				2,418 2,564	0.056	4,062 4,560	0.093
		3.00				2,714	0.062	5,087	0.103
		3.20				2,868	0.066	5,646	0.130
		3.40				3,026	0.069	6,235	0.143
		3.60				3,188	0.073	6,856	0.157
		3.80				3,354	0.077	7,511	0.172
		4.00				3,525	0.081	8,199	0.188
			-						
			-						
			-						
			-						
			-						
			-						
			1						
								-	-

MHFD-Detention_v4.04 - Pond A-1.xtm, Basin 12/13/2021, 12:34 PM

MHFD-Detention_v4.04 - Pond A-1.xtm, Basin 12/13/2021, 12:34 PM

MHFD-Detention, Version 4.04 (February 2021)

	Estimated	Estimated	
	Stage (ft)	Volume (ac-ft)	Outlet Type
one 1 (WQCV)	0.57	0.011	Filtration Media
Zone 2			Weir&Pipe (Circular)
e 3 (100-year)	3.08	0.110	
•	Total (all zones)	0.121	

<u>User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)</u>

Underdrain Orifice Invert Depth = 2.00 ft (distance below the filtration media surface) 0.52 Underdrain Orifice Diameter = inches

Underdrain Orifice Area =	0.0	ft ²
Jnderdrain Orifice Centroid =	0.02	feet

Calculated Parameters for Underdrain

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice = N/A ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Orifice Plate = N/A ft (relative to basin bottom at Stage = 0 ft) Orifice Plate: Orifice Vertical Spacing = N/A inches Orifice Plate: Orifice Area per Row = N/A inches

BMP)	Calculated Parame	ters for Plate
WQ Orifice Area per Row =	N/A	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (optional)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	N/A							
Orifice Area (sq. inches)	N/A							

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Orifice Area (sq. inches)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

User Input: Vertical Orifice (Circular or Rectangular)

	Not Selected	Not Selected
Invert of Vertical Orifice =		
Depth at top of Zone using Vertical Orifice =		
Vertical Orifice Diameter =		

ft (relative to basin bottom at Stage = 0 ft)
ft (relative to basin bottom at Stage = 0 ft)
inches

	Calculated Parame	Calculated Parameters for Vertical Orific			
	Not Selected	Not Selected			
Vertical Orifice Area =			ft ²		
rtical Orifice Centroid =			feet		

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculate					ters for Overflow V	Veir
	Zone 2 Weir	Not Selected		Zone 2 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =			ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t =			feet
Overflow Weir Front Edge Length =			feet Overflow Weir Slope Length =			feet
Overflow Weir Grate Slope =			H:V Grate Open Area / 100-yr Orifice Area =			
Horiz. Length of Weir Sides =			feet Overflow Grate Open Area w/o Debris =			ft ²
Overflow Grate Type =			Overflow Grate Open Area w/ Debris =			ft ²
Debris Clogging % =			%			-

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

	Zone 2 Circular	Not Selected	
Depth to Invert of Outlet Pipe =			ft (distance below basin bottom at Stage = 0 ft)
Circular Orifice Diameter =			inches

	Calculated Parameters	for Outlet Pipe w/	Flow Restriction Pl	ate
		Zone 2 Circular	Not Selected	
m at Stage = 0 ft)	Outlet Orifice Area =			ft ²
	Outlet Orifice Centroid =			feet
Half-Central Angle of	of Restrictor Plate on Pipe =	N/A	N/A	radia

radians

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	feet
Spillway End Slopes =	H:V
Freeboard above Max Water Surface =	feet

	Calculated Parame	ters for Spillway
Spillway Design Flow Depth=		feet
Stage at Top of Freeboard =		feet
Basin Area at Top of Freeboard =		acres
Basin Volume at Top of Freeboard =		acre-ft

