

INNOVATIVE DESIGN. CLASSIC RESULTS.

FINAL DRAINAGE REPORT FOR STERLING RANCH EAST FILING NO. 2 & FOURSQUARE AT STERLING RANCH EAST FILING NO. 1

December 2022

Prepared for: **CLASSIC SRJ LAND, LLC** 2138 Flying Horse Club Dr. COLORADO SPRINGS CO 80921 (719) 592-9333

Prepared by: **CLASSIC CONSULTING ENGINEERS & SURVEYORS** 619 N. CASCADE AVENUE, SUITE 200 COLORADO SPRINGS CO 80903 (719) 785-0790

CONSULTING

619 N. Cascade Ave, Suite 200 | Colorado Springs, CO 80903 | (719) 785-0790

ClassicConsulting.net

FINAL DRAINAGE REPORT FOR STERLING RANCH EAST FILING NO. 2 & FOURSQUARE AT STERLING RANCH EAST FILING NO. 1

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

David L Gibson, Colorado P.E. #46477

DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Date

Business Name:	Classic SRJ Land, LLC
Ву:	
Title:	
Address:	2138 Flying Horse Club Dr.
	Colorado Springs, CO 80921

EL PASO COUNTY ONLY:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

For County Engineer / ECM Administrator Conditions:

Date

FINAL DRAINAGE REPORT FOR STERLING RANCH EAST FILING NO. 2 & FOURSQUARE AT STERLING RANCH EAST FILING NO. 1

TABLE OF CONTENTS:

PURPOSE	Page	4
PROJECT DESCRIPTION	Page	4
PREVIOUS REPORTS	Page	4
SOILS & GEOLOGY	Page	5
DRAINAGE CRITERIA	Page	5
FLOODPLAIN STATEMENT	Page	6
EXISTING DRAINAGE CONDITIONS	Page	6
PROPOSED DRAINAGE CONDITIONS	Page	6
STORMWATER QUALITY (FOUR STEP PROCESS)	Page	11
DRAINAGE AND BRIDGE FEES	Page	15
CONSTRUCTION COST OPINION	Page	16
SUMMARY	Page	17
REFERENCES	Page	18
APPENDICES		
VICINITY MAP		
SOILS MAP (S.C.S. SURVEY)		
F.E.M.A. MAP	If nothing on the pond is being updated specifically with this	

DEVELOPED CONDITIONS CALCULATIONS

DETENTION POND '16'

HYDRUALIC GRADE LINE (HGL) CALCULATIONS

DRAINAGE MAPS

If nothing on the pond is being updated specifically with this SF2237 (no pond updates shown on CDs), calcs can be removed or label each sheet clearly as "for information only." And then if needed, the drainage report(s) with those calcs can be referenced in the text of this report.

FINAL DRAINAGE REPORT FOR STERLING RANCH EAST FILING NO. 2 & FOURSQUARE AT STERLING RANCH EAST FILING NO. 1

PURPOSE

This document is the Final Drainage Report for Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No. 1. The purpose of this report is to identify onsite and offsite drainage patterns, define areas tributary to the proposed full spectrum detention and water quality facility (Pond 16), and to safely route developed storm water runoff via a proposed storm sewer system. The proposed Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No. 1 developments shall be in adherence to the El Paso County approved Master Development Drainage Plan and MDDP Amendment for Sterling Ranch as well as current County Drainage Criteria.

PROJECT DESCRIPTION

The Sterling Ranch East Filing No. 2 development is 16.841 acres and Foursquare at Sterling Ranch East Filing No. 1 is 36.647 acres of the 321.37 total acres of Sterling Ranch East, a phased master planned community located in northern El Paso County, Colorado. These developments consist of public residential roadways and single-family home lots. The site is located in portion of Section 33 & 34, Township 12 South, Range 65 west of the 6th p.m. in El Paso County, Colorado. The site is located on the east side of Sand Creek. The site is bounded on the north, east and west by proposed and future Sterling Ranch East residential development, west and south by the proposed extension of Briargate Pkwy. The site is in the upper portion of both the Sand Creek and Sand Creek East Fork Drainage Basins.

PREVIOUS REPORTS

The latest and most applicable previously approved drainage studies are the following:

- "Sterling Ranch MDDP Amendment No. 2 & Preliminary Drainage Report for Sterling Ranch East Preliminary Plan No. 1," by Classic Consulting Engineers & Surveyors, LLC approval pending.
- 2. "Master Development Drainage Plan Amendment for Sterling Ranch," by JR Engineering, LLC, dated September 2022.
- 3. "2018 Sterling Ranch MDDP," by M&S Civil Consultants, Inc. June 2018.
- 4. "Drainage Letter for Sterling Ranch Road and Briargate Pkwy. Interim Plan," by JR Engineering, LLC dated September 2022.

 "Final Drainage Report for Sand Creek Restoration," by JR Engineering, LLC, dated September 2022.

SOILS AND GEOLOGY

The soils within the Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No .1 site and tributary area are Hydrologic Soil Group A, Blakeland loamy sand and Columbine gravelly sandy loam (See Appendix for Soil Map). Per the El Paso County DCM, Chapter 6, Section 4.3, to recognize that soils within a development project are usually disturbed and covered with top soil, sod or landscaping and irrigated, Type A soils must be represented as Type B soils for post development runoff coefficients. Therefore, Type B soils are used in sizing the proposed storm sewer infrastructure and full spectrum detention/water quality facility (Pond 16).

DRAINAGE CRITERIA

developed runoff calculations

Remove portion of statement regarding the full spectrum pond, Type B soils are not being used in design of pond facility.

Hydrologic calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the DCM as revised in May 2014. Full Spectrum Detention and Stormwater quality analysis, Extended Detention Basin (EDB) design, are per the Mile High Flood District Manual and MHFD-Detention version 4.05 and UD-BMP version 3.06 spreadsheet. The Rational Method was used to estimate stormwater runoff from the developed project and tributary to the proposed full spectrum detention/water quality pond. The UDFCD UD-Inlet excel workbook was used to verify street capacities, size sump inlets, and calculate interception and flow-by rates of at-grade inlets. The UD-Sewer computer program was used to calculate the hydraulic grade line (HGL) within the storm sewer system. An overall tributary area exhibit is included to show the various types of pervious and impervious areas established to determine the overall imperviousness of the 220.90 ultimate acres tributary to the proposed full spectrum detention/water quality facility (Pond 16) and 42.51 interim acres are tributary with development of Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No. 1 only.

Use newer version of spreadsheet

FLOODPLAIN STATEMENT

No portions of the Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No. 1 are located within a floodplain as determined by the Flood Insurance Rate Maps (F.I.R.M.) Map Numbers 08041C 0533G, effective date, December 7, 2018.

EXISTING DRAINAGE CONDITIONS

The "Sterling Ranch MDDP Amendment No. 2 & Preliminary Drainage Report for Sterling Ranch East Preliminary Plan No. 1," by Classic Consulting Engineers & Surveyors, LLC is currently under review and approval process with El Paso County Development Services and in full detail describes the Existing Conditions of the proposed development area. Please see this report for the full descriptions. The Pre-Developed (Existing) Conditions Maps are included in the Appendix of this Report and include the Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No. 1 boundary's.

The proposed site is located within Basins EX-5, EX-7, EX-9 & EX10A of the Preliminary Drainage Report study and drains north to south. The site has been previously disturbed with mass grading operations and vegetation is sparse and of natural grassland consistency (no trees or shrubs). See previous reports for additional details on the Existing Conditions.

The adjacent Briargate Parkway and Sterling Ranch Road drainage and roadway design was completed by JR Engineering, "Drainage Letter for Sterling Ranch Road and Briargate Parkway Interim Plan," May 2022. These roadways and storm system will be constructed prior to and in conjunction with the proposed Filing No. 1 development. Therefore, the storm system described within this JR Engineering Letter and Construction Drawings is shown as 'Existing' with proposed storm sewer extensions into the storm system for Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No. 1.

PROPOSED DRAINAGE CONDITIONS

Developed runoff from Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No. 1 will be collected in a public-private storm system and piped into the Privately owned and maintained full spectrum detention/water quality facility (Pond 16) that will detain and treat the developed runoff prior to releasing at or below historic rates to the downstream channel (Sand Creek Reach SC-9). As

previously mentioned, the rational method was used to estimate developed runoff values. All storm sewer inlets and pipes collecting runoff within the County right-of-way will be 'Public'. All storm sewer outside of right-of-way, including the pond outfall pipe, is 'Private' as is the proposed full spectrum detention facility. Private facilities will be owned and maintained by the Sterling Ranch Metropolitan District. HGL grade line calculations are included in the Appendix in support of the construction drawings for the proposed Public and Private storm systems.

Per the current El Paso County Drainage Criteria for stormwater capacity within street sections, the following summaries of Figures 7-7 applies: all proposed roads are Residential.

Street Type	Allowable – Initial Storm (5 yr)	Allowable–Major Storm (100					
		<i>yr)</i>					
Residential w/Ramp Curb	1.5% street slope = 10 cfs	1.5% street slope = 46 cfs					
	2% street slope = 12 cfs	2% street slope = 44 cfs					
	4% street slope = 16.5 cfs	4% street slope = 36 cfs					
	6% street slope = 19.5 cfs	6% street slope = 32 cfs					
	8% street slope = 17.8 cfs	8% street slope = 29 cfs					
	10% street slope = 16.5 cfs	10% street slope = 27.5 cfs					
	No curb overtopping.	12" maximum depth at flowline.					
Residential w/Vertical Curb	1.5% street slope = 13 cfs	1.5% street slope = 45 cfs					
(6" Vertical Curb)	2% street slope = 15 cfs	2% street slope = 43 cfs					
	4% street slope = 20.5 cfs	4% street slope = 35 cfs					
	6% street slope = 18 cfs	6% street slope = 31 cfs					
	8% street slope = 16.8 cfs	8% street slope = 28 cfs					
mes near sump inlets shall	10% street slope = 15.7 cfs	10% street slope = 26.5 cfs					
ter surface ponding elevation	No curb overtopping.	12" maximum depth at flowline.					

At-grade inlets and sump (low-points) were designed in a way that street capacity is not an issue anywhere within the proposed Filings. Street capacity has also been verified at each design point by using the UD-Inlet Excel workbook (located in Appendix) from Urban Drainage Flood Control District (UDFCD). Inlet sizing is also per the UD-Inlet Excel workbook. Drainage from individual lots are assumed to travel in side-lot swales to the street. One Site-Level Low Impact Development form (IRF form) is

State that ho be construct 100-year wa

change to "shall"

included in the Appendix of this report, for the basins that discharge to the proposed full spectrum detention and water quality Pond 16. A detailed description of the developed flows for Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No. 1 is as follows:

Design Point 1 (Q₅ = **6.1 cfs, Q**₁₀₀ = **16.1 cfs)** consists of developed flows from Basin B. Basin B is 4.9 acres of proposed residential development with associated streets, landscaping, and homes. Flows travel south in the east curbline of Boise Court and west curbline of Boulder City Place to Design Point 1 where a proposed public 10' Type R sump inlet will intercept flows. Flow will be conveyed by a proposed 24" RCP public storm sewer (Pipe 1). The emergency overflow route for this inlet will be south to Design Point 2.

