Table 1. Areas, Lengths, and Elevation Changes from Site MapSchubert Ranch Sand Resource Pit Phase IFinal Drainage Report

		evision:	1/31/2024																	
Design Point Number	Basin Designation	Area (ft²)	Area (acres)	Area (mi ^ź)	Flow Length, L (ft)	Flow Length, L (mi)	Length of Overland Flow, L(OL) (ft)	Length of Concentrated Flow, L(P) (ft)	Top Elevation (ft)	Bottom Elevation (ft)	Change in elevation, H (ft)	Overall Slope, S = H/L (ft/ft)	Overland Flow Top Elevation (ft)	Overland Flow Bottom Elevation (ft)	Overland Change in elevation, H (ft)	Overland Flow Slope, S = H/L (ft/ft)	Concentrated Flow Top Elevation (ft)	Concentrated Flow Bottom Elevation (ft	Concentrated Change in elevation, H (f	Concentrated Flow Slope, S = H/L (ft/ft
																		•		•
1	Existing 1	2,319,035	53.24	0.0832	2,529	0.48	500	2029	5874.0	5848.0	26.0	0.0103	5874.0	5869.0	5.0	0.0100	5869.0	5848.0	21.0	0.0103
	Basin OFF-1 is the	e same for Ex	kisting ar	nd Propos	ed Condit	tions.	See t	he calc	culation b	below										
PROP	OSED CONDITION	is .																		
1	Basin 1	2,319,035	53.24	0.0832	2,529	0.48	320	2209	5874.0	5790.0	84.0	0.0332	5874.0	5810.0	64.0	0.2000	5810.0	5790.0	20.0	0.0091
OFF-1	Basin OFF-1	16,420,861	376.97	0.5890	11,159	2.11	2000	9159	5965.0	5870.0	95.0	0.0085	5965.0	5948.0	17.0	0.0085	5948.0	5870.0	78.0	0.0085

The Site is evaluated as one basin. Basin 1 flows to the pit. There is a portion of the Site along the eastern edge that currently drains directly to Black Squirrel Creek. See the site plan. This drainage pattern will not change. Water quality at this location will be protected by the installation of silt fence as needed.

Note: If no large slope difference between overland flow area and concentrated flow area, use overall slope value only. Source: Site AutoCAD drawings

Table 2. Percent Impervious Calculations and Rational Method "C" CalculationsSchubert Ranch Sand Resource Pit Phase IFinal Drainage Report

		Calculated by:	: John Jank	ousky	Revision: 1/31/2024										
	Soil Hydrologic Group		А												
	Land Use	% Imp.	C2	C5	C10	C100									
	Greenbelt, Agriculture	2	0.03	0.09	0.17	0.36									
	Residential, One Acre	20	0.12	0.20	0.27	0.44									
	Railroad Yard Area	40	0.23	0.30	0.36	0.50									
	Street, Gravel	80	0.57	0.59	0.63	0.70									
	Light Industrial	80	0.57	0.59	0.63	0.70									
	Building/Roof Area	90	0.73	0.75	0.77	0.81									
	Pavement Area	100	0.84	0.86	0.87	0.89									
	Source: City of Colorad	lo Springs Dra	inage Crite	ria Manual. Ma	ay 2014. Rev	rised Janu	ary 2021. \	/olume 1	. Table	6-6.					
Design Point	Basin Designation	Total Area (ft²)	Total Area (acres)	Greenbelt, Agriculture (ft²)	Residential, One Acre (ft ²)	Railroad Yard Area (ft ²)	Street, Gravel (ft²)	Light Industrial Area (f ²)	Building/Roof Area (ft²)	Pavement Area (ft²)	Combined % Impervious	Combined C2	Combined C5	Combined C10	Combined C100
EXISTIN	G CONDITIONS (HIST	ORIC, PRIOR	TO DEVEL	OPMENT)											
1	Existing 1	2,319,035	53.24	2,319,035							2.00	0.03	0.09	0.17	0.36
	Basin OFF-1 is the san	ne for Existing	and Propos	sed Conditions	. See the ca	liculation I	below								
				NEATION											
PROPOS		ER PROJECT							0		0.00	0.00	0.00	0.17	0.00
	Basin 1	2,319,035	53.24	2,319,035	5 004 040		455.040		0	0	2.00	0.03	0.09	0.17	0.36
OFF-1	Basin OFF-1	16,420,861	376.97	10,664,806	5,601,043		155,012				8.88	0.07	0.13	0.21	0.39