outed Hydrograph Results	The user can over	ride the default CUI	HP hydrographs and	d runoff volumes by	entering new value	es in the Inflow Hya	lrographs table (Co	lumns W through A	4 <i>F)</i> .
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.68
CUHP Runoff Volume (acre-ft) =	0.011	0.011	0.006	0.011	0.016	0.141	0.283	0.478	1.400
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.006	0.011	0.016	0.141	0.283	0.478	1.400
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.1	0.2	0.2	2.2	4.4	7.2	18.3
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.02	0.02	0.20	0.39	0.64	1.63
Peak Inflow Q (cfs) =	N/A	N/A	0.1	0.2	0.2	2.2	4.4	7.2	18.3
Peak Outflow Q (cfs) =	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.1	0.0	0.0	0.0	0.0	0.0
Structure Controlling Flow =	Filtration Media	Filtration Media	Filtration Media	Filtration Media	Filtration Media	Filtration Media	N/A	N/A	N/A
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	12	12	7	13	17	118	>120	>120	>120
Time to Drain 99% of Inflow Volume (hours) =	12	12	7	13	18	>120	>120	>120	>120
Maximum Ponding Depth (ft) =	0.56	0.56	0.28	0.49	0.66	3.32	4.00	4.00	4.00
Area at Maximum Ponding Depth (acres) =	0.03	0.03	0.02	0.03	0.03	0.07	0.08	0.08	0.08
Maximum Volume Stored (acre-ft) =	0.011	0.011	0.004	0.009	0.014	0.138	0.188	0.188	0.188

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00 0:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:25:00	0.00	0.00	0.05	0.12	0.17	0.03	0.06	0.09	0.28
	0:30:00	0.00	0.00	0.09	0.18	0.24	0.97	2.51	3.80	11.55
	0:35:00	0.00	0.00	0.09	0.17 0.15	0.24	2.11	4.12 4.39	6.68 7.19	16.94 18.27
	0:45:00	0.00	0.00	0.07	0.13	0.18	2.00	3.96	6.76	17.72
	0:50:00	0.00	0.00	0.06	0.11	0.16	1.76	3.49	5.98	16.60
	0:55:00	0.00	0.00	0.05	0.10	0.14	1.54	3.07	5.27	15.15
	1:00:00	0.00	0.00	0.05	0.09	0.12 0.11	1.35 1.19	2.68	4.61	13.80 12.86
	1:10:00	0.00	0.00	0.04	0.07	0.10	1.06	2.10	3.63	11.50
	1:15:00	0.00	0.00	0.03	0.06	0.09	0.94	1.87	3.21	10.17
	1:20:00	0.00	0.00	0.03	0.05	0.08	0.82	1.63	2.81	8.87
	1:30:00	0.00	0.00	0.02	0.04	0.07	0.70	1.39	2.41	7.64 6.43
	1:35:00	0.00	0.00	0.02	0.04	0.05	0.50	0.99	1.71	5.54
	1:40:00	0.00	0.00	0.02	0.03	0.05	0.44	0.88	1.51	4.90
	1:45:00 1:50:00	0.00	0.00	0.02	0.03	0.04	0.40	0.79 0.71	1.36 1.22	4.36 3.87
	1:55:00	0.00	0.00	0.01	0.03	0.04	0.32	0.63	1.09	3.42
	2:00:00	0.00	0.00	0.01	0.02	0.03	0.28	0.55	0.95	2.99
	2:05:00	0.00	0.00	0.01	0.02	0.02	0.24	0.47	0.82	2.57
	2:10:00 2:15:00	0.00	0.00	0.01	0.01	0.02	0.20	0.40	0.68	2.18 1.79
	2:20:00	0.00	0.00	0.00	0.01	0.01	0.10	0.32	0.42	1.40
	2:25:00	0.00	0.00	0.00	0.00	0.01	0.08	0.16	0.29	1.01
	2:30:00	0.00	0.00	0.00	0.00	0.00	0.04	0.08	0.15	0.62
	2:35:00 2:40:00	0.00	0.00	0.00	0.00	0.00	0.02	0.03	0.06	0.35
	2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.13
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08
	2:55:00 3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00 3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00 3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00 4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00 4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00 4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00 4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00 5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00 5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MHFD-Detention, Version 4.04 (February 2021)

acre-feet acre-feet inches

1.50 inches 1.75 inches 2.00 inches

2.25 inches 2.52 inches 3.68 inches

Watershed Information

Selected BMP Type =	SF	
Watershed Area =	1.40	acres
Watershed Length =	625	ft
Watershed Length to Centroid =	400	ft
Watershed Slope =	0.025	ft/ft
Watershed Imperviousness =	100.00%	percent
Percentage Hydrologic Soil Group A =	100.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	12.0	hours
Location for 1 br Painfall Denths -	Hear Innut	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using

the embedded Colorado Urban Hydro	ire.	
Water Quality Capture Volume (WQCV) =	0.047	acre-feet
Excess Urban Runoff Volume (EURV) =	0.196	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.136	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	0.175	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.206	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	0.236	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	0.267	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	0.301	acre-feet
500-yr Runoff Volume (P1 = 3.68 in.) =	0.444	acre-feet
Approximate 2-yr Detention Volume =	0.130	acre-feet
Approximate 5-yr Detention Volume =	0.168	acre-feet
Approximate 10-yr Detention Volume =	0.198	acre-feet
Approximate 25-yr Detention Volume =	0.232	acre-feet
Approximate 50-yr Detention Volume =	0.252	acre-feet
Approximate 100-yr Detention Volume =	0.268	acre-feet

