Kimley»Horn

Traffic Engineer's Statement

The attached traffic report and supporting information were prepared under my responsible charge and they comport with the standard of care. So far as is consistent with the standard of care, said report was prepared in general conformance with the criteria established by the County for traffic reports.

August 13, 2021
 this report.

Revise. Provide PE
Stamp with signature on my behalf within and date of signature across the stamp

Ms. Kelly Nelson

Date

Pikes Peak Investments LLC
c/o The Equity Group
90 South Cascade Avenue
Suite 1500
Colorado Springs, Colorado 80903

August 13, 2021

Ms. Kelly Nelson
Pikes Peak Investments LLC
c/o The Equity Group
90 South Cascade Avenue
Suite 1500
Colorado Springs, Colorado 80903
Re: \quad Crossroads Mixed Use Traffic Study Letter (PCD File No. P208 and SP2011) SWC of Meadowbrook Parkway and Newt Drive
El Paso County, Colorado
Dear Ms. Nelson:
This traffic study letter has been prepared for a proposed mixed-use development, Crossroads Mixed Use, to be located on the southwest corner of the Meadowbrook Parkway and Newt Drive intersection in El Paso County, Colorado. This letter is an addendum to the Crossroads-Meadowbrook-Reagan Ranch Master Traffic Impact Study (MTIS) to provide a site-specific analysis for the Crossroads Mixed Use development. For the purposes of this analysis, full buildout of Crossroads Mixed Use is expected to include 306 multifamily housing units, 10,000 square feet of retail, a 14,000 square foot pharmacy, 8,000 square feet of sit down restaurant, 11,000 square feet of fast food restaurant, and a 2,500 square foot coffee shop. The retail portion of the project on located on the east side of the site while the residential portion is located on the west side of the site. A conceptual site plan of the project is attached. Consistent with the original MTIS, an initial phase of development was evaluated in a 2026 horizon while full buildout was evaluated in the long-term 2040 horizon.

A vicinity map illustrating the location of the property is attached as Figure 1. The surrounding area primarily consists of vacant land, industrial uses, and residential use. The existing site is comprised of undeveloped land while residential and industrial uses are located north and northeast of the project site, respectively. The site area is shown in the aerial of attached Figure 2.

The purpose of this study is to identify project traffic generation characteristics and potential project traffic related impacts on the local street system, as well as to develop mitigation measures required for identified impacts. The intersection of Meadowbrook Parkway and Newt Drive was incorporated into this traffic study in accordance with El Paso County standards and requirements. In addition, one private driveway access and two private street accesses located on the south side of the future Meadowbrook Parkway extension were also included for evaluation.

Existing Roadway Network and Traffic Counts

Regional access to the project is provided by Interstate 25 (I-25) and US-24 while primary access to the project will be provided by Meadowbrook Parkway, State Highway 94 (SH-94), and Newt Drive. Direct access will be provided by three accesses located along the south side of Meadowbrook Parkway. The east private street access along Meadowbrook Parkway will be restricted to right-in/right/-out movements.

Meadowbrook Parkway is an El Paso County Urban Non-Residential Collector roadway that provides one lane of travel in each direction, with a 35 mile per hour speed limit through the study area. Newt Drive extends northwest and southeast with one through lane of travel in each direction.

The Meadowbrook Parkway and Newt Drive intersection is a T-intersection with stop control on the northwestbound and southeastbound approaches of Newt Drive. The northwestbound approach of

Kimley»Horn

Newt Drive consists of one through lane and a right turn lane while the southeastbound approach includes a left turn lane and one through lane. The southwestbound approach of Meadowbrook Parkway includes a two-way left turn lane and a right turn lane. With the construction of the Crossroads Mixed Use project, a southwest leg will be constructed at this intersection as an extension of Meadowbrook Parkway adjacent to the development area. Existing intersection lane configurations and control for the key study area intersection are shown in attached Figure 3.

Existing peak hour turning movement counts were conducted and at the intersection of Meadowbrook Parkway and Newt Drive on Tuesday, June 2, 2020. The turning movement counts were grown based on data obtained from hourly counts from the Colorado Department of Transportation (CDOT) Online Transportation Information System (OTIS) and additional historical CDOT traffic information provided to Kimley-Horn to account for a COVID-19 adjustment for this area. Based on this information and through coordination with CDOT, the morning and afternoon peak hour counts were increased by 35 percent to account for normal traffic conditions prior to the COVID-19 pandemic. Existing turning movement counts are shown in attached Figure 4 while the adjusted turning movement counts are shown in Figure 5 with count sheets and COVID-19 count adjustment data attached.

Trip Generation

Site-generated traffic estimates are determined through a process known as trip generation. Rates and equations are applied to the proposed land use to estimate traffic generated by the development during a specific time interval. The acknowledged source for trip generation rates is the Trip Generation Manual' published by the Institute of Transportation Engineers (ITE). ITE has established trip rates in nationwide studies of similar land uses. Project generated traffic volumes are identified on a weekday daily as well as on a morning peak hour and afternoon peak hour basis. The morning peak hour is the highest one-hour time period of adjacent street traffic during four consecutive 15minute intervals during the morning peak hour, between 7:00 am and 9:00 am. The afternoon peak hour is the highest one-hour time period of four consecutive 15-minute intervals between the hours of 4:00 pm and 6:00 pm representing the afternoon peak hour.

As mentioned previously, the projects were evaluated with a Phase 12026 horizon and a full buildout 2040 horizon. For this study, Kimley-Horn used the ITE Trip Generation Manual average rates and fitted curve equations that apply to Mid-Rise Multifamily Housing (ITE 221), Shopping Center (ITE 820), Pharmacy (ITE 881), Sit-Down Restaurant (ITE 932), Fast-Food Restaurant with Drive Through (ITE 934), and Coffee/Donut Shop with Drive Through (ITE 937) for traffic associated the project.

Since the project is proposed to contain a mix of uses, internal capture trips are expected to occur on site as well. These internal capture trips are shared trips from vehicles already within the internal street network. These shared trips reduce the number of total external trips and were calculated directly per the ITE procedure but were capped based on thresholds set forth by CDOT. Based on the CDOT access code, internal trip reductions cannot not exceed two percent for the AM peak or eight percent for PM peaks unless clearly justified and documented by actual studies. As such, an internal capture rate of two (2) percent was used during the morning peak hour and a rate of eight (8) percent during the afternoon peak for areas that apply. Phase 1 development of Crossroads Mixed Use in 2026 is expected to generate approximately 9,756 daily weekday external vehicle trips with 944 of these trips occurring during the morning peak hour and 678 trips occurring during the afternoon peak hour. Calculations were based on the procedure and information provided in the ITE Trip Generation Manual, 10th Edition - Volume 1: User's Guide and Handbook, 2017. Table 1 provides the estimated trip generation for Phase 1 of the project. The trip generation calculations are attached.

[^0]Table 1 - Crossroads Mixed Use Phase 1 Traffic Generation

Use	Quantity	Daily	Weekday Vehicle Trips					
			AM Peak Hour			PM Peak Hour		
			In	Out	Total	In	Out	Total
Crossroads Mix Use								
Mid-Rise Multifamily Housing (ITE 221)	306 Units	1,666	27	75	102	79	51	130
Shopping Center (ITE 820)	10,000 SF	1,256	97	60	157	48	51	99
Sit Down Restaurant (ITE 932)	4,000 SF	450	22	18	40	24	15	39
Fast Food Restaurant (ITE 934)	11,000 SF	5,182	225	217	442	187	172	359
Coffee Shop (ITE 937)	2,500 SF	2,050	113	109	222	55	55	110
Total Crossroads Mix Use Trips		10,604	484	479	963	393	344	737
Crossroads Mix Use Trips after Internal Capture		9,756	475	469	944	361	316	678

With full project buildout of Crossroads Mixed Use, the project is expected to generate approximately 11,574 daily weekday external vehicle trips with 1,036 of these trips occurring during the morning peak hour and 846 trips occurring during the afternoon peak hour. Table 2 provides the estimated trip generation for full buildout of the project.

Table 2 - Crossroads Mixed Use Buildout Traffic Generation

Use	Quantity	Daily	Weekday Vehicle Trips					
			AM Peak Hour			PM Peak Hour		
			In	Out	Total	In	Out	Total
Crossroads Mix Use								
Mid-Rise Multifamily Housing (ITE 221)	306 Units	1,666	27	75	102	79	51	130
Shopping Center (ITE 820)	10,000 SF	1,256	97	60	157	48	51	99
Pharmacy (ITE 881)	14,000 SF	1,528	29	25	54	72	72	144
Sit Down Restaurant (ITE 932)	8,000 SF	898	44	36	80	48	30	78
Fast Food Restaurant (ITE 934)	11,000 SF	5,182	225	217	442	187	172	359
Coffee Shop (ITE 937)	2,500 SF	2,050	113	109	222	55	55	110
Total Crossroads Mix Use Trips		12,580	535	522	1,057	489	431	920
Crossroads Mix Use Trips after Internal Capture		11,574	524	512	1,036	450	397	846

Distribution, Assignment, and Total Traffic

Distribution of site traffic was based on the area street system characteristics, existing traffic patterns and volumes, and the proposed access system for the project. Separate distributions were prepared for the retail and residential portions of the site. Further, separate distributions were prepared for the short-term horizon and long-term horizons to account for the future connection of Meadowbrook Parkway to Peterson Road expected to occur by the 2040 horizon. The directional distribution of traffic is a means to quantify the percentage of site-generated traffic that approaches the site from a given direction and departs the site back to the original source. The residential project trip distribution is illustrated in Figure 6 for both the short term and long-term horizons. Likewise, the retail project trip distribution is illustrated in Figure 7 for both the short term and long-term horizons.

