Final Drainage Report

For

Canyon Creek Ranch

April, 2022

Prepared for:

Gregg Cawfield 11550 Parallax Heights Colorado Springs, Colorado 80908

Prepared by:

Kenneth C. Harrison, P.E. KCH Engineering Solutions 5228 Cracker Barrel Circle Colorado Springs, Colorado 80917 719-246-4471 ksharrison5228@msn.com

Job No: 2021-5

Add PCD File No.
MS2213

TABLE OF CONTENTS

Cover	Sheet	
Certific	cations	and Approvals 3
I.	Repor	t Purpose
II.	Gener	al Description
III.	Desigi	n Criteria and Methodology
IV.	Existin	ng Reports, Mapping and Information
V.	FEMA	Floodplain
VI.	Hydro	logic Soils Information
VII.	Runof	f characteristics for existing Offsite areas
VIII.	Runof	f characteristics for offsite Basin
IX.	Runof	f characteristics for historic onsite conditions
Χ.	Runof	f characteristics for developed conditions for Onsite areas
XI.	Enviro	nmental Considerations
XII.	Deten	tion and Water Quality
XIII.		Step Process
XIV.	Erosio	n Control
XV.	Storm	water Management Plan (SWMP)
XVI.	Draina	age/ bridge fees
(VII.	Summ	ary
	_	Add a list of
	·	references that were
		used in the report
		AL LIBER
Exhibi		Location Map
Exhibi	it 2:	FEMA FIRM Map/ Kettle Creek Exhibits
Exhibi	it 3:	SCS Soils Map and Data
Exhibi		Charts and Tables Rational Method
Exhibi	it 5:	Charts and Tables TR55 Method
Exhibi	it 6:	Drainage Basin Planning Study Exhibits
Exhibi		Hydrology Exhibits
Exhibi		Hydraulics Exhibits
Exhibi		Drainage Map for the Undeveloped Offsite and Onsite Conditions
Exhibi	it 10:	Drainage Map for the Undeveloped Offsite and Developed Onsite.

Certifications and Approvals

Engineer's Statement The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report had been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omission on my part in preparation this report
Signature Seal (Kenneth C. Harrison, P.E.)
Developer/Owner Statement I, the developer/owner,, have read and will comply with all of the requirements specified in this drainage report and plan.
(Business Name)
By:(Signature) (Date)
Print Name and Title
Address:
El Paso County
Filed in accordance with the requirements of the Drainage Criteria Manuals Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.
El Paso County Engineer/ ECM Administrator

Jennifer Irvine P.E.
(Print name)

Date:

Flood Plain Statement

See Section V of this report

Replace with
Joshua Palmer

3

I. REPORT PURPOSE

The purpose of this report is as follows;

- a. Evaluate of offsite conditions both upstream and downstream of the project site
- b. Discuss existing offsite and onsite drainage improvements that impact the site
- c. Conduct a hydrologic analysis for both the minor and major storm events (5 year and 100 year respectively). The main purpose for the analysis of the developed conditions is to demonstrate the negligible increase in runoff.
- d. Describe the physical, hydrologic and hydraulic analysis of two (2) of the four (4) ravines that will be crossed by a proposed private driveway.
- e. Discuss the impacts that Kettle Creek has on the project as well as any impacts that the project has on Kettle Creek. The report will demonstrate that the impacts are minimal.
- f. Locate the Kettle Creek Floodway and Floodplain Discuss and discuss any impacts.

II. GENERAL DESCRIPTION

a. General

The Project Site consists of a total of 24.65 acres. The site is to be subdivided into three (3) lots (17.054 acres) and two (2) tracts (7.60 acres). The southerly portion of the Project Site is divided into three (3) distinct parcels with each bordered on the east and west sides with deep ravines. Each ravine is vegetated with Ponderosa Pines and bushes and appear to be reasonably stable. All of the areas are also bordered on the north by Kettle Creek. These parcels are to be developed as individual residential home sites. A private driveway is to be constructed from the Creek View Lane cul-de-sac located northeast of the site. The driveway will provide access to two (2) lots, Lots 2 and 3. Lot 1 is currently accessed from Mountain View Drive located to the south .

The Project Site also includes 2 Tracts A and B. Tract A encompasses the southerly portion of Kettle Creek and its southerly bank located within the property boundaries. Tract B is a 3.28-acre parcel located in the northwest section of the Project Site. This area is characterized by steep and eroded banks of Kettle Creek and is not suitable for home construction.

b. Location (Exhibit 1, Appendix)

The property is located in the SW ¼ of Section 14, Township 12 South, Range 66 West of the 6th P.M., El Paso County, Colorado (*Exhibit 1, Appendix*). The project is located approximately 0.5 miles west of Milam Road, 0.3 miles east of Howells Road, and 0.8 miles north of Old Ranch Road. Currently, the only access to the Project Site is from

Submit a financial assurance form for the common development improvements with the next submittal.

Mountain View Drive via a private driveway which provides access to Lot 1.

The other two (2) lots are to be accessed from a private driveway which is to be constructed from the Creek View cul-de-sac in the Kettle Creek Subdivision to the approximate center of Lot 2. The driveway is to be constructed in the 60' access easement located between the Creek View Drive cul de sac and the easterly property line of the project site (*Exhibit 1, Appendix*).

c. Geographic Features

The main geographic features consist of Kettle Creek and the four (4) deep ravines that routes storm water from properties south of the project site to Kettle Creek. The average depth of depth from the high bank along Kettle Creek to the water level varies from 30 to 45 feet. Kettle Creek is heavily vegetated with only minimal signs of erosion. These ravines are shown as Ravine 1 through 4 on the attached Drainage Map (*Exhibit 9 and 10, Appendix*). The slope from the **offsite** sub basins (Sub basins OS1 through OS7) is between 4 and 6 percent. The average slope from the **onsite** sub basins is approximately the same. The average slope of the ravines is approximately 4 to 6 percent. All of the runoff from offsite is collected by the Four (4) ravines prior to entering the project site. Only a minimal amount of storm runoff enters the project site.

d. Existing Improvements

The only existing improvements are located on Lot 1. A residential structure has been built on this lot. The location of the structure is shown on the drainage plan (*Exhibit 9 and 10, Appendix*). The improvement consists of a residential structure with the associated driveway and out buildings. There are no utilities except for those installed to the residence. There are no channels improvement's in either Kettle Creek or in the ravines that cross the property.

e. Adjacent Properties (see Drainage Maps this report)

Properties that are adjacent to the Project Site include the following:

- East of and adjacent:: Kettle Creek Subdivision.
- South of and adjacent: unplatted large acre residential parcels
- West of and adjacent: unplatted large acre residential parcels
- North of and adjacent: Kettle Creek.

III. DESIGN CRITERIA AND METHODOLOGY

a. Design Manuals

Applicable excerpts from the following manuals are included in the Appendix of this report (*Exhibit 4 and 5, Appendix*)

- El Paso County Drainage Criteria Manual (EPCDCM), dated September 30, 1990, Revised July, 2019 when using the Rational Method to determine runoff.
- Colorado Springs Drainage Criteria Manuals, Volume 1 and 2, dated May, 2014 when using the Rational Method to determine runoff.
- Urban Drainage and Flood Control Manual, Volumes 2 and 3, dated August 2018
- TR55 manual when using the TR55 method for determining runoff.

b. Design Storms

Minor storm: 5 yearMajor storm: 100 year

c. Drainage Areas

Areas for the offsite and onsite sub basins were estimated from available topographic mapping obtained from El Paso County and the Colorado Springs Utilities.

d. Runoff Estimation

Rational Method (Exhibit 4, Appendix)

This method was used to determine runoff estimates for areas less than 130 acres. Runoff coefficients and Rainfall Intensities were obtained from the appropriate tables in the El Paso County and City of Colorado Springs Drainage Criteria Manuals. Included in the Appendix are copies of the tables and charts used in this report

TR55 (Exhibit 5, Appendix)

This method was used to determine runoff estimates from sub basins or combinations of drainage sub basins, with areas greater than 130 acres (per criteria). Included in the Appendix are copies of the tables and charts used in this report

FEMA Data (Exhibit 2, Appendix)

Data used by FEMA in the preparation of the FIRM maps was obtained to verify the parameters and assumptions used in this report to establish runoff and water surface elevations.

Update to provide a recommendation for each culvert size and culvert analysis for each culvert in the appendix.

e. Culverts

- Five (5) culverts are proposed for the project. Two (2) are located in Ravine 1 and 2 where the proposed driveway is to cross. The other culverts are to be installed under the proposed driveway at approximate locations shown on the drainage plan. It is expected that a substantial amount of embankment will be required for the driveway crossing due to the depth of the ravines.
- Erosion Control will be provided at the culvert outlets, in roadside borrow ditches, and at locations where the borrow diches enter the Ravines.
- The types of structures at the upstream and downstream ends of each culvert will be determined upon final design of the proposed driveway.

f. Erosion control

It is anticipated that erosion control will be a significant issue due to the amount of sand in the soil. Specific design of the facilities is to be completed once the final location of the driveway once is determined.

It is anticipated that the final erosion control devises will be required/recommended:

- Seeding and erosion control blankets
- Riprap aprons
- Silt fences
- Staked hay bales
- Erosion control fabric
- Erosion control logs.

The locations of the above facilities will be shown on a Grading and Erosion Control Plan to be prepared at a future date.

IV. EXISTING REPORTS, MAPPING AND INFORMATION

a) Mapping

Topographic mapping was obtained from the GIS Division of El Paso County. The approximate locations of the surrounding parcels were inserted from information obtained from Colorado Springs Utilities (CSU). It is understood that the mapping is only general in nature and therefore is not suitable for the preparation of construction drawings.

b) Surrounding Parcels

The majority of the properties surrounding the Project Site are composed of large acreage tracts that have not been platted. The only platted subdivision, Kettle Creek Subdivision, is located to the east of the Project Site. The plat

Reference Canyon Creek Ranch that was referenced in the body of the report and explain what the study is. was recorded in 1966. A Final Drainage Report was not required for these properties.

c) Kettle Creek Drainage Basin Planning Study

A DBPS was prepared by JR Engineering with the pertinent exhibits included in *Exhibit 6 of the Appendix*.

Revise to

V. FEMA FLOODPLAIN

The project site is located in FEMA map # (Map 08041CO295G an 08041C0526G. 08041CO315G. dated 12/7/2018) (Exhibit 2, Appendix).

The majority of the site is located outside the 100-year floodplain in Zone X which is an "Area of Minimal Disturbance" for which there are no special requirements for the construction of commercial or industrial structures. The floodplain extends into at each of the ravines. As a result, a backwater effect will be created. This will be discussed in this report.

VI. HYDROLOGIC SOILS INFORMATION

Geotechnical Studies

The hydrologic soils groups were obtained from the USDA National Resource Conservation Service website for soils types in El Paso County, Colorado (*Appendix, Exhibit 3*). The soils have the following characteristics:

a. Kettle gravelly loam sand:

- i. Excessively drained
- ii. Frequency of flooding: none
- iii. Frequency of ponding: none
- iv. Hydrologic Soil Group: B

VII. RUNOFF CHARACTERISTICS FOR EXISTING OFFSITE AREAS

a. General Description

The **offsite** drainage area consists of a total of 421.2 acres. The area slopes from the southeast to the northwest at an average slope of 4%. The area is developed as large acreage homesites. The drainage area extends from Kettle Creek to approximately 2,800 feet southeast of Milam Road. The southerly boundary of the drainage area is approximately 1,200 feet north of Old Ranch Road. The majority of the runoff from the offsite areas enters three (3) ravines that cross the project site and outfall into Kettle Creek. A minimal amount of runoff actually crosses the project site via sheet flow.

b. Ravine Descriptions

There are three (3) ravines that enter the site from the southeast and outfall into Kettle Creek. Each ravine accommodates the majority of the runoff from offsite basins. Only a minimal amount of offsite surface runoff enters the project site. A driveway is to be constructed from the cul-de-sac at the west

08041C0507G and

the 100yr floodplain

going through the site

end of Creek View Road to about the middle of Lot 2. This will require the crossing of ravines 1 and 2. Runoff values for both the 5-year and 100-year storm will be determined for these ravines in order to size culverts.

- Ravine 1 is located approximately 100 feet west of the Creek View Lane cul-de-sac. It enters the project site at DP2 and outfalls into Kettle Creek at DP3. The ravine is approximately 20-feet deep at the proposed driveway crossing and 30 feet deep at the outfall into Kettle Creek. The side slopes are approximately 1.5 to 1. The ravine accommodates runoff from OS1 (34.69 acres), OS2 (179.08 acres), and OS3 (18.4 acres) and sub basin A (1.96 acres) for a total of approximately 232.17 acres.
- Ravine 2 crosses the project site on the west side of Lot 2 and the east side of Lot 1. The ravine enters the Project Site at DP4 and outfalls into Kettle Creek at DP5. It is located approximately 400 feet west of Ravine 1. This ravine extends to the south approximately 400 feet into the offsite drainage areas. The ravine is approximately 35-feet deep at the proposed driveway crossing and 45-feet deep at the outfall into Kettle Creek. The side slopes are approximately 1.5 to 1. It accommodates runoff from offsite basin OS4 (1.39 acres), onsite sub basin OS8 (1.08 acres), onsite sub basin B (3.04 acres), for a total of approximately 5.51 acres.
- Ravine 3 is the deepest ravine that crosses the project site. It is located on the west side of Lot 2 and on the east side of Lot 3. The ravine enters the Project Site at DP6 and outfalls into Kettle Creek at DP7. It is located approximately 425 feet west of Ravine 2. It extends approximately 1,450 feet into the offsite areas located south of the project site. It is approximately 45- feet deep at the outfall into Kettle Creek. No driveway crossing of Ravine 3 is proposed at this time. The side slopes are approximately 1.5 to 1. It accommodates runoff from OS5 (91.16 acres), OS6 (73.03 acres), and Subbasin D (4.57 acres), for approximately 168.76 acres.

VIII. RUNOFF CHARACTERISTICS FOR OFFSITE BASINS

a. General

The Rational Method was used to estimate runoff from acreage less than 130 acres. The TR55 method was used to determine runoff from areas greater than 130 acres. The following is a description of the various components of each method. The calculations for the **hydrology** are in *Exhibit 7 of the Appendix*. The calculations for the **hydraulic** characteristics are in *Exhibit 8 of the Appendix*.

Revise to remove TR55 references from report since it is not an allowed method.

Revise to use City of Colorado Springs DCM Vol. 1 Ch 6 rainfall and coefficient information.

b. Rational Method (Exhibit 4, Appendix).

- 1. Runoff Coefficient: values were obtained from Table 6.2 of the El Paso County DCM
- 2. Time of Concentration: determined by combining the Initial overland flow, the shallow concentrated flow, and the channel flow. The formulas provided in the El Paso County DCM were used to determine these values.
- Rainfall: rainfall rates for a specific time of concentration were obtained from Figure 6-5 of the El Paso County DCM.

c. TR55 (Exhibit 5, Appendix)

Table 6-1. Methods for Estimating Design Flows

Method Drainage Basin Area		Runoff Type	Routing Effects	System Complexity	BMP/Runoff Reduction			
Gage Analysis	Any	Peak flow	NA	NA	NA			
Rational Method	<130 acres	Peak flow	Simple	Simple	Effective imperviousness			
NRCS/ HEC- HMS	Not typically applied to basins < 10 acres	Peak flow/volume/ /hydrograph	Simple to complex	Moderate to complex	Effective imperviousness			
EPA SWMM	<640 acres (most commonly applied to urbanized watersheds)	Peak flow/volume/ /hydrograph	Simple to complex	Complex	Effective imperviousness, cascading planes or individual feature modeling			
Bankfull Eq. (Eq. 6-24)	≥130 acres	Low flow peak only	NA	NA	NA			

elected from

of the Colorado

of the TR55

ng the initial channel flow. e used to

ble 5-1 of the

Exhibit 4-11 of

d. Design Point 1 and 2

The following is a summary of the hydrologic and hydraulic characteristics for **offsite basins only**. A summary of the hydrologic and hydraulic characteristics for the **onsite basins** is included in Section 9 of this report.

1. Drainage Area:

DP1 is located at the junction of two (2) offsite swales (S1, S2, that collect runoff from OS1, OS2, and OS3. DP2 is located where Swale 1 enters the project site from the southeast. Almost all of the runoff from the offsite basins is collected by ravine 1.

e. Design Point 4

1. Drainage Area:

Only a negligible amount of runoff from offsite basin OS4 enters the project site at this DP. The majority of the runoff is generated from **Onsite** Subbasins B. The hydrologic and hydraulic properties of this onsite sub basin is summarized in subsequent sections of this report.

f. Design Point 6

1. Drainage Area:

DP6 is located where runoff from OS5, and OS6, enters the project site from the south. Only a negligible of surface runoff enters the project site DP4.

g. Design Point 8

DP8 is located at the northwest corner of Lot 3 and the southeast corner of Tract B. Runoff from OS7 is collected by Ravine 4 and is routed to Kettle Creek at DP8 and DP12.

