PRELIMINARY \& FINAL DRAINAGE REPORT
 FOR ELLICOTT TOWN CENTER - FILING NO. 1

Prepared for:
Colorado Springs Mayberry, LLC
32823 Temecula Parkway
Temecula, CA 92592

April 19, 2006
Revised June 23, 2006
Revised January 15, 2007
Revised August 24, 2018
Revised January 15, 2019
Revised September 12, 2019

Engineering Review
 10/18/2019 10:08:54 AM dsdrice
 JeffRice@elpasoco.com
 (719) 520-7877
 EPC Planning \& Community Development Department

Prepared by:

19 East Willamette Avenue
Colorado Springs, CO 80903
(719)-477-9429
www.jpsengr.com

FINAL DRAINAGE REPORT ELLICOTT TOWN CENTER - FILING NO. 1
 TABLE OF CONTENTS

PAGE

EXECUTIVE SUMMARY i
DRAINAGE STATEMENT ii
FLOODPLAIN STATEMENT iii
I. GENERAL LOCATION AND DESCRIPTION 1
II. DRAINAGE BASINS AND SUB-BASINS 3
III. DRAINAGE DESIGN CRITERIA 5
IV. DRAINAGE PLANNING FOUR STEP PROCESS 6
V. GENERAL DRAINAGE RECOMMENDATIONS 7
VI. DRAINAGE FACILITY DESIGN 8
VII. EROSION CONTROL 14
VIII. COST ESTIMATE AND DRAINAGE FEES. 15
IX. MAINTENANCE 15
X. SUMMARY 15

FINAL DRAINAGE REPORT ELLICOTT TOWN CENTER - FILING NO. 1 TABLE OF CONTENTS (CONT.)

APPENDICES

APPENDIX A	Soils Information
APPENDIX B1	Hydrologic Calculations (Rational Method)
APPENDIX B2	Hydrologic Calculations (SCS)
APPENDIX C	Detention Pond Calculations
APPENDIX D1	Street Capacity \& Storm Sewer Hydraulic Calculations
APPENDIX D2	Culvert Hydraulic Calculations
APPENDIX D3	Open Channel Hydraulic Calculations
APPENDIX E	Cost Estimate
APPENDIX F	Figures
FIGURE A1:	Vicinity Map
FIGURE A2:	Soils Map
FIGURE A3:	Floodplain Map
FIGURE EX1:	Major Basin / Historic Drainage Plan
FIGURE EX2:	Historic Drainage Plan
FIGURE D1:	Developed Drainage Plan
FIGURE D1.01	1: Phase 1 Developed Drainage Plan
FIGURE D1.11	1: Filing No. 1 Developed Drainage Plan
FIGURE D1.12	2: East Site Developed Drainage Plan
FIGURE C1.05	5: Detention Pond C1 Plan \& Details
FIGURE C1.06	6: Detention Pond C2.8 Plan \& Details

ELLICOTT TOWN CENTER - FILING NO. 1 FINAL DRAINAGE REPORT EXECUTIVE SUMMARY

A. Background

- Ellicott Town Center is a proposed mixed-use development with an approved PUD consisting of 1,048 residential units, 32 -acres of commercial space, and associated land uses. The project is located on a 550.6 -acre parcel on the south side of State Highway 94 approximately 2 miles west of Ellicott Highway.
- The proposed Ellicott Town Center Filing No. 1 subdivision consists of 98 singlefamily residential units on 228.0 acres at the north end of the development.
- The Ellicott Town Center Filing No. 1 site is located entirely within the Ellicott Consolidated Drainage Basin, which comprises about 13 square miles, or 8,320 acres. The Ellicott Town Center development area represents approximately 7 percent of the total area of the Ellicott Consolidated Basin.

B. General Drainage Concept

- Historic drainage from off-site areas upstream of the site will be conveyed through the development within grass-lined drainage swales and channels meandering through dedicated open space areas. These drainage channels will serve as "greenways," with trails along the drainage channels linked to a network of trails running throughout the development.
- Developed drainage within the site will be conveyed through paved streets with curb and gutter and storm sewers, as well as grass-lined channels and drainage swales through open space areas.

C. Drainage Impacts

- Developed flows from Ellicott Town Center Filing No. 1 will be detained to historic levels through on-site detention ponds.
- Drainage facilities within public roads will be designed and constructed to El Paso County standards and dedicated to the County for maintenance.
- Drainage facilities such as channels running through private open space areas and detention ponds will be owned and maintained by the Ellicott Town Center Homeowners Association or Metropolitan District.

DRAINAGE STATEMENT

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for liability caused by negligent acts, errors or omissions on my part in preparing this report.

John P. Schwab, P.E. \#29891

Developer's Statement:

I, the developer have read and will comply with all of the requirements specified in this drainage report and plan.

By:
Printed Name: Randy Goodson, Manager
Date
Colorado Springs Mayberry LLC
32823 Temecula Parkway, Temecula, CA 92592

El Paso County's Statement

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2, and Engineering Criteria Manual as amended.

[^0]Date

Conditions:

FLOODPLAIN STATEMENT

To the best of my knowledge and belief, no parts of the Ellicott Town Center Subdivision are located in a FEMA designated floodplain, as shown on FIRM panel No. 08041C0825F, dated March 17, 1997.

John P. Schwab, P.E. \#29891

I. GENERAL LOCATION AND DESCRIPTION

A. Background

Ellicott Town Center is a proposed subdivision located west of Ellicott, Colorado in El Paso County. The development is located on the south side of State Highway 94, approximately 1-1/2 miles west of Ellicott Highway, as shown in Figure A1 (Appendix F). The approved Ellicott Town Center Sketch Plan includes a total of 1,048 single-family dwelling units and 32 acres of commercial space. Ellicott Town Center Filing No. 1 consists of 98 single-family residential units on 228.0-acres near the north boundary of the project. Colorado Springs Mayberry, LLC is moving forward with development of Ellicott Town Center Filing No. 1, which was approved by the Board of County Commissioners on April 12, 2007 (Resolution No. 07-132).

B. Scope

This report is provided in support of recording of the "Ellicott Town Center Filing No. 1 Final Plat." The report is intended to fulfill the El Paso County requirements for a Final Drainage Report (FDR). The report will provide a summary of site drainage issues impacting the proposed development, including analysis of impacts from upstream drainage patterns, site-specific developed drainage patterns, and impacts on downstream facilities. This FDR report was prepared based on the guidelines and criteria presented in the El Paso County Drainage Criteria Manual, providing final design of required drainage facilities for this phase of the project.

C. Site Location and Description

The Ellicott Town Center parcel comprises the west half of Section 14 along with the contiguous east quarter of Section 15, as well the west half of the northeast quarter of Section 14, Township 14 South, Range 63 West of the 6th Principal Meridian. The site is located at an elevation of approximately 6,060 feet above mean sea level. The 550.6 -acre site is currently undeveloped, with the exception of the existing Viewpoint Water Tank site at the northwest corner of the parcel. Filing No. 1 comprises 228.0 -acres at the north end of the Ellicott Town Center development.

State Highway 94 borders the parcel to the north, and unplatted agricultural properties (zoned A35) border this parcel on the east and south sides. Unplatted property zoned RR3 borders this parcel to the west. The existing 2-1/2-acre lot Viewpoint Estates subdivision (72 lots on 236 acres) is located immediately northwest of this parcel, across State Highway 94. The 5-acre lot Antelope Park Ranchettes subdivision (44 lots on 240 acres) borders Viewpoint Estates to the northwest.

The Ellicott Town Center development will include 1,048 residential lots, along with associated commercial / mixed-use development and an elementary school. Filing No. 1 includes 98 singlefamily residential lots at the north end of the development. Site improvements will include overlot grading and curb, gutter, and asphalt paving of the roads within the site.

The primary access to Ellicott Town Center will be provided by construction of New Log Road, which will run through the site from north to south as a minor arterial roadway (120' right-of-way). New Log Road will ultimately intersect with a new extension of Handle Road at the southerly site boundary, which will extend east to the existing Log Road south of SH94. Primary access to Filing No. 1 will be provided through construction of the New Log Road intersection at SH94. Secondary access will be provided through an existing approved access point east of New Log Road along the frontage of the former "Springs East Village" parcel. The secondary access will consist of gravel road extensions of Village Main Street and Springs Road with Filing No. 1. The secondary access road extensions will be paved with the adjoining future filing.

The intermittent streams throughout this area drain into the Black Squirrel Creek Basin which ultimately outfalls into the Arkansas River. The entire Filing No. 1 site is located within the Ellicott Consolidated Drainage Basin (CHBS1200). This basin conveys surface drainage to the West Fork of Black Squirrel Creek, which is located east of this parcel between the site and Ellicott Highway.

The terrain is generally flat with gentle northwest to southeast slopes ranging from one to two percent. Historic drainage patterns from the site are conveyed overland to the south and east boundaries of the site. The entire site is covered with native grasses, except for the existing water tank site at the northwest corner of the parcel.

D. General Soil Conditions

According to the Soil Survey of El Paso County prepared by the Soil Conservation Service, on-site soils are comprised primarily of "Blakeland series (type 8)" soils (see Figure A2). The Blakeland soils are characterized as well-drained loamy sand with rapid permeability, slow surface runoff rates, and moderate hazard of erosion. These soils are classified as hydrologic soils group "A" for drainage analysis purposes.

E. References

City of Colorado Springs \& El Paso County "Drainage Criteria Manual," revised October 12, 1994.
City of Colorado Springs "Drainage Criteria Manual, Volumes 1 and 2," revised May, 2014.
CDOT, "CDOT Drainage Design Manual," 2004.

David R. Sellon \& Associates Inc., "Antelope Park Ranchettes Interior Drainage Plan," March, 1972.

El Paso County Planning Department, "Ellicott Valley Comprehensive Plan," March, 1989.
El Paso County "Engineering Criteria Manual," January 9, 2006.

El Paso County Resolution No. 15-042 (El Paso County adoption of "Chapter 6: Hydrology" and "Chapter 13, Section 3.2.1: Full Spectrum Detention" of the City of Colorado Springs Drainage Criteria Manual dated May 2014).

FEMA, Flood Insurance Rate Map (FIRM) Number 08041C1025-F, March 17, 1997.
JPS Engineering, "Master Development Drainage Plan for Ellicott Town Center," November 22, 2005 (Approved by El Paso County 12/02/05).

JPS Engineering, "Master Development Drainage Plan and Preliminary Drainage Report for Springs East Village," March 21, 2002 (Approved by El Paso County 10/23/02).

JPS Engineering, "Master Development Drainage Plan and Preliminary Drainage Report for Viewpoint Village," January 28, 2002 (Approved by El Paso County 9/11/02).

JPS Engineering, "Preliminary Drainage Report for Ellicott Town Center - Phase 1," January 15, 2007.

Leigh Whitehead \& Associates, Inc., "Master Development Drainage Plan for Sunset Village," May, 2000 (Approved by El Paso County 8/31/00).

Pacific Summits Engineering, "Final Drainage Report for Viewpoint Estates," January 6, 1998 (Approved by El Paso County 10/6/99).

United Planning and Engineering, "Preliminary Drainage Plan \& Report for Springs East," November 19, 1999.

United Planning and Engineering, "Drainage Plan \& Report for Viewpoint Subdivision," May, 2000.

USDA/NRCS, "Soil Survey of El Paso County Area, Colorado," June, 1981.

II. DRAINAGE BASINS AND SUB-BASINS

A. Major Basin Description

The proposed development lies primarily within the Ellicott Consolidated Drainage Basin (CHBS1200) as classified by El Paso County. This basin is comprised of the area tributary to the West Fork of Black Squirrel Creek, with the majority of the basin bounded by SH94 to the north and Ellicott Highway to the east. No drainage planning study has been completed for the Ellicott Consolidated Drainage Basin or any adjacent drainage basins. El Paso County approved the "Sunset Village Master Development Drainage Plan (MDDP)" prepared by Leigh Whitehead. This MDDP covers the adjacent Telephone Exchange Drainage Basin, which borders the Ellicott Town

Center parcel to the west. Based on the Drainage Report for Viewpoint Estates, stormwater detention ponds were constructed to maintain historic flows leaving the upstream developed areas. As such, the drainage analysis for major basins impacting the site will assume that historic flows enter this parcel from upstream.

The major drainage basins lying in and around the proposed development are depicted in Figure EX1. Ellicott Town Center is located primarily within the Ellicott Consolidated Drainage Basin, which comprises a tributary area of about 13 square miles, or 8,320 acres. The proposed Ellicott Town Center subdivision represents a total of 551 acres of development, or 7 percent of the total basin area. An "on-site" drainage planning approach has been proposed based on the relatively small developed area in comparison to the remaining undeveloped basin area, which is primarily agricultural land.

The existing site topography has several off-site drainage basins that enter the north and west boundaries of the Ellicott Town Center parcel. Triple 30-inch CMP culverts cross SH94 at several locations along the north boundary of the site. These off-site basins combine with on-site flows, following existing grass-lined swales southeasterly through the site. The site historically consists of five major basins conveying flows towards the south and eastern boundaries of the site, as shown in Figure EX2. Flows from the majority of the site (Basins B-E) combine with the tributary areas downstream of the site, flowing southeasterly to an existing natural channel towards Black Squirrel Creek.

This western tributary downstream of the Ellicott Town Center parcel overtops Ellicott Highway at a low point 2-1/2 miles south of SH94 and combines with the West Fork of Black Squirrel Creek on the east side of Ellicott Highway. The roadway crossing significantly downstream of this site is an existing deficiency, and a future culvert should be constructed at the low point in Ellicott Highway in conjunction with future County roadway improvements.

Flows from the southwest corner of the site (Basins A and BB) combine with the tributary area in the Telephone Exchange Basin identified as Basin A32 ($2.89 \mathrm{sm} ; \mathrm{Q}_{5}=92 \mathrm{cfs}, \mathrm{Q}_{100}=438 \mathrm{cfs}$) in the Sunset Village MDDP. This basin flows southeasterly and ultimately crosses Enoch Road and Ellicott Highway at the northeast corner of the Sunset Village Development.

B. Floodplain Impacts

Ellicott Town Center is located approximately one mile southwest of the 100-year floodplain limits for the West Fork of Black Squirrel Creek, as delineated by the Federal Emergency Management Agency (FEMA). The floodplain limits in the yicintiy of the sitenatesthown in Flood Insurance Rate Map (FIRM) Number 08041 (0825-F, dated March 17, 1997 (fee Figure A3).

C. Sub-Basin Description

The developed drainage basins lying within the proposed development are depicted in Figure D1. The interior site layout has been delineated into several drainage basins (A-E) based on the proposed interior road layout and grading scheme. The natural drainage patterns will be impacted through development by site grading and concentration of runoff in subdivision street gutters, storm drains, and channels. The majority of sub-basins drain to the southeast, collecting in the interior roads and drainage channels. On-site flows will be diverted to proposed detention ponds located at the south and east boundaries of the site, and detained runoff flows will discharge to the southeast, following historic drainage paths.

III. DRAINAGE DESIGN CRITERIA

A. Development Criteria Reference

The Ellicott Consolidated Drainage Basin has not had a Drainage Basin Planning Study performed for the basin. The majority of areas within the basin are comprised of agricultural lands and rural residential uses.

A "Master Development Drainage Plan (MDDP)" for Ellicott Town Center was approved concurrent with the Amended Sketch Plan submittal, and a Preliminary Drainage Report for Phase One was approved with the Phase One PUD and Preliminary Plan. This Final Drainage Report fully conforms to the previously approved MDDP and Preliminary Drainage Report.

B. Hydrologic Criteria

SCS procedures were utilized for analysis of major basin flows impacting the site. In accordance with El Paso County drainage criteria, SCS hydrologic calculations were based on the following assumptions:

- Design storm (minor)
- Design storm (major)
- Storm distribution
- 100-year, 24 -hour rainfall
- 5-year, 24-hour rainfall
- Hydrologic soil type
- SCS curve number - undeveloped conditions
- SCS curve number - developed conditions
- SCS curve number - developed conditions

5-year
100-year
SCS Type IIA (eastern Colorado)
4.4 inches per hour (NOAA isopluvial map)
2.6 inches per hour (NOAA isopluvial map)

B
61 (pasture / range)
80 (1/8-1/4 acre lots)
92 (commercial areas)

Rational method procedures were utilized for calculation of peak flows within the on-site drainage basins. Rational method hydrologic calculations were based on the following assumptions:

- Design storm (minor)
- Design storm (major)
- Rainfall Intensities
- Hydrologic soil type
- Runoff Coefficients - undeveloped: Existing pasture/range areas
- Runoff Coefficients - developed:

Proposed Residential (1/8-1/4 acre lots)
Proposed Neighborhood Commercial
0.375
0.545

5-year
100-year
El Paso County I-D-F Curve
A
C5
0.25
0.35
0.62

Composite runoff coefficients for the developed residential areas have been calculated based on average lot sizes between 1/8-acre and 1/4-acre. Hydrologic calculations are enclosed in Appendix B , and peak design flows are identified on the drainage basin drawings. While the hydrologic modeling spreadsheets in Appendix B provide comprehensive preliminary information for the overall Ellicott Town Center project, only the design points associated with Basin C are applicable to this Final Drainage Report.

IV. DRAINAGE PLANNING FOUR STEP PROCESS

El Paso County Drainage Criteria require drainage planning to include a Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls.

As stated in DCM Volume 2, the Four Step Process is applicable to all new and re-development projects with construction activities that disturb 1 acre or greater or that disturb less than 1 acre but are part of a larger common plan of development. The Four Step Process has been implemented as follows in the planning of this project:

Step 1: Employ Runoff Reduction Practices

- Minimize Impacts: The approved Planned Unit Development includes significant open space, play areas, and parks, resulting in a moderate level of impervious site development.
- Minimize Directly Connected Impervious Areas (MDCIA): The proposed development will include landscaped areas adjoining the proposed building and parking lots, providing for impervious areas to drain across pervious areas where feasible.
- Grass Swales: The proposed drainage plan incorporates grass-lined swales in selected locations to encourage stormwater infiltration while providing positive drainage through the site.

Step 2: Stabilize Drainageways

- Proper erosion control measures will be implemented along the grass-lined drainage channels to provide stabilized drainageways within the site.

Step 3: Provide Water Quality Capture Volume (WQCV)

- EDB: The developed areas of the site will drain through proposed Full-Spectrum Extended Detention Basins (EDB) southeast of the developed areas. Site drainage will be routed through the extended detention basins, which will capture and slowly release the WQCV over an extended release period.
- Stormwater detention and WQCV for Filing No. 1 will be provided by Detention Pond C 1 , with the exception of a small area along the easterly fringe of the Filing No. 1. The narrow easterly strip will sheet flow into grass-lined Channel C1-C3 providing water quality for this small area.

Step 4: Consider Need for Industrial and Commercial BMPs

- No industrial or commercial land uses are proposed as part of the Filing No. 1 development.

V. GENERAL DRAINAGE RECOMMENDATIONS

The developed drainage plan for the site is to provide and maintain positive drainage away from structures and conform to the established drainage patterns for the overall site. JPS Engineering recommends that positive drainage be established and maintained away from all structures within the site in conformance with applicable building codes and geotechnical engineering recommendations.

Site grading and drainage improvements performed as a part of subdivision infrastructure development includes overlot grading and subdivision drainage improvements depicted on the subdivision construction drawings. Individual lot grading is the sole responsibility of the individual builders and property owners. Final grading of each home site should establish proper protective slopes and positive drainage in accordance with HUD guidelines and building codes. In general, main floor elevations for each home should be established approximately 2 feet above the top of curb of the adjoining street.

In general, we recommend a minimum of 6 inches clearance from the top of concrete foundation walls to adjacent finished site grades. Positive drainage slopes should be maintained away from all structures, with a minimum recommended slope of 5 percent for the first 10 feet away from buildings in landscaped areas, a minimum recommended slope of 2 percent for the first 10 feet away from buildings in paved areas, and a minimum slope of 1 percent for paved areas beyond buildings.

VI. DRAINAGE FACILITY DESIGN

A. General Concept

Consistent with generally accepted practices in eastern El Paso County, the general concept for management of stormwater from development of Ellicott Town Center will be to construct several stormwater detention ponds along the south and east boundaries of the site to mitigate the impacts of developed runoff flows from the site.

Development of the Ellicott Town Center project will require site grading and paving, resulting in additional impervious areas across the site. The general drainage pattern will consist of grading away from home sites to swales and gutters along the internal roads within the subdivision, conveying runoff flows through the site. Runoff from the site will flow by street gutters to curb inlets at low points and road intersections, thence by storm drains and drainage channels to the proposed detention ponds. The storm inlets and storm sewer system within the development will be designed as the "minor" drainage system, sized for 5-year developed peak flows. The internal road system, drainage channels, and detention ponds will be designed as the "major" drainage system, sized for 100-year peak flows. Street flows within subdivision streets will be maintained below allowable levels in accordance with El Paso County drainage criteria.

B. Specific Details

1. Existing Drainage Conditions

Historic drainage conditions are depicted in Figure EX2. The site has been divided into six major basins ($\mathrm{A}, \mathrm{B}, \mathrm{BB}, \mathrm{C}, \mathrm{D}$, and E). The undeveloped site currently has no drainage facilities within the parcel. The existing off-site drainage basins northwest of the site generally combine with on-site basins as shown on Figure EX2, flowing southeasterly through the site within existing grass-lined drainage swales and channels.