Design Point 2 (Q_5 = **3.5 cfs, Q**₁₀₀ = **9.9 cfs)** consists of developed flows from Basin A. Basin A is 3.35 acres of proposed residential development with associated streets, landscaping, and homes. Flows travel south in the west curbline of Boise Court and to the south curbline of Catalina Road to Design Point 2 where a proposed public 5' Type R sump inlet will intercept flows. Flow will be conveyed by a proposed 18" RCP public storm sewer (Pipe 2). The emergency overflow route for this inlet will overtop the southeast curb return at the at the intersection of Catalina Road and Boulder City Place and continue south along Boulder City Place.

Area does not match hydrology spreadsheet

Design Point 3 (Q_5 = 5.7 cfs, Q_{100} = 14.0 cfs) consists of developed flows from Basin J. Basin J is 2.60 acres of proposed residential development with associated streets, landscaping, and homes. Flows travel south in the curbline of Salt Lake Drive and to the north curbline of Catalina Road to Design Point 3 where a proposed public 10' Type R sump inlet will intercept flows. Flow will be conveyed by a proposed 24'' RCP public storm sewer (Pipe 4). The emergency overflow route for this inlet will be south to Design Point 4.

Design Point 4 (Q_5 = 2.2 cfs, Q_{100} = 6.1 cfs) consists of developed flows from Basin K. Basin K is 1.83 acres of proposed residential development with associated streets, landscaping, and homes. Flows travel south in the south curbline of Catalina Road to Design Point 4 where a proposed public 5' Type R sump inlet will intercept flows. Flow will be conveyed by a proposed 18" RCP public storm sewer (Pipe 5). The

emergency overflow route for this inlet will overtop curb behind Design Point 4 to Tract A and then to Briargate Parkway.

-also include flows from Basin D.

locations show the same area

Design Point 5 (Q₅ = 2.3 cfs, Q₁₀₀ = 5.8 cfs) consists of developed flows from Basin F and Basin OS-1. Basin F is 0.49 acres of proposed Idaho Falls Drive. Basin OS-1 is 2.60 acres of future residential development north of Idaho Falls Drive. Flows travel east in the north curb line of Idaho Falls Drive to Design Point 5 where a proposed public 5' Type R sump inlet will intercept flows. Flow will be conveyed by a proposed 18" RCP public storm sewer (Pipe 7). The emergency overflow route for this inlet will be south to Design Point 6.

Design Point 6 ($Q_5 = 0.7 cfs$, $Q_{100} = 1.3 cfs$ **)** consists of developed flows from Basin G. Basin G is 0.16 acres of proposed Idaho Falls Drive. Flows travel south in the south curbline of Idaho Falls Drive to Design Point 6 where a proposed public 5' Type R sump inlet will intercept flows. Flow will be conveyed by a proposed 18" RCP public storm sewer (Pipe 8). The emergency overflow route for this inlet will overtop the southeast curb return at the at the intersection of Idaho Falls Drive and Pagosa Springs Drive to Design Point 8.

Design Point 7 ($Q_5 = 5.5 ext{ cfs}$, $Q_{100} = 14.1 ext{ cfs}$) consists of developed flows from Basin H. Basin H is 4.01 acres of proposed residential development with associated streets, landscaping, and homes. Flows travel south in the west curbline of Pagosa Springs Drive to Design Point 7 where a proposed public 10' Type R sump inlet will intercept flows. Flow will be conveyed by a proposed 24'' RCP public storm sewer (Pipe 10). The emergency overflow route for this inlet will overtop the highpoint in Pagosa Springs Drive to Design Point 3.

Design Point 8 (Q₅ = **1.1 cfs, Q**₁₀₀ = **4.6 cfs)** consists of developed flows from Basin I. Basin I is 1.68 acres of proposed residential development with associated streets, landscaping, open space and homes. Flows travel south in the east curbline of Pagosa Springs Drive to Design Point 8 where a proposed public 5' Type R sump inlet will intercept flows. Flow will be conveyed by a proposed 18" RCP public storm sewer (Pipe 11). The emergency overflow route for this inlet will overtop the crown in the road to Design Point 7.

Design Point 9 (Q_5 = 7.6 cfs, Q_{100} = 21.9 cfs**)** consists of developed flows from Basin M and Basin N. Basin M is 4.10 acres and Basin N is 3.00 acres of proposed residential development with associated streets, landscaping, and homes. Developed flows travel east in the north curbline of Catalina Road to a proposed public 15' Type R at-grade inlet at Design Point 9. This at-grade inlet will intercept (Q_5 = 7.1 cfs, Q_{100} = 13.2 cfs) with a flow-by of (Q_5 = 0.5 cfs, Q_{100} = 8.7 cfs) that will travel in the north curb line of Catalina Road to Design Point 10. Intercepted flows will be conveyed by a proposed 24" RCP public storm sewer (Pipe 14).

Design Point 10 (Q_5 = 3.6 cfs, Q_{100} = 15.7 cfs) consists of developed flows from Basin L and Flow-by Design Point 9. Basin L is 2.20 acres of proposed residential development with associated streets, landscaping, open space and homes. Flows travel south in the south curbline of Catalina Road to Design Point 9 where a proposed public 15' Type R sump inlet will intercept flows. Flow will be conveyed by a proposed 24'' RCP public storm sewer (Pipe 16). The emergency overflow route for this inlet will overtop the curb and into Tract A and then to Sterling Ranch Road.

Design Point 11 (Q_5 = **39 cfs,** Q_{100} = **117 cfs)** consists of Basin T and Pipe 17 and represents to the total flows into the proposed private Full Spectrum Detention Facility from Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No. 1. Basin T is 11.19 acres of landscape slope and pond. Pipe 17 (Q_5 = **35.8 cfs,** Q_{100} = **95 cfs)** is a public 42" RCP storm.

Basin C (Q₅ = 0.9 cfs, Q₁₀₀ = 4.8 cfs) is 1.92 acres of open space tract and residential back yards that will discharge directly Briargate Parkway. Flows will be intercepted by an existing 20' Type R inlet in Briargate
Parkway installed with Sterling Ranch East Filing No. 1. This is shown as a portion of Basin P1-A2 in the Flows from this basin should be combined with Basins R & Sterling Ranch East Filing No. 1 Final Drainage Report.
Sterling Ranch East Filing No. 1 Final Drainage Report.
S, as they all release into Briargate Parkway. Indicate if the drainage report for Briargate Pkwy accounted for these flows and the inlet still functions properly with these flows.

Basin E (Q₅ = **2.2 cfs, Q**₁₀₀ = **16.3 cfs)** is 6.63 acres of open space tract and adjacent Sand Creek (Reach SC-9) channel improvements that are within the boundary of Sterling Ranch East Filing No. 2. No development is located within this basin as its only open space and existing channel work. All channel

10

work is completed per the "Final Drainage Report for Sand Creek Restoration," by JR Engineering LLC, dated September 2022.

Basin Q ($Q_5 = 0.6$ cfs, $Q_{100} = 2.0$ cfs) is 0.50 acres of open space tract that will discharge directly Briargate Parkway. Flows will be intercepted by an existing 20' Type R inlet in Briargate Parkway installed with Sterling Ranch East Filing No. 1. This is shown as a portion of Basin P1-A2 in the Sterling Ranch East Filing Indicate if the drainage report for Briargate Pkwy accounted for No. 1 Final Drainage Report. these flows and the inlet still functions properly with these flows.

Basin O ($Q_5 = 6.2$ cfs, $Q_{100} = 12.0$ cfs) is 2.16 acres Sterling Ranch Road that will discharge directly Briargate Parkway. Flows will be intercepted by an existing 20' Type R inlet in Briargate Parkway installed with Sterling Ranch East Filing No. 1. This is shown as a portion of Basin P1-C2 in the Sterling Ranch East Indicate if the drainage report for Briargate Pkwy accounted for Filing No. 1 Final Drainage Report. these flows and the inlet still functions properly with these flows.

Basin P ($Q_5 = 0.7$ cfs, $Q_{100} = 2.4$ cfs) is 0.63 acres of open space tract that will discharge directly Briargate Parkway. Flows will be intercepted by an existing 20' Type R inlet in Briargate Parkway installed with Sterling Ranch East Filing No. 1. This is shown as a portion of Basin P1-A3 in the Sterling Ranch East Filing

Indicate if the drainage report for Briargate Pkwy accounted for No. 1 Final Drainage Report. these flows and the inlet still functions properly with these flows. Missing Basins D, R & S

in discussion

STORM WATER QUALITY/DETENTION

As required, storm water quality measures will be utilized in order to reduce the amount of sediment, debris and pollutants that are allowed to enter Sand Creek. Developed flows from Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No. 1 along with future flows from the Sterling Ranch East Preliminary Plan No. 1 will be routed to a private Full Spectrum Detention facility, FSD Pond 16 to be located in Tract H of Foursquare at Sterling Ranch East Filing No. 1. The facilities will release treated developed flows to an existing 48" RCP storm within future Briargate Parkway. Reference the "Drainage Letter for Sterling Ranch Road and Briargate Pkwy. Interim Plan", prepared by JR Engineering, LLC, dated December 2021 and the "Sterling Ranch Road and Briargate Pkwy. Storm Plans", prepared by JR Engineering, LLC, dated September 2022. These referenced design plans provide a 48" RCP outfall pipe at this location with an allowable release rate of $(Q_{100} = 156.6 \text{ cfs})$

Private FSD POND-16

The outlet structure will be designed in an interim condition until future tributary storm systems from developments north of Foursquare at Sterling Ranch East Filing No . 1 are developed. As systems are designed and plans submitted for review Final Drainage Reports will be submitted updated the outlet plate until the ultimate condition is reached. This report will detail the interim condition as well as estimated ultimate conditions based on tributary areas shown in the Preliminary Drainage Report for Foursquare at Sterling Ranch Preliminary Plan/PUD as well as the Sterling Ranch MDDP amendment No.

2. Clarify if anything on the pond (like the orifice plate) will be updated with this specific proposed project (SF2237). Because no orifice plate details were included with the CDs. Will this project be constructed at the same time as Four Square? So the orifice plate will being installed with Four Square will also account for the development of SF2237? Just add some more explanation to clarify these uncertainties.

The UD-BMP spreadsheet along with the UD-Detention spreadsheet were used to calculate the required volume for the EURV and 100-year release. User input 1-hour precipitation values in the UD-Detention spreadsheet were taken from Table 6-2 Volume 1 Colorado Springs El Paso County Drainage Criteria Manual. The UD-BMP IRF spreadsheet (see appendix) was used to calculate the overall total site imperviousness Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No. 1 to the EDB (Interim) and these subdivisions including the future tributary area (Ultimate). This total interim area is 42.51 acres. Per the spread sheet a 100 Year Event 42.3% imperviousness will be used in the interim condition. This total ultimate area is estimated at 220.90 acres. Per the spread sheet a 100 Year Event 48.9% imperviousness will be used in the ultimate condition.

conditions, showing tributary basins with area and % impervious, coming to an overall % impervious.