Lond Line on Curford	Deveent	Runoff Coefficients												
Characteristics	Impervious	2-у	ear	5-у	ear	10-y	/ear	25-	/ear	50-1	year	100-	year	
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	
Business														
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89	
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68	
Residential														
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65	
1/4 Acre	40	0.73	0.15	0.10	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58	
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57	
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56	
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55	
Industrial														
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74	
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83	
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52	
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54	
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58	
Undeveloped Areas														
Historic Flow Analysis														
Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0 17	0.26	0.26	0.38	0 31	0.45	0.36	0.51	
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50	
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50	
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96	
Offsite Flow Analysis (when														
landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59	
Streets														
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96	
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74	
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96	
Roots	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83	
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50	

Table 6-6. Runoff Coefficients for Rational Method(Source: UDFCD 2001)

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For non-urban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

Table 3. Time of Concentration Schubert Ranch Sand Resource Pit Phase I Final Drainage Report

				Calculate	d by: Joh	n Jankous	sky		Revision:	1/31/2024						
	Sub-Ba	asin Data		Initial O	verland T	ïme (t₀)		Т	ravel Time	e (t _t)		$t_c = t_i + t_t$	tc Check (urbanized)	Final t _c	Remarks
Number	Designation	Area, Ac	C5	Overlan d Flow Length, Ft.	Slope, %	t _o , min*	Concen- trated Flow Length, Ft.	Slope, %	K Conveya nce Factor	Velocity, FPS **	t _t , min	Comp. t _c , min	Total Length, Ft.	t _c = (L/180) +10, min	Final t _c , min	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		(9)	(10)	(11)	(12)	(13)	(14)	
EXISTI	NG CONDITION	<u>S (HISTC</u>	RIC, PR	IOR TO D	DEVELOP	MENT)										
1	Existing 1	53.24	0.09	500	1.00	41.3	2029	1.03	10.00	10.2	3.3	44.7	2529	24.1	44.7	
	Basin OFF-1 is	the same	for Exist	ting and P	roposed (Conditions	s. See the	calculatio	n below							
PROPC	DSED CONDITIC	NS AFTE	ER PHAS	SE I IMPLE	EMENTA	TION										
1	Basin 1	53.24	0.09	320	20.00	12.2	2209	0.91	10.00	9.5	3.9	16.1	2529	24.1	16.1	
OFF-1	Basin OFF-1	376.97	0.13	2000	0.85	83.8	9159	0.85	10.00	9.2	16.5	100.3	11159	72.0	100.3	

* Calculated using formula: $t_i = (0.395 * (1.1 - C5) * L^{0.5}) / (S^{0.333})$ (Urban Drainage Manual, Equation 6-3)

Where:

 t_i = overland (initial) flow time (minutes)

 C_5 = runoff coefficient for 5-year frequency (from Table 6-4)

 L_i = length of overland flow (ft)

 S_o = average slope along the overland flow path (ft/ft).

** For travel time velocity, channelized flow time equation 6-4: tt = Lt /60Vt

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 8, Version 2 Location name: Calhan, Colorado, USA* Latitude: 38.797°, Longitude: -104.3569° Elevation: 5851 ft** * source: ESRI Maps ** source: USGS