Traffic assignment was obtained by applying the project trip distribution to the estimated project traffic generation of the development shown in the trip generation tables. The traffic assignment is shown in
Figure 8 for 2026 and Figure 9 for 2040.
Total traffic volumes from the Crossroads-Meadowbrook-Reagan Ranch MTIS for years 2026 and 2040 with Crossroads Mixed Use project traffic volumes subtracted were used as a baseline for traffic volumes in this study. However, a portion of traffic volumes in 2040 were rerouted and added to

Kimley»Horn

Meadowbrook Parkway adjacent to the project site to account for the future connection of Meadowbrook Parkway to Peterson Road. Site traffic volumes were added to the 2026 and 2040 baseline traffic volumes to represent estimated short-term and long-term traffic conditions. These total traffic volumes for 2026 and 2040 are illustrated in Figure 10 and Figure 11, respectively. Traffic volume information from original MTIS are attached.

Traffic Operations Analysis

Kimley-Horn's analysis of traffic operations in the site vicinity was conducted to determine potential capacity deficiencies at the project key intersections for the 2026 short term and 2040 long term horizons. The acknowledged source for determining overall capacity is the Highway Capacity Manual ${ }^{2}$.

Capacity analysis results are listed in terms of Level of Service (LOS). LOS is a qualitative term describing operating conditions a driver will experience while traveling on a particular street or highway during a specific time interval. It ranges from A (very little delay) to F (long delays and congestion). El Paso County has an overall intersection, approach and movement LOS D as the minimum threshold for acceptable operations. The following Table 3 shows the definition of level of service for signalized and unsignalized intersections.

Table 3 - Level of Service Definitions

Level of Service	Signalized Intersection Average Total Delay (sec/veh)	Unsignalized Intersection Average Total Delay (sec/veh)
A	≤ 10	≤ 10
B	>10 and ≤ 20	>10 and ≤ 15
C	>20 and ≤ 35	>15 and ≤ 25
D	>35 and ≤ 55	>25 and ≤ 35
E	>55 and ≤ 80	>35 and ≤ 50
F	>80	>50

Study area intersections were analyzed based on average total control delay analysis for signalized and unsignalized intersections. Under the unsignalized analysis, the level of service (LOS) for a twoway stop-controlled intersection is determined by the computed or measured control delay and is defined for each minor movement. Level of service for a two-way stop-controlled intersection is not defined for the intersection as a whole. Level of service for a signalized, roundabout, and four-way stop controlled intersections are defined for the overall intersection.

Calculations for the level of service at the key intersection and project accesses for the study area are attached. Synchro traffic analysis software was used to analyze the study area access intersections while Arcady software was utilized with the future roundabout intersection of Meadowbrook Parkway and Newt Drive. The Synchro Highway Capacity Manual (HCM) methodology reports were used to analyze intersection delay and level of service.

[^1]
Meadowbrook Parkway and Newt Drive

The existing intersection of Meadowbrook Parkway and Newt Drive is a three-leg stop-controlled intersection with the northwest and southeast legs along Newt Drive providing stop control. With the construction of the project, a southwest leg of Meadowbrook Parkway will be constructed and extended to the west limits of the Crossroads Mixed Use property. By 2040, it is anticipated that Meadowbrook Parkway will connect with Peterson Road to the west. A single lane roundabout is currently planned at the intersection of Meadowbrook Parkway and Newt Drive. It is anticipated that the intersection will operate acceptably with LOS A during the peak hours throughout the 2040 horizon as a single lane roundabout. Table 4 provides the results of the level of service at this intersection.

Table 4 - Meadowbrook Parkway and Newt Drive LOS Results

	AM Peak Hour		PM Peak Hour	
Scenario	Control Delay (sec/veh)	LOS	Control Delay (sec/veh)	LOS
2026 Total Traffic Volumes (Roundabout Control)	6.9	A	5.9	A
2040 Total Traffic Volumes (Roundabout Control)	9.3	A	9.7	A

Project Access Spacing Requirements and Internal Roadway Classifications

With completion of the Crossroads Mixed Use project, one private driveway access and two private street accesses are proposed to be located on the south side of the future extension of Meadowbrook Parkway west of Newt Drive. The east access along Meadowbrook Parkway will be a private street providing access to the retail area and will be restricted to right-in/right out movements. The middle access along Meadowbrook Parkway will be a private street and will allow full turning movements. The west access along Meadowbrook Parkway will allow full turning movements and provide private driveway access to the multifamily residential area.

The east access along Meadowbrook Parkway is proposed to be located approximately 435 feet west of Newt Drive and 360 feet east of the middle access (measured centerline to centerline). The west access along Meadowbrook Parkway is proposed to be located approximately 330 feet west of the middle access. These distances meet the El Paso County Urban Non-Residential Collector spacing standards of 660 feet to other collectors and 330 feet to intersections with a local street. The west and east accesses along Meadowbrook Parkway meet El Paso County average daily traffic threshold standard of 3,000 vehicles per day for an Urban Local street. The middle access along Meadowbrook Parkway meets the El Paso County average daily threshold standard of 10,000 and 20,000 vehicles per day for both Urban Residential and Urban Nonresidential Collectors, respectively. With the west side of the middle access street fronting the multifamily residential site, this roadway could meet the characteristics of an Urban Residential Collector. However, the project is requesting a deviation to allow for the middle access street be constructed to a local street cross section. The middle access roadway will only extend approximately 850 feet south of Meadowbrook Parkway and will terminate prior to US-24. There is only one access (to the residential area) along the middle north-south street south of the east-west roadway on site; therefore, there will minimal conflicting movements at the east-west roadway intersection with the middle access roadway. Attached Figure 12 illustrates the circulation plan and street classification map for roadways internal to Crossroads Mixed Use.

Per criteria this warrants exclusive left and right turn lanes. Revise the preliminary plan street layout to allow restriping for a second outgoing lane or submit deviation request for consideration.

Unresolved.

A deviation request was not included with the 4th submittal.
In reviewing the private road there appears to be room to reconfigure the cross section to fit the two separate turn lanes on the 36 ' pavement width (3×12 ' lanes).

If you rescind the deviation request, then update the TIS narrative by identifying the phasing for the left turn lane. Include the following:

1. Identify in the short range horizon lane configuration such as either to a) chevron stripe the left turn lane or b)stripe per the standard cross section provided. (Add the cross section in the preliminary plan if you are going with "a")
2. Identify the long range horizon lane configuration to include how long this separate lane should be (provide the cross section in the preliminary plan).
3. Identify the trigger/warrant for installing the separate left and right turn lane. Seems likely to be when Marksheffel/Peterson connection is made.
4. Identify who will be responsible to restripe the entrance once it's warranted.

- An eastbound right turn lane is not warranted tor the Meadowbrook Parkway tast Right-in/Right-out Access based on projected 2040 total traffic volumes being 30 eastbound right turns during the peak hour and the threshold being 50 vehicles per hour.

Likewise, the EI Paso County ECM was used to determine if left turn lanes are warranted at the studied intersections along Meadowbrook Parkway. For minor arterials or lower classifications, a left turn lane is required for any access with a projected peak hour ingress turning volume of 25 vehicles
 Meadowbrook Parkway while a northbound and westbound left turn lane will be required at the middle) access along Meadowbrook Parkway. However, the project is requesting a deviation to allow for the middle access street be constructed to a local street cross section and to allow for a single shared lane for the northbound approach of this intersection. El Paso County standards are for ingress movements as this is an egress movement without any opposing movements as a north leg is not constructed at this intersection. Further, as identified below, this intersection is expected to operate with acceptable level of service.
Based on Elpaso County standards tor a design speed of 40 mites per nour, the west access along Meadowbrook Parkway should provide a westbound left turn lane with a length of 205 feet (50 feet of storage plus 155 feet of deceleration) plus a 160 -foot taper. However, there is approximately 280 feet of available space for a westbound left turn lane at the west access due to the proposed location of the middle access. As such, a deviation will be requested, and it is recommended that the westbound left turn lane at the west access along Meadowbrook Parkway provide a length of 180 feet plus a 100 -foot taper to accommodate the spacing restriction.

The middle access along Meadowbrook Parkway should provide a westbound left turn lane with a length of 405 feet (250 feet of storage plus 155 feet of deceleration) plus a 160 -foot taper. It should be noted the standards for left turn storage in El Paso County show a maximum of 250 feet or more and this length is generally one foot per turning movement during the peak hour. Based on this a storage length of 430 feet (430 vehicles during the peak hour) could be considered; however, with the
$95^{\text {th }}$ percentile vehicles queues reporting a length of 50 feet, the maximum length listed in the El Paso County standards of 250 feet is recommended.

With the recommended lane configurations and control of the three proposed accesses along Meadowbrook Parkway, all movements at these accesses are expected to operate acceptably with LOS B or better during the peak hours in 2026. With the expected future connection of Meadowbrook Parkway to Peterson Road, all movements at the project accesses along Meadowbrook Parkway are expected to continue to operate acceptably with LOS D or better during the peak hours in 2040.
Table 5 provides the results of the level of service at the key study area access intersections.
Table 5 - Meadowbrook Parkway Project Accesses LOS Results

Scenario	2026 Total Traffic				2040 Total Traffic			
	AM Peak Hour		PM Peak Hour		AM Peak Hour		PM Peak Hour	
	Delay (sec) veh)	LOS	Delay (sec/ veh)	LOS	Delay (sec/ veh)	LOS	Delay (sec) veh)	LOS
Meadowbrook Parkway								
Northbound Approach	8.5	A	8.4	A	10.3	B	10.6	B
Westbound Left	7.2	A	7.3	A	7.7	A	8.0	A
Meadowbrook Parkway								
Middle Access								
Northbound Approach	9.3	A	8.9	A	32.5	D	19.5	C
Westbound Left	8.4	A	7.9	A	9.3	A	9.1	A
Meadowbrook Parkway								
East Access Northbound Right	11.8	B	10.2	B	13.5	B	13.0	B

Sight Distance Evaluation

It is recommended that appropriate sight distance triangles be provided at all site access points to give drivers exiting the development areas a clear view of oncoming traffic. Landscaping and objects within sight triangles must not obstruct drivers' views of the adjacent travel lanes. Intersection sight distances for left turn from stop and right turn from stop were analyzed for the proposed project accesses along Meadowbrook Parkway.