Interim Condition (Sterling Ranch East Filing No. 2 & Foursquare at Sterling Kanch East Filing No. 1)

Per UD-Detention spreadsheet a 0.659 ac-ft. WQVC, 1.320ac-ft. EURV, and a 3.296 ac-ft. 100-year flow volume is provided. The outlet structure will have a 4-hole configuration with 4 individual rectangular holes spaced 30 inches apart each hole with have an area of 3.50, 8.0, 18.0 and 18.0 square inches. The outlet box will be an 20'x4' grated inlet box 10.0' tall with a 48" RCP storm sewer outlet with a plate 26" from invert will connect to the existing 48" RCP storm sewer in Briargate Parkway. A 165' wide 2' deep emergency overflow weir will be installed in the pond berm with Type L rip-rap (see appendix for calculation). Flows will overtop the pond in the provided weir and travel directly to the adjacent Briargate Parkway. Maintenance and ownership of the Private detention/water quality facility and the

entire proposed storm sewer is by the Sterling Ranch East Metropolitan District. An El Paso County Detention Pond Maintenance Agreement will be required indicating these Facilities to be ultimately owned and maintained by the Metro District

Planned release per the UD-Detention spreadsheet from the Full Spectrum EDB will be Q_5 = 0.60 cfs, Q_{100} = 1.40 cfs. Allowable release into the existing 48" RCP outfall pipe at this location is anticipated to release rate of (Q_{100} = 156.6 cfs). This facility restricts the release to below pre-development (historic levels) per the MHFD-Detention spreadsheet and is in conformance with the Preliminary Drainage <u>Report and MDDP Amendment</u>. Similar to my comment on the previous page, clarify that this ultimate build-out will not occur with this project (SF2237), but

Ultimate Condition (Sterling Ranch East Filing No. 2, Foursquare at Sterling Ranch East Filing No. 1 & Future Sterling Ranch East Development)

rather with some future development.

Per UD-Detention spreadsheet a 3.742 ac-ft. WQVC, 8.423ac-ft. EURV, and a 19.927 ac-ft. 100-year flow volume is provided. The outlet structure will have a 4-hole configuration with 4 individual rectangular holes spaced 30 inches apart each hole with have an area of 10.0, 14.0, 18.0 and 18.0 square inches. The outlet box will be an 20'x4' grated inlet box 10.0' tall with a 48" RCP storm sewer outlet with a plate 26" from invert will connect to the existing 48" RCP storm sewer in Briargate Parkway. A 165' wide 2' deep emergency overflow weir will be installed in the pond berm with Type L rip-rap (see appendix for calculation). Flows will overtop the pond in the provided weir and travel directly to the adjacent Briargate Parkway. Maintenance and ownership of the Private detention/water quality facility and the entire proposed storm sewer is by the Sterling Ranch East Metropolitan District. An El Paso County Detention Pond Maintenance Agreement will be required indicating these Facilities to be ultimately owned and maintained by the Metro District

Planned release per the UD-Detention spreadsheet from the Full Spectrum EDB will be Q_5 = 4.3 cfs, Q_{100} = 120.4 cfs. Allowable release into the existing 48" RCP outfall pipe at this location is anticipated to release rate of (Q_{100} = 156.6 cfs). This facility restricts the release to below pre-development (historic levels) per the MHFD-Detention spreadsheet and is in conformance with the Preliminary Drainage <u>Report and MDDP Amendment.</u>

STORMWATER QUALITY (FOUR STEP PROCESS)

El Paso County requires the Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls. The Four Step Process pertains to management of smaller, frequently occurring storm events, as opposed to larger storms for which drainage and flood control infrastructure are sized. Implementation of these four steps to achieve stormwater permit requirements is required. The site adheres to this Four Step Process as follows:

- Individual home roof downspouts will be directed onto pervious landscape areas. The additional grass buffer BMP provides the following: 1) Minimize directly connected impervious areas. 2) Provides initial pollutant and sediment removal before entering the storm system. Rear yard flows of those proposed lots adjacent to public streets will be directed over a grass buffer area (both landscaped and native grasses) to provide treatment of these small rear year areas.
- The proposed Pond 16 provides Detention and Stormwater Quality Treatment for the entirety of the proposed development and surrounding arterial and collector roadways. The facility in conjunction with Step 1 implementation above will address all required Water Quality Capture Volume and Slow Release Requirements. ______ except for the area of disturbance on the

except for the area of disturbance on the western boundary of this site? Discuss applicable exclusion(s).

- 3. The recipient of the drainage flows from the site is Sand Creek (Reach SC-8), with an estimated 100-year storm runoff rate along Filing No. 1 between 1,487 cfs to 1,904 cfs. This portion of the creek contains 100-year FEMA floodplain, but no jurisdictional wetlands or Preble's Jumping Mouse habitat. As such the downstream corridor is very well established and as the detained developed release rate is far less than historic, theoretically no additional erosion will occur. The adjacent Sand Creek Channel Improvements accounted for the restricted runoff from Pond 16.
- 4. Does not apply to this Residential subdivision as this step is to 'consider the need for Industrial and Commercial BMPs'. Temporary construction BMPs will be installed per the approved grading and erosion control plans.

DRAINAGE AND BRIDGE FEES

Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No. 1 are within the Sand Creek Drainage Basin and is a total of 16.841 acres and 36.647. Per the year 2022 El Paso County Basin Fees, the Sand Creek Drainage Fee is \$21,814 per impervious acre of development and the Bridge Fee is \$8,923 per impervious acre. Sterling Ranch East Filing 2 consists of 7.320 acres of typical home lots, 2.453 acres of public right-of-way (roads), and 7.068 acres of open space/undeveloped area. Using Table 6-6 of the DCM, specifically 65% imperviousness for typical home lots, 100% imperviousness for pavement/right-of-way, and 0% imperviousness for open space/undeveloped area; an overall Filing No. 2 impervious area is calculated at 7.211 acres.

STERLING RANCH EAST FILING No. 2 (7.211 Impervious acres)		
STEREING RANGET EAST TIEING NO. 2 (7.211 Impervious acres)		
DRAINAGE FEE:	table or line by	y line
\$21,814/acre x 7.211 acres	\$:	157,300.75

BRIDGE FEE:

\$8,923/acre x 7.211 acres \$ 64,3	343.75
------------------------------------	--------

This site lies entirely within the Sand Creek Drainage Basin boundaries.

Foursquare at Sterling Ranch East Filing 1 consists of 13.581 acres of typical home lots, 6.702 acres of public right-of-way (roads), and 16.364 acres of open space/undeveloped area. Using Table 6-6 of the DCM, specifically 65% imperviousness for typical home lots, 100% imperviousness for pavement/right-of-way, and 0% imperviousness for open space/undeveloped area; an overall Filing No. 1 impervious area is calculated at 7.211 acres.

Update to match area shown below in fee calculation

Please show the math in a table or line by line

FOURSQUARE AT STERLING RANCH EAST FILING No. 1 (15.529 Impervious acres)

DRAINAGE FEE:

\$21,814/acre x 15.929 acres

\$ 347,475.21

<u>\$8,923/acre x 15.529 acres</u>

This site lies entirely within the Sand Creek Drainage Basin boundaries.

Basin fees will be required to be paid prior to plat recordation.

CONSTRUCTION COST OPINION

The following is a construction cost opinion for the public facilities, located within the public right-ofway and accepting runoff from the public roadways, and the private facilities, intercepting the runoff from the adjacent school and park sites, and routing to the downstream natural channel:

Table will be reviewed with next submittal

Public Drainage Facilities Non-reimbursable (STERLING RANCH EAST FILING NO. 2)

ITEM	DESCRIPTION	QUANTITY	UNIT COST	COST
1.	10' Type-R Inlet	2 EACH	\$8,447/EA	\$ 16,894.00
2.	18" RCP Storm Drain	8 LF	\$70/LF	\$ 560.00
3.	24" RCP Storm Drain	32 LF	\$83/LF	\$ 2,656.00
4.	30" RCP Storm Drain	104 LF	\$104/LF	\$ 10,816.00
5.	Type II Storm MH	1 EACH	\$7,082/EA	\$ 7,082.00
SUB-T 10% E	OTAL NGINEERING			\$ 38,008.00 \$ 3,800.80
5% CC	<u>\$ 1,900.40</u>			
ΤΟΤΑΙ	<u>\$ 43,709.20</u>			

Public Drainage Facilities Non-reimbursable (FOURSQUARE AT STERLING RANCH EAST FILING NO. 1)

ITEM	DESCRIPTION	QUANTITY	UNIT COST	COST
1.	Riprap (spillway)	1,075 TONS	\$89/TON	\$ 95,675.00
2.	Geotextile (under riprap)	1,062 SY	\$7/SY	\$ 7,434.00
3.	18" RCP Storm Drain	586 LF	\$70/LF	\$ 41,020.00
4.	24" RCP Storm Drain	363 LF	\$83/LF	\$ 30,129.00
5.	30" RCP Storm Drain	487 LF	\$104/LF	\$ 50,648.00
6.	36" RCP Storm Drain	647 LF	\$128/LF	\$ 82,816.00
7.	42" RCP Storm Drain	267 LF	\$171/LF	\$ 45,657.00
8.	5' Type R Inlets	4 EA	\$6,138/EA	\$ 24,552.00
9.	10' Type R Inlets	2 EA	\$8,447/EA	\$ 16,894.00

10.	15' Type R Inlets	2 EA	\$11,775/EA	\$ 23,550.00
11.	Type II Storm MH	2 EA	\$7,082/EA	\$ 14,164.00
12.	Type I Storm MH	7 EA	\$12,876/EA	\$ 90,132.00
13.	Permanent Pond 16*	1 EA	\$200,000/EA	\$ 200,000.00
SUB-T	OTAL			\$ 722,671.00
10% E	NGINEERING			\$ 72,267.10
5% CC	<u>\$ 36,133.55</u>			
ΤΟΤΑ	L			<u>\$ 831,071.65</u>

*Includes cost of impact structures, forebays, trickle channel, road, and outlet box.

SUMMARY

Developed runoff from the proposed Sterling Ranch East Filing No. 2 and Foursquare at Sterling Ranch East Filing No. 1 development is proposed to outfall to one proposed private Full Spectrum Detention (EDB) and Storm Water Quality Facility (owned and maintained by the Sterling Ranch East Metropolitan District) prior to discharging to downstream facilities. The proposed Full Spectrum detention & water quality pond was sized using the current and applicable drainage criteria and provides release rates below existing allowable release rates. Therefore, the developed site runoff and proposed storm sewer facilities will not adversely affect the downstream facilities or surrounding developments.

delete East

PREPARED BY:

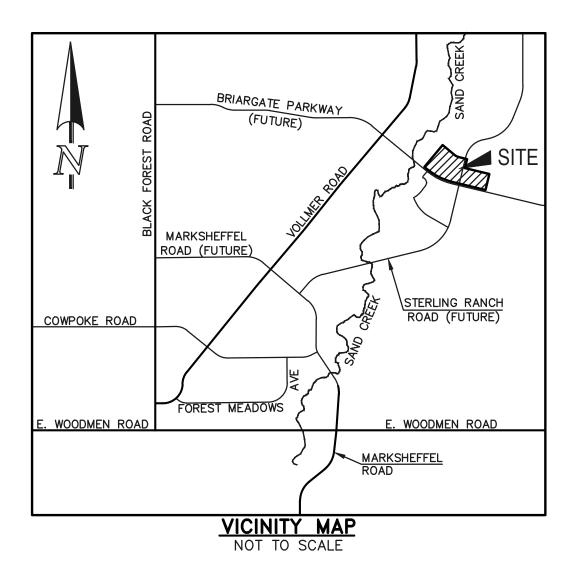
David L Gibson P.E. Project Manager

dlg/118323/FDR-SRE FILING 1ª FSQ SER FILING 1.docx

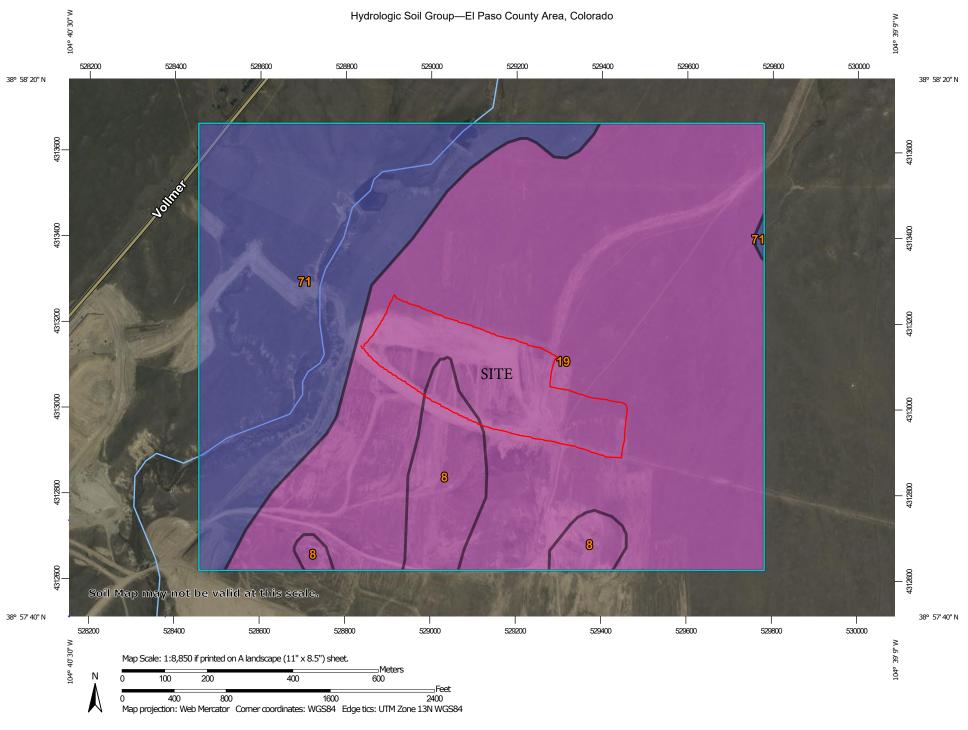
REFERENCES

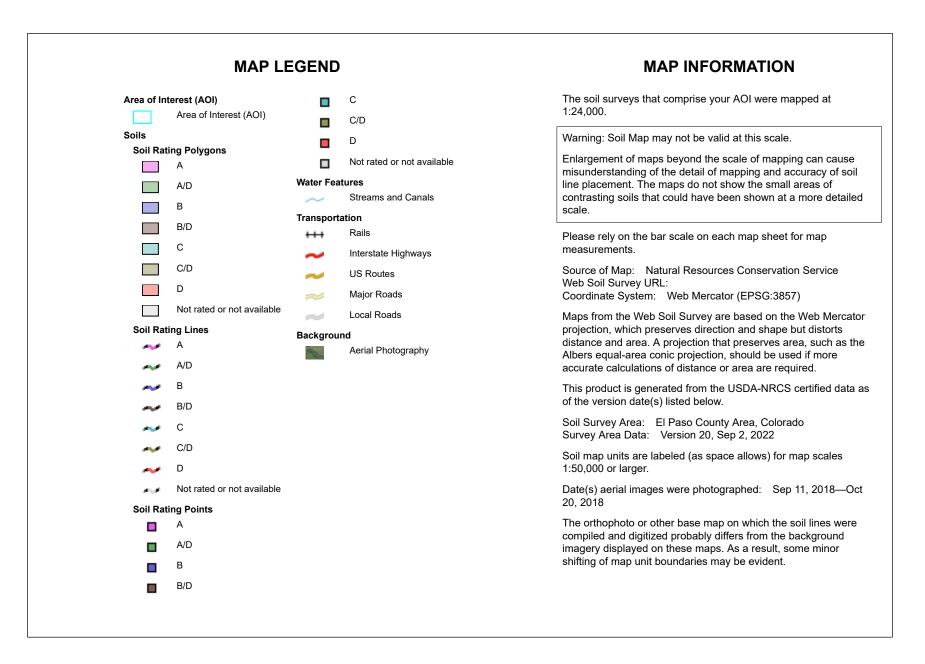
- City of Colorado Springs/County of El Paso Drainage Criteria Manual Volume 1, as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014.
- 2. "Urban Storm Drainage Criteria Manual Volume 1, 2 & 3," Urban Drainage and Flood Control District, dated January 2016.
- 3. "Sand Creek Drainage Basin Planning Study," by Kiowa Engineering Corporation, dated March 1996.
- 4. "2018 Sterling Ranch MDDP," by M&S Consultants, Inc., June 2018.
- 5. "Final Drainage Report for Retreat at TimberRidge Filing No. 1", Classic Consulting, approved November, 2020.
- 6. "Final Drainage Report for Retreat at TimberRidge Filing No. 2", Classic Consulting, dated March,
 2022 Update to latest version
- 7. "Final Design Report for Sand Creek Restoration", JR Engineering, LLC, dated September 2022
- 8. "Drainage Letter for Sterling Ranch Road and Briargate Pkwy. Interim Plan", prepared by JR Engineering, LLC, dated September 2022
- 9. "Master Development Drainage Plan Amendment for Sterling Ranch", prepared by JR Engineering, LLC, dated September 2022

Update to final version



APPENDIX


VICINITY MAP



SOILS MAP (S.C.S. SURVEY)

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI		
8	Blakeland loamy sand, 1 to 9 percent slopes	A	23.0	6.7		
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	219.5	64.0		
71	Pring coarse sandy loam, 3 to 8 percent slopes	В	100.4	29.3		

Hydrologic Soil Group

Totals for Area of Interest

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

6.7%

64.0%

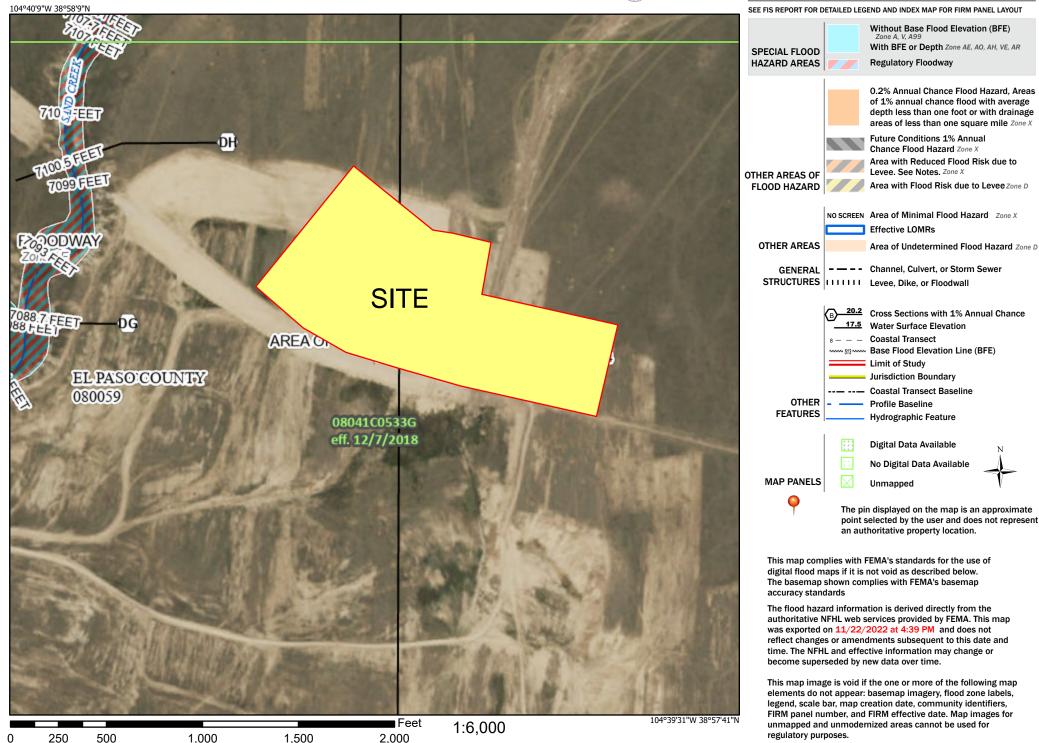
29.3%

100 0%

342.9

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher


F.E.M.A. MAP

National Flood Hazard Layer FIRMette

Legend

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

DEVELOPED CONDITIONS CALCULATIONS

STERLING RANCH EAST FIL NO. 2 & FOURSQUARE AT STERLING RANCH EAST FIL NO. 1 JOB NAME: 1183.23

JOB NUMBER:

DATE:

CALCULATED BY: DLG

12/07/22

FINAL DRAINAGE REPORT ~ BASIN RUNOFF COEFFICIENT SUMMARY

		DEVELOPED AREA/IMPERVIOUS AREA				LAND	SCAPE/UNI	DEVELOPED	AREAS	WEIGHTED			WEIGHTED CA			
BASIN	TOTAL AREA (AC)	AREA (AC)	C(2)	C(5)	C(100)	AREA (AC)	C(2)	C(5)	C(100)	C(2)	C(5)	C(100)	CA(2)	CA(5)	CA(100)	
А	3.35	0.92	0.89	0.90	0.96	2.43	0.02	0.08	0.35	0.26	0.31	0.52	0.87	1.02	1.73	
В	4.99	1.66	0.89	0.90	0.96	3.33	0.02	0.08	0.35	0.31	0.35	0.55	1.54	1.76	2.76	
С	1.92	0.10	0.89	0.90	0.96	1.82	0.02	0.08	0.35	0.07	0.12	0.38	0.13	0.24	0.73	
D	0.20	0.20	0.89	0.90	0.96	0.00	0.02	0.08	0.35	0.89	0.90	0.96	0.18	0.18	0.19	
E	6.63	0.00	0.89	0.90	0.96	6.63	0.02	0.08	0.35	0.02	0.08	0.35	0.13	0.53	2.32	
F	0.49	0.49	0.89	0.90	0.96	0.00	0.02	0.08	0.35	0.89	0.90	0.96	0.44	0.44	0.47	
G	0.16	0.16	0.89	0.90	0.96	0.00	0.02	0.08	0.35	0.89	0.90	0.96	0.14	0.14	0.15	
Н	4.01	1.44	0.89	0.90	0.96	2.57	0.02	0.08	0.35	0.33	0.37	0.57	1.33	1.50	2.28	
	1.68	0.20	0.89	0.90	0.96	1.48	0.02	0.08	0.35	0.12	0.18	0.42	0.21	0.30	0.71	
J	3.87	1.50	0.89	0.90	0.96	2.37	0.02	0.08	0.35	0.36	0.40	0.59	1.38	1.54	2.27	
К	1.83	0.56	0.89	0.90	0.96	1.27	0.02	0.08	0.35	0.29	0.33	0.54	0.52	0.61	0.98	
L	2.20	0.74	0.89	0.90	0.96	1.46	0.02	0.08	0.35	0.31	0.36	0.56	0.69	0.78	1.22	
М	4.10	1.43	0.89	0.90	0.96	2.67	0.02	0.08	0.35	0.32	0.37	0.56	1.33	1.50	2.31	
N	3.00	0.50	0.89	0.90	0.96	2.50	0.02	0.08	0.35	0.17	0.22	0.45	0.50	0.65	1.36	
0	2.16	1.67	0.89	0.90	0.96	0.49	0.02	0.08	0.35	0.69	0.71	0.82	1.50	1.54	1.77	
Р	0.63	0.10	0.89	0.90	0.96	0.53	0.02	0.08	0.35	0.16	0.21	0.45	0.10	0.13	0.28	
Q	0.50	0.10	0.89	0.90	0.96	0.40	0.02	0.08	0.35	0.19	0.24	0.47	0.10	0.12	0.24	
R	0.33	0.04	0.89	0.90	0.96	0.29	0.02	0.08	0.35	0.13	0.18	0.42	0.04	0.06	0.14	
S	0.54	0.10	0.89	0.90	0.96	0.44	0.02	0.08	0.35	0.18	0.23	0.46	0.10	0.13	0.25	
Ť	11.19	0.00	0.89	0.90	0.96	11.19	0.02	0.08	0.35	0.02	0.08	0.35	0.22	0.90	3.92	
OS-1	1.18	0.15	0.89	0.90	0.96	1.03	0.02	0.08	0.35	0.13	0.18	0.43	0.15	0.22	0.50	

