INNOVATIVE DESIGN. CLASSIC RESULTS.

FINAL DRAINAGE REPORT FOR STERLING RANCH EAST FILING NO. 2
 \&
 FOURSQUARE AT STERLING RANCH EAST FILING NO. 1

March 2023

Prepared for:
CLASSIC SRJ LAND, LLC
2138 Flying Horse Club Dr.
COLORADO SPRINGS CO 80921
(719) 592-9333

Prepared by:
CLASSIC CONSULTING ENGINEERS \& SURVEYORS
619 N. CASCADE AVENUE, SUITE 200
COLORADO SPRINGS CO 80903
(719) 785-0790

Job no. 2183.23
PCD File \# SF2236 \& SF2237

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

David L Gibson, Colorado P.E. \#46477

Date

DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name: Classic SRJ Land, LLC

By:
Title:

Address: $\quad \underline{2138}$ Flying Horse Club Dr.
Colorado Springs, CO 80921

EL PASO COUNTY ONLY:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

FINAL DRAINAGE REPORT FOR STERLING RANCH EAST FILING NO. 2 \& FOURSQUARE AT STERLING RANCH EAST FILING NO. 1

TABLE OF CONTENTS:

| PURPOSE | Page | 4 |
| :--- | :---: | :---: | :---: |
| PROJECT DESCRIPTION | Page | 4 |
| PREVIOUS REPORTS | Page | 4 |
| SOILS \& GEOLOGY | Page | 5 |
| DRAINAGE CRITERIA | Page | 5 |
| FLOODPLAIN STATEMENT | Page | 6 |
| EXISTING DRAINAGE CONDITIONS | Page | 6 |
| PROPOSED DRAINAGE CONDITIONS | Page | 6 |
| STORMWATER QUALITY (FOUR STEP PROCESS) | Page | 11 |
| DRAINAGE AND BRIDGE FEES | Page | 15 |
| CONSTRUCTION COST OPINION | Page | 16 |
| SUMMARY | Page | 17 |
| REFERENCES | Page | 18 |

DRAINAGE MAPS

FINAL DRAINAGE REPORT FOR STERLING RANCH EAST FILING NO. 2 \& FOURSQUARE AT STERLING RANCH EAST FILING NO. 1

PURPOSE

This document is the Final Drainage Report for Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No. 1. The purpose of this report is to identify onsite and offsite drainage patterns, define areas tributary to the proposed full spectrum detention and water quality facility (FSD Pond 16), and to safely route developed storm water runoff via a proposed storm sewer system. The proposed Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No. 1 developments shall be in adherence to the El Paso County approved Master Development Drainage Plan and MDDP Amendment for Sterling Ranch as well as current County Drainage Criteria.

PROJECT DESCRIPTION

The Sterling Ranch East Filing No. 2 development is 16.841 acres and Foursquare at Sterling Ranch East Filing No. 1 is 36.647 acres of the 321.37 total acres of Sterling Ranch East, a phased master planned community located in northern El Paso County, Colorado. These developments consist of public residential roadways and single-family home lots. The site is located in portion of Section 33 \& 34, Township 12 South, Range 65 west of the 6th p.m. in El Paso County, Colorado. The site is located on the east side of Sand Creek. The site is bounded on the north, east and west by proposed and future Sterling Ranch East residential development, west and south by the proposed extension of Briargate Pkwy. The site is in the upper portion of both the Sand Creek and Sand Creek East Fork Drainage Basins. These sites will be constructed concurrently.

PREVIOUS REPORTS

The latest and most applicable previously approved drainage studies are the following:

1. "Sterling Ranch MDDP Amendment No. 2 \& Preliminary Drainage Report for Sterling Ranch East Preliminary Plan No. 1," by Classic Consulting Engineers \& Surveyors, LLC approval pending.
2. "Master Development Drainage Plan Amendment for Sterling Ranch," by JR Engineering, LLC, dated September 2022.
3. "2018 Sterling Ranch MDDP," by M\&S Civil Consultants, Inc. June 2018.

Page 4
4. "Drainage Letter for Sterling Ranch Road and Briargate Pkwy. Interim Plan," by JR Engineering, LLC dated September 2022.
5. "Final Drainage Report for Sand Creek Restoration," by JR Engineering, LLC, dated September 2022.

SOILS AND GEOLOGY

The soils within the Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No . 1 site and tributary area are Hydrologic Soil Group A, Blakeland loamy sand and Columbine gravelly sandy loam and Soil Group B Pring Coarse Sandy Loam (included for future areas) (See Appendix for Soil Map).

DRAINAGE CRITERIA

Hydrologic calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the DCM as revised in May 2014. Full Spectrum Detention and Stormwater quality analysis, Extended Detention Basin (EDB) design, are per the Mile High Flood District Manual and MHFD-Detention version 4.06 and UD-BMP version 3.07 spreadsheet. The Rational Method was used to estimate stormwater runoff from the developed project and tributary to the proposed full spectrum detention/water quality pond. The UDFCD UD-Inlet excel workbook was used to verify street capacities, size sump inlets, and calculate interception and flow-by rates of at-grade inlets. The UD-Sewer computer program was used to calculate the hydraulic grade line (HGL) within the storm sewer system. An overall tributary area exhibit is included to show the various types of pervious and impervious areas established to determine the overall imperviousness of the 220.90 ultimate acres tributary to the proposed full spectrum detention/water quality facility (FSD Pond 16) and 44.02 interim acres are tributary with development of Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No. 1 only.

FLOODPLAIN STATEMENT

No portions of the Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No. 1 are located within a floodplain as determined by the Flood Insurance Rate Maps (F.I.R.M.) Map Numbers 08041C 0533G, effective date, December 7, 2018.

Page 5

EXISTING DRAINAGE CONDITIONS

The "Sterling Ranch MDDP Amendment No. 2 \& Preliminary Drainage Report for Sterling Ranch East Preliminary Plan No. 1," by Classic Consulting Engineers \& Surveyors, LLC is currently under review and approval process with El Paso County Development Services and in full detail describes the Existing Conditions of the proposed development area. Please see this report for the full descriptions. The PreDeveloped (Existing) Conditions Maps are included in the Appendix of this Report and include the Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No. 1 boundary's.

The proposed site is located within Basins EX-5, EX-7, EX-9 \& EX10A of the Preliminary Drainage Report study and drains north to south. The site has been previously disturbed with mass grading operations and vegetation is sparse and of natural grassland consistency (no trees or shrubs). See previous reports for additional details on the Existing Conditions.

The adjacent Briargate Parkway and Sterling Ranch Road drainage and roadway design was completed by JR Engineering, "Drainage Letter for Sterling Ranch Road and Briargate Parkway Interim Plan," May 2022. These roadways and storm system will be constructed prior to and in conjunction with the proposed Filing No. 1 development. Therefore, the storm system described within this JR Engineering Letter and Construction Drawings is shown as 'Existing' with proposed storm sewer extensions into the storm system for Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No. 1.

PROPOSED DRAINAGE CONDITIONS

Developed runoff from Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No. 1 will be collected in a public-private storm system and piped into the Privately owned and maintained full spectrum detention/water quality facility (FSD Pond 16) that will detain and treat the developed runoff prior to releasing at or below historic rates to the downstream channel (Sand Creek Reach SC-9). As previously mentioned, the rational method was used to estimate developed runoff values. All storm sewer inlets and pipes collecting runoff within the County right-of-way will be 'Public'. All storm sewer outside of right-of-way, including the pond outfall pipe, is 'Private' as is the proposed full spectrum

Page 6
detention facility. Private facilities will be owned and maintained by the Sterling Ranch Metropolitan District. HGL grade line calculations are included in the Appendix in support of the construction drawings for the proposed Public and Private storm systems.

Per the current El Paso County Drainage Criteria for stormwater capacity within street sections, the following summaries of Figures 7-7 applies: all proposed roads are Residential.

Street Type	Allowable - Initial Storm (5 yr)	Allowable - Major Storm (100 $\boldsymbol{y r})$
Residential w/Ramp Curb	1.5% street slope $=10 \mathrm{cfs}$	1.5% street slope $=46 \mathrm{cfs}$
	2% street slope $=12 \mathrm{cfs}$	2% street slope $=44 \mathrm{cfs}$
	4% street slope $=16.5 \mathrm{cfs}$	4% street slope $=36 \mathrm{cfs}$
	6% street slope $=19.5 \mathrm{cfs}$	6% street slope $=32 \mathrm{cfs}$
	8% street slope $=17.8 \mathrm{cfs}$	8% street slope $=29 \mathrm{cfs}$
	10% street slope $=16.5 \mathrm{cfs}$	10% street slope $=27.5 \mathrm{cfs}$
	No curb overtopping.	$12 "$ maximum depth at flowline.
Residential w/Vertical Curb	1.5% street slope $=13 \mathrm{cfs}$	1.5% street slope $=45 \mathrm{cfs}$
$(6 "$ Vertical Curb)	2% street slope $=15 \mathrm{cfs}$	2% street slope $=43 \mathrm{cfs}$
	4% street slope $=20.5 \mathrm{cfs}$	4% street slope $=35 \mathrm{cfs}$
	6% street slope $=18 \mathrm{cfs}$	6% street slope $=31 \mathrm{cfs}$
	8% street slope $=16.8 \mathrm{cfs}$	8% street slope $=28 \mathrm{cfs}$
	10% street slope $=15.7 \mathrm{cfs}$	10% street slope $=26.5 \mathrm{cfs}$
	No curb overtopping.	$12 "$ maximum depth at flowline.

At-grade inlets and sump (low-points) were designed in a way that street capacity is not an issue anywhere within the proposed Filings. Homes near sump inlets shall be constructed at least 1 foot above the 100-year water surface ponding elevation. Street capacity has also been verified at each design point by using the UD-Inlet Excel workbook (located in Appendix) from Urban Drainage Flood Control District (UDFCD). Inlet sizing is also per the UD-Inlet Excel workbook. Drainage from individual lots shall travel in side-lot swales to the street. One Site-Level Low Impact Development form (IRF form) is included in the Appendix of this report, for the basins that discharge to the proposed full spectrum detention and
water quality FSD Pond 16. A detailed description of the developed flows for Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No. 1 is as follows:

Design Point $1\left(Q_{5}=5.2 \mathbf{c f s}, Q_{100}=\mathbf{1 4 . 6} \mathbf{c f s}\right)$ consists of developed flows from Basin B. Basin B is 4.99 acres of proposed residential development with associated streets, landscaping, and homes. Flows travel south in the east curbline of Boise Court and west curbline of Boulder City Place to Design Point 1 where a proposed public 10^{\prime} Type R sump inlet will intercept flows. Flow will be conveyed by a proposed 24 " RCP public storm sewer (Pipe 1). The emergency overflow route for this inlet will be south to Design Point 2.

Design Point $2\left(Q_{5}=\mathbf{3 . 6} \mathbf{c f s}, Q_{100}=\mathbf{1 0 . 0} \mathbf{~ c f s}\right)$ consists of developed flows from Basin A. Basin A is 2.90 acres of proposed residential development with associated streets, landscaping, and homes. Flows travel south in the west curbline of Boise Court and to the south curbline of Catalina Road to Design Point 2 where a proposed public 5' Type R sump inlet will intercept flows. Flow will be conveyed by a proposed $24^{\prime \prime}$ RCP public storm sewer (Pipe 2). The emergency overflow route for this inlet will overtop the southeast curb return at the at the intersection of Catalina Road and Boulder City Place and continue south along Boulder City Place.

Design Point $\mathbf{3}\left(\mathrm{Q}_{5}=\mathbf{8 . 2} \mathbf{~ c f s}, \mathrm{Q}_{100}=\mathbf{2 3 . 1} \mathbf{~ c f s}\right)$ consists of developed flows from Basin J. Basin J is 3.87 acres of proposed residential development with associated streets, landscaping, and homes. Flows travel south in the curbline of Salt Lake Drive and to the north curbline of Catalina Road to Design Point 3 where a proposed public 10^{\prime} Type R sump inlet will intercept flows. Flow will be conveyed by a proposed 24 " RCP public storm sewer (Pipe 6). The emergency overflow route for this inlet will be south to Design Point 4.

Design Point $4\left(Q_{5}=\mathbf{2 . 2} \mathbf{~ c f s , ~} Q_{100}=\mathbf{6 . 1} \mathbf{~ c f s}\right)$ consists of developed flows from Basin K. Basin K is 1.83 acres of proposed residential development with associated streets, landscaping, and homes. Flows travel south in the south curbline of Catalina Road to Design Point 4 where a proposed public 5' Type R sump inlet will intercept flows. Flow will be conveyed by a proposed 18" RCP public storm sewer (Pipe 7). The

ENGINEERS \& SURVEYORS
Page 8
emergency overflow route for this inlet will overtop curb behind Design Point 4 to Tract A and then to Briargate Parkway.

Design Point $5\left(Q_{5}=3.0 \mathrm{cfs}, \mathrm{Q}_{100}=\mathbf{7 . 0} \mathbf{c f s}\right)$ consists of developed flows from Basin D , Basin F and Basin OS-1. Basin D is 0.20 acres of Idaho Falls Drive. Basin F is 0.49 acres of proposed Idaho Falls Drive. Basin OS-1 is 2.6 _acres of future residential development north of Idaho Falls Drive. Flows travel east in the north curbline of Idaho Falls Drive to Design Point 5 where a proposed public 10' Type R sump inlet will intercept flows. Flow will be conveyed by a proposed 18" RCP public storm sewer (Pipe 9). The emergency overflow route for this inlet will be south to Design Point 6. Unresolved:
Hydrology spreadsheet and drainage map have different areas
for this basin. Revise so all 3 locations show the same area
Design Point $6\left(Q_{5}=0.7 \mathrm{cfs}, Q_{100}=1.3 \mathrm{cts}\right)$ consists ot developed tlows trom Basin G. Basin G is 0.16 acres of proposed Idaho Falls Drive. Flows travel south in the south curbline of Idaho Falls Drive to Design Point 6 where a proposed public 5' Type R sump inlet will intercept flows. Flow will be conveyed by a proposed 18 " RCP public storm sewer (Pipe 10). The emergency overflow route for this inlet will overtop the southeast curb return at the at the intersection of Idaho Falls Drive and Pagosa Springs Drive and continue south along Pagosa Springs Drive to Design Point 8.

Design Point $7\left(Q_{5}=5.5 \mathrm{cfs}, \mathrm{Q}_{100}=\mathbf{1 4 . 1} \mathbf{~ c f s}\right)$ consists of developed flows from Basin H . Basin H is 4.01 acres of proposed residential development with associated streets, landscaping, and homes. Flows travel south in the west curbline of Pagosa Springs Drive to Design Point 7 where a proposed public 10^{\prime} Type R sump inlet will intercept flows. Flow will be conveyed by a proposed 24 " RCP public storm sewer (Pipe 12). The emergency overflow route for this inlet will overtop the highpoint in Pagosa Springs Drive to Design Point 3.

Design Point $8\left(Q_{5}=1.1\right.$ cfs, $Q_{100}=4.6$ cfs) consists of developed flows from Basin I. Basin I is 1.68 acres of proposed residential development with associated streets, landscaping, open space and homes. Flows travel south in the east curbline of Pagosa Springs Drive to Design Point 8 where a proposed public 5' Type R sump inlet will intercept flows. Flow will be conveyed by a proposed $18{ }^{\prime \prime}$ RCP public storm sewer (Pipe 13). The emergency overflow route for this inlet will overtop the crown in the road to Design Point 7.

Page 9

Design Point $9\left(Q_{5}=7.6\right.$ cfs, $Q_{100}=21.9$ cfs) consists of developed flows from Basin M and Basin N . Basin M is 4.10 acres and Basin N is 3.00 acres of proposed residential development with associated streets, landscaping, and homes. Developed flows travel east in the north curbline of Catalina Road to a proposed public 15^{\prime} Type R at-grade inlet at Design Point 9. This at-grade inlet will intercept ($Q_{5}=7.1 \mathrm{cfs}$, $Q_{100}=13.2 \mathrm{cfs}$) with a flow-by of ($Q_{5}=0.5 \mathrm{cfs}, Q_{100}=8.7 \mathrm{cfs}$) that will travel in the north curb line of Catalina Road to Design Point 10. Intercepted flows will be conveyed by a proposed 24 " RCP public storm sewer (Pipe 16).

Design Point $10\left(Q_{5}=\mathbf{3 . 6} \mathbf{~ c f s}, Q_{100}=\mathbf{1 5 . 7} \mathbf{~ c f s}\right)$ consists of developed flows from Basin L and Flow-by Design Point 9. Basin L is 2.20 acres of proposed residential development with associated streets, landscaping, open space and homes. Flows travel south in the south curbline of Catalina Road to Design Point 10 where a proposed public 15^{\prime} Type R sump inlet will intercept flows. Flow will be conveyed by a proposed 24 " RCP public storm sewer (Pipe 18). The emergency overflow route for this inlet will overtop the curb and into Tract A and then to Sterling Ranch Road.

Design Point $11\left(Q_{5}=2.3\right.$ cfs, $Q_{100}=5.1$ cfs) consists of developed flows from Basin R and Basin S. Basin R is 0.33 acres and Basin S is 1.00 acres of proposed residential development with associated streets, landscaping, and homes. Developed flows travel south in the east curbline of Boulder City Place to a proposed public 15^{\prime} Type R at-grade inlet at Design Point 11. This at-grade inlet will intercept ($\mathrm{Q}_{5}=2.3$ $\left.\mathrm{cfs}, \mathrm{Q}_{100}=5.1 \mathrm{cfs}\right)$ with a flow-by of ($\left.\mathrm{Q}_{5}=0.0 \mathrm{cfs}, \mathrm{Q}_{100}=0.0 \mathrm{cfs}\right)$. Intercepted flows will be conveyed by a proposed 18 " RCP public storm FFlows do not match hydrology spreadsheet
Design Point $12\left(Q_{5}=3.6 \mathrm{cfs}, \mathrm{Q}_{100}=15.7 \mathrm{cfs}\right)$ consists of developed flows from Basin C and Basin Q . Basin C is 0.72 acres of open space tract that will discharge directly Briargate Parkway. Basin Q is 0.50 acres of open space tract that will discharge directly Briargate Parkway. Flows will be intercepted by an existing 20' Type R inlet in Briargate Parkway installed with Sterling Ranch East Filing No. 1. This is shown as a portion of Basin P1-A2 in the Sterling Ranch East Filing No. 1 Final Drainage Report and these flows were accounted for at this design point.