With EI Paso County standards and a design speed of 40 miles per hour along Meadowbrook Parkway, the intersection sight distance for a vehicle turning from stop is 445 feet. Therefore, all obstructions for turning vehicles from stop should be clear to the right and left within the triangle created with a vertex point located 13 feet (10 feet from local roads) from the edge of the major road traveled way (typical position of the minor road driver's eye when stopped) and a line of sight distance of 445 feet located in the middle of the eastbound and westbound through lanes along Meadowbrook Parkway. It is believed that the accesses are appropriate at the current locations to provide the necessary sight distance needed but verification should be provided with sight distance triangles incorporated within the design plans.

Queuing Analysis

A queuing analysis was conducted for turn lanes at the access intersections. The queuing analysis was performed using the Synchro analysis software presenting the results of the 95th percentile queue length. Results are shown in the following Table 6 with calculations provided in the attached level of service operational outputs. Results of the queuing analysis indicate that vehicle queues are expected to be managed and contained within the provided turn lanes of the studied intersections. In

Update to include the required storage length. Per ECM 2.3.7.E.1 and Figure 2-25 the design elements for a left turn lane are the bay taper, lane length, and storage length.
What's provided is only the lane length and storage length which makes up the deceleration.

See ECM 2.3.7.E. 3 for storage length criteria.

Unresolved. Update the $\mathbf{2 0 4 0}$ to match or provide an explanation why the required turn lane in the long range horizon should be reduced from the short range buildout condition.

Intersection Approach / Turn Lane	$\begin{gathered} \text { urn Lane } \\ \text { Length } \\ \text { (feet) } \\ \hline \end{gathered}$	vuque (feet) (feet)	necommenaed Turn Lane Length (feet)	Length (feet)	necommenaea Turn Lane Length (feet)
Meadowbrook Parkway \& Newt Drive Northbound Approach Southbound Approach Eastbound Approach Westbound Approach		$\begin{aligned} & 75^{\prime} \\ & 25^{\prime} \\ & 75^{\prime} \\ & 75^{\prime} \end{aligned}$		$\begin{array}{r} 50^{\prime} \\ 25^{\prime} \\ 100^{\prime} \\ 100^{\prime} \\ \hline \end{array}$	C C C C C
Meadowbrook Parkway West Access (Residential) Northbound Approach Westbound Left	$\begin{aligned} & \text { DNE } \\ & \text { DNE } \\ & \hline \end{aligned}$	$\begin{aligned} & 25^{\prime} \\ & 25^{\prime} \\ & \hline \end{aligned}$	$\stackrel{C}{\$ 180^{\prime}+100^{\prime}}$	25' 25	$\begin{gathered} C \\ 155^{\prime}+160^{\prime} T \\ \hline \end{gathered}$
Meadowbrook Parkway Middle Access Northbound Approach Westbound Left	DNE DNE		$\begin{gathered} C \\ 405{ }^{\prime}+160^{\prime} \end{gathered}$	$\begin{array}{r} 125 \\ 50^{\prime} \\ \hline \end{array}$	$\begin{gathered} C \\ 155^{\prime}+160^{\prime} \end{gathered}$
Meadowbrook Parkway East Access Northbound Right	DNE	$/ 50$	C	50^{\prime}	C

DNE = Does Not Exist; C = Continuous Lane; T = Taper; \$ = Length deviated from standards due to Improvement Summary

I See the County's
' redline comment

- regarding the
recommended turn lane for the west ; access in the i deviation request ; form.

Itersection øperational and queuing analysis, the recommended lane the key stady area intersections are shown in Figure 13 for both 2026
oroviding roundabout control at the intersection of Newt Drive and be eonstructed with the project. In addition to the key intersections in this ovements as identified in the Crossroads-Meadowbrook-Reagan Ranch :h the completion of the Crossroads Mix Use development. These two nating northbound dual left turn lanes with 850 feet of length plus a g the eastbound to southwest bound right-turn acceleration lane from 7ou teet to you teet at the Newt Drive/SH-94 and US-24 intersection. The recommended improvements are based on the global analysis provided for this area of Colorado Springs and El Paso County considering existing traffic volumes, background traffic volume growth from other development projects, and four project areas of Crossroads Mix Use, Crossroads North, Meadowbrook Park, and Reagan Ranch. The improvements identified are not solely needed to accommodate Crossroads Mix Use, as it is the existing and background traffic volume growth that contribute to the improvement needs as well. As such project traffic contribution percentages are provided for these three improvements. Project traffic is expected to contribute approximately 67 percent $(942 / 1,405)$ of the peak hour movements in 2026 at the intersection of Newt Drive and Meadowbrook Parkway. Likewise, the project is expected to contribute approximately 51.9 percent ($257 / 495$) and 61.2 percent ($260 / 425$) of the eastbound right turn movements and northbound left turn movements during the peak hour in 2026 at the intersection of Newt Drive/SH-94 and US-24, respectively.

Kimley»Horn

Conclusions and Recommendations

In summary, this traffic study provides project traffic generation estimates to identify potential project traffic related impacts on the local street system with the proposed Crossroads Mixed Use project. Based on the analysis presented in this study, Kimley-Horn believes the proposed Crossroads Mixed Use development will be successfully incorporated into the existing and future roadway network.

With completion of the Crossroads Mixed Use project, one private driveway access and two private street accesses are proposed to be located on the south side of the future extension of Meadowbrook Parkway west of Newt Drive. The east access along Meadowbrook Parkway will be a private street providing access to the retail area and will be restricted to right-in/right out movements. The middle access along Meadowbrook Parkway will be a private street and will allow full turning movements. The west access along Meadowbrook Parkway will allow full turning movements and provide access to a private driveway to the multifamily residential area. All three project accesses along Meadowbrook Parkway are recommended to provide stop control and have R1-1 "STOP" signs installed for the exiting northbound approaches. To provide signage for restricting left turn movements at the proposed right-in/right-out east access, it is recommended that a R3-2 No Left Turn sign be placed underneath the STOP sign. A R6-1(R) "ONE WAY" sign should also be installed within the raised center median of Meadowbrook Parkway.

The west access along Meadowbrook Parkway should provide a westbound left turn lane with a length of 205 feet (50 feet of storage plus 155 feet of deceleration) plus a 160 -foot taper. However, there is approximately 280 feet of available space for a westbound left turn lane at the west access due to the proposed location of the middle access. As such, a deviation will be requested, and it is recommended that the westbound left turn lane at the west access along Meadowbrook Parkway provide a length of 180 feet plus a 100 -foot taper to accommodate the spacing restriction.

The middle access along Meadowbrook Parkway should provide a westbound left turn lane with a length of 405 feet (250 feet of storage plus 155 feet of deceleration) plus a 160-foot taper.

The west and east accesses along Meadowbrook Parkway meet El Paso County average daily traffic threshold standard of 3,000 vehicles per day for an Urban Local street. The middle access along meets the El Paso County average daily threshold standard of 10,000 and 20,000 vehicles per day for both Urban Residential and Urban Nonresidential Collectors, respectively. With the west side of the middle access street fronting the multifamily residential site, this roadway could meet the characteristics of an Urban Residential Collector. However, the project is requesting a deviation to allow for the middle access street be constructed to a local street cross section and to allow for a single shared lane for the northbound approach of the intersection with Meadowbrook Parkway.

A single lane roundabout is currently planned at the intersection of Meadowbrook Parkway and Newt Drive. A design documentation package for the proposed roundabout with be included separately with the design submittal.

If you have any questions or require anything further, please feel free to call me at (720) 943-9962.
Sincerely,
KIMLEY-HORN AND ASSOCIATES, INC.