Need to have C-values representative of developed lots, not undisturbed areas. These values are for open areas, parks, tracts, etc

Job Nan		STERLIN	G RANCH I	EAST F	IL NO.	2 & FO	URSQL	ARE A	T STER	LING I	RANCH	EAST	FIL NO	. 1					
JOB NUN	IBER:	1183.23						_					Table 6	-7. Cor	iveyanc	e Coeffi	cient, C	v	
DATE:		03/28/03						_					Type of Land Surface Heavy meadow					C _v	
CALC'D I	BY:	DLG						_				Heav						2.5	
Return		-											-		. 1	L . 10		5	
Period 2	Depth 1.19	-										Ripra	p (not bu	uried)*	$t_c = \frac{1}{18}$	$\frac{-}{30}$ + 10	(6.5	
5	1.50	-			0.395(1	$1 - C_{c}$	\sqrt{L}	,		o 0.5	T. I.A.		-	and lawn	IS			7	
10	1.75	Table	will be r	eviewe	ed on	5	/-		$V = C_v S_w^{0.5}$ Tc=L/V Nearly bare ground								_	10	
25	2.00		submittal			es							ed water					15	
50	2.25		been rev												w paved		of vegetativ	20	
100	2.52	-	F 1					ם . דר						, select e_{v}	varue oase	a on type o	1 vegetativ	e cover.	
ļ		-		NAL L	ORAIN		KEPUI												
		WEIGHTE	D		OVEF	RLAND		STRE		IANNEL	FLOW	Tc		NTENSI	ſY	TOT	TAL FLC)WS	
BASIN	CA(2)	CA(5)	CA(100)	C(5)	•	Height	Tc	Length	•	-		TOTAL	I(2)	l(5)	I(100)	Q(2)	Q(5)	Q(100)	
			1		(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(in/hr)	(cfs)	(cfs)	(cfs)	
А	0.87	1.02	1.73	0.08	100	2	14.7	300	2.0%	2.8	1.8	16.4	2.70	3.39	5.68	2.3	3.5	9.9	
В	1.54	1.76	2.76	0.08	100	2.5	13.6	300	2.0%	2.8	1.8	15.4	2.78	3.48	5.85	4.3	6.1	16.1	
С	0.13	0.24	0.73	0.08	75	2	11.5	0	0.0%	0.0	0.0	11.5	3.12	3.91	6.57	0.4	0.9	4.8	
D	0.18	0.18	0.19	0.08	5	0.2	2.6	300	2.0%	2.8	1.8	5.0	4.12	5.17	8.68	0.7	0.9	1.7	
E	0.13	0.53	2.32	0.08	100	7	9.7	0	0.0%	0.0	0.0	9.7	3.33	4.18	7.01	0.4	2.2	16.3	
F	0.44	0.44	0.47	0.08	5	0.2	2.6	300	2.0%	2.8	1.8	5.0	4.12	5.17	8.68	1.8	2.3	4.1	
G	0.14	0.14	0.15	0.08	5	0.2	2.6	100	2.0%	2.8	0.6	5.0	4.12	5.17	8.68	0.6	0.7	1.3	
Н	1.33	1.50	2.28	0.08	100	4	11.7	300	2.0%	2.8	1.8	13.4	2.94	3.69	6.19	3.9	5.5	14.1	
I	0.21	0.30	0.71	0.08	100	4	11.7	100	2.0%	2.8	0.6	12.2	3.05	3.83	6.42	0.6	1.1	4.6	
J	1.38	1.54	2.27	0.08	100	4	11.7	300	2.0%	2.8	1.8	13.4	2.94	3.69	6.19	4.1	5.7	14.0	
К	0.52	0.61	0.98	0.08	100	4	11.7	300	2.0%	2.8	1.8	13.4	2.94	3.69	6.19	1.5	2.2	6.1	
L	0.69	0.78	1.22	0.08	100	4	11.7	300	2.0%	2.8	1.8	13.4	2.94	3.69	6.19	2.0	2.9	7.6	
М	1.33	1.50	2.31	0.08	100	4	11.7	300	2.0%	2.8	1.8	13.4	2.94	3.69	6.19	3.9	5.5	14.3	
Ν	0.50	0.65	1.36	0.08	100	2	14.7	0	0.0%	0.0	0.0	14.7	2.84	3.56	5.97	1.4	2.3	8.1	
0	1.50	1.54	1.77	0.08	80	5	9.0	300	2.0%	2.8	1.8	10.8	3.21	4.02	6.75	4.8	6.2	12.0	
Р	0.10	0.13	0.28	0.08	5	0.2	2.6	0	0.0%	0.0	0.0	5.0	4.12	5.17	8.68	0.4	0.7	2.4	

JOB NAME: STERLING RANCH EAST FIL NO. 2 & FOURSQUARE AT STERLING RANCH EAST FIL NO. 1 JOB NUMBER: 1183.23 Table 6-7. Conveyance Coefficient, C_v DATE: 03/28/03 Type of Land Surface C_{v} DLG CALC'D BY: Heavy meadow 2.5 Return 1-Hour $\frac{L}{180} + 10$ 5 Tillage/field Period Depth Riprap (not buried) 6.5 2 1.19 $t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}} \qquad V = C_v S_w^{0.5} \qquad \text{Tc=L/V}$ Short pasture and lawns 7 5 1.50 Nearly bare ground 10 1.75 10 Grassed waterway 15 25 2.00 Paved areas and shallow paved swales 20 50 2.25 For buried riprap, select C_v value based on type of vegetative cover. 100 2.52 FINAL DRAINAGE REPORT ~ BASIN RUNOFF SUMMARY WEIGHTED **OVERLAND** STREET / CHANNEL FLOW INTENSITY TOTAL FLOWS Tc CA(5) CA(100) Length Height Length Slope Velocity TOTAL I(2) I(100) Q(5) Q(100) BASIN CA(2) Тс Tc I(5) Q(2) C(5) (in/hr) (in/hr) (in/hr) (cfs) (cfs) (cfs) (fps) (ft) (ft) (min) (ft) (%) (min) (min) 0.10 0.12 0.24 0.08 5 0.5 1.9 0 0.0% 0.0 0.0 5.0 4.12 5.17 8.68 0.4 0.6 2.0 Q 0.9 R 0.04 0.06 0.14 0.08 100 4 11.7 50 2.0% 2.8 0.3 11.9 3.08 3.86 6.48 0.1 0.2

S

Т

OS-1

0.10

0.22

0.15

0.13

0.90

0.22

0.25

3.92

0.50

0.08

0.08

0.08

100

100

100

4

4

2

11.7

11.7

14.7

50

0

0

2.0%

2.0%

0.0%

2.8

0.0

0.0

0.3

0.0

0.0

11.9

11.7

14.7

3.08

3.11

2.84

3.86

3.90

3.56

6.48

6.55

5.97

0.3

0.7

0.4

0.5

3.5

0.8

1.6

25.6

3.0

NAME: STERLING RANCH EAST FIL NO. 2 & FOURSQUARE AT STERLING RANCH EAST FIL NO. 1	NAME: STEE	RLING RANCH EAST F	IL NO. 2 & FOU	IRSQUARE AT STER	RLING RANCH EAST F	FIL NO. 1
---	------------	--------------------	----------------	------------------	--------------------	-----------

JOB NUMBER: 1183.23 12/07/22

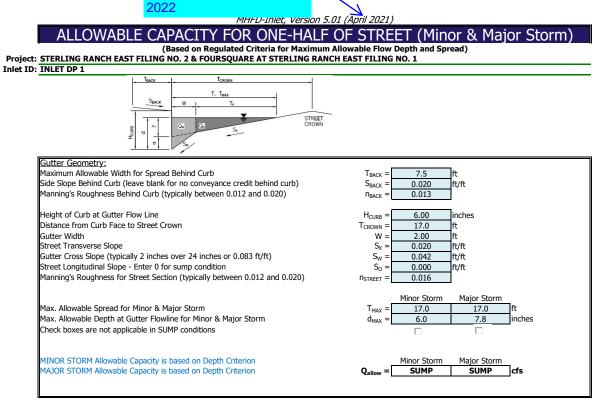
DATE:

JOB

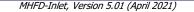
CALCULATED BY: DLG

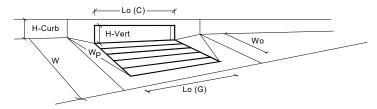
Table will be reviewed on next submittal after C-values have been revised & flow

FINAL DRAINAGE REPORT ~ SURFACE ROUTING SUM	rates updated

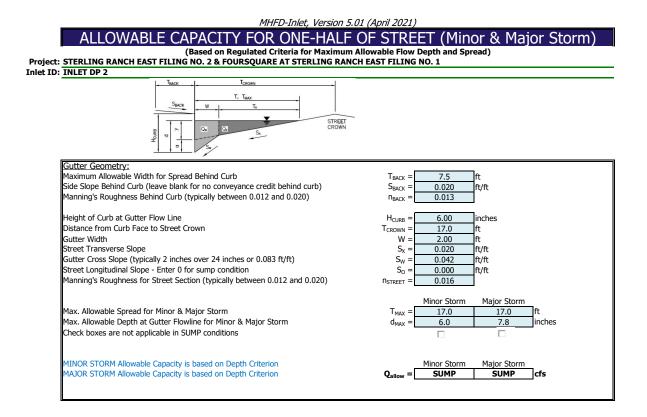

					Inten	Intensity		ow		
Design Point(s)	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	l(5)	l(100)	Q(5)	Q(100)	Inlet Size	
1	BASIN B	1.76	2.76	15.4	3.48	5.85	6.1	16.1	10' TYPE R PUBLIC	
2	BASIN A	1 02 ? & needs to	1.73	16.4	3.39	5.68	3.5	9.9	10' TYPE R PUBLIC	
3		e Basin D	2.27	13.4	3.69	6.19	5.7	14.0	10' TYPE R PUBLIC	
4	BASIN K	0.61	0.98	13.4	3.69	6.19	2.2	6.1	5' TYPE R PUBLIC	
5	BASIN F & BASIN OS-3	0.66	0.97	14.7	3.56	5.97	2.3	5.8	5' TYPE R PUBLIC	
6	BASIN G	0.14	0.15	5.0	5.17	8.68	0.7	1.3	5' TYPE R PUBLIC	
7	BASIN H	1.50	2.28	13.4	3.69	6.19	5.5	14.1	10' TYPE R PUBLIC	
8	BASIN I	0.30	0.71	12.2	3.83	6.42	1.1	4.6	5' TYPE R PUBLIC	
9	BASIN M & BASIN N	2.15	3.66	14.7	3.56	5.97	7.6	21.9	15' TYPE R PUBLIC	
10	BASIN L & FLOWBY DP 9	1.00	2.62	14.7	3.56	5.97	3.6	15.7	15' TYPE R PUBLIC	
11	BASIN T & PIPE 17	11.48	20.64	16.4	3.39	5.68	39	117	POND IN	

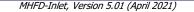
Need to have DP that combines Basins C, R & S, as they exit the project area into Briargate Parkway.