Design Point $13\left(Q_{5}=\mathbf{5 . 4} \mathbf{~ c f s ,} \mathrm{Q}_{100}=\mathbf{1 5 . 1} \mathbf{~ c f s}\right)$ consists of developed flows from Basin OS-2. Basin OS-2 is 4.35 acres of future residential development with associated streets, landscaping, and homes located north of Foursquare at Sterling Ranch East Filing No. 1 with the future extension of Sterling Ranch Road. Future Final Drainage Report for this area will detail this basin. For this report it is assumed that Developed flows travel south in the west curbline of future Sterling Ranch Road to a future public 15' Type R at-grade inlet at Design Point 13. This at-grade inlet will intercept ($Q_{5}=5.4 \mathrm{cfs}, Q_{100}=10.8 \mathrm{cfs}$) with a flow-by of ($Q_{5}=0.0 \mathrm{cfs}, \mathrm{Q}_{100}=4.3 \mathrm{cfs}$) that will travel in the west curb line of Sterling Ranch Road to Design Point 15. Intercepted flows will be conveyed by a future public storm sewer constructed with future development.

Design Point $14\left(Q_{5}=4.0\right.$ cfs, $\left.Q_{100}=\mathbf{1 1 . 2} \mathbf{~ c f s}\right)$ consists of developed flows from Basin OS-3. Basin OS-3 is 3.23 acres of future residential development with associated streets, landscaping, and homes located north of Foursquare at Sterling Ranch East Filing No. 1 with the future extension of Sterling Ranch Road. Future Final Drainage Report for this area will detail this basin. For this report it is assumed that Developed flows travel south in the east curbline of future Sterling Ranch Road to a future public $\mathbf{1 5}^{\prime}$ Type R at-grade inlet at Design Point 14. This at-grade inlet will intercept ($Q_{5}=4.0 \mathrm{cfs}, Q_{100}=9.1 \mathrm{cfs}$) with a flow-by of ($Q_{5}=0.0 \mathrm{cfs}, \mathrm{Q}_{100}=2.1 \mathrm{cfs}$) that will travel in the east curb line of Sterling Ranch Road to Design Point 16. Intercepted flows will be conveyed by a future public storm sewer constructed with future development.

Design Point $15\left(Q_{5}=2.9\right.$ cfs, $Q_{100}=\mathbf{1 0 . 1} \mathbf{~ c f s) ~ c o n s i s t s ~ o f ~ d e v e l o p e d ~ f l o w s ~ f r o m ~ B a s i n ~ O ~ a n d ~ f l o w - b y ~ f r o m ~}$ Design Point 13. Basin O is 1.11 acres of open space tract and Sterling Ranch Road. Developed flows travel south in the west curb line of Sterling Ranch Road to a public 15' Type R at-grade inlet at Design Point 15. This at-grade inlet will intercept ($\mathrm{Q}_{5}=2.9 \mathrm{cfs}, \mathrm{Q}_{100}=8.9 \mathrm{cfs}$) with a flow-by of ($\mathrm{Q}_{5}=0.0 \mathrm{cfs}, \mathrm{Q}_{100}=$ 2.1 cfs) that will travel in the east curb line of Sterling Ranch Road. Flows will be intercepted by an existing 20' Type R inlet in Briargate Parkway installed with Sterling Ranch East Filing No. 1. This is shown as a portion of Basin P1-C2 in the Sterling Ranch East Filing No. 1 Final Drainage Report and were accounted for in that report.

Indicate what design flows were in the previous report for the existing inlet

Design Point $16\left(Q_{5}=2.7\right.$ cfs, $\left.Q_{100}=\mathbf{7 . 4} \mathbf{~ c f s}\right)$ consists of developed flows from Basin U and flow-by from Design Point 14. Basin U is 0.60 acres of open space tract and Sterling Ranch Road. Developed flows travel south in the west curb line of Sterling Ranch Road to a public 15' Type R at-grade inlet at Design Point 16. This at-grade inlet will intercept ($\mathrm{Q}_{5}=2.9 \mathrm{cfs}, \mathrm{Q}_{100}=7.6 \mathrm{cfs}$) with a flow-by of ($\mathrm{Q}_{5}=0.0 \mathrm{cfs}, \mathrm{Q}_{100}=$ 0.40 cfs) that will travel in the east curb line of Sterling Ranch Road. Flows will be intercepted by an existing 20' Type R inlet in Briargate Parkway installed with Sterling Ranch East Filing No. 1. This is shown as a portion of Basin P1-C2 in the Sterling Ranch East Filing No. 1 Final Drainage Report and were accounted for in that report.

Design Point $17\left(Q_{5}=1.3 \mathrm{cfs}, \mathrm{Q}_{100}=4.2 \mathrm{cfs}\right)$ consists of developed flows from Basin V and flow-by from Design Point 15 \& 16. Basin V is 0.45 acres of Sterling Ranch Road. Developed flows travel south in the curb lines of Sterling Ranch Road. Design Point represents flows from Sterling Ranch Road that enter Briargate Parkway. Flows will be intercepted by an existing 20' Type R inlet in Briargate Parkway installed with Sterling Ranch East Filing No. 1. This is shown as a portion of Basin P1-C2 in the Sterling Ranch East Filing No. 1 Final Drainage Report and were accounted for in that report.

Design Point $18\left(Q_{5}=\mathbf{0 . 7} \mathbf{c f s}, Q_{100}=\mathbf{2 . 4} \mathbf{~ c f s}\right)$ consists of developed flows from Basin P.
Basin P is 0.63 acres of open space tract that will discharge directly Briargate Parkway. Flows will be intercepted by an existing 20' Type R inlet in Briargate Parkway installed with Sterling Ranch East Filing No. 1. This is shown as a portion of Basin P1-A2 in the Sterling Ranch East Filing No. 1 Final Drainage Report and these flows were accounted for at this design point.

Design Point 19 ($Q_{5}=48$ cfs, $\left.Q_{100}=130 \mathrm{cfs}\right)$ consists of Basin T and Pipe 22 and represents to the total flows into the proposed private Full Spectrum Detention Facility from Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No. 1. Basin T is 11.19 acres of landscape slope and pond. Pipe $22\left(Q_{5}=\mathbf{4 9 . 8} \mathbf{c f s}, Q_{100}=\mathbf{1 2 1 . 5} \mathbf{c f s}\right)$ is a public $48^{\prime \prime}$ RCP storm.

Basin $E\left(Q_{5}=2.2\right.$ cfs, $Q_{100}=\mathbf{1 6 . 3} \mathbf{~ c f s)}$ is 7.82 acres of open space tract and adjacent Sand Creek (Reach SC-9) channel improvements and rear landscaped yards that are within the boundary of Sterling Ranch East Filing No. 2. This is shown as a portion of Basin SC-4 in the SKP-22-004/SP-22-004 MDDP

Amendment for Sterling Ranch East and consists of the anticipated rear yards of the lots adjacent to the creek that will continue to sheet flows directly towards the Sand Creek corridor. At this time, these rear yards are not able to be captured and routed to a formal stormwater quality facility. However, given the minimal unconnected impervious area and sizeable receiving pervious are within this basin, the WQCV reduction $=100 \%$ with 0 untreated WQCV. (See Appendix for references) All channel work is completed per the "Final Drainage Report for Sand Creek Restoration," by JR Engineering LLC, dated September 2022.

Tract I per Final Plat SF2236

STORM WATER QUALITY/DETENTION

As required, storm water quality measures will be utilized in order to reduce the amount of sediment, debris and pollutants that are allowed to enter Sand Creek. Developed flows from Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No. 1 along with future flows from the Sterling Ranch East Preliminary Plan 1 . 1 will be routed to a private Full Spectrum Detention facility, FSD Pond 16 to be located in Tract H of Foursquare at Sterling Ranch East Filing No. 1. The facilities will release treated developed flows to an existing 48" RCP storm within future Briargate Parkway. Reference the "Drainage Letter for Sterling Ranch Road and Briargate Pkwy. Interim Plan", prepared by JR Engineering, LLC, dated December 2021 and the "Sterling Ranch Road and Briargate Pkwy. Storm Plans", prepared by JR Engineering, LLC, dated September 2022. These referenced design plans provide a $48^{\prime \prime}$ RCP outfall pipe at this location with an allowable release rate of ($\left.Q_{100}=156.6 \mathrm{cfs}\right)$

Private FSD POND-16

The outlet structure will be designed in an interim condition until future tributary storm systems from developments north of Foursquare at Sterling Ranch East Filing No . 1 are developed. The interim condition consists of developed flows from both Foursquare at Sterling Ranch East Filing No. 1 and Sterling Ranch East Filing No. 2 as these sites will be constructed concurrently. As systems are designed and plans submitted for review, Final Drainage Reports will be submitted updated the outlet plate until the ultimate condition is reached. This report will detail the interim condition as well as estimated ultimate conditions based on tributary areas shown in the Preliminary Drainage Report for Foursquare at Sterling Ranch Preliminary Plan/PUD as well as the Sterling Ranch MDDP amendment No. 2.

Page 13

The UD-BMP spreadsheet along with the UD-Detention spreadsheet were used to calculate the required volume for the EJJRV and 100-year release. User input 1-hour precipitation values in the UD-Detention spreadsheet were taken from Table 6-2 Volume 1 Colorado Springs El Paso County Drainage Criteria Manual. The UD-BMP IRF spreadsheet (see appendix) was used to calculate the overall total site imperviousness Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No. 1 to the EDB (Interim) and these subdivisions including the future tributary area (Ultimate). This total interim area is 44.02 acres. Per the IRF spread sheet a 100 Year Event 44.40% imperviousness will be used in the interim condition (see appendix). This total ultimate area is estimated at 220.90 acres. Per the IRF spread sheet a 100 Yeak Event 49.30\% imperviousness will be used in the ultimate condition (See IRF Spreadsheet in Appendix)

Per information in Appendix (reference materials from previous reports, page 115) interim condition also accounted for full 220.9 acres at a 26% imperviousness

Interim Condition (Sterling Ranch East Filing No. 2 \& Foursquare at Sterling Ranch East Filing No. 1)

Per UD-Detention spreadsheet a 0.702 ac-ft. WQVC, 1.478 ac-ft. EURV, and a 3.5 .81 ac-ft. 100-year flow volume is provided. The outlet structure will have a 4-hole configuration with 4 individual rectangular holes spaced 30 inches apart each hole with have an area of $3.50,9.0,16.0$ and 16.0 square inches. The outlet box will be an $20^{\prime} \times 4^{\prime}$ grated inlet box 10.0^{\prime} tall with a $48^{\prime \prime}$ RCP storm sewer outlet with a plate $26^{\prime \prime}$ from invert will connect to the existing 48" RCP storm sewer in Briargate Parkway. A 170' wide 2^{\prime} deep emergency overflow weir will be installed in the pond berm with Type L rip-rap (see appendix for calculation). Flows will overtop the pond in the provided weir and travel directly to the adjacent Briargate Parkway. Maintenance and ownership of the Private detention/water quality facility and the entire proposed storm sewer is by the Sterling Ranch East Metropolitan District. An El Paso County Detention Pond Maintenance Agreement will be required indieating these Facilities to be ultimately owned and maintained by the Metro District

> Plat has district listed as "Sterling
> Ranch Metropolitan District No. 3"

Planned release per the UD-Detention spreadsheet from the Full Spectrum EDB will be $\mathbf{Q}_{5}=\mathbf{0 . 7 0} \mathbf{~ c f s , ~}$ $Q_{100}=1.60$ cfs. Allowable release into the existing 48 " RCP outfall pipe at this location is anticipated to release rate of ($Q_{100}=156.6 \mathrm{cfs}$). This facility restricts the release to below pre-development (historic levels) per the MHFD-Detention spreadsheet and is in conformance with the Preliminary Drainage Report and MDDP Amendment.

ENGINEERS \& SURVEYORS
Page 14

Abstract

Ultimate Condition (Sterling Ranch East Filing No. 2, Foursquare at Sterling Ranch East Filing No. 1 \& Future Sterling Ranch East Development)

The Ultimate condition is an estimate only for the full assumed tributary area to Pond FSD 16 at full building out. I will be constructed with future developments. Per UD-Detention spreadsheet a 3.762 ac-ft. WQVC, 8.526ac-ft. EURV, and a 20.079 ac-ft. 100-year flow volume is provided. The outlet structure will have a 4-hole configuration with 4 individual rectangular holes spaced 30 inches apart each hole with have an area of $10.0,14.0,16.0$ and 16.0 square inches. The outlet box will be an $20^{\prime} \times 4^{\prime}$ grated inlet box 10.0^{\prime} tall with a $48^{\prime \prime}$ RCP storm sewer outlet with a plate $26^{\prime \prime}$ from invert will connect to the existing 48" RCP storm sewer in Briargate Parkway. A 170' wide 2' deep emergency overflow weir will be installed in the pond berm with Type L rip-rap (see appendix for calculation). Flows will overtop the pond in the provided weir and travel directly to the adjacent Briargate Parkway. Maintenance and ownership of the Private detention/water quality facility and the entire proposed storm sewer is by the Sterling Ranch East Metropolitan District. An El Paso County Detention Pond Maintenance Agreement will be required indicating these Facilities to be ultimately owned and maintained by the Metro District

Planned release per the UD-Detention spreadsheet from the Full Spectrum EDB will be $\mathbf{Q}_{5}=\mathbf{4 . 1} \mathbf{~ c f s}$, $Q_{100}=\mathbf{1 2 0 . 5}$ cfs. Allowable release into the existing $\mathbf{4 8}^{\prime \prime}$ RCP outfall pipe at this location is anticipated to release rate of ($Q_{100}=156.6 \mathrm{cfs}$). This facility restricts the release to below pre-development (historic levels) per the MHFD-Detention spreadsheet and is in conformance with the Preliminary Drainage Report and MDDP Amendment.

STORMWATER QUALITY (FOUR STEP PROCESS)

The City of Colorado Springs/El Paso County DCM requires the Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls. The Four Step Process pertains to management of smaller, frequently occurring storm events, as opposed to larger storms for which drainage and flood control infrastructure are sized. Implementation of these four steps helps to achieve storm water permit requirements.

ENGINEERS \& SURVEYORS

1. Employ Runoff Reduction Practices: Proposed urban lot impervious area (roof tops, patios, etc.) will sheet flow across landscape areas (yards) and open space areas to slow runoff and increase time of concentration prior to being conveyed to the proposed public streets or detention facilities. This will minimize directly connected impervious areas within the project site. Water quality reduction will be employed for specific areas that are anticipated not able to be captured and routed to SWQ facilities.
2. Stabilize Drainageways: After developed flows utilize the runoff reduction practices through the front and rear yards, developed flows will travel via curb and gutter within the public streets of the development and eventually public storm systems. These collected flows are then routed directly to multiple extended detention basins (full-spectrum facilities). Sand Creek improvements and restoration plans are being proposed for this entire reach as described in "Final Design Report for Sand Creek Restoration", prepared by JR Engineering, LLC, dated September 2022.
3. Provide Water Quality Capture Volume (WQCV): Runoff from this development will be treated through capture and slow release of the WQCV and excess urban runoff volume (EURV) in the proposed Full-Spectrum permanent Extended Detention Basins designed per current El Paso County drainage criteria. of this site? Discuss applicable exclusion(s).
4. Consider need for Industrial and Commercial BMPs: No industrial uses are proposed within this development. A site-specific storm water quality and erosion control plan and narrative will be submitted along with the grading and erosion control plan. Details such as site-specific sediment and erosion control construction BMP's as well as temporary and permanent BMP's were detailed in this plan and narrative to protect receiving waters. BMP's will be constructed and maintained as the development has been graded and erosion control methods employed.

DRAINAGE AND BRIDGE FEES

This site lies entirely within the Sand Creek Drainage Basin boundaries.

[^0]The fees are calculated using the following impervious acreage method approved by El Paso County. The Sterling Ranch East Filing Filing No. 2 has a total area of 16.841 acres with the following different land uses proposed:

STERLING RANCH EAST FILING NO. 2
5.756 Ac. Sand Creek Corridor (Tract)

The percent imperviousness for this subdivision is calculated as follows:

Fees for Sand Creek Drainage Corridor

(Per El Paso County Percent Impervious Chart: 2\%)
5.756 Ac. x $2 \%=0.115$ Impervious Ac.

Update based on comments above.

Fees for $\mathbf{1 / 4}$ Ac. lots (Avg. lot size of $9,800 \mathrm{SF}$)
(Per El Paso County Percent Impervious Chart: 40\%)
9.998Ac. x 40\% = 3.999 Impervious Ac.

Total Impervious Acreage:
4.114 Imp. Ac.

Areas do not match
STERLING RANCH EAST FILING No. 2 (6.718 Impervious acres)
DRAINAGE FEE:
$\$ 23,821 /$ acre $\times 4.114$ acres $\$ 98,002.45$

BRIDGE FEE:
$\$ 9,743$ /acre $\times 4.114$ acres
$\$ 40,082.70$

This site lies entirely within the Sand Creek Drainage Basin boundaries.

Page 17

The fees are calculated using the following impervious acreage method approved by El Paso County. The Foursquare at Sterling Ranch East Filing No. 1 has a total area of 36.647 acres with the following different land uses proposed:

FOURSQUARE AT STERLING RANCH EAST FILING NO. 1
11.191 Ac. Detention Facilities \& Park (Tract I)
5.141 Ac. Open Space (Tracts A, B, C, D, G, E, F)
20.315 Ac. 0.125 Ac. avg. lot size $\longleftarrow \quad$ Need to break out the
36.647Ac. Total ROW and use 100% in that area

The percent imperviousness for this subdivision is calculated as follows:

Fees for Detention Facilities \& Park

(Per El Paso County Percent Impervious Chart: 7\%)
11.191 Ac. x 7\% = 0.783 Impervious Ac.

Remove extra digit.
Fees for 1/8 Ac. lots (Avg. lot size of 3,900SF)
(Per El Paso County Percent Impervious Chart: 65\%)
20.315 Ac. x 65\% = 13,204 Impervious Ac

FOURSQUARE AT STERLING RANCH EAST FILING No. 1 (13.987 Impervious acres)

DRAINAGE FEE:
$\$ 23,821$ /acre $\times 13.987$ acres
$\$ 333,1184.33$

BRIDGE FEE:
$\$ 9,743 /$ acre $\times 13.987$ acres
$\$ 136,275.34$
Basin fees will be required to be paid prior to plat recordation.

