February 6, 2020 Revised April 28, 2020

SR Land, LLC 20 Boulder Crescent, 2nd Floor Colorado Springs, CO 80903

Attn: Chaz Collins

Re: Pavement Recommendations - Revised Homestead at Sterling Ranch, Filing No. 2 El Paso County, Colorado

Dear Mr. Collins:

As requested, Entech Engineering, Inc. has obtained samples of the subgrade soils for Beaver Brook Drive, Cut Bank Drive, Glendive Drive, and Niarada Drive in the Homestead at Sterling Ranch, Filing No. 2 Subdivision, in El Paso County, Colorado. Laboratory testing to determine the pavement support characteristics of the soils was performed. This letter presents the results of the laboratory testing and pavement recommendations for these roadways.

Project Description

The roadways in this subdivision will be used by local traffic. Subsurface Soil Investigation and laboratory testing was performed in order to determine the pavement support characteristics of the soils. The filing lot layout, roadway alignments, and the locations of the test borings are shown on the Test Boring Location Plan, Figure 1.

Subgrade Conditions

Twenty exploratory test borings were drilled in the roadways to depths of 5 to 10 feet, not to exceed 500 feet between each testing boring. The Boring Logs are presented in Appendix A. Sieve Analysis and Atterberg Limit testing were performed on soil samples obtained from the test borings for the purpose of classification. Two subgrade soil types were encountered in this investigation. Sieve analyses performed indicated the percent passing the No. 200 sieve for the Type 1 soils at subgrade depth ranged from approximately 7 to 31 percent, and approximately 35 to 47 percent for the Type 2 soils. Atterberg Limit Tests performed on the Type 1 soils resulted in Liquid Limits ranging from 26 to 41 and no value with Plastic Indexes ranging from 10 to 15 and non-plastic, and the Type 2 soils resulted in Liquid Limits ranging from 29 to 41 and no value with Plastic Indexes ranging from 6 to 17 and non-plastic. Soil Type 3: silty to clayey sand; Type 4 silty to slightly silty sandstone; and Type 5 very sandy siltstone. The majority of Soil Types 3, 4 and 5 were encountered below the subgrade influence zone. Shallow expansive bedrock was encountered in Test Boring 19, which may require mitigation. Soil Type 4 is grouped with the Soil Type 1 soils, which classified as A-1-b, A-2-4, A-2-6, and A-2-7 soils based on the AASHTO classification system which typically provide good support characteristics. Soil Type 2 classified as A-4 A-6, and A-7-6 soils based on the AASHTO classification system which typically provide fair to poor support characteristics. Groundwater was not encountered in the test borings. Water-soluble sulfate tests indicate a negligible potential for sulfate attack.

505 ELKTON DRIVE COLORADO SPRINGS, CO 80907 PHONE (719) 531-5599 FAX (719) 531-5238

SR Land, LLC Pavement Recommendations - Revised Homestead at Sterling Ranch, Filing No. 2 El Paso County, Colorado Page 2

Two subgrade soil types were evaluated for pavement support by the field investigation and laboratory testing (Soil Types 1 and 2). The Type 2 and 5 soils areas can be overexcavated and replaced with on-site granular Type 1 soils to provide similar support characteristics to Soil

Type 1 or kept in place and paved with the thicker (Type 2 soils) pavement and base course sections to account for the different pavement support characteristics of the site soils.

Swell/Consolidation testing was performed on the soils based on the AASHTO Classifications and Plastic Indexes. Swell/Consolidation Tests conducted on the Type 1 soils exhibited volume changes ranging from -0.1 to 0.7 percent, which are below the levels in which mitigation is required. The Type 2 soils exhibited volume changes ranging from -0.5 to 3.4 percent (TB3 at 1-2'). A remolded sample from TB3 at 1-2' resulted in a swell of 1.7 percent, when moistureconditioned to 3.5 percent above in-situ moisture content. Mitigation of areas of expansive Type 2 and 5 soils will not be required within this filing providing they are properly moistureconditioned. Mitigation recommendations are present later in this report. Laboratory test results are presented in Appendix B and are summarized on Table 1.

California Bearing Ratio (CBR) testing was performed on representative samples of the subgrade soils to determine the support characteristic of the soils for the roadway sections. The results of the CBR testing are presented in Appendix B and summarized as follows:

Soil Type 1 – Clayey Sand Fill

R @ 90% = 22.0 R @ 95% = 71.0 Use R = 40.0 for design

Classification Testing

Liquid Limit	28
Plasticity Index	13
Percent Passing 200	30.6
AASHTO Classification	A-2-6
Group Index	0
Unified Soils Classification	SC

SR Land, LLC Pavement Recommendations - Revised Homestead at Sterling Ranch, Filing No. 2 El Paso County, Colorado Page 3

Soil Type 2 – Very Clayey Sand Fill

R @ 90% = 6.0 R @ 95% = 6.0 Use R = 6.0 for design

Classification Testing

Liquid Limit	32
Plasticity Index	14
Percent Passing 200	35.4
AASHTO Classification	A-6
Group Index	1
Unified Soils Classification	SC

Pavement Design

The CBR testing was used to determine pavement sections for this site. The pavement sections were determined utilizing the El Paso County "Pavement Design Criteria and Report". All cul-de-sacs classify as low volume urban local roads, which use an 18K ESAL value of 36,500 to determine the pavement sections. The reminder of the roads classify as local roads which use an 181K ESAL value of 292,000 to determine the pavement sections. Pavement sections for asphalt over aggregate base course and recycled concrete base course sections are provided. Design parameters used in the pavement analysis are as follows:

Reliability (Urban Local & Urban Local Low Volume)	80%
Serviceability Index	
(Urban Local & Urban Local Low Volume)	2.2
"R" Value Subgrade (Soil Type 1)	40
"R" Value Subgrade (Soil Type 2)	6
Resilient Modulus (Soil Type 1)	9,497 psi
Resilient Modulus (Soil Type 2)	3,126 psi
Structural Coefficients:	
Hot Bituminous Pavement	0.44
Aggregate Base Course	0.11
Recycled Concrete Base Course	0.11

Pavement calculations are attached in Appendix C. Pavement sections recommended for the site are summarized as follows:

SR Land, LLC Pavement Recommendations - Revised Homestead at Sterling Ranch, Filing No. 2 El Paso County, Colorado Page 4 <u>Pavement Sections – Cul-De-Sac Roads</u>,

Low	Volume Urban Local Ro Soil Type 1, R = 40.0	bad	
Alternatives	Asphalt (in)	<u>Aggregate Base</u> Course (in)	<u>Recycled</u> Conc. (in)
1 – Asphalt Over Base Cou lq⊙t 2 – Asphalt Over Recycled Conc	used 30*	4.0*	- 4.0*
Low	<u>v Volume Urban Local R</u> Soil Type 2, R = 6.0	load	
Alternatives	<u>Asphalt (in)</u>	<u>Aggregate Base</u> Course (in)	<u>Recycled</u> Conc. (in)
1 – Asphalt Over Base Course 2 – Asphalt Over Recycled Conc	4.0 4.0	8.0 -	<u>-</u> 8.0
	<u>Local Roads</u> Soil Type 1, R = 40		
Alternatives	<u>Asphalt (in)</u>	Aggregate Base Course (in)	<u>Recycled</u> Conc. (in)
1 – Asphalt Over Base Course 2 – Asphalt Over Recycled Conc	4.0* 4.0*	8.0 -	- 8.0
	<u>Soil Type 2, R = 6.0</u>		
Alternatives	<u>Asphalt (in)</u>	Aggregate Base Course (in)	<u>Recycled</u> Conc. (in)
1 – Asphalt Over Base Course 2 – Asphalt Over Recycled Conc	5.0 5.0	12.0 -	- 12.0

* Minimum sections required per the El Paso County "Pavement Design Criteria and Report".

Mitigation

Mitigation for expansive soils will not be required for the Soil Type 1 areas of this filing of Homestead at Sterling Ranch based on the laboratory testing; however, moisture-conditioning is recommended for the isolated areas of the Soil Types 2 and 5 subgrade soils. The estimated transitions between the subgrade soil types are shown in Figure 1. The actual transitions should be field determined. Personnel of Entech Engineering, Inc. should be on site to verify the locations for moisture-conditioning, if required, and to test the subgrade soils compacted in these areas during the subgrade preparation. Density testing should be performed on all fill placed within these roadway subgrade areas. The Type 2 and 5 soils can be overexcavated and replaced with on-site granular Type 1 soils to provide similar support characteristics or kept in

SR Land, LLC Pavement Recommendations - Revised Homestead at Sterling Ranch, Filing No. 2 El Paso County, Colorado Page 5

place with different pavement and base course sections to account for the varied pavement support characteristics of the site soils.

Roadway Construction - Asphalt on Base Course or Recycled Concrete Alternatives

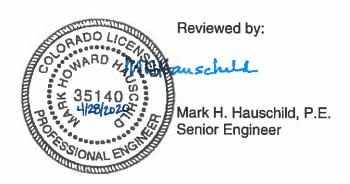
Prior to placement of the asphalt, the subgrade should be scarified, moisture-conditioned, compacted to a minimum of 95% of its maximum Modified Proctor Dry Density, ASTM D-1557 at 0 to 2 percent over optimum moisture content for cohesionless soils or to 0 to 4 percent over optimum moisture content and compacted to 95% of the soils maximum Standard Proctor Dry Density, ATSM D-698 for cohesive soils. The soils should be proof rolled after properly compacted. Areas of mitigated soils, should be placed at a moisture content of 3.5 percent over optimum. Any loose or soft areas should be removed and replaced with suitable materials approved by Entech. Base course materials should be compacted to a minimum of 95% of its maximum Modified Proctor Dry Density, ASTM D-1557 at \pm 2% of optimum moisture content. Special attention should be given to areas adjacent to manholes, inlet structures and valves.

If significant grading is performed, the soils at subgrade may change. Modification to the pavement sections should be evaluated after site grading is completed.

In addition to the above guidance, the asphalt, subgrade conditions, compaction of materials and roadway construction methods shall meet the El Paso County specifications.

We trust that this has provided you with the information you required. If you have any questions or need additional information, please do not hesitate to contact us.

Respectfully Submitted,


ENTECH ENGINEERING, INC.

Daniel P. Stegman

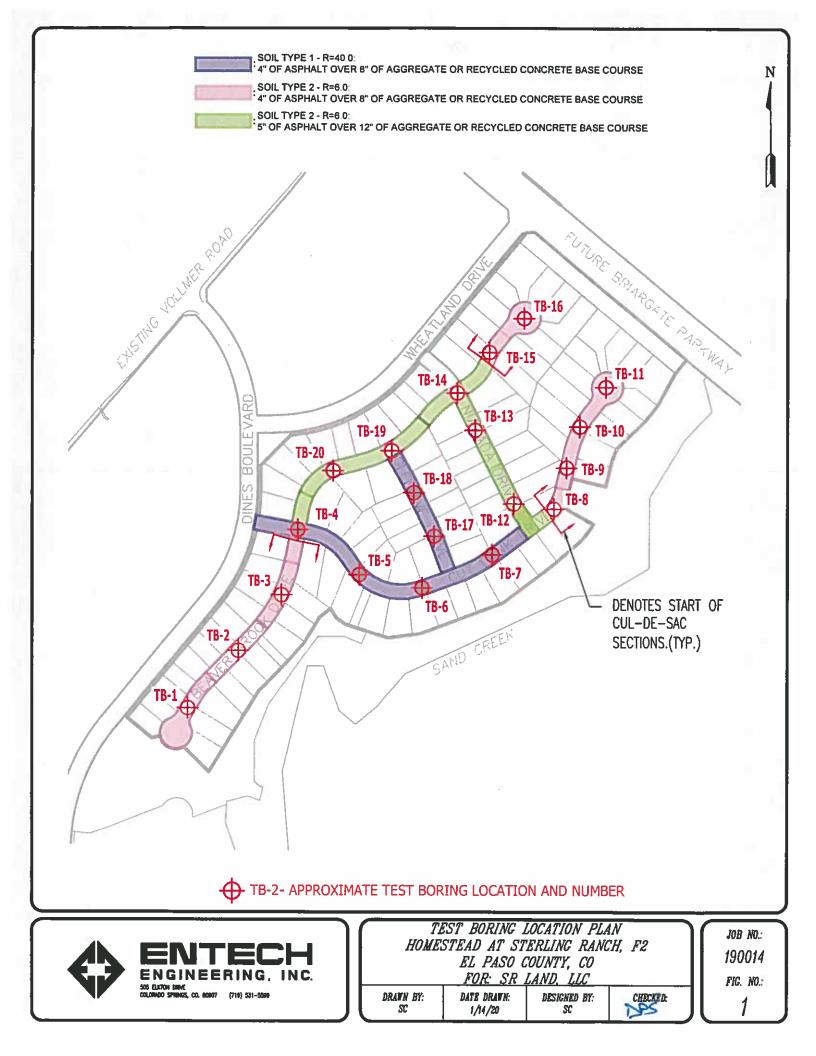
DPS/ao

Encl.

Entech Job No. 190014 AAprojects/2019/190014/190014 pr-Rev

TABLE

TABLE 1


SUMMARY OF LABORATORY TEST RESULTS

CLIENT SR LAND, LLC <u>PROJECT</u> HOMESTEAD AT STERLING RANCH <u>JOB NO.</u> 190014

	Г		Γ	Г	<u> </u>			Γ	Г	Г	Γ	_	Γ	Γ	Г	Γ				-	Г		Г		Г	Г	Γ
SOIL DESCRIPTION	FILL, SAND, CLAYEY	FILL, SAND, CLAYEY	FILL, SAND, CLAYEY	FILL, SAND, CLAYEY	FILL, SAND, SILTY	FILL, SAND, SILTY	FILL, SAND, SILTY	FILL, SAND, CLAYEY	FILL, SAND, SILTY	FILL, SAND, CLAYEY	FILL, SAND, SILTY	FILL, SAND, SILTY	FILL, SAND, SLIGHTLY SILTY	FILL, SAND, SLIGHTLY SILTY	FILL, SAND, VERY CLAYEY	FILL, SAND, VERY SILTY	FILL, SAND, VERY CLAYEY	FILL, SAND, VERY SILTY	FILL, SAND, VERY SILTY	SAND, SILTY	SAND, CLAYEY, SILTY	SANDSTONE, SILTY	SANDSTONE, SLIGHTLY SILTY	SILTSTONE, VERY SANDY			
UNIFIED	sc	sc	sc	sc	SM	SM	SM	sc	sc	SC	SM	SM	SM-SW	SM-SW	sc	sc	sc	sc	SM	sc	SM	SM	SM	SC-SM	SM	MS-MS	ML
SWELL/ CONSOL (%)	0.7*	0.1	0.5	-0.1				0.3		0.6					0.5*	1.4	3.4	1.7*			1.4	-0.5					
AASHTO CLASS.	A-2-6	A-2-6	A-2-4	A-2-6	A-1-b	A-2-4	A-1-b	A-2-6	A-2-4	A-2-7	A-1-b	A-1-b	A-1-b	A-1-b	A-6	A-6	A-7-6	A-7-6	A-4	A-6	A-6	A-4	A-1-b	A-2-4	A-2-7	A-1-b	A-4
SULFATE (WT %)			<0.01			<0.01						<0.01				0.00						<0.01	<0.01				<0.01
PLASTIC INDEX (%)	13	11	10	14	٩N	ЧN	٩N	15	10	15	NP	NP	NP	NP	14	14	17		9	15	15	NP	NP	7	12	NP	2
LIQUID LIMIT (%)	28	33	27	98 98	N	N	N	g	26	41	NN	NV	NV	NV	32	35	41		59	32	40	N	NV	27	41	NV	24
PASSING NO. 200 SIEVE (%)	30.6	28.3	29.6	24.7	17.9	17.2	16.6	25.0	18.9	22.6	14.8	13.2	7.4	7.3	35.4	46.5	38.8		40.9	35.2	41.3	36.8	15.4	30.9	21.1	11.8	59.7
DRY DENSITY (PCF)	116.5	113.5	120.0	99.8				119.0		115.8					119,4	111.4	111.1	110.0			110.9	90.8					
WATER (%)	9.4	12.2	10.6	10.1				10.8		8.1					7.5	15.1	16.2	19.7			17.1	6.2					_
<u> </u>	0-3	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	1-2	6-3 1	1-2	1-2	1-2	1-2	1-2	1-2	ъ	9	S	9	1-2	1-2
TEST BORING NO.	4	~	4	S	9	2		о	₽	=	13	16	17	18	80	-	ო	e	12	15	20	7	80	17	4	14	19
SOIL	1, CBR	-	-	-	-	-	-	-	-	-	-		-	-	2, CBH	0	5	5	0	~	N	5	e	e	4	4	S