Jeffrey R. Planck, P.E.
Project Manager

Figures

FIGURE 2
Kimley») Horn

FIGURE 12
Kimley»Horn

Traffic Counts
 COVID-19 Adjustment Calculations

Location: Marksheffel @ Space Fiilleadeame : MARKSHEFFEL @ SPACE VILLAGE-THUR-WSP-3-20
Turning Movement Count Site Code : 00000000
Weather: Clear Start Date :3/12/2020
Comments: Heavy truck traffic Page No : 1

	MARKSHEFFEL From North				SPACE VILLAGE From East				MARKSHEFFEL From South				SPACE VILLAGE From West				
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
06:00 AM	1	84	0	85	0	0	7	7	0	47	20	67	23	5	1	29	188
06:15 AM	4	140	0	144	0	2	2	4	2	68	33	103	17	9	1	27	278
06:30 AM	4	157	0	161	0	2	0	2	1	92	40	133	19	13	2	34	330
06:45 AM	13	164	0	177	0	6	8	14	2	109	54	165	26	9	4	39	395
Total	22	545	0	567	0	10	17	27	5	316	147	468	85	36	8	129	1191
07:00 AM	18	196	6	220	1	1	3	5	6	121	51	178	35	19	2	56	459
07:15 AM	37	201	0	238	1	4	3	8	1	110	62	173	35	8	2	45	464
07:30 AM	33	235	1	269	0	3	1	4	4	124	83	211	23	9	2	34	518
07:45 AM	31	227	1	259	0	3	1	4	1	117	77	195	21	6	1	28	486
Total	119	859	8	986	2	11	8	21	12	472	273	757	114	42	7	163	1927
*** BREAK ***																	
04:00 PM	7	147	0	154	0	4	4	8	3	210	40	253	55	8	3	66	481
04:15 PM	8	149	0	157	0	3	7	10	5	263	46	314	46	8	2	56	537
04:30 PM	5	122	1	128	0	2	10	12	6	228	56	290	52	10	1	63	493
04:45 PM	3	132	0	135	1	3	9	13	1	213	46	260	62	6	4	72	480
Total	23	550	1	574	1	12	30	43	15	914	188	1117	215	32	10	257	1991
05:00 PM	7	127	0	134	0	2	4	6	5	213	55	273	65	7	1	73	486
05:15 PM	4	155	2	161	0	1	2	3	1	226	48	275	58	10	4	72	511
05:30 PM	5	119	0	124	1	2	6	9	0	153	38	191	53	12	1	66	390
05:45 PM	2	111	0	113	0	3	1	4	0	152	31	183	46	6	2	54	354
Total	18	512	2	532	1	8	13	22	6	744	172	922	222	35	8	265	1741
Grand Total	182	2466	11	2659	4	41	68	113	38	2446	780	3264	636	145	33	814	6850
Apprch \%	6.8	92.7	0.4		3.5	36.3	60.2		1.2	74.9	23.9		78.1	17.8	4.1		
Total \%	2.7	36	0.2	38.8	0.1	0.6	1	1.6	0.6	35.7	11.4	47.6	9.3	2.1	0.5	11.9	

File Name : MARKSHEFFEL @ SPACE VILLAGE-THUR-WSP-3-20
Site Code : 00000000
Start Date : 3/12/2020
Page No : 2

Peak Hour Analysis From 06:00 AM to 05:45 PM - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 04:15 PM

Peak Hour for		coct		at	PM												
04:15 PM	8	149	0	157	0	3	7	10	5	263	46	314	46	8	2	56	537
04:30 PM	5	122	1	128	0	2	10	12	6	228	56	290	52	10	1	63	493
04:45 PM	3	132	0	135	1	3	9	13	1	213	46	260	62	6	4	72	480
05:00 PM	7	127	0	134	0	2	4	6	5	213	55	273	65	7	1	73	486
Total Volume	23	530	1	554	1	10	30	41	17	917	203	1137	225	31	8	264	1996
\% App. Total	4.2	95.7	0.2		2.4	24.4	73.2		1.5	80.7	17.9		85.2	11.7	3		
PHF	. 719	. 889	. 250	. 882	. 250	. 833	. 750	. 788	. 708	. 872	. 906	. 905	. 865	. 775	500	. 904	. 929

Description: SH 94 E/O Marksheffel Rd, Colorado Springs

Station ID:	100851
Date:	$2 / 20 / 2020$
Route:	024 G

Route: $\quad 024 \mathrm{G}$

Description: ${ }^{\text {SH } 24 \text { NE/ }}$ SH 94 , Colorado Springs
COUNTDIR

Original Traffic Study Documents

T R A F F I C I M P A C T S T U D Y

Traffic Engineer's Statement
The attached traffic report and supporting information were prepared under my responsible charge and they comport with the standard of care. So far as is consistent with the standard of care, said report was prepared in general conformance with the criteria established by the County for traffic reports.

Curtis D. Rowe, P.E., PTOE, PE \#36355

April 2, 2021
Date

Developer's Statement
I, the Developer, have read and will comply with all commitments made on my behalf within this report.

Ms. Kelly Nelson

Date

Pikes Peak Investments LLC
c/o The Equity Group
90 South Cascade Avenue, Suite 1500
Colorado Springs, Colorado 80903

Crossroads-Meadowbrook-Reagan Ranch

PCD File No. CR201 \& SP207

Colorado Springs, Colorado
El Paso County, Colorado
Prepared for
Pikes Peak Investments LLC
c/o The Equity Group
90 South Cascade Avenue
Suite 1500
Colorado Springs, Colorado 80903
Prepared by
Kimley-Horn and Associates, Inc.
Curtis D. Rowe, P.E., PTOE
4582 South Ulster Street
Suite 1500
Denver, Colorado 80237
(303) 228-2300

April 2021

This document, together with the concepts and designs presented herein, as an instrument of service, is intended only for the specific purpose and client for which it was prepared. Reuse of
and improper reliance on this document without written authorization and adaptation by Kimley-Horn and Associates, Inc. shall be without liability to Kimley-Horn and Associates, Inc.

Trip Generation Worksheets

Kimley»Horn

Project Crossroads-Meadowbrook-Reagan Ranch (Crossroads Mixed Use)
Subject Trip Generation for Multifamily Housing (Mid-Rise)
$\begin{array}{llll}\text { Designed by _JRP } & \text { Date } \quad \text { February 08, 2021 } & \text { Job No. } & 096956015 \\ \text { Checked by } & \text { Date__ } & \text { Sheet No. } \quad \text { of ___ } & \end{array}$

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 10th Edition, Fitted Curve Equations
Land Use Code - Multifamily Housing (Mid-Rise) (221)
Independant Variable - Dwelling Units (X)

```
X = 306
T = Average Vehicle Trip Ends
```


Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (Series 200 Page 74)

Directional Distribution: 26\% ent. 74\% exit.

```
Ln(T) = 0.98 Ln(X) - 0.98
Ln(T) = 0.98 * Ln(306.0) - 0.98
```

| $\mathrm{T}=$ | 102 | Average Vehicle Trip Ends |
| :---: | :---: | :---: | :---: |
| 27 | entering | $75 \quad$ exiting |
| | | |
| 27 | +75 | $=102$ |

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (Series 200 Page 75)

```
Ln(T) = 0.96 Ln(X) - 0.63
Ln(T)=0.96 * Ln(306.0) - 0.63
```

$T=$	130	Average Vehicle Trip Ends
79	entering	
79	+51	$=130$

Weekday (Series 200 Page 73)
$(T)=5.45^{*}(X)-1.75$
$(T)=5.45$ * $306-1.75$

Peak Hour of Generator, Saturday (Series 200 Page 79)

Directional Distribution: 49% ent. 51% exit.
$(T)=0.42^{*}(X)+6.73$
$(T)=0.42$ * $306+6.73$
$\mathrm{T}=135 \quad$ Average Vehicle Trip Ends
66 entering 69 exiting
$66+69=135$

Kimley»)Horn

Project	Crossroads-Meadowbrook-Reagan Ranch (Crossroads Mix Use Phase 1)		
Subject	Trip Generation for Shopping Center		
Designed by JRP	Date	February 08, 2021	Job No.Jober Checked by\quad Sheet No.

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 10th Edition, Fitted Curve Equations
Land Use Code - Shopping Center (820)
Independant Variable - 1000 Square Feet Gross Leasable Area (X)
Gross Leasable Area $=\quad 10,000 \quad$ Square Feet
$X=10.000$
T = Average Vehicle Trip Ends

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (800 Series Page 140)

Directional Distribution: 48\% ent. 52\% exit.
$\operatorname{Ln}(\mathrm{T})=0.74 \operatorname{Ln}(\mathrm{X})+2.89$
$\operatorname{Ln}(\mathrm{~T})=0.74^{*} \quad \operatorname{Ln}(10)+2.89$
$\mathrm{T}=99 \quad$ Average Vehicle Trip Ends
$\operatorname{Ln}(\mathrm{T})=0.74$ * $\operatorname{Ln}(10) \quad+2.89$
48 entering 51 exiting

Weekday (800 Series Page 138)

Daily Weekday
$\operatorname{Ln}(T)=0.68 \operatorname{Ln}(X)+5.57$
$\operatorname{Ln}(T)=0.68 * * 5.57$

Directional Distribution: 50\% entering, 50\% exiting
T = $1256 \quad$ Average Vehicle Trip Ends
628 entering 628 exiting
Saturday Peak Hour of Generator (Page 144)
Average Saturday
$\operatorname{Ln}(\mathrm{T})=0 . .79 \operatorname{Ln}(\mathrm{X})+2.79$
$\operatorname{Ln}(\mathrm{~T})=0.79 * \quad \operatorname{Ln}(10)+2.79$

Directional Distribution: 52\% ent. 48\% exit.
$\begin{array}{clc}\mathrm{T}= & 100 & \text { Average Vehicle Trip Ends } \\ 52 & \text { entering } & 48 \\ \text { exiting }\end{array}$
Non Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017-Page 190)

AM Peak Hour $=$	IN	Non-Pass By	Put Peak Hour $=$	Total		
	On	Non-Pass By				
AM Peak	64	39	103			
PM Peak	32	34	65			
Daily	414	414	828	PM Peak Hour Rate Applied to Daily		

Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017 -Page 190)

AM Peak Hour $=$	34%		Pass By	PM Peak Hour $=$	34%	Pass By
	IN	Out	Total			
AM Peak	33	20	54			
PM Peak	16	17	34			
Daily	214	214	428	PM Peak Hour Rate Applied to Daily		

Project Crossroads-Meadowbrook-Reagan Ranch (Crossroads Mix Use Phase 1)
Subject Trip Generation for High-Turnover (Sit-Down) Restaurant

| Designed by __JRP | Date \quad February 08, 2021 | Job No. 096956015 |
| :--- | :--- | :--- | :--- |
| Checked by | Date \quad Sheet No. $\quad 1$ | |

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 10th Edition, Average Rate Equations
Land Use Code - High Turnover Sit-Down Restaurant (932)
Independant Variable - 1000 Square Feet Gross Floor Area (X)

```
Gross Floor Area = 4,000 Square Feet
X = 4.000
T = Average Vehicle Trip Ends
```

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (900 Series Page 97)
Average Weekday Directional Distribution: 55\% ent. 45\% exit.