SUMMARY

Developed runoff from the proposed Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No. 1 development is proposed to outfall to one proposed private Full Spectrum Detention (EDB) and Storm Water Quality Facility (owned and maintained by the Sterling Ranch Metropolitan District) prior to discharging to downstream facilities. The proposed Full Spectrum detention \& water quality pond was sized using the current and applicable drainage criteria and provides release rates below existing allowable release rates. Therefore, the developed site runoff and proposed storm sewer facilities will not adversely affect the downstream facilities or surrounding developments.

```
PREPARED BY: Construction Cost Opinion
    needs to be added back in.
```

David L Gibson P.E.
Project Manager
dlg/118323/FDR-SRE FILING 1a FSQ SER FILING 1.docx

REFERENCES

1. City of Colorado Springs/County of El Paso Drainage Criteria Manual Volume 1, as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014.
2. "Urban Storm Drainage Criteria Manual Volume 1, 2 \& 3," Urban Drainage and Flood Control District, dated January 2016.
3. "Sand Creek Drainage Basin Planning Study," by Kiowa Engineering Corporation, dated March 1996.
4. "2018 Sterling Ranch MDDP," by M\&S Consultants, Inc., June 2018.
5. "Final Drainage Report for Retreat at TimberRidge Filing No. 1", Classic Consulting, approved November, 2020.
6. "Final Drainage Report for Retreat at TimberRidge Filing No. 2", Classic Consulting, dated March, 2022
7. "Final Design Report for Sand Creek Restoration", JR Engineering, LLC, dated September 2022
8. "Drainage Letter for Sterling Ranch Road and Briargate Pkwy. Interim Plan", prepared by JR Engineering, LLC, dated September 2022
9. "Master Development Drainage Plan Amendment for Sterling Ranch", prepared by JR Engineering, LLC, dated September 2022

APPENDIX

VICINITY MAP

SOILS MAP (S.C.S. SURVEY)

11/23/2022
Natural Resources
Conservation Service

MAP LEGEND

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 20, Sep 2, 2022
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Sep 11, 2018-Oct 20, 2018

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol		Map unit name	Rating	Acres in AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	23.0	Percent of AOI
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	6.7%	
71	Pring coarse sandy loam, 3 to 8 percent slopes	B	219.5	
Totals for Area of Interest		100.4		

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

F.E.M.A. MAP

National Flood Hazard Layer FIRMette

FEMA

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

SPECIAL FLOOD	
HAZARD AREAS	Without Base Flood Elevation (BFE) Zone A, $V, A 99$ With BFE or Depth Zone AE, AO, AH, VE, AR
Regulatory Floodway	

No screen Area of Minimal Flood Hazard Zone X
OTHER AREAS
GENERAL \square Effective LOMRs

- - - - Channel, Culvert, or Storm Sewer 111111 Levee, Dike, or Floodwall

20.2	Cross Sections with 1\% Annual Chance
17.5	Water Surface Elevation
8 - - -	Coastal Transect
mu513mm	Base Flood Elevation Line (BFE)
	Limit of Study
	Jurisdiction Boundary
	Coastal Transect Baseline
	Profile Baseline
	Hydrographic Feature
: $:$	Digital Data Available
:	No Digital Data Available
X	Unmapped

The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards
The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 11/22/2022 at 4:39 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FiRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

DEVELOPED CONDITIONS CALCULATIONS

```
JOB NAME: STERLING RANCH EAST FIL NO. 2 & FOURSQUARE AT STERLING RANCH EAST FIL NO. I
JOB NUMBER: 
DATE: 
CALCULATED BY: DLG
```

FINAL DRAINAGE REPORT ~ BASIN RUNOFF COEFFICIENT SUMMARY

BASIN	TOTAL AREA (AC)	DEVELOPED AREA (LOTS/ROADS)				LANDSCAPE TRACTS/UNDEVELOPED AREA				WEIGHTED				WEIGHTED CA		
		AREA (AC)	C(2)	C(5)	C(100)	AREA (AC)	C(2)	C(5)	C(100)	USE	C(2)	C(5)	C(100)	CA(2)	CA(5)	CA(100)
A	2.90	2.90	0.23	0.30	0.50	0.00	0.02	0.08	0.35	1/4 RES	0.23	0.30	0.50	0.67	0.87	1.45
B	4.99	4.99	0.23	0.30	0.50	0.00	0.02	0.08	0.35	1/4 RES	0.23	0.30	0.50	1.15	1.50	2.50
C	0.72	0.19	0.89	0.90	0.96	0.53	0.02	0.08	0.35	ROAD/TRACT	0.25	0.30	0.51	0.18	0.21	0.37
D	0.20	0.20	0.89	0.90	0.96	0.00	0.02	0.08	0.35	ROAD	0.89	0.90	0.96	0.18	0.18	0.19
E	7.82	1.70	0.89	0.90	0.96	6.12	0.02	0.08	0.35	LANDSCAPE/TRACT	0.21	0.26	0.48	1.64	2.02	3.77
F	0.49	0.49	0.89	0.90	0.96	0.00	0.02	0.08	0.35	ROAD	0.89	0.90	0.96	0.44	0.44	0.47
G	0.16	0.16	0.89	0.90	0.96	0.00	0.02	0.08	0.35	ROAD	0.89	0.90	0.96	0.14	0.14	0.15
H	4.01	4.01	0.41	0.45	0.59	0.00	0.02	0.08	0.35	1/8 RES	0.41	0.45	0.59	1.64	1.80	2.37
I	1.68	1.09	0.41	0.45	0.59	0.59	0.02	0.08	0.35	1/8 RES/TRACT	0.27	0.32	0.51	0.46	0.54	0.85
J	3.87	3.87	0.41	0.45	0.59	0.00	0.02	0.08	0.35	1/8 RES	0.41	0.45	0.59	1.59	1.74	2.28
K	1.83	1.83	0.41	0.45	0.59	0.00	0.02	0.08	0.35	1/8 RES	0.41	0.45	0.59	0.75	0.82	1.08
L	2.20	2.20	0.41	0.45	0.59	0.00	0.02	0.08	0.35	1/8 RES	0.41	0.45	0.59	0.90	0.99	1.30
M	4.10	4.10	0.41	0.45	0.59	0.00	0.02	0.08	0.35	1/8 RES	0.41	0.45	0.59	1.68	1.85	2.42
N	3.00	1.23	0.41	0.45	0.59	1.77	0.02	0.08	0.35	1/8 RES/TRACT	0.18	0.23	0.45	0.54	0.70	1.35
0	1.11	0.74	0.89	0.90	0.96	0.37	0.02	0.08	0.35	ROAD/TRACT	0.60	0.63	0.76	0.67	0.70	0.84
P	0.63	0.10	0.89	0.90	0.96	0.53	0.02	0.08	0.35	LANDSCAPE TRACT	0.16	0.21	0.45	0.10	0.13	0.28
Q	0.50	0.10	0.89	0.90	0.96	0.40	0.02	0.08	0.35	LANDSCAPE TRACT	0.19	0.24	0.47	0.10	0.12	0.24
R	0.33	0.33	0.41	0.45	0.59	0.00	0.02	0.08	0.35	1/8 RES	0.41	0.45	0.59	0.14	0.15	0.19
S	1.00	1.00	0.41	0.45	0.59	0.00	0.02	0.08	0.35	1/8 RES	0.41	0.45	0.59	0.41	0.45	0.59
T	11.19	0.00	0.89	0.90	0.96	11.19	0.02	0.08	0.35	POND/TRACT	0.02	0.08	0.35	0.22	0.90	3.92
U	0.60	0.60	0.89	0.90	0.96	0.00	0.02	0.08	0.35	ROAD	0.89	0.90	0.96	0.53	0.54	0.58
V	0.45	0.35	0.89	0.90	0.96	0.10	0.02	0.08	0.35	ROAD/TRACT	0.70	0.72	0.82	0.31	0.32	0.37
P1-A2	6.59	4.20	0.89	0.90	0.96	2.39	0.02	0.08	0.35	TRACT/ROAD	0.57	0.62	0.75	3.79	4.09	4.94
OS-1	2.18	2.18	0.23	0.30	0.50	0.00	0.02	0.08	0.35	FUT 1/4 RES	0.23	0.30	0.50	0.50	0.65	1.09
OS-2	4.35	4.35	0.23	0.30	0.50	0.00	0.02	0.08	0.35	FUT 1/4 RES	0.23	0.30	0.50	1.00	1.31	2.18
OS-3	3.23	3.23	0.23	0.30	0.50	0.00	0.02	0.08	0.35	FUT 1/4 RES	0.23	0.30	0.50	0.74	0.97	1.62
OS-4	0.36	0.36	0.23	0.30	0.50	0.00	0.02	0.08	0.35	FUT 1/4 RES	0.23	0.30	0.50	0.08	0.11	0.18

Unresolved:

Impervious (roads) and Pervious areas (lots, landscape, tracts, etc) need to be split apart with their C-values. Would be easiest to have 3 columns for "land use" Impervious (roads), Development ($1 / 4$ ac $1 / 8 \mathrm{ac}$, etc) and then Undeveloped Area.

JOB NAME		STERLIN	RANCH	ST	NO.	\& FO	SQU	RE A	TER	ING	NCH	AST	$L N$					
JOB NUMB	ER:	1183.23											Table	7. Co	veyan	Coeff	ient,	
DATE:		03/28/03																
CALC'D B		$\overline{D L G}$											Typ	of Lan	Surfac			C_{v}
												Heavy	meado					2.5
Return	1-Hour											Tillag	e/field					5
Period 2	Depth											Riprap	(not b	ried)*				6.5
5	1.50		Unresolv							0.5		Short	pasture	nd lawn				7
10	1.75		Table will		iewe	on			$=C_{v}$.	L/V	Nearly	bare g	ound				10
25	2.00		next sub		ter C	-value						Grass	d water	way				15
50	2.05		have been	rev	ed							Pave	areas	d shallo	w paved	wales		20
												For b	ied riprap	select C	value base	on type	veget	cover.
100	2.5			AL	AIN	GE	PO	~ B	SIN	UNOF	F S	MMA						
		WEIGHT			OVER	LAND		STRE	T / CH	ANNEL	FLOW	Tc		ITENSITY			L FL	WS
BASIN	CA(2)	CA(5)	CA(100)	C(5)	Length (ft)	Height (ft)	$\begin{gathered} \text { Tc } \\ (\mathrm{min}) \end{gathered}$	Length (ft)	Slope (\%)	Velocity (fps)	$\begin{gathered} \mathrm{Tc} \\ (\mathrm{~min}) \end{gathered}$	TOTAL (min)	$\begin{gathered} 1(2) \\ (i n / h r) \end{gathered}$	$\begin{gathered} \mathrm{l}(5) \\ (\mathrm{in} / \mathrm{hr}) \end{gathered}$	$\begin{aligned} & \mathrm{I}(100) \\ & (\mathrm{in} / \mathrm{hr}) \end{aligned}$	$\begin{aligned} & Q(2) \\ & (c f s) \\ & \hline \end{aligned}$	$\begin{aligned} & Q(5) \\ & (c f s) \end{aligned}$	$\begin{gathered} Q(100) \\ \text { (cfs) } \end{gathered}$
A	0.67	0.87	1.45	0.08	50	2	8.2	300	2.0\%	2.8	1.8	10.0	3.29	4.13	6.93	2.2	3.6	10.0
B	1.15	1.50	2.50	0.08	100	2.5	13.6	300	2.0\%	2.8	1.8	15.4	2.78	3.48	5.85	3.2	5.2	14.6
C	0.18	0.21	0.37	0.08	50	1	10.4	0	0.0\%	0.0	0.0	10.4	3.25	4.08	6.84	0.6	0.9	2.5
D	0.18	0.18	0.19	0.08	5	0.2	2.6	300	2.0\%	2.8	1.8	5.0	4.12	5.17	8.68	0.7	0.9	1.7
E	1.64	2.02	3.77	0.08	100	3	12.8	0	0.0\%	0.0	0.0	12.8	3.00	3.76	6.31	4.9	7.6	23.8
F	0.44	0.44	0.47	0.08	5	0.2	2.6	300	2.0\%	2.8	1.8	5.0	4.12	5.17	8.68	1.8	2.3	4.1
G	0.14	0.14	0.15	0.08	5	0.2	2.6	100	2.0\%	2.8	0.6	5.0	4.12	5.17	8.68	0.6	0.7	1.3
H	1.64	1.80	2.37	0.08	100	4	11.7	300	2.0\%	2.8	1.8	13.4	2.94	3.69	6.19	4.8	6.7	14.6
1	0.46	0.54	0.85	0.08	100	4	11.7	100	2.0\%	2.8	0.6	12.2	3.05	3.83	6.42	1.4	2.1	5.5
J	1.59	1.74	2.28	0.08	100	4	11.7	300	2.0\%	2.8	1.8	13.4	2.94	3.69	6.19	4.7	6.4	14.1
K	0.75	0.82	1.08	0.08	100	4	11.7	300	2.0\%	2.8	1.8	13.4	2.94	3.69	6.19	2.2	3.0	6.7
L	0.90	0.99	1.30	0.08	100	4	11.7	300	2.0\%	2.8	1.8	13.4	2.94	3.69	6.19	2.7	3.7	8.0
M	1.68	1.85	2.42	0.08	100	4	11.7	300	2.0\%	2.8	1.8	13.4	2.94	3.69	6.19	4.9	6.8	15.0
N	0.54	0.70	1.35	0.08	100	2	14.7	0	0.0\%	0.0	0.0	14.7	2.84	3.56	5.97	1.5	2.5	8.0
0	0.67	0.70	0.84	0.08	50	5	6.1	300	2.0\%	2.8	1.8	7.9	3.58	4.49	7.54	2.4	3.1	6.3
P	0.10	0.13	0.28	0.08	5	0.2	2.6	0	0.0\%	0.0	0.0	5.0	4.12	5.17	8.68	0.4	0.7	2.4

JOB NAME		STERLIN	ANCH	T F	NO.	FO	RSQ	RE	TER	ING R	NCI	AST	L NO					
JOB NUMB	ER:	1183.23											Table 6	7. Con	veyance	Coeffi	ient, C	
DATE:		03/28/03																
CALC'D B		DLG											Typ	of Lan	Surfac			C_{v}
												Heav	meado					. 5
Return	1-Hour											Tillag	e/field	-				5
Period 2	Depth											Ripra	(not bu	ried) ${ }^{*}$		+ 1		6.5
5	1.50				395 (1	$1-C_{5}$				0.5		Short	pasture	nd lawn				7
10	1.75			t_{i}	-	$S^{0.33}$			$=C_{v}$ s	w	,	Nearly	bare gr	ound				10
25	2.00											Grass	ed water	vay				15
50	2.25											Pave	areas an	d shallo	w paved	wales		20
50												For bu	ied riprap	select C_{v}	value bas	on type of	vegeta	cover.
100	2.52			AL	RAIN	AGE R	PO	T ~ B	SIN	RUNO	F S	MMAR						
		WEIGHT			OVER	LAND		STRE	T / CH	HANNEL	FLOW	Tc		TENSIT		TOT	L FLO	WS
BASIN	CA(2)	CA(5)	CA(100)	C(5)	Length (ft)	Height (ft)	$\begin{gathered} \mathrm{Tc} \\ (\mathrm{~min}) \end{gathered}$	Length (ft)	Slope (\%)	Velocity (fps)	Tc (min)	$\begin{aligned} & \text { TOTAL } \\ & \text { (min) } \end{aligned}$	$\begin{gathered} 1(2) \\ (i n / h r) \end{gathered}$	$\begin{gathered} \mathrm{l}(5) \\ (\mathrm{in} / \mathrm{hr}) \end{gathered}$	$\begin{aligned} & \mathrm{I}(100) \\ & (\mathrm{in} / \mathrm{hr}) \end{aligned}$	$\begin{aligned} & \text { Q(2) } \\ & \text { (cfs) } \end{aligned}$	$\begin{aligned} & Q(5) \\ & (c f s) \end{aligned}$	$\begin{aligned} & Q(100) \\ & \text { (cfs) } \end{aligned}$
Q	0.10	0.12	0.24	0.08	5	0.5	1.9	0	0.0\%	0.0	0.0	5.0	4.12	5.17	8.68	0.4	0.6	2.0
R	0.14	0.15	0.19	0.08	100	4	11.7	50	2.0\%	2.8	0.3	11.9	3.08	3.86	6.48	0.4	0.6	1.3
S	0.41	0.45	0.59	0.08	100	4	11.7	50	2.0\%	2.8	0.3	11.9	3.08	3.86	6.48	1.3	1.7	3.8
T	0.22	0.90	3.92	0.08	100	4	11.7	0	2.0\%	0.0	0.0	11.7	3.11	3.90	6.55	0.7	3.5	25.6
U	0.53	0.54	0.58	0.08	0	0	0.0	300	2.0\%	2.8	1.8	5.0	4.12	5.17	8.68	2.2	2.8	5.0
V	0.31	0.32	0.37	0.08	50	2	8.2	100	2.0\%	2.8	0.6	8.8	3.44	4.32	7.25	1.1	1.4	2.7
P1-A2	3.79	4.09	4.94	0.08	10	0.5	3.4	2350	0.9\%	1.9	11.8	15.2	2.79	3.50	5.87	10.6	14.3	29.0
OS-1	0.50	0.65	1.09	0.08	100	2	14.7	0	0.0\%	0.0	0.0	14.7	2.84	3.56	5.97	1.4	2.3	6.5
OS-2	1.00	1.31	2.18	0.08	50	2	8.2	300	2.0\%	2.8	1.8	10.0	3.29	4.13	6.93	3	5	15
OS-3	0.74	0.97	1.62	0.08	50	2	8.2	300	2.0\%	2.8	1.8	10.0	3.29	4.13	6.93	2	4	11
OS-4	0.08	0.11	0.18	0.08	50	2	8.2	0	0.0\%	0.0	0.0	8.2	3.53	4.42	7.42	0	0	1

JOB NAME:	STERLIN	
JOB NUMBER:	1183.23	
DATE:	03/16/23	
CALCULATED BY:	DLG	Table will be reviewed on
		next submittal after C-values have been revised \& flow