REMOLDED SAMPLES

FIGURE

APPENDIX A: Test Boring Logs

REMARKS	1/4/2019 190014				ı—	DATE DRILLED 11/4/20 CLIENT SR LAN LOCATION HOMES	D, LLC		ERLI	NG RA	
DRY TO 5', 11/4/19	Depth (ft)	Symbol Samples	Blows per foot	Watercontent %	Soil Type	REMARKS DRY TO 5', 11/4/19	Depth (ft)	Symbol	Samples Blows per font	Watercontent %	Soil Type
FILL O-5', SAND, VERY CL FINE GRAINED, BROWN, MED!UM DENSE, MOIST	AYEY,		18	14.6	2	FILL 0-4', SAND, CLAYEY, FINE TO MEDIUM GRAINED, BROWN, MEDIUM DENSE, MOIST	-	/- /-	1!	5 12.8	1
	5 - 10 - 15 - - - - - - - - - - - - - - - - -		14	11.3	2	SANDSTONE, SILTY, FINE TO COARSE GRAINED, GRAY BROWN, VERY DENSE, MOIST			9	2 7.4	4

ENTECH ENGINEERING, INC.		TEST	T BORING LO	G		JOB NO. 190014 FIG NO.
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:	CHECKED	1/13/20]	A- 1

EST BORING NO. 3 DATE DRILLED 11/4/2019 ob # 190014	9		_				TEST BORING NO. 4 DATE DRILLED 11/4/2019 CLIENT SR LAND LOCATION HOMEST)), LLC	AT S	TEF		<u>G RA</u>	NCH
REMARKS 0RY TO 5', 11/4/19	Depth (ft)	Symbol	Samples	Blows per foot	Watercontent %	Soil Type	REMARKS DRY TO 10', 11/4/19	Depth (tt)	Symbol	Samples	Blows per foot	Watercontent %	Soil Type
ILL 0-5', SAND, VERY CLAYEY, O MEDIUM GRAINED, BROWN, IEDIUM DENSE TO LOOSE, 10IST		$\langle \cdot \rangle \langle \cdot \rangle$		14	9.3	2	FILL 0-4', SAND, CLAYEY, FINE TO COARSE GRAINED, BROWN, DENSE, MOIST	-	$\langle \cdot \cdot \rangle$				1
	5_			40	14.1		SANDSTONE, SILTY, FINE TO COARSE GRAINED, GRAY BROWN, VERY DENSE, MOIST	5			<u>50</u> 10"	11.0	4
	10							10 -			<u>50</u> 10"	11.4	4
	15							15 -					
	20							20					
		j]				1					

DRAWN:

ENTECH

ENGINEERING, INC.

505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907

JOB NO 190014
FIG NO

TEST BORING LOG

CHECKED

n

DATE

1/13/20

TEST BORING NO. 5 DATE DRILLED 11/4/2019 Job # 190014 REMARKS)	1					TEST BORING NO DATE DRILLED CLIENT LOCATION REMARKS	. 6 11/4/2019 SR LAND HOMEST) , LLC	AT ST	ERL	.INC	BRAI	NCH
DRY TO 5', 11/4/19	Depth (ft)	Symbol	Samples	Blows per foot	Watercontent %	Soil Type	DRY TO 5', 11/4/19		Depth (ft)	Symbol	Samples	blows per root	Watercontent %	Soil Type
FILL O-5', SAND, CLAYEY, FINE TO COARSE GRAINED, BROWN, MEDIUM DENSE, MOIST	5 10 15 20			23	8.7	1	FILL O-5', SAND, SILTY TO MEDIUM GRAINED, MEDIUM DENSE, MOIS	BROWN	5 1 5 1 10 1 15 1 20				11.5	1
								2						
							TEST B	BORING LC	G				19	00 NO

TEST BORING NO. 7 DATE DRILLED 11/4/2019 Job # 190014)						TEST BORING NO. 8 DATE DRILLED 11/4/2019 CLIENT SR LAND LOCATION HOMEST), LLC	STEI	RLIN	g RA	NCH
REMARKS DRY TO 5', 11/4/19 FILL 0-5', SAND, SILTY, FINE	Depth (ft)	Symbol	Samples	Blows per foot	Watercontent %	Soil Type	REMARKS DRY TO 10', 11/4/19 FILL O-6', SAND, VERY CLAYEY,	Depth (ft)	Samples	Blows per foot	Watercontent %	N Soil Type
TO COARSE GRAINED, BROWN, MEDIUM DENSE, DRY FILL, SAND, VERY SILTY, FINE TO MEDIUM GRAINED, TAN, MEDIUM DENSE, MOIST	5			25	1.3 4.5	1	FILL, SAND, SILTY, FINE TO COARSE GRAINED, DARK BROWN TO BROWN, MEDIUM DENSE TO DENSE, MOIST SAND, SILTY, FINE TO MEDIUM GRAINED, BROWN, DENSE, MOIST	5		15 35	2.8 3.8	1
	10 								.[30	9.1	3
						I						ł
ENTECH ENGINEERING, I 505 ELKTON DRIVE COLORADO SPRINGS, COL		8090			DRAV	VN:		OG 1/13	Т <u>е</u>]гø		19	108 NO. 90014 FIG NO.: A- 4

TEST BORING NO. 9 DATE DRILLED 11/4/2019 Job # 190014	•	r					TEST BORING NO. DATE DRILLED CLIENT LOCATION	10 12/12/201 SR LAND HOMEST	9 , LLC	AT S	TER		<u>G RA</u>	NCH
REMARKS DRY TO 5', 11/4/19 FILL 0-5', SAND, CLAYEY, FINE TO MEDIUM GRAINED, DARK BROWN TO BROWN, MEDIUM DENSE, MOIST	(t) udd	Symbol	Samples	14 Blows per foot	% Watercontent %		LOCATION REMARKS DRY TO 5', 12/12/11 FILL 0-5', SAND, CLAYI MEDIUM GRAINED, BRI MEDIUM DENSE, MOIS	9 EY, FINE OWN,	Depth (ft)	S Symbol		LIN toot ber toot 17 15	G RA % Matercontent % 7.2 12.4	H I I I I I I I I I I I I I I I I I I I
ENTECH ENGINEERING, 505 ELKTON DRIVE COLORADO SPRINGS, COL	INC		07		DRAW	IN:				ATE 3/ZI	0		19	в NO 0014 3 NO A-5

TEST BORING NO. 11 DATE DRILLED 11/4/2019 Job # 190014	9					TEST BORING NO. 12 DATE DRILLED 11/4/2019 CLIENT SR LAND LOCATION HOMEST	9), LLC	STE	RLIN	G RA	NCH
REMARKS	Depth (ft) Symbol	Samples	Blows per foot	Watercontent %	oil Type	REMARKS DRY TO 5', 11/4/19	Depth (ft) Svmbol		r foot	Watercontent %	Soil Type
DRY TO 5', 11/4/19 FILL 0-5', SAND, CLAYEY, FINE TO COARSE GRAINED, BROWN, MEDIUM DENSE, MOIST	5 10 15 20		17	6.7	1	DRY TO 5', 11/4/19 FILL 0-5', SAND, VERY SILTY, FINE GRAINED, BROWN, LOOSE. MOIST FILL, SAND, SILTY, FINE TO COARSE GRAINED, TAN, MEDIUM DENSE, MOIST			8	6.8	2

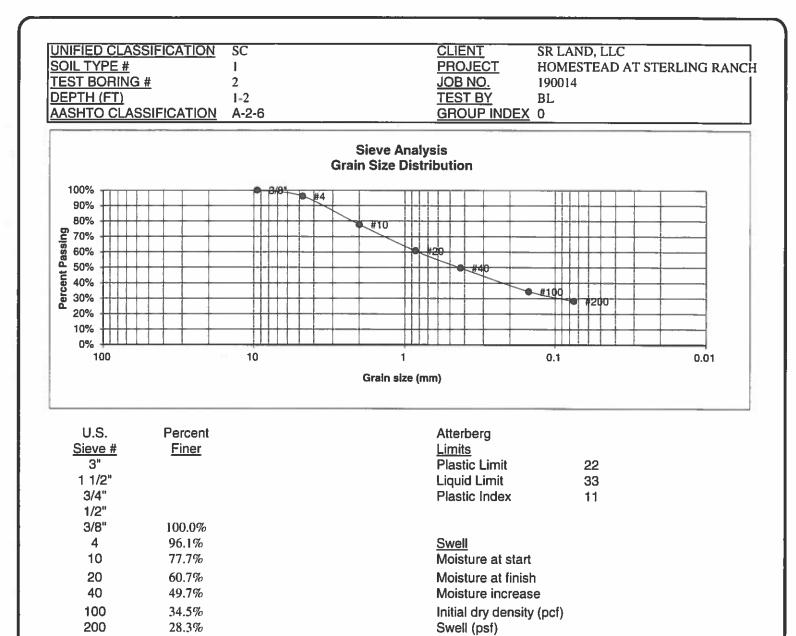
ENTECH		TEST	G	JOB NO. 190014
ENGINEERING, INC.				FIG NO.
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:	1/13/20	A-6

EN

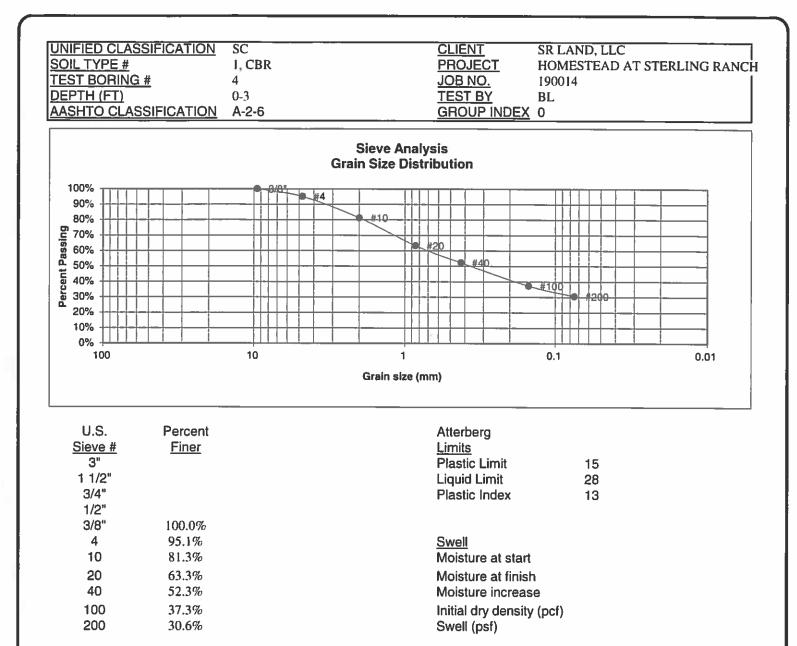
DATE DRILLED 11/4/2019 lob # 190014 REMARKS						r	DATE DRILLED 12/12/20 CLIENT SR LAN LOCATION HOMES REMARKS	D, LLC		TEF	RLIN	G RA	NCI
DRY TO 5', 11/4/19	Depth (ft)	Symbol	Samples	Blows per foot	Watercontent %	Soil Type	DRY TO 10', 12/12/19	Depth (ft)	Symbol	Samples	Blows per foot	Watercontent %	Soil Type
ILL 0-5', SAND, SILTY, FINE O COARSE GRAINED, BROWN, IEDIUM DENSE, MOIST				11	9.7	1	FILL O-1, SAND, SILTY, BROWN SANDSTONE, SLIGHTLY SILTY, FINE TO COARSE GRAINED, TAN, VERY DENSE,	-			<u>50</u> 8"	7.1	1 4
ILL, SAND, CLAYEY, FINE TO 1EDIUM GRAINED, BROWN, 1EDIUM DENSE, MOIST	5_	~		15	14.8	1	MOIST	5_			<u>50</u> 7"	8.6	4
	10						CLAYSTONE, SANDY, DARK BROWN, VERY STIFF, MOIST	10	***	57	46	20.6	5
	15							15					
	20						nj Na	20_					

\Leftrightarrow	ENTECH ENGINEERING, INC.		TESI	r Boring Log	JOB NO.: 190014 FIG NO.:
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN	DATE	CHECKED: 1/13/20	A-7

TEST BORING NO. 15 DATE DRILLED 12/12/201 Job # 190014 REMARKS	9				1		TEST BORING NO. DATE DRILLED CLIENT LOCATION REMARKS	16 11/4/2019 SR LAND HOMEST) , LLC	AT ST	TEF		<u>g ra</u>	NCH
DRY TO 5', 12/12/19	Depth (ft)	Symbol	Samples	Blows per foot	Watercontent %	Soil Type	DRY TO 5', 11/4/19		Depth (ft)	Symbol	Samples	Blows per foot	Watercontent %	Soil Type
FILL O-5', SAND, VERY CLAYEY TO CLAYEY, FINE TO COARSE GRAINED, BROWN, MEDIUM DENSE, MOIST	5 - 10 - 15 - 20			12	11.7	2	FILL O-5', SAND, SILTY TO COARSE GRAINED, MEDIUM DENSE, MOIS	BROWN,				20	6.3	1
														08 NO.:
	NC.						TEST B	ORING LC	G				19	0014

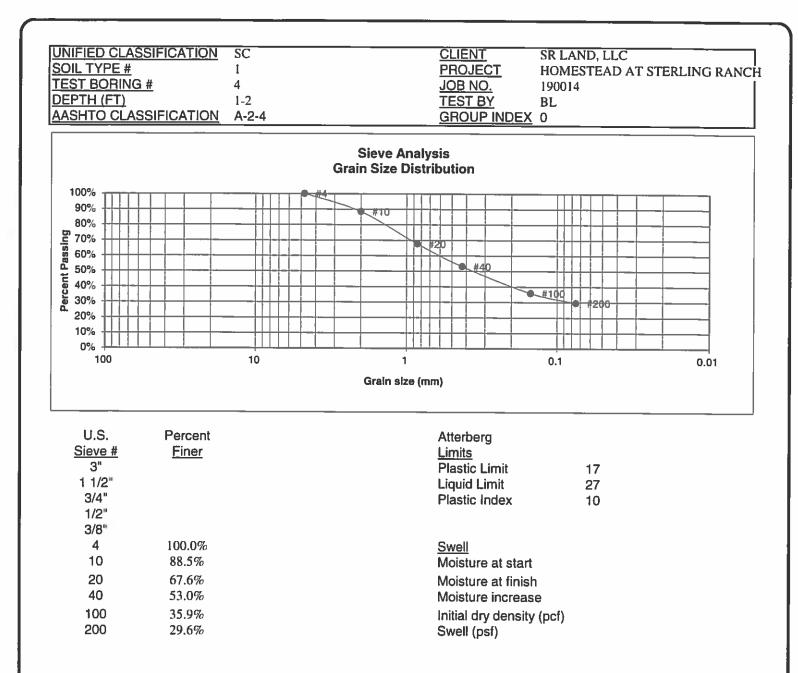

TEST BORING NO. 17 DATE DRILLED 11/4/2019 Job # 190014	}	-1			TEST BORING NO. 18 DATE DRILLED 11/4/2019 CLIENT SR LANE LOCATION HOMEST	9	TERLIN	I <u>G RA</u>	NCH
REMARKS DRY TO 5', 11/4/19	Depth (ft) Symbol Samulas	Blows per foot	Watercontent %	Soil Type	REMARKS DRY TO 5', 11/4/19	Depth (ft) Symbol	Samples Blows per foot	Watercontent %	Soil Type
FILL O-4', SAND, SLIGHTLY SILTY, FINE TO COARSE GRAINED, BROWN, MEDIUM DENSE, MOIST SAND, SILTY WITH ORGANICS, FINE TO MEDIUM GRAINED, DARK BROWN, MEDIUM DENSE, MOIST		20	3.2	1	FILL O-4', SAND, SLIGHTLY SILTY, FINE TO COARSE GRAINED, BROWN, MEDIUM DENSE, MOIST SILTSTONE, VERY SANDY, TAN, HARD, MOIST		50 8"	5.8	1

ENTECH	[TE	ST BORING LOG		JOB NO.: 190014
ENGINEERING, INC.					FIG NO.:
 505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE	CHECKED: A 1/15/20	J	A-9