$\mathrm{T}=9.94(\mathrm{X})$		$\mathrm{T}=$	40	Average Vehicle Trip Ends
$\mathrm{T}=9.94^{*}$	4.000	22	entering	18 exiting

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (900 Series Page 98)

Average Weekday Directional Distribution: 62\% ent. 38\% exit.

T = 9.77 (X)
T = $39 \quad$ Average Vehicle Trip Ends
$\mathrm{T}=9.77$ * 4.000
24 entering 15 exiting

Weekday (900 Series Page 96)
Average Weekday
Directional Distribution: 50\% entering, 50\% exiting
$\mathrm{T}=112.18(\mathrm{X}) \quad \mathrm{T}=450 \quad$ Average Vehicle Trip Ends
$\mathrm{T}=112.18$ * 4.000 225 entering 225 exiting
P.M. Peak Hour of Generator (900 Series Page 100)

| Average Weekday | Directional Distribution: | 52% | ent. | 48% | exit. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{T}=17.41(\mathrm{X})$ | 4.000 | $\mathrm{~T}=$ | 70 | Average Vehicle Trip Ends | |
| $\mathrm{T}=17.41^{*}$ | 46 | entering | 34 | exiting | |

Saturday Peak Hour of Generator 1900 Series Page 105

| Average Saturday | Directional Distribution: | 51% | ent. | 49% | exit. | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{T}=11.19(\mathrm{X})$ | | $\mathrm{T}=$ | 46 | Average Vehicle Trip Ends | | |
| $\mathrm{T}=11.19^{*}$ | 4.000 | | 23 | entering | 23 | exiting |

Non Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017-Page 207)

AM Peak Hour $=$	57%	Non-Pass By		PM Peak Hour $=$	57%	Non-Pass By
	IN	Out	Total			
AM Peak	12	10	23			
PM Peak	14	8	22			
Daily	128	128	256	PM Peak Hour Rate Applied to Daily		

Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017 -Page 207)

AM Peak Hour $=$	43%		Pass By	PM Peak Hour $=$	43%	Pass By
	IN	Out	Total			
AM Peak	9	8	18			
PM Peak	10	6	17			
Daily	97	97	194	PM Peak Hour Rate Applied to Daily		

Kimley»"Horn

Project Crossroads-Meadowbrook-Reagan Ranch (Crossroads Mix Use Phase 1)
Subject Trip Generation for Fast-Food Restaurant with Drive-Through Window

Designed by	JRP	Date	February 08, 2021	Job No. 096956015
Checked by		Date		

```
TRIP GENERATION MANUAL TECHNIQUES
ITE Trip Generation Manual 10th Edition, Average Rate Equations
Land Use Code - Fast Food Restaurant With Drive-Through Window (934)
Independant Variable - }1000\mathrm{ Square Feet Gross Floor Area (X)
    Gross Floor Area = 11,000 Square Feet
    X = 11.000
    T = Average Vehicle Trip Ends
```

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (900 Series page 158)

Average Weekday		Directional Distribution:			51\% ent. 49\% exit.
$\mathrm{T}=40.19$ (X)		T =	442	Avera	Ve
$\mathrm{T}=40.19$ *	11.000	225	entering		217
		225	+ 217		442

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (900 Series page 159)
Average Weekday Directional Distribution: 52\% ent. 48\% exit.

$\mathrm{T}=32.67(\mathrm{X})$	
$\mathrm{T}=32.67^{*}$	11.000

$\mathrm{T}=$	359	Average Vehicle Trip Ends
187	entering	172
exiting		

 \(187+172=359\)

Weekday (900 Series page 157)

Average Weekday
$\mathrm{T}=470.95$ (X)
$\mathrm{T}=470.95^{*} \quad 11.000$
Directional Distribution: 50\% entering, 50% exiting $\mathrm{T}=5182 \quad$ Average Vehicle Trip Ends 2591 entering 2591 exiting $2591+2591=5182$

Saturday Peak Hour of Generator (900 Series page 163)

Non Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017)

AM Peak Hour $=$	51%	Non-Pass By		PM Peak Hour $=$	50%	Non-Pass By
AM Peak	115	Out	Total			
PM Peak	94	86	225			
Daily	1296	1296	2592	PM Peak Hour Rate Applied to Daily		

Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017)

AM Peak Hour $=$	49%			Pass	By	PM Peak Hour $=$
	IN	Out	Total			Pass By
AM Peak	110	106	217			
PM Peak	94	86	180			
Daily	1295	1295	2590	PM Peak Hour Rate Applied to Daily		

Kimley»)Horn

Project \qquad Crossroads-Meadowbrook-Reagan Ranch (Crossroads Mix Use Phase 1)
Subject Trip Generation for Coffee/Donut Shop with Drive Through
Designed by _JRP Date_February 08, 2021
Checked by \qquad Date \qquad Job No.
Sheet No. \qquad 15 of \qquad

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 10th Edition, Average Rate Equations
Land Use Code - Coffee/Donut Shop with Drive Through (937)
Independant Variable - 1000 Square Feet Gross Floor Feet (X)
Gross Floor Area $=\quad 2,500$
$\mathrm{X}=2.5$
T = Average Vehicle Trip Ends
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (Series 900 Page 232)
Directional Distribution: 51\% ent. 49\% exit.
T = 88.99 (X) $\quad \mathrm{T}=222 \quad$ Average Vehicle Trip Ends
$\mathrm{T}=88.99$ * 2.5
113 entering 109 exiting

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (Series 900 Page 233)
Directional Distribution: 50% ent. 50% exit.
$\mathrm{T}=43.38(\mathrm{X})$
T = 110 Average Vehicle Trip Ends
$\mathrm{T}=43.38$ *
2.5

55 entering 55 exiting

Weekday (Series 900 Page 231)
Average Weekday
$(\mathrm{T})=820.38(\mathrm{X})$
$(\mathrm{T})=820.38$ *
(2.5)

Directional Distribution: 50\% entering, 50\% exiting T = 2050 Average Vehicle Trip Ends 1025 entering 1025 exiting $1025+1025=2050$

Kimley»Horn

Project Crossroads-Meadowbrook-Reagan Ranch (Crossroads Mixed Use)
Subject Trip Generation for Multifamily Housing (Mid-Rise)
$\begin{array}{llll}\text { Designed by _JRP } & \text { Date } \quad \text { February 08, 2021 } & \text { Job No. } & 096956015 \\ \text { Checked by } & \text { Date__ } & \text { Sheet No. } \quad \text { of ___ } & \end{array}$

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 10th Edition, Fitted Curve Equations
Land Use Code - Multifamily Housing (Mid-Rise) (221)
Independant Variable - Dwelling Units (X)

```
X = 306
T = Average Vehicle Trip Ends
```


Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (Series 200 Page 74)

Directional Distribution: 26\% ent. 74\% exit.

```
Ln(T) = 0.98 Ln(X) - 0.98
Ln(T) = 0.98 * Ln(306.0) - 0.98
```

| $\mathrm{T}=$ | 102 | Average Vehicle Trip Ends |
| :---: | :---: | :---: | :---: |
| 27 | entering | $75 \quad$ exiting |
| | | |
| 27 | +75 | $=102$ |

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (Series 200 Page 75)

```
Ln(T) = 0.96 Ln(X) - 0.63
Ln(T)=0.96 * Ln(306.0) - 0.63
```

$T=$	130	Average Vehicle Trip Ends
79	entering	
79	+51	$=130$

Weekday (Series 200 Page 73)
$(T)=5.45^{*}(X)-1.75$
$(T)=5.45$ * $306-1.75$

Peak Hour of Generator, Saturday (Series 200 Page 79)

Directional Distribution: 49% ent. 51% exit.
$(T)=0.42^{*}(X)+6.73$
$(T)=0.42$ * $306+6.73$
$\mathrm{T}=135 \quad$ Average Vehicle Trip Ends
66 entering 69 exiting
$66+69=135$

Kimley»)Horn

Project	Crossroads-Meadowbrook-Reagan Ranch (Crossroads Mix Use)		
Subject	Trip Generation for Shopping Center		
Designed by JRP	Date	February 08, 2021	Job No.Jo96956015 Checked by\quad Sheet No.