FINAL DRAINAGE REPORT ~ SURFACE ROUTING SUMMAR rates updated

Design Point(s)	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	Intensity		Flow		Inlet Size
					1(5)	I(100)	Q(5)	Q(100)	
1	BASIN B	1.50	2.50	15.4	3.48	5.85	5.2	14.6	10' TYPE R SUMP PUBLIC
2	BASIN A	0.87	1.45	10.0	4.13	6.93	3.6	10.0	10' TYPE R SUMP PUBLIC
3	BASIN J	1.74	2.28	13.4	3.69	6.19	6.4	14.1	$\begin{aligned} & 10 \text { ' TYPE R SUMP } \\ & \text { PUBLIC } \\ & \hline \end{aligned}$
4	BASIN K	0.82	1.08	13.4	3.69	6.19	3.0	6.7	5' TYPE R SUMP PUBLIC
5	${ }_{1}^{\text {BASIN D, BASIN F \& BASIN OS- }}$	1.28	1.75	14.7	3.56	5.97	4.5	10.5	10' TYPE R SUMP PUBLIC
6	BASIN G	0.14	0.15	5.0	5.17	8.68	0.7	1.3	5' TYPE R SUMP PUBLIC
7	BASIN H	1.80	2.37	13.4	3.69	6.19	6.7	14.6	$\begin{aligned} & \text { 10' TYPE R SUMP } \\ & \text { PUBLIC } \end{aligned}$
8	BASIN I	0.54	0.85	12.2	3.83	6.42	2.1	5.5	5' TYPE R SUMP PUBLIC
9	BASIN M \& BASIN N	2.54	3.76	14.7	3.56	5.97	9.0	22.5	15' TYPE R AT GRADE PUBLIC
10	BASIN L \& FLOWBY DP 9	1.21	2.70	14.7	3.56	5.97	4.3	16.1	$\begin{aligned} & 15 \text { ' TYPE R SUMP } \\ & \text { PUBLIC } \end{aligned}$
11	BASIN R \& S	0.60	0.78	11.9	3.86	6.48	2.3	5.1	15' TYPE R AT GRADE PUBLIC
12	BASIN P1-A2(INCLUDE C \& Q)	${ }^{4.09}$	4.94	15.2	3.50	5.87	14.3	29.0	EX 20' TYPE R AT GRADE PUBLIC
13	BASIN OS-2	1.31	2. 18	10.0	4.13	6.93	5.4	15.1	FUTURE 15' TYPE R AT GRADE PUBLIC
14	BASIN OS-3	0.97	${ }^{1.62}$	10.0	4.13	6.93	4.0	11.2	FUTURE 15' TYPE R AT GRADE PUBLIC
15	BASIN O \& FLOW-BY DP 13	0.70	1.46	10.0	4.13	6.93	2.9	10.1	15^{\prime} TYPE R AT GRADE PUBLIC

Unresolved:

Inlet calculation spreadsheets will be reviewed with next submittal when flows have been revised

MHFD-Inlet, Version 5.02 (August 2022)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: STERLING RANCH EAST FILING NO. 2 \& FOURSQUARE AT STERLING RANCH EAST FIL. NO. 1
Inlet ID: INLET DP 1

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is not applicable to Sump Condition MAJOR STORM Allowable Capacity is not applicable to Sump Condition

INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.02 (August 2022)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet - CDOT Type R Curb Opening -	Type =	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No $=$	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	7.8	nches
Grate Information		MINOR	MAJOR	\checkmark Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.42	0.57	ft
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF curb $=$	0.93	1.00	
Combination Inlet Performance Reduction Factor for Long Inlets	RF $\mathrm{Combination}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathrm{a}}=$	11.5	18.7	cfs
Inlet Capacity IS GOOD for Minor and Major Storms ($>$ Q Peak)	$\mathrm{Q}_{\text {peak required }}=$	5.2	14.6	cfs

MHFD-Inlet, Version 5.02 (August 2022)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: STERLING RANCH EAST FILING NO. 2 \& FOURSQUARE AT STERLING RANCH EAST FIL. NO. 1
Inlet ID: INLET DP 2

Gutter Geometry:

Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is not applicable to Sump Condition MAJOR STORM Allowable Capacity is not applicable to Sump Condition

INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.02 (August 2022)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet - CDOT Type R Curb Opening -	Type =	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No $=$	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	7.8	nches
Grate Information		MINOR	MAJOR	\checkmark Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.42	0.57	ft
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF curb $=$	0.93	1.00	
Combination Inlet Performance Reduction Factor for Long Inlets	RF $\mathrm{Combination}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathrm{a}}=$	11.5	18.7	cfs
Inlet Capacity IS GOOD for Minor and Major Storms ($>$ Q Peak)	$\mathrm{Q}_{\text {peak required }}=$	3.6	10.0	cfs

MHFD-Inlet, Version 5.02 (August 2022)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: STERLING RANCH EAST FILING NO. 2 \& FOURSQUARE AT STERLING RANCH EAST FIL. NO. 1
Inlet ID: INLET DP 3

Gutter Geometry:

Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is not applicable to Sump Condition MAJOR STORM Allowable Capacity is not applicable to Sump Condition

INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.02 (August 2022)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening -	Type =	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No $=$	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	7.8	nches
Grate Information		MINOR	MAJOR	\checkmark Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.42	0.57	ft
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF curb $=$	0.93	1.00	
Combination Inlet Performance Reduction Factor for Long Inlets	RF $\mathrm{Combination}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathrm{a}}=$	11.5	18.7	cfs
Inlet Capacity IS GOOD for Minor and Major Storms ($>$ Q Peak)	$\mathrm{Q}_{\text {peak required }}=$	6.4	14.1	cfs

MHFD-Inlet, Version 5.02 (August 2022)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: STERLING RANCH EAST FILING NO. 2 \& FOURSQUARE AT STERLING RANCH EAST FIL. NO. 1
Inlet ID: INLET DP 4

Gutter Geometry:

Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is not applicable to Sump Condition MAJOR STORM Allowable Capacity is not applicable to Sump Condition

INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.02 (August 2022)

Design Information (Input) CDOT Type R Curb Opening	Type $=$	MINOR	MAJOR	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{alocal}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	7.8	inches
Grate Information		MINOR	MAJOR	\checkmark Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	t
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.42	0.57	ft
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF curb $=$	1.00	1.00	
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathbf{a}}=$	7.5	9.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms ($>$ Q Peak)	$\mathrm{Q}_{\text {Peak required }}=$	3.0	6.7	cfs

MHFD-Inlet, Version 5.02 (August 2022)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: STERLING RANCH EAST FILING NO. 2 \& FOURSQUARE AT STERLING RANCH EAST FIL. NO. 1
Inlet ID: INLET DP 5

Gutter Geometry:

Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is not applicable to Sump Condition MAJOR STORM Allowable Capacity is not applicable to Sump Condition

INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.02 (August 2022)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening -	Type =	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No $=$	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	4.6	4.6	inches
Grate Information		MINOR	MAJOR	\ulcorner Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.30	0.30	ft
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF curb $=$	0.84	0.84	
Combination Inlet Performance Reduction Factor for Long Inlets	RF $\mathrm{Combination}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathrm{a}}=$	6.3	6.3	cfs
WARNING: Inlet Capacity < Q Peak for Major Storm	$\mathrm{Q}_{\text {peak required }}=$	4.5	10.5	cfs

MHFD-Inlet, Version 5.02 (August 2022)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: STERLING RANCH EAST FILING NO. 2 \& FOURSQUARE AT STERLING RANCH EAST FIL. NO. 1
Inlet ID: INLET DP 6

Gutter Geometry:

Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is not applicable to Sump Condition MAJOR STORM Allowable Capacity is not applicable to Sump Condition

INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.02 (August 2022)

Design Information (Input) CDOT Type R Curb Opening	Type $=$	MINOR	MAJOR	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{alocal}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	4.6	4.6	inches
Grate Information		MINOR	MAJOR	\ulcorner Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	t
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.30	0.30	ft
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF curb $=$	1.00	1.00	
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathbf{a}}=$	4.6	4.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms ($>$ Q Peak)	$\mathrm{Q}_{\text {Peak required }}=$	0.7	1.3	cfs

MHFD-Inlet, Version 5.02 (August 2022)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: STERLING RANCH EAST FILING NO. 2 \& FOURSQUARE AT STERLING RANCH EAST FIL. NO. 1
Inlet ID: INLET DP 7

Gutter Geometry:

Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is not applicable to Sump Condition MAJOR STORM Allowable Capacity is not applicable to Sump Condition

INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.02 (August 2022)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet - CDOT Type R Curb Opening -	Type =	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No $=$	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	7.8	nches
Grate Information		MINOR	MAJOR	\checkmark Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.42	0.57	ft
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF curb $=$	0.93	1.00	
Combination Inlet Performance Reduction Factor for Long Inlets	RF $\mathrm{Combination}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathrm{a}}=$	11.5	18.7	cfs
Inlet Capacity IS GOOD for Minor and Major Storms ($>$ Q Peak)	$\mathrm{Q}_{\text {peak required }}=$	6.7	14.6	cfs

MHFD-Inlet, Version 5.02 (August 2022)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: STERLING RANCH EAST FILING NO. 2 \& FOURSQUARE AT STERLING RANCH EAST FIL. NO. 1
Inlet ID: INLET DP 8

Gutter Geometry:

Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is not applicable to Sump Condition MAJOR STORM Allowable Capacity is not applicable to Sump Condition

INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.02 (August 2022)

Design Information (Input) CDOT Type R Curb Opening	Type $=$	MINOR	MAJOR	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{alocal}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	7.8	inches
Grate Information		MINOR	MAJOR	\checkmark Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	t
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.42	0.57	ft
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF curb $=$	1.00	1.00	
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathbf{a}}=$	7.5	9.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms ($>$ Q Peak)	$\mathrm{Q}_{\text {Peak required }}=$	2.1	5.5	cfs

MHFD-Inlet, Version 5.02 (August 2022)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: STERLING RANCH EAST FILING NO. 2 \& FOURSQUARE AT STERLING RANCH EAST FIL. NO. 1
Inlet ID: AT GRADE INLET DP 9

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

MINOR STORM Allowable Capacity is based on Spread Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion

allow $=$| | Minor Storm |
| :---: | :---: |
| $\mathbf{1 4 . 4}$ | $\mathbf{5 0 . 4}$ |

Minor storm max. allowable capacity GOOD - greater than the design peak flow of 9.00 cfs on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design peak flow of $\mathbf{2 2 . 5 0}$ cfs on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.02 (August 2022)

$\begin{array}{\|l\|l} \hline \text { Design Information (Input) } & \text { CDOT Type R Curb Opening } \\ \text { Type of Inlet } \end{array}$				inches
Type of Inlet Local Depression (additional to continuous gutter depression 'a')	$\begin{array}{r} \mathrm{a}_{\mathrm{LOCAL}} \\ = \\ \mathrm{No}= \end{array}$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)		1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	15.00	15.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$) Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity Total Inlet Carry-Over Flow (flow bypassing inlet) Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathrm{Q}_{0}$	Q =	7.9	13.3	cfs
	$\mathbf{Q}_{\mathrm{b}}=$	1.1	9.2	cfs
	C\% =	88	59	\%

MHFD-Inlet, Version 5.02 (August 2022)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: STERLING RANCH EAST FILING NO. 2 \& FOURSQUARE AT STERLING RANCH EAST FIL. NO. 1
Inlet ID: INLET DP 10

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is not applicable to Sump Condition MAJOR STORM Allowable Capacity is not applicable to Sump Condition

$\mathbf{Q} \quad$| allow |
| :---: |$=$| Minor Storm | Major Storm |
| :---: | :---: |
| $\mathbf{S U M P}$ | $\mathbf{S U M P}$ |
| cfs | |

INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.02 (August 2022)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening -	Type =	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No $=$	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	7.8	nches
Grate Information		MINOR	MAJOR	V Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.42	0.57	ft
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF curb $=$	0.79	0.88	
Combination Inlet Performance Reduction Factor for Long Inlets	RF $\mathrm{Combination}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathrm{a}}=$	10.9	19.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms ($>$ Q Peak)	$\mathrm{Q}_{\text {peak required }}=$	4.1	16.1	cfs

MHFD-Inlet, Version 5.02 (August 2022)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: STERLING RANCH EAST FILING NO. 2 \& FOURSQUARE AT STERLING RANCH EAST FIL. NO. 1 Inlet ID: AT GRADE INLET DP 11

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

MINOR STORM Allowable Capacity is based on Spread Criterion

MAJOR STORM Allowable Capacity is based on Depth Criterion | Minor Storm | |
| :---: | :---: |
| $\mathbf{1 5 . 1}$ | Major Storm |
| | |
| 49.0 | cfs |

Minor storm max. allowable capacity GOOD - greater than the design peak flow of $\mathbf{2 . 3 0}$ cfs on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design peak flow of 5.10 cfs on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.02 (August 2022)

$\begin{array}{\|l\|l} \hline \text { Design Information (Input) } & \text { CDOT Type R Curb Opening } \\ \text { Type of Inlet } \end{array}$				inches
Type of Inlet Local Depression (additional to continuous gutter depression 'a')	$\begin{array}{r} \mathrm{a}_{\mathrm{LOCAL}} \\ = \\ \mathrm{No}= \end{array}$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)		1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	15.00	15.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$) Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity Total Inlet Carry-Over Flow (flow bypassing inlet) Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathrm{Q}_{0}$	Q =	2.3	5.1	cfs
	$\mathbf{Q}_{\mathrm{b}}=$	0.0	0.0	cfs
	C\% =	100	100	\%

MHFD-Inlet, Version 5.02 (August 2022)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: STERLING RANCH EAST FILING NO. 2 \& FOURSQUARE AT STERLING RANCH EAST FIL. NO. 1 Inlet ID: FUTURE AT GRADE DP 13

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion
$\mathrm{Qallow}=$ Minor Stor

Minor storm max. allowable capacity GOOD - greater than the design peak flow of 5.40 cfs on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design peak flow of $\mathbf{1 5 . 1 0}$ cfs on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.02 (August 2022)

$\begin{array}{\|l\|l} \hline \text { Design Information (Input) } & \text { CDOT Type R Curb Opening } \\ \text { Type of Inlet } \end{array}$				inches
Type of Inlet Local Depression (additional to continuous gutter depression 'a')	$\begin{array}{r} \mathrm{a}_{\mathrm{LOCAL}} \\ = \\ \mathrm{No}= \end{array}$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)		1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	15.00	15.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$) Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity Total Inlet Carry-Over Flow (flow bypassing inlet) Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathrm{Q}_{0}$	Q =	5.4	10.8	cfs
	$\mathbf{Q}_{\mathrm{b}}=$	0.0	4.3	cfs
	C\% =	100	71	\%

MHFD-Inlet, Version 5.02 (August 2022)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: STERLING RANCH EAST FILING NO. 2 \& FOURSQUARE AT STERLING RANCH EAST FIL. NO. 1
Project: STERLING RANCH EAST FI
Inlet ID: $\begin{aligned} & \text { FUTURE AT GRADE DP } 14\end{aligned} ~$

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion

Minor storm max. allowable capacity GOOD - greater than the design peak flow of 4.00 cfs on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design peak flow of $\mathbf{1 1 . 2 0} \mathbf{~ c f s}$ on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.02 (August 2022)

$\begin{array}{\|l\|l} \hline \text { Design Information (Input) } & \text { CDOT Type R Curb Opening } \\ \text { Type of Inlet } \end{array}$				inches
Type of Inlet Local Depression (additional to continuous gutter depression 'a')	$\begin{array}{r} \mathrm{a}_{\mathrm{LOCAL}} \\ = \\ \mathrm{No}= \end{array}$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)		1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	15.00	15.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$) Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity Total Inlet Carry-Over Flow (flow bypassing inlet) Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathrm{Q}_{0}$	Q =	4.0	9.1	cfs
	$\mathbf{Q}_{\mathrm{b}}=$	0.0	2.1	cfs
	C\% =	100	81	\%

MHFD-Inlet, Version 5.02 (August 2022)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: STERLING RANCH EAST FILING NO. 2 \& FOURSQUARE AT STERLING RANCH EAST FIL. NO. 1 Inlet ID: AT GRADE INLET DP 15

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion
Qallow $=$ Minor Storm 22.6

Minor storm max. allowable capacity GOOD - greater than the design peak flow of 2.90 cfs on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design peak flow of $\mathbf{1 0 . 1 0} \mathbf{~ c f s ~ o n ~ s h e e t ~ ' I n l e t ~ M a n a g e m e n t ' ~}$

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.02 (August 2022)

$\begin{array}{\|l\|l} \hline \text { Design Information (Input) } & \text { CDOT Type R Curb Opening } \\ \text { Type of Inlet } \end{array}$				inches
Type of Inlet Local Depression (additional to continuous gutter depression 'a')	$\begin{array}{r} \mathrm{a}_{\mathrm{LOCAL}} \\ = \\ \mathrm{No}= \end{array}$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)		1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	15.00	15.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$) Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity Total Inlet Carry-Over Flow (flow bypassing inlet) Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathrm{Q}_{0}$	Q =	2.9	8.9	cfs
	$\mathbf{Q}_{\mathrm{b}}=$	0.0	1.2	cfs
	C\% =	100	88	\%

MHFD-Inlet, Version 5.02 (August 2022)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: STERLING RANCH EAST FILING NO. 2 \& FOURSQUARE AT STERLING RANCH EAST FIL. NO. 1 Inlet ID: AT GRADE INLET DP 16

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion
Qallow $=$
Minor Storm Major Storm
Minor storm max. allowable capacity GOOD - greater than the design peak flow of $\mathbf{2 . 9 0}$ cfs on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design peak flow of 8.00 cfs on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.02 (August 2022)

$\begin{array}{\|l\|l} \hline \text { Design Information (Input) } & \text { CDOT Type R Curb Opening } \\ \text { Type of Inlet } \end{array}$				inches
Type of Inlet Local Depression (additional to continuous gutter depression 'a')	$\begin{array}{r} \mathrm{a}_{\mathrm{LOCAL}} \\ = \\ \mathrm{No}= \end{array}$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)		1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	15.00	15.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$) Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity Total Inlet Carry-Over Flow (flow bypassing inlet) Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathrm{Q}_{0}$	Q =	2.9	7.6	cfs
	$\mathbf{Q}_{\mathrm{b}}=$	0.0	0.4	cfs
	C\% =	100	95	\%

JOB NAME: JOB NUMBER: DATE: CALCULATED BY:	STERLING RANCH EAST F 1183.23 $03 / 16 / 23$ DLG PIPES ARE LISTED AT MAXIMUM REFER TO INDIVIDUAL PIPE SH	IL NO. 2 \& F M SIZE REQUIR EETS FOR HYD INAL DRA	UURSQUARE ED TO ACCOMN RAULIC INFOR NAGE REP	AT STERLIN MODATE Q100 MATION ORT ~ PIP	ANCH NS AT OUT	MUM GRA SUMM			
Pipe Run	Contributing Basins	Equivalent CA(5)	$\begin{gathered} \text { Equivalent } \\ \text { CA(100) } \end{gathered}$	Maximum Tc	I(5)	I(100)	Q(5)	$Q(100)$	Pipe Size*
15	PIPE 8 \& PIPE 14	9.29	13.21	15.4	3.48	5.85	32.4	77.3	42" PUBLIC RCP STORM
16	DP 9 INTERCEPTED	2.44	2.33	14.7	3.56	5.97	8.7	13.9	24" PUBLIC RCP STORM
17	PIPE 15 \& PIPE 16	11.73	15.55	15.4	3.48	5.85	40.9	90.9	42" PUBLIC RCP STORM
18	DP 10	1.21	2.70	14.7	3.56	5.97	4.3	16.1	24" PUBLIC RCP STORM
19	PIPE 17 \& PIPE 18	12.94	18.25	15.4	3.48	5.85	45.1	106.7	42" PUBLIC RCP STORM
20	DP 15 INTERCEPTED	0.70	1.46	10.0	4.13	6.93	2.9	10.1	42" PUBLIC RCP STORM
21	DP 16 INTERCEPTED \& PIPE 20	1.34	2.53	10.0	4.13	6.93	5.5	17.5	42" PUBLIC RCP STORM
22	PIPE 19 \& PIPE 21	14.29	20.77	15.4	3.48	5.85	49.8	121.5	48" PUBLIC RCP STORM