"" source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹														
Duration	Average recurrence interval (years)													
Duration	1	2	5	10	25	50	100	200	500	1000				
5-min	0.243	0.297	0.392	0.476	0.601	0.703	0.811	0.926	1.09	1.22				
	(0.194-0.307)	(0.238-0.377)	(0.312-0.498)	(0.378-0.607)	(0.464-0.798)	(0.529-0.942)	(0.591-1.11)	(0.648-1.30)	(0.732-1.56)	(0.796-1.76)				
10-min	0.355	0.435	0.574	0.697	0.879	1.03	1.19	1.36	1.59	1.78				
	(0.284-0.450)	(0.348-0.551)	(0.458-0.729)	(0.553-0.889)	(0.679-1.17)	(0.775-1.38)	(0.865-1.63)	(0.949-1.90)	(1.07-2.28)	(1.16-2.58)				
15-min	0.433	0.530	0.700	0.850	1.07	1.26	1.45	1.65	1.94	2.17				
	(0.347-0.549)	(0.424-0.672)	(0.558-0.889)	(0.674-1.08)	(0.829-1.42)	(0.945-1.68)	(1.06-1.98)	(1.16-2.32)	(1.31-2.79)	(1.42-3.14)				
30-min	0.656	0.801	1.05	1.28	1.61	1.88	2.17	2.48	2.92	3.26				
	(0.525-0.831)	(0.640-1.02)	(0.840-1.34)	(1.01-1.63)	(1.24-2.14)	(1.42-2.53)	(1.58-2.98)	(1.74-3.48)	(1.96-4.18)	(2.13-4.72)				
60-min	0.834	1.03	1.37	1.67	2.11	2.47	2.85	3.26	3.82	4.26				
	(0.668-1.06)	(0.825-1.31)	(1.09-1.74)	(1.33-2.13)	(1.63-2.81)	(1.86-3.32)	(2.08-3.90)	(2.28-4.56)	(2.57-5.47)	(2.79-6.16)				
2-hr	1.01	1.26	1.69	2.07	2.62	3.06	3.53	4.03	4.72	5.26				
	(0.815-1.27)	(1.02-1.59)	(1.36-2.14)	(1.65-2.62)	(2.03-3.45)	(2.32-4.08)	(2.59-4.80)	(2.83-5.60)	(3.19-6.71)	(3.47-7.56)				
3-hr	1.08	1.35	1.83	2.24	2.84	3.33	3.84	4.37	5.11	5.70				
	(0.870-1.35)	(1.09-1.70)	(1.47-2.30)	(1.79-2.83)	(2.21-3.73)	(2.53-4.41)	(2.82-5.19)	(3.08-6.05)	(3.48-7.24)	(3.77-8.15)				
6-hr	1.24	1.48	1.92	2.33	2.93	3.45	4.00	4.59	5.44	6.12				
	(1.00-1.54)	(1.20-1.85)	(1.56-2.40)	(1.87-2.92)	(2.31-3.85)	(2.64-4.56)	(2.96-5.40)	(3.27-6.34)	(3.74-7.69)	(4.08-8.70)				
12-hr	1.35	1.59	2.02	2.42	3.04	3.56	4.12	4.73	5.60	6.31				
	(1.10-1.67)	(1.30-1.97)	(1.64-2.51)	(1.96-3.02)	(2.41-3.96)	(2.75-4.68)	(3.08-5.53)	(3.40-6.50)	(3.88-7.87)	(4.24-8.91)				
24-hr	1.44	1.69	2.14	2.56	3.20	3.75	4.34	4.98	5.90	6.65				
	(1.18-1.77)	(1.39-2.08)	(1.75-2.64)	(2.08-3.17)	(2.56-4.15)	(2.91-4.90)	(3.26-5.78)	(3.60-6.79)	(4.11-8.23)	(4.50-9.32)				
2-day	1.60	1.85	2.30	2.73	3.39	3.96	4.58	5.26	6.23	7.03				
	(1.32-1.96)	(1.52-2.26)	(1.89-2.82)	(2.23-3.36)	(2.73-4.37)	(3.10-5.14)	(3.47-6.07)	(3.83-7.13)	(4.38-8.64)	(4.80-9.79)				
3-day	1.74	2.03	2.54	3.02	3.73	4.33	4.98	5.68	6.68	7.49				
	(1.44-2.12)	(1.68-2.47)	(2.10-3.10)	(2.47-3.69)	(3.00-4.77)	(3.40-5.59)	(3.78-6.56)	(4.15-7.65)	(4.71-9.21)	(5.13.10.4)				
4-day	1.88	2.20	2.76	3.27	4.02	4.66	5.33	6.05	7.07	7.89				
	(1.56-2.28)	(1.82-2.67)	(2.28-3.36)	(2.69-3.99)	(3.24-5.12)	(3.66-5.98)	(4.05-6.98)	(4.43-8.12)	(5.00-9.71)	(5.42-10.9)				
7-day	2.26	2.62	3.25	3.81	4.64	5.33	6.05	6.83	7.92	8.80				
	(1.89-2.73)	(2.18-3.16)	(2.70-3.93)	(3.15-4.63)	(3.75-5.86)	(4.20-6.79)	(4.63-7.88)	(5.03-9.10)	(5.63-10.8)	(6.09-12.1)				
10-day	2.57	2.97	3.66	4.28	5.17	5.91	6.68	7.51	8.66	9.57				
	(2.15-3.09)	(2.48-3.58)	(3.05-4.42)	(3.54-5.17)	(4.18-6.50)	(4.67-7.49)	(5.12-8.66)	(5.54-9.96)	(6.17-11.8)	(6.65-13.1)				
20-day	3.33	3.90	4.85	5.65	6.77	7.66	8.55	9.47	10.7	11.7				
	(2.80-3.97)	(3.28-4.66)	(4.06-5.81)	(4.71-6.79)	(5.48-8.38)	(6.07-9.59)	(6.58-10.9)	(7.02-12.4)	(7.68-14.4)	(8.17-15.9)				
30-day	3.98	4.68	5.81	6.74	8.01	8.98	9.94	10.9	12.2	13.1				
	(3.36-4.73)	(3.94-5.56)	(4.88-6.92)	(5.63-8.06)	(6.48-9.83)	(7.13-11.2)	(7.67-12.6)	(8.12-14.2)	(8.76-16.3)	(9.24-17.8)				
45-day	4.88	5.69	6.98	8.02	9.42	10.5	11.5	12.5	13.7	14.7				
	(4.13-5.78)	(4.81-6.74)	(5.88-8.29)	(6.73-9.56)	(7.64-11.5)	(8.32-12.9)	(8.86-14.5)	(9.30-16.1)	(9.90-18.2)	(10.4-19.8)				
60-day	5.72 (4.84-6.75)	6.58 (5.57-7.77)	7.95 (6.72-9.42)	9.05 (7.60-10.8)	10.5 (8.52-12.7)	11.6 (9.22-14.2)	12.6 (9.75-15.8)	13.6 (10.2-17.5)	14.8 (10.7-19.6)	15.7 (11.2-21.2)				