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 10th Edition, Fitted Curve Equations
Land Use Code - Shopping Center (820)
Independant Variable - 1000 Square Feet Gross Leasable Area (X)
Gross Leasable Area $=\quad 10,000 \quad$ Square Feet
$X=10.000$
T = Average Vehicle Trip Ends

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (800 Series Page 140)

Directional Distribution: 48\% ent. 52\% exit.
$\operatorname{Ln}(\mathrm{T})=0.74 \operatorname{Ln}(\mathrm{X})+2.89$
$\operatorname{Ln}(\mathrm{~T})=0.74^{*} \quad \operatorname{Ln}(10)+2.89$
$\mathrm{T}=99 \quad$ Average Vehicle Trip Ends
$\operatorname{Ln}(T)=0.74$ * $\operatorname{Ln}(10)+2.89$
48 entering 51 exiting

Weekday (800 Series Page 138)

Daily Weekday
$\operatorname{Ln}(T)=0.68 \operatorname{Ln}(X)+5.57$
$\operatorname{Ln}(T)=0.68 * * 5.57$

Directional Distribution: 50\% entering, 50\% exiting
$\mathrm{T}=1256 \quad$ Average Vehicle Trip Ends
628 entering 628 exiting
Saturday Peak Hour of Generator (Page 144)
Average Saturday
$\operatorname{Ln}(\mathrm{T})=0 . .79 \operatorname{Ln}(\mathrm{X})+2.79$
$\operatorname{Ln}(\mathrm{~T})=0.79 * \quad \operatorname{Ln}(10)+2.79$

Directional Distribution: 52\% ent. 48\% exit.
$\begin{array}{clc}\mathrm{T}= & 100 & \text { Average Vehicle Trip Ends } \\ 52 & \text { entering } & 48 \\ \text { exiting }\end{array}$
Non Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017-Page 190)

AM Peak Hour $=$	IN	Non-Pass By	Put Peak Hour $=$	Total		
	On	Non-Pass By				
AM Peak	64	39	103			
PM Peak	32	34	65			
Daily	414	414	828	PM Peak Hour Rate Applied to Daily		

Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017 -Page 190)

AM Peak Hour $=$	34%		Pass By	PM Peak Hour $=$	34%	Pass By
	IN	Out	Total			
AM Peak	33	20	54			
PM Peak	16	17	34			
Daily	214	214	428	PM Peak Hour Rate Applied to Daily		

Project Crossroads-Meadowbrook-Reagan Ranch (Crossroads Mix Use)

Subject

 Trip Generation for Pharmacy/Drugstore with Drive-Through Window| Designe by by JRP | Date _ February 08, 2021 | Job No. 096956015 | | |
| :--- | :--- | :--- | :--- | :--- |
| Checked by | | | | |
| Sheet No. | | | | |

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 10th Edition, Average Rate Equations
Land Use Code - Pharmacy/Drugstore with Drive-Through Window (881)

```
Independant Variable-1000 Sq. Feet Gross Floor Area (X)
```

 \(S F=14000\)
 \(X=14.000\)
 T = Average Vehicle Trip Ends
 Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (page Series 800 Page 562)

Average Weekday		Directional Distribution:				53\%	47\%
$\mathrm{T}=3.84$ (X)		$\mathrm{T}=$	54	Average Vehicle Trip Ends			
$(\mathrm{T})=3.84^{\star}$	(14.0)	29	entering		25		
		29	+ 25	5	$=$	54	

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (Series 800 page 563)

Weekday (Series 800 page 561)

Saturday Peak Hour of Generator (page 1807)

Non-Pass-by Trip Volumes (page 63, ITE Trip Generation Handbook, December 2012)

PM Average	Pass By Percentage:	51%		Pass By
	IN	Out	Total	
AM Peak	15	13	28	PM Rate Applied to AM Peak
PM Peak	37	37	73	
Daily	390	390	780	PM Rate Applied to Daily
Saturday	29	30	59	PM Rate Applied to Saturday

Pass-by Trip Volumes (page 63, ITE Trip Generation Handbook, December 2012)
PM Average Pass By Percentage: 49\% Pass By

	IN	Out	Total	
AM Peak	14	12	26	PM Rate Applied to AM Peak
PM Peak	35	35	71	
Daily	374	374	750	PM Rate Applied to Daily
Saturday	27	29	56	PM Rate Applied to Saturday

Project Crossroads-Meadowbrook-Reagan Ranch (Crossroads Mix Use)
Subject Trip Generation for High-Turnover (Sit-Down) Restaurant

| Designed by __JRP | Date \quad February 08, 2021 | Job No. 096956015 |
| :--- | :--- | :--- | :--- |
| Checked by | Date \quad Sheet No. $\quad 1$ | |

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 10th Edition, Average Rate Equations
Land Use Code - High Turnover Sit-Down Restaurant (932)
Independant Variable - 1000 Square Feet Gross Floor Area (X)

```
Gross Floor Area = 8,000 Square Feet
X = 8.000
T = Average Vehicle Trip Ends
```

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (900 Series Page 97)
Average Weekday Directional Distribution: 55\% ent. 45\% exit.

$\mathrm{T}=9.94(\mathrm{X})$		$\mathrm{T}=$	80	Average Vehicle Trip Ends
$\mathrm{T}=9.94^{*}$	8.000	44	entering	36

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (900 Series Page 98)

Average Weekday Directional Distribution: 62\% ent. 38\% exit.
$\begin{array}{ll}\mathrm{T}=9.77(\mathrm{X}) & \\ \mathrm{T}=9.77^{*} & 8.000\end{array}$

$\mathrm{T}=$	78	Average Vehicle Trip Ends
48	entering	30

Weekday (900 Series Page 96)
Average Weekday
Directional Distribution: 50\% entering, 50\% exiting
$\mathrm{T}=112.18$ (X) $\quad \mathrm{T}=898 \quad$ Average Vehicle Trip Ends
$\mathrm{T}=112.18$ * 8.000 449 entering 449 exiting
P.M. Peak Hour of Generator (900 Series Page 100)

Saturday Peak Hour of Generator (900 Series Page 105

| Average Saturday | Directional Distribution: | 51% | ent. | 49% | exit. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{T}=11.19(\mathrm{X})$ | | $\mathrm{T}=$ | 90 | Average Vehicle Trip Ends | |
| $\mathrm{T}=11.19^{*}$ | 8.000 | 46 | entering | 44 | exiting |

Non Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017-Page 207)

AM Peak Hour $=$	IN	Non	Non-Pass By		PM Peak Hour $=$	57%
	Out	Total				
AM Peak	25	20	45			
PM Peak	28	17	45			
Daily	256	256	512	PM Peak Hour Rate Applied to Daily		

Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017 -Page 207)

AM Peak Hour $=$	43%		Pass By	PM Peak Hour $=$	43%	Pass By
	IN	Out	Total			
AM Peak	19	15	35			
PM Peak	21	13	34			
Daily	193	193	386	PM Peak Hour Rate Applied to Daily		

Kimley»"Horn

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 10th Edition, Average Rate Equations
Land Use Code - Fast Food Restaurant With Drive-Through Window (934)
Independant Variable - 1000 Square Feet Gross Floor Area (X)
Gross Floor Area $=\quad 11,000$ Square Feet Fast
X = 11.000
T = Average Vehicle Trip Ends
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (900 Series page 158)

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (900 Series page 159)
Average Weekday Directional Distribution: 52\% ent. 48\% exit

$\mathrm{T}=32.67(\mathrm{X})$	
$\mathrm{T}=32.67^{*}$	11.000

T $=359 \quad$ Average Vehicle Trip Ends
187 entering 172 exiting
$187+172=359$

Weekday (900 Series page 157)

Average Weekday
$\mathrm{T}=470.95$ (X)
$\mathrm{T}=470.95^{\text {* }} \quad 11.000$
.

Directional Distribution: 50\% entering, 50\% exiting $\mathrm{T}=5182 \quad$ Average Vehicle Trip Ends 2591 entering 2591 exiting $2591+2591=5182$

Saturday Peak Hour of Generator (900 Series page 163)

Non Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017)

AM Peak Hour $=$	51%		Non-Pass By	
	IN	Out	Total	
AM Peak	115	111	225	
PM Peak	94	86	180	
Daily	1296	1296	2592	

PM Peak Hour Rate Applied to Daily

Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017)

AM Peak Hour $=$	49%		Pass By	PM Peak Hour $=$	50%	Pass By
	IN	Out	Total			
AM Peak	110	106	217			
PM Peak	94	86	180			
Daily	1295	1295	2590	PM Peak Hour Rate Applied to Daily		

Kimley»)Horn

Project \qquad Crossroads-Meadowbrook-Reagan Ranch (Crossroads Mix Use)
Subject Trip Generation for Coffee/Donut Shop with Drive Through
Designed by JRP Date_ February 08, 2021
Checked by \qquad Date \qquad Job No.
Sheet No. \qquad 15 of \qquad

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 10th Edition, Average Rate Equations
Land Use Code - Coffee/Donut Shop with Drive Through (937)
Independant Variable - 1000 Square Feet Gross Floor Feet (X)
Gross Floor Area $=\quad 2,500$
$\mathrm{X}=\quad 2.5$
T = Average Vehicle Trip Ends
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (Series 900 Page 232)
Directional Distribution: 51% ent. 49% exit.
T = 88.99 (X) $\quad \mathrm{T}=222 \quad$ Average Vehicle Trip Ends
$\mathrm{T}=88.99$ * 2.5
113 entering 109 exiting

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (Series 900 Page 233)
Directional Distribution: 50% ent. 50% exit.
$\mathrm{T}=43.38(\mathrm{X})$
$\mathrm{T}=43.38$ *
2.5

T = $110 \quad$ Average Vehicle Trip Ends
55 entering 55 exiting

Weekday (Series 900 Page 231)
Average Weekday
$(\mathrm{T})=820.38(\mathrm{X})$
$(\mathrm{T})=820.38$ *
(2.5)

Directional Distribution: 50\% entering, 50\% exiting T = $2050 \quad$ Average Vehicle Trip Ends 1025 entering 1025 exiting $1025+1025=2050$