The Viewpoint Estates subdivision northwest of this site included two stormwater detention ponds on the north side of State Highway 94. As detailed in Appendix B1, rational method drainage calculations for upstream off-site Basins OA2 and EC12 have been calculated based on equivalent areas to reflect the design pond discharge rates as presented in the approved drainage report for Viewpoint Estates.

The site is impacted by several large off-site drainage areas within the Ellicott Consolidated Drainage Basin. Off-site flows from Basin EC11 north of this property cross State Highway 94 in a triple 30 -inch CMP culvert crossing, and continue flowing southeasterly through an existing grass-lined swale across Basin D to Design Point \#5, with historic peak flows of Q_{5} $=30.6$ cfs and $\mathrm{Q}_{100}=174.9 \mathrm{cfs}(\mathrm{SCS}$ Method $)$.

Off-site flows from Basin EC10 north of this property cross State Highway 94 in another triple 30-inch CMP culvert crossing near the northeast corner of this site. These flows drain through an existing grass-lined swale across Basin E to Design Point \#6, with historic peak flows of $\mathrm{Q}_{5}=19.1 \mathrm{cfs}$ and $\mathrm{Q}_{100}=111.4 \mathrm{cfs}$ (SCS Method). As shown on Sheet EX2, two existing driveway culverts on the south side of SH94 convey flows from the roadside ditch on the south side of SH94 easterly to converge with the existing swale on the downstream side of the triple 30 -inch CMP culverts, combining with Basin EC10. These flows continue southeasterly in the existing swale within Basin E .

Drainage from Basins A-C continues flowing southeasterly off-site within existing broad natural channels through the adjoining properties to the south and east. The downstream drainage continues southeast to a more defined natural channel, forming the West Tributary to the Middle Fork of Black Squirrel Creek. Historic drainage from Basins D and E flows southeast to the westerly ditch along "Old" Log Road, then turns east and follows the southerly ditch of Handle Road to its confluence with the main channel of the Middle Fork of Black Squirrel Creek.

2. Developed Drainage Conditions

The developed drainage basins and projected flows are shown in Figures D1, D1.01, and D1.11 (Appendix F). The developed site has been divided into five major basins (A-E) and six major design points (DP1-DP6), as shown on the enclosed Drainage Plan. Hydrologic flow schematics and calculations are enclosed in Appendix B. The development of Ellicott Town Center Phase One lies within Basins C, D, and E, and developed flows from the initial phase of the project impact Design Points \#5 and \#6.

Off-site Basin EC11 will combine with flows from on-site Basins C and D at Design Point \#5, with undetained developed peak flows of $\mathrm{Q}_{5}=226.6 \mathrm{cfs}$ and $\mathrm{Q}_{100}=461.4 \mathrm{cfs}$. Developed flows at this location will be detained to historic levels by routing flows through the proposed Detention Ponds $\mathrm{C} 1, \mathrm{C} 4$, and D prior to discharging at the easterly site boundary. Detention Pond C1 will be located at the southeast corner of the Filing No. 1 development area, and this pond will be constructed with the initial phase of development.

Off-site flows from Basin EC11 will be conveyed southerly through Channel C1 along the east side of Filing No. 1. Culverts C1.1, C1.6, and C1.9 will convey the off-site flows from Basin EC11 across the Phase 1 subdivision streets.

Storm sewer C1.2-C1.5A consists of a 30"-42" RCP system extending east on Village Main Street from Market Place Drive to connect with Storm Sewer C1.6 at the east boundary of Filing No. 1. Flows from Basins C1.2, C1.3, C1.4, C1.5, and C1.6 will be intercepted by storm inlets discharging into this system.
 boundary of Filing No. 1.

Combined Filing No. 1 flows from Basins C1.1-C1.9 will drain to Detention Pond C1 at the southeast corner of Filing No. 1. Developed peak flows entering Detention Pond C1 at Design Point \#C1.10A are calculated as $\mathrm{Q}_{5}=39.4 \mathrm{cfs}$ and $\mathrm{Q}_{100}=96.1 \mathrm{cfs}$ (Rational Method).

Future Detention Ponds C4 and D will mitigate developed drainage impacts from the development areas south and east of Filing No. 1, and the net discharge downstream of Design Point \#5 will remain at historic levels.

3. Emergency Conditions Analysis

In the event of clogging, the storm inlets within the Filing No. 1 development area will overflow to the adjoining public streets, which all flow southeasterly. Emergency overflows would sheet flow southeasterly along the public streets, flowing into Detention Pond C1 and Channel C1-C3.

There are no significant upstream developed areas and no off-site detention facilities impacting the Filing No. 1 area.

C. Comparison of Developed to Historic Discharges

Based on the hydrologic calculations in Appendix B, the total developed flows from the site will exceed historic flows from the parcel. Due to the increased impervious areas in the developed site, the total undetained flow from the site would be significantly higher than the historic flow. The increase in developed flows will be mitigated by on-site stormwater detention ponds. The comparison of developed to historic discharges at key design points is summarized as follows:

Design Point	Historic Flow				Developed Flow		
	Area (ac)	Q5 (cfs)	Q100 (cfs)	Area (ac)	$\mathbf{Q 5}_{5}$ (cfs)	Q100 (cfs)	Comparison of Developed to Historic Flow (Q5\%/Q100\%)
5	508.2	30.6	174.9	512.9	226.6	461.4	$741 \% / 264 \%$ (increase) 1
6	324.7	19.1	111.4	319.7	19.0	111.0	$99.5 \% / 99.6 \%$ (decrease)

${ }^{1}$ Calculated developed flows to be detained to historic levels through on-site detention ponds
${ }^{2}$ Calculated 100-year historic flows of approx. 0.2-0.3 cfs/acre are generally consistent with pre-development flow estimates in Colorado Springs 2014 DCM Table 13-2

D. Detention Ponds

The total developed storm runoff downstream of the Filing No. 1 site will be maintained at historic levels by routing flows through the proposed Detention Pond C1 located southeast of the Filing No. 1 development area. The proposed detention facility has been sized to attenuate peak flows through the pond, based on the difference between outflow and inflow hydrographs.

Final pond sizing was performed based on a pond routing analysis utilizing the "UD-Detention" software package (see Appendix C), resulting in the following pond sizing parameters:

Pond	Peak Inflow (Q100, cfs)	Peak Outflow (Q100, cfs)	Volume (ac-ft)
C 1	63.7	11.5	5.0

Future Detention Ponds C4 and D will ultimately mitigate developed drainage impacts from the development areas south and east of Filing No. 1.

Temporary Detention Pond C2.8 will also be constructed at the northwest corner of Springs Road and Village Main Street with the initial phase of development. This pond will meet water quality requirements for the interim development areas east of the Filing No. 1 lots until Detention Pond D is constructed during a future development phase. Design calculations for Detention Pond C2.8 are also enclosed in Appendix C.

The proposed detention ponds will be privately owned and maintained by the Ellicott Town Center Homeowners Association or Metropolitan District, under the terms of a "Private Detention Basin Maintenance Agreement" that will be recorded during final platting. Gravel maintenance access roads will be provided around the perimeter of detention pond to facilitate maintenance access.

The pond outlet structures will be designed to release historic flows southeast of the site towards the existing natural swale downstream. Based on the proposed approach of reducing developed flows to historic levels at the site boundaries, no significant downstream drainage impacts are anticipated, and no downstream drainage improvements are proposed.

E. On-Site Drainage Facility Design

Developed sub-basins and proposed drainage improvements are depicted in the enclosed Drainage Plan (Figure D1, D1.01, and D1.11). Hydraulic calculations for sizing of on-site drainage facilities are enclosed in Appendix D, and summarized as follows:

1. Street / Curb \& Gutter Capacity

The interior roads on this relatively flat parcel will be graded with a minimum longitudinal slope of 1.0 percent. In accordance with Colorado Springs and El Paso County Drainage Criteria, the allowable minor storm street capacity for residential streets at minimum slope is approximately 12 cfs per side. Storm inlets will be installed at low points and intersections, and other locations where allowable street capacities are exceeded.

Street flow patterns within Filing No. 1 are depicted on Sh. D1.11 (Appendix F). Street drainage will flow easterly along the north side of Cattlemen Run to DP-C1.1 ($\mathrm{Q}_{5}=5.4 \mathrm{cfs}$ and $\mathrm{Q}_{100}=18.0 \mathrm{cfs}$), where these flows will be intercepted by Inlet C1.1 (10’ Type R). Inlet C1.6A (5^{\prime} Type R) will intercept flow from the south curb line of Cattlemen Run, and these combined flows will be conveyed south through Storm Sewer C1.6A (24") to junction Manhole C1.6C at the intersection with Village Main Street.

Street drainage will flow southerly along the west side of Marketplace Drive and easterly along the north side of Village Main Street to DP-C1.2 ($\mathrm{Q}_{5}=16.9 \mathrm{cfs}$ and $\mathrm{Q}_{100}=35.9 \mathrm{cfs}$), where these flows will be intercepted byyInlet C1.2 (10’ Type R). Flows from Inlets C1.7A, C1.7B, and C1.2 will combine injunction Manhole C1.2D, and the combined flows will be conveyed easterly through Storm Sewer C1.2D (36" RCP) to junction Manhole C1.3A at the intersection with Indian Grass Street.

Interim culvert?

Street drainage will flow southerly along the west side of Indian Grass Street and easterly along the north side of Village Main Street to DP-C1.3 $\left(\mathrm{Q}_{5}=5.9 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=14.3 \mathrm{cfs}\right)$, where these flows will be intercepted by Inlet C1.3 (10’ Type R), and conveyed to junction Manhole C1.3A. The combined flows will continue easterly through Storm Sewer C1.3A (36 " RCP) to junction Manhole C1.4A at the intersection with Garden Park Avenue.

Street drainage will flow southerly along the west side of Garden Park Avenue and easterly along the north side of Village Main Street to DP-C1.4 ($\mathrm{Q}_{5}=6.3 \mathrm{cfs}$ and $\mathrm{Q}_{100}=15.3 \mathrm{cfs}$), where these flows will be intercepted by Inlet C1.4 (10’ Type R), and conveyed to junction Manhole C1.4A. The combined flows will continue easterly through Storm Sewer C1.4A (42 " RCP) to junction Manhole C1.5A at the intersection with Blanket Flower Street.

Street drainage will flow southerly along the west side of Blanket Flower Street and easterly along the north side of Village Main Street to DP-C1.5 ($\mathrm{Q}_{5}=6.2 \mathrm{cfs}$ and $\left.\mathrm{Q}_{100}=15.6 \mathrm{cfs}\right)$, where these flows will be intercepted by Inlet C1.5 (10' Type R), and conveyed to junction Manhole C1.5A. The combined flows will continue easterly through Storm Sewer C1.5A (42" RCP) to junction Manhole C1.6C at the intersection with Storm Sewer C1.6B, flowing south to Detention Pond C1.

Street drainage will flow southerly along the west side of Garden Park Avenue and easterly along the north side of Mayberry Drive to DP-C1.8 ($\mathrm{Q}_{5}=7.5 \mathrm{cfs}$ and $\mathrm{Q}_{100}=18.4 \mathrm{cfs}$), where these flows will be intercepted by Inlet C1.8 (10' Type R) and conveyed to Manhole C1.8. Storm Sewer C1.8 (24" RCP) will flow easterly to junction Manhole C1.9C at the intersection with Storm Sewer C1.6C.

On the east side of Garden Park Avenue, street drainage will flow easterly along the north side of Mayberry Drive to DP-C1.9 $\left(\mathrm{Q}_{5}=7.0 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=17.0 \mathrm{cfs}\right)$ at the southeast corner of the Filing No. 1 residential area, where these flows will be intercepted by Inlet C1.9A (10^{\prime} Type R) and conveyed to junction Manhole 1.9C. The combined flows will continue south through Storm Sewer C1.9C (60 " RCP) into Detention Pond C1.

2. Storm Sewer System

CDOT Type R curb-opening inlets will be specified where required along the interior streets. These inlets will convey runoff to a storm sewer system consisting of reinforced concrete pipe (RCP) pipe, with a minimum pipe diameter of 18 -inches. Inlet sizes have been determined based on a maximum allowable ponding depth of 12 inches for the major (100-year) storm, including a 20 percent clogging factor. Storm sewer sizing has been developed assuming full flow conditions with minor storm flows at the proposed minimum slope for each pipe segment. Storm sewer pipe slopes were set based on proposed street grades and detention pond bottom elevations at the storm sewer system outfall.

Riprap outlet protection sized for the 100 -year storm event will be provided for erosion control at culvert and storm sewer pipe outlets. Sizing parameters and hydraulic grade line (HGL) calculations for the proposed storm sewer system are detailed in Appendix D1.

Hydraulic calculations for the proposed culvert pipes are detailed in Appendix D2.

3. Open Channels

Major drainage channels running through the proposed open space areas to the detention ponds at the site boundaries. These channels will generally be designed as stable grasslined channels with subcritical flow regimes. Drainage channels will be designed to convey 100-year flows, with trapezoidal cross-sections, side slopes of 4:1, and minimum freeboard of 1-foot. The proposed channels will be seeded with native grasses for erosion control, and erosion control blanket (ECB) linings will be provided where needed based on calculated velocities. Hydraulic calculations for sizing the open channels are enclosed in Appendix D3, assuming a Manning's " n " value of 0.030 for non-irrigated native grass channels.

F. Analysis of Existing and Proposed Downstream Facilities

The general concept of the proposed drainage plan is to attenuate peak flows from the developed site by routing flows through the proposed on-site detention ponds. Combined flows from the Ellicott Town Center site flow southeasterly towards the existing Middle Fork of Black Squirrel Creek. The existing channels downstream of the site consist of broad grass-lined swales with no signs of active erosion. As previously discussed, there is an existing drainage crossing of Ellicott Highway approximately 2-1/2 miles downstream of this site where a future culvert should be installed. Recognizing that this historically deficient crossing is miles downstream of the site, no cost contribution to this off-site drainage improvement was requested during previous approval of the Ellicott Town Center MDDP, and no contribution is proposed at this time.

On-site stormwater detention ponds will be provided to mitigate developed drainage impacts, so no off-site or downstream drainage improvements are proposed.

G. Anticipated Drainage Problems and Solutions

The proposed stormwater detention ponds are designed to mitigate the impacts of developed drainage from this project. The overall drainage plan for the subdivision includes a system of improved public streets with curb and gutter, storm inlets, and storm sewers conveying developed flows to improved drainage channels running through the site. The primary drainage problems anticipated within this development will consist of maintenance of these storm sewer systems, culverts, drainage channels, and detention pond facilities. Care will need to be taken to implement proper erosion control measures in the proposed channels and swales, which will be designed to meet allowable velocity criteria.

A trail system will be constructed along the major drainage channels to provide maintenance access to the drainage facilities throughout the development. Proper construction and maintenance of the proposed detention facilities will minimize downstream drainage impacts. The proposed public streets will be owned and maintained by El Paso County. The proposed detention ponds and channels running through open space tracts and storm drains through private alleys will be privately owned and maintained by the homeowners association or metropolitan district.

VII. EROSION CONTROL

The Contractor will be required to implement best management practices (BMP's) for erosion control during construction. The proposed erosion control plan for Ellicott Town Center Filing No. 1 is included in the Grading \& Erosion Control (GEC) Plans submitted with the subdivision construction drawings. Erosion control measures will include installation of silt fence at the toe of disturbed slopes and hay bales protecting drainage ditches. Cut and fill slopes will be stabilized during excavation if necessary and vegetation will be established for stabilization of the disturbed areas. All ditches have been designed to meet El Paso County criteria for slope and velocity.

Additionally, gravel vehicle tracking pads will be installed at construction access points and inlet protection will be provided to minimize conveyance of sediment into storm inlets.

Construction of the proposed stormwater detention pond will be phased at the beginning of overlot grading work to serve as a temporary sediment pond during the construction phase. Accumulated sediment will have to be removed from the pond prior to completion of sitework to restore design capacity of the detention pond.

VIII. COST ESTIMATE AND DRAINAGE FEES

The developer will pay all capital costs for Filing No. 1 roadway and drainage improvements. The engineer's cost estimate for proposed drainage improvements is approximately $\$ 583,800$, as detailed in Appendix E.

The Ellicott Town Center Filing No. 1 parcel is located entirely within the Ellicott Consolidated Drainage Basin, which currently does not have a drainage or bridge fee requirement. As such, no basin fees are applicable.

IX. MAINTENANCE

All proposed road and drainage construction within Ellicott Town Center will be performed to El Paso County Standards. Interior roads will be dedicated as public right-of-way. Roads and drainage facilities within the public right-of-way will be maintained by El Paso County upon final acceptance of these facilities after the warranty period. The Ellicott Town Center Homeowners Association or Metropolitan District will maintain drainage channels and stormwater detention ponds within the proposed open space areas.

X. SUMMARY

Ellicott Town Center Filing No. 1 consists of 98 residential lots at the north end of the development, with access connections to State Highway 94 at New Log Road and Springs East Road. The Ellicott Town Center development will generate an increase in undetained developed runoff from the site, which will be mitigated through on-site stormwater detention facilities.

The proposed drainage patterns will remain consistent with historic conditions, and new drainage facilities constructed to El Paso County standards will safely convey runoff to adequate outfalls. Construction of the proposed Detention Pond C1 southeast of the Filing No. 1 development area will ensure that developed flows from Ellicott Town Center Filing No. 1 remain below historic levels. Construction and proper maintenance of the proposed drainage and erosion control facilities will ensure that this subdivision has no significant adverse drainage impacts on downstream or surrounding areas.

APPENDIX A

SCS SOILS INFORMATION

Is severely eroded and blowouts have developed, the ney seeding should be fertilized.

Windbreaks and environmental plantings are generady suited to this soil. Soil blowing is the main limitation/for the establishment of trees and shrubs. This limitation can be ofercome by cultivating only in the tree rows and leavins a strip of vegetation between the rows. Supplemental irrigation may be necessary when planting and during dry periods. Trees that are best suited and have good sutvival are Rocky Mountain juniper eastern redcedar, ponderosa pine, Siberian elm, Russiar-olive, and hackberry. Shrubs that are best suited are skunkbush sumac, lilac, and Siberian peashrub.

This soil is suited to wildlife habitat. It is foest suited to habitat for openland and rangeland wildlife. In cropland areas, habitat havorable for ring-necked pheasant, mourning dove, and many nongame species can/be developed by establishing areas for nesting and eqcape cover. For pheasant, the provision of undisturbe A nesting cover is vital and should be included in plans for habitat development. Rangeland widdife, such as pronghorn antelope, can be encouraged by de feloping livest dek watering facilities, properly managing livestock grazing, and reseeding range where needed.

This soil has good pooential fof use as homesites. Shallow excavation is severely limit\&d because cut banks cave in. This sandy soil requires spfcial management practices to reduce water erosion and soil blowing. Capability subclasses IIIe, irrigated, and $I V e$, nonirrigated.

7-Bijou sandy loam, 3 t 88 percent slopes. This deep, well drained soil is on flog p plains, terraces, and uplands. It formed in sandy alluvjam and eolian material derived from arkose deposits. Alevatidn ranges from 5,400 to 6,200 feet. The averagy annual precipitation is about 13 inches, the average annual air temperature is about 49 degrees F, and the ayerage frost-f eee period is about 145 days.

Typically, the surface layer is brown sandy loam about 4 inches thick. The subsoil is brown or grayish brown sandy loam about 24 inches thick. The substratum is pale brown loamy coapse sand.

Included witl this soil in mapping are small areas of Olney sandy loem, 3 to 5 percent slopes; Halent sand, 1 to 9 percent slopes; Vona sandy loam, 3 to 9 percent slopes; and Wigton loamy sand, 1 to 8 percent slopes.

Permeabifity of this Bijou soil is rapid. Effective rooting depth is 60 inches or more. Available wader capacity is moderaze. Organic matter content of the sutface layer is low. Sprface runoff is slow, and the hazards of erosion and soil/blowing are moderate.

Almфst all areas of this soil are used for range.
Thif soil is suited to the production of native vegetation suitaple for grazing. Because of the hazards of wate- erosior and soil blowing, the soil is not suited to nonirrigated crpps.
Native vegetation is dominantly blue grama, sand dropfeed, needleandthread, side-oats grama, and buckwheat.

Seeding is a suitable practice if the range has detefiorated. Seeding the native grasses is a good practice. If the range is severely eroded and blowouts have developed, the new seeding should be fertilized Brush control and grazing management may be needed to improve the depleted range. Grazing should be nanaged so that enough forage is left standing to prgtect the soil from blowing, to increase infiltration of water, and to catch and hold snow.

Windbreaks and environmental plantings are generally suited to this soil. Sbil blowing is the main limitation for the establishment of thees and shrybs. This limitation can be overcome by cultivating onl in the tree rows and leaving a strip of vegetation between the rows. Supplemental irrigation may be nequed when planting and during dry periods. Trees that are best suited and have good survival are Rocky Mouytain Juniper, eastern redcedar, ponderosa pine, Siberia, elm, Russian-olive, and hackberry. Shrubs that are best suited are skunkbush sumac, lilac, and Siberian peashrub.