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Page A-5

Precipitation depth (in)

10

8

6

4

2

0

2-hr 3-hr

NOAA Atlas 14, Volume 8, Version 2

Created (GMT): Mon Jun 12 21:09:11 2023

Back to Top

Maps & aerials

Small scale terrain

Large scale terrain

Large scale aerial

Precipitation Frequency Data Server

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

Rainfall Amounts and Rainfall Intensity from NOAA Atlas

Ellicott Sand Phase 1 Latitude Longitude 38.79701 -104.356873

		Rai	Infall From No	JAA Atlas										
	One-hour													
	Rainfall	1												
	(inches)			Duration (m	ninutes)									
	5 10 15 30 60													
2-year														
5-year	1.37	0.39	0.57	0.70	1.05	1.37	1.69							
10-year														
50-year														
100-year	2.85	0.81	1.19	1.45	2.17	2.85	3.53							

Rainfall Amount												
Minutes 5-year 100-year												
5		0.39	0.81									
10		0.57	1.19									
15		0.70	1.45									
30		1.05	2.17									
60		1.37	2.85									
120		1.69	3.53									

Rainfall Intensity (inches/hour)										
Minutes	5-year	100-year								
5	4.70	9.73								
10	3.44	7.14								
15	2.80	5.80								
30	2.10	4.34								
60	1.37	2.85								
120	0.85	1.77								

Rainfall Amounts (inches)

Page A-10

Standard Form SF-2 Table 4. Rational Method Procedure -- 5-year Design Storm Schubert Ranch Sand Resource Pit Phase I

Calculated by: John Jankousky Revision: 1/31/2024

DESIGN STORM: 5-YR PROPOSED FLOWS

	DIRECT RUNOFF								TOTAL RUNOFF					SWAL	.E	PIPE			TRAV	EL TIM	E	
	Street	Design Point	Area Designation	Area (ac)	Runoff Coeff., C	tc (min)	C*A (AC)	Intensity, I (in/hr)	Q (cfs)	t _c (min)	sum(C*A) (AC)	Intensity, I (in/hr)	Q (cfs)	Slope (%)	Swale Flow (cfs)	Design Flow (cfs)	Slope (%)	Pipe Size (in)	Length (ft)	Veloctiy (fps)	t _t (min)	REMARKS
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
HIS	TORIC (CONDIT	IONS (PRE-DEV	/ELOPM	ENT)																	
1		1	Existing 1	53.24	0.09	44.7	4.79	1.70	8.1													
PR	OPOSED	COND	TIONS AFTER	PROJEC	T IMP		NTATIC	<mark>N</mark>														
1		1	Basin 1	53.24	0.09	16.1	4.79	2.70	12.9													
2		OFF-1	Basin OFF-1	376.97	0.13	100.3	49.9	0.92	45.9													
1											1						1	1				

Standard Form SF-2 Table 5. Rational Method Procedure -- 100-year Design Storm Schubert Ranch Sand Resource Pit Phase I