Define Zones and Basin Geometry

Zone 1 Volume (WQCV) =	0.047	acre-feet
Select Zone 2 Storage Volume (Optional) =		acre-fee
Zone 3 Volume (100-year - Zones 1 & 2) =	0.221	acre-fee
Total Detention Basin Volume =	0.268	acre-fee
Initial Surcharge Volume (ISV) =	N/A	ft ³
Initial Surcharge Depth (ISD) =	N/A	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	N/A	ft
Slope of Trickle Channel (S _{TC}) =	N/A	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor (A_{FLOOR}) =	user	ft 2
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =		ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (Vtotal) =	user	acre-fee

		1							
Depth Increment =	0.20	ft Optional		I	I	Optional		1	I
Stage - Storage	Stage	Override	Length	Width	Area (ft 2)	Override	Area (acre)	Volume (ft 3)	Volume (ac-ft)
Description Media Surface	(ft) 	Stage (ft) 0.00	(ft) 	(ft)	(π-)	Area (ft 2)	0.001	(π-)	(ac-rt)
		0.20				979	0.022	101	0.002
		0.40				1,076	0.025	307	0.007
		0.60				1,178	0.027	532	0.012
		0.80				1,284	0.029	778	0.018
		1.00				1,394	0.032	1,046	0.024
		1.20				1,508	0.035	1,336 1,650	0.031
		1.60				1,626 1,748	0.037	1,987	0.038
		1.80				1,874	0.043	2,349	0.054
		2.00	-			2,003	0.046	2,737	0.063
		2.20				2,138	0.049	3,151	0.072
		2.40				2,276	0.052	3,592	0.082
		2.60				2,418 2,564	0.056	4,062 4,560	0.093
		3.00				2,714	0.062	5,087	0.117
		3.20				2,868	0.066	5,646	0.130
		3.40	-			3,026	0.069	6,235	0.143
		3.60				3,188	0.073	6,856	0.157
		3.80				3,354	0.077	7,511	0.172
		4.00				3,525	0.081	8,199	0.188
		4.20 4.40				3,699 3,877	0.085	8,921 9,678	0.205
		4.60				4,060	0.093	10,472	0.222
		4.80				4,246	0.097	11,303	0.259
		5.00				4,436	0.102	12,171	0.279
			-						
			-						
			-						
									-
									
			-						
									-
			1 1						
			Ŧ						
									-
			-						
			-						
			-						
			-						
									<u> </u>
			-						
									-

MHFD-Detention_v4.04 - Pond REX RD.xism, Basin 12/8/2021, 5:06 PM

MHFD-Detention_v4.04 - Pond REX RD.xism, Basin 12/8/2021, 5:06 PM

MHFD-Detention, Version 4.04 (February 2021)

User Input: Orifice at Underdrain Outlet (typically used to drain WOCV in a Filtration BMP)

Underdrain Orifice Invert Depth = 2.50 | ft (distance below the filtration media surface) | Underdrain Orifice Area = 0.0 | ft²

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate WQ Orifice Area per Row Invert of Lowest Orifice : N/A ft (relative to basin bottom at Stage = 0 ft) N/A Depth at top of Zone using Orifice Plate N/A ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width N/A Orifice Plate: Orifice Vertical Spacing N/A inches Elliptical Slot Centroid N/A feet Elliptical Slot Area Orifice Plate: Orifice Area per Row N/A inches N/A

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (optional)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	N/A							
Orifice Area (sq. inches)	N/A							
•								

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Orifice Area (sq. inches)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifice Not Selected Not Selected Not Selected Not Selected Invert of Vertical Orifice N/A N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area N/A N/A Depth at top of Zone using Vertical Orifice ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid : N/A N/A N/A Vertical Orifice Diameter = N/A inches