TEST BORING NO. 19 DATE DRILLED 11/4/2019 Job # 190014 REMARKS	Э						TEST BORING NO. 20 DATE DRILLED 11/4/2019 CLIENT SR LANE LOCATION HOMEST	9), LLC		TEF	LIN	<u>G RA</u>	ИСН
DRY TO 10', 10/4/19 SAND, VERY SILTY, BROWN	Depth (ft)	Symbol	Samples	blows per root		Soil Lype	REMARKS DRY TO 5', 11/4/19	Depth (ft)	Symbol	Samples	Blows per foot	Watercontent %	Soil Type
SILTSTONE, VERY SANDY, BROWN, HARD, MOIST	5 - - - - - - - - - - - - - - - - - - -			<u>50</u> 13 <u>50</u> 13 <u>50</u> 13 <u>50</u> 15 <u>50</u> 15	.4	5	FILL O-5', SAND, VERY CLAYEY, VERY SILTY, FINE TO COARSE GRAINED, BROWN, MEDIUM DENSE TO LOOSE, MOIST	5			8	12.9	2
	- 15 - 20							15 					
ENTECH ENGINEERING, 505 ELKTON DRIVE COLORADO SPRINGS, CO	INC.		,)		RAWN				ATE 20	_		19	B NO 0014 A-10

APPENDIX B: Laboratory Test Results

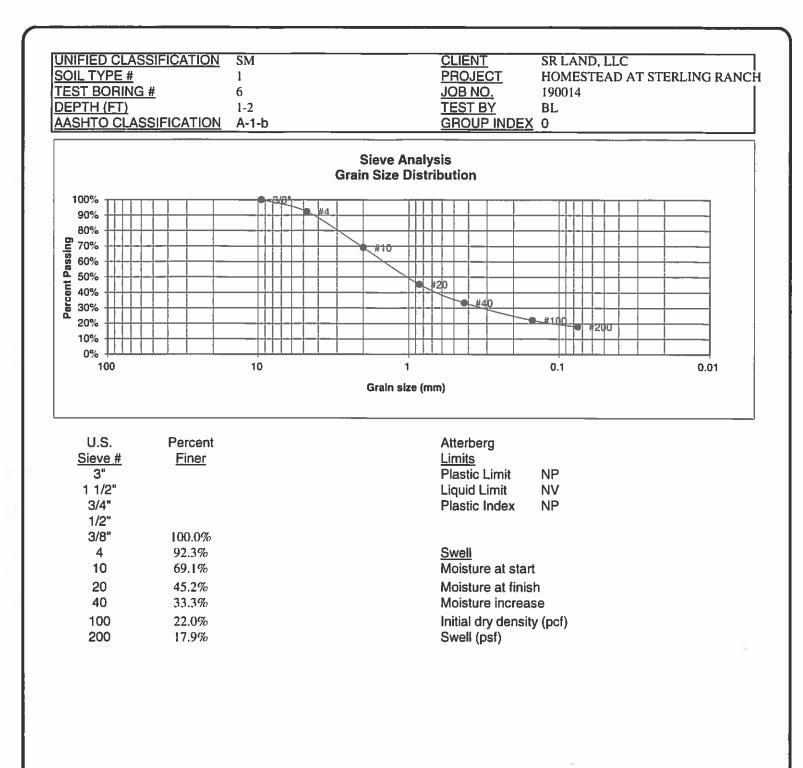
.



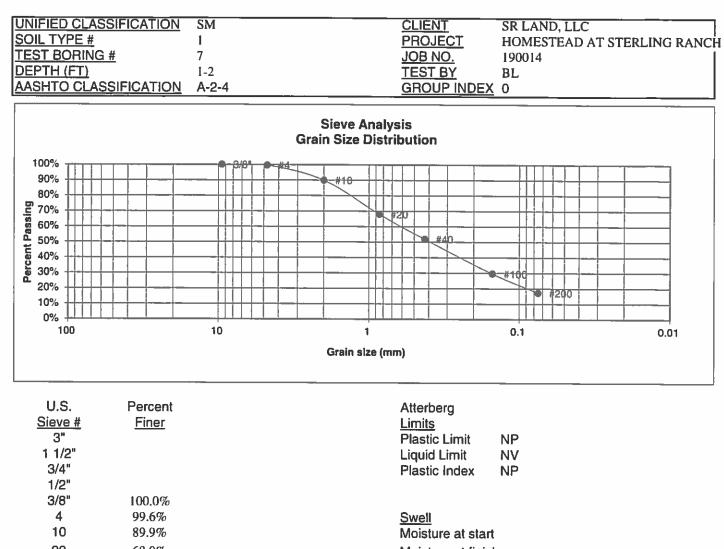
\bigcirc	ENTECH ENGINEERING, INC.		LABOF RESUL	RATORY TES	Т	JOB NO.: 190014 FIG NO.:
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:	CHECKED:	- 1/13/20	B-1

\Leftrightarrow	ENTECH ENGINEERING, INC.		LABOR	RATORY TI	EST		
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN	DATE	CHECKED:	h	DATE: 1/13/20	J


JOB NO. 190014 FIG NO.: B-2


$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	ENTECH ENGINEERING, INC.	
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN

	LABOI RESU	RATORY TEST LTS	
8	DATE	CHECKED: MISZO]


JOB NO.
190014
FIG NO.:
B-3

\Leftrightarrow	ENTECH ENGINEERING, INC.		LABORATORY TEST RESULTS					
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN	DATE:	CHECKED:	h	DATE:	J	FIG NO.: 8-4

\Leftrightarrow	ENTECH ENGINEERING, INC.		LABOR RESUL	ATORY T	EST			JOB NO.; 190014 FIG NO.;
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN	DATE	CHECKED:	h	рате: //13/20]	B-5

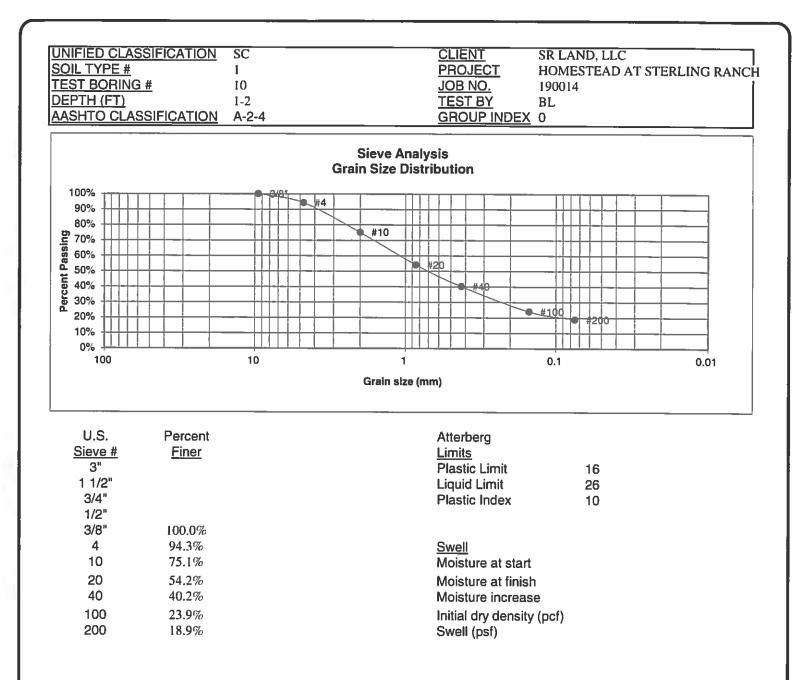
20 68.0% 40 51.9% 100 29.5% 200 17.2% Moisture at finish Moisture increase Initial dry density (pcf) Swell (psf)

ENTECH ENGINEERING, INC. 505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907

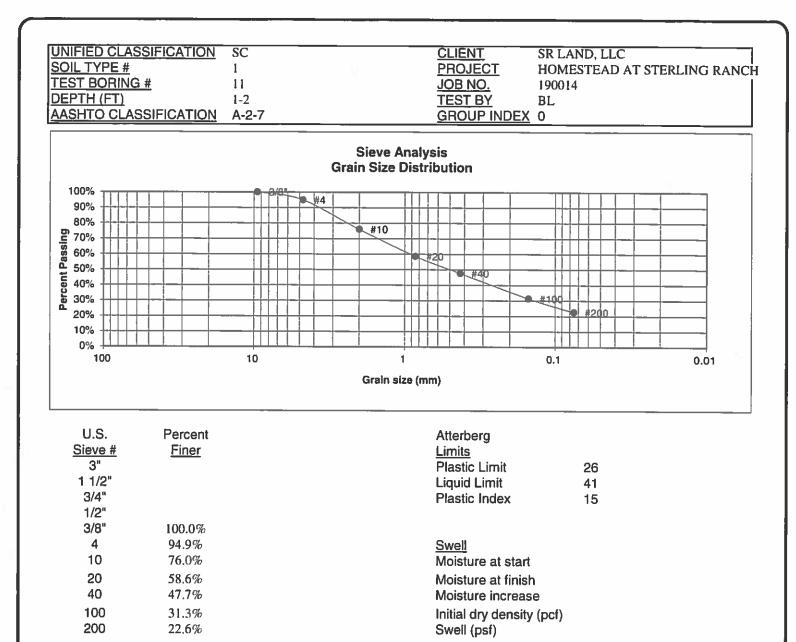
-	LABOF RESUL	RATORY T	EST			JOB NO 190014 FIG NO
DRAWN:	DATE	CHECKED	h	DATE: 1/13/20	JI	B-0


JOB NO	D.:
190014	ŀ.

JNIFIED CLASSIFICA SOIL TYPE # EST BORING # DEPTH (FT) ASHTO CLASSIFICA	1 8 1-2	CLIENT PROJEC JOB NO TEST B' GROUP	CTHOMESTEAD AT STERLING RAN.190014
		Sieve Analysis Grain Size Distribution	
100% 90% 80% 70% 50% 40% 20% 10% 100	10	4 #10 #20 #40 1 Grain size (mm)	
<u>Sieve #</u> Fi 3" 1 1/2" 3/4" 1/2" 100	ncent ner	Atterberg <u>Limits</u> Plastic L Liquid Li Plastic Ir	.imit NP imit NV
4 84 10 63 20 45	.3% .8% .9% .3%		e at start e at finish e increase
100 23 200 16	.0%	Initial dry Swell (ps	y density (pcf)


	LABOF RESUL	RATORY T	EST		
DRAWN:	DATE	CHECKED:	A	DATE. 1/15/20	

JOB NO.: 190014 FIG NO.: **B-7**


1 1/2" 3/4"		Liquid Limit 38 Plastic Index 15
1/2"	100.0%	
3/8"	94.4%	
4	90.9%	Swell
10	74.3%	Moisture at start
20	57.9%	Moisture at finish
40	47.2%	Moisture increase
100	31.0%	Initial dry density (pcf)
200	25.0%	Swell (psf)

\diamond	ENGINEERING, INC.		LABORATORY TEST RESULTS					JOB NO.: 190014 FIG NO.:
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE	CHECKED:	5	DATE: 1/13/28] [B-8

\bigcirc	ENTECH ENGINEERING, INC.		LABORA RESULT	TORY TI	EST	
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN	DATE:	CHECKED:	h	DATE: //13/20

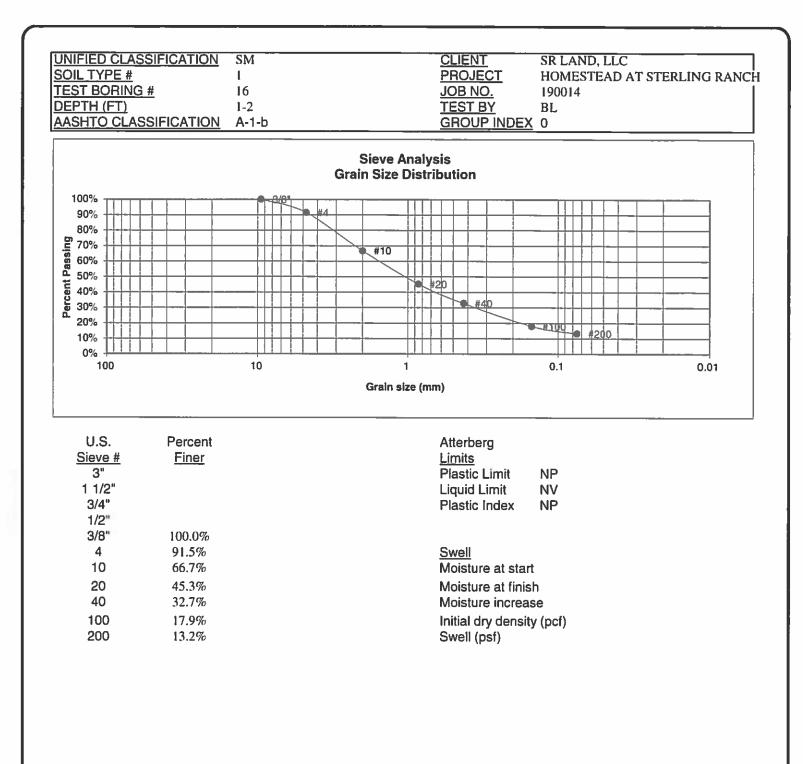
JOB NO.
190014
FIG NO
8-9

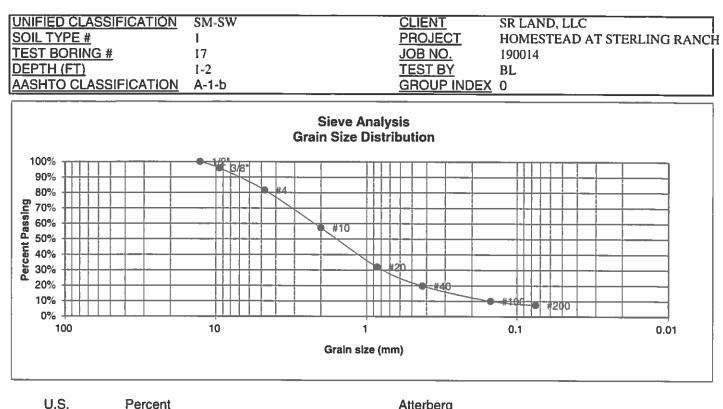
\mathbf{O}	ENTECH ENGINEERING, INC.	
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:

	LABOF	RATORY TE .TS	EST	
2	DATE:	CHECKED	M 1/13/20	

JOB	NO.:

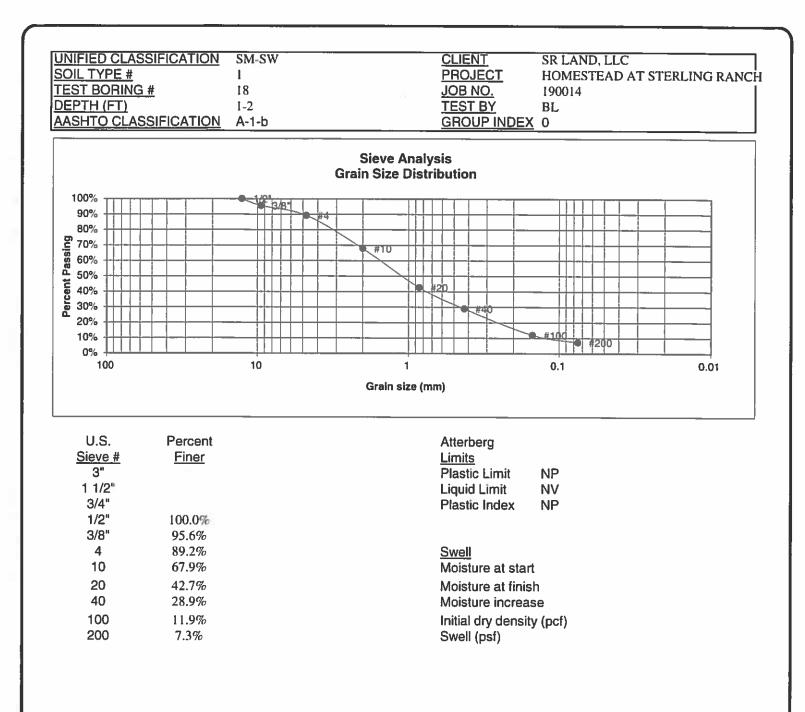
190014 FIG NO. **B-LO**


<u>SOIL TYPE #</u> TEST BORING DEPTH (FT)	SSIFICATION # SSIFICATION	SM 1 13 1-2 A-1-b	CLIENT PROJE JOB NO TEST B GROUF	CT HOMESTEAE D. 190014	C) AT STERLING RANC
		G	Sieve Analysis rain Size Distribution		
100% 90% 80% 70% 50% 40% 20% 10% 0% 100		10	#10 #20 #44 1 Grain size (mm)	0	0.01
U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2"	Percent <u>Finer</u>		Atterber <u>Limits</u> Plastic L Liquid L Plastic I	_imit NP imit NV	
3/8" 4 10 20 40 100 200	100.0% 94.9% 72.1% 49.6% 35.3% 19.2% 14.8%		Moisture Moisture	e at start e at finish e increase y density (pcf) sf)	