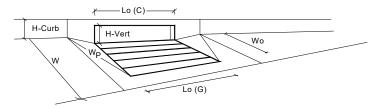

Per ECM Section 3.2.8.G, ensure design points are provided at all appropriate locations

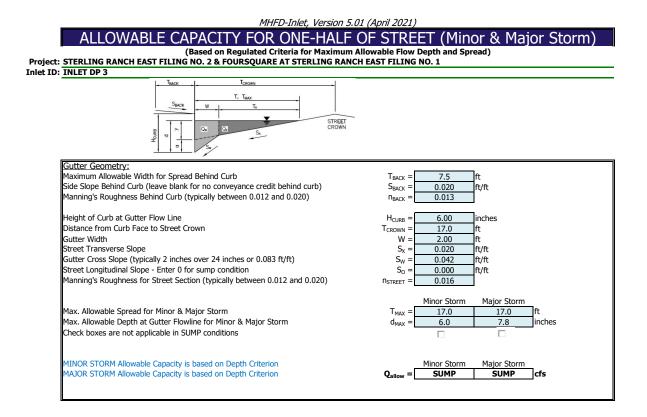

Classic Consultin Copy of CALCS-MSTR 2021.xlsx Include if inlets are sump or at-grade

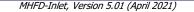
Use newer MHFD spreadsheet dated August

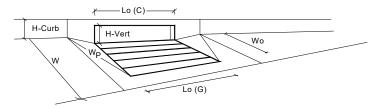


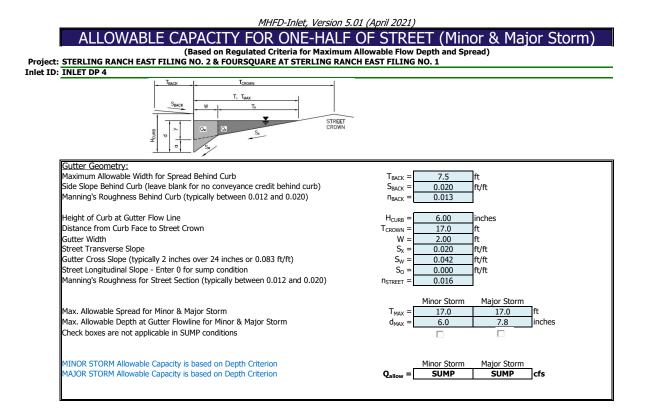

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

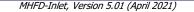


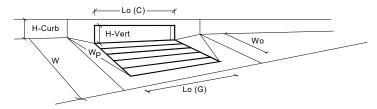

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3,00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	_
Length of a Unit Curb Opening	L ₀ (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.42	0.57	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{combination} =	0.57	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	11.5	18.7	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	6.1	16.1	cfs

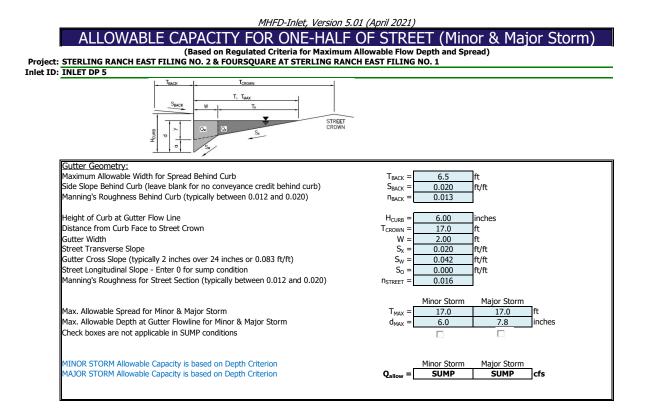


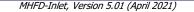


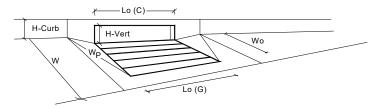

Design Information (Input) CDOT Type R Curb Opening Type of Inlet	Type = a _{local} = No = Ponding Depth =	MINOR CDOT Type R 3.00 1	MAJOR Curb Opening 3.00	inches
Local Depression (additional to continuous gutter depression 'a' from above) Number of Unit Inlets (Grate or Curb Opening) Water Depth at Flowline (outside of local depression)	a _{local} = No =	3.00		inches
Number of Unit Inlets (Grate or Curb Opening) Water Depth at Flowline (outside of local depression)	No =			
Water Depth at Flowline (outside of local depression)			1	
		6.0	7.8	inches
Grate Information	· • • • • • • • • • • • •	MINOR	MAJOR	Verride Depths
Length of a Unit Grate	$L_{0}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	1
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	$C_{w}(G) =$	N/A	N/A	1
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{o}(G) =$	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L₀ (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.42	0.57	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{combination} =	0.57	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	1
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q ₂ =	11.5	18.7	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.5	9.9	cfs

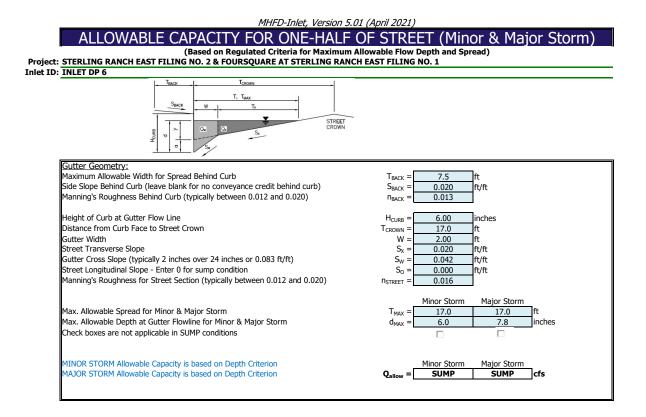


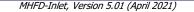


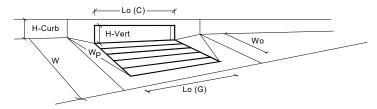

Design Information (Input)				
Turna of Talat	Type =	MINOR CDOT Type R	MAJOR	
Type of Inlet Local Depression (additional to continuous gutter depression 'a' from above)	·· -	3.00	3.00	inches
	a _{local} =		3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_{0}(C) =$	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	$H_{vert} =$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_{w}(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
	d _[-		ſt
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	π ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.42	0.57	π
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	_
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	11.5	18.7	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	5.7	14.0	cfs

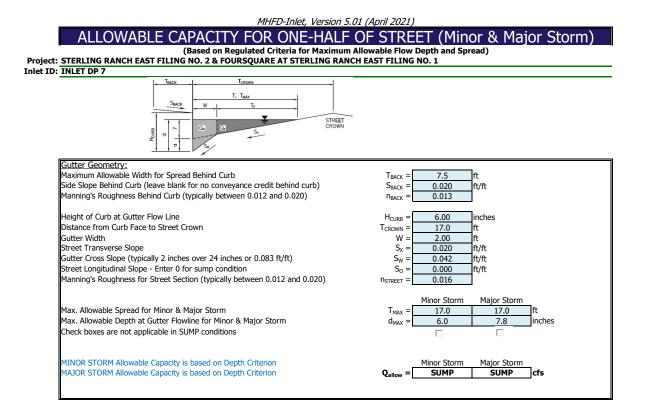


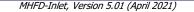


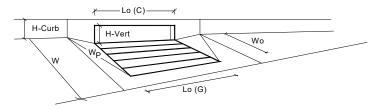

		MINOD	MAJOR	
Design Information (Input) Type of Inlet CDOT Type R Curb Opening	Type =	MINOR	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	<i></i>	3.00	3.00	inches
	a _{local} = No =		3.00	inches
Number of Unit Inlets (Grate or Curb Opening)		1	7.0	in also a
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	7.8	inches
Grate Information		MINOR	MAJOR	✓ Override Depths Ifeet
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	-
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	_
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	-
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$H_{vert} =$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_{w}(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation		0.42	0.57	ft
	d _{Curb} =	-		11
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	1.00	-
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	7.5	9.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{PEAK REQUIRED} =$	2.2	6.1	cfs

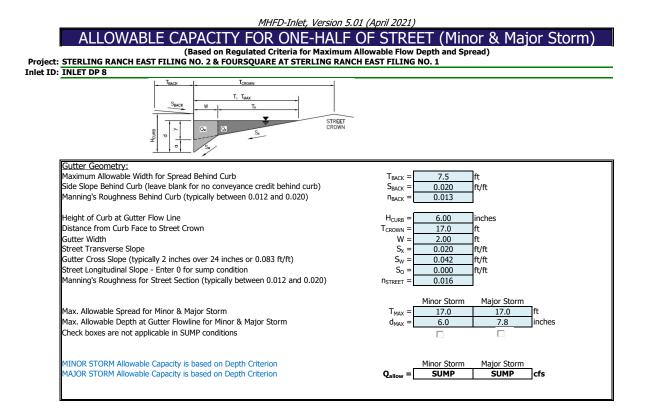


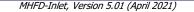


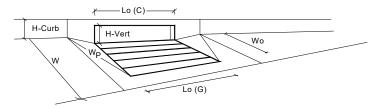

Design Information (Innut)		MINOD	MAJOR	
Design Information (Input) Type of Inlet CDOT Type R Curb Opening	Type =	MINOR CDOT Type R		
Local Depression (additional to continuous gutter depression 'a' from above)	· · ·	3.00	3.00	inches
	a _{local} =		5.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_{w}(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.42	0.57	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{combination} =	0.72	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	-
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	-
Grated Thiel Performance Reduction Factor for Long Thets	Ki Grate -	ny A	N/A	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	7.5	9.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.3	5.8	cfs

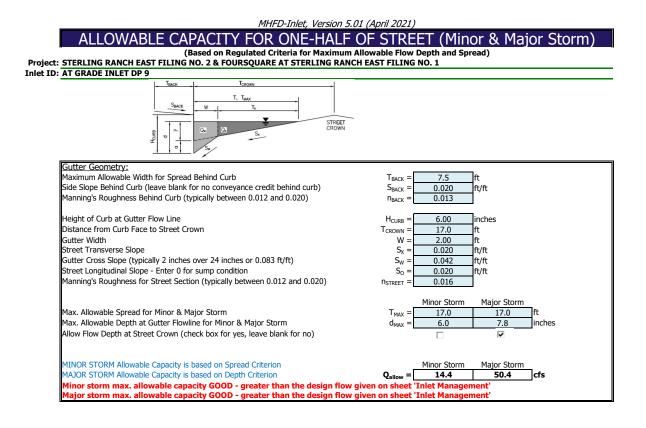


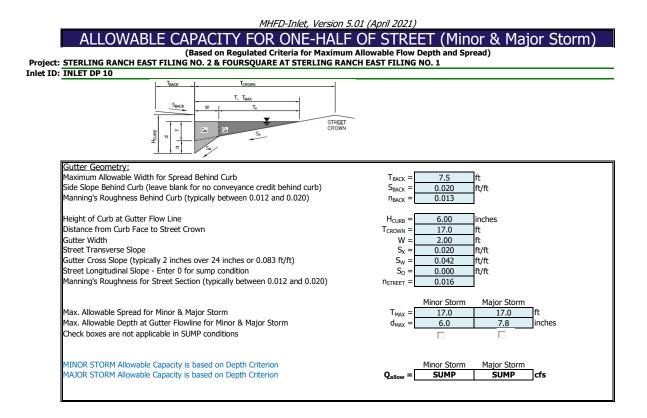


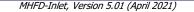

Design Information (Innut)		MINOD	MAJOR	
Design Information (Input) Type of Inlet CDOT Type R Curb Opening	Type =	MINOR CDOT Type R		
Local Depression (additional to continuous gutter depression 'a' from above)	· · ·	3.00	3.00	inches
	a _{local} = No =	1	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)			7.0	in share
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	-
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	_
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	-
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$H_{vert} =$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_{w}(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.42	0.57	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	-
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	-
orace mice renormance reduction ractor for Long thets	Grate -	11/ <i>1</i> 4	iny A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	7.5	9.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{PEAK REQUIRED} =$	0.7	1.3	cfs