Intersection Operational Outputs

Meadowbrook Parkway and Newt Drive

Overall 2026 \& 2040 Operations Summary

	AM									PM								
	$\begin{aligned} & \text { Set } \\ & \text { ID } \end{aligned}$	Queue (PCE)	95% Queue (PCE)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	$\begin{aligned} & \text { Set } \\ & \text { ID } \end{aligned}$	Queue (PCE)	95% Queue (PCE)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity
	Single Lane Roundabout - 2026																	
1- WB Meadowbrook Pkwy	D1	0.8	2.8	6.74	0.44	A	6.86	A	56% [3-EB Meadowbrook Pkwy]	D2	0.8	2.7	6.52	0.45	A	5.89	A	$74 \%$$[1-$ WBMeadowbrookPkwy]
2 - SB Newt Drive		0.1	0.5	5.36	0.07	A					0.1	0.5	5.07	0.08	A			
3-EB Meadowbrook Pkwy 4 - NB Newt Drive		1.1	2.1	7.49	0.51	A					0.6	2.7	5.94	0.36	A			
		1.0	2.1	6.50	0.48	A					0.6	2.7	5.30	0.39	A			
	Single Lane Roundabout - 2040																	
1-WB Meadowbrook Pkwy	D3	1.8	3.4	10.62	0.63	B	9.31	A	$29 \%$$[1-$ WBMeadowbrook Pkwy]	D4	1.8	3.6	10.67	0.64	B	9.66	A	$28 \%$$[3-$ EBMeadowbrookPkwy]
2 - SB Newt Drive		0.2	0.5	6.78	0.14	A					0.2	0.5	6.63	0.16	A			
3 - EB Meadowbrook Pkwy		1.6	2.3	9.71	0.62	A					1.8	3.7	10.89	0.64	B			
4 - NB Newt Drive		1.3	1.8	7.90	0.55	A					1.2	2.0	7.73	0.53	A			

Meadowbrook Parkway and Newt Drive

2026 Total AM Peak Hour

Intersection Diagram

Volumes

From \To	1 - WB Meadowbrook Pkwy	2-SB Newt Drive	$3-$ EB Meadowbrook Pkwy	4 - NB Newt Drive	Total
1 - WB Meadowbrook Pkwy	0	5	135	250	390
2 - SB Newt Drive	10	0	10	30	50
$3-$ EB Meadowbrook Pkwy	135	10	0	330	475
4 - NB Newt Drive	145	10	330	0	485
Total	290	25	475	610	-

Meadowbrook Parkway and Newt Drive

2026 Total AM Peak Hour

From \To	1- WB Meadowbrook Pkwy	2-SB Newt Drive	Meadowbrook Pkwy	3- EB 4B Newt Drive	Average
1- WB Meadowbrook Pkwy	0	3	3	3	2
2-SB Newt Drive	3	0	3	3	2
- EB Meadowbrook Pkwy	3	3	0	3	2
4 - NB Newt Drive	3	3	3	0	2
Average	2	2	2	2	-

Geometry and Analysis Results

Leg	1 - WB Meadowbrook -	2 - SB Newt Drive	3 - EB Meadowbrook -	4 - NB Newt Drive
V - Approach road half-width (ft)	14.00	14.00	14.00	14.00
E - Entry width (ft)	14.00	14.00	14.00	14.00
I^{\prime} - Effective flare length (ft)	0.0	0.0	0.0	0.0
R - Entry radius (ft)	65.0	65.0	65.0	65.0
D - Inscribed circle diameter (ft)	130.0	130.0	130.0	130.0
PHI - Conflict (entry) angle (deg)	20.0	20.0	20.0	20.0
Exit only	\square	\square	\square	\square
Leg has bypass	\square	\square	\square	\square
Percentage intercept adjustment (\%)	90.00	90.00	90.00	90.00
Average Demand (PCE/hr)	390	50	475	485
Max Delay (s)	6.74	5.36	7.49	6.50
Max LOS	A	A	A	A
Max 95th percentile Queue (PCE)	2.8	0.5	2.1	2.1
Max V/C Ratio	0.44	0.07	0.51	0.48

Meadowbrook Parkway and Newt Drive

2026 Total PM Peak Hour

Intersection Diagram

From \To	1-WB Meadowbrook Pkwy	2-SB Newt Drive	3- EB Meadowbrook Pkwy	$4-$ NB Newt Drive	Total
1-WB Meadowbrook Pkwy	0	10	105	305	420
2 - SB Newt Drive	15	0	10	35	60
3- EB Meadowbrook Pkwy	90	5	0	225	320
4 - NB Newt Drive	135	40	225	0	400
Total	240	55	340	565	

Meadowbrook Parkway and Newt Drive

2026 Total PM Peak Hour

From \To Truck Percentages					
Meadowbrook Pkwy	2-SB Newt Drive	3- EB Meadowbrook Pkwy	- - NB Newt Drive	Average	
Meadowbrook Pkwy	0	3	3	3	2
2-SB Newt Drive	3	0	3	3	2
3-EB Meadowbrook Pky	3	3	0	3	2
4 - NB Newt Drive	0	3	3	0	2
Average	2	2	2	2	-

Geometry and Analysis Results

Leg	1 - WB Meadowbrook -	2 - SB Newt Drive	3 - EB Meadowbrook -	4 - NB Newt Drive
V - Approach road half-width (ft)	14.00	14.00	14.00	14.00
E - Entry width (ft)	14.00	14.00	14.00	14.00
I^{\prime} - Effective flare length (ft)	0.0	0.0	0.0	0.0
R - Entry radius (ft)	65.0	65.0	65.0	65.0
D - Inscribed circle diameter (ft)	130.0	130.0	130.0	130.0
PHI - Conflict (entry) angle (deg)	20.0	20.0	20.0	20.0
Exit only	\square	\square	\square	\square
Leg has bypass	\square	\square	\square	\square
Percentage intercept adjustment (\%)	90.00	90.00	90.00	90.00
Average Demand (PCE/hr)	420	60	320	400
Max Delay (s)	6.52	5.07	5.94	5.30
Max LOS	A	A	A	A
Max 95th percentile Queue (PCE)	2.7	0.5	2.7	2.7
Max V/C Ratio	0.45	0.08	0.36	0.39

Meadowbrook Parkway and Newt Drive

2040 Total AM Peak Hour

Intersection Diagram

Volumes					
From \To	1-WB Meadowbrook Pkwy	2-SB Newt Drive	3-EB Meadowbrook Pkwy	4-NB Newt Drive	Total
1-WB Meadowbrook Pkwy	0	5	260	285	550
$2-$ SB Newt Drive	10	0	35	35	80
3-EB Meadowbrook Pkwy	205	30	0	320	555
4 - NB Newt Drive	165	15	345	0	525
Total	380	50	640	640	

Meadowbrook Parkway and Newt Drive

2040 Total AM Peak Hour

Truck Percentages

From \To	Meadowbrook Pkwy	- SB Newt Drive	3-EB Meadowbrook Pkwy	4 - NB Newt Drive	Average
1 - WB Meadowbrook Pkwy	0	3	3	3	2
2 - SB Newt Drive	3	0	3	3	2
$3-$ EB Meadowbrook Pkwy	3	3	0	3	2
4 - NB Newt Drive	3	3	3	0	2
Average	2	2	2	2	-

Geometry and Analysis Results

The screen is locked to the current TYPE of item. Click the padlock again to lock to the current PARTICULAR item or s				
V - Approach road half-width (ft)	14.00	14.00	14.00	14.00
E - Entry width (ft)	14.00	14.00	14.00	14.00
I - Effective flare length (ft)	0.0	0.0	0.0	0.0
R - Entry radius (ft)	65.0	65.0	65.0	65.0
D - Inscribed circle diameter (f)	130.0	130.0	130.0	130.0
PHI - Conflict (entry) angle (deg)	20.0	20.0	20.0	20.0
Exit only	\square	\square	\square	\square
Leg has bypass	\square	\square	\square	\square
Percentage intercept adjustment (\%)	90.00	90.00	90.00	90.00
Average Demand (PCE/hr)	550	80	555	525
Max Delay (s)	10.62	6.78	9.71	7.90
Max LOS	B	A	A	A
Max 95th percentie Queue (PCE)	3.4	0.5	2.3	1.8
Max V/C Ratio	0.63	0.14	0.62	0.55

Meadowbrook Parkway and Newt Drive

2040 Total PM Peak Hour

Intersection Diagram

From \ To	1-WB Meadowbrook Pkwy	2-SB Newt Drive	Meadowbrook Pkwy	4 - NB Newt Drive	Total
1-WB Meadowbrook Pkwy	0	15	190	355	560
2 - SB Newt Drive	15	0	35	45	95
$3-$ EB Meadowbrook Pkwy	235	30	0	280	545
4 - NB Newt Drive	150	45	300	0	495
Total	400	90	525	680	

Meadowbrook Parkway and Newt Drive

2040 Total PM Peak Hour

Truck Percentages					
From \ To	1-WB Meadowbrook Pkwy	2-SB Newt Drive	Meadowbrook Pkwy	4 - NB Newt Drive	Average
1-WB Meadowbrook Pkwy	0	3	3	3	2
2 - SB Newt Drive	3	0	3	3	2
$3-$ EB Meadowbrook Pkwy	3	3	0	2	2
4 - NB Newt Drive	3	3	3	0	2
Average	2	2	2	2	-

Geometry and Analysis Results

Leg	1 - WB Meadowbrook -	2 - SB Newt Drive	3 - EB Meadowbrook -	4 - NB Newt Drive
V - Approach road half-width (ft)	14.00	14.00	14.00	14.00
E - Entry width (ft)	14.00	14.00	14.00	14.00
I^{\prime} - Effective flare length (ft)	0.0	0.0	0.0	0.0
R - Entry radius (ft)	65.0	65.0	65.0	65.0
D - Inscribed circle diameter (ft)	130.0	130.0	130.0	130.0
PHI - Conflict (entry) angle (deg)	20.0	20.0	20.0	20.0
Exit only	\square	\square	\square	\square
Leg has bypass	\square	\square	\square	\square
Percentage intercept adjustment (\%)	90.00	90.00	90.00	90.00
Average Demand (PCE/hr)	560	95	545	495
Max Delay (s)	10.67	6.63	10.89	7.73
Max LOS	B	A	B	A
Mex 95th percentie Queue (PCE)	3.6	0.5	3.7	2.0
Max V/C Ratio	0.64	0.16	0.64	0.53