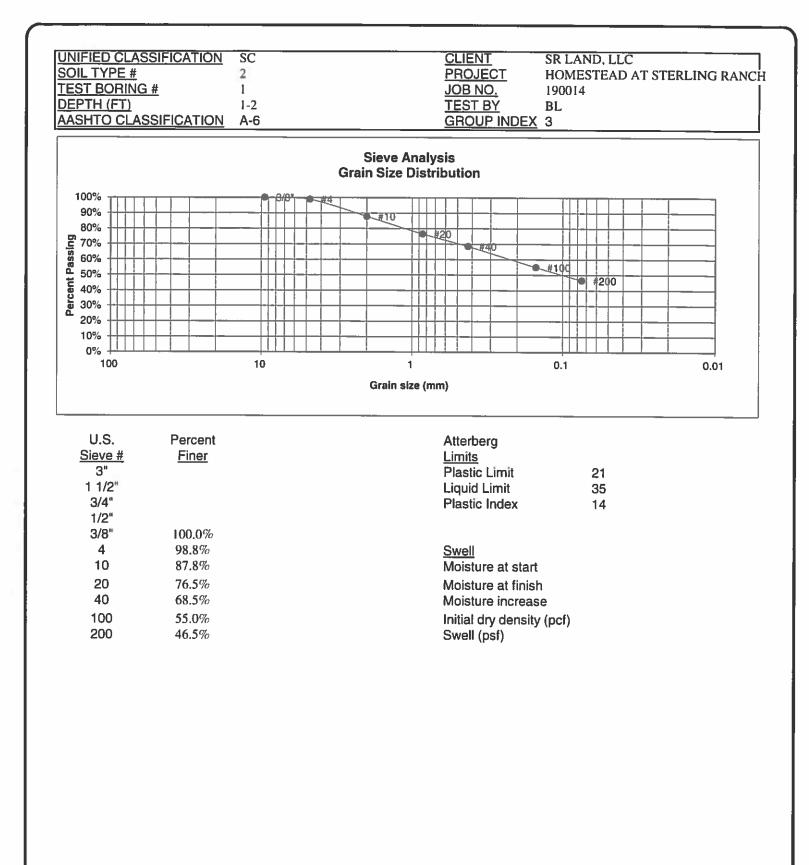

ENTECH ENGINEERING, INC. 505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907

LABORATORY TEST RESULTS					
DRAWN	DATE	CHECKED:	h	DATE:	

JOB NO. 190014 FIG NO. **B-**


ENTECH ENGINEERING, INC.			LABOF RESUL	ATORY TI	EST		JOB NO :: 190014 FIG NO ::
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:	CHECKED:	A DATE // 3/20	J	B-12

U.S.	Percent	Atterberg
<u>Sieve #</u>	<u>Finer</u>	<u>Limits</u>
3"		Plastic Limit NP
1 1/2"		Liquid Limit NV
3/4"		Plastic Index NP
1/2"	100.0%	
3/8"	95.9%	
4	81.6%	Swell
10	57.2%	Moisture at start
20	31.9%	Moisture at finish
40	19.7%	Moisture increase
100	10.0%	Initial dry density (pcf)
200	7.4%	Swell (psf)


ENTECH
ENGINEERING, INC.
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907

\bigcap	LABOF	RATORY TEST	JOB NO.:
	RESUL	.TS	190014 FIG NO.:
DRAWN	DATE	CHECKED DATE	B-13

ENTECH ENGINEERING, INC.
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907

	LABOF RESUL	RATORY TEST	јов NO, 190014
DRAWN:	DATE	CHECKED: A I/13/20	FIG NO. B-14

ENTECH ENGINEERING, INC. 505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907		LABORATORY TEST RESULTS				ו	JOB NO.: 190014 FIG NO.:
		DRAWN	DATE:	CHECKED:	U 1/13/20	J	B-15

DIL TYPE # ST BORING PTH (FT) SHTO CLAS	<u>) #</u> SSIFICATION	2 3 1-2 A-7-6		PROJECT JOB NO. TEST BY GROUP INDEX	HOMESTEAD AT STE 190014 BL <u>¥</u> 2	
			Sieve Anal Grain Size Dist			
100%		0/01				
80%			#10			
70% 60%				#20		
60%						
50%					• #100	
40%					200	
20%						
10%						
0% 1111 100		 10				
100		10	1		0.1	0.01
			Grain size (n	nm)		
U.S.	Percent			Atterberg		
<u>Sieve #</u>	Finer			Limits		
3" 1 1/2"				Plastic Limit	24	
3/4"				Liquid Limit Plastic Index	41 17	
1/2"					17	
3/8"	100.0%					
4	96.7%			Swell		
10	80.2%			Moisture at star		
20	66.8%			Moisture at finis	sh	

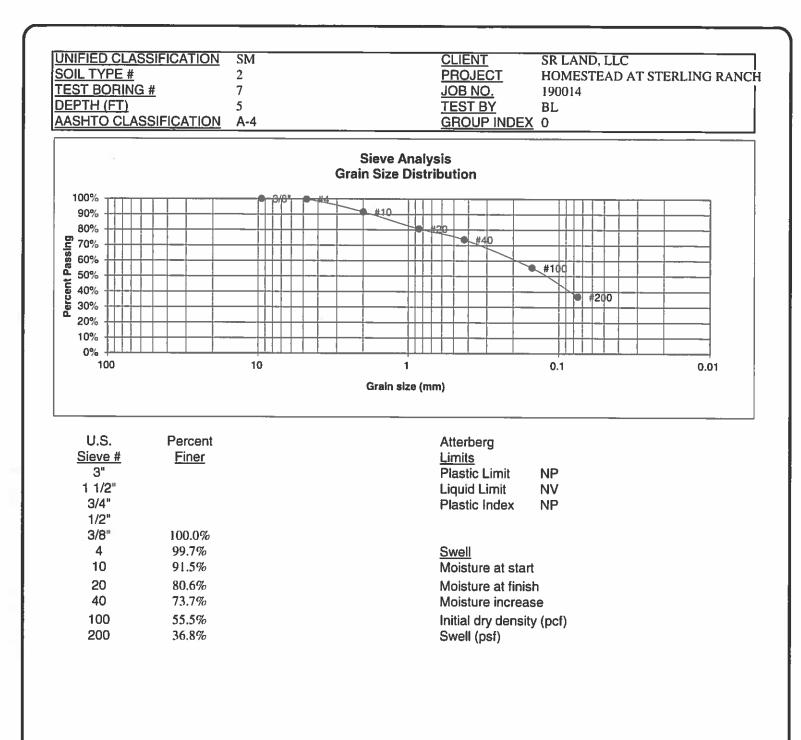
80.2% 66.8% 58.4% 45.4% 38.8%

DATE: CHECKED: DATE: DAT

DRAWN

Moisture increase

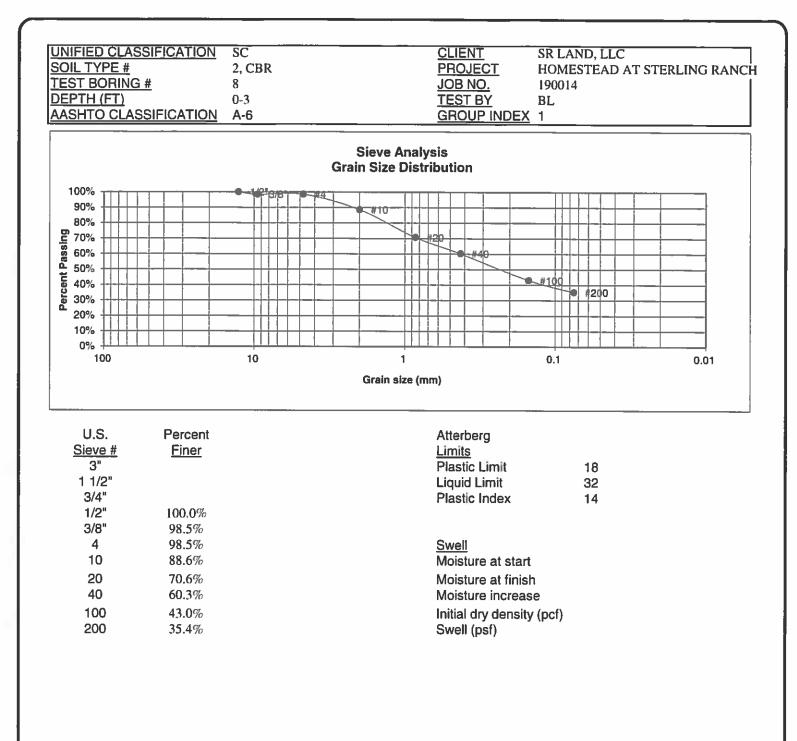
Initial dry density (pcf) Swell (psf)


JOB NO.:
190014
FIG NO.
8-16

40

100

200


ENTECH
ENGINEERING, INC.
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907

\Leftrightarrow	ENTECH ENGINEERING, INC.
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907

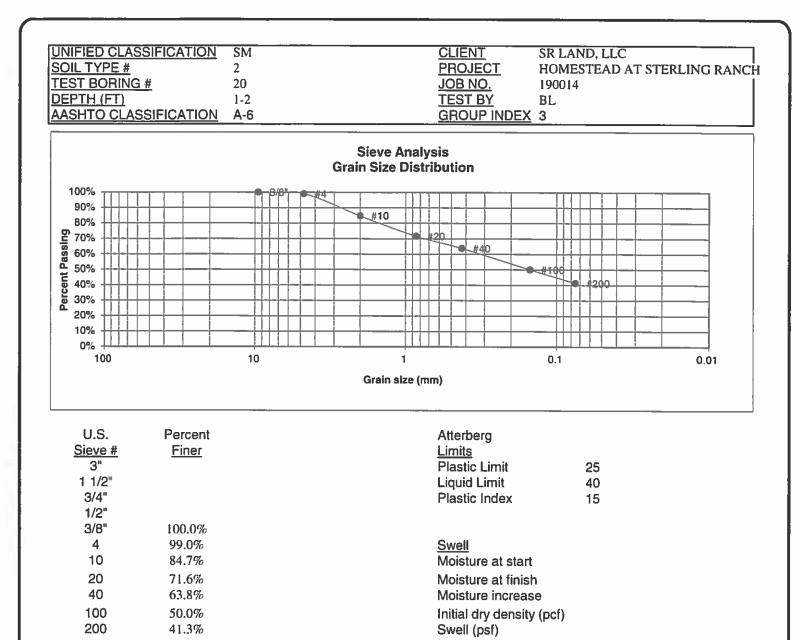
LABORATORY TEST RESULTS							
DRAWN:	DATE	CHECKED	n	DATE /20	7		

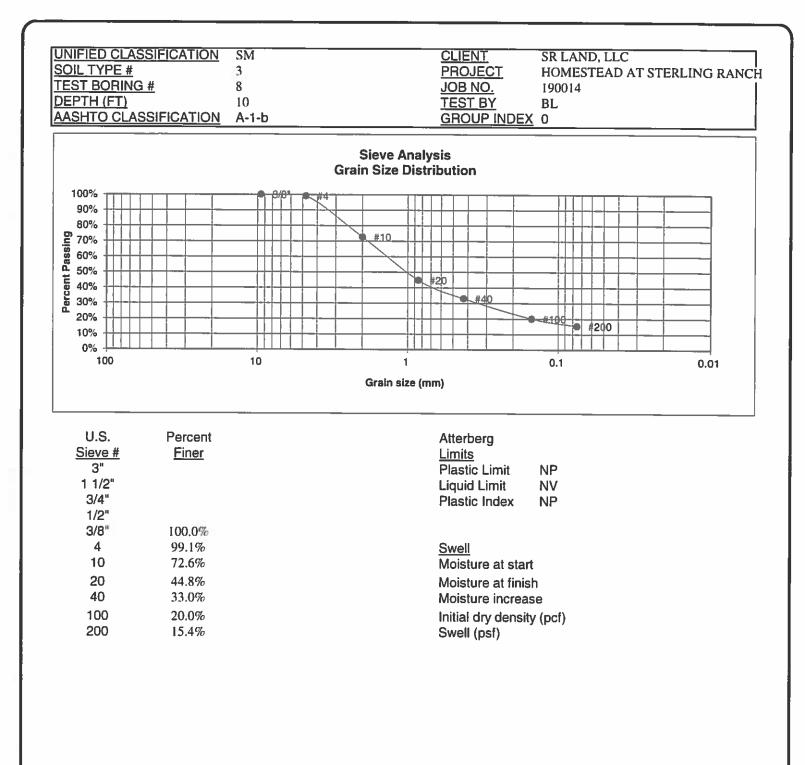
JOB NO
190014
FIG NO.:
B-17

ENTECH
ENGINEERING, INC.
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907
GOLORADO SERINGS, COLORADO 60907

LABORATORY TEST RESULTS						
DRAWN	DATE:	CHECKED: 0 DATE:	l			

JOB NO 190014 FIG NO. B-US

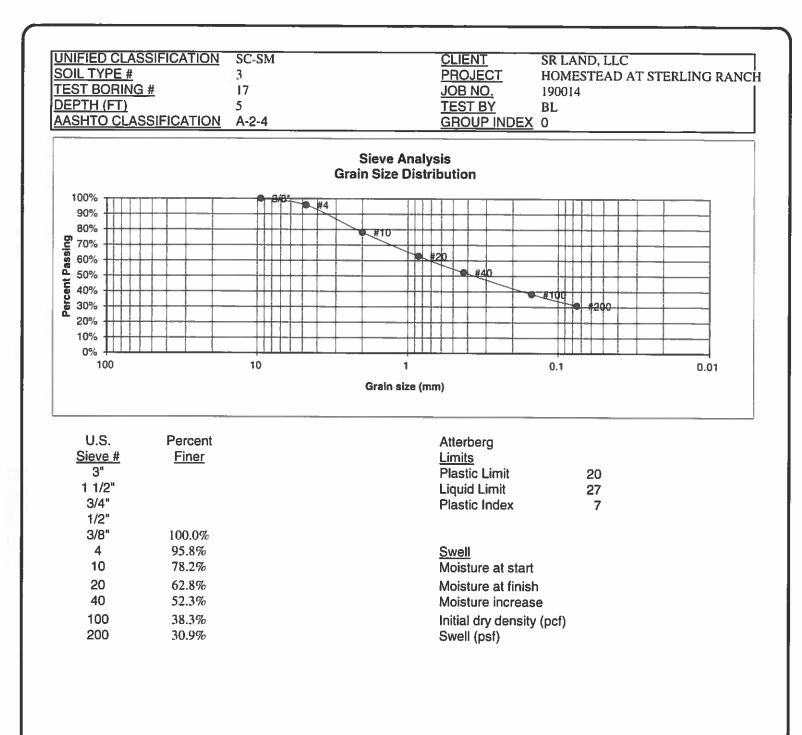

UNIFIED CLASS SOIL TYPE # TEST BORING DEPTH (FT) AASHTO CLAS	<u>#</u>	SM 2 12 1-2 A-4		<u>CLIENT</u> <u>PROJECT</u> <u>JOB NO.</u> <u>TEST BY</u> <u>GROUP INDE</u>	SR LAND, LLC HOMESTEAD AT STERLING RANG 190014 BL X 0
				Analysis Distribution	
100% 90% 80% 70% 50% 50% 20% 10% 0% 100		10	Grain :	1 size (mm)	#100 #200 0.1 0.01
U.S. <u>Sieve #</u> 3* 1 1/2" 3/4"	Percent <u>Finer</u>			Atterberg <u>Limits</u> Plastic Limit Liquid Limit Plastic Index	23 29 6
1/2" 3/8" 4 10 20 40 100 200	100.0% 99.7% 99.6% 85.8% 78.9% 64.3% 40.9%			<u>Swell</u> Moisture at star Moisture at finis Moisture increa Initial dry densi Swell (psf)	sh Ise