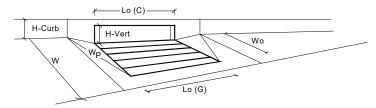





Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3,00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	-
Length of a Unit Curb Opening	L ₀ (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.42	0.57	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{combination} =	0.57	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	11.5	18.7	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	5.5	14.1	cfs


Design Information (Innut)		MINOD	MAJOR	
Design Information (Input) Type of Inlet	Type =	MINOR	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	<i></i>	3.00	3.00	inches
	a _{local} =		5.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1		
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{0}(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_{w}(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Grate} =	0.42	0.57	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{combination} =	0.77	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	-
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Stated Thiel Ferrormance Reduction Factor for Long Thiels	Ki Grate -	n/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	7.5	9.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{PEAK REQUIRED} =$	1.1	4.6	cfs




INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.01 (April 2021) <td colspan="2" <td colspan="2"

Capture Percentage = Q_a/Q_o =		C% =	93	60	%
Total Inlet Carry-Over Flow (flow	bypassing inlet)	$Q_b =$	0.5	8.7	cfs
Total Inlet Interception Capacity		Q =	7.1	13.2	cfs
Street Hydraulics: OK - Q < Al	lowable Street Capacity'		MINOR	MAJOR	_
Clogging Factor for a Single Unit (Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Clogging Factor for a Single Unit	Grate (typical min. value = 0.5)	$C_{f}-G =$	N/A	N/A	
Width of a Unit Grate (cannot be	greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Length of a Single Unit Inlet (Grat	e or Curb Opening)	L _o =	15.00	15.00	ft
Total Number of Units in the Inlet	(Grate or Curb Opening)	No =	1	1	
Local Depression (additional to co	ntinuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Type of Inlet	CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Design Information (Input/	CDOT Type R Curb Opening -		TRITOIT		

٦

Design Information (Innut)		MINOD	MAJOR	
Design Information (Input) Type of Inlet	Type =	MINOR CDOT Type R		
Local Depression (additional to continuous gutter depression 'a' from above)	· · · ·	3.00	3.00	inches
	a _{local} = No =	1	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)		6.0	7.8	inches
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0 MINOR	7.8 MAJOR	Override Depths
<u>Grate Information</u> Length of a Unit Grate		MINOR N/A		feet
Width of a Unit Grate	$L_{o}(G) =$	N/A N/A	N/A	feet
	W _o =	1	N/A	reet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$A_{ratio} =$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	-
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	-
Length of a Unit Curb Opening	$L_{o}(C) =$	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_{w}(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.42	0.57	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.79	0.88	-
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	-
orace mice renormance reduction ractor for Long Inters	Grate -	ny A	iny A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	13.5	24.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{PEAK REQUIRED} =$	3.6	15.7	cfs

JOB NAME:	STERLING RANCH EAST FIL NO. 2 & FOURSQUARE AT STERLING RANCH EAST FIL NO. 1
JOB NUMBER:	1183.23
DATE:	12/07/22
CALCULATED BY:	DLG

Table will be reviewed on next submittal when flows have been revised

* PIPES ARE LISTED AT MAXIMUM SIZE REQUIRED TO ACCOMMODATE Q100 FLOWS AT MINIMUM GRADE REFER TO INDIVIDUAL PIPE SHEETS FOR HYDRAULIC INFORMATION.

FINAL DRAINAGE REPORT ~ PIPE ROUTING SUMMARY

					Inten	sity	FI	ow	
Pipe Run	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	l(5)	l(100)	Q(5)	Q(100)	Pipe Size*
1	DP 1	1.76	2.76	15.38	3.48	5.85	6.1	16.1	24" PUBLIC RCP STORM
2	DP 2	1.02	1.73	16.42	3.39	5.68	3.5	9.9	18" PUBLIC RCP STORM
3	PIPE 1 & PIPE 2	2.78	4.49	16.42	3.39	5.68	9.4	25.5	30" PUBLIC RCP STORM
4	DP 3	1.54	2.27	13.4	3.69	6.19	5.7	14.0	24" PUBLIC RCP STORM
5	DP 4	0.61	0.98	13.4	3.69	6.19	2.2	6.1	18" PUBLIC RCP STORM
6	PIPE 3, PIPE 4 & PIPE 5	4.93	7.74	16.4	3.39	5.68	16.7	44.0	30" PUBLIC RCP STORM
7	DP 5	0.66	0.97	14.7	3.56	5.97	2.3	5.8	18" PUBLIC RCP STORM
8	DP 6	0.14	0.15	5.0	5.17	8.68	0.7	1.3	18" PUBLIC RCP STORM
9	PIPE 7 & PIPE 8	0.80	1.13	14.7	3.56	5.97	2.9	6.7	18" PUBLIC RCP STORM
10	DP 7	1.50	2.28	13.4	3.69	6.19	5.5	14.1	24" PUBLIC RCP STORM
11	DP 8	0.30	0.71	12.2	3.83	6.42	1.1	4.6	18" PUBLIC RCP STORM
12	PIPE 9, PIPE 10, PIPE 11	2.60	4.12	14.7	3.56	5.97	9.3	24.6	24" PUBLIC RCP STORM
13	PIPE 6 & PIPE 12	7.53	11.86	16.4	3.39	5.68	25.5	67.4	36" PUBLIC RCP STORM
14	DP 9 INTERCEPTED	2.05	2.23	14.7	3.56	5.97	7.3	13.3	24" PUBLIC RCP STORM

JOB NAME:	STERLING RANCH EAST F	TIL NO. 2 & FO	OURSQUARE	AT STERLIN	G RANCH EA	AST FIL NO	D. 1		
JOB NUMBER:	1183.23		_						
DATE:	12/07/22		-						
CALCULATED BY:	DLG		-						
*	PIPES ARE LISTED AT MAXIMU REFER TO INDIVIDUAL PIPE SH	IEETS FOR HYD	RAULIC INFOR						
					Inten	sitv	FI	ow	
Pipe Run	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	Inten I(5)	isity I(100)	Fl Q(5)	ow Q(100)	Pipe Size*
Pipe Run	Contributing Basins	•	-						•
•	-	CA(5)	ĊA(100)	Tc	l(5)	I(100)	Q(5)	Q(100)	Pipe Size* 42" PUBLIC RCP STORM 24" PUBLIC RCP STORM

Flow master worksheets are not necessary for pipe design as full storm system design with HGL calculations are provided later in the appendix.

Project Description		-	provided later
Fristian Mathe	Manning		
Friction Method	Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient	0.013		
Channel Slope	0.010 ft/ft		
Diameter	24.0 in		
Discharge	16.10 cfs		
Results			
Normal Depth	15.0 in		
Flow Area	2.1 ft ²		
Wetted Perimeter	3.6 ft		
Hydraulic Radius	6.8 in		
Top Width	1.94 ft		
Critical Depth	17.4 in		
Percent Full	62.3 %		
Critical Slope	0.007 ft/ft		
Velocity	7.82 ft/s		
Velocity Head	0.95 ft		
Specific Energy	2.20 ft		
Froude Number	1.338		
Maximum Discharge	24.33 cfs		
Discharge Full	22.62 cfs		
Slope Full	0.005 ft/ft		
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth	0.0 in		
Length	0.0 ft		
Number Of Steps	0		
GVF Output Data			
Upstream Depth	0.0 in		
Profile Description	N/A		
Profile Headloss	0.00 ft		
Average End Depth Over Rise			
Normal Depth Over Rise	62.3 %		
Downstream Velocity	Infinity ft/s		
Upstream Velocity	Infinity ft/s		
Normal Depth	15.0 in		
Critical Depth	17.4 in		
Channel Slope	0.010 ft/ft		
Critical Slope	0.007 ft/ft		

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.010 ft/ft	
Diameter	18.0 in	
Discharge	9.90 cfs	
Results		
Normal Depth	13.9 in	
Flow Area	1.5 ft ²	
Wetted Perimeter	3.2 ft	
Hydraulic Radius	5.5 in	
Top Width	1.26 ft	
Critical Depth	14.6 in	
Percent Full	77.2 %	
Critical Slope	0.009 ft/ft	
Velocity	6.76 ft/s	
Velocity Head	0.71 ft	
Specific Energy	1.87 ft	
Froude Number	1.104	
Maximum Discharge	11.30 cfs	
Discharge Full	10.50 cfs	
Slope Full	0.009 ft/ft	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	77.2 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	13.9 in	
Critical Depth	14.6 in	
Channel Slope	0.010 ft/ft	
Critical Slope	0.009 ft/ft	

PIPES.fm8 12/2/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.005 ft/ft	
Diameter	30.0 in	
Discharge	25.50 cfs	
Results		
Normal Depth	21.8 in	
Flow Area	3.8 ft ²	
Wetted Perimeter	5.1 ft	
Hydraulic Radius	9.0 in	
Top Width	2.23 ft	
Critical Depth	20.7 in	
Percent Full	72.8 %	
Critical Slope	0.006 ft/ft	
Velocity	6.67 ft/s	
Velocity Head	0.69 ft	
Specific Energy	2.51 ft	
Froude Number	0.896	
Maximum Discharge	31.20 cfs	
Discharge Full	29.00 cfs	
Slope Full	0.004 ft/ft	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise		
Normal Depth Over Rise	57.1 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	21.8 in	
Critical Depth	20.7 in	
Channel Slope	0.005 ft/ft	
Critical Slope	0.006 ft/ft	

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.005 ft/ft	
Diameter	24.0 in	
Discharge	14.00 cfs	
Results		
Normal Depth	17.4 in	
Flow Area	2.4 ft ²	
Wetted Perimeter	4.1 ft	
Hydraulic Radius	7.2 in	
Top Width	1.79 ft	
Critical Depth	16.2 in	
Percent Full	72.5 %	
Critical Slope	0.006 ft/ft	
Velocity	5.74 ft/s	
Velocity Head	0.51 ft	
Specific Energy	1.96 ft	
Froude Number	0.866	
Maximum Discharge	17.21 cfs	
Discharge Full	16.00 cfs	
Slope Full	0.004 ft/ft	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise		
Normal Depth Over Rise	49.0 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	17.4 in	
Critical Depth	16.2 in	
Channel Slope	0.005 ft/ft	
Critical Slope	0.006 ft/ft	