Calculated by: John Jankousky Revision: 1/31/2024

DESIGN STORM: 100-YR PROPOSED FLOWS

			DIRECT RUNO)FF						TOTA	L RUN	OFF		SWAL	.E	PIPE TRAVEL TIME						
	Street	Design Point	Area Designation	Area (ac)	Runoff Coeff., C	tc (min)	C*A (AC)	Intensity, I (in/hr)	Q (cfs)	t _c (min)	sum(C*A) (AC)	Intensity, I (in/hr)	Q (cfs)	Slope (%)	Swale Flow (cfs)	Design Flow (cfs)	Slope (%)	Pipe Size (in)	Length (ft)	Veloctiy (fps)	t _t (min)	REMARKS
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
HIS	TORIC (CONDIT	ONS (PRE-DEV	/ELOPME	ENT)																	
1		1	Existing 1	53.24	0.36	44.7	19.2	3.30	63.2													
PR	OPOSED	COND	TIONS AFTER	PROJEC	T IMPL	EMEN	ΤΑΤΙΟ	N														
1		1	Basin 1	53.24	0.36	16.1	19.2	5.00	95.8													
2		OFF-1	Basin OFF-1	376.97	0.39	100.3	147	1.15	169.3													

Table 6. Required Cross-Sectional Areas for Channel Flow Schubert Ranch Sand Resource Pit Phase I

Designer: John Jankousky Revision: 1/31/2024

Description	Shallow channel flow, Basin 1	Shallow channel flow, Basin 1
Flows Collected in Channel	Basin 1	Basin 1
Length of Channel (ft)	2209	2209
Change in Elevation (ft)	20.00	20.00
Slope, S (ft/ft)	0.0091	0.0091
Roughness Factor, n (dimension-		
less), for sandy swale	0.0180	0.0180
FLOW IN SMALL CHANNEL WEST OF	BUILDING IN BASIN 1	
Design Storm	5 year, 24 hour	100 year, 24 hour
Required Peak Flow (cfs)	12.94	95.83
Manning Formula Peak Flow (cfs)	13.24	98.31
Left Side Slope factor, Z (Z:1)	50.00	50.00
Right Side Slope factor, Z (Z:1)	50.00	50.00
Cross-sectional Area, A (ft ²)	5.6	25.0
Wetted Perimeter, P (ft)	34.0	71.0
Hydraulic Radius, R (ft²/ft)	0.16	0.35
Slope, S (ft/ft)	0.009	0.009
Flow Depth, Y (ft)	0.28	0.65
Top Width, T (ft), without freeboard	34.0	71.0
Bottom Width, W (ft)	6	6
Flow Velocity, V (fps)	2.4	3.9
Hydraulic Mean Depth, D	0.16	0.35
Froude Number, F	1.03	1.17
Subcritical/Supercritical	Supercritical	Supercritical

Source for Manning's n: Chow, 1959. 4. Excavated or Dredged Channels, a. Earth, straight, and uniform, 1. clean, recently completed

Note: this is flow in a large mine pit, no freeboard needed		
Total depth (ft) =	0.28	0.65
Top Width, T (ft)	34.00	71.00

Equations: Slope, S = Change in Elevation / Length of Channel Area, A = Z x Y² + Y x W Wetted Perimeter, P = 2 x Y x $(1 + Z^2)^{0.5}$ + W Hydraulic Radius, R = A / P Top Width, T = 2 x Z x Y + W Flow, Q = $(1.49 x A x R^{0.667} x S^{0.5}) / n$ Flow Velocity, V = Q / A Bottom Width, W = initial assumption Height, Y = trial and error input Hydraulic Mean Depth, D = A / T Froude Number, F = V / (g x D)^{0.5} where: g = gravity acceleration = 32.2 ft/sec²

Show

Manning's n Values

Reference tables for Manning's n values for Channels, Closed Conduits Flowing Partially Full, and Corrugated Metal Pipes.

Manning's n for Channels (Chow, 1959).