HYDRAULIC GRADE LINE (HGL) CALCULATIONS

System Input Summary 100 YEAR

Backwater Calculations:

Tailwater Elevation (ft): 7097.60

Manhole Input Summary:

		Given Flow		Sub Basin Information						
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution (cfs)	$\begin{gathered} \text { Drainage } \\ \text { Area } \\ \text { (Ac.) } \end{gathered}$	Runoff Coefficient	5 yr Coefficient	Overland Length (ft)	Overland Slope (\%)	Gutter Length (ft)	Gutter Velocity (fps)
OUTFALL 1	7102.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
STM-1 L1 PIPE 22	7107.04	121.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 21	7107.94	17.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 20	7107.94	10.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
STM-1 L2 PIPE 19	7111.34	106.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
STM-1 L3 PIPE 17	7112.39	90.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\begin{gathered} \text { LAT-2 } 2 \text { L18 PIPE } \\ 16 \end{gathered}$	7112.63	13.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
STM-1 L4 PIPE 15	7117.81	77.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
STM-1 L5 PIPE 15	7117.57	77.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
STM-1 L7 PIPE 8	7116.79	47.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LAT-3 L19 PIPE 7	7116.90	6.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

STM-1 PIPE 5	7118.50	27.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FIL 2 PIPE 3	7117.53	23.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LAT FIL 2 PIPE 2	7117.80	10.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LAT FIL 2 PIPE 1	7118.07	14.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FIL 2 PIPE 4	7118.03	11.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LAT-3 L 20 PIPE 6	7116.90	14.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
STM-2 L9 PIPE 14	7119.40	30.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
STM-2 L10 PIPE 11	7126.37	11.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
STM-2 L11 PIPE 11	7125.97	11.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LAT-5 L15 PIPE 9	7126.07	10.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LAT-5 L14 PIPE 10	7126.07	1.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LAT-4 L13 PIPE 13	7119.57	5.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LAT-4 L12 PIPE 12	7119.57	14.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\begin{gathered} \text { LAT-1 L17 PIPE } \\ 18 \end{gathered}$	7111.06	16.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Manhole Output Summary:

	Local Contribution					Total Design Flow				
Element Name	$\begin{array}{\|c} \hline \text { Overland } \\ \text { Time } \\ \text { (min) } \\ \hline \end{array}$	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	$\begin{gathered} \text { Manhole Tc } \\ (\mathrm{min}) \end{gathered}$	Peak Flow (cfs)	Comment
OUTFALL 1	0.00	0.00	0.00	0.00	0.00	10.45	11.63	0.14	121.50	
STM-1 L1 PIPE 22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	121.50	
PIPE 21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.50	
PIPE 20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.10	
STM-1 L2 PIPE 19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	106.70	
STM-1 L3 PIPE 17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	90.90	
LAT-2 L18 PIPE 16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	13.90	
STM-1 L4 PIPE 15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	77.30	
STM-1 L5 PIPE 15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	77.30	
STM-1 L7 PIPE 8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	47.30	
LAT-3 L19 PIPE 7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.70	
STM-1 PIPE 5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	27.70	
FIL 2 PIPE 3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	23.10	
LAT FIL 2 PIPE 2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.00	
LAT FIL 2 PIPE 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	14.60	
FIL 2 PIPE 4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	11.40	
LAT-3 L 20 PIPE 6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	14.10	
STM-2 L9 PIPE 14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	30.60	
STM-2 L10 PIPE 11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	11.40	
STM-2 L11 PIPE 11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	11.40	

| LAT-5 L15 PIPE 9 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 10.50 | \square |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| LAT-5 L14 PIPE 10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.30 | \square |
| LAT-4 L13 PIPE 13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 5.50 | \square |
| LAT-4 L12 PIPE 12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 14.60 | \square |
| LAT-1 L17 PIPE 18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 16.10 | \square |

Sewer Input Summary:

		Elevation			Loss Coefficients			Given Dimensions		
Element Name	Sewer Length (ft)	Downstream Invert (ft)	Slope (\%)	Upstream Invert (ft)	Mannings n	$\begin{array}{\|l} \text { Bend } \\ \text { Loss } \end{array}$	Lateral Loss	Cross Section	Rise (ft or in)	Span (ft or in)
STM-1 L1 PIPE 22	79.03	7094.50	0.8	7095.13	0.013	0.05	1.00	CIRCULAR	48.00 in	48.00 in
PIPE 21	16.81	7101.80	2.0	7102.14	0.013	0.29	0.00	CIRCULAR	18.00 in	18.00 in
PIPE 20	59.63	7102.46	1.7	7103.47	0.013	1.00	0.00	CIRCULAR	18.00 in	18.00 in
STM-1 L2 PIPE 19	93.14	7099.80	0.8	7100.55	0.013	0.10	0.25	CIRCULAR	42.00 in	42.00 in
STM-1 L3 PIPE 17	94.79	7100.65	0.8	7101.41	0.013	0.05	0.25	CIRCULAR	42.00 in	42.00 in
LAT-2 L18 PIPE 16	24.67	7107.27	2.0	7107.76	0.013	1.00	0.00	CIRCULAR	24.00 in	24.00 in
STM-1 L4 PIPE 15	368.17	7101.75	0.8	7104.70	0.013	0.05	0.25	CIRCULAR	42.00 in	42.00 in
STM-1 L5 PIPE 15	278.55	7104.81	0.5	7106.20	0.013	0.05	1.00	CIRCULAR	42.00 in	42.00 in
STM-1 L7 PIPE 8	84.52	7106.69	1.0	7107.54	0.013	0.05	0.25	CIRCULAR	36.00 in	36.00 in
LAT-3 L19 PIPE 7	5.67	7113.06	1.9	7113.17	0.013	1.00	0.00	CIRCULAR	18.00 in	18.00 in
STM-1 PIPE 5	369.56	7107.64	0.5	7109.49	0.013	0.05	0.25	CIRCULAR	36.00 in	36.00 in
FIL 2 PIPE 3	125.71	7109.56	1.0	7110.82	0.013	0.05	0.25	CIRCULAR	36.00 in	36.00 in
LAT FIL 2 PIPE 2	5.68	7112.86	0.5	7112.89	0.013	1.01	0.00	CIRCULAR	24.00 in	24.00 in

LAT FIL 2 PIPE 1	26.95	7112.86	0.5	7112.99	0.013	0.48	0.00	CIRCULAR	24.00 in	24.00 in
FIL 2 PIPE 4	29.86	7112.73	1.0	7113.03	0.013	0.05	0.00	CIRCULAR	18.00 in	18.00 in
LAT-3 L 20 PIPE 6	24.67	7112.55	1.0	7112.80	0.013	1.00	0.00	CIRCULAR	24.00 in	24.00 in
STM-2 L9 PIPE 14	249.88	7106.86	1.6	7110.86	0.013	1.00	0.00	CIRCULAR	30.00 in	30.00 in
STM-2 L10 PIPE 11	490.62	7112.01	1.7	7120.35	0.013	0.05	0.25	CIRCULAR	24.00 in	24.00 in
STM-2 L11 PIPE 11	48.37	7120.65	1.0	7121.13	0.013	1.00	1.00	CIRCULAR	24.00 in	24.00 in
LAT-5 L15 PIPE 9	26.43	7121.64	1.0	7121.90	0.013	0.29	0.00	CIRCULAR	18.00 in	18.00 in
LAT-5 L14 PIPE 10	9.55	7121.63	1.0	7121.73	0.013	0.29	0.00	CIRCULAR	18.00 in	18.00 in
LAT-4 L13 PIPE 13	5.67	7115.61	1.1	7115.67	0.013	1.00	0.00	CIRCULAR	18.00 in	18.00 in
LAT-4 L12 PIPE 12	24.67	7115.11	1.0	7115.36	0.013	1.00	0.00	CIRCULAR	24.00 in	24.00 in
LAT-1 L17 PIPE 18	24.38	7102.06	8.2	7104.06	0.013	1.00	0.00	CIRCULAR	24.00 in	24.00 in

Sewer Flow Summary:

	Full Flow Capacity		Critical Flow		Normal Flow						
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	Velocity (fps)	Depth (in)	Velocity (fps)	Froude Number	Flow Condition	Flow (cfs)	Surcharged Length (ft)	Comment
STM-1 L1 PIPE 22	128.82	10.25	39.79	10.91	37.10	11.66	1.17	Supercritical	121.50	0.00	
PIPE 21	14.90	8.43	18.00	9.90	18.00	9.90	0.00	Pressurized	17.50	16.81	
PIPE 20	13.73	7.77	14.69	6.54	11.47	8.50	1.65	Pressurized	10.10	59.63	
STM-1 L2 PIPE 19	90.23	9.38	42.00	11.09	42.00	11.09	0.00	Pressurized	106.70	93.14	
STM-1 L3 PIPE 17	90.23	9.38	42.00	9.45	42.00	9.45	0.00	Pressurized	90.90	94.79	
LAT-2 L18 PIPE 16	32.08	10.21	16.11	6.20	11.04	9.85	2.06	Supercritical	13.90	0.00	
STM-1 L4 PIPE 15	90.23	9.38	33.00	9.53	29.93	10.54	1.22	Pressurized	77.30	368.17	
STM-1 L5 PIPE 15	71.33	7.41	42.00	8.03	42.00	8.03	0.00	Pressurized	77.30	278.55	
STM-1 L7 PIPE 8	66.88	9.46	26.88	8.36	22.35	10.26	1.44	Pressurized	47.30	84.52	
LAT-3 L19 PIPE 7	14.52	8.22	12.02	5.34	8.59	8.05	1.90	Pressurized	6.70	5.67	
STM-1 PIPE 5	61.48	8.70	20.42	6.69	16.94	8.47	1.43	Pressurized	27.70	369.56	
FIL 2 PIPE 3	86.94	12.30	18.57	6.28	12.67	10.40	2.08	Pressurized	23.10	125.71	
LAT FIL 2 PIPE 2	20.85	6.64	13.58	5.46	11.71	6.57	1.33	Pressurized	10.00	5.68	
LAT FIL 2 PIPE 1	20.85	6.64	16.52	6.33	14.80	7.18	1.24	Pressurized	14.60	26.95	
FIL 2 PIPE 4	13.69	7.75	15.46	7.06	12.55	8.67	1.56	Pressurized	11.40	29.86	
LAT-3 L 20 PIPE 6	22.68	7.22	16.23	6.24	13.70	7.61	1.39	Pressurized	14.10	24.67	
STM-2 L9 PIPE 14	52.02	10.60	22.62	7.71	16.54	11.03	1.84	Pressurized	30.60	249.88	
STM-2 L10 PIPE 11	29.58	9.41	14.54	5.73	10.34	8.80	1.92	Supercritical Jump	11.40	140.07	
STM-2 L11 PIPE 11	22.68	7.22	14.54	5.73	12.04	7.23	1.43	Supercritical	11.40	0.00	

LAT-5 L15 PIPE 9	10.53	5.96	14.94	6.70	14.70	6.79	1.04	Supercritical	10.50	0.00	
LAT-5 L14 PIPE 10	10. $¢ 3$	5.96	5.12	3.14	4.27	4.05	1.42	Supercritical	1.30	0.00	
LAT-4 L13 PIPE 13	11.05	6.25	10.85	4.94	8.98	6.24	1.44	Supercritical	5.50	0.00	
LAT-4 L12 PIPE 12	22.68	7.22	16.52	6.33	14.01	7.67	1.38	Supercritical	14.60	0.00	
LAT-1 L17 PIPE 18	64.96	20.68	17.36	6.62	8.14	17.15	4.29	Pressurized	16.10	24.38	

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Existing		Calculated		Used			
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	$\begin{gathered} \text { Area } \\ \left(\mathbf{f t}^{\wedge} \mathbf{2}\right) \end{gathered}$	Comment
STM-1 L1 PIPE 22	121.50	CIRCULAR	48.00 in	12.57						
PIPE 21	17.50	CIRCULAR	18.00 in	18.00 in	21.00 in	21.00 in	18.00 in	18.00 in	1.77	Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise
PIPE 20	10.10	CIRCULAR	18.00 in	1.77						
STM-1 L2 PIPE 19	106.70	CIRCULAR	42.00 in	42.00 in	48.00 in	48.00 in	42.00 in	42.00 in	9.62	Existing height is smaller than the suggested height. Existing width is smaller

										than the suggested width. Exceeds max. Depth/Rise
STM-1 L3 PIPE 17	90.90	CIRCULAR	42.00 in	42.00 in	48.00 in	48.00 in	42.00 in	42.00 in	9.62	Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise
LAT-2 L18 PIPE 16	13.90	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	
STM-1 L4 PIPE 15	77.30	CIRCULAR	42.00 in	9.62						
STM-1 L5 PIPE 15	77.30	CIRCULAR	42.00 in	42.00 in	48.00 in	48.00 in	42.00 in	42.00 in	9.62	Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise
STM-1 L7 PIPE 8	47.30	CIRCULAR	36.00 in	36.00 in	33.00 in	33.00 in	36.00 in	36.00 in	7.07	
LAT-3 L19 PIPE 7	6.70	CIRCULAR	18.00 in	1.77						
STM-1 PIPE 5	27.70	CIRCULAR	36.00 in	36.00 in	27.00 in	27.00 in	36.00 in	36.00 in	7.07	
FIL 2 PIPE 3	23.10	CIRCULAR	36.00 in	36.00 in	24.00 in	24.00 in	36.00 in	36.00 in	7.07	
LAT FIL 2 PIPE 2	10.00	CIRCULAR	24.00 in	24.00 in	21.00 in	21.00 in	24.00 in	24.00 in	3.14	
LAT FIL 2 PIPE 1	14.60	CIRCULAR	24.00 in	3.14						
FIL 2 PIPE 4	11.40	CIRCULAR	18.00 in	1.77						
LAT-3 L 20 PIPE 6	14.10	CIRCULAR	24.00 in	24.00 in	21.00 in	21.00 in	24.00 in	24.00 in	3.14	
STM-2 L9 PIPE 14	30.60	CIRCULAR	30.00 in	30.00 in	27.00 in	27.00 in	30.00 in	30.00 in	4.91	
STM-2 L10 PIPE 11	11.40	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	
STM-2 L11 PIPE 11	11.40	CIRCULAR	24.00 in	24.00 in	21.00 in	21.00 in	24.00 in	24.00 in	3.14	
LAT-5 L15 PIPE 9	10.50	CIRCULAR	18.00 in	18.00 in	21.00 in	21.00 in	18.00 in	18.00 in	1.77	Existing height is smaller than the suggested height.

										Existing width is smaller than the suggested width.
LAT-5 L14 PIPE 10	1.30	CIRCULAR	18.00 in	1.77						
LAT-4 L13 PIPE 13	5.50	CIRCULAR	18.00 in	1.77						
LAT-4 L12 PIPE 12	14.60	CIRCULAR	24.00 in	24.00 in	21.00 in	21.00 in	24.00 in	24.00 in	3.14	
LAT-1 L17 PIPE 18	16.10	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater Elevation (ft): 7097.60

	Invert Elev.		Downstream Manhole Losses		HGL		EGL		
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)
STM-1 L1 PIPE 22	7094.50	7095.13	0.00	0.00	7097.60	7098.45	7099.70	0.59	7100.29
PIPE 21	7101.80	7102.14	0.44	0.00	7103.30	7103.77	7104.83	0.46	7105.29
PIPE 20	7102.46	7103.47	0.51	0.00	7105.29	7105.84	7105.80	0.55	7106.35
STM-1 L2 PIPE 19	7099.80	7100.55	0.19	0.97	7103.30	7104.35	7105.21	1.04	7106.26
STM-1 L3 PIPE 17	7100.65	7101.41	0.07	1.56	7106.50	7107.27	7107.89	0.77	7108.66
LAT-2 L18 PIPE 16	7107.27	7107.76	0.30	0.00	7108.19	7109.10	7109.69	0.01	7109.70
STM-1 L4 PIPE 15	7101.75	7104.70	0.05	1.14	7108.84	7111.00	7109.84	2.16	7112.01
STM-1 L5 PIPE 15	7104.81	7106.20	0.05	0.00	7111.05	7112.69	7112.06	1.64	7113.69
STM-1 L7 PIPE 8	7106.69	7107.54	0.03	0.83	7113.86	7114.28	7114.56	0.42	7114.98
LAT-3 L19 PIPE 7	7113.06	7113.17	0.22	0.00	7114.98	7115.00	7115.20	0.02	7115.22
STM-1 PIPE 5	7107.64	7109.49	0.01	0.64	7115.39	7115.76	7115.63	0.38	7116.00
FIL 2 PIPE 3	7109.56	7110.82	0.01	0.20	7116.04	7116.13	7116.21	0.09	7116.29
LAT FIL 2 PIPE 2	7112.86	7112.89	0.16	0.00	7116.30	7116.30	7116.45	0.01	7116.46
LAT FIL 2 PIPE 1	7112.86	7112.99	0.16	0.00	7116.29	7116.36	7116.63	0.07	7116.69
FIL 2 PIPE 4	7112.73	7113.03	0.03	0.00	7115.79	7116.00	7116.44	0.21	7116.65
LAT-3 L 20 PIPE 6	7112.55	7112.80	0.31	0.00	7114.98	7115.07	7115.29	0.10	7115.39
STM-2 L9 PIPE 14	7106.86	7110.86	0.60	0.00	7113.69	7115.08	7114.30	1.38	7115.68

| STM-2 L10 PIPE 11 | 7112.01 | 7120.35 | 0.01 | 0.55 | 7116.04 | 7121.56 | 7116.24 | 5.83 | 7122.07 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STM-2 L11 PIPE 11 | 7120.65 | 7121.13 | 0.20 | 0.00 | 7121.77 | 7122.34 | 7122.46 | 0.39 | 7122.85 |
| LAT-5 L15 PIPE 9 | 7121.64 | 7121.90 | 0.16 | 0.00 | 7122.86 | 7123.15 | 7123.58 | 0.26 | 7123.84 |
| LAT-5 L14 PIPE 10 | 7121.63 | 7121.73 | 0.00 | 0.00 | 7122.84 | 7122.84 | 7122.85 | 0.00 | 7122.86 |
| LAT-4 L13 PIPE 13 | 7115.61 | 7115.67 | 0.15 | 0.00 | 7116.42 | 7116.57 | 7116.91 | 0.04 | 7116.95 |
| LAT-4 L12 PIPE 12 | 7115.11 | 7115.36 | 0.34 | 0.00 | 7116.28 | 7116.74 | 7117.19 | 0.17 | 7117.36 |
| LAT-1 L17 PIPE 18 | 7102.06 | 7104.06 | 0.41 | 0.00 | 7106.26 | 7106.38 | 7106.66 | 0.12 | 7106.79 |

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer \#0, is not considered a sewer.
- Bend loss $=$ Bend $\mathrm{K}^{*} \mathrm{~V} _\mathrm{fi} \wedge 2 /(2 * \mathrm{~g})$
- Lateral loss $=\mathrm{V}$ _fo ${ }^{\wedge} 2 /(2 * \mathrm{~g})$ - Junction Loss $\mathrm{K} * \mathrm{~V}_{-} \mathrm{fi}{ }^{\wedge} 2 /(2 * \mathrm{~g})$.
- Friction loss is always Upstream EGL - Downstream EGL.