IX. RUNOFF CHARACTERISTICS FOR HISTORIC ONSITE CONDITIONS

a. Design Point 3 (Ravine 1 outfall at Kettle Creek)

Drainage Area

Runoff from offsite basins OS1, OS2, OS3 is collected in Swales 1 and 2 and combine at DP1. From there it is routed to Kettle Creek via Swale 4. Additional runoff is added from onsite basin A before the water is discharged into Kettle Creek. The total acreage drained by Swale 4 is 234.1 acres. The two (2) swales S1 and S2, combine at DP1 and then is routed through the project in Subbasin A before out falling into Kettle Creek. A 48" culvert has been placed at the location where the proposed driveway is to cross. This crossing is approximately 100 feet upstream of the outfall (*Exhibit 8, Appendix*). The FEMA 100-year flood plain elevation at the outfall of Swale 3 is 6935 and therefore does not encroach into the site.

subdivision.

channel improvements and for the proposed culvert/driveway improvement. These will be

Per EPC DCM VOL. 1 table 6-5. HW/D

less. Revise to meet

needs to be 1.5 or

criteria.

o Hydrologic Summary

Drainage Area = 234.12 acres developer responsibilities associated with the

Runoff Curve #: 58

Runoff: 5 year = 6.4 cfs, 100 year = 53.1 cfs

Ravine 1 Hydraulic Summary

Bottom Width: 30 feet Side Slopes: 1.5 to 1

Depth of flow: 5 year = 0.1 feet 100 year = 0.3 feet

Velocity: 5 year: 2.7 fps, 100 year = 6.2 fps

Froude #: 5 year = 1.71, 100 year = 2.10 (Super critical)

this culvert is not installed yet.

Remove "existing" if

Provide Froude and

velocity calculations

report. Submit those

for all the ravines

calculations in an

that are in the

appendix.

Culvert Hydraulic Summary

Size: 48" (existing)

HW to Depth: 5 yr. = neg, D = neg, 100 yr. = 0.8, 3.7 ft, D=HW = 3.7 ft The design of the culvert will be accomplished during the final design of the project. The depth of the ravine requires a lot of fill over the top of

Per DCM Vol. 1 6.5.2 Froude numbers should be less than 0.9. It appears that all Froude numbers for the ravines that are running through the site significantly exceed 0.9 and therefore require some kind of armoring to prevent erosion. In a separate narrative, address the high Froude numbers for all the ravines that run through the site and provide a recommendation for armoring. Per EPCD DCM Vol.1 1.4.2 property owners are required to stabilize unstable drainage channels if increasing historical flows. Froude numbers indicate channels are not stable. Provide channel analyses for the ravines and the creek.

Provide riprap sizing calculation if this is the selected improvement proposed.

the pipe. The till is approximated at 28.1 feet. It is recommended that the side slopes of the fill be armored in some manner in order to minimize the erosion potential. The swales that are constructed on both sides of the driveway is to outfall directly into the ravine. Due to the steepness and the erodibility of the soil additional erosion protection is required. One recommendation would be buried riprap.

b. Design Point 5 (Ravine 2 Outfall at Kettle Creek)

Update to recommended riprap type and volume.

Drainage Area

DP5 is located at the outfall of Ravine 2 into Kettle Creek. The drainage area consists of OS4, OS8. onsite B, and onsite C (for a total of 7.2 acres. The 100- year flood elevation at the outfall is approximately 6929. A small portion of the floodway extends into the Project Site

Hydrologic Summary (Rational)

Drainage Area = 12.2 acres

Runoff Coefficients: 5 year = 0.08, 100 year = 0.35

Runoff: 5 year = 1.7 cfs, 100 year = 12.5 cfs

Hydraulic Summary

Ravine 2

Bottom Width: 30 feet

Slope: 4%

Side Slopes: 1.5 to 1

Depth of flow: 5 year = neg, 100 year = 0.1 feet Velocity: 5 year: 1.3 fps, 100 year = 0.3.0 fps Froude #: 5-year = 1.25, 100 year = 1.67

Culvert Hydraulic Summary

Size: 24" (proposed0

HW to Depth: 5 yr.= neg, 100 yr.1.0, Depth = 2.0 ft.

The fill depth is approximated at 29.5 feet. It is recommended that the side slopes of the fill be armored in some manner in order to

minimize the erosion potential.

Update to recommended riprap type and volume.

Per EPC DCM VOL. 1 table 6-5, HW/D

less. Revise to meet

needs to be 1.5 or

criteria.

c. Design Point 7 (Ravine 3 Outfall at Kettle Creek)

Drainage Area

DP7 is located at the outfall of Ravine 3 into Kettle Creek. The drainage area consists of OS5, OS6, onsite D, and onsite C for a total of 172.36 acres. The 100- year flood elevation at the outfall is approximately 6924...

Hydrologic Summary

Drainage Area = 172.4 acres

Runoff Curve #: 58

Runoff: 5 year = 5.9 cfs, 100 year = 58.7 cfs

12

Hydraulic Summary

Swale 5: Onsite

Slope: 4%

Bottom Width: 40 feet Side Slopes: 1.5 to 1

Depth of flow: 5-year = 0.1 feet, 100-year = 0.3 feet

Velocity: 5 year: 2.5 fps, 100 year = 6.0 fps Froude #: 5-year = 1.65, 100 year = 2.04

o Culvert:

A culvert is not proposed in Ravine 7.

d. Design Point 8

Drainage Area

DP8 is located along the southerly bank of Kettle Creek. The majority of the runoff is collected by numerous swales and wash-outs along the south bank of Kettle Creek. The drainage sub basins include onsite sub basins OS7 (1.55 acres), F (4.81), G (1.57) for a total of 7.93 acres.

Hydraulic Summary

All of the runoff for this DP outfalls into Kettle Creek per various small "washouts" along the southerly bank of Kettle Creek. The following is shown for information purposes since there is no clearly defined outfalls into Kettle Cr3eek.

Drainage Area = 7.93 acres

Runoff Coefficients: 5 year = 0.08, 100 year = 0.35

Runoff: 5 year = 1.5 cfs, 100 year = 11.5 cfs

e. Design Point 9

Drainage Area

DP9 is located along the southerly bank of Kettle Creek at the westerly end of the project site. The majority of the runoff is collected by numerous swales and wash-outs along the south bank of Kettle Creek. The drainage sub basins include sub basins H (5.54 acres) for a total drainage area of 5.54 acres.

Hydraulic Summary

The following is shown for information purposes since there is no clearly Drainage Area = 5.54 acres

Runoff Coefficients: 5 year = 0.08, 100 year = 0.35

Runoff: 5 year = 2.3 cfs, 100 year = 16.8 cfs

Include a grading and erosion control plan or a set of construction drawings for the construction of the driveway. Note: an ESQCP permit might be required if the 500 CY of fill is triggered.

X. RUNOFF CHARACTERISTICS FOR DEVELOPED CONDITIONS FOR ONSITE AREA.

Improvements for the project included the following:

Main gravel driveway along the project site's northerly property line

Width: 24 feet Average Length: 450'

TR55 Curve Number 85

Driveway to each residential location.

Width: 20 feet

Average Length: 400 feet TR55 Curve Number 85

 Residence roof area: 7,500 square feet TR55 Curve Number 85

Landscaping was assumed to be approximately 0.2 acre.
 TR55 Curve Number 85

A composite CN was determined by included the above in the TR55 entry sheet. There is barely an increase in either the 5 year or 100-year runoff amounts.

XI ENVIRONMENTAL CONSIDERATIONS

A copy of this report will be sent to Colorado State Fish and Wildlife (CSFW) for their review and clearance.

XII. DETENTION AND WATER QUALITY

El Paso County Engineering Criteria Manual, Appendix I, contains the policies and procedures for Stormwater Quality. **Section I.7.1.B** provides for exclusions to the requirements to provide Post Construction Stormwater Quality facilities. All areas of the **Canyon Estates** project qualify for the allowed exemptions. No water quality or detention facilities are required for this site as discussed below.

The project consists of 3 large acreage single-family residential lots and a private gravel driveway. There are no activities or improvements that require permanent water quality facilities for this project based on the exclusions found in Section I.7.1.5.B.2, Section I.7.1.5.B.3 and Section I.7.1.5.B.5.

Remove. Exclusions do not apply.

According to Section I.7.1.B.5,

"A single-family residential lot, or agricultural zoned lands, greater than or equal to 2.5 acres in size per dwelling and having a total lot impervious area of less than 10 percent is excluded."

The total area of the site is 24.65 acres The total lot imperviousness for rural residential lots is less than 10%.

Section I.7.1.B.2 of the ECM provides exclusion for Roadway Redevelopment as follows:

"Redevelopment sites for existing roadways, when 1 of the following criteria is met: 1) The site adds less than 1 acre of paved area per mile of roadway to an existing roadway, or 2) The site does not add more than 8.25 feet of paved width at any location to the existing roadway".

The project involves adding new gravel driveway from the existing culde-sac at the westerly end of Creek View Road. No pavement will be added to the driveway (criteria 1).

Also, Section I.7.1.B.3 excludes Existing Roadway Areas.

"For redevelopment sites for existing roadways, only the area of the existing roadway is excluded from the requirements of an applicable development site when the site does not increase the width by 2 times or more, on average, of the original roadway area. The entire site is not excluded from being considered an applicable development site for this exclusion. The area of the site that is part of the added new roadway area is still an applicable development site".

Again, the project will add a gravel surface to the private driveway which is approximately 630 feet long and 20 feet wide (0.29 acres).

Storm Detention is not required for this site since the resulting flow increases from development is found to be negligible and inconsequential as shown in the above sections.

Revise the four step process to EPC DCM Vol. 2 section 4.1 "Four step process".

XIII. FOUR STEP PROCESS

Even though the 4-step process is not required for this project the following are descriptions of the steps that are being taken to address the 4-step process.

a. Large Lot Single Family Sites.

A single-family residential lot, or agricultural zoned lands, greater than or equal to 2.5 acres in size per dwelling and having a total lot impervious area of less than 10 percent. A total lot imperviousness greater than 10 percent is allowed when a study specific to the watershed and/or MS4 shows that expected soil and vegetation conditions are suitable for infiltration/filtration of the WQCV for a typical site, and the permittee accepts such study as applicable within its MS4 boundaries. The maximum total lot impervious covered under this exclusion shall be 20 percent. In accordance with section 4.0 of chapter 1 of the El Paso County ECM Appendix 1.7.1, the four-step process applies to "projects with construction activities that disturb 1 acre or greater or that disturb less than 1 acre but are part of a larger plan of development or sale". Therefore, the four-step process does not apply to this development.

b. Step 1: Reduce runoff by disconnecting impervious area, eliminating "unnecessary" impervious area and encouraging infiltration into soils that are suitable.

The impervious areas for the project include residences, landscaping, concrete patios, sidewalks, and the possibility of asphalt driveways. All of the runoff from the impervious areas drains onto grassed or natural wooded surfaces. All of the downspouts for each residence are planned to discharge either within landscaped areas or natural areas. The majority of the site will remain in its existing natural condition.

c. Step 2: Treat and slowly release the WQCV.

A Full Spectrum Water Quality Detention Pond is not required for this site and therefore does not have the WQCV component.

d. Step 3: Stabilize stream channels.

All existing swales will remain "as is". The vegetation for each swale includes medium height prairie grasses and small ponderosa pine trees. These area receives very little maintenance. It is not anticipated that any of the ravines will be modified in the future. It can be safely assumed that the negligible increase in flow as a result of development will have minimal negative impacts on downstream facilities.

2. Step 4: Implement source controls.

There are no water sources within the project limits or runoff

XIV. EROSION CONTROL

Recommended erosion control measures are to be summarized in the Storm Water Management Permit Application that is being submitted under separate cover.

XV. STORMWATER MANAGEMENT PLAN (SWMP)

a. A **SWMP** is to be submitted separately.

XVI DRAINAGE/ BRIDGE FEES

The drainage fee was determined based on a total of 24.65 acres with the development of 3 lots of greater 5 acres each. The site is located in the Kettle Creek Drainage Basin which has the following fees per each impervious acre (*Exhibit 4*, *Appendix*):

2021 Drainage Fee per impervious acre \$	10,666
2021 Bridge Fee per impervious acre	\$ 0
2021 Total Fees per impervious acre	\$ 10,666

→Total Project Area = 24.65 acres

% Impervious = 7% per El Paso County for 5 acre lots Impervious Area = 1.726 acres

Fee reduction for 5-acre lots = 25%; 0.4315 acres

Total Impervious area = 1.2945 acres

Total Fees = \$ 13,807.14

The Drainage Fees are to be paid prior to the recording of the plat.

Revise total project area to only include residential lots and exclude tracts a and b since drainage fees are not paid for tracts.

XVII SUMMARY

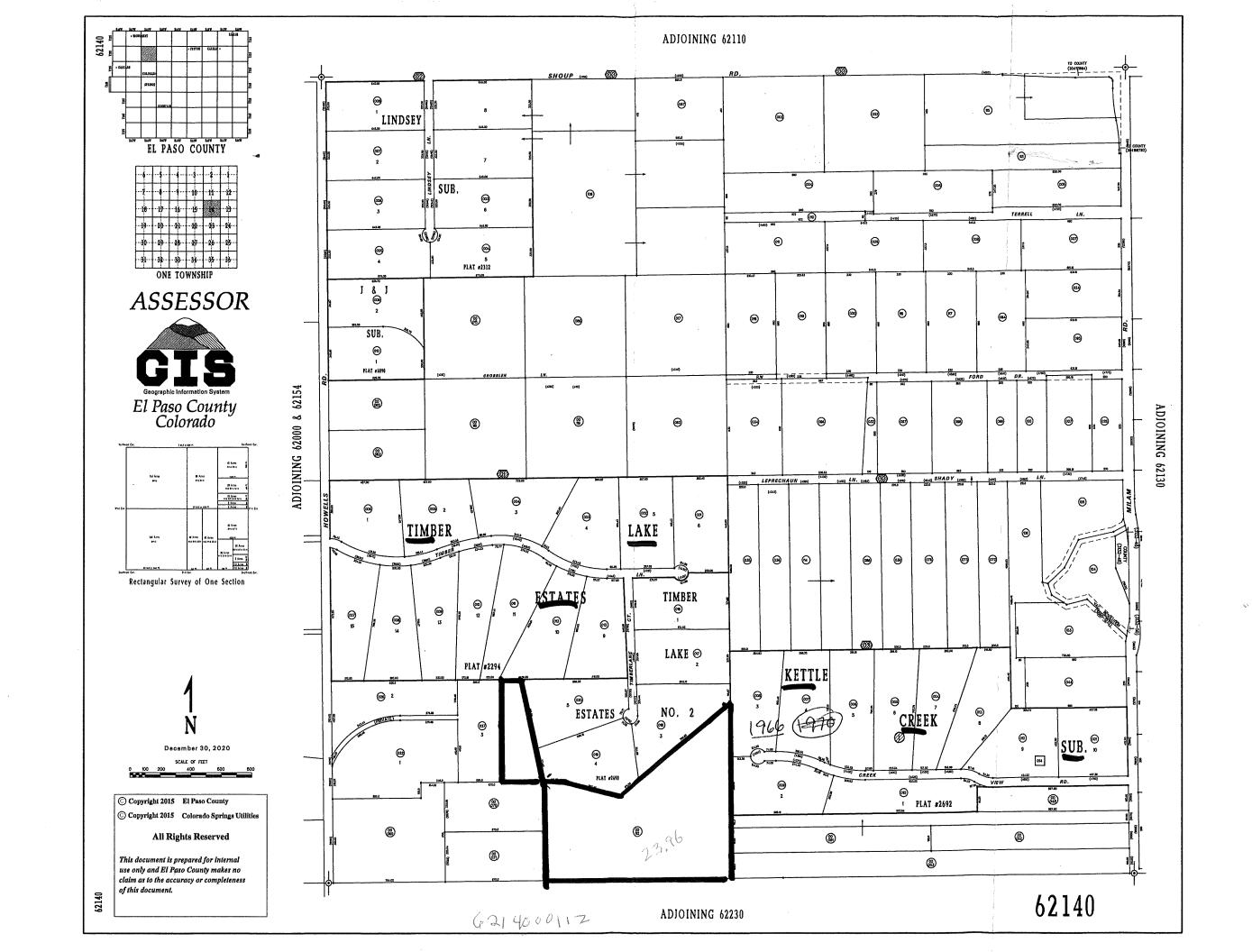
This report provides a thorough analysis of the drainage conditions for the proposed project. The property is comprised of 24.65 acres and is located on the south side of Kettle Creek, east of Howells Road and west of Milam Road. The subdivision is to be subdivided into three (3) lots.

The vegetation consists of primarily Ponderosa Pine trees. There are three (3) main ravines that enter the site from the south that drain a considerable amount of offsite property. All of the offsite property is developed as large acreage residential home sites.

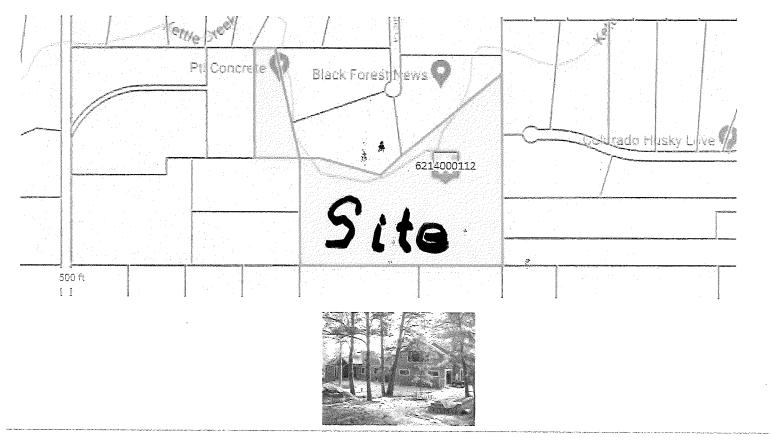
It has been demonstrated that there is only a negligible increase in runoff as a result of development. Also, based on the present engineering criteria for El PasoCounty a water quality/ detention pond is not required

Update drainage fees

to use 2023 drainage


fee schedule.