This soil is suitg to wildlife habitat. It is best suited to habitat for opepland and rangeland widlife. Rangeland wildlife, such as pronghorn antelope, can ene encouraged by developing livestock watering facilities, by properly managing fivestock grazing, and by reseeding range where ngeded.

This soil has good potential for use as homesites Shallow greavation is severely limited because cut banks cave in. This soil requires special management practices to reduce water erosion and soil blowing. Capability subclask NIe.
8 -Blakeland loamy sand, 1 to 9 percent slopes. This deep, somewhat excessively drained soil formed in alluvial and eolian material derived from arkosic sedimentary rock on uplands. The average annual precipitation is about 15 inches, the average annual air temperature is about 47 degrees F, and the average frost-free period is about 135 days.

Typically, the surface layer is dark grayish brown loamy sand about 11 inches thick. The substratum, to a depth of 27 inches, is brown loamy sand; it grades to pale brown sand that extends to a depth of 60 inches.

Included with this soil in mapping are small areas of Bresser sandy loam, 0 to 3 percent slopes; Bresser sandy loam, 3 to 5 percent slopes; Truckton sandy loam, 0 to 3 percent slopes; Truckton sandy loam, 3 to 9 percent slopes; and Stapleton sandy loam, 3 to 8 percent slopes. In some areas, mainly north of Colorado Springs in the Cottonwood Creek area, arkosic beds of sandstone and shale are at a depth of 0 to 40 inches.

Permeability of this Blakeland soil is rapid. Effective rooting depth is 60 inches or more. Available water capacity is low to moderate. Organic matter content of the surface layer is medium. Surface runoff is slow, the hazard of erosion is moderate, and the hazard of soil blowing is severe.

Most areas of this soil are used for range, homesites, and wildlife habitat.

Native vegetation is dominantly western wheatgrass, side-oats grama, and needleandthread. This soil is best suited to deep-rooted grasses.

Proper range management is necessary to prevent excessive removal of plant cover from the soil. Interseeding improves the existing vegetation. Deferment of grazing in spring increases plant vigor and soil stability. Proper location of livestock watering facilities helps to control grazing.

Windbreaks and environmental plantings are fairly well suited to this soil. Blowing sand and low available water capacity are the main limitations for the establishment of trees and shrubs. The soil is so loose that trees need to be planted in shallow furrows and plant cover needs to be maintained between the rows. Supplemental irrigation may be needed to insure survival. Trees that are best suited and have good survival are Rocky Mountain juniper, eastern redcedar, ponderosa pine, and Siberian elm. Shrubs that are best suited are skunkbush sumac, lilac, and Siberian peashrub.

This soil is suited to wildlife habitat. It is best suited to habitat for openland and rangeland wildlife. Rangeland wildlife, such as pronghorn antelope, can be encouraged by developing livestock watering facilities, properly managing livestock grazing, and reseeding range where needed.

This soil has good potential for urban development. Soil blowing is a hazard if protective vegetation is removed. Special erosion control practices must be provided to minimize soil losses. Capability subclass VIe.
9-Blakeland complex, 1 to 9 percent slopes. This complex is on uplands, mostly in the Falcon area. The average annual precipitation is about 15 inchos, the average annual air temperature is about 47 degrees F, and the frost-free period is about 135 days.

This complex is about 60 percent Blakeland loamy sand, about 30 percent Fluvaquentic Haplaquolls, and 10 percent other soils.

Included with these soils in mapping are areas of Columbine gravelly sandy loam, 0 to $\$$ percent slopes, Ellicott loamy coarse sand, 0 to 5 percent slopes, and Ustic Torrifluvents, loamy.

The Blakeland soil is in the more sloping areas. It is deep and somewhat excessiyely drained. It formed in sandy alluvium and eolian aterial derived from arkosic sedimentary rock. Typicaly, the surface layer is dark grayish brown loamy sand about 11 inches thick. The substratum, to a depth of 27 inches, brown loamy sand; it grades to pale browy sand that extends to a depth of 60 inches or more.

Permeability of the Blakeland soil is rapid. The effective rooting depth is more than 60 inches The available water capacits is moderate to low. Surface runoff is slow, and the hazard of erosion is moderate.

The Flyvaquentic Haplaquolls are in swale areas. They are deep, poorly drained soils. They formed in alluvium derived from arkosic sedimentary rock. Typically, the surface/layer is brown. The texture is variable throughout. The water table is at a depth of 0 to 3 feet.

The Blakeland soil is well suited to deep-rooted grasses. Native vegetation is dominantly western wheatgross, side-oats grama, and needleandthread. Rangeland vegetation on the Fluvaquentic Haplaquolls is dominantly tall grasses, including sand bluestem, switchgrass, prairie corderass, little bluestem, and sand reedgrass. \&attails and bulrushes are common in the swampy areas.

Proper range management is needed to prevent excess removal of plant cover from these soils. It is aldo needed to mainthin the productive grasses. Interseeding improves the existing vegetation. Deferment of grazing during the growing season increases plant vigor and ooil stability, and it helps to maintain and improve rapge condition. Proper location of livestock watering fachities helps to control grazing of animals.

Windbreaks and environmental plantings are fairly well suited to these soils. Blowing sand and low available water capacity are the main limitations to the establishment of trees and shrubs. The soils ar\& so loose that trees need to be planted in shallow furrows and plant cover needs to be maintained between the rows. Supplemental irrigation may be needed to insure survival. Trees that are best suited and have good supvival are Rocky Mountain juniper, eastern zedcedar, ponderosa pine, and Siberian elm. Shrubs that are best suifed are skunkbush sumac, lilac, and Siberian peashrub.

The Blakeland soil is well sqited to wildlife habitat. It is best suited to habitat for openland and rangeland wildlife. Rangeland wildlife, \&uøh as pronghorn antelope, can be encouraged by developing livestock watering facilities, properly managing livestoon grazing, and reseeding range where needed. Wetland wildlife can be attracted to the Fluvaquentic Haplaquolls and the wetland habitat can be enhanced by several means. Shallow water developments can be created by digging or by blasting potholes to create open-water areas. Fencing to control livestock grazing is beneficial and it allows wetland plants such as cattails, reed canarygrass, and rushes to grow. Control of unplanned burning. and prevention of drainage that would remove water fyom the wetlands are good practices. Openland wildlife use the vegetation on these soils for nesting and escape cover. These shalldw marsh areas are especially impørtant for winter cover if natural vegetation is allowed to grow.

The Blakefand soil has good potential for homesites. roads, and streets. It needs to be protected from erosion. when vegefation has been removed from building sites. The Fluvaquentic Haplaquolls have poor potential for homesitef. Their main limitations for this use are the high water table and the hazard of flooding. Capability subclass Vle.

10-Blendon sandy loam, 0 to 3 percent sldpes. This deep, well drained soil formed in sandy arkosic alluvium on Alluvial fans and terraces. The average annua: prefipitation is about 15 inches, the mean annual air tempefature is about 47 degrees F, and the average frost fyee period is about 135 days.

Permeability of the Crowfoot soil is moderate. Effec tive rooting depth is 60 inches or more. Available water capacity is moderate. Surface runoff is medium, and the hazatd of erosion is moderate. Some gullies are present in some drainageways and along stock trails.
The soils in this complex are used as rangeland, for recreation and wildlife habitat, and as homesites.

Native vegetation is mainly mountain muhly, bleestem, mountain brome, needleandthread, and blue grama. These soils are subject to invasion by Kentucky blueprass and Gambel oar Noticeable forbs are hairy goldenrod, geranium, milkvet¢h, low larkspur, fringed sage, and buckwheat.
Proper location of livestock watering facilifies helps to control grazin. Timely deferment of grazing is needed to protect the plant cover.
Windbreaks and environmental plantings are fairly well suited to these soils. Blowing sand and moderate available water capacity are the main limitations for the establishment of trees and shrubs. The soils are so loose that trees need to be planted in shallow furrou/s and plant cover needs to be maintained between the rows. Supplemental irrigation may be needed to insure survival. Trees that are best suited and have good surv/val are Rocky Mountain juniper, eastern redcedar, ponderosa pine, and Siberian elm. Shrubs that are best suited are skunkbush sumac, lilac, and Siberian peashr qb.

These soils are best suited to habitat for openland wildlife species, such as pronghorm antelope and sharp-tailed grouse. Although sharp-taileo grouse are not plentiful, they could be encouraged on these soils, especially where brush species are interspersed with grasses and forbs. If these soils are used as rangeladed, wildlife production can be increased by managing livestock grazing to preclude overuse of the more desifable grass species and depletion of the various brush speqies.

The main limitations for urban uses are frost-action potential and slope on/the Crowfoo soil and slope on the Tomah soil. Buildings and roads must be designed to overcome these linpitations. Access roads must have adequate cut-slope grade and be provded with drains to control surface ruhoff. Maintaining the existing vegetation on building sites during construction helps to control erosion. Capability subclass VIe.

94-Travessilla-Rock outcrop comples 8 to 90 percent slopes. This moderately sloping to extremely steep complex is mostly on rocky uplands (fig. 5). Elevation ranges from 6,200 to 6,700 feet. The average annual precipitation is about 15 inches, the average annual air temperature is about 47 degrees F, and the ave age frostfree period is about 140 days.

The Tyavessilla soil makes up about 45 percent of the complex Rock outcrop about 30 percent, and meluded areas apout 25 percent.

Included with this complex in mapping are areas of Bresser sandy loam, 5 to 9 percent slopes, Elbeth sandy loam 8 to 15 percent slopes, Kettle gravelly loamy sand, 8 to 40 percent slopes, and Louviers silty clay loam, 3 to 18 pefcent slopes. The Elbeth and Kettle soils commonly afe op the north-facing slopes.

The Travessilla soil is shallow and well drained. It formed in residuum derived from sandstone. Typicany, the surface layer is light brownish gray sandy loam 2oout 3 inckes thick. The underlying material is pale frown sandy foam about 8 inches thick. Hard arkosic sandstone that has some fractures is at a depth of about 11 Inches.

Permeability of the Travessilla soil is moderately rapid. Effective ropting depth is 6 to 20 inches. Avalable water capacity is low. Surface runoff is medium to rapid, and the hazard of erosion is high. Gullies are common along drainageways and trails.

Rock outcrop occurs mostly as ledges on cliffs.
This complex is used for urban development, as homesites, and for recreation and wildlife habitat.

This complex is suited to the pfoduction of ponderosa pine. The main limitations are the presence of stones and rock outcrop on the surfage and a high hazard of erosion. Stones on the surface can bander felling, yarding, and other operations involving the use of equipment. Practices must be used to minimize sok erosion when harvesting timber. The low available water capacity can influence seedling survival.

Wildife on these sois is limited mostly to small animals such as cottontail, squirrel, and bircs because of the extent of urban deyelopment. Ponderosa pine, mountainmahogany, Gambel oak, and various grasses provide food, cover, and nesting areas.
This complex is extensively used for urban development and as homesites (fig. 6). The main linitations for these uses are depth to bedrock, rock outcrop, and steep slopes. Septic tank absorption fields do not function properly because of the depth to bedrock. Special designs for buiddings and roads and streets are needed to overcome the limitations. Plans for homesite development shoqld provide for the preservation of as many trees as possible because of their esthetic value. Capability subelass VIIe.
95-Truckton loamy sand, 1 to 9 percent slopes. This deep, well drained soil formed in alluvium and residuum derived from arkosic sedimentary rock on uplands. Elevation ranges from 6,000 to 7,000 feet. The average annual precipitation is about 15 inches, the average annual air temperature is about 47 degrees F , and the average frostfree period is about 135 days.

Typically, the surface layer is grayish brown loamy sand about 8 inches thick. The subsoil is brown sandy loam about 18 inches thick. The substratum is light yellowish brown coarse sandy loam to a depth of 60 inches or more.

Included with this soil in mapping are small areas of Blakeland loamy sand, 1 to 9 percent slopes; Bresser sandy loam, 3 to 5 percent sloeps; Bresser sandy loam, 5 to 9 percent slopes; Truckton sandy loam, 0 to 3 percent slopes; and Truckton sandy loam, 3 to 9 percent slopes.
Permeability of this Truckton soil is moderately rapid. Effective rooting depth is 60 inches or more. Available water capacity is moderate. Surface runoff is slow, and the hazard of erosion is moderate to high.

Almost all areas of this soil are used as rangeland. A few areas of crops such as alfalfa and corn are grown under sprinkler irrigation.
This soil is well suited to the production of native vegetation suitable for grazing. It is best suited to deeprooted grasses. The native vegetation is mainly cool- and warm-season grasses such as western wheatgrass, sideoats grama, and needleandthread.
Proper range management is needed to prevent excessive removal of the plant cover. Interseeding is used to improve the existing vegetation. Deferment of grazing in spring increases plant vigor and soil stability. Properly locating livestock watering facilities helps to control grazing.
Windbreaks and environmental plantings are fairly well suited to this soil. Blowing sand is the main limitation for the establishment of trees and shrubs. The soil is so loose that trees need to be planted in shallow furrows and plant cover needs to be maintained between the rows. Supplemental irrigation may be needed to insure survival. Trees that are best suited and have good survival are Rocky Mountain juniper, eastern redcedar, ponderosa pine, and Siberian elm. Shrubs that are best suited are skunkbush sumac, lilac, and Siberian peashrub.
This soil is suited to wildlife habitat. It is best suited to openland and rangeland wildlife habitat. Rangeland wildlife, such as pronghorn antelope, can be encouraged by developing livestock watering facilities, properly managing livestock grazing, and reseeding range where needed. \cdots This soil has good potential for use as homesites. The main limitation of this soil for roads and streets is frost action potential. Special designs for roads are needed to minimize this limitation. Practices are needed to control soil blowing and water erosion on construction sites where the plant cover has been removed. Capability subclass $\mathrm{VI} e$, nonirrigated.
96 -Truckton sandy loam, 0 to 3 percent slopes. This deep, well drained soil formed in alluvium and respduum derived from arkosic sedimentary rock on uplands. Elevation ranges from 6,000 to 7,000 feet. The average annual precipitation is about 15 inches, the average annual air temperatue is about 47 degrees F, and the average frostfree period is abdut 135 days.
Typically, the scxface layer is grayish brown sandy loam about 5 inches thick. The neyt layer is dark grayish brown sandy loam about 3 inches thick. The subsoil is brown sandy loam about is inches thick. The substratum is light yellowish brown coarse sandy loam to a depth of 60 inches or more.
Included with this soil in mapping are small areas of Blakeland loamy sand, 1 to 9 percent slopes; Bresser sandy loam, 0 to $\%$ percent slopes; Ellicott loamy coarse sand, 0 to 5 percent slopes; and Ustic Torrifluvents, loamy.
Permeabirity of this Truckton soil is moderately rapid. Effectivo rooting depth is 60 inches or more. A tailable water Capacity is moderate. Surface runoff is slow, and the pazards of erosion and soil blowing are moderate.

This soil is used mainly for cultivated crops. It is also used for livestock grazing, for wildlife habitat, and as hdmesites.
\&rops are commonly grown in combination with summer fallow because moisture is insufficient for annual cropping. Alfalfa can also be grown on this soil. When this soil if used as cropland, crop residue management and minimum tillage are necessary conservation practices.

This soil is well suited to the production of native vegetation suitable for grazing (fig. 7). It fayors deeprooted grasses. The native vegetation is mainly cool- and warm-seaspn grasses such as western wheatgrass, sideoats grama, and needleandthread.

Proper range management is needed to prevent excessive removal of the plant cover. Interseeding is used to improve the existing vegetation. Defermept of grazing in spring increas\&s plant vigor and soil stability. Properly locating livestock watering facilities helps to control grazing.

Windbreaks and environmental plantings generally are suited to this soil. Soil blowing is the main limitation to the establishment of trees and shrubs. This limitation can be overcome by cuttivating only in the tree rows and leaving a strip of vegetation between the rows. Supplemental irrigation may be needed/when planting and during dry periods. Trees that are best suited and have good survival are Rocky Mountain funiper, eastern redcedar, ponderosa pine, Siberian elm, Russian-olive, and hackberry. Shrubs that are best sulted are skunkbush sumac, lilac, and Siberian peashrub,

This soil is suited to wildlfe habitat. It is best suited to habitat for openland and fangeland wildlife. In cropland areas, habitat favorable for ring-necked pheasant, mourning dove, and many nongame species can be developed by establishing areas for nesting and escape cover. For pheasant, undisturbed nesting coyer is vital and should be provided in plans for habitat deyelopment. This is especially true in areas of intensive farming. Rangeland wildlife, such as pronghorn antelope, can be encouraged by developing livestock watering facilities, properly managing livestock grazing, and reseeding range where needed.
This soil has good potential for use as homesites. The main limitation of this soil for roads and streets is frostaction potential Special designs for roads are needed to overcome this fmitation. Capability subclasses IIIe, nonirrigated, and I e, irrigated.

97-Truckfon sandy loam, 3 to 9 percent slopes. This deep, well orained soil formed in alluvium and residuum derived from arkosic sedimentary rock on uplands. Elevation range from 6,000 to 7,000 feet. The avesage annual precipitation is about 15 inches, the average annual air temperaqure is about 47 degrees F , and the average frostfree period is about 135 days.
Typically, the surface layer is grayish brown sandy loam about 5 inches thick. The next layer is dark grayist. broun sandy loam about 3 inches thick. The subsoil is brown sandy loam about 16 inches thick. The substratur: is pight yellowish brown coarse sandy loam to a depth of 60 inches or more.

TABLE 16.--SOIL AND WATER FEATURES
[Absence of an entry indicates the feature is not a concern. See "flooding" in Glossary for definition of terms as "rare," "brief," and "very brief." The symbol > means greater than]

See footnote at end of table.

TABLE 16.--SOIL AND WATER FEATURES--Continued

This map unit is made up of two or more dominant kinds of soil. See map unit description for the composition and behavior characteristics of the map unit.

APPENDIX B1

HYDROLOGIC CALCULATIONS (RATIONAL METHOD)

Table 6-6. Runoff Coefficients for Rational Method
(Source: UDFCD 2001)

Land Use or Surface Characteristics	Percent Impervious	Runoff Coefficients											
		2-year		5-year		10-year		25-year		50-year		100-year	
		HSG A\&B	HSG C\&D										
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis-Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration $\left(t_{c}\right)$ consists of an initial time or overland flow time $\left(t_{i}\right)$ plus the travel time $\left(t_{t}\right)$ in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For nonurban areas, the time of concentration consists of an overland flow time $\left(t_{i}\right)$ plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion $\left(t_{t}\right)$ of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

$$
\begin{equation*}
t_{c}=t_{i}+t_{t} \tag{Eq.6-7}
\end{equation*}
$$

Where:
$t_{c}=$ time of concentration (min)
$t_{i}=$ overland (initial) flow time (min)
$t_{t}=$ travel time in the ditch, channel, gutter, storm sewer, etc. (min)

3.2.1 Overland (Initial) Flow Time

The overland flow time, t_{i}, may be calculated using Equation 6-8.

$$
\begin{equation*}
t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L}}{S^{0.33}} \tag{Eq.6-8}
\end{equation*}
$$

Where:
$t_{i}=$ overland (initial) flow time (min)
$C_{5}=$ runoff coefficient for 5-year frequency (see Table 6-6)
$L=$ length of overland flow ($300 \mathrm{ft} \underline{\text { maximum }}$ for non-urban land uses, $100 \mathrm{ft} \underline{\text { maximum }}$ for urban land uses)
$S=$ average basin slope ($\mathrm{ft} / \mathrm{ft}$)
Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_{t}, which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_{t}, can be estimated with the help of Figure 625 or Equation 6-9 (Guo 1999).

$$
\begin{equation*}
V=C_{v} S_{w}^{0.5} \tag{Eq.6-9}
\end{equation*}
$$

Where:
$V=$ velocity (ft / s)
$C_{v}=$ conveyance coefficient (from Table 6-7)
$S_{w}=$ watercourse slope ($\mathrm{ft} / \mathrm{ft}$)

Table 6-7. Conveyance Coefficient, C_{v}

Type of Land Surface	$\boldsymbol{C}_{\boldsymbol{v}}$
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)	
Short pasture and lawns	6.5
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

${ }^{*}$ For buried riprap, select C_{v} value based on type of vegetative cover.
The travel time is calculated by dividing the flow distance (in feet) by the velocity calculated using Equation 6-9 and converting units to minutes.

The time of concentration $\left(t_{c}\right)$ is then the sum of the overland flow time $\left(t_{i}\right)$ and the travel time $\left(t_{t}\right)$ per Equation 6-7.