DETENTION \& STORMWATER QUALITY POND

Project: STERLING RANCH EAST FILING NO. 2 \& FOURSQUARE AT STERLING RANCH EAST FILING NO. 1 Basin ID: POND FSD 16 INTERIM CONDITION (STERLING RANCH EAST FILING NO. 2 \& FOURSQUARE AT STERLING RACNH EAST FILING 1 ONLY)

Location for 1-hr Rainfall Depths $=$ User Input

After providing required inputs above including 1 -hour rainfall epths, click 'Run CUHP' to generate runoff hydrographs using
the embedded Colorado Urban Hydrograph Procedure.
Water Quality Capture Volume (WQCV) $=0.702$ acre-feet Excess Urban Runoff Volume (EURV) $=2.180$ acre-feet 2 -yr Runoff Volume ($\mathrm{P} 1=1.19 \mathrm{in}$.) $=$ 5 -yr Runoff Volume ($\mathrm{P} 1=1.5 \mathrm{in}$.) $=$ 10 -yr Runoff Volume (P1 = 1.75 in .) $=$ 25 -yr Runoff Volume ($\mathrm{P} 1=2$ in $)=$ 50 -yr Runoff Volume ($\mathrm{P} 1=2.25$ in) 100 -yr Runoff Volume ($\mathrm{P} 1=2.52 \mathrm{in}$.) $=$
500 -yr Runoff Volume ($\mathrm{P} 1=3 \mathrm{in}$.) $=$ Approximate 2 -yr Detention Volume $=$ Approximate 5 -yr Detention Volume $=$ Approximate $10-\mathrm{yr}$ Detention Volume $=$ Approximate $25-\mathrm{yr}$ Detention Volume $=$ Approximate $50-\mathrm{yr}$ Detention Volume $=$ 1.642 acre-feet

 \begin{tabular}{|l|l|}
\hline 2.638 \& acre-feet

3.403 \& acre-feet

\cline { 1 - 3 } \&

\hline

 Optional User Overides

\hline \& acre-feet

\hline \& acre-feet
\end{tabular} Define Zones and Basin Geometry

$$
\begin{aligned}
& \mathrm{d} \text { Basin Geometry } \\
& \text { Zone } 1 \text { Volume }(\mathrm{WQCV})=0.702 \text { acre-feet }
\end{aligned}
$$

Zone 1 volume (WQC) =	. 702
Zone 2 Volume (EURV - Zone 1) =	1.478
Zone 3 Volume (100 -year - Zones $1 \& 2$) $=$	1.401
Total Detention Basin Volume =	3.581
Initial Surcharge Volume (ISV) =	user
Initial Surcharge Depth (ISD) =	user
Total Available Detention Depth ($\mathrm{H}_{\text {total }}$) $=$	user
Depth of Trickle Channel ($\mathrm{H}_{\text {TC }}$) $=$	user
Slope of Trickle Channel ($\mathrm{S}_{\text {TC }}$) $=$	use
Slopes of Main Basin Sides ($\mathrm{S}_{\text {main }}$) $=$	user
Basin Length-to-Width Ratio (RLw) =	user

Should not be using
reduced \% impervious for
low impact development as $\frac{2.50}{0}$
project is very dense,
urban development.

epph Increment	200	
Stage-Storge	Stage	Overide
Descripion	(t)	
Top of Micropool		0.00
7092		0.50
7094		2.50
7096		
be using		
impervious	us f	
develop	en	as
ry den		

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.06 (July 2022)

Project: STERLING RANCH EAST FILING NO. 2 \& FOURSQUARE AT STERLING RANCH EAST FILING NO. 1
Basin ID: POND FSD 16 INTERIM CONDITION (STERLING RANCH EAST FILING NO.2 \& FOURSQUARE AT STERLING RACNH EAST FILING 1 ONLY)

	Estimated Stage (ft)	Estimated Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.98	0.702	Orifice Plate
Zone 2 (EURV)	4.57	1.478	Orifice Plate
Zone 3 (100-year)	5.54	1.401	Weir\&Pipe (Restrict)
	otal (all zones)	3.581	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)				Calculated Parameters for Underdrain	
Underdrain Orifice Invert Depth $=$	N/A	ft (distance below the filtration media surface) inches	Underdrain Orifice Area = Underdrain Orifice Centroid $=$	N/A	$\begin{aligned} & \mathrm{ft}^{2} \\ & \text { feet } \end{aligned}$
Underdrain Orifice Diameter $=$	N/A			N/A	

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	2.50	5.00	7.50				
Orifice Area (sq. inches)	3.50	9.00	16.00	16.00				
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) $\mathrm{ft}($ relative to basin bottom at Stage $=0 \mathrm{ft}$) inches	Calculated Parameters for Vertical Orifice			
	Not Selected	Not Selected		Vertical Orifice Area = Vertical Orifice Centroid $=$	Not Selected	Not Selected	
Invert of Vertical Orifice $=$	N/A	N/A			N/A	N/A	ft^{2}
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A			N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A					

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectanqular/Trapezoidal Weir and No Outlet Pipe)					Calculated Parameters for Overflow Weir		
Overflow Weir Front Edge Height, $\mathrm{Ho}=$	Zone 3 Weir	Not Selected	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$ Overflow Weir Slope Length =	Zone 3 Weir	Not Selected	$\begin{aligned} & \text { feet } \\ & \text { feet } \end{aligned}$
	10.00	N/A			10.00	N/A	
	20.00	N/A	feet		4.00	N/A	
Overflow Weir Grate Slope	0.00	N/A	H:V Gr	Open Area / 100-yr Orifice Area	8.01	N/A	$\left\lvert\, \begin{aligned} & \mathrm{ft}^{2} \\ & \mathrm{ft}^{2} \end{aligned}\right.$
Horiz. Length of Weir Sides =	4.00	N/A	feet	ow Grate Open Area w/o Debris =	55.68	N/A	
Overflow Grate Type =	Type C Grate	N/A		low Grate Open Area w/ Debris =	27.84	N/A	
	50\%	/ $/$ A					

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Zone 3 Restrictor	Not Selected	ft (distance below basin bottom at Stage $=0 \mathrm{ft}$) inches
	2.50	N/A	
	48.00	N/A	
Restrictor Plate Height Above Pipe Invert =	26.00		inches Half-Central A

	Zone 3 Restrictor	Not Selected
Outlet Orifice Area $=$	6.95	N/A
Outlet Orifice Centroid $=$	1.24	N/A
Restrictor Plate on Pipe $=$	1.65	N/A

	Calculated Parameters for Spillway
Spillway Design Flow Depth	$=$132 Stage at Top of Freeboard
$=$	13.82
feet	

Routed Hydrograph Results	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
Design Storm Return Period $=$	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) $=$	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.00
CUHP Runoff Volume (acre-ft) =	0.702	2.180	1.642	2.196	2.638	3.403	4.148	5.111	6.695
Inflow Hydrograph Volume (acre-ft) $=$	N/A	N/A	1.642	2.196	2.638	3.403	4.148	5.111	6.695
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.4	0.8	1.1	9.9	19.7	32.2	51.4
OPTIONAL Override Predevelopment Peak Q (cfs) $=$	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.02	0.02	0.23	0.45	0.73	1.17
Peak Inflow Q (cfs) $=$	N/A	N/A	26.3	35.7	42.8	60.0	75.4	95.4	125.4
Peak Outflow Q (cfs) =	0.4	0.7	0.6	0.7	0.7	1.1	1.3	1.5	1.7
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	0.9	0.7	0.1	0.1	0.0	0.0
Structure Controlling Flow $=$	Plate								
Max Velocity through Grate 1 (fps) =	N/A								
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	43	70	63	71	77	86	91	97	104
Time to Drain 99\% of Inflow Volume (hours) =	45	75	66	76	83	92	99	106	116
Maximum Ponding Depth (ft) =	2.98	4.57	4.01	4.49	4.82	5.33	5.75	6.26	7.00
Area at Maximum Ponding Depth (acres) $=$	0.61	1.25	1.02	1.22	1.36	1.56	1.74	1.95	2.15
Maximum Volume Stored (acre-ft) =	0.703	2.185	1.537	2.074	2.511	3.242	3.953	4.876	6.429

DETENTION BASIN OUTLET STRUCTURE DESIGN
MHFD-Detention, Version 4.06 (July 2022)

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.35	0.04	0.89
	0:15:00	0.00	0.00	3.08	5.00	6.23	4.21	5.27	5.17	6.92
	0:20:00	0.00	0.00	10.93	14.32	16.91	10.70	12.49	13.43	16.59
	0:25:00	0.00	0.00	22.05	30.77	38.04	21.96	25.67	28.12	36.37
	0:30:00	0.00	0.00	26.31	35.66	42.78	51.06	64.95	76.41	102.35
	0:35:00	0.00	0.00	23.80	31.49	37.29	59.96	75.39	95.43	125.45
	0:40:00	0.00	0.00	20.70	26.77	31.51	55.39	69.59	88.30	116.03
	0:45:00	0.00	0.00	17.36	22.76	26.89	46.87	58.53	76.50	101.28
	0:50:00	0.00	0.00	14.60	19.50	22.64	40.51	50.16	64.95	86.62
	0:55:00	0.00	0.00	12.57	16.67	19.47	33.30	40.76	53.65	71.03
	1:00:00	0.00	0.00	11.20	14.76	17.42	27.68	33.61	45.27	59.90
	1:05:00	0.00	0.00	10.12	13.24	15.72	23.86	28.85	39.76	52.91
	1:10:00	0.00	0.00	8.57	11.77	14.03	20.11	24.10	32.26	42.54
	1:15:00	0.00	0.00	7.13	10.07	12.46	16.76	19.86	25.57	33.28
	1:20:00	0.00	0.00	5.98	8.46	10.65	13.33	15.57	19.06	24.48
	1:25:00	0.00	0.00	5.26	7.44	9.08	10.49	11.99	13.60	17.16
	1:30:00	0.00	0.00	4.88	6.93	8.15	8.45	9.59	10.33	12.94
	1:35:00	0.00	0.00	4.68	6.63	7.54	7.25	8.19	8.55	10.60
	1:40:00	0.00	0.00	4.57	5.98	7.10	6.52	7.35	7.45	9.11
	1:45:00	0.00	0.00	4.49	5.45	6.79	6.03	6.79	6.72	8.13
	1:50:00	0.00	0.00	4.43	5.07	6.57	5.71	6.42	6.22	7.47
	1:55:00	0.00	0.00	3.88	4.78	6.25	5.49	6.17	5.86	6.99
	2:00:00	0.00	0.00	3.40	4.44	5.68	5.33	5.99	5.64	6.70
	2:05:00	0.00	0.00	2.55	3.33	4.23	4.01	4.49	4.23	5.02
	2:10:00	0.00	0.00	1.85	2.40	3.04	2.87	3.21	3.03	3.58
	2:15:00	0.00	0.00	1.33	1.73	2.18	2.06	2.31	2.19	2.58
	2:20:00	0.00	0.00	0.95	1.23	1.56	1.47	1.64	1.56	1.84
	2:25:00	0.00	0.00	0.66	0.84	1.08	1.02	1.14	1.08	1.27
	2:30:00	0.00	0.00	0.45	0.57	0.75	0.71	0.78	0.74	0.87
	2:35:00	0.00	0.00	0.29	0.39	0.50	0.48	0.53	0.50	0.58
	2:40:00	0.00	0.00	0.17	0.24	0.30	0.30	0.32	0.30	0.35
	2:45:00	0.00	0.00	0.08	0.13	0.15	0.16	0.17	0.15	0.17
	2:50:00	0.00	0.00	0.03	0.05	0.06	0.06	0.06	0.05	0.06
	2:55:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Include sizing of forebay for ultimate condition

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.06 (July 2022)
Project: STERLING RANCH EAST FILING NO. 2 \& FOURSQUARE AT STERLING RANCH EAST FILING NO. 1
Basin ID: POND FSD 16 ULTIMATE (STERLING RANCH EAST FILING NO. 2, FOURSQUIRE AT STERLING RANCH EAST FILING NO. 1 \& PLANNED FUTURE DEVELOPMENT)

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)				Calculated Parameters for Underdrain	
Underdrain Orifice Invert Depth =	N/A	ft (distance below the filtration media surface)	Underdrain Orifice Area $=$	N/A	ft^{2}
Underdrain Orifice Diameter =	N/A	inches	Underdrain Orifice Centroid =	N/A	feet

User Input: Orifice Plate with one or more orifices	s or Elliptical Slot	Weir (typically used	to drain WQCV and	Or EURV in a sedim	nentation BMP)		Calculated Paramet	ters for Plate	
Centroid of Lowest Orifice $=$	0.00	ft (relative to basin	bottom at Stage $=$	0 ft)	WQ Orific	e Area per Row $=$	N/A	ft^{2}	
Depth at top of Zone using Orifice Plate $=$	10.00	ft (relative to basin	bottom at Stage $=$	0 ft)	Ellip	tical Half-Width $=$	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	30.00	inches			Elliptic	cal Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row $=$	N/A	sq. inches				iptical Slot Area $=$	N/A	ft^{2}	
User Input: Stage and Total Area of Each Orifice	Row (numbered fr	om lowest to highe							
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	2.50	5.00	7.50					
Orifice Area (sq. inches)	10.00	14.00	16.00	16.00					
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									
User Input: Vertical Orifice (Circular or Rectangula							Calculated Paramet	ters for Vertical Or	
	Not Selected	Not Selected					Not Selected	Not Selected	
Invert of Vertical Orifice $=$	N/A	N/A	ft (relative to basin	bottom at Stage $=$	0 ft) Vert	ical Orifice Area $=$	N/A	N/A	ft^{2}
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A	ft (relative to basin	bottom at Stage $=$	$0 \mathrm{ft}) \quad$ Vertical	Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter $=$	N/A	N/A	inches						
User Input: Overflow Weir (Dropbox with Flat or	Sloped Grate and	utlet Pipe OR Rect	nqular/Trapezoida	Weir and No Outle	Pipe)		Calculated Paramet	ters for Overflow	
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, $\mathrm{Ho}=$	10.00	N/A	ft (relative to basin b	ottom at Stage $=0$) Height of Grate	Upper Edge, $\mathrm{H}_{\mathrm{t}}=$	10.00	N/A	feet
Overflow Weir Front Edge Length =	20.00	N/A			Overflow W	ir Slope Length $=$	4.00	N/A	eet
Overflow Weir Grate Slope =	0.00	N/A			ate Open Area / 100	-yr Orifice Area $=$	8.01	N/A	
Horiz. Length of Weir Sides =	4.00	N/A	feet		verflow Grate Open	Area w/o Debris =	55.68	N/A	ft^{2}
Overflow Grate Type =	Type C Grate	N/A			verflow Grate Open	Area w/ Debris $=$	27.84	N/A	ft^{2}
Debris Clogging \% =	50\%	N/A	\%						
User Input: Outlet Pipe w/ Flow Restriction Plate ((Circular Orifice, R	estrictor Plate, or R	ectangular Orifice)			culated Parameters	for Outlet Pipe w/	Flow Restriction P	
	Zone 3 Restrictor	Not Selected					Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe $=$	2.50	N/A	ft (distance below ba	sin bottom at Stage	$=0 \mathrm{ft}) \quad$ Ou	tlet Orifice Area $=$	6.95	N/A	ft^{2}
Outlet Pipe Diameter =	48.00	N/A	inches		Outlet	Orifice Centroid =	1.24	N/A	eet
Restrictor Plate Height Above Pipe Invert =	26.00		inches	Half-Cen	ral Angle of Restric	or Plate on Pipe $=$	1.65	N/A	radians
User Input: Emergency Spillway (Rectangular or T	Trapezoidal)						Calculated Paramet	ters for Spillway	
Spillway Invert Stage=	12.50	ft (relative to basin	bottom at Stage $=$	0 ft)	Spillway Des	sign Flow Depth=	1.00	feet	
Spillway Crest Length =	170.00	feet			Stage at T	op of Freeboard =	14.50	feet	
Spillway End Slopes =	6.00	H:V			Basin Area at T	op of Freeboard =	7.88	acres	
Freeboard above Max Water Surface =	1.00	feet			Basin Volume at T	op of Freeboard =	40.83	acre-ft	

Routed Hydrograph ResultsDesign Storm Return Period $=$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) $=$	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.00
CUHP Runoff Volume (acre-ft)	3.762	12.288	9.710	12.839	15.865	20.998	25.112	30.660	39.447
Inflow Hydrograph Volume (acre-ft)	N/A	N/A	9.710	12.839	15.865	20.998	25.112	30.660	39.447
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	2.7	4.5	23.4	95.7	140.7	204.0	304.3
OPTIONAL Override Predevelopment Peak Q (ffs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cf/acre) =	N/A	N/A	0.01	0.02	0.11	0.43	0.64	0.92	1.38
Peak Inflow Q (cfs) $=$	N/A	N/A	152.5	204.8	254.6	360.0	435.8	526.8	683.4
Peak Outflow Q (cfs) =	2.0	4.1	3.5	4.1	7.7	48.7	91.2	120.5	176.5
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	0.9	0.3	0.5	0.6	0.6	0.6
Structure Controlling Flow =	Plate	Plate	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.1	0.8	1.6	2.1	2.1
Max Velocity through Grate 2 (fps) $=$	N/A								
Time to Drain 97\% of Inflow Volume (hours) $=$	39	67	62	69	75	73	72	70	68
Time to Drain 99\% of Inflow Volume (hours) $=$	42	74	67	76	83	82	81	80	79
Maximum Ponding Depth (ft) $=$	5.64	9.35	8.21	9.32	10.12	10.69	11.08	11.71	12.72
Area at Maximum Ponding Depth (acres) $=$	1.70	3.22	2.39	3.18	3.91	4.41	4.77	5.34	6.25
Maximum Volume Stored (acre-ft) $=$	3.763	12.292	9.157	12.164	15.034	17.364	19.153	22.335	28.185