Type of Channel and Description	Minimum	Normal	Maximum
Natural streams - minor streams (top width at floodstage <	< 100 ft)	• •	
1. Main Channels			
a. clean, straight, full stage, no rifts or deep pools	0.025	0.030	0.033
b. same as above, but more stones and weeds	0.030	0.035	0.040
c. clean, winding, some pools and shoals	0.033	0.040	0.045
d. same as above, but some weeds and stones	0.035	0.045	0.050
e. same as above, lower stages, more ineffective slopes and sections	0.040	0.048	0.055
f. same as "d" with more stones	0.045	0.050	0.060
g. sluggish reaches, weedy, deep pools	0.050	0.070	0.080
h. very weedy reaches, deep pools, or floodways with heavy stand of timber and underbrush	0.075	0.100	0.150
2. Mountain streams, no vegetation in channel, banks banks submerged at high stages	usually steep,	trees and	brush along
a. bottom: gravels, cobbles, and few boulders	0.030	0.040	0.050
b. bottom: cobbles with large boulders	0.040	0.050	0.070
3. Floodplains			
a. Pasture, no brush			
1.short grass	0.025	0.030	0.035
2. high grass	0.030	0.035	0.050
b. Cultivated areas			
1. no crop	0.020	0.030	0.040
2. mature row crops	0.025	0.035	0.045
3. mature field crops	0.030	0.040	0.050
c. Brush			
1. scattered brush, heavy weeds	0.035	0.050	0.070
2. light brush and trees, in winter	0.035	0.050	0.060
3. light brush and trees, in summer	0.040	0.060	0.080
4. medium to dense brush, in winter	0.045	0.070	0.110
5. medium to dense brush, in summer	0.070	0.100	0.160
d. Trees			
1. dense willows, summer, straight	0.110	0.150	0.200

2. cleared land with tree stumps, no sprouts	0.030	0.040	0.050
3. same as above, but with heavy growth of sprouts	0.050	0.060	0.080
4. heavy stand of timber, a few down trees, little undergrowth, flood stage below branches	0.080	0.100	0.120
5. same as 4. with flood stage reaching branches	0.100	0.120	0.160
4. Excavated or Dredged Channels			
a. Earth, straight, and uniform			
1. clean, recently completed	0.016	0.018	0.020
2. clean, after weathering	0.018	0.022	0.025
3. gravel, uniform section, clean	0.022	0.025	0.030
4. with short grass, few weeds	0.022	0.027	0.033
b. Earth winding and sluggish			
1. no vegetation	0.023	0.025	0.030
2. grass, some weeds	0.025	0.030	0.033
3. dense weeds or aquatic plants in deep channels	0.030	0.035	0.040
4. earth bottom and rubble sides	0.028	0.030	0.035
5. stony bottom and weedy banks	0.025	0.035	0.040
6. cobble bottom and clean sides	0.030	0.040	0.050
c. Dragline-excavated or dredged			
1. no vegetation	0.025	0.028	0.033
2. light brush on banks	0.035	0.050	0.060
d. Rock cuts			
1. smooth and uniform	0.025	0.035	0.040
2. jagged and irregular	0.035	0.040	0.050
e. Channels not maintained, weeds and brush uncut			
1. dense weeds, high as flow depth	0.050	0.080	0.120
2. clean bottom, brush on sides	0.040	0.050	0.080
3. same as above, highest stage of flow	0.045	0.070	0.110
4. dense brush, high stage	0.080	0.100	0.140
5. Lined or Constructed Channels			
a. Cement			
1. neat surface	0.010	0.011	0.013
2. mortar	0.011	0.013	0.015
b. Wood			
1. planed, untreated	0.010	0.012	0.014
2. planed, creosoted	0.011	0.012	0.015
3. unplaned	0.011	0.013	0.015
4. plank with battens	0.012	0.015	0.018
5. lined with roofing paper	0.010	0.014	0.017
c. Concrete			
1. trowel finish	0.011	0.013	0.015

2. float finish	0.013	0.015	0.016
3. finished, with gravel on bottom	0.015	0.017	0.020
4. unfinished	0.014	0.017	0.020
5. gunite, good section	0.016	0.019	0.023
6. gunite, wavy section	0.018	0.022	0.025
7. on good excavated rock	0.017	0.020	
8. on irregular excavated rock	0.022	0.027	
d. Concrete bottom float finish with sides of:			
1. dressed stone in mortar	0.015	0.017	0.020
2. random stone in mortar	0.017	0.020	0.024
3. cement rubble masonry, plastered	0.016	0.020	0.024
4. cement rubble masonry	0.020	0.025	0.030
5. dry rubble or riprap	0.020	0.030	0.035
e. Gravel bottom with sides of:			
1. formed concrete	0.017	0.020	0.025
2. random stone mortar	0.020	0.023	0.026
3. dry rubble or riprap	0.023	0.033	0.036
f. Brick			
1. glazed	0.011	0.013	0.015
2. in cement mortar	0.012	0.015	0.018
g. Masonry			
1. cemented rubble	0.017	0.025	0.030
2. dry rubble	0.023	0.032	0.035
h. Dressed ashlar/stone paving	0.013	0.015	0.017
i. Asphalt			
1. smooth	0.013	0.013	
2. rough	0.016	0.016	
j. Vegetal lining	0.030		0.500

Manning's n for Closed Conduits Flowing Partly Full (Chow, 1959).