Erosion control facilities include staked hay bales, erosion control check dams, and stone check dams. The location and details for these are included on the Storm Water Management Plan. Included in the map pocket is the drainage map that shows the proposed driveway.


Update summary to discuss if Kettle Creek is a suitable outfall per ECM 3.2.4. There appears to be a lot of areas in all of the ravines that lead to the creek with significant erosion. Provide pictures of the ravines that will be modified for the construction of the driveway and include an explanation of necessary mitigation, if required.

APPENDIX

EXHIBIT 1: LOCATION MAP

5 66WV 4 12S 66W	3 12S 66W 2	125 66W 1	Vassey Rd 12S 65W 6-1	 2\$ 65W 5	12S 65W 4	125 65W 3
66W 9 12S 66W 10	10 1.25 6.6W TH	in E	G Black Forest 112S 65W 7	125 65W 8	A volumer 1/2/5. 6/5/W 9	Hitt 125 65W 10
56W 16 12S 66VSI	Shoup.Rd— TE - 666W	12S sek Vie	Black Forest 125 65W 18 125	65W 17	12S 65W 16	Shoup
1 225 66W	22 125 66W 23		25 65W 19	12S 65W 20	12S 65W 21	12S 65W, 22
W 28 12S 66W	125-66W-26	12S 66W 25	125.65W 30	Baker Rd 12S 65W 29	12S 65W 28	Arroyalen 12S 65W 27
Golf Course Brilary SWV 33 1125 66W 34	Brilargate Flawy	125 66W 36	125 65W, 31	125.65W 32 125.65W 33 125 65W 34	25 65W 38	Stap 1/2/2 65W 34

Disclaimer

We have made a good-faith effort to provide you with the most recent and most accurate information available. However, if you need to use this information in any legal or official venue, you will need to obtain official copies from the Assessor's Office. Do be aware that this data is subject to change on a daily basis. If you believe that any of this information is incorrect, please call us at (719) 520-6600.

EXHIBIT 2: FEMA FIRM MAP

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

With BFE or Depth Zone AE, AO, AH, VE, AR Without Base Flood Elevation (BFE)

Regulatory Floodway

0.2% Annual Chance Flood Hazard, Areas depth less than one foot or with dralnage areas of less than one square mile Zone X of 1% annual chance flood with average Future Conditions 1% Annua Chance Flood Hazard Zone X

Area with Reduced Flood Risk due to Levee, See Notes, Zone X

Area with Flood Risk due to Levee Zone D

No SCREEN Area of Minimal Flood Hazard Zone X

Effective LOMRs

Area of Undetermined Flood Hazard Zone D

Channel, Culvert, or Storm Sewer

GENERAL - --- Channel, Culvert, or Storn STRUCTURES | 11111111 Levee, Dike, or Floodwall

Cross Sections with 1% Annual Chance Water Surface Elevation Coastal Transect

Base Flood Elevation Line (BFE) mm sizmm

- Limit of Study

Jurisdiction Boundary

Coastal Transect Baseline

Hydrographic Feature Profile Baseline

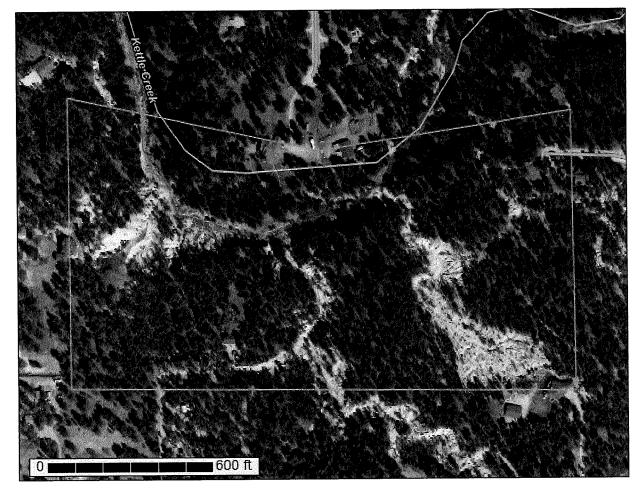
Digital Data Available

No Digital Data Available Unmapped The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

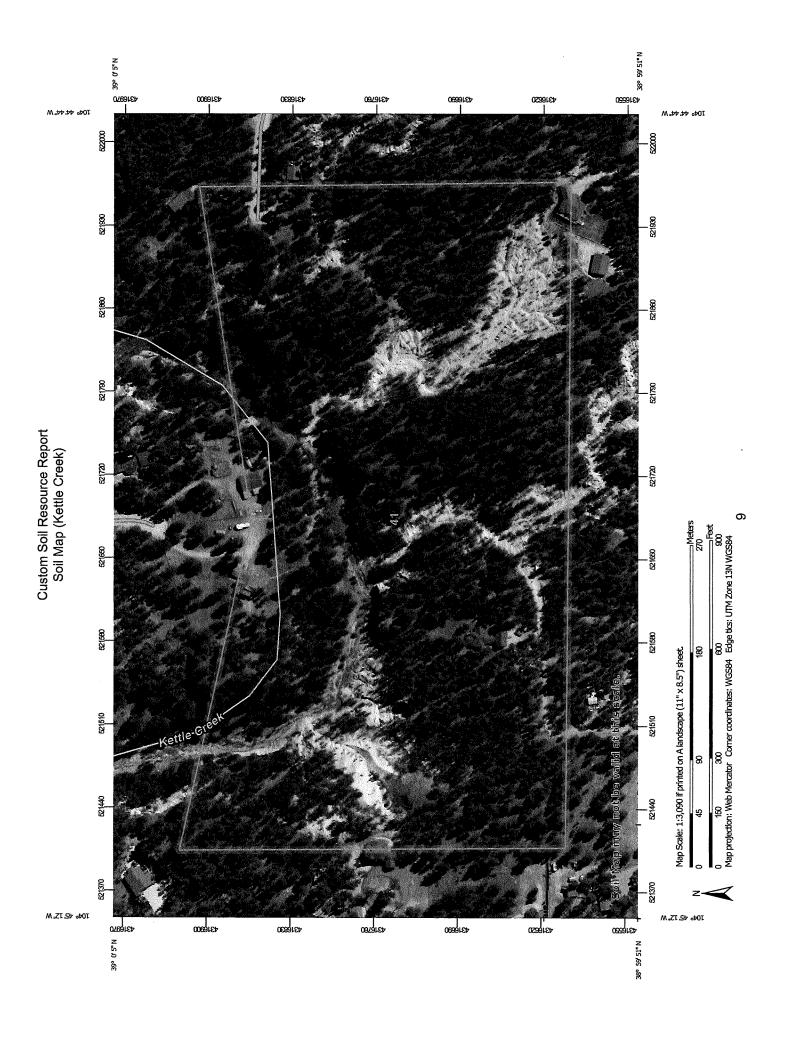
This map complies with FEMA's standards for the use of The basemap shown complies with FEMA's basemap digital flood maps if it is not void as described below.

authoritative NFHL web services provided by FEMA. This map reflect changes or amendments subsequent to this date and was exported on 11/10/2021 at 12:14 PM and does not lime. The NFHL and effective information may change or The flood hazard information is derived directly from the become superseded by new data over time. This map image is void if the one or more of the following map elements do not appear; basemap imagery, flood zone labels, FIRM panel number, and FIRM effective date. Map images for egend, scale bar, map creation date, community identifiers, unmapped and unmodernized areas cannot be used for

Basemap: USGS National Map: Ortholmagery: Data refreshed October, 2020


EXHIBIT 3: SCS SOILS MAP

NRCS


Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for El Paso County Area, Colorado

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

This product is generated from the USDA-NRCS certified data as contrasting soils that could have been shown at a more detailed Maps from the Web Soil Survey are based on the Web Mercator distance and area. A projection that preserves area, such as the Date(s) aerial images were photographed: Aug 19, 2018—Oct Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soll The orthophoto or other base map on which the soil lines were projection, which preserves direction and shape but distorts compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor Soil map units are labeled (as space allows) for map scales Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Albers equal-area conic projection, should be used if more line placement. The maps do not show the small areas of The soil surveys that comprise your AOI were mapped at Please rely on the bar scale on each map sheet for map accurate calculations of distance or area are required. Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 19, Aug 31, 2021 Coordinate System: Web Mercator (EPSG:3857) **MAP INFORMATION** Warning: Soil Map may not be valid at this scale. shifting of map unit boundaries may be evident. of the version date(s) listed below. 1:50,000 or larger. measurements. 20, 2018 1:24,000 Special Line Features Streams and Canals Interstate Highways Aerlal Photography Very Stony Spot Major Roads Local Roads Stony Spot US Routes Spoil Area Wet Spot Other Rails Water Features **Transportation** Background MAP LEGEND ورج T) Ī September 1 Soil Map Unit Polygons Severely Eroded Spot Area of Interest (AOI) Miscellaneous Water Soil Map Unit Points Soil Map Unit Lines Closed Depression Marsh or swamp Perennial Water Mine or Quarry Special Point Features Rock Outcrop **Gravelly Spot** Sandy Spot Saline Spot Slide or Slip Borrow Pit Sodic Spot Lava Flow Area of Interest (AOI) Clay Spot Gravel Pit Sinkhole Blowout Landfill Ç 0 Soils

Map Unit Legend (Kettle Creek)

		<u> </u>	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
41	Kettle gravelly loamy sand, 8 to 40 percent slopes	40.4	100.0%
Totals for Area of Interest		40.4	100.0%

Map Unit Descriptions (Kettle Creek)

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Custom Soil Resource Report

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

41—Kettle gravelly loamy sand, 8 to 40 percent slopes

Map Unit Setting

National map unit symbol: 368h Elevation: 7,000 to 7,700 feet

Farmland classification: Not prime farmland

Map Unit Composition

Kettle and similar soils: 85 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kettle

Setting

Landform: Hills

Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Sandy alluvium derived from arkose

Typical profile

E - 0 to 16 inches: gravelly loamy sand Bt - 16 to 40 inches: gravelly sandy loam

C - 40 to 60 inches: extremely gravelly loamy sand

Properties and qualities

Slope: 8 to 40 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat excessively drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: B

Ecological site: F048AY908CO - Mixed Conifer

Hydric soil rating: No

Minor Components

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

Other soils

Percent of map unit: Hydric soil rating: No

EXHIBIT 4: CHARTS AND TABLES FOR RATIONAL METHOD

Highlight values that were used.

Table 6-6. Runoff Coefficients for Rational Method

(Source: UDFCD 2001)

		Runoff Coefficients 50-year									100-year		
nd Use or Surface	Percent			5-y	ear	10-y	reat	25-	year			HSGAEB	
raracteristics	mpervious					HSG A&B	HSG CED	HSG ARB	HSG C&D	HSG A&B	HSG CBD	HSGARIO	
		HSG ARB	HSG C&D	HSG A&B	HSG C&D	TAG FALL				 	0.88	0.88	0.89
		Ī			0.82	0.83	0.84	0.85	0.87	0.87	0.65	0.62	0.68
Commercial Areas	95	0.79	0.66	0.49	0.53	0.53	12.57	0.50	a.co	0.60	1 0.00	- Jan-	
Neighborhood Areas	70	0.45	0.49	11.45	+						+		<u> </u>
Neighborhood			 				1		 	0.57	0.62	0.59	0.65
tesidential				0.45	0.49	0.49	0.54	0.54	0.59	0.46	0.54	0.50	0.58
1/8 Acre or less	65	0.41	0.45	0.30	0.35	0.36	0.42	0.42	0.50	0.43	0.52	0.47	0.57
1/4 Acre	40	0.23	0.28	0.30	0.30	0.32	0.38	0.39	0.47	0.41	0.51	0.46	0.55
	30	0.18	0.22	0.22	0.28	0.30	0.36	0,37	0.45	0.40	0.50	0.44	0.55
1/3 Acre	25	0.15	0.20		0.25	0.27	0.34	0.35	0.44	0.40	 	1	
1/2 Acre	20	0.12	0.17	0.20	1 0.25	1-	T				+	+	
1Acre						+	1				0.72	0.70	0.74
	┼──				0.63	0.63	0,66	0.66				0.81	0.83
Industrial	80	0.57	0.60				0.77		0.80	0.80	1 0.82	1 005	-
Light Areas	90	0.71	0.73	0.73	0.75	0.73	+ ~					0.39	0.52
Heavy Areas	+	1					0.29	0.3	0.4				
	7	0.05	0.09	0.12						0.37			
Parks and Cemeteries	13	0.07	_	0.16						0.46	0.54	0.50	<u> </u>
Playgrounds	40	0.23		3 0.30	0.35	0.36	104						
Rallroad Yard Areas	- 40 -								_				
			_						_			1	1
Undeveloped Areas						1	۱	6 a	6 Q	R 03	1 0.4		
Historic Flow Analysis—	2	0.0	a 0.0	5 0.0	0.1	6 0.1			-		0 0.4	4 0.3	
Greenbelts, Agriculture		1 0.0			8 0.1	5 0.1					0 0.4	4 0.3	
Pasture/Meadow	0					5 0.3				94 0.5		5 0.9	6 0.9
Forest	0	0.0	-			0.5	2 0.	<u>12 0</u>	94 0.				
Exposed Rock	100	0.8	29 W	=	~ ~			- 1	1 .	57 D	a 0.3	5 0.	51 0.5
Offsite Flow Analysis (who	en 45	1	- 1	21 0.3	22 0.3	7 0	38 D	44 0	44 0	51 0	**-	_	
landuse is undefined)	45	0.2	26 0.	31 0.	**	-							
randuse is undernitury							_					95 0.	96 D.1
						90 0.	92 0	92 (94 (70 0.
Streets	100	0 0.	89 0					56 (.66 (.70 0.	.68 0.	72 0	20 0
Paved	- 81		57 0	.60 0	<u>59 D</u>	63 0							96 0
Gravel							.92 0	.92	94 1	.94 0			
	10	0 0	.89 0	.89 0									
Drive and Walks	9).73 C						37 0	30 0	44 (135 0
Roofs				2.04	1.08	15 0	25 (ا دیر					

Time of Concentration 3.2

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For nonurban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_l) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

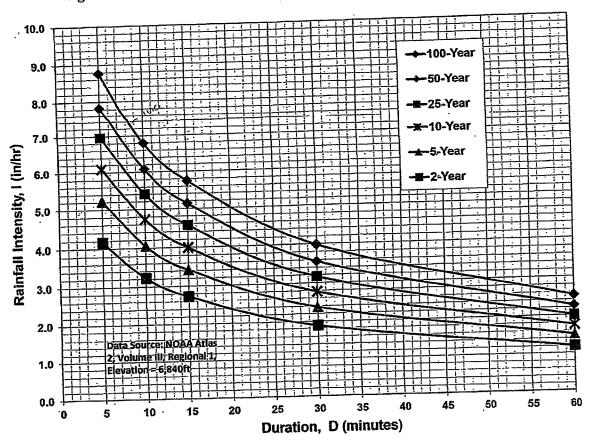


Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations

$$I_{100} = -2.52 \ln(D) + 12.735$$

$$I_{50} = -2.25 \ln(D) + 11.375$$

$$I_{25} = -2.00 \ln(D) + 10.111$$

$$I_{10} = -1.75 \ln(D) + 8.847$$

$$I_5 = -1.50 \ln(D) + 7.583$$

$$I_2 = -1.19 \ln(D) + 6.035$$

Note: Values calculated by equations may not precisely duplicate values read from figure.