		190014 FIG NO.:			
DRAWN:	DATE:	CHECKED	h 1/2/20	JI	B-19

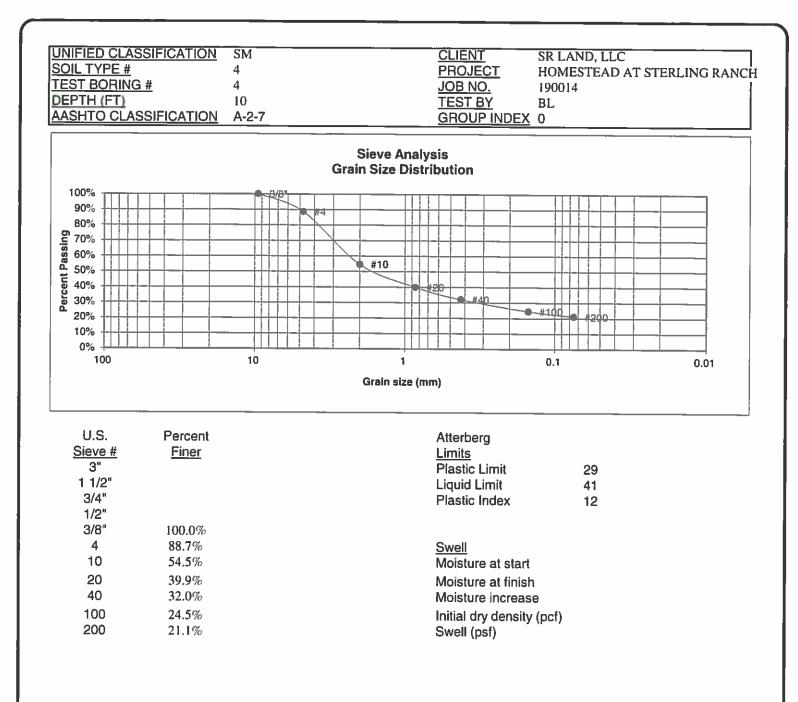
UNIFIED CLASSIFICATI	I <u>ON</u> SC	CLIENT	SR LAND, LLC
SOIL TYPE #	2	PROJECT	HOMESTEAD AT STERLING RANCH
TEST BORING #	15	JOB NO.	190014
DEPTH (FT)	1-2	TEST BY	BL
AASHTO CLASSIFICAT	ION A-6	GROUP IN	<u>DEX 1</u>
		Sieve Analysis Grain Size Distribution	
100%			
90%		#10	
		1 20	
E 70% 1 1 S 60% 1 1 1 E 50% 1 1 1 E 40% 1 1 1 E 30% 1 1 1		#40	
50%			
5 40%			#100
S 30%		└─── <u>┤</u> <u></u> <u></u> <u></u> <u></u> <u></u>	200
20%			
10%			
0%			
100	10	1	0.1 0.01
		Grain size (mm)	
U.S. Perce	ent	Atterberg	
Sieve # Fine		Limits	
3"		Plastic Limi	it 17
1 1/2"		Liquid Limit	
3/4"		Plastic Inde	ex 15
1/2" 100.0			
3/8" 97.04		o "	
4 95.69		<u>Swell</u>	-4-4
10 84.59		Moisture at	
20 73.09		Moisture at	
40 64.89		Moisture in	
100 47.29		Initial dry de	ensity (pcf)
200 35.29	10	Swell (psf)	

\diamond	ENTECH ENGINEERING, INC.	LABORATORY TEST RESULTS						JOB NO.: 190014 FIG NO.:
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN	DATE	CHECKED:	n	DATE:]	B-20

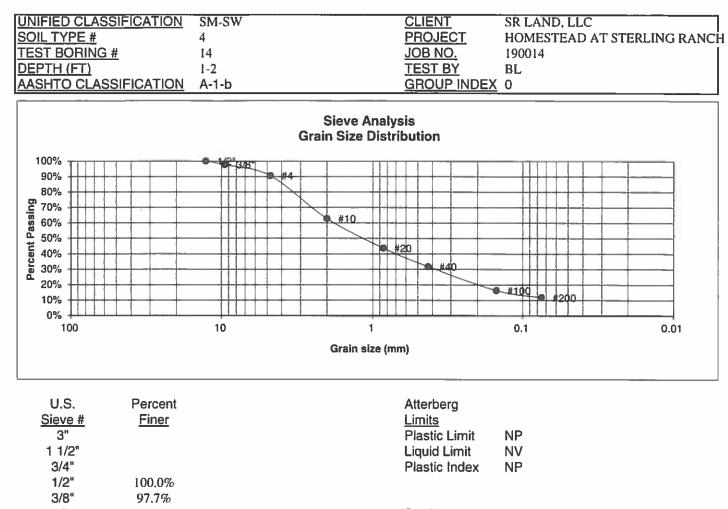
\Leftrightarrow	ENTECH ENGINEERING, INC.		LABOF RESUL		EST			JOB NO 190014 FIG NO
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE	CHECKED:	h	DATE /20	J	B-21



ENTECH ENGINEERING, INC. 505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907

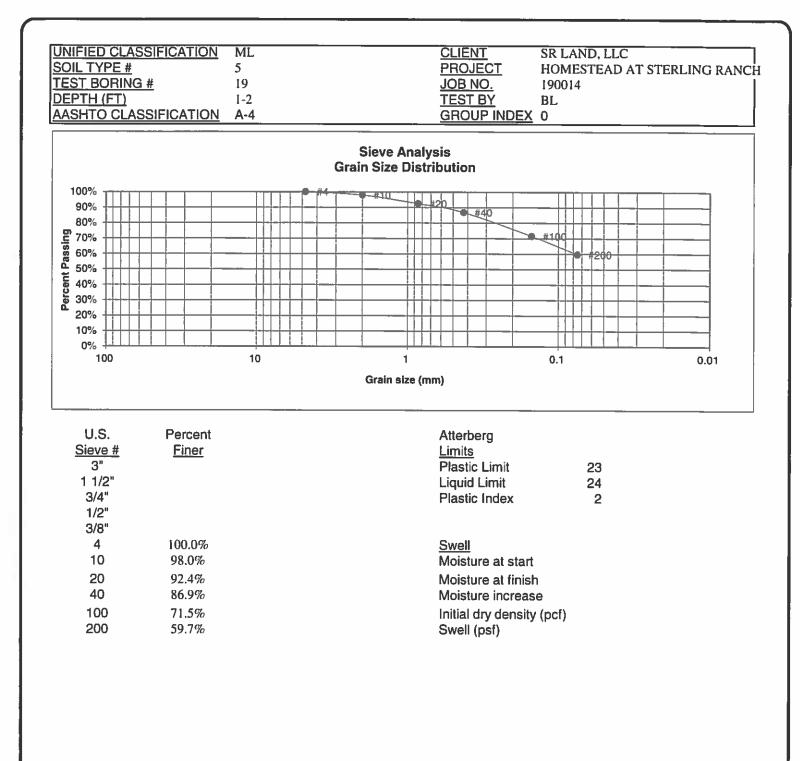

DRAWN:

LABORATORY TEST RESULTS					
	DATE	(HECKED:	A	0ATE: //13/20


JOB NO. 190014 FIG NO. 8-2-2

ENTECH ENGINEERING, INC.		LABOF RESUL	ATORY TI	EST		JOB NO : 190014
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN	DATE	CHECKED:	h 1/13/20	J	FIGNO

\mathbf{O}	ENTECH ENGINEERING, INC.		LABOR RESUL	ATORY TEST		JOB NO.: 190014
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN	DATE:		LIZA L	FIG NO.



3/8"	97.7%	
4	90.5%	Swell
10	62.8%	Moisture at start
20	43.7%	Moisture at finish
40	31.8%	Moisture increase
100	16.3%	Initial dry density (pcf)
200	11.8%	Swell (psf)

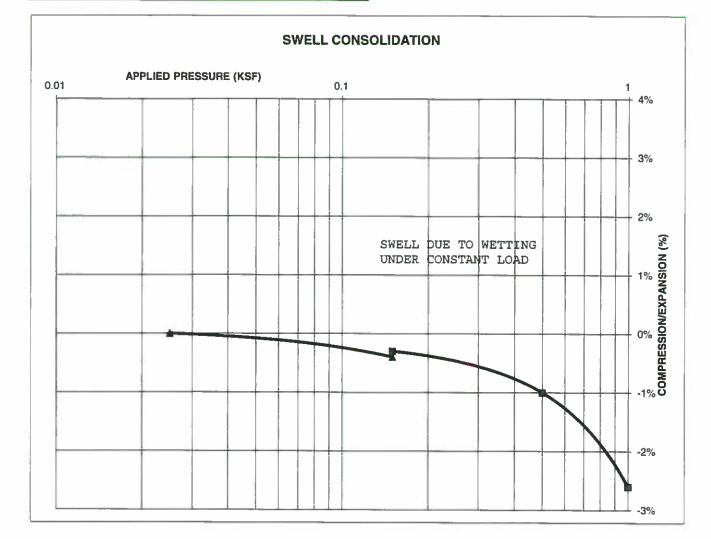
	LABOF RESUL	RATORY TEST LTS	
DRAWN	DATE:	CHECKED: A 1/13/20	L

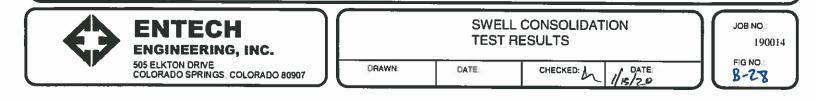
JOB NO. 190014 FIG NO.: **B-25**

\diamond	ENTECH ENGINEERING, INC.		LABOF RESUI	RATORY T TS	EST	
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE	CHECKED:	h 1/15/20	フし

JOB NO 190014 FIG NO.: B-26

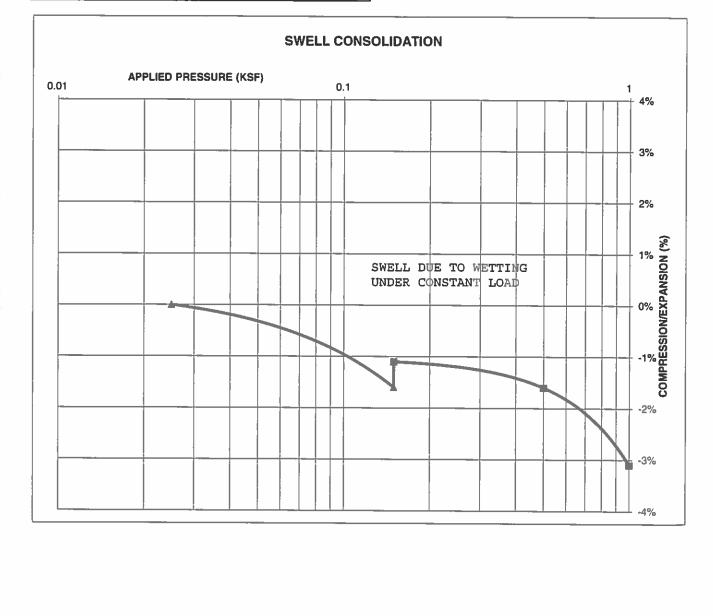
TEST BORING #	1	DEPTH(ft)	0-3	
DESCRIPTION	SC	SOIL TYPE	1, CBR	
NATURAL UNIT DRY	WEIGH	IT (PCF)	116	
NATURAL MOISTUR	E CONT	FENT	9.4%	
SWELL/CONSOLIDA	TION (%	6)	0.7%	

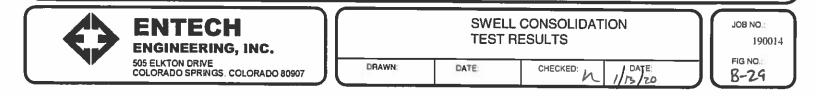

<u>JOB NO.</u>	190014
CLIENT	SR LAND, LLC
PROJECT	HOMESTEAD AT STERLING RANCH



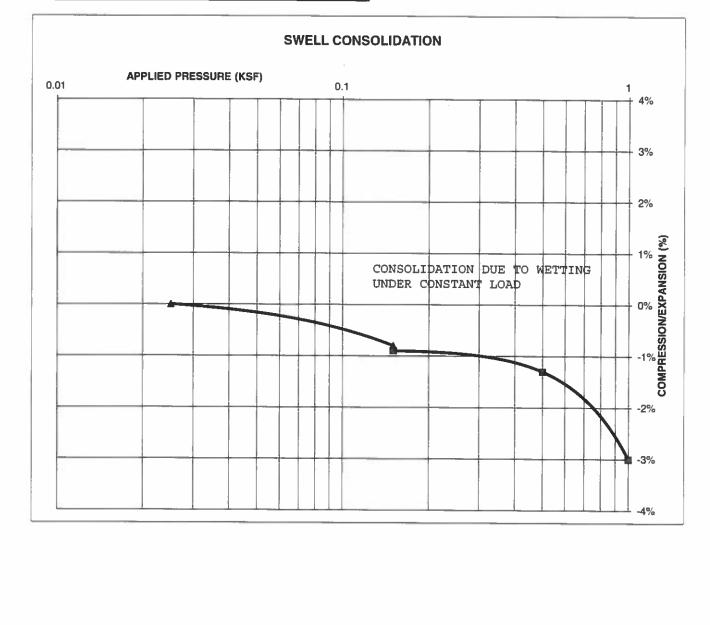
\diamond	ENTECH	SWELL CONSOLIDATION					JOB NO.:
	ENGINEERING, INC.	TEST RESULTS					190014
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:		H22/2	J	FIG NO.

TEST BORING #	2	DEPTH(ft)	1-2
DESCRIPTION	SC	SOIL TYPE	1
NATURAL UNIT DRY	WEIG	HT (PCF)	114
NATURAL MOISTUR	E CON	TENT	12.2%
SWELL/CONSOLIDA	0.1%		


JOB NO.	190014
Read and a second se	SR LAND, LLC
<u>PROJECT</u>	HOMESTEAD AT STERLING RANCH



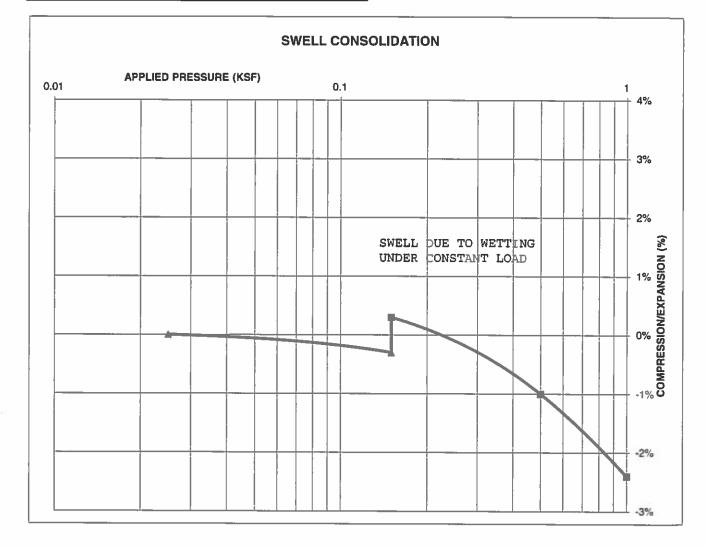
TEST BORING #	4	DEPTH(ft)	1-2
DESCRIPTION	SC	SOIL TYPE	1
NATURAL UNIT DRY	120		
NATURAL MOISTUR	10.6%		
SWELL/CONSOLIDA			0.5%


JOB NO. 190014 CLIENT SR LAND, LLC PROJECT HOMESTEAD AT STERLING RANCH

5	DEPTH(ft)	1-2			
SC	SOIL TYPE	1			
NATURAL UNIT DRY WEIGHT (PCF)					
NATURAL MOISTURE CONTENT					
TION (9	%)	-0.1%			
	SC WEIGH E CON	SC SOIL TYPE WEIGHT (PCF)			

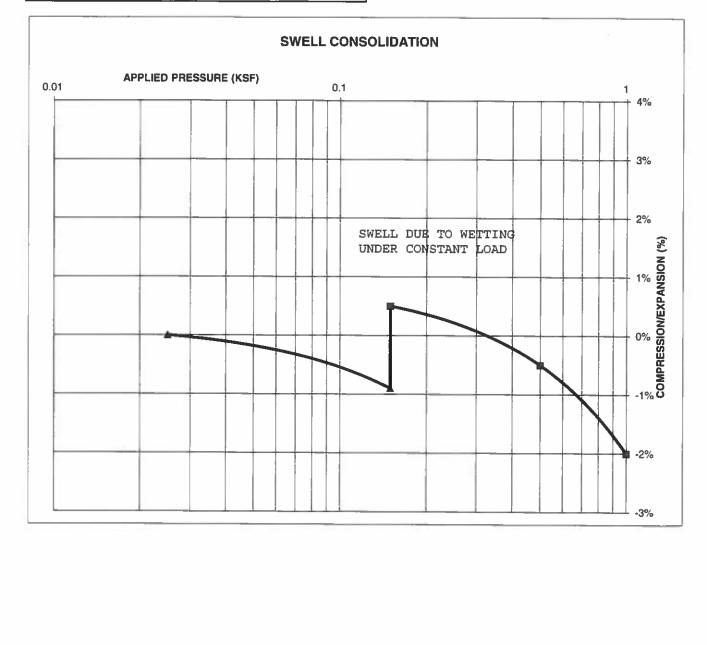
JOB NO. 190014 CLIENT SR LAND, LLC PROJECT HOMESTEAD AT STERLING RANCH

	ENTECH ENGINEERING, INC. 505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907		JOB NO.: 190014
		DRAWN:	DATE:


TEST BORING #	9	DEPTH(ft)	1-2
DESCRIPTION	SC	SOIL TYPE	1
NATURAL UNIT DRY	WEIG	HT (PCF)	119
NATURAL MOISTUR	E CON	TENT	10.8%
SWELL/CONSOLIDA	TION (%)	0.3%