User Input: Overflow Weir (Dropbox with Flat or	Calculated Parameters for Overflow Weir					
	Zone 2 Weir	Zone 3 Weir		Zone 2 Weir	Zone 3 Weir	1
Overflow Weir Front Edge Height, Ho =	4.80	0.00	ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t =	4.80		feet
Overflow Weir Front Edge Length =	3.00		feet Overflow Weir Slope Length =	3.00		feet
Overflow Weir Grate Slope =	0.00		H:V Grate Open Area / 100-yr Orifice Area =	3.54		
Horiz. Length of Weir Sides =	3.00		feet Overflow Grate Open Area w/o Debris =	6.26		ft ²
Overflow Grate Type =	Type C Grate		Overflow Grate Open Area w/ Debris =	3.13		ft ²
Debris Clogging % =	50%		%	•		-

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate

	Zone 2 Circular	Zone 3 Restrictor			Zone 2 Circular	Zone 3 Restrictor	
Depth to Invert of Outlet Pipe =	2.50		ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	1.77		ft ²
Circular Orifice Diameter or Pipe Diameter =	18.00		inches	Outlet Orifice Centroid =	0.75		feet
Restrictor Plate Height Above Pipe Invert =		4.00	inches Half-Central Angle	of Restrictor Plate on Pipe =	N/A		radians

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Calculated Parameters for Spillway

Spillway Invert Stage=	5.00	ft (relative to basin bottom at Stage = 0 ft)	Spillway Design Flow Depth=	0.50	feet
Spillway Crest Length =	2.10	feet	Stage at Top of Freeboard =	6.50	feet
Spillway End Slopes =	4.00	H:V	Basin Area at Top of Freeboard =	0.10	acres
Freeboard above Max Water Surface =	1.00	feet	Basin Volume at Top of Freeboard =	0.28	acre-ft

Routed Hydrograph Results	The user can ever	rido the default CLII	UP hydrographs and	d rupoff volumos b	ontoring now valu	os in the Inflow Uv	drographs table (Co	olumns W through A	E)
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.68
CUHP Runoff Volume (acre-ft) =	0.047	0.196	0.136	0.175	0.206	0.236	0.267	0.301	0.444
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.136	0.175	0.206	0.236	0.267	0.301	0.444
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.0	0.0	0.0	0.2	0.3	0.5	1.4
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.00	0.01	0.01	0.11	0.22	0.36	0.97
Peak Inflow Q (cfs) =	N/A	N/A	1.8	2.3	2.6	3.1	3.5	4.0	5.9
Peak Outflow Q (cfs) =	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.5	1.8
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	5.4	4.0	0.4	0.2	1.1	1.3
Structure Controlling Flow =	Filtration Media	Filtration Media	Filtration Media	Filtration Media	Filtration Media	Filtration Media	Filtration Media	Overflow Weir 1	N/A
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.1	0.3
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	12	41	30	37	43	48	53	54	53
Time to Drain 99% of Inflow Volume (hours) =	12	42	31	38	44	49	55	56	55
Maximum Ponding Depth (ft) =	1.64	4.10	3.12	3.66	4.05	4.41	4.74	4.88	5.00
Area at Maximum Ponding Depth (acres) =	0.04	0.08	0.06	0.07	0.08	0.09	0.10	0.10	0.10
Maximum Volume Stored (acre-ft) =	0.047	0.196	0.124	0.162	0.192	0.222	0 ,2 53	0.267	0.279