Table 6-6. Runoff Coefficients for Rational Method

(Source: UDFCD 2001)

nd Use or Surface							Runoff Co						
	Percent				ar	10-y		25-y	ear	50-γ	ear		year
aracteristics L	mpervious	2-y-				HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
		HSG A&B	HSG C&D	HSG A&B	nau cau						0.88	0.88	0.89
ısiness				0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.65	0.62	0.68
Commercial Areas	95	0.79	0.80	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.03	0.02	1
Neighborhood Areas	70	0.45	0.43	0.45				<u> </u>		<u> </u>		 	7
				 	├──			<u> </u>		 	0,62	0.59	_d.65
esidential		<u> </u>		0.45	0.49	0.49	0.54	0.54	0.59	0.57		0.50	
1/8 Acre or less	65	0.41	0.45		0.45	0.36	0.42	0,42	0.50	0.46	0.54	0.47	0.57
1/4 Acre	40	0,23	0.28	0.30	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.46	0.56
1/3 Acre	30	0.18	0.22	0,25	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.44	0.55
	25	0.15	0,20	0.22	0.26	0.27	0.34	0.35	0,44	0.40	0.50	U.44	1 4.33
1/2 Acre	20	0.12	0.17	0.20	10.26	1 42	+					 	
1 Acre					 	 	1		1			 	0.74
						0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74 0.83
ndustrial	80	0.57	0.60	0.59	0.63	0.75	0.77	0.78	0.80	0.80	0.82	0.81	1 0.63
Light Areas	90	0.71	0.73	0.73	0.75	1.73	 ""	-					+
Heavy Areas	1						0.29	0.30	0.40	0.34	0.46	0.39	0.52
	7	0.05	0.09	0.12	0.19	0.20	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Parks and Cemeteries	13	0.07	0.13	0.16	0.23	0.24	0.51	0.42	0.50	- 0.46	0.54	0.50	0.58
Playgrounds	40	0.23	0,28	0.30	0.35	0.36	<u> </u>		+				
Rallroad Yard Areas	1-40	-							1				
Undeveloped Areas	 												0:51
Historic Flow Analysis-			Į.			0.17	0.26	0.26	0.38	0.31			
Historice Audition	2	0.03	0.05			0.17			0.37	0.30			
Greenbelts, Agriculture	1 0	0.02	0.04						0,37	0.30	0.44		
Pasture/Meadow	0	0,02	0.04					_		0.95	0.95	0,98	0,96
Forest ·	100	0.89	0.89	0.90	0.90	1.032	-	-				- 1	1
Exposed Rock				İ	1 、		0.44	0.44	0.5	0.48	0.5	0.5	0.59
Offsite Flow Analysis (when	1 45	0.26	0.31	0.37	0.37	0.35	0.4		<u> </u>		1		
landuse is undefined)										_			
			\neg	\neg				2 0.9	1 0.9	4 0.9	0,9	5 0.9	6 0.9
Streets		0.8	0.8	0.9	0.90						_	-	0 0.7
Paved	100	0.5			9 0,6	3 0.6	3 0.6	6 0.6	0.7	<u>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</u>			
Gravel	80	- 0.3	<u>'</u>						_ 	4 0.9	5 0.9	5 0.9	6 0.9
		0.8	0.8	9 09	0.9	0.9	2 0.9						
Orive and Walks	100					5 0.7	5 0.7			~			
Roofs	90	0.7					5 0.7	5 - 0.2	5 0.3	0.3	U 1 U.	T	

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For non-urban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

Table 6-7. Conveyance Coefficient, C,

Type of Land Surface	C_{ν}
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)*	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

For buried riprap, select C, value based on type of vegetative cover.

The travel time is calculated by dividing the flow distance (in feet) by the velocity calculated using Equation 6-9 and converting units to minutes.

The time of concentration (t_c) is then the sum of the overland flow time (t_i) and the travel time (t_i) per Equation 6-7.

3.2.3 First Design Point Time of Concentration in Urban Catchments

Using this procedure, the time of concentration at the first design point (typically the first inlet in the system) in an urbanized catchment should not exceed the time of concentration calculated using Equation 6-10. The first design point is defined as the point where runoff first enters the storm sewer system.

$$t_c = \frac{L}{180} + 10 \tag{Eq. 6-10}$$

Where:

 t_c = maximum time of concentration at the first design point in an urban watershed (min)

L =waterway length (ft)

Equation 6-10 was developed using the rainfall-runoff data collected in the Denver region and, in essence, represents regional "calibration" of the Rational Method. Normally, Equation 6-10 will result in a lesser time of concentration at the first design point and will govern in an urbanized watershed. For subsequent design points, the time of concentration is calculated by accumulating the travel times in downstream drainageway reaches.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_c of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_c for urbanized areas is 5 minutes.

3.2.5 Post-Development Time of Concentration

As Equation 6-8 indicates, the time of concentration is a function of the 5-year runoff coefficient for a drainage basin. Typically, higher levels of imperviousness (higher 5-year runoff coefficients) correspond to shorter times of concentration, and lower levels of imperviousness correspond to longer times of

$$t_c = t_i + t_t \tag{Eq. 6-7}$$

Where:

 t_c = time of concentration (min)

 $t_i = \text{overland (initial) flow time (min)}$

 t_t = travel time in the ditch, channel, gutter, storm sewer, etc. (min)

3.2.1 Overland (Initial) Flow Time

The overland flow time, t_i , may be calculated using Equation 6-8.

$$t_l = \frac{0.395(1.1 - C_s)\sqrt{L}}{S^{0.33}}$$
 (Eq. 6-8)

Where:

 $t_i = \text{overland (initial) flow time (min)}$

 C_5 = runoff coefficient for 5-year frequency (see Table 6-6)

= length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)

S = average basin slope (ft/ft)

Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

Travel Time 3.2.2

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_{l} , which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_b can be estimated with the help of Figure 6-25 or Equation 6-9 (Guo 1999).

$$V = C_v S_w^{0.5}$$
 (Eq. 6-9)

Where:

V = velocity (ft/s)

 $C_v = \text{conveyance coefficient (from Table 6-7)}$

 $S_w = \text{watercourse slope (ft/ft)}$

EXHIBIT 5: CHARTS AND TABLES FOR TR55 METHOD

Remove all references to TR55 since that method is not allowed to be used by the County.

Table 4B-2 Runoff curve numbers for selected agricultural, suburban, and rural areas (western Washington).

			CNs for	hydrolo	gic soil g	roup
		The state of the s	A	В	C	- D
over Type and Hydrologic Condition	Curve Numbers for Predevelopment (Conditions				
Pasture, Grassland, or Range - Continuo	ous Forage for Grazing:		49	69	79	84
Fair condition (ground cover 50% to 75%	and not neavily grazed)		39	61	74	80
Good condition (ground cover >75% and	lightly or only occasionally grazeu)					
Woods:	, , , , , , , , , , , , , , , , , , , ,		36	60	73	79
Fair (woods are grazed but not burned, a	and some forest litter covers the soil)	abo soil\	30	55	70	77
Good (woods are protected from grazing	g, and litter and brush adequately cov	er the sony	12 (13 H) A			
(Curve Numbers for Postdevelopment	Conditions	<u> </u>	gel ger ditte seka sek		
Open Space (lawns, parks, golf courses,	cemeteries, landscaping, etc.):(1)		77	85	90	92
Fair condition (grass cover on 50% to 75	% of the area)	-	77	-	90 86	90
Good condition (grass cover on >75% of	the area)		68	80	- 00	
Impervious Areas:					400	400
Open water bodies: lakes, wetlands, por	nds, etc.		100	100	100	100
- I driveyes E	tc (excluding right of WaV)		98	98	98	98
Porous Pavers and Permeable Interlock	ring Concrete (assumed as 85% imper	rvious and 15% la	wn):			
Fair lawn condition (weighted average ((Ne)		95	96	97	97
Fair lawn condition (weighted average	a CNs)		94	95	96	97
Good lawn condition (weighted average	: CIV3)		98	98	98	98
Paved			76	85	89	91
Gravel (including right of way)			72	82	87	89
Dirt (including right of way)	f				11	
Pasture, Grassland, or Range – Continu	ious Forage for Grazing:		68	79	86	89
Poor condition (ground cover <50% or i	neavily grazed with no mulch)		49	69	79	84
Fair condition (ground cover 50% to 75	% and not heavily grazed)		39	61	74	80
Good condition (ground cover >75% an	d lightly or only occasionally grazed)					
18/do-			4=	66	7 7	83
Poor (forest litter, small trees, and brus	sh are destroyed by heavy grazing or r	egular burning)	45		73	79
Eair (woods are grazed but not burned.	and some forest litter covers the son)	36	60		
Good (woods are protected from grazin	ng, and litter and brush adequately co	ver the soil)	30	55	70	77
Single Family Residential:[3]	Should only be used for	Average percei	nt Dyres			
Dwelling Unit/Gross Acre	subdivisions >50 acres	impervious are	a ^{[3][4]}			
1.0 DU/GA		15	Se	eparate cu	rve numb	er
1.5 DU/GA		20		ust be sel		
2.0 DU/GA		25		ervious &		
2.5 DU/GA		30		ortions of	the site o	<u>r</u>
3.0 DU/GA		34	b	asin		
3.5 DU/GA		38				
4.0 DU/GA		42				
4.5 DU/GA		46				
5.0 DU/GA		48				
5.5 DU/GA		50				
6.0 DU/GA		52				
6.5 DU/GA		54				
7.0 DU/GA		56				
7.5 DU/GA		58				
PUDs, condos, apartments, commercia	al businesses, % impervious	Separate cu				
industrial areas, and subdivisions <50	acres must be computed	pervious an	d imperv	ious port	ions of t	ne site

- [1] Composite CNs may be computed for other combinations of open space cover type.
- [2] Where roof runoff and driveway runoff are infiltrated or dispersed according to the requirements in Chapter 3, the average percent impervious area may be adjusted in accordance with the procedure described under "Flow Credit for Roof Downspout Infiltration" and "Flow Credit for Roof Downspout Dispersion."
- [3] Assumes roof and driveway runoff is directed into street/storm system.
- [4] All remaining pervious area (lawn) is considered to be in good condition for these curve numbers.

Table 4B-3 Runoff curve numbers for selected agricultural, suburban, and rural areas (eastern Washington).

	CNs for	r hydrol	ogic soil g	group
a Table Individuals Condition	A	В	C	D
Cover Type and Hydrologic Condition				
Open Space (lawns, parks, golf courses, cemeteries, landscaping, etc.): ^[1]	68	79	86	89
Poor condition (grass cover on <50% of the area)	49	69	79	84
Fair condition (grass cover on 50% to 75% of the area)	39	61	74	80
Good condition (grass cover on >75% of the area)	33	- 01		
Impervious Areas:	100	100	100	100
Open water bodies: lakes, wetlands, ponds, etc.	98	98	98	98
Paved parking lots, roofs, driveways, etc. (excluding right of way)				
Porous Pavers and Permeable Interlocking Concrete (assumed as 85% impervious and 15% la	95	96	97	97
Fair lawn condition (weighted average CNs)	95 76	96 85	89	91
Gravel (including right of way)		82	87	89
Dirt (including right of way)	72	82	- 6/	- 69
Pasture, Grassland, or Range – Continuous Forage for Grazing:				
Poor condition (ground cover <50% or heavily grazed with no mulch)	68	79	86	89
Fair condition (ground cover 50% to 75% and not heavily grazed)	49	69	79	84
Good condition (ground cover >75% and lightly or only occasionally grazed)	39	61	74	80
Cultivated Agricultural Lands:				
Row Crops (good), e.g., corn, sugar beets, soy beans	64	75	82	85
Small Grain (good), e.g., wheat, barley, flax	60	72	80	84
Meadow (continuous grass, protected from grazing, and generally mowed for hay):	30	58	71	78
Brush (brush-weed-grass mixture, with brush the major element):				
	48	67	77	83
Poor (<50% ground cover)	35	56	70	77
Fair (50% to 75% ground cover)	30 ^[2]	48	65	73
Good (>75% ground cover)				
Woods-Grass Combination (orchard or tree farm): ^[3]	57	73	82	86
Poor	43	65	76	82
Fair	43 32	58	72	79
Good				
Woods:	AE	66	77	83
Poor (forest litter, small trees, and brush are destroyed by heavy grazing or regular burning)	45 36		77 73	79
Fair (woods are grazed but not burned, and some forest litter covers the soil)	36 30	60 55	73 70	7.
Good (woods are protected from grazing, and litter and brush adequately cover the soil)		33		
Herbaceous (mixture of grass, weeds, and low-growing brush, with brush the minor element	c): · ·			٥.
Poor (<30% ground cover)		80	87	93
Fair (30% to 70% ground cover)		71	81	8
Good (>70% ground cover)	,	62	74	8
Sagebrush With Grass Understory: [4]				
Poor (<30% ground cover)		67	80	8
Fair (30% to 70% ground cover)		51	63	7
Good (>70% ground cover)		35	47	5

- [1] Composite CNs may be computed for other combinations of open space cover type.
- [2] Actual curve number is less than 30; use CN = 30 for runoff computations.
- [3] CNs shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CNs for woods and pasture.
- [4] Curve numbers have not been developed for Group A soils.

Table 4B-5 "n" and "k" values used in time calculations for hydrographs.

"n _s " Sheet Flow Equation Manning's Values (for the initial 300 ft. of travel)	
Janning's Values for sheet flow only; from Overton and Meadows 1976 (see TR-55, 1986)	n _s
Smooth surfaces (concrete, asphalt, gravel, or bare, hand-packed soil)	0.011
Fallow fields or loose soil surface (no residue)	0.05
Cultivated soil with residue cover ≤20%	0.06
Cultivated soil with residue cover >20%	0.17
Short prairie grass and lawns	0.15
Dense grasses	0.24
Bermuda grass	0.41
Range (natural)	0.13
Woods or forest with light underbrush	0.40
Woods or forest with dense underbrush	0.80
(210-VI-TR-55, Second Ed., June 1986)	and the second second second second
"k" Values Used in Travel Time/Time of Concentration Calculations	
Shallow Concentrated Flow (after the initial 300 ft. of sheet flow, $R = 0.1$)	k,
1. Forest with heavy ground litter and meadows (n = 0.10)	3
2. Brushy ground with some trees (n = 0.060)	5
3. Fallow or minimum tillage cultivation (n = 0.040)	8
4. High grass (n = 0.035)	9
5. Short grass, pasture, and lawns (n = 0.030)	11
6. Nearly bare ground (n = 0.025)	13
7. Paved and gravel areas (n = 0.012)	27
Channel Flow (intermittent) (at the beginning of visible channels, R = 0.2)	k _c
Forested swale with heavy ground litter (n = 0.10)	5
Forested drainage course/ravine with defined channel bed (n = 0.050)	10
3. Rock-lined waterway (n = 0.035)	15
4. Grassed waterway (n = 0.030)	17
5. Earth-lined waterway (n = 0.025)	20
6. CMP pipe, uniform flow (n = 0.024)	21
7. Concrete pipe, uniform flow (0.012)	42
8. Other waterways and pipe	0.508/r
Channel Flow (continuous stream, R = 0.4)	k _c
9. Meandering stream with some pools (n = 0.040)	20
10. Rock-lined stream (n = 0.035)	23
11. Grass-lined stream (n = 0.030)	27
12. Other streams, manmade channels, and pipe	0.807/

Table 4B-6 Values of the roughness coefficient, "n."

Type of Channel and Description	Manning's "n" (Normal)	Type of Channel and Description	Manning's "n" (Normal)
A. Constructed Channels		6. Sluggish reaches, weedy	
		deep pools	0.070
a. Earth, straight and uniform 1. Clean, recently completed	0.018	7. Very weedy reaches, deep	
Clean, recently completed Gravel, uniform selection,	0.025	pools, or floodways with	
	+ 0.0.2	heavy stand of timber and	
clean 3. With short grass, few	0.027	underbrush	0.100
weeds	1 3.32	b. Mountain streams, no vegetation	
b. Earth, winding and sluggish		in channel, banks usually steep,	
No vegetation	0.025	trees and brush along banks	
2. Grass, some weeds	0.030	submerged at high stages	
3. Dense weeds or aquatic		 Bottom: gravel, cobbles, and 	
plants in deep channels	0.035	few boulders	0.040
4. Earth bottom and rubble		Bottom: cobbles with large	
sides	0.030	boulders	0.050
5. Stony bottom and weedy		B-2 Flood plains	
	0.035	a. <i>Pasture, no brush</i>	
banks 6. Cobble bottom and clean	0.033	Short grass	0.030
	0.040	2. High grass	0.035
sides	0.040	b. Cultivated areas	
c. Rock-lined	0.035	1. No crop	0.030
1. Smooth and uniform	0.040	2. Mature row crops	0.035
Jagged and irregular	0.040	3. Mature field crops	0.040
d. Channels not maintained,		c. Brush	
weeds and brush uncut		Scattered brush, heavy	
1. Dense weeds, high as flow	0.080	weeds	0.050
depth	0.000	Light brush and trees	0.060
2. Clean bottom, brush on	0.050	3. Medium to dense brush	0.070
sides	0.030	4. Heavy, dense brush	0.100
3. Same, highest stage of	0.070	d. Trees	
flow	0.100	Dense willows, straight	0.150
4. Dense brush, high stage	0.100	2. Cleared land with tree	
B. Natural Streams		stumps, no sprouts	0.040
B-1 Minor streams (top width at		3. Same as above, but with	
flood stage < 100 ft.)		heavy growth of sprouts	0.060
a. Streams on plain		4. Heavy stand of timber, a few	
1. Clean, straight, full stage,	0.020	downed trees, little	
no rifts or deep pools	0.030	undergrowth, flood stage	
2. Same as above, but more	0.035	below branches	0.100
stones and weeds	0.033	5. Same as above, but with	
3. Clean, winding, some	0.040	flood stage reaching	
pools and shoals	0.040	branches	0.120
4. Same as above, but some		Diditioned	
weeds	0.040		
Same as 4, but more stones	0.050		

^{*}Note: These "n" values are "normal" values for use in analysis of channels. For conservative design for channel capacity, the maximum values listed in other references should be considered. For channel bank stability, the minimum values should be considered.