3.2.3 First Design Point Time of Concentration in Urban Catchments

Using this procedure, the time of concentration at the first design point (typically the first inlet in the system) in an urbanized catchment should not exceed the time of concentration calculated using Equation $6-10$. The first design point is defined as the point where runoff first enters the storm sewer system.

$$
\begin{equation*}
t_{c}=\frac{L}{180}+10 \tag{Eq.6-10}
\end{equation*}
$$

Where:

$$
\begin{aligned}
& t_{c}=\text { maximum time of concentration at the first design point in an urban watershed (min) } \\
& L=\text { waterway length }(\mathrm{ft})
\end{aligned}
$$

Equation 6-10 was developed using the rainfall-runoff data collected in the Denver region and, in essence, represents regional "calibration" of the Rational Method. Normally, Equation 6-10 will result in a lesser time of concentration at the first design point and will govern in an urbanized watershed. For subsequent design points, the time of concentration is calculated by accumulating the travel times in downstream drainageway reaches.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_{c} of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_{c} for urbanized areas is 5 minutes.

3.2.5 Post-Development Time of Concentration

As Equation 6-8 indicates, the time of concentration is a function of the 5-year runoff coefficient for a drainage basin. Typically, higher levels of imperviousness (higher 5-year runoff coefficients) correspond to shorter times of concentration, and lower levels of imperviousness correspond to longer times of

Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations
$\mathbf{I}_{100}=\mathbf{- 2 . 5 2} \ln (D)+\mathbf{1 2 . 7 3 5}$
$\mathbf{I}_{50}=\mathbf{- 2 . 2 5} \ln (D)+\mathbf{1 1 . 3 7 5}$
$\mathbf{I}_{25}=\mathbf{- 2 . 0 0} \ln (D)+\mathbf{1 0 . 1 1 1}$
$\mathbf{I}_{\mathbf{1 0}}=\mathbf{- 1 . 7 5} \ln (D)+\mathbf{8 . 8 4 7}$
$\mathbf{I}_{\mathbf{5}}=\mathbf{- 1 . 5 0} \ln (\mathrm{D})+\mathbf{7 . 5 8 3}$
$\mathbf{I}_{\mathbf{2}}=\mathbf{- 1 . 1 9} \ln (\mathrm{D})+\mathbf{6 . 0 3 5}$
Note: Values calculated by
equations may not precisely
duplicate values read from figure.

ELLICOTT TOWN CENTER
COMPOSITE RUNOFF COEFFICIENTS
DEVELOPED CONDITIONS
5 -YEAR C VALUES

D12	299	1.6	SF LOTS (1/6-AC)	0.375	1.4	COMMERCIAL	0.49				0.427
C2.6-C2.8,D1.2	10.89										0.432
D1.1	3.60	3.6	COMMERCIAL	0.49							0.490
D1.3	2.87	1.6	SF LOTS (1/6-AC)	0.375	1.3	COMMERCIAL	0.49				0.427
C2.6-C2.8,D1.1-D1.3	17.36										0.443
D1.4	4.19	4.2	SF LOTS (1/6-AC)	0.375							0.375
D1.5	5.09	5.1	SF LOTS (1/6-AC)	0.375							0.375
D1.6	3.33	3.3	SF LOTS (1/6-AC)	0.375							0.375
C2.6-C2.8,D1.1-D1.6	29.97										0.415
D2	44.58	39.5	MDR-RESIDENTIAL	0.375	5.1	LANDSCAPE/OS	0.08				0.341
C2.6-C2.8,D1.1-D1.6,D2	74.55										0.371
C2,C3,D	116.28										0.315
C1-C3, D	159.27										0.331
C4	72.81	61.9	MDR-RESIDENTIAL	0.375	10.9	LANDSCAPE/OS	0.08				0.331
E	2.4	0.3	MDR-RESIDENTIAL	0.375	2.1	OPEN SPACE	0.08				0.114

ELLICOTT TOWN COMPOSITE RU DEVELOPED CO 100-YEAR C VAL	FFICIEN										
BASIN	TOTAL AREA (AC)	(AC)	$\begin{gathered} \text { SUB-AREA 1 } \\ \text { DEVELOPMENT/ } \\ \text { COVER } \\ \hline \end{gathered}$	C	AREA (AC)	$\begin{array}{c\|} \hline \text { SUB-AREA 2 } \\ \text { DEVELOPMENT/ } \\ \text { COVER } \\ \hline \end{array}$	C	(AC)	SUB-AREA 3\| PEVELOPMENT/ COVER	C	WEIGHTED C VALUE
A1A	2.80	0.9	ROADWAY	0.96	1.9	GRASS	0.35				0.555
C1.2	7.97	8.0	COMMERCIAL	0.62							0.620
C1.7A	0.58	0.6	SF LOTS (1/6-AC)	0.545							0.545
C1.7B	4.34	4.3	COMMERCIAL	0.62							0.620
C1.7A,C1.7B	4.92										0.611
C1.2,C1.7	12.89										0.617
C1.3	3.02	3.0	SF LOTS (1/6-AC)	0.545							0.545
C1.2,C1.3,C1.7	15.91										0.603
C1.4	3.23	3.2	SF LOTS (1/6-AC)	0.545							0.545
C1.2-C1.4,C1.7	19.14										0.593
C1.5	3.18	3.2	SF LOTS (1/6-AC)	0.545							0.545
C1.2-C1.5,C1.7	22.32										0.586
C1.1	9.38	3.0	RESIDENTIAL	0.545	1.2	COMMERCIAL	0.62	5.2	OPEN SPACE	0.35	0.447
C1.6	1.98	2.0	SF LOTS (1/6-AC)	0.545							0.545
C1.1,C1.6	11.36										0.464
C1.1-C1.7	33.68										0.545
C1.8	3.89	3.9	SF LOTS (1/6-AC)	0.545							0.545
C1.9	3.60	3.6	SF LOTS (1/6-AC)	0.545							0.545
C1.8-C1.9	7.49										0.545
C1.1-C1.9	41.17										0.545
C1.10	1.82	1.8	SF LOTS (1/6-AC)	0.545							0.545
C1.1-C1.10	42.99										0.545
C2.1	5.59	1.8	RESIDENTIAL	0.545	0.9	COMMERCIAL	0.62	2.9	OPEN SPACE	0.35	0.457
C2.2	4.03	4.0	SF LOTS (1/6-AC)	0.545							0.545
C2.3	2.76	2.8	SF LOTS (1/6-AC)	0.545							0.545
C2.1-C2.3	12.38										0.505
C2.4	4.98	5.0	SF LOTS (1/6-AC)	0.545							0.545
C2.5	4.12	4.1	SF LOTS (1/6-AC)	0.545							0.545
C2.1-C2.5	21.48										0.522
C3	20.25	20.3	PARK / OS	0.35							0.350
C2.1-C2.5,C3	41.73										0.439
C2.6	2.76	2.2	SF LOTS (1/6-AC)	0.545	0.6	COMMERCIAL	0.62				0.561
C2.7	2.14	2.1	COMMERCIAL	0.62							0.620
C2.8	3.00	1.7	SF LOTS (1/6-AC)	0.545	1.4	COMMERCIAL	0.62				0.579
C2.6-C2.8	7.90										0.584

D1.2	2.99	1.6	SF LOTS (1/6-AC)	0.545	1.4	COMMERCIAL	0.62				0.579
C2.6-C2.8,D1.2	10.89										0.582
D1.1	3.60	3.6	COMMERCIAL	0.62							0.620
D1.3	2.87	1.6	SF LOTS (1/6-AC)	0.545	1.3	COMMERCIAL	0.62				0.579
C2.6-C2.8,D1.1-D1.3	17.36										0.590
D1.4	4.19	4.2	SF LOTS (1/6-AC)	0.545							0.545
D1.5	5.09	5.1	SF LOTS (1/6-AC)	0.545							0.545
D1.6	3.33	3.3	SF LOTS (1/6-AC)	0.545							0.545
C2.6-C2.8,D1.1-D1.6	29.97										0.571
D2	44.58	39.5	MDR-RESIDENTIAL	0.545	5.1	LANDSCAPE/OS	0.35				0.523
C2.6-C2.8,D1.1-D1.6,D2	74.55										0.542
C2,C3,D	116.28										0.505
C1-C3, ${ }^{\text {d }}$	159.27										0.516
C4	72.81	61.9	MDR-RESIDENTIAL	0.545	10.9	LANDSCAPE/OS	0.35				0.516
E	2.4	0.3	MDR-RESIDENTIAL	0.545	2.1	OPEN SPACE	0.35				0.372

ELLICOTT TOWN CENTER
DEVELOPED FLOWS

BASIN					Overland Flow			Channel		
	$\begin{array}{\|c\|} \hline \text { DESIGN } \\ \text { POINT } \end{array}$	AREA(AC)	C		$\begin{gathered} \text { LENGTH } \\ (\mathrm{FT}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { SLOPE } \\ & \text { (FT/FT) } \end{aligned}$	Tco ${ }^{(1)}$ (MIN)	$\begin{gathered} \hline \text { CHANNEL } \\ \text { LENGTH } \\ (\mathrm{FT}) \\ \hline \end{gathered}$	CONVEYANCE COEFFICIENT C	
			5-YEAR	100-YEAR						SL
FILING NO. 1										
A1A	A1A	2.80	0.355	0.555	40	0.020	6.8	2035	15.00	0.
C1.2	C1.2	7.97	0.490	0.620			0.0	1000	20.00	0.
C1.7A	C1.7A	0.58	0.375	0.545			0.0	680	20.00	0.
C1.7B	C1.7B	4.34	0.490	0.620	100	0.020	8.9	400	20.00	0
C1.7A, C1.7B	C1.7B1	4.92	0.476	0.611						
C1.2,C1.7	C1.2D	12.89	0.485	0.617						
C1.3		3.02	0.375	0.545			0.0	280	20.00	0
C1.2,C1.3,C1.7	C1.3A	15.91	0.464	0.603						
C1.4		3.23	0.375	0.545			0.0	300	20.00	0
C1.2-C1.4, C1.7	C1.4A	19.14	0.449	0.593						
C1.5		3.18	0.375	0.545			0.0	300	20.00	0
C1.2-C1.5,C1.7	C1.5A	22.32	0.438	0.586						
C1.1	C1.1	9.38	0.226	0.447	100	0.017	13.4	1800	20.00	0
C1.6		1.98	0.375	0.545			0.0	280	20.00	0
C1.1,C1.6	C1.6B	11.36	0.252	0.464						
C1.1-C1.7	C1.7A	33.68	0.376	0.545						
C1.8		3.89	0.375	0.545			0.0	600	20.00	0.
C1.9		3.60	0.375	0.545			0.0	580	20.00	0.
C1.8,C1.9	C1.9A	7.49	0.375	0.545						
C1.1-C1.9	C1.9B	41.17	0.376	0.545						
C1.10	C1.10	1.82	0.375	0.545	50	0.020	7.5	1500	20.00	0
C1.1-C1.10	C1.10A	42.99	0.375	0.545						
FILING NO. 2										
C2.1		5.59	0.242	0.457	100	0.016	13.4	650	20.00	0
C2.2		4.03	0.375	0.545			0.0	460	20.00	0
C2.3		2.76	0.375	0.545			0.0	260	20.00	0
C2.1-C2.3	C2.3A	12.38	0.315	0.505						
C2.4		4.98	0.375	0.545			0.0	560	20.00	0.
C2.5		4.12	0.375	0.545			0.0	330	20.00	0
C2.1-C2.5	C2.5A	21.48	0.341	0.522						

1) OVERLAND FLOW Tco $=\left(0.395^{*}(1.1-\mathrm{RUNOFF} \text { COEFFICIENT)* })^{\star}(\right.$ OVERLAND FLOW LENGTH^(0.5$) /\left(\mathrm{SLOPE}^{\wedge}(0.333)\right)$
2) SCS VELOCITY $=\mathrm{C}^{*}\left(\left(\mathrm{SLOPE}(\mathrm{FT} / \mathrm{FT})^{\wedge} 0.5\right)\right.$

APPENDIX 82

HYDROLOGIC CALCULATIONS (SCS METHOD)

TABLE 5-4
RUMOFF CURVE MOXEPE FOR EYDROZOGIC SOIL COVLT COMPLEEIB - RURAL COMDITIOH8 (Aatecedeat Moisture cosdition II, and Ia $=0.2$ g) (From: U.S. Dept. of Agriculture, Soil Conservation Service, 1977)

Land Use	Cover Treatment or Practice	Hydrologic condition	Runofs Curve Number by Hydroloaic Soil Groung			
			B	B	c	D
Fallow	Straight Row	----	77	86	91	94
Row Cropa		Poor	72	81	88	91
	Straight Row	good	67	78	85	89
	Straight Row	P00\%	70	79	84	88
	Contoured	Good	65	75	82	86
	Contoured	P00\%	66	74	80	82
	Cont. \% Terraced	Good	62	71	78	81
Small Grain		Poor	65	76	84	88
	Straight Row Straight Row	Good	63	75	83	87
		poor	63	74	82	85
	Contoured	Good	61	73	81	84
	Contoured cont. Terraced	poor	61	72	79	82
	cont.	Good	59	70	78	81
Closeseeded legures i/ or rotation meadow	Straight Row Straight Row Contoured Contoured Cont. \& Terraced Cont. E Terraced	Poor	66	77	85	89
		Good	58	72	81	85
		Poor	64	75	83	85
		Good	55	69	78	83
		Poor	63	73	80	83
		Good	51	67	76	80
Pasture or range	Contoured contoured contoured	Poor	68	79	86	89
		Pair	49	69	79	84
		Good	39	61	74	80
		P001	47	67	81	88
		Fair	25	59	75	83
		Good	6	35	70	79
Meadow		Good	30	58	71	78
Woods			45	66	77	83
		Pair	36	60	73	79
		Good	25	55	70	77
Farmsteads		---	59	74	82	86
Roads (dirt)				82	87	89
	2/	----	74	84	90	92
	surface) 2/		74	84		

[^1]TABLE 5-5
RUNOFF CURVE NURERS FOR HYDROLOGIC SOIL COVER COMPLEXES - URBNM AND SUBURBAN CONDITIONS $1 /$
(Antecedent Moisture Condition -II)
(From: U.S. Dept. of Agriculture, Soil Conservation Service, 1977)

Land Use

Open spaces, lawns, parks, golf courses, cemeteries, etc.

Hydrologic Soil Group

Good condition: grass cover on 75\% 39*
or more of the area
Fair condition: grass cover on 50\%
to 75% of the area
Commercial and Business areas (85\% 89* 9295 Impervious)

Industrial Districts 72\% Impervious)
81* 8891
93

Residential: $\underline{2} /$
Acres per Dwelijing Unit Impervious 3/

1/ For a more detailed description of agricultural land use curve numbers, refer to the National Engineering Handbook (U.S. Dept. of Agriculture, Soil Conservation Service, 1972):
2/ Curve numbers are computed assuming the runoff from the house and driveway is directed towards the street with a minimum of roof water directed to lawns where additional infiltration could occur.
3/ The remaining pervious areas (lawn) are considered to be in good pasture condition for these curve numbers.

* Not to be used wherever overlot grading or filling is to occur.

ELLICOTT TOWN CENTER COMPOSITE RUNOFF CURV DEVELOPED CONDITIONS CN-VALUES											
BASIN	TOTAL AREA (AC)	(AC)	SUB-AREA 1 DEVELOPMENT/ COVER	CN	AREA (AC)	SUB-AREA 2 DEVELOPMENT/ COVER	CN	(AC)	SUB-AREA 3\| EVELOPMENT/ COVER	CN	WEIGHTED CN-VALUE
OA2	15.1	15.1	MEADOW	61							61.000
OA1	66.8	66.8	MEADOW	61							61.000
A	60.0	43.6	RESIDENTIAL	80	16.4	OPEN SPACE	61				74.805
OA2,OA1, A	141.9										66.836
EC12	30.3	30.3	MEADOW	61							61.000
OB1	33.7	33.7	MEADOW	61							61.000
B1	97.0	67.0	RESIDENTIAL	80	20.0	COMMERCIAL	92	10.0	OPEN SPACE	61	80.516
B2	77.4	69.5	RESIDENTIAL	80	7.9	OPEN SPACE	61				78.061
EC12,OB1,B1,B2	238.4										74.479
BB	20.3	18.3	RESIDENTIAL	80	2.0	OPEN SPACE	61				78.128
B3	59.1	50.7	RESIDENTIAL	80	8.4	OPEN SPACE	61				77.299
EC12,OB1,B1,B2	317.8										75.236
B4	4.5	4.5	RESIDENTIAL	80							80.000
EC11	353.6	353.6	MEADOW	61							61.000
C1.2	7.97	8.0	COMMERCIAL	92							92.000
C1.7A	0.58	0.6	SF LOTS (1/6-AC)	80							80.000
C1.7B	4.34	4.3	COMMERCIAL	92							92.000
C1.7A, C1.7B	4.92										90.585
C1.2,C1.7	12.89										91.460
C1.3	3.02	3.0	SF LOTS (1/6-AC)	80							80.000
C1.2,C1.3,C1.7	15.91										89.285
C1.4	3.23	3.2	SF LOTS (1/6-AC)	80							80.000
C1.2-C1.4,C1.7	19.14										87.718
C1.5	3.18	3.2	SF LOTS (1/6-AC)	80							80.000
C1.2-C1.5,C1.7	22.32										86.618
C1.1	9.38	3.0	RESIDENTIAL	80	1.2	COMMERCIAL	92	5.2	OPEN SPACE	61	71.010
C1.6	1.98	2.0	SF LOTS (1/6-AC)	80							80.000
C1.1,C1.6	11.36										72.577
C1.1-C1.7	33.68										81.882
C1.8	3.89	3.9	SF LOTS (1/6-AC)	80							80.000
C1.9	3.60	3.6	SF LOTS (1/6-AC)	80							80.000
C1.8-C1.9	7.49										80.000
C1.1-C1.9	41.17										81.540
C1.10	1.82	1.8	SF LOTS (1/6-AC)	80							80.000
C1.1-C1.10	42.99										81.475
EC11,C1.1-C1.10	396.59										63.219

\＃HEC－HMS 4.3 ［G：Vpsprojects\030502．etc\ETC＿H\ETC＿H．hms］
File Edit View Components GIS Parameters Compute Results Tools Help
［1～圆曼
（W）Global Summary Results for Run＂Run 2＂

Project：ETC－H Simulation Run：Run 2

$\begin{array}{ll}\text { Start of Run：} 01 \text { Jan3000，01：00 } \\ \text { End of Run：} & 02 \mathrm{Zan} 3000,01: 30\end{array}$ Compute Time：10Sep2019，20：56：08

T

\checkmark 济

Show Elements：All Elements

Components Compute Results

Hypothetical Storm
$\begin{array}{l}\text { Met Name：} \text { Met } 2 \\ \text { Method：} \\ \text { SCS Type 2 } \\ \text {＊Point Depth（IN）} \\ \text { 2．6 } \\ \text { Area Reduction：} \\ \text { }\end{array}$－－None－－

 NOTE 41743：Intibal abstraction ratio for subbasin D＂D is． 0.2002. NOTE 41743：Initial abstraction ratio for subbasin＂E＂is 0.2002 ．
NOTE 41743：Initial abstraction ratio for subbasin＂EC 10 ＂is 0.2002 ．

NOTE 15302：Finished computing simulation run Run 1 ＇at time 10Sep2019，20：55：49．
NOTE 40043：The basis model Basin 1 1．contains 2 elements with no downstream connection：DP5，DP6

 NOTE 41743：Initial abstraction ratio for subbasin＂E＂E 10 ＂is 0.2002 ．

HEC-HMS 4.3 [G:vpsprojects\030502.etc\ETC_H HETC_H.hms]
File Edit View Components GIS Parameters Compute Results Tools Help

| Hypothetical Storm | |
| ---: | :--- | :--- |
| Met Name: | Met $\mathbf{1}$ |
| Method: | SCS Type 2 |
| *Point Depth (IN) | 4.4 |
| Area Reduction: | --None-- |

NOTE 42413: Unit hydrograph volume for subbasin "E 's 1 . 1.0000 in.
NOTE 42413: Unit hydrograph volume for subbasin "EC10 is 1.000 .
NOTE 42413: Unit hydrograph volume for subbasin "EC 10 " is 1.0000 in.
NOTE 15302: Finished computing simulation run "Run 2^{\prime} at time 09 Sep 2019, 20:31:27.
NOTE 40043: The basin model 'Basin $1^{\text {" contains } 2 \text { elements with no downstream connec }}$
NOTE 40043: The basin model "Basin $1^{\text {" }}$ contains 2 elements with no downstream connection: DP5, DP6
NOTE 40003: The basin model 'Basin $1^{\text {c }}$ "ontains 2 elements with no downstream connection: DP5, DP6
NOTE 40043: The basin model "Basin $1^{\text {c }}$ contains 2 elements with no downstream connection: DP5, DP6
ERROR 10015: Project name "ETC_H" is already in use. Could not copy current project.
NOTE 40043: The basin model "Basin 1" contains 2 elements with no downstream connection: DP5, DP6
NOTE 40043: The basin model "Basin 1" contains 2 elements with no downstream connection: DP5, DP6
NOTE 40043: The basin model "Basin 1 " contains 2 elements with no downstream connection: DP5, DP6
NOTE 40043: The basin model "Basin $1^{\prime \prime}$ contains 2 elements with no downstream connection: DP5, DP6
NOTE 15301: Began computing simulation run "Run 2" ${ }^{2}$ t time 10 Sep2019, 20:39:40.
NOTE 15301: Began computing simulation run 'Run 2" at time 10 Sep 2019, 20:39:40.
NOTE 20364: Found no parameter problems in meteorologic model 'Met $2^{\prime \prime}$.
NOTE 40049: Found no parameter problems in basin model "Basin 1 ".