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	1.43	0.14	3.62
	0:15:00	0.00	0.00	12.44	20.45	25.45	17.15	22.10	21.06	29.79
	0:20:00	0.00	0.00	49.95	67.93	80.76	51.54	60.65	64.31	80.17
	0:25:00	0.00	0.00	112.89	154.25	186.90	110.26	130.88	142.02	179.25
	0:30:00	0.00	0.00	152.50	204.77	254.63	263.28	320.19	366.16	479.40
	0:35:00	0.00	0.00	146.91	192.55	240.26	359.97	435.83	526.76	683.43
	0:40:00	0.00	0.00	127.54	163.96	202.57	353.47	425.20	522.87	671.00
	0:45:00	0.00	0.00	108.38	139.47	171.92	307.02	369.68	465.38	596.64
	0:50:00	0.00	0.00	90.99	119.22	145.25	264.20	319.64	408.08	524.81
	0:55:00	0.00	0.00	77.23	101.13	122.03	221.74	268.00	346.70	447.50
	1:00:00	0.00	0.00	68.05	88.70	107.64	181.24	218.13	291.22	377.73
	1:05:00	0.00	0.00	61.61	79.80	97.82	155.65	186.70	257.42	335.71
	1:10:00	0.00	0.00	53.69	71.64	88.57	132.77	158.60	216.83	282.60
	1:15:00	0.00	0.00	45.18	62.25	79.43	111.19	132.27	173.26	225.06
	1:20:00	0.00	0.00	37.74	52.41	68.53	90.05	106.35	133.89	172.81
	1:25:00	0.00	0.00	32.01	44.58	56.81	71.10	83.09	99.27	126.82
	1:30:00	0.00	0.00	28.84	40.63	49.29	55.04	63.81	72.61	92.09
	1:35:00	0.00	0.00	27.37	38.65	45.08	45.30	52.21	57.01	71.87
	1:40:00	0.00	0.00	26.56	35.49	42.11	39.66	45.39	48.11	60.03
	1:45:00	0.00	0.00	26.06	32.15	39.96	36.16	41.11	42.04	51.84
	1:50:00	0.00	0.00	25.68	29.76	38.50	33.76	38.23	38.03	46.36
	1:55:00	0.00	0.00	23.31	28.01	36.80	32.20	36.37	35.22	42.49
	2:00:00	0.00	0.00	20.32	26.12	33.83	31.11	35.07	33.29	39.85
	2:05:00	0.00	0.00	16.11	20.97	26.83	25.36	28.54	26.84	32.00
	2:10:00	0.00	0.00	11.81	15.19	19.29	18.23	20.47	19.27	22.90
	2:15:00	0.00	0.00	8.60	11.01	13.88	13.14	14.73	13.92	16.51
	2:20:00	0.00	0.00	6.21	7.91	10.00	9.50	10.65	10.13	12.00
	2:25:00	0.00	0.00	4.43	5.51	7.06	6.69	7.48	7.15	8.46
	2:30:00	0.00	0.00	3.05	3.75	4.90	4.63	5.18	4.94	5.84
	2:35:00	0.00	0.00	2.06	2.58	3.40	3.27	3.65	3.48	4.09
	2:40:00	0.00	0.00	1.29	1.70	2.17	2.15	2.39	2.27	2.66
	2:45:00	0.00	0.00	0.70	1.00	1.23	1.26	1.39	1.31	1.53
	2:50:00	0.00	0.00	0.31	0.48	0.56	0.60	0.66	0.62	0.71
	2:55:00	0.00	0.00	0.11	0.15	0.16	0.19	0.20	0.18	0.20
	3:00:00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Figure 13-12c. Emergency Spillway Protection

Figure 13-12d. Riprap Types for Emergency Spillway Protection

Include sizing of trickle channel for ultimate condition

Worksheet for TRICKLE CHANNEL

Project Description	
Friction Method	Manning Formula
Solve For	Normal Depth
Input Data	
Roughness Coefficient	0.013
Channel Slope	$0.005 \mathrm{ft} / \mathrm{ft}$
Bottom Width	3.00 ft
Discharge	4.86 cfs
Results	
Normal Depth	5.1 in
Flow Area	$1.3 \mathrm{ft}^{2}$
Wetted Perimeter	3.8 ft
Hydraulic Radius	3.9 in
Top Width	3.00 ft
Critical Depth	5.2 in
Critical Slope	$0.005 \mathrm{ft} / \mathrm{ft}$
Velocity	$3.85 \mathrm{ft} / \mathrm{s}$
Velocity Head	0.23 ft
Specific Energy	0.65 ft
Froude Number	1.045
Flow Type	Supercritical
GVF Input Data	
Downstream Depth	0.0 in
Length	0.0 ft
Number Of Steps	0
GVF Output Data	
Upstream Depth	0.0 in
Profile Description	N/A
Profile Headloss	0.00 ft
Downstream Velocity	Infinity ft/s
Upstream Velocity	Infinity ft/s
Normal Depth	5.1 in
Critical Depth	5.2 in
Channel Slope	$0.005 \mathrm{ft} / \mathrm{ft}$
Critical Slope	$0.005 \mathrm{ft} / \mathrm{ft}$

REFERENCE MATERIALS FROM PREVIOUS REPORTS

Storm Water Management Model User's Manual Version 5.1

by
Lewis A. Rossman
Envronmental Scientist, Emeritus
U.S. Environmental Protection Agency

National Risk Management Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
26 Martin Luther King Drive
Cincinnati, OH 45268

SWMM MODEL RAIN GAGE INPUT PARAMETERS (PER DCM CPT. 6)

Table 6-2. Rainfall Depths for Colorado Springs

Retum Period	1-Hour Depth	6-Hour Depth	24-Hour Depth
2	1.19	1.70	2.10
5	1.50	2.10	2.70
10	1.75	2.40	3.20
25	2.00	2.90	3.60
50	2.25	3.20	4.20
100	2.52	3.50	4.60
Where $Z=6.840 \mathrm{f} / 100$			

City of Colorado Springs DCM

100-year, 2-hour Storm (Cumulative)

Time Min.	Drainage Basin Area (square miles)						
	$\mathbf{0 - 1}$	$\mathbf{> 1 - 5}$	$\mathbf{> 5 - 1 0}$	$\mathbf{> 1 0 - 1 5}$	$\mathbf{> 1 5 - 2 0}$	$\mathbf{> 2 0 - 4 0}$	$\mathbf{> 4 0 - 6 0}$
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5	0.035	0.035	0.035	0.035	0.038	0.038	0.043
10	0.116	0.111	0.103	0.103	0.106	0.106	0.101
15	0.199	0.192	0.186	0.186	0.184	0.176	0.171
20	0.302	0.292	0.275	0.275	0.267	0.257	0.239
25	0.451	0.444	0.426	0.423	0.411	0.396	0.370
30	0.650	0.627	0.602	0.595	0.572	0.544	0.499
35	1.061	0.998	0.892	0.824	0.774	0.696	0.610
40	1.794	1.651	1.409	1.247	1.129	0.960	0.794
45	2.076	1.905	1.605	1.411	1.275	1.063	0.869
50	2.248	2.076	1.764	1.560	1.426	1.207	0.998
55	2.356	2.182	1.865	1.658	1.515	1.290	1.079
60	2.449	2.271	1.950	1.739	1.598	1.368	1.149
65	2.530	2.354	2.031	1.807	1.666	1.436	1.215
70	2.565	2.389	2.069	1.845	1.709	1.484	1.263
75	2.596	2.424	2.104	1.880	1.744	1.520	1.298
80	2.623	2.452	2.139	1.915	1.779	1.555	1.333
85	2.651	2.480	2.175	1.950	1.814	1.590	1.368
90	2.679	2.507	2.205	1.986	1.850	1.625	1.404
95	2.701	2.535	2.233	2.021	1.885	1.661	1.439
100	2.727	2.563	2.258	2.049	1.920	1.696	1.474
105	2.749	2.586	2.286	2.076	1.948	1.731	1.509
110	2.772	2.611	2.313	2.104	1.973	1.759	1.540
115	2.795	2.633	2.341	2.132	2.001	1.787	1.567
120	2.820	2.656	2.364	2.160	2.029	1.814	1.595

SWMM MODEL SUBCATCHMENT INPUT PARAMETERS

8
Subcatchment Conceptual Model

Subcatchment represented as a sloped, rectangular plane
W = width
L = length
S = slope
A = area

Subcatchment Conceptual Model

Pervious and Impervious areas are processed independently and are then combined.
Both have the same tributary width (W).

You can set them up as separate subcatchments.

9

Width Parameter

NEVER use default value
Approx. Width $=($ Area $) \div$ (Length $)$
Length = average overland sheet flow length of runoff

Suggested Rules of Thumb:

Undeveloped:

- Maximum length $=\mathbf{1 0 0}$ - to 500-feet

Residential Catchments:

- Maximum length $=100$ to 300 feet
- back of lot to street gutter (100-175 ft)

11

12

Transforming Subcatchment Shape to a Rectangle
Equations Suggested by Guo and Urbonas, 2009

Percent Impervious

Estimating/Measuring Percent Impervious:

- If site-specific information is not available, use land use classification
- Sometimes, site-specific impervious GIS layers are available

Source: UDFCD Storm Drainage Criteria Manual

City of Colorado Springs DCM - Manning's n

Table 6-11. Roughness Coefficients (Manning's n) for NRCS Overland Flow

Surface description	\mathbf{n}^{1}
Smooth surfaces (concrete, asphalt, gravel, bare soil, etc.)	0.011
Fallow (no residue)	0.05
Cultivated Soils:	
Residue cover $\leq 20 \%$	0.06
Residue cover $>20 \%$	0.17
Grass:	
Short grass prairie	0.15
Dense grasses ${ }^{2}$	0.24
Bermuda grass	0.41
Range (natural)	0.13
Woods ${ }^{3}$	
Light underbrush	0.40
Dense underbrush	0.80

Table 3-1 Impervious area as a percentage of land use.

Land Use	Percent Impervious Area
Commercial	56
Industrial	76
High density residential	51
Medium density residential	38
Low density residential	19
Institutional	34
Agricultural	2
Forest	1.9
Open Urban Land	11

As mentioned earlier, impervious areas in SWMM are hydraulically (directly) connected to the drainage system - called directly connected impervious areas (DCIA). For instance, if rooftops drain onto adjacent pervious lawn areas, they should not be treated as a hydraulically effective impervious area. Such areas are non-effective impervious areas (Doyle and Miller, 1980). On the other hand, if a driveway drains to a street and then to a stormwater inlet, the driveway would be considered hydraulically connected. Rooftops with downspouts connected directly to a sewer are clearly hydraulically connected. An example of careful measurements and statistics on imperviousness may be found in Field et al. (2000), Lee (2003), and Roy and Shuster (2007). Lee and Heaney (2003) provide detailed comparisons of imperviousness computations and their implications for modeling.

Should rooftops be treated as "pervious," the real surrounding pervious area is subject to more incoming water than rainfall alone and thus might produce runoff sooner than if rainfall alone were considered. In the possible event that this effect is important (a judgment based on infiltration parameters) it can be modeled using the overland flow re-routing option discussed earlier in Section 3.7. For example, if disconnected rooftops comprised 25 percent of the total impervious area of a subcatchment (as opposed to the total DCIA) then one could tell SWMM that this percentage of impervious area should be internally routed onto the pervious sub-area of the subcatchment.

Another method of estimating the effective impervious area given measured data is to plot the runoff (in. or mm) vs. rainfall (in. or mm) for small storms. The slope of the regression line is a good estimate of the effective impervious area (Doyle and Miller, 1980).

Table 3-5 Estimates of Manning's roughness coefficient for overland flow

Source	Ground Cover	n	Range
Crawford and Linsley (1966) ${ }^{\text {a }}$	Smooth asphalt	0.01	
	Asphalt of concrete paving	0.014	
	Packed clay	0.03	
	Light turf	0.20	
	Dense turf	0.35	
	Dense shrubbery and forest litter	0.4	
Engman (1986) ${ }^{\text {b }}$	Concrete or asphalt	0.011	0.010-0.013
	Bare sand	0.010	0.01-0.016
	Graveled surface	0.02	0.012-0.03
	Bare clay-loam (eroded)	0.02	0.012-0.033
	Range (natural)	0.13	0.01-0.32
	Bluegrass sod	0.45	0.39-0.63
	Short grass prairie	0.15	0.10-0.20
	Bermuda grass	0.41	0.30-0.48
Yen (2001) ${ }^{\text {c }}$	Smooth asphalt pavement	0.012	0.010-0.015
	Smooth impervious surface	0.013	0.011-0.015
	Tar and sand pavement	0.014	0.012-0.016
	Concrete pavement	0.017	0.014-0.020
	Rough impervious surface	0.019	0.015-0.023
	Smooth bare packed soil	0.021	0.017-0.025
	Moderate bare packed soil	0.030	0.025-0.035
	Rough bare packed soil	0.038	0.032-0.045
	Gravel soil	0.032	0.025-0.045
	Mowed poor grass	0.038	0.030-0.045
	Average grass, closely clipped sod	0.050	0.040-0.060
	Pasture	0.055	0.040-0.070
	Timberland	0.090	0.060-0.120
	Dense grass	0.090	0.060-0.120
	Shrubs and bushes	0.120	0.080-0.180
	Business land use	0.022	0.014-0.035
	Semi-business land use	0.035	0.022-0.050
	Industrial land use	0.035	0.020-0.050
	Dense residential land use	0.040	0.025-0.060
	Suburban residential land use	0.055	0.030-0.080
	Parks and lawns	0.075	0.040-0.120
${ }^{\text {a }}$ Obtained by calibration of Stanford Watershed Model. ${ }^{\text {b }}$ Computed by Engman (1986) by kinematic wave and storage analysis of measured rainfall-runoff data. ${ }^{\text {c }}$ Computed on basis of kinematic wave analysis.			

EXISTING CONDITIONS SWMM MODEL MAP

STERLING RANCH EAST PRELIMINARY PLAN NO. 1
Pre-Developed Subcatchment Runoff

STERLING RANCH EAST PRELIMINARY PLAN NO. 1
Pre-Developed Surface Routing

Design Point (South Bndy.)	Peak Runoff 5 yr. (CFS)	Peak Runoff 100 yr. (CFS)
4	46	105
4 A	1	5
5	5	23
5 A	2	9
6	59	122
6 A	7	19
7	110	249
56	60	160

Subcatchment	Area (Ac.)	SWMM Imperv. (\%)	*SWMM Width (Lw) (ft.)	*SWMM Slope (Sw) (\%)	Peak Runoff $\mathbf{5}$ yr. (CFS)	Peak Runoff $\mathbf{1 0 0} \mathbf{y r .}$ (CFS)
EX-10	265.9	7%	3365	3.41%	$\mathbf{1 0 5}$	$\mathbf{2 2 2}$
EX10A	153.5	5%	1857	4.05%	$\mathbf{4 6}$	$\mathbf{1 0 3}$
EX-11 +	214.3	4%	3255	3.01%	$\mathbf{5 4}$	$\mathbf{1 2 9}$
EX-13 +	94.8	6%	1877	3.97%	$\mathbf{3 6}$	$\mathbf{8 5}$
EX-4A	44.2	8%	3355	1.09%	$\mathbf{1 9}$	$\mathbf{5 0}$
EX-5	26.2	8%	1959	1.65%	$\mathbf{1 2}$	$\mathbf{3 2}$
EX-7	152.8	5%	2234	3.13%	$\mathbf{4 6}$	$\mathbf{1 0 5}$
EX-7A	2.4	2%	416	2.70%	$\mathbf{1}$	$\mathbf{5}$
EX-8	32.2	2%	1679	1.47%	$\mathbf{5}$	$\mathbf{2 3}$
EX-8A	6.6	2%	698	1.80%	$\mathbf{2}$	$\mathbf{9}$
EX-9	139.3	8%	1837	3.19%	$\mathbf{5 9}$	$\mathbf{1 2 2}$
EX-9A	21.8	5%	786	3.01%	$\mathbf{7}$	$\mathbf{1 9}$
TR-12 +	4.7	5%	544	4.13%	$\mathbf{2}$	$\mathbf{9}$
TR-20 +	23.2	7%	1388	3.21%	$\mathbf{1 0}$	$\mathbf{3 2}$
TR-4 +	4.4	5%	645	2.76%	$\mathbf{2}$	$\mathbf{9}$
TR-5 +	13.7	5%	990	2.70%	$\mathbf{5}$	$\mathbf{1 7}$
TR-6 +	1.5	5%	519	1.55%	$\mathbf{1}$	$\mathbf{4}$
TR-7 +	2.6	5%	233	5.84%	$\mathbf{1}$	$\mathbf{5}$