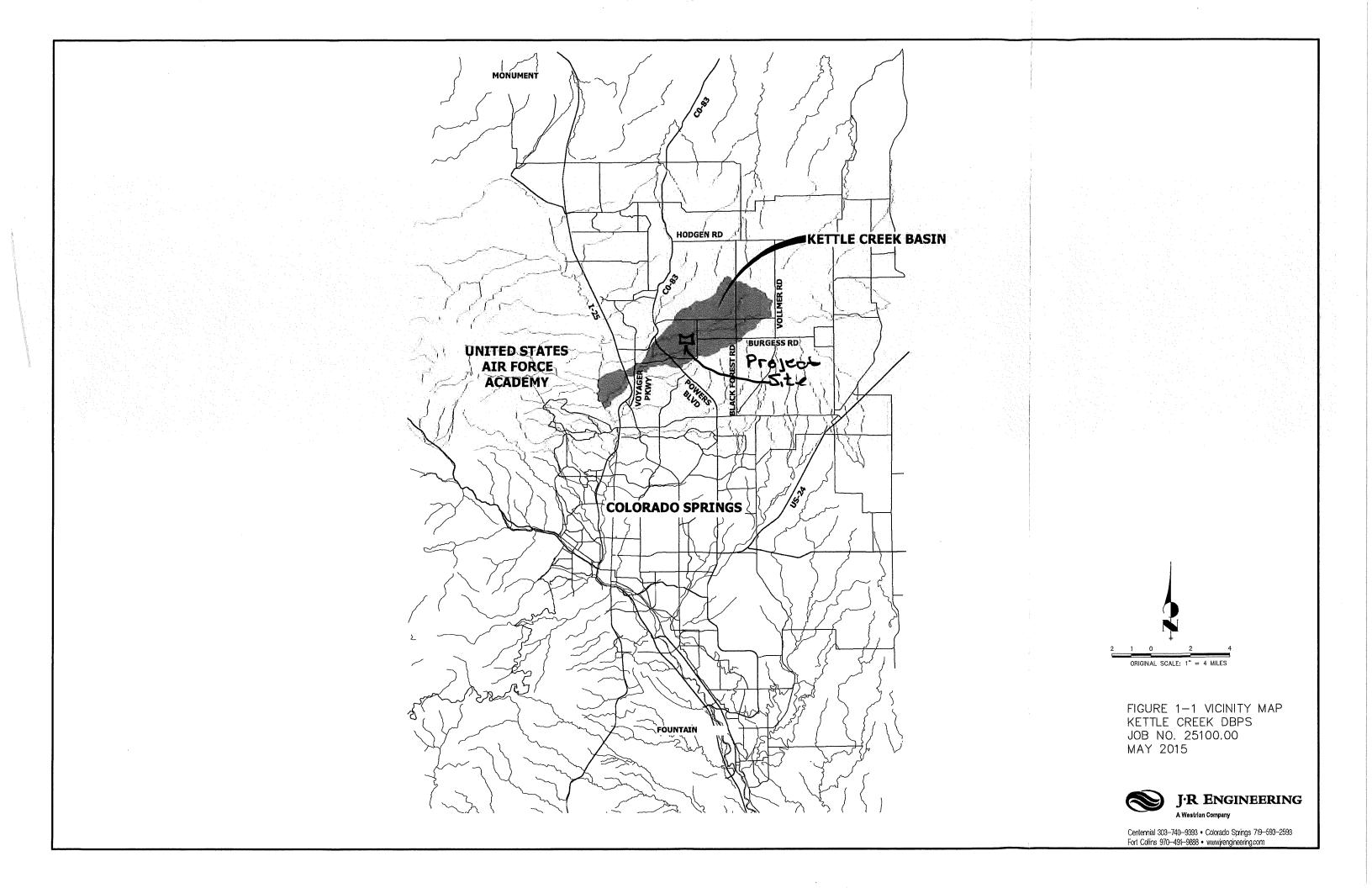
Table 4B-2 Runoff curve numbers for selected agricultural, suburban, and rural areas (western Washington).

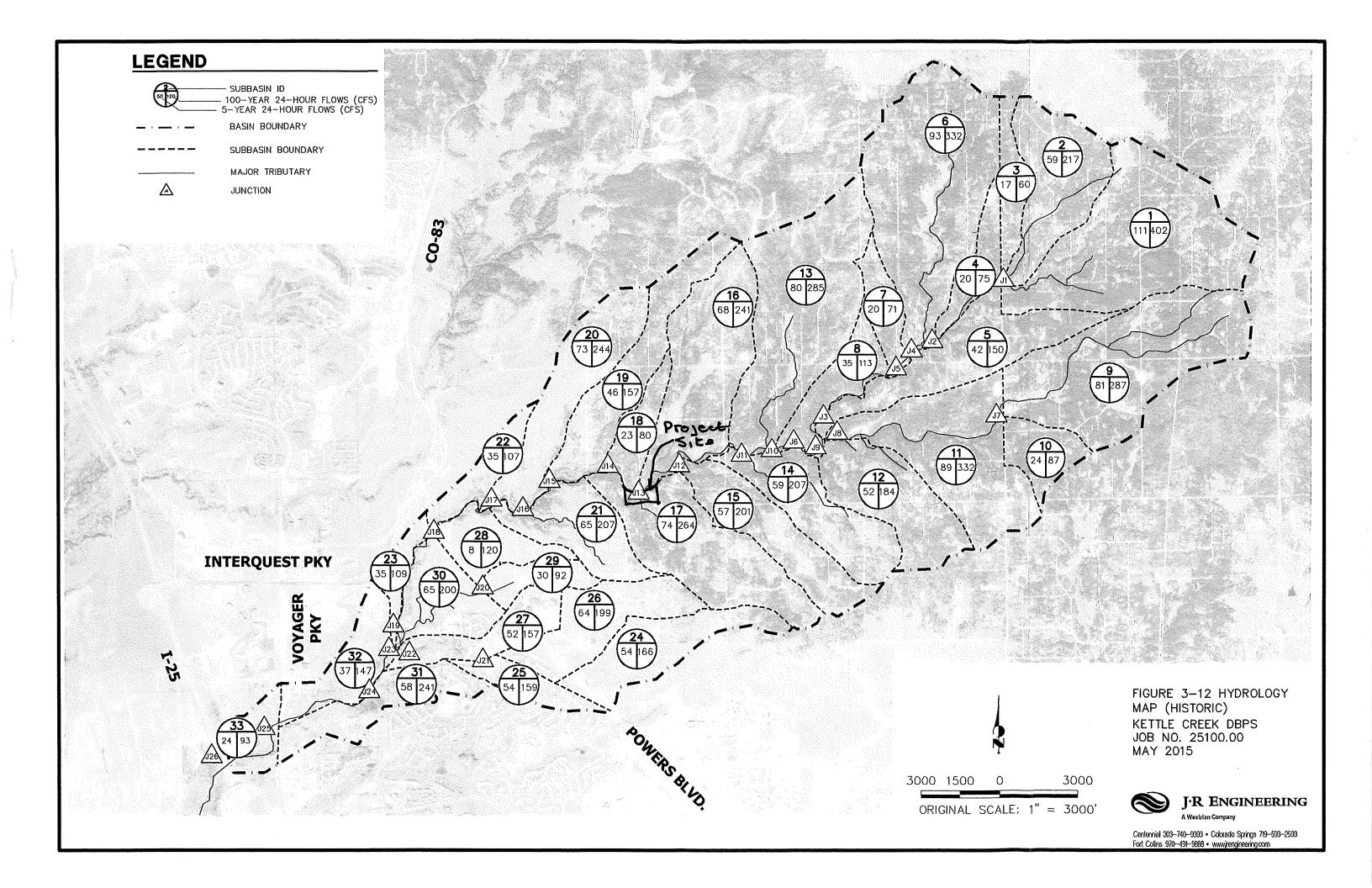
			CNs for hydrologic soil group			roup
Cover Type and Hydrologic Condition			Α	В	C	·D
Lover Type and Hydrologic Condition	urve Numbers for Predevelopment	Conditions	379112			903E
Pasture, Grassland, or Range – Continuo						
Pasture, Grassiand, or Kange — Continuon Fair condition (ground cover 50% to 75%	and not heavily grazed)		49	69	79	84
Good condition (ground cover >75% and	lightly or only occasionally grazed)		39	61	74	80
	lightly or only decasioneny grants			*		
Woods: Fair (woods are grazed but not burned, a	and some forest litter covers the soil)		36	60	73	79
Fair (woods are grazed but not burned, a Good (woods are protected from grazing	and litter and brush adequately cov	er the soil)	30	55	70	77
Good (Woods are protected from grazing	urve Numbers for Postdevelopment	Conditions				
					<u> </u>	
Open Space (lawns, parks, golf courses,	cemeteries, landscaping, etc.):		77	85	90	92
Fair condition (grass cover on 50% to 75	% of the area)		68	80	86	90
Good condition (grass cover on >75% of	the area)					
Impervious Areas:			100	100	100	100
Open water bodies: lakes, wetlands, por	ids, etc.		98	98	98	98
Paved parking lots, roofs, [2] driveways, e	tc. (excluding right of way)	1 1		30	30	
Porous Pavers and Permeable Interlock	ing Concrete (assumed as 85% impe	rvious and 15% la	wu):	96	97	97
Fair lawn condition (weighted average C		-	95 94	96 95	96	97
Good lawn condition (weighted average	CNs)				98	98
Paved			98	98		
Gravel (including right of way)			76	85	89	91
Dirt (including right of way)			72	82	87	89
Pasture, Grassland, or Range - Continu	ous Forage for Grazing:					
Poor condition (ground cover <50% or h	eavily grazed with no mulch)		68	79	86	89
Fair condition (ground cover 50% to 75%	6 and not heavily grazed)		49	69	79	84
Good condition (ground cover >75% and	lightly or only occasionally grazed)		39	61	74	80
Woods:						
Poor (forest litter, small trees, and brus	h are destroyed by heavy grazing or r	egular burning)	45	66	77	83
Fair (woods are grazed but not burned,	and some forest litter covers the soil)	36	60	73	79
Good (woods are protected from grazin	g, and litter and brush adequately co	ver the soil)	30	55	70	7.
Single Family Residential: [3]	Should only be used for	Average percer	nt			
Dwelling Unit/Gross Acre	subdivisions >50 acres	impervious are	a ^{[3][4]}			
1.0 DU/GA		15	Se	parate cu	rve numbe	<u>er</u>
1.5 DU/GA		20	m	ust be sel	ected for	
2.0 DU/GA		25	pe	ervious & i	impervious	\$
2.5 DU/GA		30	po	ortions of	the site or	
3.0 DU/GA		34	ba	sin		
3.5 DU/GA		38				
4.0 DU/GA		42				
4.5 DU/GA		46				
5.0 DU/GA		48				
5.5 DU/GA		50				
6.0 DU/GA		52				
6.5 DU/GA		54				
7.0 DU/GA		56				
7.5 DU/GA		58			h h a c = 1 = -	ع در د
PUDs, condos, apartments, commercia	l businesses, % impervious	Separate cu				
industrial areas, and subdivisions <50 a	cres must be computed	pervious an	d impervi	ous port	ions of th	e site

- [1] Composite CNs may be computed for other combinations of open space cover type.
- [2] Where roof runoff and driveway runoff are infiltrated or dispersed according to the requirements in Chapter 3, the average percent impervious area may be adjusted in accordance with the procedure described under "Flow Credit for Roof Downspout Infiltration" and "Flow Credit for Roof Downspout Dispersion."
- [3] Assumes roof and driveway runoff is directed into street/storm system.
- [4] All remaining pervious area (lawn) is considered to be in good condition for these curve numbers.

Table 4B-3 Runoff curve numbers for selected agricultural, suburban, and rural areas (eastern Washington).

	CNs for	hydrol	ogic soil	group
Cover Type and Hydrologic Condition	A =	В	C	D
Cover type and rivurologic condition				
Open Space (lawns, parks, golf courses, cemeteries, landscaping, etc.):[1]	68	79	86	89
Poor condition (grass cover on <50% of the area)	49	69	79	84
Fair condition (grass cover on 50% to 75% of the area)	39	61	74	80
Good condition (grass cover on >75% of the area)				
Impervious Areas:	100	100	100	100
Open water bodies: lakes, wetlands, ponds, etc.	98 98	98	98	98
Paved parking lots, roofs, driveways, etc. (excluding right of way)				
Porous Pavers and Permeable Interlocking Concrete (assumed as 85% impervious and 15% la	w11/1.	96	97	97
Fair lawn condition (weighted average CNs)	95 76		97 89	91
Gravel (including right of way)	76 72	85	87	89
Dirt (including right of way)	72	82	8/	
Pasture, Grassland, or Range – Continuous Forage for Grazing:				
Poor condition (ground cover <50% or heavily grazed with no mulch)	68	79	86	89
Fair condition (ground cover 50% to 75% and not heavily grazed)	49	69	79	84
Good condition (ground cover >75% and lightly or only occasionally grazed)	39	61	74	80
Cultivated Agricultural Lands:				
	64	75	82	85
Row Crops (good), e.g., corn, sugar beets, soy beans	60	72	80	84
Small Grain (good), e.g., wheat, barley, flax	30	58	71	78
Meadow (continuous grass, protected from grazing, and generally mowed for hay):				
Brush (brush-weed-grass mixture, with brush the major element):				
Poor (<50% ground cover)	48	67	77	83
Fair (50% to 75% ground cover)	35	56	70	7
Good (>75% ground cover)	30 ^[2]	48	65	7:
Woods-Grass Combination (orchard or tree farm): ^[3]				
	57	73	82	8
Poor	43	65	76	8
Fair	32	58	72	7
Good				
Woods:	45	66	77	8:
Poor (forest litter, small trees, and brush are destroyed by heavy grazing or regular burning)	36	60	73	7
Fair (woods are grazed but not burned, and some forest litter covers the soil)	30	55	70	7
Good (woods are protected from grazing, and litter and brush adequately cover the soil)				
Herbaceous (mixture of grass, weeds, and low-growing brush, with brush the minor elemen	-1.	90	87	9
Poor (<30% ground cover)		80 71	81	8
Fair (30% to 70% ground cover)		71 62	74	8
Good (>70% ground cover)		62	/4	<u> </u>
Sagebrush With Grass Understory: [4]				
Poor (<30% ground cover)		67	80	8
Fair (30% to 70% ground cover)		51	63	7
Good (>70% ground cover)		35	47	5


- [1] Composite CNs may be computed for other combinations of open space cover type.
- [2] Actual curve number is less than 30; use CN = 30 for runoff computations.
- [3] CNs shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CNs for woods and pasture.
- [4] Curve numbers have not been developed for Group A soils.


Table 4B-6 Values of the roughness coefficient, "n."

Type of Channel and Description	Manning's "n" (Normal)	Type of Channel and Description	Manning's "n" (Normal)
A. Constructed Channels		6. Sluggish reaches, weedy	
a. Earth, straight and uniform		deep pools	0.070
Clean, recently completed	0.018	Very weedy reaches, deep	<u> </u>
2. Gravel, uniform selection,	0.025	pools, or floodways with	
clean		heavy stand of timber and	
3. With short grass, few	0.027	underbrush	0.100
weeds		b. Mountain streams, no vegetation	<u> </u>
b. Earth, winding and sluggish		in channel, banks usually steep,	
1. No vegetation	0.025	trees and brush along banks	
2. Grass, some weeds	0.030	submerged at high stages	<u> </u>
3. Dense weeds or aquatic		 Bottom: gravel, cobbles, and 	
plants in deep channels	0.035	few boulders	0.040
4. Earth bottom and rubble		Bottom: cobbles with large	
sides	0.030	boulders	0.050
5. Stony bottom and weedy		B-2 Flood plains	
banks	0.035	a. Pasture, no brush	
6. Cobble bottom and clean		Short grass	0.030
sides	0.040	2. High grass	0.035
c. Rock-lined		b. Cultivated areas	
1. Smooth and uniform	0.035	1. No crop	0.030
Jagged and irregular	0.040	2. Mature row crops	0.035
d. Channels not maintained,		3. Mature field crops	0.040
weeds and brush uncut		c. Brush	
1. Dense weeds, high as flow		Scattered brush, heavy	
	0.080	weeds	0.050
depth 2. Clean bottom, brush on	0.000	2. Light brush and trees	0.060
	0.050	3. Medium to dense brush	0.070
sides	0.030	4. Heavy, dense brush	0.100
3. Same, highest stage of	0.070	d. Trees	
flow	0.100	Dense willows, straight	0.150
4. Dense brush, high stage	0.100	Cleared land with tree	
B. Natural Streams	4	stumps, no sprouts	0.040
B-1 Minor streams (top width at		3. Same as above, but with	
flood stage < 100 ft.)		heavy growth of sprouts	0.060
a. Streams on plain	-	4. Heavy stand of timber, a few	
1. Clean, straight, full stage,	0.030	downed trees, little	
no rifts or deep pools	0.030	undergrowth, flood stage	
2. Same as above, but more	0.035	below branches	0.100
stones and weeds	1 0.033	5. Same as above, but with	
3. Clean, winding, some	0.040	flood stage reaching	
pools and shoals	0.040	branches	0.120
4. Same as above, but some	0.040	Dialities	+
weeds	0.040		
5. Same as 4, but more stones	0.050		

^{*}Note: These "n" values are "normal" values for use in analysis of channels. For conservative design for channel capacity, the maximum values listed in other references should be considered. For channel bank stability, the minimum values should be considered.