needs to be reduced

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.14
	0:20:00	0.00	0.00	0.22	1.01	1.18	0.74	0.86	0.92	1.44
	0:25:00	0.00	0.00	1.56	1.99	2.33	1.54	1.75	1.85	2.78
	0:30:00	0.00	0.00	1.82	2.27	2.60	2.81	3.18	3.47	5.13
	0:35:00	0.00	0.00	1.71 1.57	2.12 1.92	2.41	3.09	3.49	3.99	5.88 5.70
	0:45:00	0.00	0.00	1.39	1.72	1.98	2.75	3.10	3.62	5.32
	0:50:00	0.00	0.00	1.23	1.56	1.77	2.53	2.86	3.33	4.88
	0:55:00	0.00	0.00	1.09	1.38	1.58	2.25	2.54	3.00	4.40
ŀ	1:00:00	0.00	0.00	0.97	1.23	1.43	1.99 1.78	2.24	2.71	3.98
	1:10:00	0.00	0.00	0.81	1.07	1.26	1.59	1.79	2.16	3.16
	1:15:00	0.00	0.00	0.72	0.98	1.19	1.44	1.62	1.90	2.78
	1:20:00	0.00	0.00	0.65	0.88	1.09	1.27	1.43	1.62	2.37
ŀ	1:30:00	0.00	0.00	0.58 0.51	0.79	0.95	1.11 0.95	1.25	1.37 1.15	2.01 1.69
	1:35:00	0.00	0.00	0.45	0.63	0.72	0.80	0.90	0.96	1.40
	1:40:00	0.00	0.00	0.42	0.55	0.66	0.68	0.76	0.80	1.17
}	1:45:00	0.00	0.00	0.40	0.50 0.46	0.61	0.60 0.54	0.67 0.61	0.68	1.00 0.90
ŀ	1:55:00	0.00	0.00	0.35	0.48	0.56	0.54	0.61	0.57	0.90
	2:00:00	0.00	0.00	0.31	0.40	0.51	0.49	0.55	0.53	0.78
	2:05:00	0.00	0.00	0.24	0.32	0.41	0.38	0.43	0.42	0.61
	2:10:00 2:15:00	0.00	0.00	0.19 0.15	0.25	0.32	0.30	0.33	0.32	0.47
	2:20:00	0.00	0.00	0.13	0.19	0.23	0.23	0.20	0.24	0.30
	2:25:00	0.00	0.00	0.09	0.11	0.14	0.13	0.15	0.14	0.21
	2:30:00	0.00	0.00	0.07	0.08	0.11	0.10	0.11	0.11	0.16
	2:35:00	0.00	0.00	0.05	0.06	0.08	0.07	0.08	0.08	0.12
	2:45:00	0.00	0.00	0.03	0.03	0.04	0.04	0.05	0.05	0.07
	2:50:00	0.00	0.00	0.02	0.02	0.03	0.03	0.03	0.03	0.05
ŀ	2:55:00 3:00:00	0.00	0.00	0.01	0.01	0.02	0.02	0.02	0.02	0.03
	3:05:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	3:20:00 3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00 3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00 4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:20:00 4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00 4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:50:00 4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:20:00 5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00 5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ľ	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

APPENDIX F Drainage Maps

RU	NOFF S TAI			IGN PO IARY T		
Basin	Area	Q_5	Q ₁₀₀	Design	Q ₅	Q ₁₀₀
ID	(acres)	(cfs)	(cfs)	Point	(cfs)	(cfs)
EX-1	105.72	22.3	159.1	1	89.3	572.1
EX-2	57.68	13.1	93.4	2	72.1	373.4
EX-3	23.35	6.8	48.4	3	6.8	48.4

6162 S. Willow Drive, Suite 320 Greenwood Village, CO 80111 303.770.8884 GallowayUS.com

COPYRIGHT THESE PLANS ARE AN INSTRUMENT OF SERVICE AND ARE THE PROPERTY OF GALLOWAY, AND MAY NOT BE DUPLICATED, DISCLOSED, OR REPRODUCED WITHOUT THE WRITTEN CONSENT OF GALLOWAY. COPYRIGHTS AND INFRINGEMENTS WILL BE ENFORCED AND PROSECUTED.

PRELIMINARY DRAINAGE P GRANDVIEW RESERVE FOR HR GREEN, INC

EXISTING DRAINAGE MAP

EX-1

AND ARE THE PROPERTY OF GALLOWAY, AND MAY

1155 Kelly Johnson Blvd., Suite 305 Colorado Springs, CO 80920 719.900.7220 GallowayUS.com

COPYRIGHT

THESE PLANS ARE AN INSTRUMENT OF SERVICE AND ARE THE PROPERTY OF GALLOWAY, AND MAY NOT BE DUPLICATED, DISCLOSED, OR REPRODUCED WITHOUT THE WRITTEN CONSENT OF GALLOWAY. COPYRIGHTS AND INFRINGEMENTS WILL BE ENFORCED AND PROSECUTED.

PRELIMINARY DRAINAGE PLANGRANDVIEW RESERVE FILINGFOR HR GREEN, INC

-	

WOMAD	
Date:	12/10/2021
Checked By:	GRD
Drawn By:	NJA
Project No:	HRG 1.20

WQ MAP