J	5 5	\ -	,,
Type of Conduit and Description	Minimum	Normal	Maximum
1. Brass, smooth:	0.009	0.010	0.013
2. Steel:			
Lockbar and welded	0.010	0.012	0.014
Riveted and spiral	0.013	0.016	0.017
3. Cast Iron:			
Coated	0.010 0.013		0.014
Uncoated	0.011	0.014	0.016
4. Wrought Iron:			
Black	0.012	0.014	0.015
Galvanized	0.013	0.016	0.017
5. Corrugated Metal:			
Subdrain	0.017	0.019	0.021
Stormdrain	0.021	0.024	0.030
6. Cement:			

Neat Surface	0.010	0.011	0.013
Mortar	0.011	0.013	0.015
7. Concrete:			
Culvert, straight and free of debris	0.010	0.011	0.013
Culvert with bends, connections, and some debris	0.011	0.013	0.014
Finished	0.011	0.012	0.014
Sewer with manholes, inlet, etc., straight	0.013	0.015	0.017
Unfinished, steel form	0.012	0.013	0.014
Unfinished, smooth wood form	0.012	0.014	0.016
Unfinished, rough wood form	0.015	0.017	0.020
8. Wood:			
Stave	0.010	0.012	0.014
Laminated, treated	0.015	0.017	0.020
9. Clay:			
Common drainage tile	0.011	0.013	0.017
Vitrified sewer	0.011	0.014	0.017
Vitrified sewer with manholes, inlet, etc.	0.013	0.015	0.017
Vitrified Subdrain with open joint	0.014	0.016	0.018
10. Brickwork:			
Glazed	0.011	0.013	0.015
Lined with cement mortar	0.012	0.015	0.017
Sanitary sewers coated with sewage slime with bends and connections	0.012	0.013	0.016
Paved invert, sewer, smooth bottom	0.016	0.019	0.020
Rubble masonry, cemented	0.018	0.025	0.030

Manning's n for Corrugated Metal Pipe (AISI, 1980).

Type of Pine Diameter and Corrugation	
Dimension	n
1. Annular 2.67 x 1/2 inch (all diameters)	0.024
2. Helical 1.50 x 1/4 inch	
8" diameter	0.012
10" diameter	0.014
3. Helical 2.67 x 1/2 inch	
12" diameter	0.011
18" diameter	0.014
24" diameter	0.016
36" diameter	0.019
48" diameter	0.020
60" diameter	0.021
4. Annular 3x1 inch (all diameters)	0.027
5. Helical 3x1 inch	
48" diameter	0.023
54" diameter	0.023
60" diameter	0.024
66" diameter	0.025
72" diameter	0.026
78" diameter and larger	0.027
6. Corrugations 6x2 inches	
60" diameter	0.033
72" diameter	0.032
120" diameter	0.030
180" diameter	0.028

Table 7. Riprap Calculations For Black Squirrel Creek at Stage I Project

Riprap calculations for Black Squirrel Creek at Stage I area.

From HEC-RAS model results, find the following information:

- d = maximum depth of flow (m)
- S = slope of channel (m/m)

Source of flow depth and slope is *Schubert Ranch Sand Resource Floodplain Modeling Technical Memorandum for Black Squirrel Creek*, El Paso County, Colorado, EME Solutions, Inc., J.L. Jankousky. P.E., 02/25/2020.

Cross Sections at Stage 1 (from North to South)	Water Surface Elevation (ft)	Channel Bottom Elevation at Bank (ft)	d = maximum depth of flow (ft)	d = maximum depth of flow (m)	S = slope of channel (m/m)	Maximum Shear Stress (N/m ²) =	Allowable Shear Stress > Max Shear Stress?	Required Riprap d50
29058	5872.79	5868.37	4.42	1.347	0.00285	37.666	Yes, okay	d50 = 6 inches OK
28752	5871.19	5865.79	5.40	1.646	0.005756	92.939	Yes, okay	d50 = 6 inches OK
28260	5868.61	5862.97	5.64	1.719	0.005269	88.857	Yes, okay	d50 = 6 inches OK
27887	5866.36	5860.27	6.09	1.856	0.004533	82.544	Yes, okay	d50 = 6 inches OK
27503	5863.4	5856.14	7.26	2.213	0.004448	96.557	Yes, okay	d50 = 6 inches OK
26962	5859.43	5852.51	6.92	2.109	0.006873	142.212	Yes, okay	d50 = 12 inches OK
26498	5856.28	5850.24	6.04	1.841	0.004885	88.224	Yes, okay	d50 = 6 inches OK
25826	5853.25	5848.74	4.51	1.375	0.004533	61.129	Yes, okay	d50 = 6 inches OK