EXHIBIT 6: DRAINAGE BASIN PLANNING STUDY EXHIBITS

HISTORIC CONDITIONS MODEL RESULTS (5-YEAR)

5-Year, 24-Hour Storm							
5-	rear, 24-HO	Peak	F				
Hydrologic	Drainage	Discharge	Volume				
Element	Area (mi²)	(CFS)	(in)				
Subbasin-1	1.263	111	0.42				
		59	0.42				
Subbasin-2	0.586		0.42				
Subbasin-3	0.18	17					
Junction-1	2.029	185	0.42				
Reach-1	2.029	184 20	0.42				
Subbasin-4	0.195						
Junction-2	2.224	202	0.42				
Reach-2	2.224	195	0.42				
Subbasin-5	0.625	42	0.4				
Junction-3	2.849	235	0.41				
Reach-3	2.849	235	0.41				
Subbasin-6	1.333	93	0.4				
Junction-4	4.182	328	0.41				
Reach-4	4.182	323	0.41				
Subbasin-7	0.183	20	0.42				
Junction-5	4.365	333	0,41				
Reach-5	4.365	324	0,41				
Subbasin-8	0.288	35	0.4				
Junction-6	4.653	337	0.41				
Reach-6	4.653	336	0.41				
Subbasin-9	1.177	81	0,42				
Subbasin-10	0.222	24	0.4				
Junction-7	1.399	93	0.42				
Reach-7	1,399	92	0.42				
Subbasin-11	0.88	89	0.4				
Junction-8	2.279	152	0.41				
Reach-8	2.279	150	0.41				
Subbasin-12	0,552	52	0.43				
Junction-9	2,831	193	0.41				
Reach-9	2.831	191	0.41				
Junction-10	7.484	508	0.41				
Reach-10	7.484	500	0.41				
Subbasin-13	1.156	80	0.42				
Subbasin-14	0.516	59	0.45				
Junction-11	9.156	578	0.41				
Reach-11	9.156	576	0.41				
Subbasin-15	0.498	57	0.44				
Junction-12	9.654	590	0.42				
Reach-12	9.654	589	0.42				
Subbasin-16	0.819	68	0.42				
Subbasin-17	0.788	74	0.42				
Junction-13	11.261	631	0.42				

5-Year, 24-Hour Storm						
		Peak				
Hydrologic	Drainage	Discharge	Volume			
Element	Area (mi²)	(CFS)	(in)			
Reach-13	11.261	627	0.42			
Subbasin-18	0.192	23	0.42			
Junction-14	11.453	631	0.42			
Reach-14	11.453	624	0.42			
Subbasin-19	0.552	46	0.47			
junction-15	12.005	641	0.42			
Reach-15	12.005	640	0.42			
Subbasin-20	0.594	73	0.5			
Junction-16	12.599	654	0.42			
Reach-16	12.599	653	0.42			
Subbasin-21	0.417	65	0.52			
Junction-17	13.016	661	0.43			
Reach-17	13.016	658	0.43			
Subbasin-22	0.2	35	0.57			
Junction-18	13.216	662	0,43			
Reach-18	13,216	660	0.43			
Subbasin-23	0.123	35	0.55			
Junction-19	13.339	662	0.43			
Reach-19	13.339	660	0.43			
Subbasin-24	0.453	54	0.57			
Subbasin-25	0.169	51	0.57			
Subbasin-26	0.48	64	0.57			
Junction-21	1.102	128	0.57			
Reach-21	1.102	125	0.57			
Subbasin-27	0.294	52	0.57			
Junction-22	1.396	164	0.57			
Reach-22	1.396	161	0.57			
Subbasin-28	0.264	38	0.57			
Subbasin-29	0.172	30	0.57			
Junction-20	0.436	68	0.57			
Reach-20	0.436	64	0.57			
Subbasin-30	0.364	65	0.57			
Junction-23	15.535	702	0.45			
Reach-23	15.535	697	0.45			
Subbasin-31	0.377	58	0.33			
Subbasin-32	0,316	37	0.33			
Junction-24	16,228	705	0.44			
Reach-24	16.228	702	0.44			
Subbasin-33	0.184	24	0.37			
Junction-25	16.412	704	0.44			
Reach-25	16.412	698	0.44			
Junction-26	16.412	698	0.44			

EXISTING CONDITIONS MODEL RESULTS (5-YEAR)

5	-Year, 24-Ho	ur Storm	
		Peak	
Hydrologic	Drainage	Discharge	Volume
Element	Area (mi²)	(CFS)	(in)
Subbasin-1	1.263	315	1.06
Subbasin-2	0.586	173	1.06
Subbasin-3	0.180	56	1.27
Junction-1	2.029	527	1.08
Reach-1	2.029	526	1.08
Subbasin-4	0.195	56	0.97
Junction-2	2.224	572	1.07
Reach-2	2,224	568	1.07
Subbasin-5	0.625	134	1.14
Junction-3	2.849	689	1.08
Reach-3	2.849	689	1.08
Subbasin-6	1,333	240	0.94
Junction-4	4.182	928	1.04
Reach-4	4.182	917	1.04
Subbasin-7	0.183	51	0.97
Junction-5	4.365	940	1.03
Reach-5	4.365	929	1.03
Subbasin-8	0.288	117	1.1
Junction-6	4.653	959	1.04
Reach-6	4.653	944	1.04
Subbasin-9	1.177	223	1.05
Subbasin-10	0.222	62	0,93
Junction-7	1,399	252	1.03
Reach-7	1,399	250	1.03
Subbasin-11	0.880	322	1,23
Junction-8	2,279	484	1,11
Reach-8	2.279	484	1.11
Subbasin-12	0.552	144	1.06
Junction-9	2.831	609	1.1
Reach-9	2.831	594	1,1
Junction-10	7,484	1,444	1,06
Reach-10	7.484	1,428	1.06
Subbasin-13	1.156	212	1
Subbasin-14	0.516	138	0.95
Junction-11	9.156	1,605	1.05
Reach-11	9,156	1,604	1.05
Subbasin-15	0.498	143	1
Junction-12	9.654	1,636	1.05
Reach-12	9.654	1,634	1.05

5	-Year, 24 -Ho	ur Storm	
		Peak	
Hydrologic	Drainage	Discharge	Volum
Element	Area (mi²)	(CFS)	(in)
Subbasin-16	0.819	193	1.06
Subbasin-17	0,788	184	0.95
Junction-13	11.261	1,730	1.04
Reach-13	11.261	1,705	1.04
Subbasin-18	0.192	55	0.95
Junction-14	11.453	1,711	1.04
Reach-14	11.453	1,710	1.04
Subbasin-19	0.552	101	0,95
lunction-15	12,005	1,745	1.03
Reach-15	12,005	1,741	1.03
Subbasin-20	0,594	134	0.86
lunction-16	12,599	1,760	1.03
Reach-16	12,599	1,741	1.03
Subbasin-21	0,417	100	0.79
unction-17	13.016	1,752	1.02
Reach-17	13.016	1,752	1.02
Subbasin-22	0,200	36	0.59
unction-18	13.216	1,756	1.01
Reach-18	13.216	1,746	1.01
Subbasin-23	0.123	42	0.66
lunction-19	13.339	1,748	1.01
Reach-19	13.339	1,747	1,01
Source-1	1.396	109	0.58
Subbasin-28	0.264	38	0.57
Subbasin-29	0.172	37	0.7
lunction-20	0.436	75	0.62
Reach-20	0.436	70	0.62
Subbasin-30	0.364	116	1
lunction-23	15.535	1,764	0.96
Reach-23	15.535	1,751	0.96
Subbasin-31	0.377	217	1.05
Subbasin-32	0.316	124	1.01
Junction-24	16.228	1,766	0.96
Reach-24	16.228	1,754	0,96
Subbasin-33	0.184	24	0.37
Junction-25	16,412	1,756	0.96
Reach-25	16.412	1,750	0,96
Junction-26	16.412	1,750	0.96

FUTURE CONDITIONS MODEL RESULTS (5-YEAR)

5	-Year, 24-Ho	ur Storm	
		Peak	
Hydrologic	Drainage	Discharge	Volume
Element	Area (mi²)	(CFS)	(in)
Subbasin-1	1.263	315	1.06
Subbasin-2	0.586	173	1,06
Subbasin-3	0.180	56	1.27
Junction-1	2.029	527	1.08
Reach-1	2.029	526	1.08
Subbasin-4	0.195	56	0.97
Junction-2	2.224	572	1.07
Reach-2	2,224	568	1.07
Subbasin-5	0.625	134	1.14
Junction-3	2.849	689	1.08
Reach-3	2.849	689	1.08
Subbasin-6	1.333	240	0.94
Junction-4	4.182	928	1.04
Reach-4	4.182	917	1.04
Subbasin-7	0.183	51	0.97
Junction-5	4.365	940	1.03
Reach-5	4.365	929	1.03
Subbasin-8	0.288	117	1.1
Junction-6	4.653	959	1.04
Reach-6	4.653	944	1.04
Subbasin-9	1.177	223	1.05
Subbasin-10	0.222	62	0.93
Junction-7	1.399	252	1,03
Reach-7	1.399	250	1.03
Subbasin-11	0,880	322	1,23
Junction-8	2,279	484	1,11
Reach-8	2.279	484	1.11
Subbasin-12	0.552	144	1.06
Junction-9	2,831	609	1,1
Reach-9	2.831	594	1.1
Junction-10	7.484	1,444	1.06
Reach-10	7.484	1,428	1.06
Subbasin-13	1.156	212	1
Subbasin-14	0.516	138	0.95
Junction-11	9.156	1,605	1.05
Reach-11	9.156	1,604	1.05
Subbasin-15	0.498	143	1
Junction-12	9.654	1,636	1.05
Reach-12	9,654	1,634	1.05

P	eak
Hydrologic Drainage Disc	harge Volume
Element Area (mi ²) (0	CFS) (in)
Subbasin-16 0.819 1	1,06
Subbasin-17 0.788 1	184 0.95
unction-13 11.261 1,	730 1.04
Reach-13 11.261 1,	705 1.04
Subbasin-18 0.192	55 0.95
Junction-14 11.453 1,	711 1.04
Reach-14 11.453 1,	710 1,04
Subbasin-19 0.552 1	111 1.03
Junction-15 12.005 1,	747 1.04
Reach-15 12.005 1,	743 1.04
Subbasin-20 0.594 2	206 1.29
Junction-16 12.599 1,	769 1.05
Reach-16 12.599 1,	750 1.05
Subbasin-21 0.417 1	114 0.9
Junction-17 13.016 1,	761 1.04
Reach-17 13.016 1,	761 1.04
Subbasin-22 0.200 1	1.76
Junction-18 13.216 1,	769 1.06
Reach-18 13.216 1,	760 1.06
Subbasin-23 0.123	44 0.68
Junction-19 13.339 1,	763 1.05
Reach-19 13.339 1,	761 1,05
Source-1 1,396 1	109 0.58
Subbasin-28 0.264 1	1.74
Subbasin-29 0.172 1	111 2.06
Junction-20 0.436 2	230 1.86
Reach-20 0.436 2	220 1.86
Subbasin-30 0.364 1	1.34
Junction-23 15.535 1,	788 1.04
Reach-23 15,535 1,	774 1.04
Subbasin-31 0.377 2	90 1.38
Subbasin-32 0.316 2	274 2.2
Junction-24 16.228 1,	796 1.07
Reach-24 16.228 1,	785 1.07
Subbasin-33 0.184 :	24 0.37
Junction-25 16.412 1,	787 1.06
	781 1.06
Junction-26 16.412 1,	781 1.06

5-Year, 24-Hour Storm

FIGURE 3-10 HYDROLOGY MINOR STORM RESULTS KETTLE CREEK DBPS JOB NO. 25100.00 MAY 2015

NOTE

1. FUTURE AND EXISTING SUBBASIN 24-27 DATA IS REPLACED WITH DATA FROM THE KETTLE CREEK DRAINAGE BASIN OLD RANCH ROAD TRIBUTARY MASTER DEVELOPMENT DRAINAGE PLAN AND LABELED AS SOURCE-1 (S1).

Centennial 303-740-9393 • Colorado Springs 7/9-593-2593 Fort Collins 970-491-9888 • www.jrengineering.com

LEGEND

JOVENCHI-1 LLC

260 EB LLC

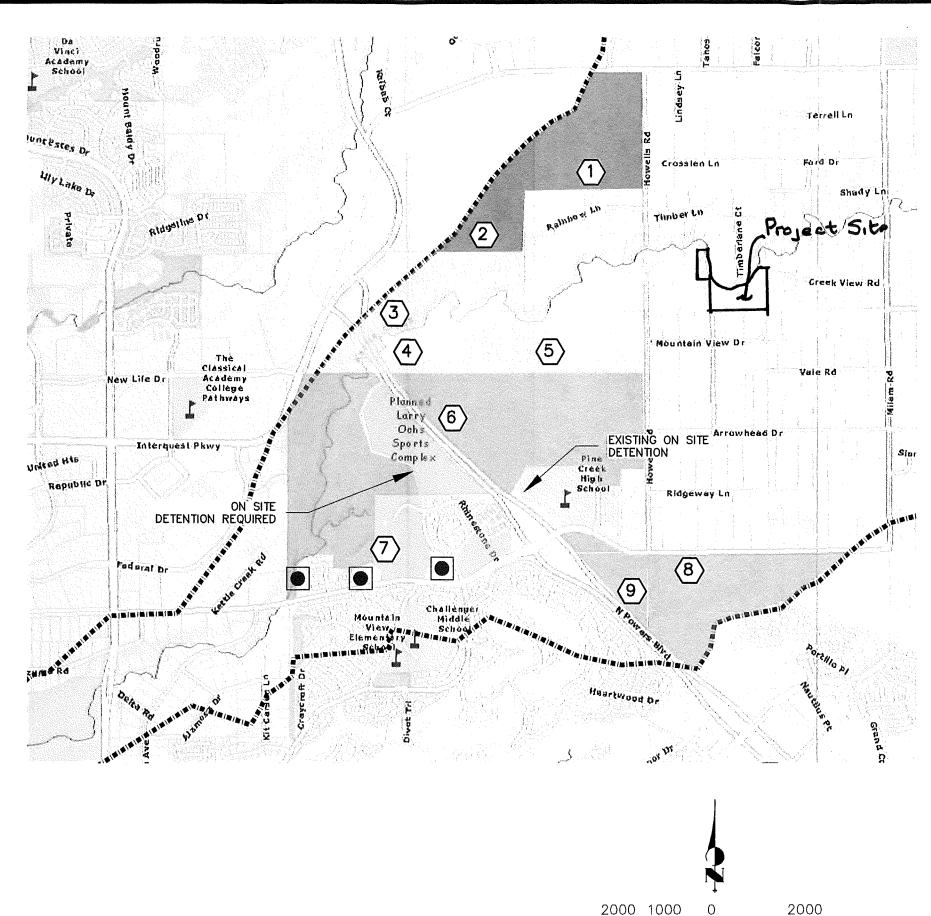
HIGH VALLEY LAND COMPANY INC

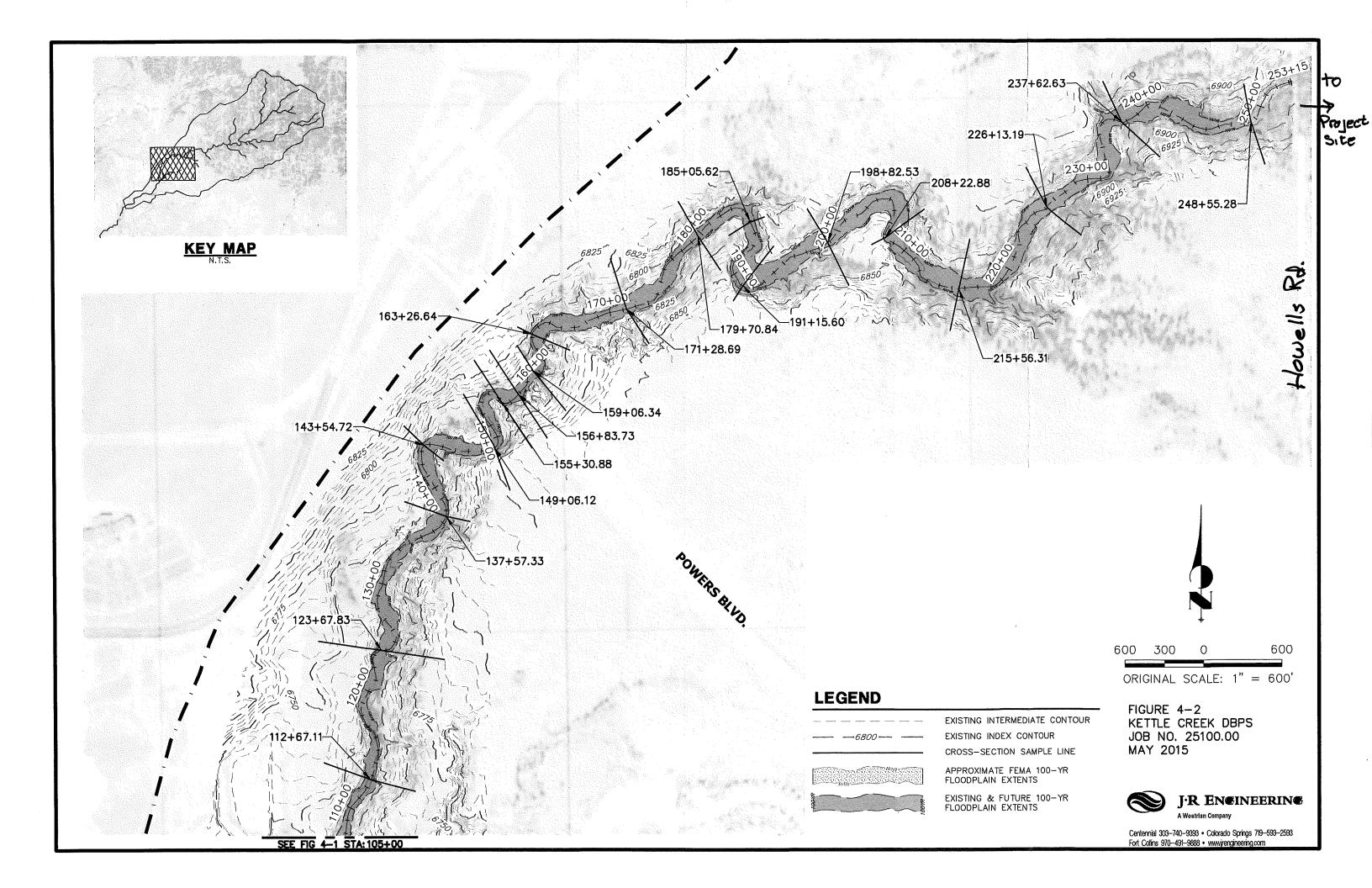
KETTLE CREEK LLC & VENEZIA JOHN FAMILY TRUST