NOTE 41743: Initial abstraction ratio for subbasin "EC 10 " is 0.2002 .
NOTE 42413: Unit hydrograph volume for subbasin " D " is 1.0000 in.
NOTE 42413: Unit hydrograph volume for subbasin: Unit hydrograph volume for subbasin "EC11" is 1.0000 in .

※ HEC-HMS 4.3 [G:Vpsprojects\030502.etc\ETC_D\ETC_D.hms]
File Edit View Components GIS Parameters Compute Results Tools Help

[^2]HEC-HMS 4.3 [G:Vpsprojects\030502.etc\ETC_D\ETC_D.hms]
File Edit View Components GIS Parameters Compute Results Tools Help
 Global Summary Results for Run "Run 1"
Show Elements: All Elements

End of Run:
Compute Tim Compute Time:10Sep2019, 21:12:10 19, 21:12:10 Control Specifica
Project:ETC_D Simulation Run: Run 1
Basin Model: \quad Basin 1
Meteorologic Model: Mel 1

Time of Peak	

ELLICOTT TOWN CENTER

HISTORIC FLOWS									Overland Flow			Channel flow							Time of Concentration $\mathrm{Tc}^{(2)}$ （MIN）			$\begin{array}{r} \text { Peak Flow } \\ \text { Scs } \end{array}$	
				RUNOFF	CURVENo．（CN）			PERCENTIMPERVIOUS$(\%)$				HIGH	LOW		CHANNEL	CHANNEL							
BASIN	$\begin{array}{\|l\|} \hline \text { DESIGN } \\ \text { POINT } \\ \hline \end{array}$	AREA （AC）	AREA （SM）	COEFFICIENT (C5)		s	la		LENGTH (FT)	$\begin{array}{\|c} \substack{\text { SLOPE } \\ (\%)} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \begin{array}{l} \text { Tco } \\ \text { (1) } \end{array} \\ \text { (MIN) } \end{array}$	$\begin{gathered} \text { ELEV. } \\ \text { (FT) } \end{gathered}$	ELEV． （FT）	$\begin{gathered} \text { H } \\ \text { (FT) } \end{gathered}$	$\underset{\text { (FT) }}{\substack{\text { LENGTH }}}$	LENGTH （MI）	$\begin{array}{\|c} \underset{(\%)}{\text { SLOPE }} \\ \hline \end{array}$	$\begin{gathered} \mathrm{Tt}^{(1)} \\ (\mathbf{M I N}) \end{gathered}$				$\begin{aligned} & \hline \text { Q5 }^{(3)} \\ & \text { (CFS) } \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{Q}^{\text {Q100 }}{ }^{(\mathrm{CFS})} \\ \hline \end{gathered}$
EC11	EC11	353.6	0.55	0.08	61	6.39	1.28	2	1000	6.0	32.0	6180	6067	113	8945	1.69	1．3\％	46.37	78.34	0.78	47.00	24.4	149.5
D		154.6	0.24	0.08	61	6.39	1.28				0.0	6067	6028	39	3850	0.73	1．0\％	26.38	26.38	0.26	15.83	20.3	141.5
EC11，D	5	508.2	0.79																104.72	1.05	62.83	30.6	174.9
EC10	EC10	317.3	0.50	0.08	61	6.39	1.28	2	1000	1.0	58.1	6140	6052	88	8100	1.53	1．1\％	45.53	103.59	1.04	62.15	18.9	110.6
E		7.4	0.01	0.08	61	6.39	1.28	2			0.0	6052	6040	12	1200	0.23	1．0\％	10.80	10.80	0.11	6.48	1.4	9.1
EC10，E	6	324.74	0.51																114.39	1.14	68.63	19.1	111.4

	$\cdots \stackrel{0}{6}$	
	$\underset{\sim}{C} \underset{\sim}{\sim}$	$\cdots \cdots$
		\cdots
	Non	¢
E		¢
		$\stackrel{\square}{\circ}$
	\bigcirc	$\stackrel{\sim}{0}$
工吕	$\stackrel{\sim}{\square}$	∞
	窓道	N
		¢ 9
	\bigcirc	：
	$\stackrel{3}{6}$	\bigcirc
	앙	웅
		$\sim \sim_{0}^{\circ}$
\simeq	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$
の	¢	¢
		$\checkmark \checkmark$ ¢
	O－	\bigcirc
臬	\％	\bigcirc
		$\stackrel{n}{n} \underset{\sim}{c}$
	（든）	苞
	Hic\|c	(10

1）OVERLAND FLOW TCO $=\left(1.8^{*}(1.1-\text { RUNOFF COEFFICIENT })^{*}(\right.$ OVERLAND FLOW LENGTH＾（ 0.5$) /\left(\operatorname{SLOPE}^{\wedge}(0.333)\right)$
2） TRAVELTIME ， $\mathrm{Tt}=\left(\left(11.9^{\star}\llcorner\wedge 3) / H\right)^{\wedge}(0.385)\right.$
5）PEAK FLOWS CALCULATED BY HEC－HMS 4.3 （TYPE 2 STORM； $5-$ YR； $24-$ HR RAINFALL $=2.6 \operatorname{IN} ; 100-$ YR； $24-$ HR RAINFALL $=4.4 \mathrm{IN}$ ）

APPENDIX C

DETENTION POND CALCULATIONS

ELLICOTT TOWN CENTER IMPERVIOUS AREA CALCULATIONS DEVELOPED CONDITIONS											
BASIN	TOTAL AREA (AC)	(AC)	SUB-AREA 1 DEVELOPMENT/ COVER	IMP. AREA (\%)	AREA (AC)	SUB-AREA 2 DEVELOPMENT/ COVER	IMP. AREA (\%)	(AC)	SUB-AREA 3 PEVELOPMEN COVER	IMP. AREA (\%)	WEIGHTED IMP. AREA (\%)
A1A	2.80	0.9	ROADWAY	100	1.9	GRASS	0				33.571
C1.2	7.97	8.0	COMMERCIAL	70							70.000
C1.7A	0.58	0.6	SF LOTS (1/6-AC)	52.5							52.500
C1.7B	4.34	4.3	COMMERCIAL	70							70.000
C1.7A, C1.7B	4.92										67.937
C1.2,C1.7	12.89										69.213
C1.3	3.02	3.0	SF LOTS (1/6-AC)	52.5							52.500
C1.2,C1.3,C1.7	15.91										66.040
C1.4	3.23	3.2	SF LOTS (1/6-AC)	52.5							52.500
C1.2-C1.4,C1.7	19.14										63.755
C1.5	3.18	3.2	SF LOTS (1/6-AC)	52.5							52.500
C1.2-C1.5,C1.7	22.32										62.152
C1.1	9.38	3.0	RESIDENTIAL	52.5	1.2	COMMERCIAL	70	5.2	OPEN SPACE	0	25.672
C1.6	1.98	2.0	SF LOTS (1/6-AC)	52.5							52.500
C1.1,C1.6	11.36										30.348
C1.1-C1.7	33.68										51.424
C1.8	3.89	3.9	SF LOTS (1/6-AC)	52.5							52.500
C1.9	3.60	3.6	SF LOTS (1/6-AC)	52.5							52.500
C1.8-C1.9	7.49										52.500
C1.1-C1.9	41.17										51.620
C1.10	1.82	1.8	SF LOTS (1/6-AC)	52.5							52.500
C1.1-C1.10	42.99										51.657
C2.1	5.59	1.8	SF LOTS (1/6-AC)	52.5	0.9	COMMERCIAL	70	2.9	OPEN SPACE	0	28.426
C2.2	4.03	4.0	SF LOTS (1/6-AC)	52.5							52.500
C2.3	2.76	2.8	SF LOTS (1/6-AC)	52.5							52.500
C2.1-C2.3	12.38										41.630
C2.4	4.98	5.0	SF LOTS (1/6-AC)	52.5							52.500
C2.5	4.12	4.1	SF LOTS (1/6-AC)	52.5							52.500
C2.1-C2.5	21.48										46.235
C3	20.25	20.3	PARK / OS	0							0.000
C2.1-C2.5,C3	41.73										23.799
C2.6	2.76	2.2	SF LOTS (1/6-AC)	52.5	0.6	COMMERCIAL	70				56.304
C2.7	2.14	2.1	COMMERCIAL	70							70.000
C2.8	3.00	2.0	SF LOTS (1/6-AC)	52.5	1.0	COMMERCIAL	70				58.333
C2.6-C2.8	7.90										60.785

INTERIM PHASE 1 DETENTION POND C2.8:												
C2.6	2.76	2.8	VACANT	0								0.000
C2.7	2.14	2.1	COMMERCIAL	70								70.000
C2.8	3.00	3.0	VACANT	0								0.000
C2.6-C2.8	7.90											18.962
D1.2	2.99	1.6	SF LOTS (1/6-AC)	52.5	1.4	COMMERCIAL	70					60.401
C2.6-C2.8,D1.2	10.89											60.680
D1.1	3.60	3.6	COMMERCIAL	70								70.000
D1.3	2.87	1.6	SF LOTS (1/6-AC)	52.5	1.3	COMMERCIAL	70					60.366
C2.6-C2.8,D1.1-D1.3	17.36											62.560
D1.4	4.19	4.2	SF LOTS (1/6-AC)	52.5								52.500
D1.5	5.09	5.1	SF LOTS (1/6-AC)	52.5								52.500
D1.6	3.33	3.3	SF LOTS (1/6-AC)	52.5								52.500
C2.6-C2.8,D1.1-D1.6	29.97											58.327
D2	44.58	39.5	SF LOTS (1/6-AC)	52.5	5.1	LANDSCAPE/OS	0					46.494
C2.6-C2.8,D1.1-D1.6,D2	74.55											51.251
C2,C3, D	116.28											41.399
C1-C3,D	159.27											44.168
C4	72.81	61.9	MDR-RESIDENTIAL	52.5	10.9	LANDSCAPE/OS	0					44.625
E	2.4	0.3	MDR-RESIDENTIAL	52.5	2.1	OPEN SPACE	0					5.981

Detention Basin Outlet Structure Design

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.57	3.04					
Orifice Area (sq. inches)	5.91	5.91	5.91					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
	Not Selected	Not Selected	
Invert of Vertical Orifice $=$	N/A	N/A	
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Vertical Orifice Diameter $=$	N/A	N/A	inches

Calculated Parameters for Vertical Orifice		
	Not Selected	Not Selected
Vertical Orifice Area $=$	N/A	N/A
Vertical Orifice Centroid =	N/A	N/A

Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename
Storm Inflow Hydrographs
UD-Detention, Version 3.07 (February 2017)

	SOURCE	WORKBOOK	WORKBOOK	workbook	WORKBOOK	WORKBOOK	WоRKBOOK	WORKBOOK	workbook	WORKBOOK
Time Interval	time	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
6.82 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:06:49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph Constant	0:13:38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:20:28	0.40	1.32	0.92	1.19	1.45	1.77	2.15	2.58	3.47
0.733	0:27:17	1.09	3.61	2.50	3.25	3.97	4.89	5.99	7.24	9.99
	0:34:06	2.81	9.28	6.41	8.35	10.20	12.55	15.38	18.60	25.67
	0:40:55	7.71	25.46	17.60	22.92	27.99	34.43	42.16	50.96	70.23
	0:47:44	9.17	30.91	21.21	27.76	34.04	42.14	52.07	63.66	90.10
	0:54:34	8.76	29.63	20.31	26.60	32.65	40.47	50.15	61.53	87.85
	1:01:23	7.97	26.96	18.48	24.21	29.71	36.83	45.69	56.16	80.45
	1:08:12	7.13	24.24	16.59	21.75	26.72	33.16	41.16	50.61	72.56
	1:15:01	6.16	21.12	14.41	18.94	23.31	28.97	36.02	44.36	63.77
	1:21:50	5.36	18.39	12.51	16.47	20.30	25.27	31.46	38.77	55.80
	1:28:40	4.86	16.65	11.35	14.92	18.37	22.84	28.38	34.93	50.12
	1:35:29	4.02	13.90	9.46	12.45	15.35	19.11	23.80	29.36	42.35
	1:42:18	3.29	11.49	7.79	10.28	12.69	15.82	19.73	24.37	35.20
	1:49:07	2.54	9.04	6.10	8.08	10.00	12.51	15.65	19.38	28.16
	1:55:56	1.89	6.92	4.63	6.18	7.67	9.64	12.10	15.03	21.93
	2:02:46	1.37	5.12	3.40	4.56	5.69	7.18	9.04	11.28	16.55
	2:09:35	1.06	3.87	2.59	3.45	4.29	5.39	6.78	8.42	12.28
	2:16:24	0.87	3.14	2.11	2.80	3.47	4.35	5.44	6.74	9.78
	2:23:13	0.74	2.64	1.78	2.36	2.93	3.66	4.58	5.67	8.21
	2:30:02	0.65	2.31	1.56	2.06	2.55	3.19	3.98	4.92	7.11
	2:36:52	0.58	2.07	1.40	1.85	2.29	2.85	3.56	4.40	6.34
	2:43:41	0.54	1.90	1.28	1.70	2.10	2.62	3.26	4.02	5.79
	2:50:30	0.39	1.40	0.95	1.25	1.55	1.94	2.43	3.02	4.40
	2:57:19	0.29	1.02	0.69	0.91	1.13	1.41	1.76	2.18	3.18
	3:04:08	0.21	0.75	0.51	0.67	0.83	1.04	1.30	1.62	2.36
	3:10:58	0.16	0.56	0.38	0.50	0.62	0.77	0.97	1.20	1.75
	3:17:47	0.11	0.41	0.27	0.36	0.45	0.57	0.71	0.88	1.29
	3:24:36	0.08	0.29	0.19	0.26	0.32	0.41	0.51	0.64	0.93
	3:31:25	0.06	0.21	0.14	0.19	0.23	0.29	0.37	0.46	0.67
	3:38:14	0.04	0.15	0.10	0.13	0.16	0.20	0.26	0.32	0.48
	3:45:04	0.02	0.09	0.06	0.08	0.10	0.13	0.17	0.21	0.31
	3:51:53	0.01	0.05	0.03	0.04	0.06	0.07	0.10	0.12	0.19
	3:58:42	0.00	0.02	0.01	0.02	0.02	0.03	0.04	0.06	0.09
	4:05:31	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.02	0.03
	4:12:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:19:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:32:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:39:37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:46:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:53:16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:06:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:13:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:27:22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:34:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:41:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:47:49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:54:38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:01:28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:08:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:15:06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:21:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:28:44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:35:34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:42:23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:49:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:56:01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:02:50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:09:40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:16:29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:23:18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:30:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:36:56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:43:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:50:35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:57:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	8:04:13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	8:11:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Detention Basin Outlet Structure Design

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.45	0.90					
Orifice Area (sq. inches)	0.65	0.65	0.65					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
	Not Selected	Not Selected	
Invert of Vertical Orifice $=$	N/A	N/A	
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Vertical Orifice Diameter $=$	N/A	N/A	inches

Calculated Parameters for Vertical Orifice		
	Not Selected	Not Selected
Vertical Orifice Area $=$	N/A	N/A
Vertical Orifice Centroid =	N/A	N/A

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)			Calculated Parameters for Overflow Weir				
Overflow Weir Front Edge Height, Ho =	Zone 3 Weir	Not Selected	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$	Zone 3 Weir	Not Selected	
	2.30	N/A			2.30	N/A	feet
Overflow Weir Front Edge Length = Overflow Weir Slope =	4.00	N/A		Over Flow Weir Slope Length $=$ Grate Open Area / 100-yr Orifice Area $=$	2.50	N/A	feet
	0.00	N/A	$\mathrm{H}: \mathrm{V}$ (enter zero for flat grate)		16.54	N/A	$\begin{aligned} & \text { should be } \geq 4 \\ & \mathrm{ft}^{2} \end{aligned}$
Horiz. Length of Weir Sides = Overflow Grate Open Area \% =	2.50	N/A	feet $\%$, grate open area/total area	Overflow Grate Open Area w/o Debris =	7.00	N/A	
	70\%	N/A		Overflow Grate Open Area w/ Debris =	3.50	N/A	ft^{2}
Debris Clogging \% =	50\%	N/A					
User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction							
$\begin{array}{r} \text { Depth to Invert of Outlet Pipe }= \\ \text { Outlet Pipe Diameter }= \\ \text { Restrictor Plate Height Above Pipe Invert }= \end{array}$	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
	0.00	N/A	ft (distance below basin bottom at Stage $=0 \mathrm{ft}$) inches	Outlet Orifice Area $=$	0.42	N/A	
	18.00	N/A		Outlet Orifice Centroid = Central Angle of Restrictor Plate on Pipe $=$	0.25	N/A	$\left\{\begin{array}{l} \mathrm{ft}^{2} \\ \text { feet } \\ \text { radians } \end{array}\right.$
	5.20		inches Half-Ce		1.13	N/A	
User Input: Emergency Spillway (Rectangular or Trapezoidal)				Calculated Parameters for Spillway			
Spillway Invert Stage=	3.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) feet		Spillway Design Flow Depth=	0.63	feet	
Spillway Crest Length =	3.00			Stage at Top of Freeboard $=$	4.63	feet acres	
Spillway End Slopes = Freeboard above Max Water Surface =	4.00	feet		Basin Area at Top of Freeboard $=$	0.27		
	1.00	$\left\{\begin{array}{l} \mathrm{H}: \mathrm{V} \\ \text { feet } \end{array}\right.$					
Routed Hydrograph Results							
Design Storm Return Period =	WQCV	EURV	2 Year ${ }^{\text {a }}$ [5 Year	10 Year ${ }^{\text {a }}$ (25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.19	1.75	2.25	2.52	3.14
Calculated Runoff Volume (acre-ft) =	0.073	0.132	0.087 0.118	0.151 0.209	0.319	0.490	0.896
OPTIONAL Override Runoff Volume (acre-ft) $=$							
Inflow Hydrograph Volume (acre-ft) =	0.073	0.131	0.086 0.117	 0.151 0.208	0.318	0.489	0.896
Predevelopment Unit Peak Flow, q (cfs/acre) $=$	0.00	0.00	0.00 0.00	0.01 0.02	0.17	0.42	0.96
Predevelopment Peak Q (cfs) $=$	0.0	0.0	0.0 0.0	0.1 0.2	1.4	3.3	7.6
Peak Inflow Q (cfs) $=$	1.1	2.0	1.3 1.8	2.3 3.2	4.8	7.4	13.5
Peak Outflow Q (cfs) $=$	0.0	0.1	0.0 0.1	0.1 0.1	0.1	3.0	5.9
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	0.8 0.4	0.1	0.9	0.8
Structure Controlling Flow =	Plate	Plate	Plate \quad Plate	Plate \quad Plate	Plate	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	0.4	0.5
Max Velocity through Grate $2(\mathrm{fps}$) $=$	N/A						
Time to Drain 97\% of Inflow Volume (hours) =	38	49	41 47	52	73	70	63
Time to Drain 99\% of Inflow Volume (hours) =	40	53	44 50	56 年 65	80	79	75
Maximum Ponding Depth (ft) $=$	0.93	1.28	1.02 1.20	1.40 1.72	2.29	2.52	3.33
Area at Maximum Ponding Depth (acres) $=$	0.14	0.16	0.15 0.16	0.17 0.18	0.20	0.20	0.23
Maximum Volume Stored (acre-ft) $=$	0.067	0.121	0.079 0.107	0.140 0.195	0.303	0.347	0.526

Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename
Storm Inflow Hydrographs
UD-Detention, Version 3.07 (February 2017)