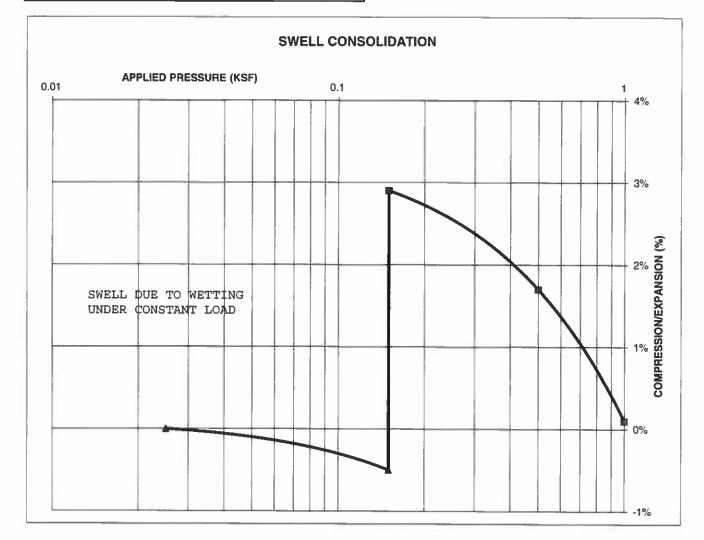
<u>JOB NO.</u> 190014 <u>CLIENT</u> SR LAND, LLC <u>PROJECT</u> HOMESTEAD AT STERLING RANCH

TEST BORING #	11	DEPTH(ft)	1-2
DESCRIPTION	SC	SOIL TYPE	1
NATURAL UNIT DRY	WEIGH	HT (PCF)	116
NATURAL MOISTUR	E CONT	TENT	8.1%
SWELL/CONSOLIDA	TION (%	%)	0.6%


<u>JOB NO.</u>	190014
CLIENT	SR LAND, LLC
PROJECT	HOMESTEAD AT STERLING RANCH

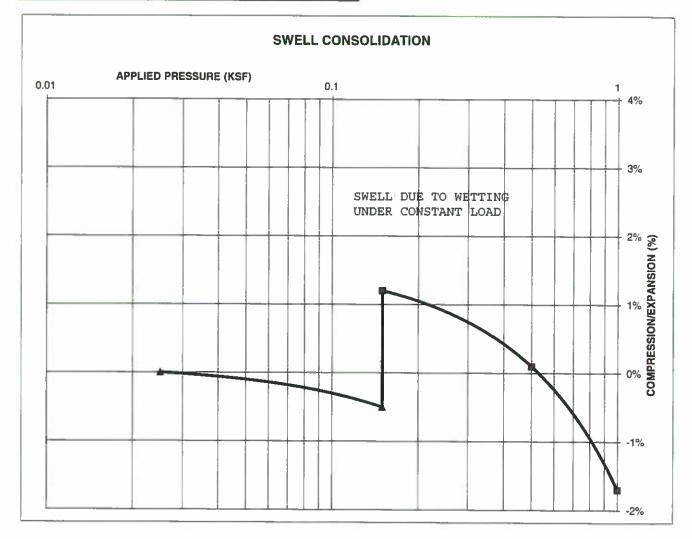
\Leftrightarrow	ENTECH ENGINEERING, INC.		JOB NO.: 190014		
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:	CHECKED A 1/B/20	FIG NO: B-32

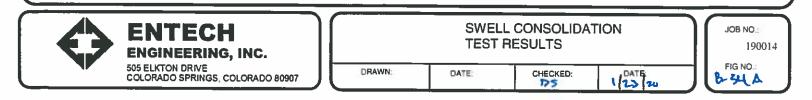
TEST BORING #	1	DEPTH(ft)	1-2
DESCRIPTION	SC	SOIL TYPE	2
NATURAL UNIT DRY	WEIGH	HT (PCF)	111
NATURAL MOISTUR	E CON	TENT	15.1%
SWELL/CONSOLIDA	TION (S	%)	1.4%


<u>JOB NO.</u>	190014
<u>CLIENT</u>	SR LAND, LLC
PROJECT	HOMESTEAD AT STERLING RANCH

ENTECH		SWELL CONSOLIDATION					JOB NO.:
ENGINEERING, INC.		TEST RESULTS					190014
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN	DATE	CHECKED:	DATE:	Jl	FIG NO

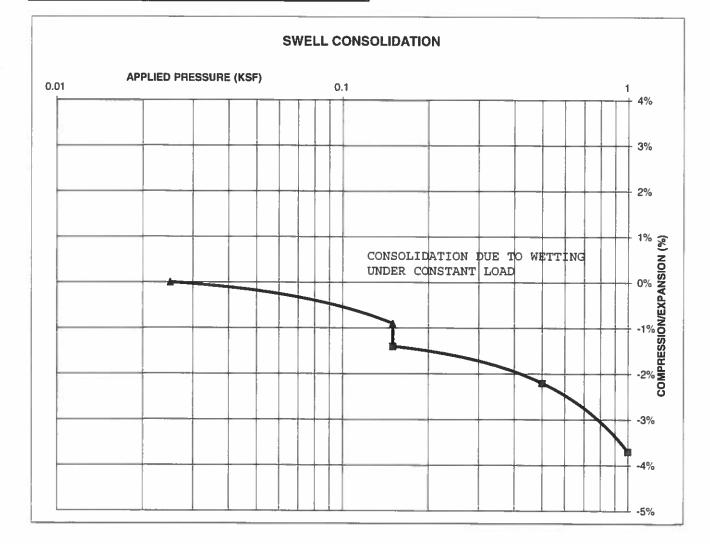
TEST BORING #	3	DEPTH(ft)	1-2
DESCRIPTION	SC	SOIL TYPE	2
NATURAL UNIT DRY	' WEIGI	HT (PCF)	111
NATURAL MOISTUR	E CON	TENT	16.2%
SWELL/CONSOLIDA			3.4%


<u>JOB NO.</u>	190014
<u>CLIENT</u>	SR LAND, LLC
PROJECT	HOMESTEAD AT STERLING RANCH

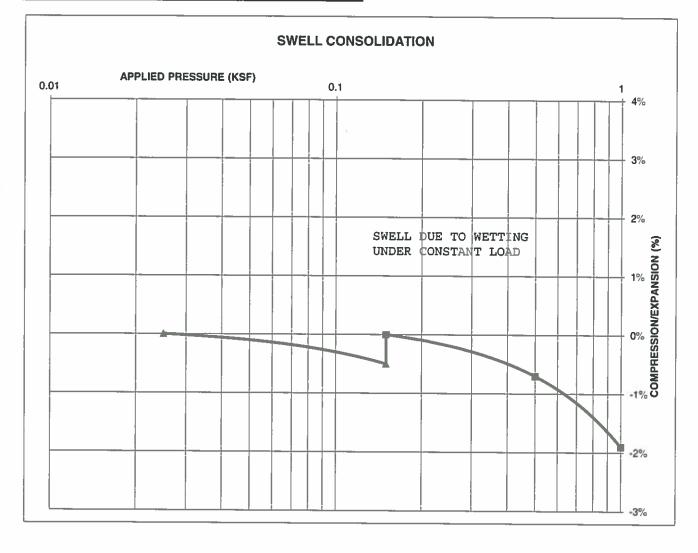


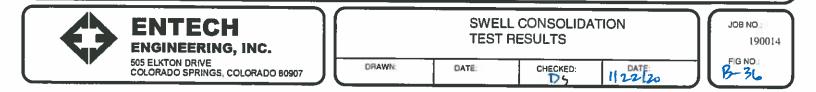
\diamond	ENTECH ENGINEERING, INC.			JOB NO.: 190014	
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:	CHECKED: MIS/20	J

TEST BORING #	3	DEPTH(ft)	1-2
DESCRIPTION	SC	SOIL TYPE	2
NATURAL UNIT DRY	WEIG	HT (PCF)	110
NATURAL MOISTUR	E CON	TENT	19.7%
SWELL/CONSOLIDA	TION (%)	1.7%


JOB NO.190014CLIENTSR LAND, LLCPROJECTHOMESTEAD AT STERLING RANCH
REMOLDED AT +3.5% MOISTURE

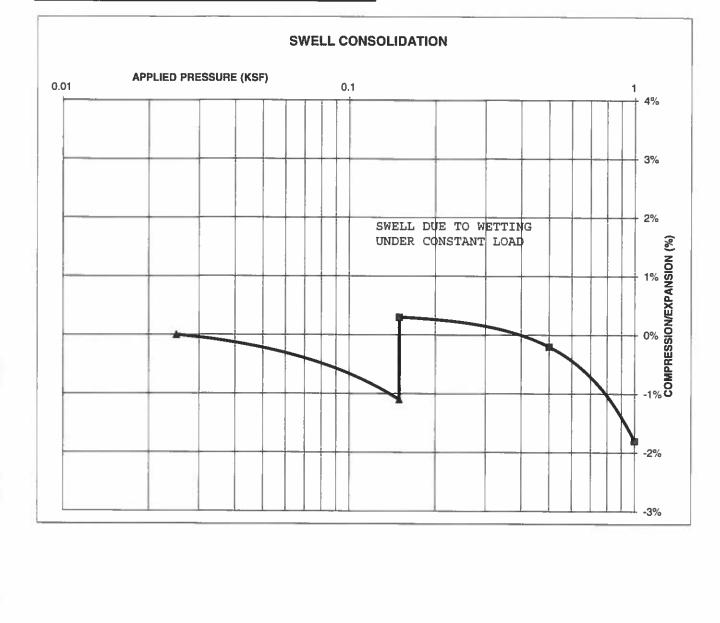
	TEST BORING #	7	DEPTH(ft)	5
	DESCRIPTION	SM	SOIL TYPE	2
	NATURAL UNIT DRY	WEIGH	IT (PCF)	91
	NATURAL MOISTURI	E CONT	TENT	6.2%
ĺ	SWELL/CONSOLIDA	TION (%	6)	-0.5%

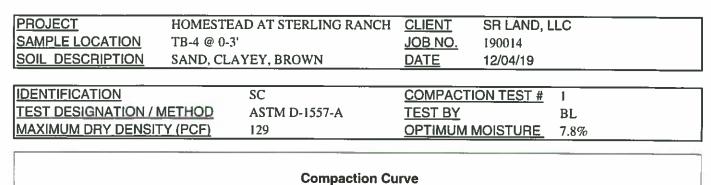

JOB NO.	190014
CLIENT	SR LAND, LLC
PROJECT	HOMESTEAD AT STERLING RANCH

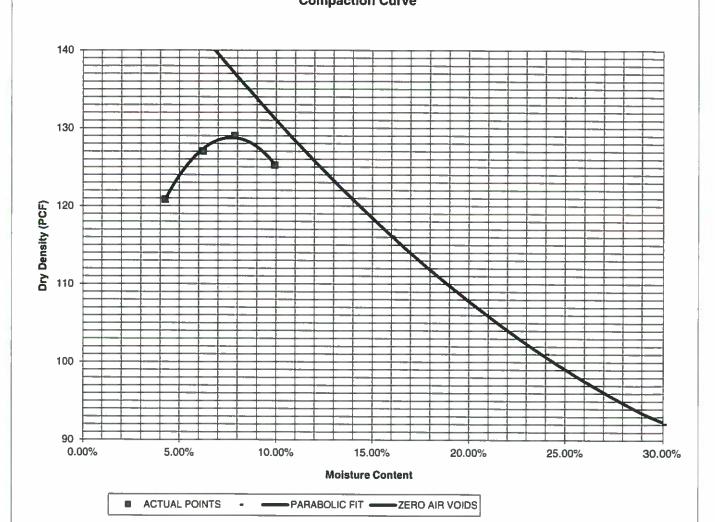


\Rightarrow	ENTECH ENGINEERING, INC.		SWELL CONSOLIDATION TEST RESULTS				
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE	CHECKED: 1/13/20	J	FIG NO.	

TEST BORING #	8	DEPTH(ft)	0-3
DESCRIPTION	SC	SOIL TYPE	2, CBR
NATURAL UNIT DRY	WEIGI	HT (PCF)	119
NATURAL MOISTUP	E CON	TENT	7.5%
SWELL/CONSOLIDA	TION (S	%)	0.5%


JOB NO. 190014 CLIENT SR LAND, LLC PROJECT HOMESTEAD AT STERLING RANCH




TEST BORING #	20	DEPTH(ft)	1-2
DESCRIPTION	SM	SOIL TYPE	2
NATURAL UNIT DRY	WEIGH	IT (PCF)	F11
NATURAL MOISTURI	E CONT	ENT	17.1%
SWELL/CONSOLIDA	TION (%	6)	1.4%

JOB NO.	190014
CLIENT	SR LAND, LLC
PROJECT	HOMESTEAD AT STERLING RANCH

ENTECH ENGINEERING, INC.	$\left \right $			L CONSOLIDATION RESULTS		JOB NO.: 190014
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	儿	DRAWN:	DATE:	CHECKED: A 1/12/20	JI	FIG NO

	ENTECH ENGINEERING, INC.		MOISTU	RE DENSITY RELATION	JOB NO.; 190014
, v	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:	CHECKED: 1/13/20	FIG NO.: 8-38

CBR TEST LOAD DATA

PISTON

PISTON

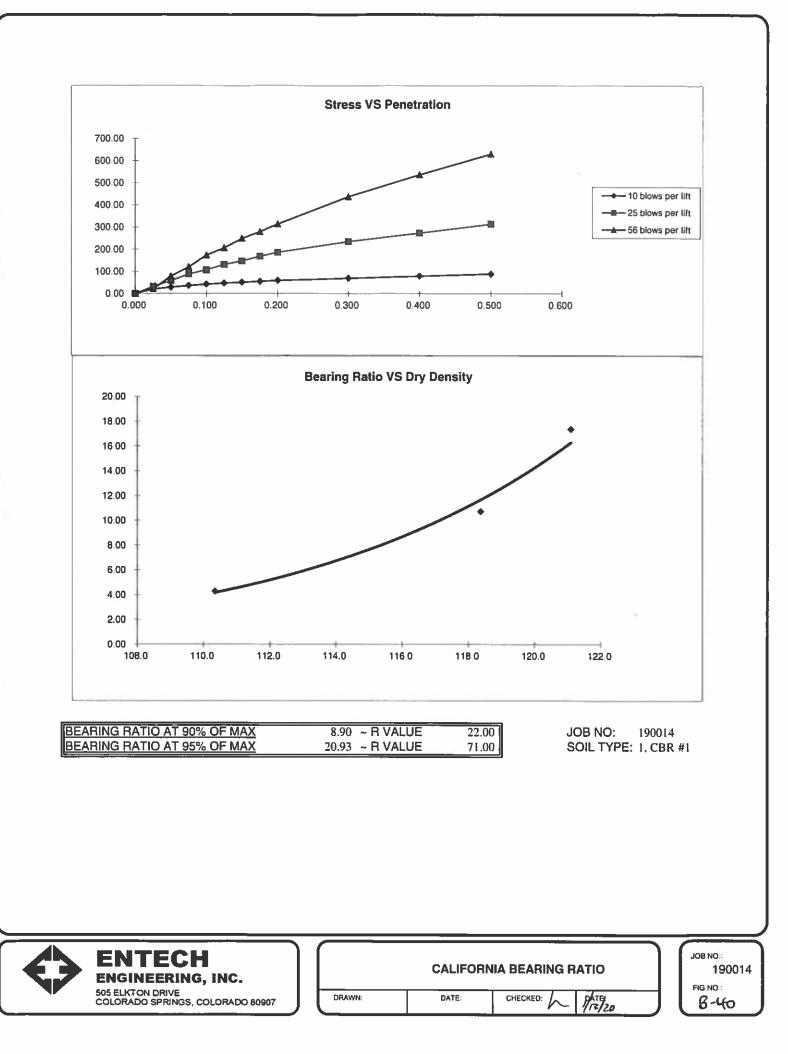
Г

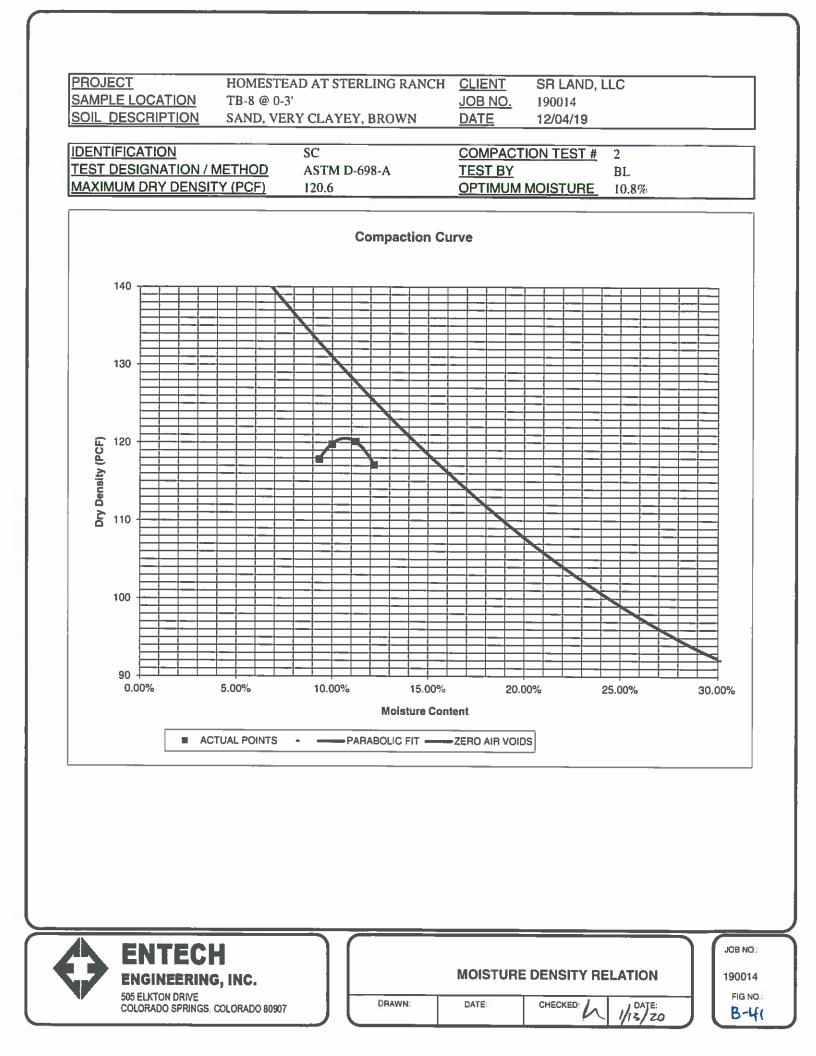
JOB NO: 190014 CLIENT: SR LAND, LLC PROJECT: HOMESTEAD AT STERLING RANCH SOIL TYPE: L CRR #1