Intersection						
Int Delay, s/veh	8					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	F			A	Mr	
Traffic Vol, veh/h	0	0	20	0	0	55
Future Vol, veh/h	0	0	20	0	0	55
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	115	-	0	-
Veh in Median Storage, $\#$	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	0	22	0	0	60

Intersection						
Int Delay, s/veh	7.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	F			A	Mr	
Traffic Vol, veh/h	0	0	55	0	0	35
Future Vol, veh/h	0	0	55	0	0	35
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	115	-	0	-
Veh in Median Storage, $\#$	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	0	60	0	0	38

Intersection						
Int Delay, s/veh	1.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	$\mathbf{7}$			A	Mr	
Traffic Vol, veh/h	195	5	15	260	15	45
Future Vol, veh/h	195	5	15	260	15	45
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	115	-	0	-
Veh in Median Storage, $\#$	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	212	5	16	283	16	49

Major/Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	217	0	530	215
Stage 1	-	-	-	-	215	-
Stage 2	-	-	-	-	315	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1353	-	510	825
Stage 1	-	-	-	-	821	-
Stage 2	-	-	-	-	740	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1353	-	504	825
Mov Cap-2 Maneuver	-	-	-	-	581	-
Stage 1	-	-	-	-	821	-
Stage 2	-	-	-	-	731	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.4		10.3	
HCM LOS					B	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	2 WBL	WBT
Capacity (veh/h)		747	-	-	1353	-
HCM Lane V/C Ratio		0.087	-	-	0.012	-
HCM Control Delay (s)		10.3	-	-	7.7	-
HCM Lane LOS		B	-	-	A	-
HCM 95th \%tile Q(veh)		0.3	-	-	0	-

Intersection						
Int Delay, s/veh	1.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow		1	4	Mr	
Traffic Vol, veh/h	260	15	45	195	10	30
Future Vol, veh/h	260	15	45	195	10	30
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	115	-	0	-
Veh in Median Storage, \#	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	283	16	49	212	11	33

Major/Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	299	0	601	291
Stage 1	-	-	-	-	291	-
Stage 2	-	-	-	-	310	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1262	-	463	748
Stage 1	-	-	-	-	759	-
Stage 2	-	-	-	-	744	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1262	-	445	748
Mov Cap-2 Maneuver	-	-	-	-	539	-
Stage 1	-	-	-	-	759	-
Stage 2	-	-	-	-	715	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		1.5		10.6	
HCM LOS					B	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	2 WBL WBT	
Capacity (veh/h)		682	-	-	1262	-
HCM Lane V/C Ratio		0.064	-	-	0.039	-
HCM Control Delay (s)		10.6	-	-	8	-
HCM Lane LOS		B	-	-	A	-
HCM 95th \%tile Q(veh)		0.2	-	-	0.1	-

Intersection						
Int Delay, s/veh	7.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			A	Mr	
Traffic Vol, veh/h	55	0	460	20	0	160
Future Vol, veh/h	55	0	460	20	0	160
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	115	-	-	-
Veh in Median Storage, $\#$	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	60	0	500	22	0	174

Intersection						
Int Delay, s/veh	6.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	$\mathbf{~}$			A	Mr	
Traffic Vol, veh/h	35	0	305	55	0	110
Future Vol, veh/h	35	0	305	55	0	110
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	115	-	-	-
Veh in Median Storage, $\#$	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	38	0	332	60	0	120

Intersection						
Int Delay, s/veh	10.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	$\mathbf{7}$			A	Mr	
Traffic Vol, veh/h	195	45	430	205	70	150
Future Vol, veh/h	195	45	430	205	70	150
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	115	-	-	-
Veh in Median Storage, $\#$	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	212	49	467	223	76	163

Major/Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	261	0	1394	237
Stage 1	-	-	-	-	237	-
Stage 2	-	-	-	-	1157	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1303	-	156	802
Stage 1	-	-	-	-	802	-
Stage 2	-	-	-	-	299	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1303	-	100	802
Mov Cap-2 Maneuver	-	-	-	-	166	-
Stage 1	-	-	-	-	802	-
Stage 2	-	-	-	-	192	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		6.3		32.5	
HCM LOS					D	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	W WBL	WBT
Capacity (veh/h)		361	-	-	1303	-
HCM Lane V/C Ratio		0.662	-	-	0.359	-
HCM Control Delay (s)		32.5	-	-	9.3	-
HCM Lane LOS		D	-	-	A	-
HCM 95th \%tile Q(veh)		4.5	-	-	1.7	-

Intersection						
Int Delay, s/veh	6.5					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow		1	个	Mr	
Traffic Vol, veh/h	250	35	335	185	55	115
Future Vol, veh/h	250	35	335	185	55	115
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	115	-	-	-
Veh in Median Storage, $\#$	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	272	38	364	201	60	125

Intersection						
Int Delay, s/veh	3.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			个		$\mathbf{7}$
Traffic Vol, veh/h	210	0	0	475	0	260
Future Vol, veh/h	210	0	0	475	0	260
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,	0	-	-	0	0	-
Grade, $\%$	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	228	0	0	516	0	283

Major/Minor	Major1	Major2	Minor1			
Conflicting Flow All	0	0	-	-	-	228

Stage 1 Stage 2
Critical Hdwy6.22

Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy - - - - 3.318
Pot Cap-1 Maneuver - - 0 - 0811
Stage 1 - - 0 - 0
Stage 2 - $0 \quad 0 \quad 0 \quad$ -

Platoon blocked, \%
Mov Cap-1 Maneuver - 811

Mov Cap-2 Maneuver
Stage 1
Stage 2

Approach	EB	WB	NB
HCM Control Delay, S	0	0	11.8

HCMLOS B

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	811	-	-	-
HCM Lane V/C Ratio	0.348	-	-	-
HCM Control Delay (s)	11.8	-	-	-
HCM Lane LOS	B	-	-	-
HCM 95th \%ttile Q(veh)	1.6	-	-	-

Intersection						
Int Delay, s/veh	2.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			A		$\mathbf{7}$
Traffic Vol, veh/h	140	0	0	360	0	180
Future Vol, veh/h	140	0	0	360	0	180
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,	0	-	-	0	0	-
Grade, $\%$	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	152	0	0	391	0	196

| Major/Minor | Major1 | Major2 | | Minor1 | |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| Conflicting Flow All | 0 | 0 | - | - | -152 |

Stage 1 Stage 2
Critical Hdwy6.22

Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy - - - - 3.318
Pot Cap-1 Maneuver - - 0 - 0894
Stage 1 - - 0 - 0
Stage 2 - $0 \quad 0 \quad 0 \quad$ -

Platoon blocked, \%
Mov Cap-1 Maneuver - - - - . 894

Mov Cap-2 Maneuver
Stage 1
Stage 2

	EB	WB	NB
Approach	0	10.2	
HCM Control Delay, S	0	0	B

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	894	-	-	-
HCM Lane V/C Ratio	0.219	-	-	-
HCM Control Delay (s)	10.2	-	-	-
HCM Lane LOS	B	-	-	-
HCM 95th \%tile Q(veh)	0.8	-	-	-

Intersection						
Int Delay, s/veh	2.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			个		$\mathbf{7}$
Traffic Vol, veh/h	310	30	0	635	0	245
Future Vol, veh/h	310	30	0	635	0	245
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,	0	-	-	0	0	-
Grade, $\%$	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	337	33	0	690	0	266

| Major/Minor | Major1 | Major2 | Minor1 | | |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| Conflicting Flow All | 0 | 0 | - | - | -354 |

Stage 1 Stage 2
Critical Hdwy6.22

Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy - - - - 3.318
Pot Cap-1 Maneuver - - 0 - 0690
Stage 1 - $\quad 0 \quad$ - 0
Stage 2 - $0 \quad 0 \quad 0 \quad$ -

Platoon blocked, \%
Mov Cap-1 Maneuver - - - - . 690

Mov Cap-2 Maneuver
Stage 1
Stage 2

Approach	EB	WB	NB
HCM Control Delay, S	0	0	13.5

HCMLOS B

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	690	-	-	-
HCM Lane V/C Ratio	0.386	-	-	-
HCM Control Delay (s)	13.5	-	-	-
HCM Lane LOS	B	-	-	-
HCM 95th \%tile Q(veh)	1.8	-	-	-

| Major/Minor | Major1 | Major2 | | Minor1 | |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| Conflicting Flow All | 0 | 0 | - | - | -389 |

Stage 1 Stage 2
Critical Hdwy6.22

Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy - - - - 3.318
Pot Cap-1 Maneuver - - 0 - 0659
Stage 1 - $\quad 0 \quad$ - 0
Stage 2 - $0 \quad 0 \quad 0 \quad$ -

Platoon blocked, \%
Mov Cap-1 Maneuver - . - - . 659

Mov Cap-2 Maneuver
Stage 1
Stage 2

Approach	EB	WB	NB
HCM Control Delay, s	0	0	13
HCM LOS			B

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	659	-	-	-
HCM Lane V/C Ratio	0.322	-	-	-
HCM Control Delay (s)	13	-	-	-
HCM Lane LOS	B	-	-	-
HCM 95th \%tile Q(veh)	1.4	-	-	-

Proposed Site Plan

[^0]: 1 Institute of Transportation Engineers, Trip Generation Manual, Tenth Edition, Washington DC, 2017.

[^1]: 2 Transportation Research Board, Highway Capacity Manual, Sixth Edition, Washington DC, 2016.