	SOURCE	WORKBOOK	WORKBOOK	workbook	WORKBOOK	WORKBOOK	WоRKBOOK	WORKBOOK	workbook	workbook
Time Interval	time	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.50 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph Constant	0:11:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:16:30	0.05	0.09	0.06	0.08	0.11	0.14	0.22	0.33	0.59
0.909	0:22:00	0.14	0.24	0.16	0.22	0.28	0.39	0.58	0.89	1.60
	0:27:30	0.36	0.63	0.42	0.56	0.72	0.99	1.50	2.28	4.11
	0:33:00	0.98	1.73	1.15	1.55	1.99	2.72	4.12	6.26	11.30
	0:38:30	1.14	2.02	1.34	1.80	2.32	3.19	4.85	7.40	13.47
	0:44:00	1.08	1.91	1.27	1.71	2.20	3.03	4.62	7.06	12.87
	0:49:30	0.98	1.74	1.15	1.55	2.00	2.76	4.20	6.43	11.72
	0:55:00	0.86	1.54	1.02	1.37	1.77	2.45	3.74	5.73	10.48
	1:00:30	0.73	1.31	0.86	1.17	1.52	2.10	3.21	4.94	9.07
	1:06:00	0.64	1.15	0.76	1.03	1.33	1.83	2.80	4.31	7.89
	1:11:30	0.58	1.04	0.68	0.93	1.20	1.66	2.54	3.90	7.15
	1:17:00	0.47	0.84	0.55	0.75	0.97	1.35	2.08	3.21	5.92
	1:22:30	0.37	0.68	0.44	0.60	0.78	1.09	1.69	2.62	4.85
	1:28:00	0.27	0.51	0.33	0.45	0.59	0.82	1.28	2.01	3.75
	1:33:30	0.20	0.37	0.23	0.32	0.43	0.60	0.94	1.49	2.81
	1:39:00	0.15	0.27	0.17	0.24	0.31	0.44	0.69	1.08	2.03
	1:44:30	0.12	0.21	0.14	0.19	0.25	0.35	0.54	0.84	1.57
	1:50:00	0.10	0.18	0.11	0.16	0.20	0.29	0.44	0.69	1.29
	1:55:30	0.08	0.15	0.10	0.13	0.17	0.24	0.38	0.59	1.09
	2:01:00	0.07	0.13	0.09	0.12	0.15	0.21	0.33	0.52	0.96
	2:06:30	0.07	0.12	0.08	0.11	0.14	0.19	0.30	0.46	0.86
	2:12:00	0.06	0.11	0.07	0.10	0.13	0.18	0.28	0.43	0.79
	2:17:30	0.05	0.08	0.05	0.07	0.10	0.13	0.20	0.31	0.58
	2:23:00	0.03	0.06	0.04	0.05	0.07	0.10	0.15	0.23	0.43
	2:28:30	0.02	0.04	0.03	0.04	0.05	0.07	0.11	0.17	0.31
	2:34:00	0.02	0.03	0.02	0.03	0.04	0.05	0.08	0.12	0.23
	2:39:30	0.01	0.02	0.01	0.02	0.03	0.04	0.06	0.09	0.17
	2:45:00	0.01	0.02	0.01	0.01	0.02	0.03	0.04	0.06	0.12
	2:50:30	0.01	0.01	0.01	0.01	0.01	0.02	0.03	0.04	0.08
	2:56:00	0.00	0.01	0.00	0.01	0.01	0.01	0.02	0.03	0.06
	3:01:30	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.02	0.03
	3:07:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.02
	3:12:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	3:18:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:23:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:29:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:34:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:51:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:56:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:02:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:07:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:13:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:18:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:24:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:29:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:46:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:51:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:57:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:02:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:08:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:13:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:19:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:24:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:41:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:46:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:52:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:57:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:03:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:08:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:14:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:19:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:30:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:36:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

APPENDIX D1

STREET CAPACITY \& STORM SEWER HYDRAULIC CALCULATIONS

ELLICOTT TOWN CENTER - FILING NO. 1 STREET CAPACITY ANALYSIS

TYPICAL STREET CAPACITY ASSUMPTIONS:

Road Type	Min. Slope	Curb- Curb Width $(f t)$	Minor Storm Capacity ${ }^{\text {a }}$ $\left(\mathbf{Q}_{5}\right.$, cfs $)$	Major Storm Capacity ${ }^{\text {b }}$ (Q100, cfs)
Residential	1.0%	30^{\prime}	11.3	232.4

${ }^{\text {a }}$ Maximum allowable spread at Q_{5} is to crown of street.

$$
\mathrm{Q}=112.6 * \mathrm{~S}^{\wedge}(1 / 2)
$$

${ }^{\mathrm{b}}$ Maximum allowable flow depth at Q_{100} is 12 -inches at flowline.

Road (Design Point)	Min. Street Grade	Allowable Minor Storm Capacity (cfs)	Peak Flow (Q5, cfs)	Inlet Required?
Cattlemen Run (C1.1)	1.0%	11.3	5.4	No
Village Main St. (C1.2)	1.0%	11.3	35.9	Yes
Market Place Dr (C1.7B)	1.0%	11.3	17.3	Yes
ETC Blvd (C1.8)	1.0%	11.3	18.4	Yes
Mayberry Drive?				

TABLE 6-1
Allowable Use of Streets in El Paso County

	Use of Streets		Cross Flow In Streets	
et Classification	Initial Storm	Major Storm	Initial Storm	Major Storm
illsido Local with Ramp urb \& Guttor illsido Local with 8 in. ertical Curb \& Guttor	Maximum flow sproad to crown. Maximum flow rate of 15 cfs por side. The depth of flow shall not exceod 6 inchos at the gutter flowlino. Maximum flow rato of 25 cfs por side.	Samo as Local Stroot with Curb \& Guttor Same as Local Stroot with Curb \& Guttor	Same as Local Stroot with Curb \& Guttor Same as Local Stroet with Curb \& Gutter	Same as Local Stroot with Curb \& Guttar Sama as Local Stroot with Curb \& Guttor
ocal with Ramp Curb \& uttor ocal with 8 in. Vertical urb \& Guttor ocal with Roodsido Ditch	Maximum flow spread to streat crown. Maximum flow rato of 20 cfs per side. The depth of flow shall not exceed 6 inches at the gutter flowline. Meximum flow rate of 34 cfs por sido. Flow must not encroach upon road shouldor ares.	Residential dwollings, public, commorcial and industrial buildings shall not be inundated at the ground line. The depth of water at the gutter flowline shall not axceed 12 inches. Sama as abovo. Rosidontial dwollings, public, commorcial and industrial buildings shall not be inundated at the ground line. The depth of water at the edgo of road shoulder shall not oxcaod 6 inches.	Whare cross pans aro allowod, the depth of flow shall not exceod 6 inches at the flowlino. Same as abovo. Requires culvert. Flow shall not encroach upon the road shoulder.	Whoro cross pans aro allowad, the dopth of flow shall not oxceod 12 inches at tha flowline. Sama as abovo. Requires culvert. Depth of flow shall not oxcood 6 inchos at the edgo of tha roed shouldor.
ollector with 8 in. Vortical urb \& Guttor ollactor with Roedsido itch	Samo as Local Stroots with 8 in. Vertical Curb \& Guttor Same as Local Stroots with Roadsido Ditch.	Samo as Local Stroots with Curb \& Guttor. Samo as Lucal Streats with Roadsido Ditch.	Same as Local Stroots with Curb \& Gutter. Same as Local Stroots with Roadsido Ditch.	Same as Local Stroots with Curb \& Guttor. Same as Local Stroots with Roadside Ditch.
rtarial with Curb \& Guttor rterial with Roadsido Ditch	Tho depth of flow shall not excood 6 inches at the gutter flowlino. Maximum flow rate of 34 cfs per sido. One ten foot lene in each direction must romain free of water. Flow must not encroach upon road shoulder aroa.	Residentiai d wollings, public, commorcial and industrial buildings shiall not bo inundetod at the ground line. The depth of water at the gutter flowline shall not exceed 8 inches and there shall be no curb overtopping. Rosidontial dwollings, public, commercial and industrial buildings shall not bo inundated at the ground line. The depth of water shall not encroach upon the roed shoulder.	No cross flow is allowod on the roed surfaco. Requires culvart. Flow shall not encroach upon the road shoulder.	12 in. max. dopth at guttar flowline or 4 in . max. dopth at crown, whichover is moro limiting. Requiros culvert. Flow shall not encroach upon the road shoulder.
way / Ftooway	No encroachment of water is allowed on any traffic lanes.	No encroachment of water is allowod on any traffic lanes.	No cross flow is ellowed on the road surfaco.	No cross flow is allowod on the roed surface.

RESIDENTIAL STREET (34' Flowline to flowline)

Interim Release October 12, 1994 City of Colorado Springs

Use this graph to determine the allowable street capacity per side, initial storm, for the typical street section using a 2% crown.

Version 4.05 Released March 2017

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

\square

Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)
Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions
MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type $=$	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	12.0	inches
Grate Information		MINOR	MAJOR	\% Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {Curb }}=$	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Combination }}=$	0.77	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {curb }}=$	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	5.4	12.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text {peak required }}=$	4.0	8.0	cfs

Version 4.05 Released March 2017

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

\square

Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

$\mathrm{H}_{\text {CURB }}=$	6.00
$\mathrm{T}_{\text {CROWN }}=$	15.0
W =	2.00
$\mathrm{S}_{\mathrm{x}}=$	0.020
$\mathrm{S}_{\mathrm{w}}=$	0.083
$\mathrm{S}_{\mathrm{o}}=$	0.000
$\mathrm{n}_{\text {StReet }}=$	0.016

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input) ${ }^{\text {CDOT Type R Curb Ope }}$		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type $=$	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	12.0	inches
Grate Information		MINOR	MAJOR	F Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	eet
Width of a Unit Grate	W_{0} =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$A_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {troat }}=$	6.00	6.00	nches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.57	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {curb }}=$	0.93	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$Q_{\text {a }}=$	8.3	25.5	cfs
WARNING: Inlet Capacity less than Q Peak for Minor Storm	$\mathrm{Q}_{\text {peak required }}=$	10.0	21.0	cfs

Version 4.05 Released March 2017

INLET IN A SUMP OR SAG LOCATION
Version 4.05 Released March 2017

Design Information (Input) \quad CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet *	Type =	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	12.0	inches
Grate Information		MINOR	MAJOR	$\sqrt{ }$ Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$C_{w}(G)=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {trroat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {Curb }}=$	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.57	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	$R F_{\text {curb }}=$	0.79	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$R F_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	9.7	39.1	cfs
WARNING: Inlet Capacity less than Q Peak for Minor Storm	$Q_{\text {Peakrequired }}=$	11.3	35.9	cfs

Hydraulic Analysis Report

Project Data

Project Title: ETC Filing No. 1-SD
Designer: JPS
Project Date: Thursday, August 16, 2018
Project Units: U.S. Customary Units
Notes:

Channel Analysis: SD-C1.2

Notes:
Input Parameters
Channel Type: Circular
Pipe Diameter: 2.5000 ft
Longitudinal Slope: $0.0100 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0130
Depth: 2.5000 ft

Result Parameters

Flow: 41.0171 cfs
Area of Flow: $4.9087 \mathrm{ft}^{\wedge} 2$
Wetted Perimeter: 7.8540 ft
Hydraulic Radius: 0.6250 ft
Average Velocity: $8.3559 \mathrm{ft} / \mathrm{s}$
Top Width: 0.0000 ft
Froude Number: 0.0000
Critical Depth: 2.1509 ft
Critical Velocity: $9.1300 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0093 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 1.73 ft
Calculated Max Shear Stress: $1.5600 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$
Calculated Avg Shear Stress: $0.3900 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: SD-C1.7A

Notes:

Input Parameters

Channel Type: Circular
Pipe Diameter: 1.5000 ft
Longitudinal Slope: $0.0100 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0130
Depth: 1.5000 ft

Result Parameters

Flow: 10.5043 cfs
Area of Flow: 1.7671 ft ^2
Wetted Perimeter: 4.7124 ft
Hydraulic Radius: 0.3750 ft
Average Velocity: $5.9442 \mathrm{ft} / \mathrm{s}$
Top Width: 0.0000 ft
Froude Number: 0.0000
Critical Depth: 1.2451 ft
Critical Velocity: $6.6989 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0098 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 1.13 ft
Calculated Max Shear Stress: $0.9360 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$
Calculated Avg Shear Stress: $0.2340 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: SD-C1.7B

Notes:

Input Parameters

Channel Type: Circular
Pipe Diameter: 2.0000 ft
Longitudinal Slope: $0.0100 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0130
Depth: 2.0000 ft

Result Parameters

Flow: 22.6224 cfs
Area of Flow: $3.1416 \mathrm{ft} \wedge 2$
Wetted Perimeter: 6.2832 ft
Hydraulic Radius: 0.5000 ft
Average Velocity: $7.2009 \mathrm{ft} / \mathrm{s}$
Top Width: 0.0000 ft
Froude Number: 0.0000
Critical Depth: 1.6953 ft
Critical Velocity: $7.9674 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0095 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 1.44 ft
Calculated Max Shear Stress: $1.2480 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$
Calculated Avg Shear Stress: $0.3120 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: SD-C1.2D

Notes:

Input Parameters

Channel Type: Circular
Pipe Diameter: 3.0000 ft
Longitudinal Slope: $0.0089 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0130
Depth: 3.0000 ft

Result Parameters

Flow: 62.9231 cfs
Area of Flow: $7.0686 \mathrm{ft} \wedge 2$
Wetted Perimeter: 9.4248 ft
Hydraulic Radius: 0.7500 ft
Average Velocity: $8.9018 \mathrm{ft} / \mathrm{s}$
Top Width: 0.0000 ft
Froude Number: 0.0000
Critical Depth: 2.5518 ft
Critical Velocity: $9.8203 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0084 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 2.14 ft
Calculated Max Shear Stress: $1.6661 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$
Calculated Avg Shear Stress: $0.4165 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: SD-C1.3

Notes:

Input Parameters

Channel Type: Circular
Pipe Diameter: 1.5000 ft
Longitudinal Slope: $0.0190 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0130
Depth: 1.5000 ft

Result Parameters

Flow: 14.4792 cfs
Area of Flow: 1.7671 ft ^2
Wetted Perimeter: 4.7124 ft
Hydraulic Radius: 0.3750 ft
Average Velocity: $8.1936 \mathrm{ft} / \mathrm{s}$
Top Width: 0.0000 ft
Froude Number: 0.0000
Critical Depth: 1.3938 ft
Critical Velocity: $8.4583 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0164 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 0.77 ft
Calculated Max Shear Stress: $1.7784 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$
Calculated Avg Shear Stress: $0.4446 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: SD-C1.3A

Notes:

Input Parameters

Channel Type: Circular
Pipe Diameter: 3.0000 ft
Longitudinal Slope: $0.0141 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0130
Depth: 3.0000 ft

Result Parameters

Flow: 79.2000 cfs
Area of Flow: 7.0686 ft ^2
Wetted Perimeter: 9.4248 ft
Hydraulic Radius: 0.7500 ft
Average Velocity: $11.2045 \mathrm{ft} / \mathrm{s}$
Top Width: 0.0000 ft
Froude Number: 0.0000
Critical Depth: 2.7627 ft
Critical Velocity: $11.6333 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0122 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 1.62 ft
Calculated Max Shear Stress: $2.6395 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$
Calculated Avg Shear Stress: $0.6599 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: SD-C1.4

Notes:

Input Parameters

Channel Type: Circular
Pipe Diameter: 1.5000 ft
Longitudinal Slope: $0.0220 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0130
Depth: 1.5000 ft

Result Parameters

Flow: 15.5805 cfs
Area of Flow: $1.7671 \mathrm{ft} \wedge 2$
Wetted Perimeter: 4.7124 ft
Hydraulic Radius: 0.3750 ft
Average Velocity: $8.8167 \mathrm{ft} / \mathrm{s}$
Top Width: 0.0000 ft
Froude Number: 0.0000
Critical Depth: 1.4172 ft
Critical Velocity: $9.0117 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0190 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 0.68 ft
Calculated Max Shear Stress: $2.0592 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$
Calculated Avg Shear Stress: $0.5148 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: SD-C1.4A

Notes:

Input Parameters

Channel Type: Circular
Pipe Diameter: 3.5000 ft
Longitudinal Slope: $0.0085 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0130
Depth: 3.5000 ft

Result Parameters

Flow: 92.7576 cfs
Area of Flow: $9.6211 \mathrm{ft} \wedge 2$
Wetted Perimeter: 10.9956 ft
Hydraulic Radius: 0.8750 ft
Average Velocity: $9.6410 \mathrm{ft} / \mathrm{s}$
Top Width: 0.0000 ft
Froude Number: 0.0000
Critical Depth: 2.9805 ft
Critical Velocity: $10.6254 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0080 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 2.49 ft
Calculated Max Shear Stress: $1.8564 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$
Calculated Avg Shear Stress: $0.4641 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: SD-C1.5

Notes:

Input Parameters

Channel Type: Circular
Pipe Diameter: 1.5000 ft
Longitudinal Slope: $0.0210 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0130
Depth: 1.5000 ft

Result Parameters

Flow: 15.2222 cfs
Area of Flow: $1.7671 \mathrm{ft} \wedge 2$
Wetted Perimeter: 4.7124 ft
Hydraulic Radius: 0.3750 ft
Average Velocity: $8.6140 \mathrm{ft} / \mathrm{s}$
Top Width: 0.0000 ft
Froude Number: 0.0000
Critical Depth: 1.4099 ft
Critical Velocity: $8.8307 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0181 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 0.71 ft
Calculated Max Shear Stress: $1.9656 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$
Calculated Avg Shear Stress: $0.4914 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: SD-C1.5A

Notes:

Input Parameters

Channel Type: Circular
Pipe Diameter: 3.5000 ft
Longitudinal Slope: $0.0100 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0130
Depth: 3.5000 ft

Result Parameters

Flow: 100.6098 cfs
Area of Flow: $9.6211 \mathrm{ft} \wedge 2$
Wetted Perimeter: 10.9956 ft
Hydraulic Radius: 0.8750 ft
Average Velocity: $10.4572 \mathrm{ft} / \mathrm{s}$
Top Width: 0.0000 ft
Froude Number: 0.0000
Critical Depth: 3.0762 ft
Critical Velocity: $11.2307 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0090 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 2.28 ft
Calculated Max Shear Stress: $2.1840 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$
Calculated Avg Shear Stress: $0.5460 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: SD-C1.1

Notes:

Input Parameters

Channel Type: Circular
Pipe Diameter: 2.0000 ft
Longitudinal Slope: $0.0100 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0130
Depth: 2.0000 ft

Result Parameters

Flow: 22.6224 cfs
Area of Flow: $3.1416 \mathrm{ft} \wedge 2$
Wetted Perimeter: 6.2832 ft
Hydraulic Radius: 0.5000 ft
Average Velocity: $7.2009 \mathrm{ft} / \mathrm{s}$
Top Width: 0.0000 ft
Froude Number: 0.0000
Critical Depth: 1.6953 ft
Critical Velocity: $7.9674 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0095 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 1.44 ft
Calculated Max Shear Stress: $1.2480 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$
Calculated Avg Shear Stress: $0.3120 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: SD-C1.6A

Notes:

Input Parameters

Channel Type: Circular
Pipe Diameter: 1.5000 ft
Longitudinal Slope: $0.0100 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0130
Depth: 1.5000 ft

Result Parameters

Flow: 10.5043 cfs
Area of Flow: $1.7671 \mathrm{ft} \wedge 2$
Wetted Perimeter: 4.7124 ft
Hydraulic Radius: 0.3750 ft
Average Velocity: $5.9442 \mathrm{ft} / \mathrm{s}$
Top Width: 0.0000 ft
Froude Number: 0.0000
Critical Depth: 1.2451 ft
Critical Velocity: $6.6989 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0098 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 1.13 ft
Calculated Max Shear Stress: $0.9360 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$
Calculated Avg Shear Stress: $0.2340 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: SD-C1.6B

Notes:

Input Parameters

Channel Type: Circular
Pipe Diameter: 1.5000 ft
Longitudinal Slope: $0.0100 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0130
Depth: 1.5000 ft

Result Parameters

Flow: 10.5043 cfs
Area of Flow: $1.7671 \mathrm{ft} \wedge 2$
Wetted Perimeter: 4.7124 ft
Hydraulic Radius: 0.3750 ft
Average Velocity: $5.9442 \mathrm{ft} / \mathrm{s}$
Top Width: 0.0000 ft
Froude Number: 0.0000
Critical Depth: 1.2451 ft
Critical Velocity: $6.6989 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0098 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 1.13 ft
Calculated Max Shear Stress: $0.9360 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$
Calculated Avg Shear Stress: $0.2340 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: SD-C1.6C

Notes:

Input Parameters

Channel Type: Circular
Pipe Diameter: 4.0000 ft
Longitudinal Slope: $0.0080 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0130
Depth: 4.0000 ft

Result Parameters

Flow: 128.4785 cfs
Area of Flow: $12.5664 \mathrm{ft}^{\wedge} 2$
Wetted Perimeter: 12.5664 ft
Hydraulic Radius: 1.0000 ft
Average Velocity: $10.2240 \mathrm{ft} / \mathrm{s}$
Top Width: 0.0000 ft
Froude Number: 0.0000
Critical Depth: 3.3945 ft
Critical Velocity: $11.3010 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0076 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 2.87 ft
Calculated Max Shear Stress: $1.9968 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$
Calculated Avg Shear Stress: $0.4992 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: SD-C1.8

Notes:

Input Parameters

Channel Type: Circular
Pipe Diameter: 2.0000 ft
Longitudinal Slope: $0.0100 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0130
Depth: 2.0000 ft

Result Parameters

Flow: 22.6224 cfs
Area of Flow: $3.1416 \mathrm{ft} \wedge 2$
Wetted Perimeter: 6.2832 ft
Hydraulic Radius: 0.5000 ft
Average Velocity: $7.2009 \mathrm{ft} / \mathrm{s}$
Top Width: 0.0000 ft
Froude Number: 0.0000
Critical Depth: 1.6953 ft
Critical Velocity: $7.9674 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0095 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 1.44 ft
Calculated Max Shear Stress: $1.2480 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$
Calculated Avg Shear Stress: $0.3120 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: SD-C1.9

Notes:

Input Parameters

Channel Type: Circular
Pipe Diameter: 2.0000 ft
Longitudinal Slope: $0.0100 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0130
Depth: 2.0000 ft