DIAMETER (cm) 4.958	AREA (in ²) 2.99250919		SOIL TYPE:	1, CBR #1		
	10 BLOWS		25 BLOWS		56 BLOWS	_
PENETRATION	MOLD #	1	MOLD #	2	MOLD # :	3
DEPTH	LOAD(LBS)	STRESS	LOAD(LBS)	STRESS	LOAD(LBS)	STRESS
(INCHES)	(LBS)	(PSI)	(LBS)	(PSI)	(LBS)	(PSI)
0.000	0	0.00	0	0.00	0	0.00
0.025	60	20.05	96	32.08	65	21.72
0.050	85	28.40	175	58.48	235	78.53
0.075	108	36.09	263	87.89	361	120.63
0.100	128	42.77	321	107.27	520	173.77
0.125	143	47.79	393	131.33	619	206.85
0.150	153	51.13	442	147.70	747	249.62
0.175	165	55.14	504	168.42	836	279.36
0.200	177	59.15	557	186.13	939	313.78
0.300	208	69.51	703	234.92	1308	437.09
0.400	235	78.53	818	273.35	1605	536.34
0.500	265	88.55	939	313.78	1884	629.57

FINAL MOISTURE CONTENT

MOLD #	1	MOLD #	2	MOLD #	3
	102		119		100
	9.36		9.35		9.41
	211.33		243.54		245.09
	185.14		217.61		219.02
	26.19		25.93		26.07
	175.78		208,26		209.61
	14.90%		12.45%		12.44%
	119.0		127.6		130.5
	110.4		118.4		121.1
	4.28		10.73		17.38
116.1					
122.6					
	8.90	~ R VALUE	22		
	20.93	~ R VALUE	71	1	
	116.1	102 9.36 211.33 185.14 26.19 175.78 14.90% 119.0 110.4 4.28 116.1 122.6 8.90	102 9.36 211.33 185.14 26.19 175.78 14.90% 119.0 110.4 4.28 116.1 122.6 8.90 ~ R VALUE	102 119 9.36 9.35 211.33 243.54 185.14 217.61 26.19 25.93 175.78 208.26 14.90% 12.45% 119.0 127.6 110.4 118.4 4.28 10.73 116.1 122.6 8.90 ~ R VALUE 22	102 119 9.36 9.35 211.33 243.54 185.14 217.61 26.19 25.93 175.78 208.26 14.90% 12.45%




ENTECH	1
ENGINEERING, INC.	
505 ELKTON DRIVE	DRAWN:
COLORADO SPRINGS, COLORADO 80907	

)

	CE	BR TEST DATA		
VN:	DATE	CHECKED:	1/13/LU	ノ

JOB NO. 190014 FIG NO. B-39

CBR TEST LOAD DATA

PISTON

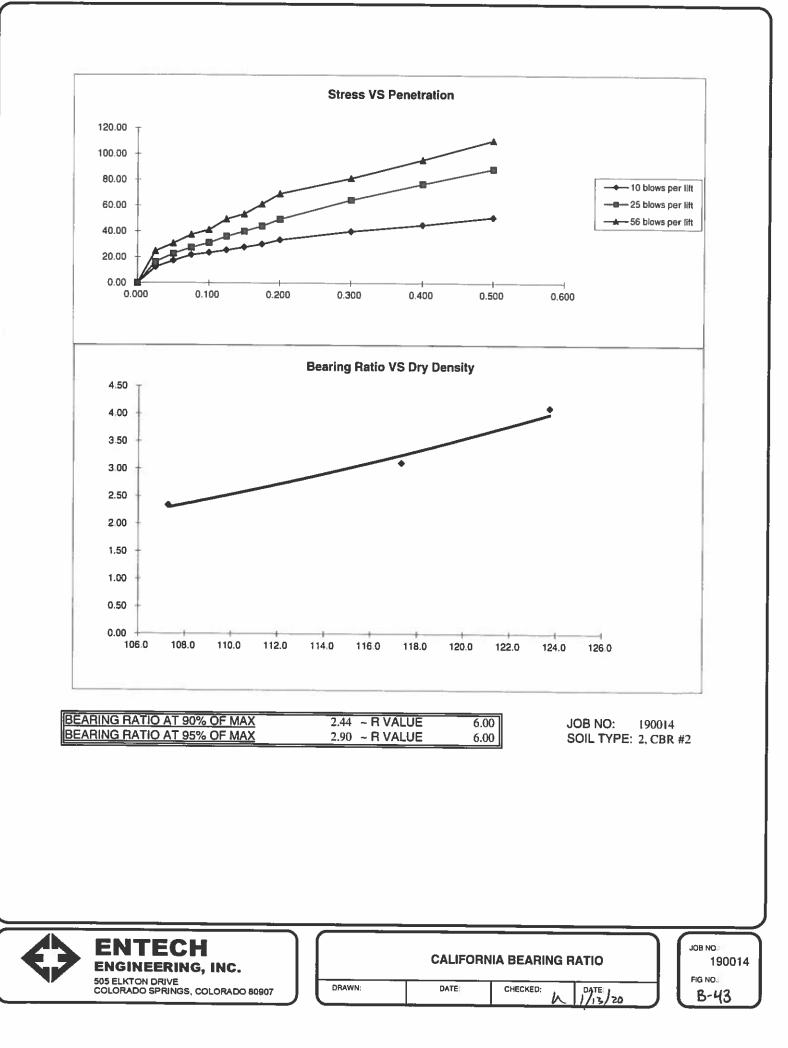
PISTON

JOB NO: 190014 CLIENT: SR LAND, LLC PROJECT: HOMESTEAD AT STERLING RANCH

DIAMETER (cm)	AREA (in ²)		SOIL TYPE: 1	2, CBR #2		
4.958	2.99250919					
	10 BLOWS		25 BLOWS		56 BLOWS	
PENETRATION	MOLD #	1	MOLD # :	2	MOLD #	3
DEPTH	LOAD(LBS)	STRESS	LOAD(LBS)	STRESS	LOAD(LBS)	STRESS
(INCHES)	(LBS)	(PSI)	(LBS)	(PSI)	(LBS)	(PSI)
0.000	0	0.00	0	0.00	0	0.00
0.025	37	12.36	49	16.37	74	24.73
0.050	52	17.38	68	22.72	92	30.74
0.075	65	21.72	82	27.40	112	37.43
0.100	70	23.39	93	31.08	123	41.10
0.125	76	25.40	108	36.09	148	49.46
0.150	83	27.74	120	40.10	160	53.47
0.175	90	30.08	132	44.11	183	61.15
0.200	100	33.42	148	49.46	207	69.17
0.300	120	40.10	193	64.49	243	81.20
0.400	135	45.11	230	76.86	286	95.57
0.500	153	51.13	265	88.55	331	110.61

FINAL MOISTURE CONTENT

	MOLD #	1	MOLD #	2	MOLD #	3
CAN #		109		117	Ĩ	119
WT. CAN		9.19		9.43		9.27
WT. CAN+WET		273.45		389.76		278.08
WT. CAN+DRY		230.28		335.83		245.31
<u>WT. H20</u>		43.17		53,93		32,77
WT. DRY SOIL		221.09		326.4		236.04
MOISTURE CONTENT		19.53%		16.52%		13,88%
WET DENSITY (PCF)		118.9		130.0		137.1
DRY DENSITY (PCF)		107.3		117,3		123.7
BEARING RATIO		2.34		3.11		4.11
90% OF DRY DENSITY	108.5					
95% OF DRY DENSITY	108.5					
33% OF DET DENSIT	114,0					
BEARING RATIO AT 90% OF MAX		2 44	~ R VALUE	6	I	
BEARING RATIO AT 95% OF MAX			~ R VALUE	6		



ENTECH	ſ
ENGINEERING, INC.	
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	ſ

DRAWN:

CB	R TEST DATA	
DATE	CHECKED:	1/13/20

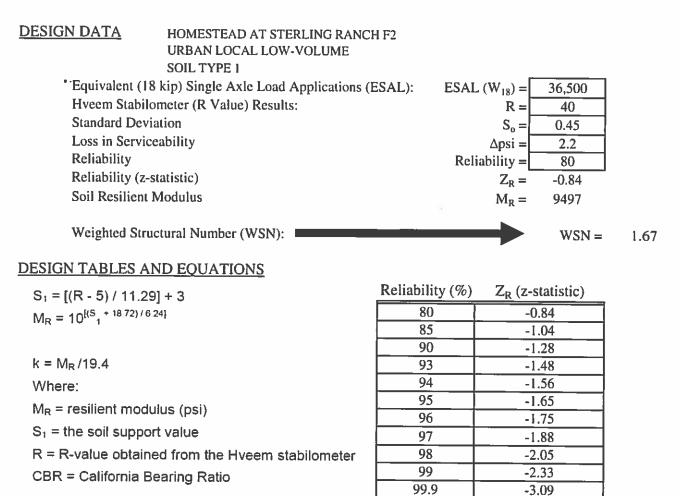
JOB NO .: 190014 FIG NO .: B-42

CLIENT	SR LAND, LLC	JOB NO.	190014
PROJECT	HOMESTEAD AT STERLING RANCH	DATE	12/4/2019
LOCATION	HOMESTEAD AT STERLING RANCH	TEST BY	BL

BORING NUMBER	DEPTH, (ft)	SOIL TYPE NUMBER	UNIFIED CLASSIFICATION	WATER SOLUBLE SULFATE, (wt%)
TB-1	1-2	1	SC	0.00
TB-4	1-2	1	sc	<0.01
TB-7	1-2	1	SM	<0.01
TB-16	1-2	1	SM	<0.01
TB-19	1-2	5	ML	<0.01
TB-7	5	2	SM	<0.01
TB-8	10	3	SM	<0.01
		_		

DRAWN:

OC BLANK PASS


ENGINEERING, INC.

COLORADO SPRINGS, COLORADO 80907

	ATORY TEST E RESULTS		
DATE:		DATE:	

JOB NO.: 190014 FIG NO B-44

APPENDIX C: Pavement Design Calculations

 $\log_{10}W_{18} = Z_{R}^* S_{O} + 9.36^* \log_{10}(SN+1) - 0.20 + ---$

$$\begin{array}{c}
 \Delta PSI \\
 4.2 - 1.5
 \end{array}$$
0.40 + 1094

99.99

+ 2.32*log₁₀M_R- 8.07

(SN+1)^{5.19}

Left	Right	Difference
4.56	4.56	0.0

Job No. 190014 Fig. No. C-1

-3.75

<u>DESIGN DATA</u>	HOMESTEAD AT STERLING RANCH F2		
	URBAN LOCAL LOW-VOLUME		
	SOIL TYPE I		
Equivalen	t (18 kip) Single Axle Load Applications (ESAL):	ESAL =	36,500
Hveem St	abilometer (R Value) Results:	R =	40
Weighted	Structural Number (WSN):	WSN =	1.67

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.11$ Strength Coefficient - Aggregate Base Course

 D_1 = Depth of Asphalt (inches) D_2 = Depth of Base Course (inches)

FOR FULL DEPTH ASPHALT SECTION (CURRENTLY NOT ALLOWED)

 $D_1 = (WSN)/C_1 = 3.8$ inches of Full Depth Asphalt Use 5.0 inches Full Depth

FOR ASPHALT + AGGREGATE BASE COURSE SECTION

Asphalt Thickness (t) = 3 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 3.2$ inches of Aggregate Base Course, use 4.0 inches

RECOMMENDED ALTERNATIVES

- 1. 3.0 inches of Asphalt + 4.0 inches of Aggregate Base Course, or
- 2. 5.0 inches of Ful Depth Asphalt

Job No. 190014 Fig. No. C-2

DESIGN DATA

HOMESTEAD AT STERLING RANCH F2 URBAN LOCAL LOW-VOLUME

SOIL TYPE 1

Equivalent (18 kip) Single Axle Load Applications (ESAL):	ESAL $(W_{18}) =$	36,500
Hveem Stabilometer (R Value) Results:	R =	40
Standard Deviation	$S_o =$	0.45
Loss in Serviceability	∆psi =	2.2
Reliability	Reliability =	80
Reliability (z-statistic)	$Z_R =$	-0.84
Soil Resilient Modulus	$M_R =$	9497
	•	

Weighted Structural Number (WSN):

DESIGN TABLES AND EQUATIONS

 $S_1 = [(R - 5) / 11.29] + 3$ $M_{\rm R} = 10^{[(S_1 + 1872)/6.24]}$

 $k = M_{\rm R}/19.4$ Where: M_R = resilient modulus (psi)

S1 = the soil support value

R = R-value obtained from the Hveem stabilometer

CBR = California Bearing Ratio

Reliability (%)	Z_R (z-statistic)
80	-0.84
85	-1.04
90	-1.28
93	-1.48
94	-1.56
95	-1.65
96	-1.75
97	-1.88
98	-2.05
99	-2.33
99.9	-3.09
99.99	-3.75

 $\log_{10}W_{18} = Z_{R}^{*}S_{O} + 9.36^{*}\log_{10}(SN+1) - 0.20 + ----$

$$\frac{\log_{10} \left[4.2 - 1.5 \right]}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.$$

APSI]

.32*log₁₀M_R- 8.07

(SN+1)

Job No. 190014 Fig. No. C-3

Left	Right	Difference
4.56	4.56	0.0

WSN =1.67

DESIGN DATA	HOMESTEAD AT STERLING RANCH F2		
	URBAN LOCAL LOW-VOLUME		
	SOIL TYPE 1		
Equivalen	t (18 kip) Single Axle Load Applications (ESAL):	ESAL =	36,500
Hveem St	abilometer (R Value) Results:	R =	40
Weighted	Structural Number (WSN):	WSN =	1.67

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.11$ Strength Coefficient - Recycled Concrete

D₁ = Depth of Asphalt (inches) D₂ = Depth of Base Course (inches)

FOR FULL DEPTH ASPHALT SECTION (CURRENTLY NOT ALLOWED)

 $D_1 = (WSN)/C_1 = 3.8$ inches of Full Depth Asphalt Use 5.0 inches Full Depth

FOR ASPHALT + RECYCLED CONCRETE BASE COURSE SECTION

Asphalt Thickness (t) = 3 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 3.2$ inches of Recycled Concrete Base Course, use 4.0 inches

RECOMMENDED ALTERNATIVES

- 1. 3.0 inches of Asphalt + 4.0 inches of Recycled Concrete Base Course, or
- 2. 5.0 inches of Full Depth Asphalt