ESTIMATED LOCATION OF PROPOSED SUBREGIONAL PONDS

EXISTING LOCATION OF SUBREGIONAL PONDS

KETTLE CREEK BASIN BOUNDARY




FIGURE 6-1 SUBREGIONAL POND LOCATIONS KETTLE CREEK DBPS JOB NO. 25100.00 MAY 2015

ORIGINAL SCALE: 1" = 2000'

J·R ENGINEERING

Centernial 303-740-9393 • Colorado Springs 719-593-2593 Fort Colins 970-491-9888 • www.jrengineering.com

EXHIBIT 7: HYDROLOGY EXHIBITS

Basin Summary

D-sin I D	Area	Runoff Co	pefficients	TR55	Runoff pe Met	r Rational hod	Runoff p met	er TR55 hod
Basin I.D.		(Tational	memoa)	1100	Q5	Q100	Q5	Q100
	(acres)	C5	C100		cfs	cfs	cfs	cfs
Α	1.96	0.08	0.35		0.6	4.2		
В	3.04	0.08	0.35		0.7	5.4		
С	1.58	0.8	0.35		0.4	2.8		
D	4.57	0.8	0.31		1.2	9.2		
Е	3.63	0.09	0.4		1	7		
F	4.51	0.08	0.36		0.7	5.3		
G	1.57	08	0.35		0.6	4.8		
Н	5.54	0.01	0.05		2.3	16.8		
ſ	1.28	0.08	0.35		6.5	33.8		
OS1	34.69	see TR55	see TR55				1.3	12.74
OS2	179.06	see TR55	see TR55				4.94	41.34
OS3	18.41	see TR55	see TR55				0.53	4.53
OS4	1.39	see TR55	see TR55		0.3	2.4		
OS5	91.16	see TR55	see TR55				2.61	22.35
OS6	73.03	see TR55	see TR55				2.98	31.49
OS7	1.56	0.08	0.35		0.2	1.4		
OS8	1.06	0.08	0.35		0.3	1.9		

Canyon Creek Ranch FINAL DRAINAGE REPORT

Existing Conditions (Area Drainage Summary)

Г			-	_	-					_				_		-			-
	LOWS	O ₃₀₀	4.2	5.4	2.8	9.2	2.0	5.3	4.8	16.8	3.9	35.8	27.8	18.5	2.4	20.8	85.2	1.4	67
	TOTAL FLOWS	Qs (e.f.s.)	9.6	0.7	0.4	1.2	1.0	0.7	9.6	2.3	5.3	6.5	6.5	3.9	0.3	4.1	17.0	0.2	0.3
	* XLIS	I ₁₀₀	6.1	5.1	5.1	5.7	5.5	3,3	8.7	8.7	8.7	2.0	0.4	2.5	4.9	9.0	3.0	2.6	5,3
	INTENSITY *	I _s	3.6	3.0	3.0	3.4	3.3	2.0	5.2	5.2	5.2	1.2	0.2	1.5	2.9	0.4	1.8	1.5	3.1
	rvel (T,)	CHECK (min)	12.4	15.1	15.1	13.1	13.9	31.5	10.0	10.0	10.0	31.7	53.9	25.6	16.1	51.4	23.9	25.6	17.2
	Time of Travel (T.)	TOTAL	14.1	20.8	21.0	16.1	17.6	42.6	5.0	5.0	5.0	71.3	134.8	57.2	22.6	123.7	47.3	55.9	19.5
	M	T;	5.5	13.7	13.7	7.5	8.9	40.6	#DIV/0I	#DIV/0	#DIV/0	63.3	126.9	42.8	15.7	115.5	35.7	38.9	13.5
Aleu Diuinge Summily	SHALLOW CHANNEL FLOW	Velocity	1.0	1.0	1.0	1.0	1.1	1.6	0.0	0.0	0.0	1.0	1.0	1.0	1.1	1.1	1.1	1.1	1.5
e Dum	АLLОW СН.	Slope	4.0%	4.0%	4.0%	4.0%	2.0%	10.0%	Silver and		The second second	4.0%	4.2%	4.1%	4.5%	4.5%	4.6%	4.6%	8.8%
umug	HS	Length	330	820	820	450	009	3850	Part Comment		The part of the second	3800	7800	2600	1000	7350	2300	2500	1200
reu Di		T _C	8.6	7.1	7.4	8.6	8.6	2.0	#DIA/0i	#DIV/0!	#DIV/0!	8.0	7.9	14,4	6.9	8.2	11.6	17.0	6.0
	WD	Height	10	18	16	10	10	15				10	10	10	20	10	20	20	30
	OVERLAND	Length	100	100	100	100	100	20			A STATE OF THE STA	100	100	200	100	100	200	300	100
		౮	0.08	0.08	80:0	80:0	0.08	80'0	90'0	80'0	0.80	0.16	0.16	0.14	0.08	0.13	0.13	0.08	0.08
		, C ₁₀₀	0.35	0.35	0.35	0.35	0.35	0.36	0.35	0.35	0.35	0.52	0.41	0.40	0.35	0.38	0.39	0.35	0.35
	ficient Summary	ΰ	0.08	90.0	90.0	90.0	80.0	90.0	0.08	90.0	0.80	0.16	0.16	0.14	90.0	0.13	0.13	80:0	0.08
	From Area Runoff Coesficient Summary	AREA TOTAL	1.96	3.04	1.58	4.57	3.63	4.51	1.57	5.54	1.28	34.69	179.06	18.41	1.39	91.16	73.03	1.55	1.06
	From ,	BASIN	A	В	C	Q	E	F	9	H	I	ISO	OS2	os3	OS4	oss	980	2SO	880

Canyon Creek Ranch Drainage Calculations Existing Conditions (Area Runoff Coefficient Summary)

		Lan	Large Acreage Lots	Lots	V	Natural (pasture)	re)	Natu	Natural (forest, pasture)	nasture)	R	RUNOFF COEFFICIENT	CIENT	
	TOTAL										i	-		
BASIN	AREA	AREA	౮	C ₁₀₀	AREA	౮	C ₁₀₀	AREA	౮	C199	ζ	ඊ	Cig	
	(Acres)	(Acres)			(Acres)			(Acres)						
7	1.96	00.0	0.20	0.44	0.00	80'0	0.35	1.96	80'0	0.35	00.00	0.08	0.35	
В	3.04	00.00	0.20	0.44	00:00	80.0	0.35	3.04	80.0	0.35	0.00	90.0	0.35	
C	1.58	00.0	0.20	0.44	0.00	80.0	0.35	1.58	80.0	0.35	0.00	0.08	0.35	
Q	4.57	00.0	0.20	0.44	0.00	80.0	0.35	4.57	80.0	0.35	00.00	0.08	0.35	
E	3.63	0.00	0.20	0.44	0.00	80.0	0.35	3.63	80.0	0.35	00.00	0.08	0.35	
F	4.51	00.00	0.20	0.44	0.00	80.0	0.35	4.60	80.0	0.35	00.00	0.08	0.36	
9	1.57	0.00	0.20	0.44	00.00	80.0	0.35	1.57	80.0	0.35	0.00	0.08	0.35	
H	5.54	0.00	0.20	0.44	0.00	80.0	0.35	5.54	80.0	0.35	00.00	0.08	0.35	
I	1.28	0.00	0.20	0.44	0.00	80.0	0.35	1.28	080	0.35	0.00	0.80	0.35	
ISO	34.69	13.40	0.20	0.44	17.69	80.0	0.35	17.00	80.0	0.35	00.00	0.16	0.52	
OS2	179.06	120.00	0.20	0.44	29.60	80.0	0.35	0.00	80.0	0.35	0.00	0.16	0.41	
OS3	18.41	9.40	0.20	0.44	9.01	80.0	0.35	00.0	80.0	0.35	00.00	0.14	0.40	
OS4	1.39	0.00	0.20	0.44	1.39	80.0	0.35	00:00	80.0	0.35	0.00	0.08	0.35	
oss	91.16	35.00	0.20	0.44	56.16	80.0	0.35	0.00	80.0	0.35	00.0	0.13	0.38	
980	73.03	30.00	0.20	0.44	43.03	80.0	0.35	0.00	80.0	0.35	0.00	0.13	0.39	
OS7	1.55	00.00	0.20	0.44	1.56	80.0	0.35	0.00	0.08	0.35	00.00	0.08	0.35	
850	1,06	00.00	0.20	0.44	1.06	80.0	0.35	00.00	80.0	0.35	0.00	0.08	0.35	

DP3 Rdome#1

Harrison

Canyon Estates Design Point 3 El Paso County, Colorado

Watershed Peak Table

Sub-Area or Reach Identifier	5-Yr	k Flow by 100-Yr (cfs)	Rainfall	Return	Period	 	
SUBAREAS OS1	1.28	12.74					
OS2	4.94	41.34					
os3	0.53	4.53					
A onsite	0.16	2.08					
REACHES							
OUTLET	6.38	53.13					

Canyon Estates Design Point 3 El Paso County, Colorado

Hydrograph Peak/Peak Time Table

Sub-Area or Reach Identifier	5-Yr		Time	(hr)	by	Rainfall	Return	Period
SUBAREAS OS1	1.28 13.01	12.74 12.75						
OS2	4.94 14.01	41.34 13.47						
OS3	0.53 13.83	4.53 13.31						
A onsite	0.16							
REACHES								
OUTLET	6.38	53.13						

WinTR-55 Current Data Description

--- Identification Data ---

User: Harrison

Project: Canyon Estates SubTitle: Design Point 3

State: Colorado County: El Paso Filename: <new file>

Date: 4/12/2022 Units: English

Areal Units: Acres

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Tc
OS1		Outlet	34.69	58	1.193
OS2		Outlet	179.06	58	2.251
OS3		Outlet	18.41	58	2.062
A onsite		Outlet	1.96	58	0.235

Total area: 234.12 (ac)

--- Storm Data --

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	1-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
2,1	2.7	3.2	3.6	4.2	4.6	.0

Storm Data Source:

User-provided custom storm data

Rainfall Distribution Type: Type II
Dimensionless Unit Hydrograph: <standard>

Canyon Estates Design Point 3 El Paso County, Colorado

Sub-Area Summary Table

Sub-Area Identifier	Drainage Area (ac)	Time of Concentration (hr)	Curve Number	Receiving Reach	Sub-Area Description
OS1 OS2 OS3 A onsite	34.69 179.06 18.41 1.96	1.193 2.251 2.062 0.235	58 58 58 58 58	Outlet Outlet Outlet Outlet	

Total Area: 234.12 (ac)

Canyon Estates Design Point 3 El Paso County, Colorado

Sub-Area Time of Concentration Details

Sub-Area Identifier/		n	End Area (sq ft)		Velocity (ft/sec)	Travel Time (hr)
OS1 User-provid	ded					1.193
			Ti	me of Conce		1.193
OS2 User-provid	ded					2.251
			Ti	me of Conce	ntration	2.251
OS3 User-provid	ded					2.062
			Ti	me of Conce	ntration	2.062
A onsite User-provid	ded					0.235
			Ti	me of Conce		0.235

Canyon Estates Design Point 3 El Paso County, Colorado

Sub-Area Land Use and Curve Number Details

Sub-Area Identifie		Hydrologic Soil Group	Sub-Area Area (ac)	Curve Number
os1	CN directly entered by user		34.69	58
	Total Area / Weighted Curve Number		34.69	58 ==
os2	CN directly entered by user	-	179.06	58
	Total Area / Weighted Curve Number		179.06 =====	58 ==
os3	CN directly entered by user	-	18.41	58
	Total Area / Weighted Curve Number		18.41	58 ==
A onsite	CN directly entered by user	-	1.96	58
	Total Area / Weighted Curve Number		1.96	58 ==

DP7 Ravine 3 No Calvert

WinTR-55 Current Data Description

--- Identification Data ---

Harrison User:

Project: Canyon Estates
SubTitle: Design Point 7

State: Colorado County: El Paso Filename: <new file> Date: 4/12/202 Units: English Date:

4/12/2022

Areal Units: Acres

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Tc
OS5 OS6 ONSITE D		Outlet Outlet Outlet Outlet	91.16 73.03 44.57 3.61	58 58 58 58	2.070 0.955 0.270 0.297

Total area: 212.37 (ac)

--- Storm Data --

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	1-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
2.1	2.7	3.2	3.6	4.2	4.6	.0

Storm Data Source:

User-provided custom storm data

Rainfall Distribution Type: Dimensionless Unit Hydrograph: <standard>

Type II

Canyon Estates Design Point 7 El Paso County, Colorado

Storm Data

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	1-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
2.1	2.7	3.2	3.6	4.2	4.6	.0

User-provided custom storm data Type II

Storm Data Source: Rainfall Distribution Type: Dimensionless Unit Hydrograph: <standard>

Canyon Estates Design Point 7 El Paso County, Colorado

Watershed Peak Table

Sub-Area or Reach Identifier	Pea 5-Yr (cfs)	k Flow by 100-Yr (cfs)	Rainfall	Return	Period
SUBAREAS OS5	2.61	22.35			
086	2.98	31.49			
ONSITE D	3.43	44.24			
ONSITE E	0.26	3.41			
REACHES					
OUTLET	5.88	58.70			

Canyon Estates Design Point 7 El Paso County, Colorado

Hydrograph Peak/Peak Time Table

	5-Yr		k Time	(hr)	by	Rainfall	Return	Period
SUBAREAS OS5	2.61 13.84							
OS6	2.98 12.78	31.49 12.58						
ONSITE D	3.43 12.15							
ONSITE E	0.26 12.18							
REACHES								
OUTLET	5.88	58.70						

Canyon Estates Design Point 7 El Paso County, Colorado

Sub-Area Summary Table

Sub-Area Identifier	Drainage Area (ac)	Time of Concentration (hr)	Curve Number	Receiving Reach	Sub-Area Description
OS5 OS6 ONSITE D	91.16 73.03 44.57 3.61	2.070 0.955 0.270 0.297	58 58 58 58	Outlet Outlet Outlet Outlet	

Total Area: 212.37 (ac)

Canyon Estates Design Point 7 El Paso County, Colorado

Sub-Area Time of Concentration Details

Sub-Area Identifier/		Slope (ft/ft)	Mannings's n	Area	Perime	ed eter Veloci (ft/se	Travel ty Time c) (hr)
OS5 User-provi	ded						2.070
				Tir	me of (Concentration	2.070
OS6 User-provi	ded						0.955
				Tir	me of (Concentration	0.955
ONSITE D User-provi	ded						0.270
				Tir	me of (Concentration	0.270
ONSITE E User-provi	ded						0.297
				Tir	me of (Concentration	0.297

Canyon Estates Design Point 7 El Paso County, Colorado

Sub-Area Land Use and Curve Number Details

Sub-Area Identifie		Hydrologic Soil Group	Sub-Area Area (ac)	Curve Number
OS5	CN directly entered by user	_	91.16	58
	Total Area / Weighted Curve Number		91.16	58 ==
os6	CN directly entered by user		73.03	58
	Total Area / Weighted Curve Number		73.03 =====	58 ==
ONSITE D	CN directly entered by user	-	44.57	58
	Total Area / Weighted Curve Number		44.57	58 ==
ONSITE E	CN directly entered by user	_	3.61	58
	Total Area / Weighted Curve Number		3.61	58 ==

EXHIBIT 8: HYDRAULICS EXHIBITS

Swale Summary

# Odiv.C	Outfall	Outfall Contributing	Slope	Design	Design Flow	Depth of Flow	of Flow	Velc	Velocity	Frou	Froude #
# # # # # # # # # # # # # # # # # # #	Q d	Subbasins		95	Ø100	92	Q100	95	Q100		
			%	cfs	cfs	¥	#	fps	fps	5 year	100 year
-	DP3	OS1, OS2, OS3, A	4.0	6.4	53.1	0.1	0.3	2.7	6.2	1.71	2.10
2	DP5	OS8., OS4, B,C	4.0	1.7	12.5	neg	0.1	1.3	3.0	1.25	1.67
က	DP7	OS5, OS6, D, E	4.0	5.9	28.7	0.1	0.3	2.5	6.0	1.65	2.04