Convert Feet to Meters, Divide by:

3.28084

For riprap d50 =	For riprap d50 =	
0.3 m = 12	0.15 m = 6	
inches	inches	
227	113	
gamma x d x S		
9810		
See table above		
See table above		
See table above		
Check whether A	llowable Shear Stress is greater than Maximum Shear Stre	ss
	For riprap d50 = 0.3 m = 12 inches 227 gamma x d x S 9810 See table above See table above See table above Check whether A	For riprap d50 = For riprap d50 = 0.3 m = 12 0.15 m = 6 inches inches 227 113 gamma x d x S 9810 See table above See table above See table above Check whether Allowable Shear Stress is greater than Maximum Shear Stre

Riprap Shear Stress Reference: US Department of Transportation, Federal Highway Administration Publication FHWA-NHI-05-114, Sept. 2005

Appendix B Material Specifications

TABLE MT-1 Gradation Requirements for Riprap							
	Pay Item		Percent of Material	Typical Stone	Typical Stone		
	Туре	(inches)	Typical Stone	(inches)	(Pounds)		
			70-100	12	85		
Riprap	VL	6	50-70	9	35		
			35-50	6	10		
			2-10	2	0.4		
Riprap			70-100	15	160		
	L	9	50-70	12	85		
			35-50	9	35		
			2-10	3	1.3		
Riprap			70-100	21	440		
	М	12	50-70	18	275		
			35-50	12	85		
			2-10	4	3		
Riprap			100	30	1,280		
	н	18	50-70	24	650		
			35-50	18	275		
			2-10	6	10		
Riprap			100	42	3,500		
	VH	24	50-70	33	1,700		
			35-50	24	650		
			2-10	9	35		

Table taken from CDOT's Standard Specifications for Road and Bridge Construction, 1999 and City of Colorado Springs/El Paso County Drainage Criteria Manual.

Table 8. Retention Basin Calculation Schubert Ranch Sand Resource Pit Phase I

Designer: John Jankousky Revision: 1/31/2024

The software (Excel spreadsheet with macros) MHFD-Detention, Version 4.06 (July 2022) from UDF¹ the runoff volumes for Basin 1 and Basin OFF-1. These runoff volumes for the WQCV, the 5-year storm are presented below and compared to the volume of the reclaimed pit. The results from the M spreadsheet are attached.

The volume of available storage is much greater that the expected runoff volumes.

Note: The water quality capture volume (WQCV) is equivalent to the runoff from an 80th percentile s means that 80 percent of the most frequently occurring storms are fully captured and treated and larc treated.

Basin Designation	Runoff Volume, WQCV (acre-feet)	Runoff Volume, 5-year storm (acre-feet)	Runoff Volume, 100- year storm (acre-feet)
Basin 1	0.054	0.041	3.362
Basin OFF-1	1.521	1.613	27.863
Sum of Both Basins	1.575	1.654	31.225

Volume of Available Storage = The excavated and reclaimed pit will hold 2010 acre-feet

DETENTION BASIN STAGE-S

MHFD-Detention, Versio

0.230

0.651

acre-feet

acre-feet

Approximate 50-yr Detention Volume =

Approximate 100-yr Detention Volume =

TORAGE TABLE BUILDER

n 4.06 (July 2022)

]ft							
Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Optional Override Area (ft ²)	Area (acre)	Volume (ft ³)	Volume (ac-ft)
						()		

DETENTION BASIN STAGE-S

MHFD-Detention, Versio

2.466

3.719

5.349

9.315

acre-feet

acre-feet

acre-feet

acre-feet

Approximate 10-yr Detention Volume =

Approximate 25-yr Detention Volume =

Approximate 50-yr Detention Volume =

Approximate 100-yr Detention Volume =

TORAGE TABLE BUILDER

n 4.06 (July 2022)

	ft							
Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Optional Override Area (ft ²)	Area (acre)	Volume (ft ³)	Volume (ac-ft)