* Reference SWMM Catchment Shape Parameter Finder for calculations

CATCHMENT SHAPE PARAMETER FINDER

Convert Natural Catchment to a Rectangular Shape

Subarea ID	Area acre	A1 acre	A2 acre	$\begin{aligned} & L \\ & \mathrm{ft} \end{aligned}$	High Pt Elev. ft	Low Pt Elev. ft	$Z=A m / A$	$\boldsymbol{X}=\boldsymbol{A} / L^{2}$	$\boldsymbol{Y}=\boldsymbol{L} \boldsymbol{w} / \boldsymbol{L}$	$\begin{gathered} L w \\ \mathrm{ft} \end{gathered}$	$\begin{gathered} \boldsymbol{X} \boldsymbol{w} \\ \mathrm{ft} \end{gathered}$	$\begin{gathered} \text { So } \\ \% \end{gathered}$	So/Sw	$\begin{gathered} S w \\ \% \\ \hline \end{gathered}$
EX-7	152.80	82.00	70.80	6,430	7160.0	6997.0	0.54	0.16	0.35	2,234	2,980	2.53	0.81	3.13
EX-9	139.30	65.00	74.30	7,190	7190.0	7026.0	0.53	0.12	0.26	1,837	3,302	2.28	0.71	3.19
EX10A	153.50	75.00	78.50	8,030	7,236	7,015	0.51	0.10	0.23	1,857	3,600	2.75	0.68	4.05
EX10	265.90	120.00	145.90	7,280	7,380	7,148	0.55	0.22	0.46	3,365	3,442	3.19	0.94	3.41
EX-11	214.30	100.00	114.30	6,140	7,192	7,008	0.53	0.25	0.53	3,255	2,867	3.00	1.00	3.01
EX-13	94.80	47.00	47.80	4,900	7,232	7,070	0.50	0.17	0.38	1,877	2,200	3.31	0.83	3.97
TR-4	4.40	2.20	2.20	640	7,270	7,244	0.50	0.47	1.01	645	297	4.06	1.47	2.76
TR-5	13.70	7.50	6.20	1,250	7,273	7,230	0.55	0.38	0.79	990	603	3.44	1.27	2.70
TR-6	1.50	0.75	0.75	250	7,238	7,228	0.50	1.05	2.08	519	126	4.00	2.58	1.55
TR-7	2.60	1.30	1.30	1,100	7,234	7,192	0.50	0.09	0.21	233	487	3.82	0.65	5.84
TR-12	4.70	2.50	2.20	800	7,300	7,262	0.53	0.32	0.68	544	377	4.75	1.15	4.13
TR-20	23.20	12.00	11.20	1,550	7,314	7,246	0.52	0.42	0.90	1,388	728	4.39	1.37	3.21
EX-4A	44.20	22.10	22.10	750	7,044	7,001	0.50	3.42	4.47	3,355	574	5.73	5.24	1.09
EX-5	26.20	13.10	13.10	1,200	7,186	7,144	0.50	0.79	1.63	1,959	583	3.50	2.12	1.65
EX-7A	2.40	1.20	1.20	550	7,039	7,021	0.50	0.35	0.76	416	251	3.27	1.21	2.70
EX-8A	6.60	3.30	3.30	900	7,045	7,025	0.50	0.35	0.78	698	412	2.22	1.23	1.80
EX-8A	32.20	17.00	15.20	1,750	7,062	7,025	0.53	0.46	0.96	1,679	835	2.11	1.44	1.47
EX-9A	21.80	11.80	10.00	2,600	7,082	7,022	0.54	0.14	0.30	786	1,208	2.31	0.77	3.01

DEVELOPED CONDITIONS SWMM MODEL MAP

SWMM 5.1

STERLING RANCH EAST PRELIMINARY PLAN NO. 1
Developed Subcatchment Runoff

Subcatchment	Area (Ac.)	SWWM Imperv. (\%)	*SWMM Width (Lw) (ft.)	*SWMM Slope (Sw) (\%)	Peak Runoff 5 yr. (CFS)	Peak Runoff 100 yr. (CFS)
EF-A	8.2	15\%	1064	1.57\%	7	20
EX10A +	60.4	5\%	2452	1.79\%	18	50
EX-9 +	6.0	5\%	578	1.70\%	2	8
EX-9A +	12.7	5\%	1080	1.94\%	4	16
P1-A	12.7	8\%	1276	1.29\%	6	19
P1-A1	5.0	45\%	258	1.66\%	11	21
P1-A2	6.4	45\%	258	0.77\%	12	23
P1-A3	1.8	50\%	196	1.17\%	5	9
P1-A4	2.0	50\%	208	1.12\%	5	10
P1-A5	5.7	45\%	417	1.38\%	13	25
P1-A6	2.8	50\%	205	1.75\%	7	14
P1-B (Dev.)	35.5	38\%	873	1.36\%	55	108
P1-B (Un-dev.)	35.5	5\%	873	1.36\%	10	23
P1-C	8.9	50\%	581	3.69\%	23	46
P1-D	31.4	38\%	1033	1.27\%	53	102
P1-E1	30.4	35\%	1148	1.56\%	50	97
P1-E2	21.8	40\%	1048	1.23\%	41	80
P1-F (Dev.)	76.7	30\%	2322	2.18\%	111	215
P1-F (Un-dev.)	76.7	5\%	2322	2.18\%	22	59
P2-A	24.4	10\%	2164	2.11\%	15	43
P2-B	57.8	38\%	1215	1.64\%	88	173
P2-B1	2.5	50\%	201	3.37\%	7	13
P2-B10	1.7	50\%	187	3.43\%	5	10
P2-B2	1.9	50\%	148	3.54\%	5	10
P2-B3	2.8	45\%	245	2.15\%	7	13
P2-B4	1.6	50\%	138	2.49\%	4	8
P2-B5	1.9	45\%	230	1.86\%	5	9
P2-B6	1.1	50\%	141	2.28\%	3	6
P2-B7	2.5	45\%	272	1.78\%	6	12
P2-B8	1.2	50\%	141	2.34\%	3	7
P2-B9	2.0	50\%	226	3.27\%	5	11
P2-S1	35.6	40\%	1756	1.44\%	68	133
P3-A	52.6	40\%	1290	1.37\%	85	166
P3-C	1.7	11\%	446	1.31\%	1	5
P3-S2	11.9	40\%	1103	1.27\%	25	50
P4-A	25.8	35\%	920	1.21\%	41	80
P4-B	37.3	35\%	1773	1.34\%	63	123
SC-1 +	3.6	8\%	306	2.20\%	2	6
SC-2 +	10.8	8\%	1211	2.44\%	6	20
SC-3 +	27.2	8\%	616	2.68\%	12	26
SC-4 +	16.4	8\%	1918	1.48\%	8	27
TR-V	2.1	19\%	162	4.13\%	2	6
TR-W	1.4	38\%	90	1.30\%	3	5

* Reference SWMM Catchment Shape Parameter Finder for calculations
+ Basin not changed from pre-development conditions

STERLING RANCH EAST PRELIMINARY PLAN NO. 1 Developed Surface Routing

Design Point (On-Site)	$\begin{gathered} \hline \text { Peak Runoff } \\ 5 \mathrm{yr} . \\ \text { (CFS) } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Peak Runoff } \\ & 100 \mathrm{yr} . \\ & \text { (CFS) } \\ & \hline \end{aligned}$
DP-1	112	219
DP-2	53	103
DP-3	41	80
DP-4	218	379
DP-5	53	102
DP-6	55	108
DP-7	20	39
DP-8	68	133
DP-9	88	173
DP-10	223	441
DP-11	10	21
DP-12	63	123
DP-13	41	80
DP-14	97	189
DP-15	85	166
DP-16	34	69
Pond FSD-11B	115	227
Pond FSD-14A	234	486
Pond FSD-14B	97	189
Pond FSD-16 (Ultimate)	323	499
Pond FSD-16 (Interim)	197	410
Design Point (South Bndy.)	$\begin{gathered} \hline \text { Peak Runoff } \\ 5 \mathrm{yr} . \\ \text { (CFS) } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Peak Runoff } \\ & 100 \mathrm{yr} . \\ & \text { (CFS) } \\ & \hline \end{aligned}$
4	0.5	3.5
4A	0.5	3.5
5	4	10
5A	2	7
6	2.0	48.9
6A	4	16
7	18	50

Convert Natural Catchment to a Rectangular Shape

Subcatchment Center	$Z=0.5$	
	Side Collector	$Z=1$
	Skewed Location	$0.5<Z<1$

Dimensionless Variables
$Y=\frac{L}{L_{w}} ; \quad X=\frac{A}{L^{2}}$

$Y=(1.5-Z)\left(2.286 X-0.286 X^{2}\right)$
$\frac{L w}{L}=(1.5-Z)\left[2.286\left(\frac{A}{L^{2}}\right)-0.286\left(\frac{A}{L^{2}}\right)^{2}\right]$
$S_{o} /_{S_{w}}=A /\left(L L_{w}\right)+{ }^{L_{w}} / L$

$X_{w}=A / L_{w}$

Subarea ID	Area acre	A1 acre	A2 acre	$\begin{aligned} & L \\ & \mathrm{ft} \end{aligned}$	High Pt Elev. ft	Low Pt Elev. ft	$Z=A m / A$	$X=A / L^{2}$	$\boldsymbol{Y}=\boldsymbol{L} \boldsymbol{w} / \boldsymbol{L}$	$\begin{gathered} L w \\ \mathrm{ft} \end{gathered}$	$\begin{gathered} X w \\ \mathrm{ft} \end{gathered}$	$\begin{gathered} \text { So } \\ \% \end{gathered}$	So/Sw	$\begin{gathered} S w \\ \% \end{gathered}$
EF-A	8.20	4.10	4.10	260	7050.0	7028.0	0.50	5.28	4.09	1,064	336	8.46	5.38	1.57
P3-C	1.70	0.50	1.20	260	7027.0	7019.0	0.71	1.10	1.72	446	166	3.08	2.35	1.31
P1-A	12.70	7.00	5.70	850	7,124	7,102	0.55	0.77	1.50	1,276	433	2.59	2.01	1.29
P1-B	35.50	10.00	25.50	3,100	7,160	7,124	0.72	0.16	0.28	873	1,770	1.16	0.85	1.36
P1-C	8.90	4.50	4.40	1,700	7,158	7,122	0.51	0.13	0.30	510	761	2.12	0.75	2.83
P1-D	31.40	14.00	17.40	2,800	7,136	7,106	0.55	0.17	0.37	1,033	1,324	1.07	0.84	1.27
P1-E1	30.40	16.00	14.40	2,500	7,188	7,152	0.53	0.21	0.46	1,148	1,154	1.44	0.92	1.56
P1-E2	21.80	11.00	10.80	2,000	7,158	7,134	0.50	0.24	0.52	1,048	906	1.20	0.98	1.23
P1-F	76.70	35.00	41.70	3,000	7,240	7,158	0.54	0.37	0.77	2,322	1,439	2.73	1.25	2.18
TR-W	1.40	0.70	0.70	90	7,192	7,182	0.50	7.53	1.00	90	678	11.11	8.53	1.30
TR-V	2.10	1.50	0.60	1,000	7,220	7,190	0.71	0.09	0.16	162	563	3.00	0.73	4.13
P1-A1	5.00	3.10	1.90	2,400	7,134	7,112	0.62	0.04	0.08	182	1,199	0.92	0.58	1.59
P1-A2	6.40	3.20	3.20	2,400	7,134	7,110	0.50	0.05	0.11	264	1,056	1.00	0.55	1.82
P1-A3	1.80	0.70	1.10	800	7,110	7,103	0.61	0.12	0.25	196	400	0.88	0.74	1.17
P1-A4	2.00	1.30	0.70	800	7,112	7,105	0.65	0.14	0.26	208	419	0.88	0.78	1.12
P1-A5	5.70	3.00	2.70	1,300	7,114	7,100	0.53	0.15	0.32	417	595	1.08	0.78	1.38
P1-A6	2.80	1.30	1.50	1,300	7,114	7,100	0.54	0.07	0.16	205	595	1.08	0.62	1.75
P2-A	24.40	13.20	11.20	900	7,056	7,000	0.54	1.31	2.40	2,164	491	6.22	2.95	2.11
P2-B	57.80	18.50	39.30	3,800	7,106	7,052	0.68	0.17	0.32	1,215	2,072	1.42	0.87	1.64
P2-S1	35.60	18.00	17.60	1,900	7,110	7,072	0.51	0.43	0.92	1,756	883	2.00	1.39	1.44
P2-B1	2.50	1.50	1.00	1,100	7,102	7,077	0.60	0.09	0.18	201	541	2.27	0.67	3.37
P2-B2	1.90	1.20	0.70	1,100	7,102	7,077	0.63	0.07	0.13	148	559	2.27	0.64	3.54
P2-B3	2.80	1.70	1.10	1,000	7,077	7,061	0.61	0.12	0.25	245	498	1.60	0.74	2.15
P2-B4	1.60	1.00	0.60	1,000	7,077	7,061	0.63	0.07	0.14	138	504	1.60	0.64	2.49
P2-B5	1.90	1.20	0.70	700	7,061	7,050	0.63	0.17	0.33	230	360	1.57	0.84	1.86
P2-B6	1.10	0.65	0.45	700	7,061	7,050	0.59	0.10	0.20	141	341	1.57	0.69	2.28
P2-B7	2.50	1.60	0.90	770	7,050	7,038	0.64	0.18	0.35	272	401	1.56	0.87	1.78
P2-B8	1.20	0.70	0.50	770	7,050	7,038	0.58	0.09	0.18	141	372	1.56	0.67	2.34
P2-B9	2.00	1.00	1.00	870	7,038	7,018	0.50	0.12	0.26	226	386	2.30	0.70	3.27
P2-B10	1.70	0.90	0.80	870	7,038	7,018	0.53	0.10	0.21	187	397	2.30	0.67	3.43
P3-A	1.70	0.90	0.80	870	7,038	7,018	0.53	0.10	0.21	187	397	2.30	0.67	3.43
P3-S2	11.90	6.00	5.90	1,000	7,036	7,016	0.50	0.52	1.10	1,103	470	2.00	1.57	1.27
P4-A	25.80	20.00	5.80	1,950	7,078	7,052	0.78	0.30	0.47	920	1,222	1.33	1.10	1.21
P4-B	37.30	25.00	12.30	1,600	7,116	7,080	0.67	0.63	1.11	1,773	916	2.25	1.68	1.34
SC-1	3.60	1.80	1.80	150	7,014	6,996	0.50	6.97	2.04	306	512	12.00	5.46	2.20
SC-2	10.80	5.00	5.80	770	7040.0	7001.0	0.54	0.79	1.57	1,211	388	5.06	2.08	2.44
SC-3	27.20	14.00	13.20	4,300	7100.0	7032.0	0.51	0.06	0.14	616	1,925	1.58	0.59	2.68
SC-4	16.40	8.20	8.20	420	7,136	7,102	0.50	4.05	4.57	1,918	372	8.10	5.45	1.48
EX-9	6.00	3.00	3.00	1,000	7,050	7,030	0.50	0.26	0.58	578	452	2.00	1.03	1.94
EX-9A	12.70	6.30	6.40	1,100	7,049	7,022	0.50	0.46	0.98	1,080	512	2.45	1.45	1.70

PROPOSED PONDS

EFFECTIVE IMPERVIOUS AREA CALCULATIONS

STERLING RANCH EAST PRELIMINARY PLAN NO. 1
Pond FSD-16 Tributary Area
(Full Build Out)

(Full Build Out)			
Subcatchment	Area (Ac.)	Avg. Lot size (AC)	Effective Imperv. (\%)
P1-A	12.7	N/A	15%
P1-B	35.5	7,500	55%
P1-C	8.9	N/A	70%
P1-D	31.4	6,500	60%
P1-E1	30.4	8,500	50%
P1-E2	21.8	7,500	55%
P1-F	76.7	12,500	35%
TR-V	2.1	17,500	27%
TR-W	1.4	13,500	32%
TOTAL	$\mathbf{2 2 0 . 9}$		$\mathbf{4 6 \%}$

STERLING RANCH EAST PRELIMINARY PLAN NO. 1
Pond FSD-16 Tributary Area
(Prelim. Plan 1 \& Foursquare PUD Only)

Subcatchment			
	Area (Ac.)	Avg. Lot size (AC)	Effective Imperv. (\%)
P1-A	12.7	N/A	15%
P1-B	35.5	Un dev.	2%
P1-C	8.9	N/A	70%
P1-D	31.4	6,500	60%
P1-E1	30.4	8,500	50%
P1-E2	21.8	7,500	55%
P1-F	76.7	Un dev.	2%
TR-V	2.1	17,500	27%
TR-W	1.4	13,500	32%
TOTAL	$\mathbf{2 2 0 . 9}$		$\mathbf{2 6 \%}$

STERLING RANCH EAST PRELIMINARY PLAN NO. 1 Pond FSD-14A Tributary Area

Subcatchment	Area (Ac.)	Avg. Lot size (AC)	Effective Imperv. (\%)
P1-A1	5.0	N/A	70%
P1-A2	6.4	N/A	70%
P1-A3	1.8	N/A	70%
P1-A4	2.0	N/A	70%
P1-A5	5.7	N/A	70%
P1-A6	2.8	N/A	70%
P2-S1	35.6	School	50%
P2-A	24.4	Park	7%
P2-B	57.8	7,000	57%
P2-B1	2.5	N/A	50%
P2-B2	1.9	N/A	70%
P2-B3	2.8	N/A	50%
P2-B4	1.6	N/A	70%
P2-B5	1.9	N/A	50%
P2-B6	1.1	N/A	70%
P2-B7	2.5	N/A	25%
P2-B8	1.2	N/A	70%
TOTAL	157.0		49%

STERLING RANCH EAST PRELIMINARY PLAN NO. 1 Pond FSD-14B Tributary Area

Subcatchment	Area (Ac.)	Avg. Lot size (AC)	Effective Imperv. (\%)
P4-A	25.8	6,500	60%
P4-B	37.3	6,500	60%
TOTAL	63.1		60%

STERLING RANCH EAST PRELIMINARY PLAN NO. 1
Pond FSD-11B Tributary Area

Subcatchment	Area (Ac.)	Avg. Lot size (AC)	Effective Imperv. (\%)
P2-B9	2.0	N/A	70%
P2-B10	1.7	N/A	70%
P3-S2	11.9	School	65%
P3-A	52.6	7,000	57%
TOTAL	$\mathbf{6 8 . 2}$		$\mathbf{5 9 \%}$

STERLING RANCH EAST PRELIMINARY PLAN NO. 1
Flow Comparison along South Boundary

	This Report (SWMM 5.1) Pre-Dev. Conditions		This Report (SWMM 5.1) Developed Conditions		2018 SR MDDP (HEC-HMS) Pre-Dev. Conditions	
Design Point (South Bndy.)	Peak Runoff 5 yr . (CFS)	$\begin{gathered} \hline \text { Peak Runoff } \\ 100 \mathrm{yr} . \\ \text { (CFS) } \end{gathered}$	Peak Runoff 5 yr . (CFS)	$\begin{gathered} \text { Peak Runoff } \\ 100 \mathrm{yr} . \\ \text { (CFS) } \end{gathered}$	Peak Runoff 5 yr . (CFS)	$\begin{gathered} \hline \text { Peak Runoff } \\ 100 \text { yr. } \\ \text { (CFS) } \end{gathered}$
4	46	105	0.5	3.5	21.5	107.4
4A	1	5	0.5	3.5		
5	5	23	4	10	1.7	20.5
5A	2	9	2	7		
6	59	122	2.0	48.9	23.9	125.2
6A	7	19	4	11		
7	110	249	18	50	57.1	277.9
56	60	160	60	160	42.5	202.9

WATER QUALITY TREATMENT PLAN MAP

DRAINAGE MAPS

[^0]: State what 2023 drainage and bridge fees are for Sand Creek Drainage basin.