Result Parameters

Flow: 22.6224 cfs
Area of Flow: $3.1416 \mathrm{ft} \wedge 2$
Wetted Perimeter: 6.2832 ft
Hydraulic Radius: 0.5000 ft
Average Velocity: $7.2009 \mathrm{ft} / \mathrm{s}$
Top Width: 0.0000 ft
Froude Number: 0.0000
Critical Depth: 1.6953 ft
Critical Velocity: $7.9674 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0095 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 1.44 ft
Calculated Max Shear Stress: $1.2480 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$
Calculated Avg Shear Stress: $0.3120 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: SD-C1.9C

Notes:

Input Parameters

Channel Type: Circular
Pipe Diameter: 5.0000 ft
Longitudinal Slope: $0.0050 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0130
Depth: 5.0000 ft

Result Parameters

Flow: 184.1607 cfs
Area of Flow: $19.6350 \mathrm{ft}^{\wedge} 2$
Wetted Perimeter: 15.7080 ft
Hydraulic Radius: 1.2500 ft
Average Velocity: $9.3792 \mathrm{ft} / \mathrm{s}$
Top Width: 0.0000 ft
Froude Number: 0.0000
Critical Depth: 3.8843 ft
Critical Velocity: $11.2521 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0056 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 4.16 ft
Calculated Max Shear Stress: $1.5600 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$
Calculated Avg Shear Stress: $0.3900 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: SD-C2.8A-B

Notes:

Input Parameters

Channel Type: Circular
Pipe Diameter: 2.5000 ft
Longitudinal Slope: $0.0050 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0130
Depth: 2.5000 ft

Result Parameters

Flow: 29.0035 cfs
Area of Flow: $4.9087 \mathrm{ft} \wedge 2$
Wetted Perimeter: 7.8540 ft
Hydraulic Radius: 0.6250 ft
Average Velocity: $5.9085 \mathrm{ft} / \mathrm{s}$
Top Width: 0.0000 ft
Froude Number: 0.0000
Critical Depth: 1.8359 ft
Critical Velocity: $7.5068 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0063 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 2.21 ft
Calculated Max Shear Stress: $0.7800 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$
Calculated Avg Shear Stress: $0.1950 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

UDSewer Results Summary
Project Title: Ellicott Town Center - Storm Sewer C1 - 100-Year Analysis
Project Description: Default system

System Input
Manhole Input
Manhole Output
Sewer Input
Sewer Flow
Sewer Sizing
EGL/HGL Summary
Excavation Estimate

Table of Contents
$\underline{T o p}$
System Input Summary
Rainfall Parameters
Rainfall Return Period: 100
Rainfall Calculation Method: Formula
One Hour Depth (in): 2.52
Rainfall Constant "A": 28.5
Rainfall Constant "B": 10
Rainfall Constant "C": 0.786
Rational Method Constraints

Minimum Sewer Size (in): 12.00 Maximum Depth to Rise Ratio: 0.90
Maximum Flow Velocity (fps): 18.0
Minimum Flow Velocity (fps): 2.0
Tailwater Elevation (ft): 6053.90
Backwater Calculations: Backwater Calculations:
Manhole Input Summary:

		Given Flow		Sub Basin Information						
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution $(c f s)$	Drainage Area (Ac.)	Runoff Coefficient	$5 y r$ Coefficient	Overland Length (ft)	Overland Slope (\%)	Gutter Length (ft)	Gutter Velocity (fps)
OUTFALL 1	6058.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH C1.9C - POND C1	6056.59	163.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\begin{gathered} \text { MH C1.6C }-\mathrm{MH} \\ \mathrm{C} 1.9 \mathrm{C} \end{gathered}$	6061.00	127.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\begin{gathered} \text { MH C1.5A - MH } \\ \text { C1.6C } \end{gathered}$	6062.35	100.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\begin{gathered} \mathrm{MH} \mathrm{C} 1.4 \mathrm{~A}-\mathrm{MH} \\ \mathrm{C} 1.5 \mathrm{~A} \end{gathered}$	6066.30	85.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\begin{gathered} \text { MH C1.3A }-\mathrm{MH} \\ \text { C1.4A } \end{gathered}$	6069.31	70.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\begin{gathered} \text { MH C1.2D }-\mathrm{MH} \\ \text { C1.3A } \end{gathered}$	6072.72	55.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\begin{gathered} \text { INLET C1.6A - MH } \\ \text { C1.6C } \end{gathered}$	6067.31	18.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INLET C1.1INLET C1.6A	6067.31	18.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\begin{gathered} \text { MH C1.8-MH } \\ \text { C1.9C } \end{gathered}$	6063.90	18.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Manhole Output Summary:

	Local Contribution					Total Design Flow				
Element Name	Overland Time (min)	Gutter Time (min)	Basin Te (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak Flow (cfs)	Comment
OUTFALL 1	0.00	0.00	0.00	0.00	0.00	14.15	11.54	0.23	163.30	
MH C1.9C - POND C1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	163.30	
MH C1.6C - MH C1.9C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	127.90	
MH C1.5A - MH C1.6C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.50	
MH C1.4A - MH C1.5A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	85.50	
MH C1.3A - MH C1.4A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	70.20	
MH C1.2D - MH C1.3A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	55.90	
INLET C1.6A - MH C1.6C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	18.90	
INLET C1.1- INLET C1.6A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	18.00	
MH C1.8-MH C1.9C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	18.40	

Sewer Input Summary:

		Elevation			Loss Coefficients			Given Dimensions		
Element Name	Sewer Length (ft)	Downstream Invert (ft)	Slope (\%)	Upstream Invert (ft)	Mannings n	$\begin{aligned} & \text { Bend } \\ & \text { Loss } \end{aligned}$	Lateral Loss	Cross Section	Rise (ft or in)	Span (ft or in)
MH C1.9C - POND C1	116.83	6048.25	0.5	6048.83	0.013	0.03	1.00	CIRCULAR	60.00 in	60.00 in
MH C1.6C - MH C1.9C	311.01	6049.83	1.1	6053.11	0.013	0.05	1.00	CIRCULAR	48.00 in	48.00 in
MH C1.5A - MH C1.6C	159.20	6053.61	1.0	6055.20	0.013	1.32	1.00	CIRCULAR	42.00 in	42.00 in
MH C1.4A - MH C1.5A	328.84	6055.30	1.3	6059.56	0.013	0.05	1.00	CIRCULAR	42.00 in	42.00 in
MH C1.3A - MH C1.4A	276.18	6059.86	1.4	6063.75	0.013	0.05	1.00	CIRCULAR	36.00 in	36.00 in
MH C1.2D - MH C1.3A	313.54	6064.05	0.9	6066.83	0.013	0.05	1.00	CIRCULAR	36.00 in	36.00 in
INLET C1.6A - MH C1.6C	436.48	6055.11	1.6	6062.07	0.013	0.05	1.00	CIRCULAR	24.00 in	24.00 in
INLET C1.1-INLET C1.6A	32.82	6062.17	1.0	6062.50	0.013	0.05	1.00	CIRCULAR	24.00 in	24.00 in
MH C1.8-MH C1.9C	457.18	6051.83	1.1	6057.00	0.013	1.32	1.00	CIRCULAR	24.00 in	24.00 in

Sewer Flow Summary:

	Full Flow Capacity		Critical Flow		Normal Flow						
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	$\begin{aligned} & \text { Velocity } \\ & \text { (fps) } \end{aligned}$	Depth (in)	Velocity (fps)	Froude Number	Flow Condition	Flow (cfs)	Surcharged Length (ft)	Comment
$\begin{gathered} \text { MH C1.9C }- \text { POND } \\ \mathrm{C} 1 \end{gathered}$	184.01	9.37	43.96	10.59	43.98	10.59	1.00	Pressurized	163.30	116.83	
MH C1.6C - MH C1.9C	147.91	11.77	40.66	11.27	34.46	13.25	1.43	Supercritical Jump	127.90	228.26	
$\begin{gathered} \text { MH C1.5A - MH } \\ \text { C1.6C } \end{gathered}$	100.83	10.48	36.89	11.22	34.30	11.95	1.19	Pressurized	100.50	159.20	
$\begin{gathered} \mathrm{MH} \mathrm{C} 1.4 \mathrm{~A}-\mathrm{MH} \\ \mathrm{C} 1.5 \mathrm{~A} \end{gathered}$	114.82	11.93	34.55	10.10	27.00	13.08	1.65	Pressurized	85.50	328.84	
$\begin{gathered} \text { MH C1.3A }-\mathrm{MH} \\ \mathrm{C} 1.4 \mathrm{~A} \end{gathered}$	79.37	11.23	31.92	10.59	26.32	12.68	1.55	Pressurized	70.20	276.18	
$\begin{gathered} \text { MH C1.2D }-\mathrm{MH} \\ \text { C1.3A } \end{gathered}$	62.98	8.91	29.09	9.13	26.39	10.06	1.23	Pressurized	55.90	313.54	
$\begin{gathered} \text { INLET C1.6A - MH } \\ \text { C1.6C } \end{gathered}$	28.64	9.12	18.77	7.17	14.23	9.74	1.73	Supercritical Jump	18.90	207.98	
INLET C1.1 - INLET C1.6A	22.75	7.24	18.34	6.99	16.11	8.03	1.30	Supercritical	18.00	0.00	
MH C1.8-MH C1.9C	24.12	7.68	18.53	7.07	15.69	8.45	1.39	Pressurized	18.40	457.18	

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe). - If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer. - If the sewer is pressurized, full flow represents the pressurized flow conditions.
Sewer Sizing Summary:

			Existing		Calculated		Used			
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	$\begin{gathered} \text { Area } \\ \left(\mathbf{f t}^{\wedge} \mathbf{2}\right) \end{gathered}$	Comment
MH C1.9C - POND C1	163.30	CIRCULAR	60.00 in	19.63						
MH C1.6C - MH C1.9C	127.90	CIRCULAR	48.00 in	12.57						
MH C1.5A - MH C1.6C	100.50	CIRCULAR	42.00 in	9.62						
MH C1.4A - MH C1.5A	85.50	CIRCULAR	42.00 in	9.62						
MH C1.3A - MH C1.4A	70.20	CIRCULAR	36.00 in	7.07						
MH C1.2D - MH C1.3A	55.90	CIRCULAR	36.00 in	7.07						
INLET C1.6A - MH C1.6C	18.90	CIRCULAR	24.00 in	24.00 in	21.00 in	21.00 in	24.00 in	24.00 in	3.14	
INLET C1.1-INLET C1.6A	18.00	CIRCULAR	24.00 in	3.14						
MH C1.8-MH C1.9C	18.40	CIRCULAR	24.00 in	3.14						

Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.

- All hydraulics where calculated using the 'Used' parameters.
Grade Line Summary:
Tailwater Elevation (ft): 6053.90

	Invert Elev.		Downstream Manhole Losses		HGL		EGL		
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)
MH C1.9C - POND C1	6048.25	6048.83	0.00	0.00	6053.90	6054.36	6054.97	0.46	6055.43
$\begin{gathered} \text { MH C1.6C }-\mathrm{MH} \\ \mathrm{C} 1.9 \mathrm{C} \end{gathered}$	6049.83	6053.11	0.08	0.00	6054.44	6056.50	6056.05	2.42	6058.47
$\begin{gathered} \text { MH C1.5A - MH } \\ \text { C1.6C } \end{gathered}$	6053.61	6055.20	2.24	0.00	6059.01	6060.59	6060.71	1.58	6062.29
$\begin{gathered} \text { MH C1.4A }-\mathrm{MH} \\ \mathrm{C} 1.5 \mathrm{~A} \end{gathered}$	6055.30	6059.56	0.06	0.47	6061.59	6063.95	6062.82	2.36	6065.18
$\begin{gathered} \text { MH C1.3A }-\mathrm{MH} \\ \text { C1.4A } \end{gathered}$	6059.86	6063.75	0.08	0.00	6064.03	6067.07	6065.56	3.04	6068.60
$\begin{gathered} \text { MH C1.2D - MH } \\ \text { C1.3A } \end{gathered}$	6064.05	6066.83	0.05	0.56	6068.24	6070.43	6069.21	2.19	6071.40
$\begin{gathered} \text { INLET C1.6A - MH } \\ \text { C1.6C } \end{gathered}$	6055.11	6062.07	0.03	1.05	6058.98	6063.63	6059.54	4.89	6064.43
INLET C1.1 - INLET C1.6A	6062.17	6062.50	0.03	0.05	6063.71	6064.03	6064.51	0.27	6064.79
MH C1.8-MH C1.9C	6051.83	6057.00	0.70	0.54	6056.14	6059.15	6056.68	3.01	6059.68

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer \#0, is not considered a sewer.
- Bend loss = Bend $\mathrm{K}^{*} \mathrm{~V}$ fi $\wedge 2 /(2 * \mathrm{~g})$
Bend loss $=$ Bend $K * V_{-} \mathrm{fi}^{\wedge} 2 /(2 * \mathrm{~g})$
- Lateral loss $=\mathrm{V}_{-} \mathrm{fo}^{\wedge} 2 /(2 * \mathrm{~g})-$ Junction Loss $\mathrm{K} * \mathrm{~V}_{-} \mathrm{fi} \wedge 2 /(2 * \mathrm{~g})$.
- Friction loss is always Upstream EGL - Downstream EGL.

C1.1-OUTFALL

C1.2D-OUTFALL

C1.8-OUTFALL

APPENDIX D2

CULVERT HYDRAULIC CALCULATIONS

BASIN	$\begin{array}{\|c} \text { DESIGN } \\ \text { POINT } \\ \hline \end{array}$	RD CL ELEV	$\begin{gathered} \hline \mathbb{I N V} \\ \mathbb{N} \\ \text { ELEV } \end{gathered}$	INV OUT ELEV	PIPE LENGTH (FT)	\# of CULVERTS	$\begin{gathered} \hline \text { PIPE } \\ \text { DIA } \\ \text { (FT) } \end{gathered}$	$\begin{gathered} \hline \text { TOTAL } \\ Q_{5} \\ \text { (CFS) } \\ \hline \end{gathered}$	PER PIPE Q_{5} (CFS)	Q_{5} MAX ALLOWABLE HEADWATER ${ }^{1}$	$\begin{aligned} & \hline \text { CALC } \\ & \mathrm{Q}_{5} \mathrm{HW} \\ & \text { ELEV } \\ & \hline \end{aligned}$	$\begin{gathered} \text { TOTAL } \\ Q_{100} \\ \text { (CFS) } \\ \hline \end{gathered}$	PER PIPE Q_{100} (CFS)	Q_{100} MAX ALLOWABLE HEADWATER ${ }^{2}$	$\begin{gathered} \hline \text { CALC } \\ Q_{100} \mathrm{HW} \\ \text { ELEV } \end{gathered}$
C1.1	EC11	6066.23	6060.50	6059.94	110.7	1	3.0	24.4	24.4	6063.5	6062.8	149.5	149.5	6066.8	6066.6
C1.6	EC11	6059.69	6055.38	6054.83	110.7	1	3.0	24.4	24.4	6058.4	6056.2	149.5	149.5	6060.3	6060.1
C1.9	EC11	6055.41	6049.98	6047.67	131.2	1	3.5	24.4	24.4	6053.5	6050.4	149.5	149.5	6055.7	6055.6
${ }^{1} \mathrm{Q}_{5}$ MAX. AL	ABLE HE	ADWATE	HW/D $=$												

HY-8 Culvert Analysis Report

Crossing Discharge Data - Culvert C1.1

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow
Minimum Flow: 10 cfs
Design Flow: 24.4 cfs
Maximum Flow: 149.5 cfs

Table 1 - Summary of Culvert Flows at Crossing: Crossing C1.1

Headwater Elevation (ft)	Total Discharge (cfs)	Culvert C1.1 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
6061.86	10.00	10.00	0.00	1
6062.76	23.95	23.95	0.00	1
6062.78	24.40	24.40	0.00	1
6064.30	51.85	51.85	0.00	1
6065.43	65.80	65.80	0.00	1
6066.29	79.75	74.83	4.80	10
6066.38	93.70	75.72	17.80	6
6066.45	107.65	76.46	31.14	5
6066.51	121.60	76.99	44.43	4
6066.56	135.55	77.57	57.92	4
6066.61	149.50	78.05	71.29	3
6066.23	74.18	74.18	0.00	Overtopping

Rating Curve Plot for Crossing: Crossing C1.1
Total Rating Curve
Crossing: Crossing C1.1

Table 2 - Culvert Summary Table: Culvert C1.1

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
10.00	10.00	6061.86	1.365	0.0*	1-S2n	0.910	0.997	0.935	0.359	5.129	2.953
23.95	23.95	6062.76	2.259	1.371	1-S2n	1.468	1.575	1.468	0.589	6.738	3.927
24.40	24.40	6062.78	2.283	0.035	1-S2n	1.484	1.590	1.527	0.595	6.531	3.951
51.85	51.85	6064.30	3.769	3.795	7-M2c	3.000	2.339	2.339	0.899	8.770	4.976
65.80	65.80	6065.43	4.797	4.927	7-M2c	3.000	2.597	2.597	1.021	10.120	5.336
79.75	74.83	6066.29	5.609	5.796	7-M2c	3.000	2.717	2.717	1.129	11.117	5.642
93.70	75.72	6066.38	5.696	5.884	7-M2c	3.000	2.728	2.728	1.228	11.219	5.908
107.65	76.46	6066.45	5.768	5.952	7-M2c	3.000	2.736	2.736	1.320	11.306	6.144
121.60	76.99	6066.51	5.820	6.011	7-M2c	3.000	2.741	2.741	1.404	11.368	6.358
135.55	77.57	6066.56	5.878	6.064	7-M2c	3.000	2.747	2.747	1.484	11.437	6.553
149.50	78.05	6066.61	5.926	6.113	7-M2c	3.000	2.752	2.752	1.560	11.494	6.733

* Full Flow Headwater elevation is below inlet invert.
$* ~$ Straight Culvert

Culvert Performance Curve Plot: Culvert C1.1

Performance Curve
Culvert: Culvert C1.1

Water Surface Profile Plot for Culvert: Culvert C1.1

Crossing - Crossing C1.1, Design Discharge - 24.4 cfs Culvert - Culvert C1.1, Culvert Discharge - 24.4 cfs

Site Data - Culvert C1.1

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 6060.50 ft
Outlet Station: 110.70 ft
Outlet Elevation: 6059.94 ft
Number of Barrels: 1

Culvert Data Summary - Culvert C1.1

Barrel Shape: Circular
Barrel Diameter: 3.00 ft
Barrel Material: Concrete
Embedment: 0.00 in
Barrel Manning's n: 0.0130
Culvert Type: Straight
Inlet Configuration: Grooved End Projecting
Inlet Depression: None

Table 3 - Downstream Channel Rating Curve (Crossing: Crossing C1.1)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
10.00	6060.30	0.36	2.95	0.38	0.93
23.95	6060.53	0.59	3.93	0.62	1.00
24.40	6060.53	0.59	3.95	0.63	1.00
51.85	6060.84	0.90	4.98	0.95	1.06
65.80	6060.96	1.02	5.34	1.08	1.08
79.75	6061.07	1.13	5.64	1.20	1.09
93.70	6061.17	1.23	5.91	1.30	1.10
107.65	6061.26	1.32	6.14	1.40	1.11
121.60	6061.34	1.40	6.36	1.49	1.12
135.55	6061.42	1.48	6.55	1.57	1.13
149.50	6061.50	1.56	6.73	1.65	1.14

Tailwater Channel Data - Crossing C1.1

Tailwater Channel Option: Trapezoidal Channel
Bottom Width: 8.00 ft
Side Slope (H:V): 4.00 (_:1)
Channel Slope: 0.0170
Channel Manning's n: 0.0300
Channel Invert Elevation: 6059.94 ft

Roadway Data for Crossing: Crossing C1.1

Roadway Profile Shape: Constant Roadway Elevation
Crest Length: 100.00 ft
Crest Elevation: 6066.23 ft
Roadway Surface: Paved
Roadway Top Width: 30.00 ft

Crossing Discharge Data - Culvert C1.6

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow
Minimum Flow: 10 cfs
Design Flow: 24.4 cfs
Maximum Flow: 149.5 cfs

Table 4 - Summary of Culvert Flows at Crossing: Crossing C1.6

Headwater Elevation (ft)	Total Discharge (cfs)	Culvert C1.6 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
6055.32	10.00	10.00	0.00	1
6056.22	23.95	23.95	0.00	1
6056.24	24.40	24.40	0.00	1
6057.76	51.85	51.85	0.00	1
6058.89	65.80	65.80	0.00	1
6059.76	79.75	74.89	4.85	10
6059.84	93.70	75.78	17.85	6
6059.91	107.65	76.47	31.15	5
6059.97	121.60	76.99	44.46	4
6060.02	135.55	77.52	57.96	4
6060.07	149.50	77.99	71.23	3
6059.69	74.17	74.17	0.00	Overtopping

Rating Curve Plot for Crossing: Crossing C1.6
Total Rating Curve
Crossing: Crossing C1.6