Job No. 190014 Fig. No. C-4

DESIGN DATA

HOMESTEAD AT STERLING RANCH F2 URBAN LOCAL LOW-VOLUME

SOIL TYPE 2

Equivalent (18 kip) Single Axle Load Applications (ESAL):	$ESAL(W_{18}) =$	36,500
Hveem Stabilometer (R Value) Results:	R =	6
Standard Deviation	$S_o =$	0.45
Loss in Serviceability	∆psi =	2.2
Reliability	Reliability =	80
Reliability (z-statistic)	$Z_R =$	-0.84
Soil Resilient Modulus	$M_R =$	3126
Weighted Structural Number (WSN):		WSN =

DESIGN TABLES AND EQUATIONS

 $S_1 = [(R - 5) / 11.29] + 3$ $M_{\rm R} = 10^{[(S_1 + 1872)/624]}$

 $k = M_R / 19.4$

Where:

M_R = resilient modulus (psi)

S1 = the soil support value

R = R-value obtained from the Hyeem stabilometer

CBR = California Bearing Ratio

Reliability (%)	Z_{R} (z-statistic)
80	-0.84
85	-1.04
90	-1.28
93	-1.48
94	-1.56
95	-1.65
96	-1.75
97	-1.88
98	-2.05
99	-2.33
99.9	-3.09
99.99	-3.75

 $\log_{10}W_{18} = Z_R^* S_0 + 9.36^* \log_{10}(SN+1) - 0.20 + ----$

$$\frac{\log_{10} \left[4.2 - 1.5 \right]}{4.2 - 1.5} + 2.32 \\
0.40 + \frac{1094}{(SN+1)^{5.19}}$$

?*log₁₀M_R- 8.07

Left Right Difference 4.56 4.56 0.0

Job No. 190014 Fig. No. C-5

2.55

<u>DESIGN DATA</u>	HOMESTEAD AT STERLING RANCH F2	
	URBAN LOCAL LOW-VOLUME	
	SOIL TYPE 2	
Equivale	nt (18 kip) Single Axle Load Applications (ESAL):	ESAL = 36,500
Hveem S	tabilometer (R Value) Results:	R = 6
Weighted	Structural Number (WSN):	WSN = 2.57

DESIGN EQUATION

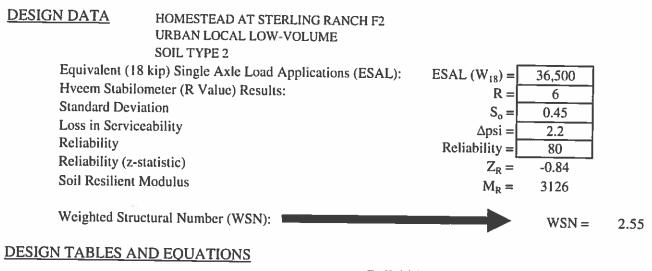
 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.11$ Strength Coefficient - Aggregate Base Course

D₁ = Depth of Asphalt (inches) D₂ = Depth of Base Course (inches)

FOR FULL DEPTH ASPHALT SECTION (CURRENTLY NOT ALLOWED)

 $D_1 = (WSN)/C_1 = 5.8$ inches of Full Depth Asphalt Use 6.0 inches Full Depth


FOR ASPHALT + AGGREGATE BASE COURSE SECTION

Asphalt Thickness (t) = 4 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 7.3$ inches of Aggregate Base Course, use 8.0 inches

RECOMMENDED ALTERNATIVES

- 1. 4.0 inches of Asphalt + 8.0 inches of Aggregate Base Course, or
- 2. 6.0 inches of Full Depth Asphalt

Job No. 190014 Fig. No. C-6

$S_1 = [(R - 5) / 11.29] + 3$ $M_R = 10^{I(S_1 + 18.72) / 6.24]$

 $k = M_R / 19.4$

Where:

M_R = resilient modulus (psi)

S1 = the soil support value

R = R-value obtained from the Hyeem stabilometer

CBR = California Bearing Ratio

Reliability (%)	Z_{R} (z-statistic)
80	-0.84
85	-1.04
90	-1.28
93	-1.48
94	-1.56
95	-1.65
96	-1.75
97	-1.88
98	-2.05
99	-2.33
99.9	-3.09
99.99	-3.75

$$\log_{10}W_{18} = Z_R^* S_O^+ 9.36^* \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left[\frac{\Delta PSI}{4.2 - 1.5}\right]}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32^* \log_{10}M_R^- 8.07$$

Left	Right	Difference
4.56	4.56	0.0

Job No. 190014 Fig. No. c - - 7

<u>DESIGN DATA</u>	HOMESTEAD AT STERLING RANCH F2		
	URBAN LOCAL LOW-VOLUME		
	SOIL TYPE 2		
Equivaler	tt (18 kip) Single Axle Load Applications (ESAL):	ESAL =	36,500
Hveem St	abilometer (R Value) Results:	R =	6
Weighted	Structural Number (WSN):	WSN =	2.57

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.11$ Strength Coefficient - Recycled Concrete

 D_1 = Depth of Asphalt (inches) D_2 = Depth of Base Course (inches)

FOR FULL DEPTH ASPHALT SECTION (CURRENTLY NOT ALLOWED)

 $D_i = (WSN)/C_i = 5.8$ inches of Full Depth Asphalt Use 6.0 inches Full Depth

FOR ASPHALT + RECYCLED CONCRETE BASE COURSE SECTION

Asphalt Thickness (t) = 4 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 7.3$ inches of Recycled Concrete Base Course, use 8.0 inches

RECOMMENDED ALTERNATIVES

- 1. 4.0 inches of Asphalt + 8.0 inches of Recycled Concrete Base Course, or
- 2. 6.0 inches of Full Depth Asphalt

Job No. 190014 Fig. No. C-8

DESIGN DATA HOMESTEAD AT STERLING RANCH F2 **URBAN LOCAL** SOIL TYPE 1 Equivalent (18 kip) Single Axle Load Applications (ESAL): $ESAL(W_{18}) =$ 292,000 Hveem Stabilometer (R Value) Results: R = 40 Standard Deviation 0.45 $S_0 =$ Loss in Serviceability 2.2 $\Delta psi =$ Reliability Reliability = 80 Reliability (z-statistic) $Z_R =$ -0.84 Soil Resilient Modulus $M_R =$ 9497 Weighted Structural Number (WSN): 1 WSN =**DESIGN TABLES AND EQUATIONS**

Reliability (%) $S_1 = [(R - 5) / 11.29] + 3$ $M_R = 10^{[(S_1 + 1872)/624]}$ 80 85 90 $k = M_R / 19.4$ 93 94 Where: 95 M_R = resilient modulus (psi) 96 S1 = the soil support value R = R-value obi CBR = Californi -3.75

ipport value	97
tained from the Hveem stabilometer	98
ia Bearing Ratio	99
	99.9
	99.99

$$\frac{\Delta PSI}{4.2 - 1.5} + 2.32*\log_{10}M_{R} - 8.07$$

$$0.40 + \frac{1094}{(SN+1)^{5.19}}$$

Left	Right	Difference
5.47	5.47	0.0

 $\log_{10}W_{18} = Z_R^* S_0 + 9.36^* \log_{10}(SN+1) - 0.20 +$

Job No. 190014 Fig. No. C-9

Z_R (z-statistic) -0.84 -1.04 -1.28 -1.48 -1.56 -1.65 -1.75 -1.88 -2.05 -2.33 -3.09

2.36

<u>DESIGN DATA</u>	HOMESTEAD AT STERLING RANCH F2		
	URBAN LOCAL		
	SOIL TYPE 1		
Equivaler	nt (18 kip) Single Axle Load Applications (ESAL):	ESAL =	292,000
Hveem Stabilometer (R Value) Results:		R =	40
Weighted	Structural Number (WSN):	WSN =	2.36

DESIGN EQUATION

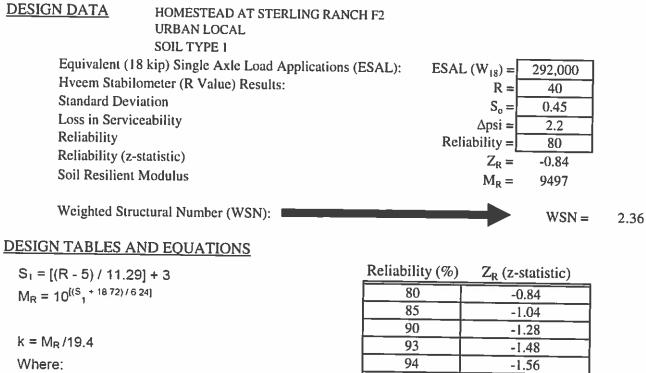
 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.11$ Strength Coefficient - Aggregate Base Course

D₁ = Depth of Asphalt (inches) D₂ = Depth of Base Course (inches)

FOR FULL DEPTH ASPHALT SECTION (CURRENTLY NOT ALLOWED)

 $D_1 = (WSN)/C_1 = 5.4$ inches of Full Depth Asphalt Use 6.0 inches Full Depth


FOR ASPHALT + AGGREGATE BASE COURSE SECTION

Asphalt Thickness (t) = 4 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 5.4$ inches of Aggregate Base Course, use 8.0 inches

RECOMMENDED ALTERNATIVES

- 1. 4.0 inches of Asphalt + 8.0 inches of Aggregate Base Course, or
- 2. 6.0 inches of Full Depth Asphalt

Job No. 190014 Fig. No. C-16

M_R = resilient modulus (psi)

 S_1 = the soil support value

 $\log_{10}W_{18} = Z_{R} * S_{O} +$

R = R-value obtained from the Hveem stabilometer

CBR = California Bearing Ratio

Rendonity (70)	$\underline{Z_R}$ (Z-statistic)
80	-0.84
85	-1.04
90	-1.28
93	-1.48
94	-1.56
95	-1.65
96	-1.75
97	-1.88
98	-2.05
99	-2.33
99.9	-3.09
99.99	-3.75

$$9.36^{*}\log_{10}(SN+1) - 0.20 + \frac{\log_{10}}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32^{*}\log_{10}M_{R} - 8.07$$

Left	Right	Difference
5.47	5.47	0.0

Job No. 190014 Fig. No. C-11

DESIGN DATA	HOMESTEAD AT STERLING RANCH F2		
	URBAN LOCAL		
	SOIL TYPE 1		
Equivaler	tt (18 kip) Single Axle Load Applications (ESAL):	ESAL =	292,000
Hveem St	abilometer (R Value) Results:	R =	40
Weighted	Structural Number (WSN):	WSN =	2.36

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.11$ Strength Coefficient - Recycled Concrete

 D_1 = Depth of Asphalt (inches) D_2 = Depth of Base Course (inches)

FOR FULL DEPTH ASPHALT SECTION (CURRENTLY NOT ALLOWED)

 $D_1 = (WSN)/C_1 = 5.4$ inches of Full Depth Asphalt Use 6.0 inches Full Depth

FOR ASPHALT + RECYCLED CONCRETE BASE COURSE SECTION

Asphalt Thickness (t) = 4 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 5.4$ inches of Recycled Concrete Base Course, use 8.0 inches

RECOMMENDED ALTERNATIVES

- 1. 4.0 inches of Asphalt + 8.0 inches of Recycled Concrete Base Course, or
- 2. 6.0 inches of Full Depth Asphalt

Job No. 190014 Fig. No. C-12-

DESIGN DATA HOMESTEAD AT STERLING RANCH F2 URBAN LOCAL SOIL TYPE 2 Equivalent (18 kip) Single Axle Load Applications (ESAL): $ESAL(W_{18}) =$ 292,000 Hveem Stabilometer (R Value) Results: R =6 Standard Deviation $S_o =$ 0.45 Loss in Serviceability 2.2 $\Delta psi =$ Reliability Reliability = 80 Reliability (z-statistic) $Z_R =$ -0.84 Soil Resilient Modulus $M_R =$ 3126 Weighted Structural Number (WSN): WSN =3.50 **DESIGN TABLES AND EQUATIONS** Reliability (%) Z_R (z-statistic) $S_1 = [(R - 5) / 11.29] + 3$ 80 -0.84 $M_{\rm R} = 10^{[(S_1 + 1872)/624]}$ 85 -1.04 90 -1.28 $k = M_R / 19.4$ 93 -1.48 94 -1.56 Where: 95 -1.65 M_R = resilient modulus (psi) 96 -1.75 S₁ = the soil support value 97 -1.88 98 -2.05

R = R-value obtained from the Hyeem stabilometer

CBR = California Bearing Ratio

		99.99 99.99		-3.09			
, lo	99 ₁₀	Δ PSI 4.2 - 1.5]				
		4004		+ 2.32	:" log ₁₀ \	/I _R - 8.	υ

-2.33

. ...

$$0.40 + \frac{1094}{(SN+1)^{5.19}}$$

99

00.0

70

Job No. 190014 Fig. No. <-13

Left	Right	Difference
5.47	5.47	0.0

 $\log_{10}W_{18} = Z_{R}^{*}S_{O} + 9.36^{*}\log_{10}(SN+1) - 0.20 + ----$

<u>DESIGN DATA</u>	HOMESTEAD AT STERLING RANCH F2		
	URBAN LOCAL		
	SOIL TYPE 2		
Equivaler	tt (18 kip) Single Axle Load Applications (ESAL):	ESAL =	292,000
Hveem St	abilometer (R Value) Results:	R =	6
Weighted	Structural Number (WSN):	WSN =	3.50

DESIGN EQUATION

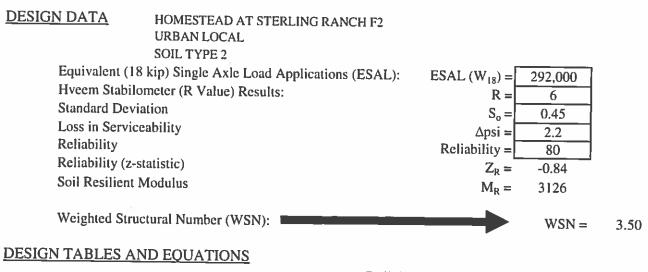
 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.11$ Strength Coefficient - Aggregate Base Course

D₁ = Depth of Asphalt (inches) D₂ = Depth of Base Course (inches)

FOR FULL DEPTH ASPHALT SECTION (CURRENTLY NOT ALLOWED)

 $D_1 = (WSN)/C_1 = 7.9$ inches of Full Depth Asphalt Use 8.0 inches Full Depth


FOR ASPHALT + AGGREGATE BASE COURSE SECTION

Asphalt Thickness (t) = 5 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 11.8$ inches of Aggregate Base Course, use 12.0 inches

RECOMMENDED ALTERNATIVES

- 1. 5.0 inches of Asphalt + 12.0 inches of Aggregate Base Course, or
- 2. 8.0 inches of Full Depth Asphalt

Job No. 190014 Fig. No. C-1-1

 $S_1 = [(R - 5) / 11.29] + 3$ $M_R = 10^{[(S_1 + 18.72) / 6.24]}$

 $k = M_R / 19.4$

Where:

M_R = resilient modulus (psi)

S1 = the soil support value

R = R-value obtained from the Hveem stabilometer

CBR = California Bearing Ratio

Reliability (%)	Z_R (z-statistic)
80	-0.84
85	-1.04
90	-1.28
93	-1.48
94	-1.56
95	-1.65
96	-1.75
97	-1.88
98	-2.05
99	-2.33
99.9	-3.09
99.99	-3.75

$$\log_{10}W_{18} = Z_R^* S_O^+ 9.36^* \log_{10}(SN+1) - 0.20 + -----$$

$$\frac{\log_{10} \left[4.2 - 1.5 \right]}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32^* \log_{10} M_R^{-8.07}$$

Left	Right	Difference
5.47	5.47	0.0

Job No. 190014 Fig. No. c -15

<u>DESIGN DATA</u>	HOMESTEAD AT STERLING RANCH F2		
	URBAN LOCAL		
	SOIL TYPE 2		
Equivaler	tt (18 kip) Single Axle Load Applications (ESAL):	ESAL =	292,000
Hveem St	abilometer (R Value) Results:	R =	6
Weighted	Structural Number (WSN):	WSN =	3.50

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.11$ Strength Coefficient - Recycled Concrete

D₁ = Depth of Asphalt (inches) D₂ = Depth of Base Course (inches)

FOR FULL DEPTH ASPHALT SECTION (CURRENTLY NOT ALLOWED)

 $D_1 = (WSN)/C_1 = 7.9$ inches of Full Depth Asphalt Use 8.0 inches Full Depth

FOR ASPHALT + RECYCLED CONCRETE BASE COURSE SECTION

Asphalt Thickness (t) = 5 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 11.8$ inches of Recycled Concrete Base Course, use 12.0 inches

RECOMMENDED ALTERNATIVES

- 1. 5.0 inches of Asphalt + 12.0 inches of Recycled Concrete Base Course, or
- 2. 8.0 inches of Full Depth Asphalt

Job No. 190014 Fig. No.