Roune 1 5yr

	The open channel flow calculator	
Select Channel Type: Trapezoid 🗸	Rectangle Triangle Triangle	
Depth from Q	Select unit system: Feet(ft) 🗸	
Channel slope: .04 ft/ft	Water depth(y): [0.08 ft	Bottom width(b) 30 ft
Flow velocity 2.710463 11/s	LeftSlope (Z1): [1.5 to 1 (H:V)	RightSlope (Z2): [1.5 [to 1 (H:V)]
Flow discharge 6.4 Rtv3/s	Input n value 020 or select n	
Calculatel	Status: Calculation finished	Reset
Wetted perimeter 30.28 ft	Flow area 2.36 ft^2	Top width(T) 30.24 ft
Specific energy 0.19 ft	Froude number 1.71	Flow status Supercritical flow
Critical depth 0.11 ft	Critical slope 0.0119 14/11	Velocity head 0.11 ft

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

	The open channel flow calculator	
Select Channel Type: Trapezoid 🗸	Rectangle Triangle Triangle	
➤ Depth from Q	Select unit system: Feet(ft) >	
Channel slope: .04 ft/ft	Water depth(y): 0.28	Bottom width(b) 30 ft
Flow velocity 6.249991 ft/s	LeftSlope (Z1): [1.5 [to 1 (H:V)]	RightSlope (Z2): 1.5 to 1 (H:V)
Flow discharge 53.1 11^3/s	Input n value 020 or select n	
Calculatel	Status: Calculation finished	Reset
Wetted perimeter 31.01 ft	Flow area 8.5 ft^2	Top width(T)[30.84 [ft
Specific energy 0.89 ft	Froude number 2.1	Flow status Supercritical flow
Critical depth 0.46 ft	Critical slope 0.0075 ft/ft	Velocity head 0.61

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

Ravinez 5yr

The open channel flow calculator	De: Trapezoid > The period of the property	1Q • Select unit system: Feet(ft) •	Water depth(y): [0.03] ft ft 40 ft	LeftSlope (Z1): [1.5 to 1 (H:V) RightSlope (Z2): [1.5 to 1 (H:V)	Input n value 0.020 or select n	Status: Calculation finished Reset	Flow area 1.32 ft^2 Top width(T) 40.1 ft	Froude number 1.25 Flow status Supercritical flow	Critical slope 0.017 ft/ft Velocity head 0.03 ft
	Select Channel Type: Trapezoid 🗸	Depth from Q	Channel slope: .04 ft/ft	Flow velocity 1.286287 [f/s	Flow discharge 1.7 Rt ³ /s	Calculatel	Wetted perimeter 40.12 ft	Specific energy 0.06	Critical depth[0.04 ft

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

Rouine 2 100 pm

	The open channel flow calculator	
Select Channel Type: Trapezoid 🗸	Tiangle Trapezoid Triangle Triangle	Ty Cricle
➤ Depth from Q	Select unit system: Feet(ft) 🗸	
Channel slope: .04 ft/ft	Water depth(y): 0.1 ft	Bottom width(b) 40 ft
Flow velocity 3.025255 ft/s	LeftSlope (Z1): [1.5 [to 1 (H:V)]	RightSlope (Z2): 1.5 to 1 (H:V)
Flow discharge 12.5 Rv3/s	Input n value 0.020 or select n	
Calculatel	Status: Calculation finished	Reset
Wetted perimeter 40.37 fit	Flow area 4.13 ft^2	Top width(T) 40.31
Specific energy 0.25	Froude number 1.67	Flow status Supercritical flow
Critical depth 0.15	Critical slope 0.0105 ft/ft	Velocity head 0.14

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

Ravine 43 5yr

	The open channel flow calculator	
Select Channel Type: Trapezoid 🗸	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
➤ Depth from Q	Select unit system: Feet(ft) •	
Channel slope: .04 ft/ft	Water depth(y): [0.07 ft]	Bottom width(b) 35 ft
Flow velocity 2.450106 ft/s	LeftSlope (Z1): [1.5 [to 1 (H:V)]	RightSlope (Z2): [1.5 to 1 (H:V)
Flow discharge 5.9 #^3/s	Input n value 020 or select n	
Calculate	Status: Calculation finished	Reset
Wetted perimeter 35.25 ff	Flow area 2.41 ft^2	Top width(T) 35.21
Specific energy 0.16 ft	Froude number 1.65	Flow status Supercritical flow
Critical depth 0.1	Critical slope 0.0119 ft/ft	Velocity head 0.09

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

Ravine # 3
1004

		The open channel flow calculator		
Select Ch	Select Channel Type: Trapezoid 🗸	Hectangle Triangle Triangle		
	Depth from Q	Select unit system: Feet(ft) 🗸		
Channel slope: .04	ft/ft	Water depth(y): 0.27 ft	Bottom width(b) 35 ft	
Flow velocity 6.040995 ft/s	8/	LeftSlope (Z1): [1.5 [to 1 (H:V)]	RightSlope (Z2): [1.5 to 1 (H:V)	
Flow discharge 58.7	ft^3/s	Input n value 020 or select r		
Calculate!		Status: Calculation finished	Reset	
Wetted perimeter 35.99	lft.	Flow area 9.72 ft^2	Top width(T) 35.82 ft	
Specific energy 0.84	H H	Froude number 2.04	Flow status Supercritical flow	
Critical depth 0.44	-	Critical slope 0.0078 ft/ft	Velocity head 0.57	

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

KCH Engineering Solutions

5228 Cracker Barrel Circle Colorado Springs, CO 80917 (719) 246-4471

JOB Culvest Design	
SHEET NO.	OF
CALCULATED BY	DATE
OHEOKED BY	DATE

A Culvert Design @ Rollne 1 (8%) 9 rade 5% to 10% 1 Topos Rd @ culout crossing.
- Elevation @ Creek View Rd Cul-dc-sono = 69.801 - Rosa Grale. Use 8% (Both ways)
- Distance to culvert = 320 Ca - Distance to Bottom of V.C. (Approximate) 25 1.5' -Topos Road= 6980, 1-320(0.08)- 6954,59 - Flowline of Ravine = 6940 - Depth of Cill 698, 10-69595 27-11.5 = 28.18t of fill over Culvert Stope = stope of, Revine 10'fall in 250 pm Roune 1= 6.45yr 53.1100yr. Ravine 7=1.7=0= 12,5-000

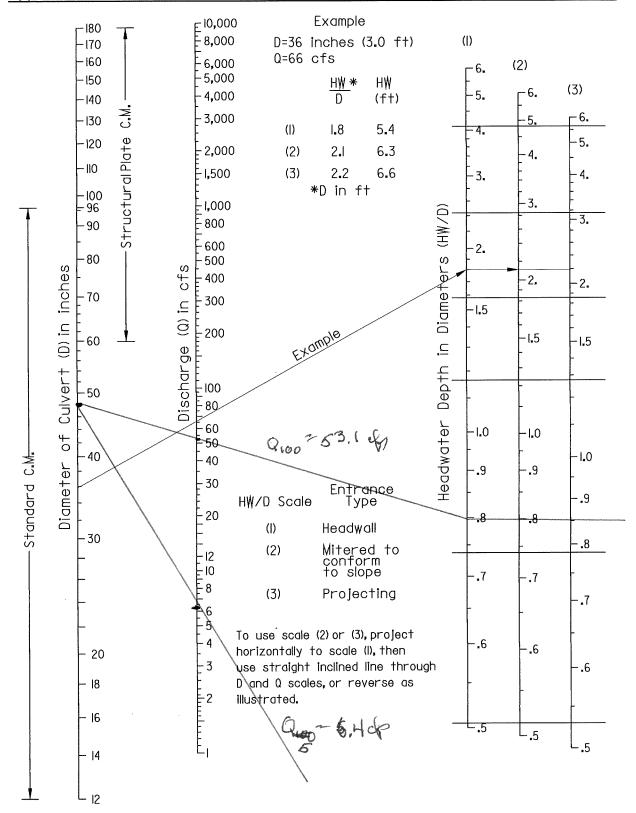


Exhibit F.2 Headwater Depth for CMP Culverts with Inlet Control (Source: Reference F.1)

Rovine #1 48' CMP 54=6.4 de 1004=53.1

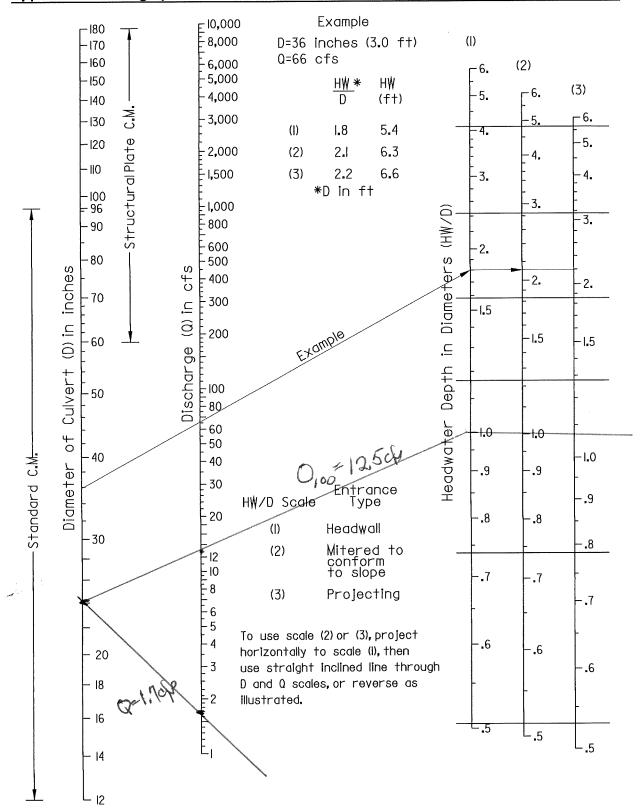
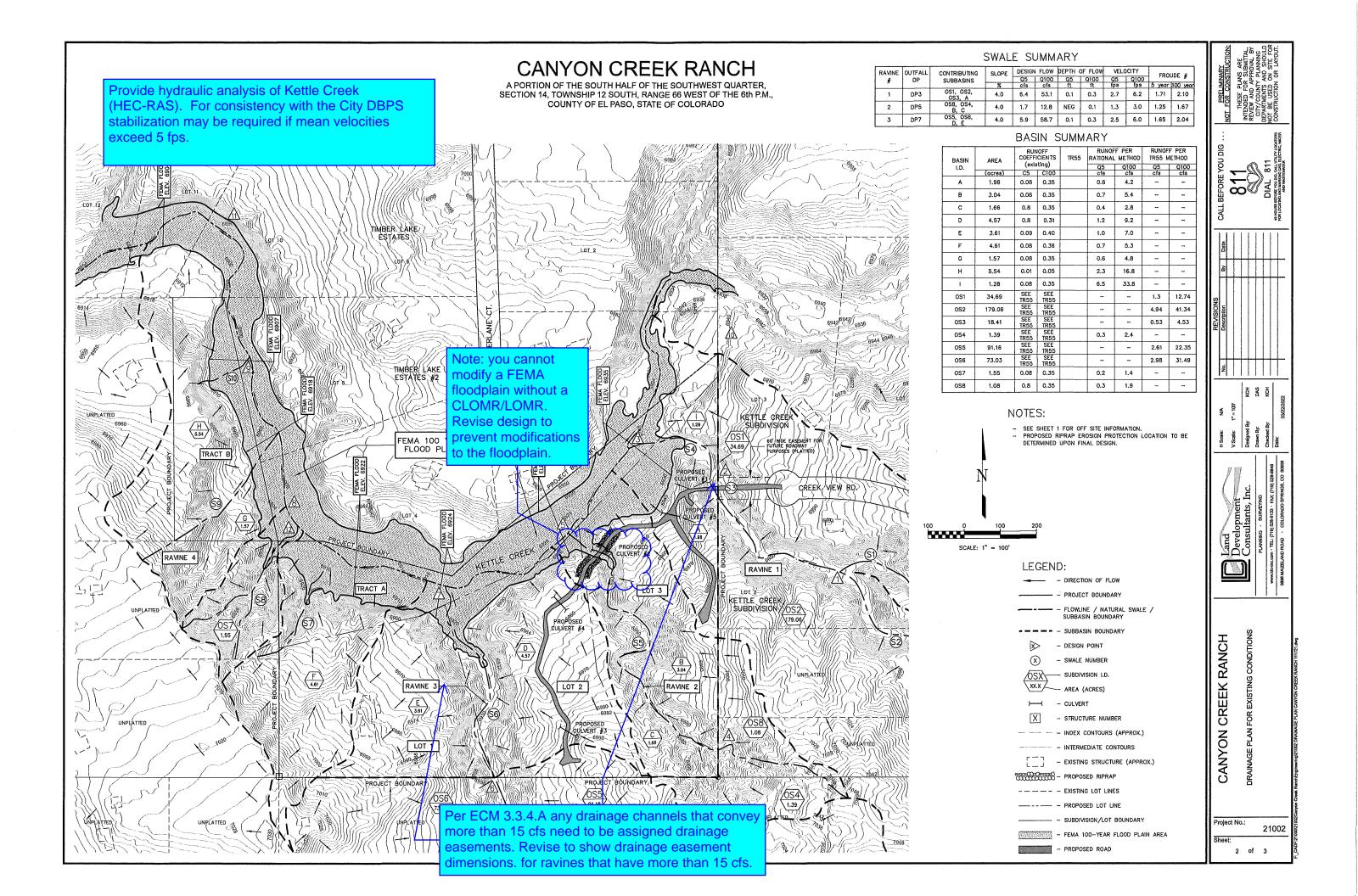
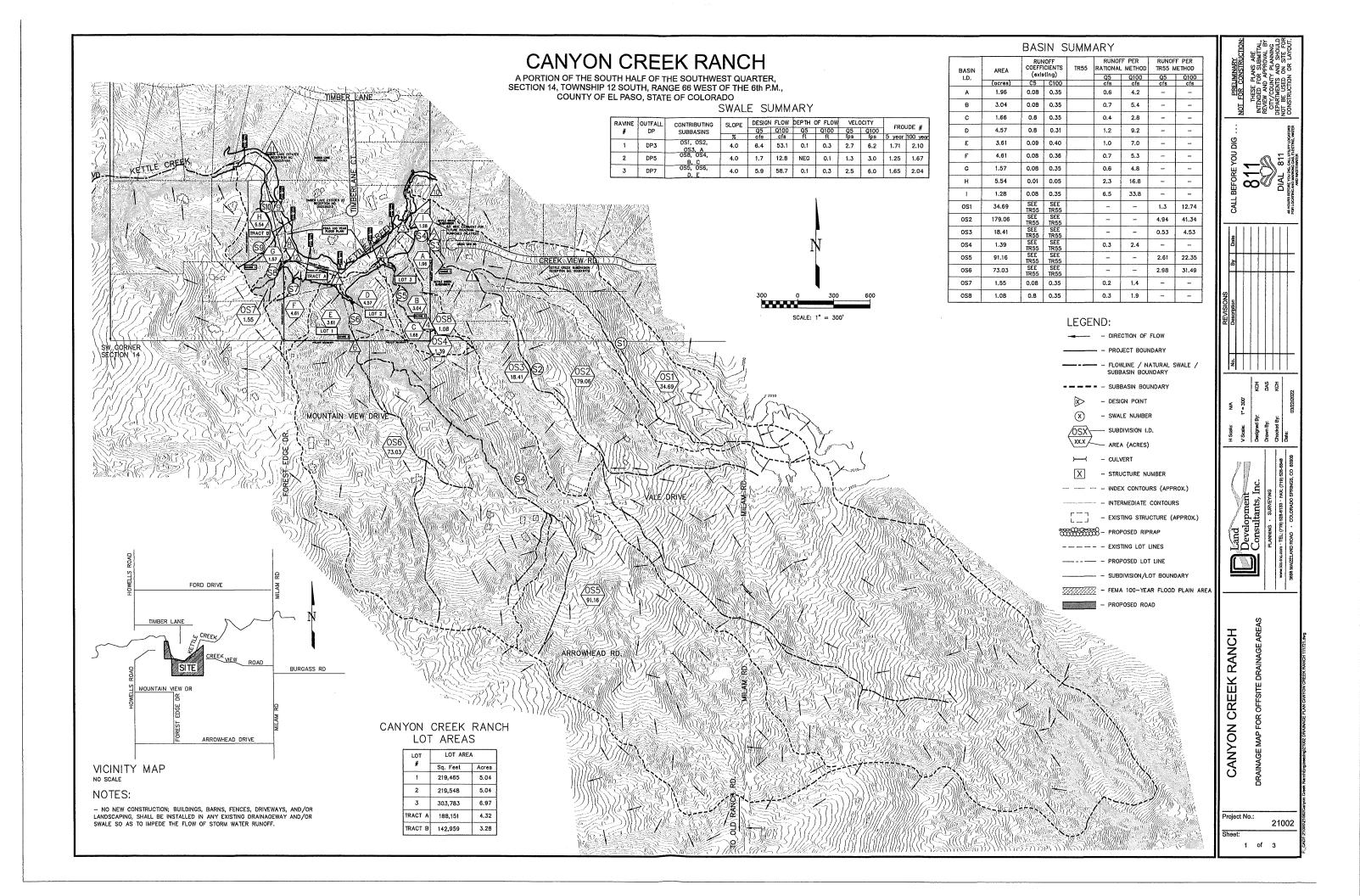




Exhibit F.2 Headwater Depth for CMP Culverts with Inlet Control (Source: Reference F.1)

Ravine Z Os=1.7 Q100=12.5

EXHIBIT 9: DRAINAGE MAP