Table 5 - Culvert Summary Table: Culvert C1.6

Total Discharge (cfs)	Culvert Discharge (cfs)	Ceadwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Contro Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft) $)$	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
10.00	10.00	6055.32	1.365	0.0^{*}	1-S2n	0.910	0.997	0.935	0.286	5.130	2.659
23.95	23.95	6056.22	2.259	1.371	1-S2n	1.468	1.575	1.468	0.476	6.738	3.618
24.40	24.40	6056.24	2.283	0.0^{*}	1-S2n	1.484	1.590	1.527	0.481	6.532	3.642
51.85	51.85	6057.76	3.769	3.795	7-M2c	3.000	2.339	2.339	0.740	8.770	4.681
65.80	65.80	6058.89	4.797	4.927	7-M2c	3.000	2.597	2.597	0.846	10.120	5.053
79.75	74.89	6059.76	5.615	5.795	$7-\mathrm{M} 2 \mathrm{c}$	3.000	2.718	2.718	0.942	11.125	5.369
93.70	75.78	6059.84	5.702	5.884	7-M2c	3.000	2.728	2.728	1.030	11.226	5.645
107.65	76.47	6059.91	5.769	5.952	7-M2c	3.000	2.736	2.736	1.111	11.306	5.890
121.60	76.99	6059.97	5.821	6.011	7-M2c	3.000	2.741	2.741	1.188	11.368	6.113
135.55	77.52	6060.02	5.873	6.065	7-M2c	3.000	2.746	2.746	1.260	11.431	6.316
149.50	77.99	6060.07	5.920	6.112	$7-\mathrm{M} 2 \mathrm{c}$	3.000	2.751	2.751	1.328	11.487	6.503

* Full Flow Headwater elevation is below inlet invert.
\qquad
Straight Culvert
Inlet Elevation (invert): $6053.96 \mathrm{ft}, \quad$ Outlet Elevation (invert): 6053.40 ft
Culvert Length: $110.68 \mathrm{ft}, \quad$ Culvert Slope: 0.0051

Culvert Performance Curve Plot: Culvert C1.6

Performance Curve
Culvert: Culvert C1.6

Water Surface Profile Plot for Culvert: Culvert C1.6
Crossing - Crossing C1.6, Design Discharge - 24.4 cfs Culvert - Culvert C1.6, Culvert Discharge - 24.4 cfs

Site Data - Culvert C1.6

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 6053.96 ft
Outlet Station: 110.68 ft
Outlet Elevation: 6053.40 ft
Number of Barrels: 1

Culvert Data Summary - Culvert C1.6

Barrel Shape: Circular
Barrel Diameter: 3.00 ft
Barrel Material:
Embedment: 0.00 in
Barrel Manning's n: 0.0130
Culvert Type: Straight
Inlet Configuration: Grooved End Projecting
Inlet Depression: None

Table 6 - Downstream Channel Rating Curve (Crossing: Crossing C1.6)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
10.00	6053.69	0.29	2.66	0.31	0.91
23.95	6053.88	0.48	3.62	0.51	0.99
24.40	6053.88	0.48	3.64	0.52	0.99
51.85	6054.14	0.74	4.68	0.79	1.05
65.80	6054.25	0.85	5.05	0.91	1.07
79.75	6054.34	0.94	5.37	1.01	1.09
93.70	6054.43	1.03	5.64	1.11	1.10
107.65	6054.51	1.11	5.89	1.19	1.11
121.60	6054.59	1.19	6.11	1.27	1.12
135.55	6054.66	1.26	6.32	1.35	1.13
149.50	6054.73	1.33	6.50	1.43	1.14

Tailwater Channel Data - Crossing C1.6

Tailwater Channel Option: Trapezoidal Channel
Bottom Width: 12.00 ft
Side Slope (H:V): 4.00 (_:1)
Channel Slope: 0.0172
Channel Manning's n: 0.0300
Channel Invert Elevation: 6053.40 ft

Roadway Data for Crossing: Crossing C1.6

Roadway Profile Shape: Constant Roadway Elevation
Crest Length: 100.00 ft
Crest Elevation: 6059.69 ft
Roadway Surface: Paved
Roadway Top Width: 30.00 ft

Crossing Discharge Data - Culvert C1.9

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow
Minimum Flow: 10 cfs
Design Flow: 24.4 cfs
Maximum Flow: 149.5 cfs

Table 7 - Summary of Culvert Flows at Crossing: Crossing C1.9

Headwater Elevation (ft)	Total Discharge (cfs)	Culvert C1.9 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
6049.60	10.00	10.00	0.00	1
6050.41	23.95	23.95	0.00	1
6050.43	24.40	24.40	0.00	1
6051.61	51.85	51.85	0.00	1
6052.27	65.80	65.80	0.00	1
6052.90	79.75	79.75	0.00	1
6053.81	93.70	93.70	0.00	1
6054.84	107.65	107.65	0.00	1
6055.48	121.60	115.84	5.60	14
6055.57	135.55	116.89	18.54	6
6055.64	149.50	117.66	31.74	5
6055.41	114.87	114.87	0.00	Overtopping

Rating Curve Plot for Crossing: Crossing C1.9
Total Rating Curve
Crossing: Crossing C1.9

Table 8 - Culvert Summary Table: Culvert C1.9

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
10.00	10.00	6049.60	1.297	0.0*	1-S2n	0.871	0.954	0.871	0.438	5.157	1.660
23.95	23.95	6050.41	2.111	1.061	1-S2n	1.377	1.502	1.377	0.722	6.585	2.226
24.40	24.40	6050.43	2.134	0.100	1-S2n	1.391	1.517	1.391	0.730	6.619	2.240
51.85	51.85	6051.61	3.309	2.505	1-S2n	2.188	2.247	2.188	1.111	7.950	2.839
65.80	65.80	6052.27	3.897	3.972	7-M2c	2.633	2.540	2.540	1.264	8.800	3.052
79.75	79.75	6052.90	4.582	4.598	7-M2c	3.500	2.787	2.787	1.402	9.708	3.232
93.70	93.70	6053.81	5.400	5.511	7-M2c	3.500	2.991	2.991	1.527	10.701	3.388
107.65	107.65	6054.84	6.366	6.538	7-M2c	3.500	3.148	3.148	1.643	11.808	3.527
121.60	115.84	6055.48	7.002	7.182	7-M2c	3.500	3.218	3.218	1.752	12.513	3.652
135.55	116.89	6055.57	7.088	7.267	7-M2c	3.500	3.226	3.226	1.853	12.608	3.767
149.50	117.66	6055.64	7.151	7.335	7-M2c	3.500	3.231	3.231	1.950	12.677	3.873

* Full Flow Headwater elevation is below inlet invert.
\qquad
Straight Culvert
Inlet Elevation (invert): $6048.30 \mathrm{ft}, \quad$ Outlet Elevation (invert): 6047.67 ft
Culvert Length: $131.20 \mathrm{ft}, \quad$ Culvert Slope: 0.0048
\qquad

Culvert Performance Curve Plot: Culvert C1.9

Performance Curve
Culvert: Culvert C1.9

Water Surface Profile Plot for Culvert: Culvert C1.9
Crossing - Crossing C1.9, Design Discharge - 24.4 cfs Culvert - Culvert C1.9, Culvert Discharge - 24.4 cfs

Site Data-Culvert C1.9

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 6048.30 ft
Outlet Station: 131.20 ft
Outlet Elevation: 6047.67 ft
Number of Barrels: 1

Culvert Data Summary - Culvert C1.9

Barrel Shape: Circular
Barrel Diameter: 3.50 ft
Barrel Material:
Embedment: 0.00 in
Barrel Manning's n: 0.0130
Culvert Type: Straight
Inlet Configuration: Grooved End Projecting
Inlet Depression: None

Table 9 - Downstream Channel Rating Curve (Crossing: Crossing C1.9)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
10.00	6048.11	0.44	1.66	0.11	0.47
23.95	6048.39	0.72	2.23	0.18	0.50
24.40	6048.40	0.73	2.24	0.18	0.51
51.85	6048.78	1.11	2.84	0.28	0.54
65.80	6048.93	1.26	3.05	0.32	0.54
79.75	6049.07	1.40	3.23	0.35	0.55
93.70	6049.20	1.53	3.39	0.38	0.56
107.65	6049.31	1.64	3.53	0.41	0.56
121.60	6049.42	1.75	3.65	0.44	0.57
135.55	6049.52	1.85	3.77	0.46	0.57
149.50	6049.62	1.95	3.87	0.49	0.58

Tailwater Channel Data - Crossing C1.9

Tailwater Channel Option: Trapezoidal Channel
Bottom Width: 12.00 ft
Side Slope (H:V): 4.00 (_:1)
Channel Slope: 0.0040
Channel Manning's n: 0.0300
Channel Invert Elevation: 6047.67 ft

Roadway Data for Crossing: Crossing C1.9

Roadway Profile Shape: Constant Roadway Elevation
Crest Length: 100.00 ft
Crest Elevation: 6055.41 ft
Roadway Surface: Paved
Roadway Top Width: 74.00 ft

APPENDIX D3

OPEN CHANNEL HYDRAULIC CALCULATIONS

table 10-2 (Continued)

TYPICAL ROUGFNES8 COEFFICIBNTS FOR OPEN CHANNELS

TABLE 10-3

MAXIMUM PERMI88IBLE DE8IGN OPEN CHANNEL FLOW VELOCITIES IN EARTH*

Soil Types

Fine Sand (noncolloidal)
Permissible Mean Channel Velocity (ft/sec)

Coarse Sand (noncolloidal)
Sandy Loam (noncolloidal)
2.5

Silt Loam (noncolloidal)
3.0

Ordinary firm Loam
3.5
silty clay
Fine Gravel
Stiff Clay (very colloidal)
Graded, Loam to Cobbles (noncolloidal)
Graded, Silt to Cobbles (colloidal)
5.0

Alluvial Silts (noncolloidal)
5.0

Alluvial Silts (colloidal)
Coarse Gravel (noncolloidal)
cobbles and Shingles
5.0

Hard Shales and Hard Pans
Scff Shales
5.5
soft Sandstone
Sound rock (usu. igneous or hard metamorphic)
3.5

* These velocities shall be used in conjunction with scour calculations and as approved by City/County.

TABLE 10-4

MAXIMUM PERYIB8IBLE VELOCITIES FOR EARTH CHANNELS WITH VARIED GRASS LININGS AND 8LOPBS

		Permissible Mean Channel Velocity
Channel Slope	Lining	(ft/sec)
$0-5 \%$	Sodded grass	7
	Bermudagrass	5
	Reed canarygrass	5
	Tall fescue	
	Kentucky bluegrass	4
	Grass-legume mixture	
	Red fescue	2.5
	Redtop	2.5
	Sericea lespedeza	2.5
	Annual lespedeza	2.5
	Small grains (temporary)	2.5
5-10\%	Sodded grass	6
	Bermudagrass	5
	Reed canarygrass	4
	Tall fescue	4
	Kentucky bluegrass	3
	Grass-legume mixture	3
Greater than10%	Sodded grass	5
	Bermudagrass	4
	Reed canarygrass	3
	Tall fescue	3
	Kentucky bluegrass	3

[^3]
ELLICOTT TOWN CENTER - FILING NO. 1 CHANNEL CALCULATIONS DEVELOPED FLOWS

PROPOSED CHANNELS

CHANNEL	DESIGN POINT	PROPOSED SLOPE (\%)	BотTOM WIDTH (B, FT)	SIDE SLOPE (Z)	CHANNEL DEPTH (FT)	FRICTION FACTOR (n)	$\begin{aligned} & \hline \text { Q100 } \\ & \text { FLOW } \\ & \text { (CFS) } \end{aligned}$	Q100 DEPTH (FT)	$\begin{gathered} \text { Q100 } \\ \text { VELOCITY } \\ \text { (FT/S) } \\ \hline \end{gathered}$	CHANNEL LINING
C1A	EC11	1.70	12	4:1	2.5	0.030	149.5	1.3	6.5	GRASS/ECB
C1B	EC11	2.57	12	4:1	2.5	0.030	149.5	1.2	7.5	GRASS/ECB
C2.8	C2.8A	0.50	0	3:1	2.0	0.030	26.7	1.7	3.1	GRASS
C3	EC11A*	0.40	12	4:1	3.0	0.030	160.8	2.0	4.0	GRASS
EC11A FLOW = DP-EC11 (Q100=149.5 cfs) + DETENTION POND C1 DISCHARGE (Q100 = 11.3 cfs) 1) Channel flow calculations based on Manning's Equation 2) Channel depth includes 1 ' minimum freeboard 3) $n=0.03$ for grass-lined non-irrigated channels (minimum) 4) $V \max =5.0 \mathrm{fps}$ for 100 -year flows w/ grass-lined channels 5) $\operatorname{Vmax}=8.0 \mathrm{fps}$ for 100 -year flows w/ Erosion Control Blankes (Tensar Eronet SC150 or equal)										

Hydraulic Analysis Report

Project Data

Project Title: ETC-Channels
Designer: JPS
Project Date: Thursday, July 19, 2018
Project Units: U.S. Customary Units
Notes:

Channel Analysis: Channel Analysis-C1A

Notes:

Input Parameters

Channel Type: Trapezoidal
Side Slope 1 (Z1): $4.0000 \mathrm{ft} / \mathrm{ft}$
Side Slope 2 (Z2): $4.0000 \mathrm{ft} / \mathrm{ft}$
Channel Width: 12.0000 ft
Longitudinal Slope: $0.0170 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0300
Flow: 149.5000 cfs

Result Parameters

Depth: 1.3318 ft
Area of Flow: 23.0761 ft ^2
Wetted Perimeter: 22.9822 ft
Hydraulic Radius: 1.0041 ft
Average Velocity: $6.4786 \mathrm{ft} / \mathrm{s}$
Top Width: 22.6543 ft Permanent
Froude Number: 1.1312 stabilization
Critical Depth: 1.4301 ft
required
Critical Velocity: $5.8991 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0130 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 23.44 ft
Calculated Max Shear Stress: $1.4128 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$
Calculated Avg Shear Stress: $1.0651 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: Channel Analysis-C1B

Notes:

Input Parameters

Channel Type: Trapezoidal
Side Slope 1 (Z1): $4.0000 \mathrm{ft} / \mathrm{ft}$
Side Slope 2 (Z2): $4.0000 \mathrm{ft} / \mathrm{ft}$
Channel Width: 12.0000 ft
Longitudinal Slope: $0.0257 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0300
Flow: 149.5000 cfs

Result Parameters

Depth: 1.1914 ft
Area of Flow: 19.9752 ft ^2
Wetted Perimeter: 21.8248 ft
Hydraulic Radius: 0.9153 ft
$\begin{array}{ll}\text { Average Velocity: } \mathbf{7 . 4 8 4 3 \mathrm { ft } / \mathrm { s }} & \begin{array}{l}\text { Permanent } \\ \text { Top Width: } 21.5314 \mathrm{ft}\end{array} \\ \text { Froude Number: } 1.3693< & \text { stabilization }\end{array}$
Critical Depth: 1.4307 ft
Critical Velocity: $5.8959 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0130 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 23.45 ft
Calculated Max Shear Stress: $1.9107 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$
Calculated Avg Shear Stress: $1.4678 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: Channel Analysis-C2.8

Notes:

Input Parameters

Channel Type: Triangular
Side Slope 1 (Z1): $3.0000 \mathrm{ft} / \mathrm{ft}$
Side Slope 2 (Z2): $3.0000 \mathrm{ft} / \mathrm{ft}$
Longitudinal Slope: $0.0050 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0300
Flow: 26.7000 cfs

Result Parameters

Depth: 1.7094 ft
Area of Flow: $8.7666 \mathrm{ft}^{\wedge} 2$
Wetted Perimeter: 10.8115 ft
Hydraulic Radius: 0.8109 ft
Average Velocity: $3.0457 \mathrm{ft} / \mathrm{s}$
Top Width: 10.2567 ft
Froude Number: 0.5805
Critical Depth: 1.3753 ft
Critical Velocity: $4.7055 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0160 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 8.25 ft
Calculated Max Shear Stress: $0.5333 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$
Calculated Avg Shear Stress: $0.2530 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

Channel Analysis: Channel Analysis-C3

Notes:

Input Parameters

Channel Type: Trapezoidal
Side Slope 1 (Z1): $4.0000 \mathrm{ft} / \mathrm{ft}$
Side Slope 2 (Z2): $4.0000 \mathrm{ft} / \mathrm{ft}$
Channel Width: 12.0000 ft
Longitudinal Slope: $0.0040 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0300
Flow: 160.8000 cfs

Result Parameters

Depth: 2.0241 ft
Area of Flow: 40.6774 ft 2
Wetted Perimeter: 28.6912 ft
Hydraulic Radius: 1.4178 ft
Average Velocity: $3.9531 \mathrm{ft} / \mathrm{s}$
Top Width: 28.1929 ft
Froude Number: 0.5800
Critical Depth: 1.4917 ft
Critical Velocity: $5.9997 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0129 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 23.93 ft
Calculated Max Shear Stress: $0.5052 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$
Calculated Avg Shear Stress: $0.3539 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

APPENDIX E

COST ESTIMATE

ELLICOTT TOWN CENTER FILING NO. 1 ENGINEER'S COST ESTIMATE DRAINAGE IMPROVEMENTS

$\begin{aligned} & \hline \text { Item } \\ & \text { No. } \end{aligned}$	Item	Quantity	Unit	Unit Cost $(\$ \$ \$)$	$\begin{aligned} & \hline \text { Total } \\ & \text { Cost } \\ & (\$ \$ \$) \end{aligned}$
506	Riprap (d50 = 12")	20	CY	\$98	\$1,960
603	18" RCP Storm Sewer	309	LF	\$65	\$20,085
603	24" RCP Storm Sewer	982	LF	\$78	\$76,596
603	$30^{\prime \prime}$ RCP Storm Sewer	278	LF	\$97	\$26,966
603	36" RCP Storm Sewer	811	LF	\$120	\$97,320
603	42" RCP Storm Sewer	619	LF	\$160	\$99,040
603	48" RCP Storm Sewer	311	LF	\$195	\$60,645
603	60" RCP Storm Sewer	117	LF	\$288	\$33,696
603	18" RCP FES	1	EA	\$390	\$390
603	$30^{\prime \prime}$ RCP FES	1	EA	\$582	\$582
603	36" RCP FES	4	EA	\$720	\$2,880
603	42" RCP FES	2	EA	\$960	\$1,920
604	5' Type R Storm Inlet	3	EA	\$5,542	\$16,626
604	10' Type R Storm Inlet	8	EA	\$7,627	\$61,016
604	15' Type R Storm Inlet	1	EA	\$9,918	\$9,918
604	Storm Manhole	8	EA	\$6,395	\$51,160
604	Detention Pond Forebay	1	EA	\$4,000	\$4,000
604	Detention Pond Outlet Structure	2	EA	\$8,000	\$16,000
604	Detention Pond Spillway	1	EA	\$3,000	\$3,000
	TOTAL				\$583,800

Provide permanent channel stabilization

APPENDIX F

FIGURES

REF: FIRM PANEL 08041C0825, DATED 3/17/97
ELLICOTT TOWN CENTER
FLOODPLAIN MAP

[^0]: Jennifer Irvine, P.E.
 County Engineer / ECM Administrator

[^1]: 1/ Close-drilled or broadcast
 2/ Including right-of-way

[^2]: NOTE 40043: The basin model "Basin 1" contains 2 elements with no downstream connection: DP5, DP6
 NOTE 40043: The basin model "Basin $1^{\text {" contains } 2 \text { elements with no downstream connection: DP5, DP6 }}$ NOTE 40043: The basin model Basin 1 " contains 2 elements with no downstream connection: DP5, DP6
 NOTE 15301: Began computing simulation run "Run 1 " at time 10 Sep 2019, $21: 12: 10$.

 NOTE 40043: The basin model "Basin $1^{\text {" }}$ contains 2 elements with no downstream connection: DP5, DP6 NOTE 40043: The basin model "Basin 1^{*} contains 2 elements with no downstream connection: DP5, DP6
 NOTE 40043: The basin model "Basin $1^{\text {" }}$ contains 2 elements with no downstream connection: DP5, DP6
 NOTE 15301: Began computing simulation run "Run 2^{*} at time 10Sep2019, $21: 18: 23$.

 NOTE 15301: Began computing simulation run "Run 2" at time 10Sep2019, 21:18:23.
 NOTE 20364: Found no parameter problems in meteorologic model "Met $2^{\prime \prime}$.
 NOTE 40040: The basin model contains 2 outlets: DP5, DP6
 NOTE 40049: Found no parameter problems in basin model "Basin 1 ".
 NOTE 41743: Initial abstraction ratio for subbasin "EC11" is 0.2002 .
 NOTE 41743: Initial abstraction ratio for subbasin " E " is 0.2006 .
 NOTE 42413: Unit hydrograph volume for subbasin "EC11" is 1.0000 in.
 NOTE 42413: Unit hydrograph volume for subbasin " $\mathrm{C} 1-\mathrm{C} 3, D^{\prime}$ " is 1.0000 in .
 NOTE 42413: Unit hydrograph volume for subbasin " $\mathrm{EC} 10^{\prime}$ " is 1.0000 in .

[^3]: * For highly erodible soils, decrease permissible velocities by 25\%.
 * Grass lined channels are dependent upon assurances of continuous growth and maintenance of grass.