PIPES.fm8 12/2/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description		
Friction Method	Manning	
Fliction Method	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.005 ft/ft	
Diameter	18.0 in	
Discharge	6.10 cfs	
Results		
Normal Depth	12.4 in	
Flow Area	1.3 ft ²	
Wetted Perimeter	2.9 ft	
Hydraulic Radius	5.3 in	
Top Width	1.39 ft	
Critical Depth	11.5 in	
Percent Full	69.0 %	
Critical Slope	0.006 ft/ft	
Velocity	4.69 ft/s	
Velocity Head	0.34 ft	
Specific Energy	1.38 ft	
Froude Number	0.854	
Maximum Discharge	7.99 cfs	
Discharge Full	7.43 cfs	
Slope Full	0.003 ft/ft	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise		
Normal Depth Over Rise	42.8 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	12.4 in	
Critical Depth	11.5 in	
Channel Slope	0.005 ft/ft	
Critical Slope	0.006 ft/ft	

PIPES.fm8 12/2/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.010 ft/ft	
Diameter	30.0 in	
Discharge	44.00 cfs	
Results		
Normal Depth	27.5 in	
Flow Area	4.7 ft ²	
Wetted Perimeter	6.4 ft	
Hydraulic Radius	8.8 in	
Top Width	1.37 ft	
Critical Depth	26.5 in	
Percent Full	91.8 %	
Critical Slope	0.010 ft/ft	
Velocity	9.33 ft/s	
Velocity Head	1.35 ft	
Specific Energy	3.65 ft	
Froude Number	0.886	
Maximum Discharge	44.12 cfs	
Discharge Full	41.01 cfs	
Slope Full	0.012 ft/ft	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise		
Normal Depth Over Rise	42.8 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	27.5 in	
Critical Depth	26.5 in	
Channel Slope	0.010 ft/ft	
Critical Slope	0.010 ft/ft	

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.010 ft/ft	
Diameter	18.0 in	
Discharge	5.80 cfs	
Results		
Normal Depth	9.5 in	
Flow Area	1.0 ft ²	
Wetted Perimeter	2.4 ft	
Hydraulic Radius	4.7 in	
Top Width	1.50 ft	
Critical Depth	11.2 in	
Percent Full	53.0 %	
Critical Slope	0.006 ft/ft	
Velocity	6.09 ft/s	
Velocity Head	0.58 ft	
Specific Energy	1.37 ft	
Froude Number	1.347	
Maximum Discharge	11.30 cfs	
Discharge Full	10.50 cfs	
Slope Full	0.003 ft/ft	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	53.0 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	9.5 in	
Critical Depth	11.2 in	
Channel Slope	0.010 ft/ft	
Critical Slope	0.006 ft/ft	

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.010 ft/ft	
Diameter	18.0 in	
Discharge	1.30 cfs	
Results		
Normal Depth	4.3 in	
Flow Area	0.3 ft ²	
Wetted Perimeter	1.5 ft	
Hydraulic Radius	2.5 in	
Top Width	1.28 ft	
Critical Depth	5.1 in	
Percent Full	23.8 %	
Critical Slope	0.005 ft/ft	
Velocity	4.04 ft/s	
Velocity Head	0.25 ft	
Specific Energy	0.61 ft	
Froude Number	1.420	
Maximum Discharge	11.30 cfs	
Discharge Full	10.50 cfs	
Slope Full	0.000 ft/ft	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	23.8 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	4.3 in	
Critical Depth	5.1 in	
Channel Slope	0.010 ft/ft	
Critical Slope	0.005 ft/ft	

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.010 ft/ft	
Diameter	18.0 in	
Discharge	6.70 cfs	
Results		
Normal Depth	10.4 in	
Flow Area	1.1 ft²	
Wetted Perimeter	2.6 ft	
Hydraulic Radius	4.9 in	
Top Width	1.48 ft	
Critical Depth	12.0 in	
Percent Full	58.0 %	
Critical Slope	0.007 ft/ft	
Velocity	6.30 ft/s	
Velocity Head	0.62 ft	
Specific Energy	1.49 ft	
Froude Number	1.311	
Maximum Discharge	11.30 cfs	
Discharge Full	10.50 cfs	
Slope Full	0.004 ft/ft	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	58.0 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	10.4 in	
Critical Depth	12.0 in	
Channel Slope	0.010 ft/ft	
Critical Slope	0.007 ft/ft	

PIPES.fm8 12/2/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description		
Friction Method	Manning	
Friction Metriod	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.010 ft/ft	
Diameter	24.0 in	
Discharge	14.10 cfs	
Results		
Normal Depth	13.7 in	
Flow Area	1.9 ft ²	
Wetted Perimeter	3.4 ft	
Hydraulic Radius	6.5 in	
Top Width	1.98 ft	
Critical Depth	16.2 in	
Percent Full	57.2 %	
Critical Slope	0.006 ft/ft	
Velocity	7.59 ft/s	
Velocity Head	0.90 ft	
Specific Energy	2.04 ft	
Froude Number	1.382	
Maximum Discharge	24.33 cfs	
Discharge Full	22.62 cfs	
Slope Full	0.004 ft/ft	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	57.2 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	13.7 in	
Critical Depth	16.2 in	
Channel Slope	0.010 ft/ft	
Critical Slope	0.006 ft/ft	

PIPES.fm8 12/2/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

		•
Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.010 ft/ft	
Diameter	18.0 in	
Discharge	4.60 cfs	
Results		
Normal Depth	8.3 in	
Flow Area	0.8 ft ²	
Wetted Perimeter	2.2 ft	
Hydraulic Radius	4.3 in	
Top Width	1.50 ft	
Critical Depth	9.9 in	
Percent Full	46.3 %	
Critical Slope	0.006 ft/ft	
Velocity	5.75 ft/s	
Velocity Head	0.51 ft	
Specific Energy	1.21 ft	
Froude Number	1.386	
Maximum Discharge	11.30 cfs	
Discharge Full	10.50 cfs	
Slope Full	0.002 ft/ft	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	46.3 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	8.3 in	
Critical Depth	9.9 in	
Channel Slope	0.010 ft/ft	
Critical Slope	0.006 ft/ft	

PIPES.fm8 12/2/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.020 ft/ft	
Diameter	24.0 in	
Discharge	24.60 cfs	
Results		
Normal Depth	15.8 in	
Flow Area	2.2 ft ²	
Wetted Perimeter	3.8 ft	
Hydraulic Radius	6.9 in	
Top Width	1.90 ft	
Critical Depth	21.0 in	
Percent Full	65.8 %	
Critical Slope	0.011 ft/ft	
Velocity	11.23 ft/s	
Velocity Head	1.96 ft	
Specific Energy	3.27 ft	
Froude Number	1.843	
Maximum Discharge	34.41 cfs	
Discharge Full	31.99 cfs	
Slope Full	0.012 ft/ft	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	65.8 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	15.8 in	
Critical Depth	21.0 in	
Channel Slope	0.020 ft/ft	
Critical Slope	0.011 ft/ft	

PIPES.fm8 12/2/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description		
Friction Method	Manning	
Friction Metriod	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.010 ft/ft	
Diameter	36.0 in	
Discharge	67.40 cfs	
Results		
Normal Depth	29.9 in	
Flow Area	6.3 ft ²	
Wetted Perimeter	6.9 ft	
Hydraulic Radius	10.9 in	
Top Width	2.26 ft	
Critical Depth	31.5 in	
Percent Full	83.0 %	
Critical Slope	0.009 ft/ft	
Velocity	10.75 ft/s	
Velocity Head	1.80 ft	
Specific Energy	4.29 ft	
Froude Number	1.137	
Maximum Discharge	71.74 cfs	
Discharge Full	66.69 cfs	
Slope Full	0.010 ft/ft	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	83.0 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	29.9 in	
Critical Depth	31.5 in	
Channel Slope	0.010 ft/ft	
Critical Slope	0.009 ft/ft	

PIPES.fm8 12/2/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.010 ft/ft	
Diameter	24.0 in	
Discharge	13.30 cfs	
Results		
Normal Depth	13.2 in	
Flow Area	1.8 ft ²	
Wetted Perimeter	3.3 ft	
Hydraulic Radius	6.4 in	
Top Width	1.99 ft	
Critical Depth	15.8 in	
Percent Full	55.1 %	
Critical Slope	0.006 ft/ft	
Velocity	7.49 ft/s	
Velocity Head	0.87 ft	
Specific Energy	1.97 ft	
Froude Number	1.398	
Maximum Discharge	24.33 cfs	
Discharge Full	22.62 cfs	
Slope Full	0.003 ft/ft	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	55.1 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	13.2 in	
Critical Depth	15.8 in	
Channel Slope	0.010 ft/ft	
Critical Slope	0.006 ft/ft	

PIPES.fm8 12/2/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.010 ft/ft	
Diameter	42.0 in	
Discharge	80.10 cfs	
Results		
Normal Depth	28.3 in	
Flow Area	6.9 ft ²	
Wetted Perimeter	6.7 ft	
Hydraulic Radius	12.3 in	
Top Width	3.28 ft	
Critical Depth	33.6 in	
Percent Full	67.4 %	
Critical Slope	0.007 ft/ft	
Velocity	11.61 ft/s	
Velocity Head	2.09 ft	
Specific Energy	4.45 ft	
Froude Number	1.411	
Maximum Discharge	108.22 cfs	
Discharge Full	100.60 cfs	
Slope Full	0.006 ft/ft	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	67.4 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	28.3 in	
Critical Depth	33.6 in	
Channel Slope	0.010 ft/ft	
Critical Slope	0.007 ft/ft	

PIPES.fm8 12/2/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description		
Friction Method	Manning	
Fliction Method	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.010 ft/ft	
Diameter	24.0 in	
Discharge	15.70 cfs	
Results		
Normal Depth	14.7 in	
Flow Area	2.0 ft ²	
Wetted Perimeter	3.6 ft	
Hydraulic Radius	6.7 in	
Top Width	1.95 ft	
Critical Depth	17.1 in	
Percent Full	61.3 %	
Critical Slope	0.007 ft/ft	
Velocity	7.78 ft/s	
Velocity Head	0.94 ft	
Specific Energy	2.17 ft	
Froude Number	1.347	
Maximum Discharge	24.33 cfs	
Discharge Full	22.62 cfs	
Slope Full	0.005 ft/ft	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	61.3 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	14.7 in	
Critical Depth	17.1 in	
Channel Slope	0.010 ft/ft	
Critical Slope	0.007 ft/ft	

PIPES.fm8 12/2/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.008 ft/ft	
Diameter	42.0 in	
Discharge	95.00 cfs	
Results		
Normal Depth	38.1 in	
Flow Area	9.2 ft ²	
Wetted Perimeter	8.8 ft	
Hydraulic Radius	12.5 in	
Top Width	2.03 ft	
Critical Depth	36.1 in	
Percent Full	90.8 %	
Critical Slope	0.008 ft/ft	
Velocity	10.35 ft/s	
Velocity Head	1.67 ft	
Specific Energy	4.84 ft	
Froude Number	0.858	
Maximum Discharge	95.58 cfs	
Discharge Full	88.85 cfs	
Slope Full	0.009 ft/ft	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	39.3 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	38.1 in	
Critical Depth	36.1 in	
Channel Slope	0.008 ft/ft	
Critical Slope	0.008 ft/ft	

PIPES.fm8 12/2/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

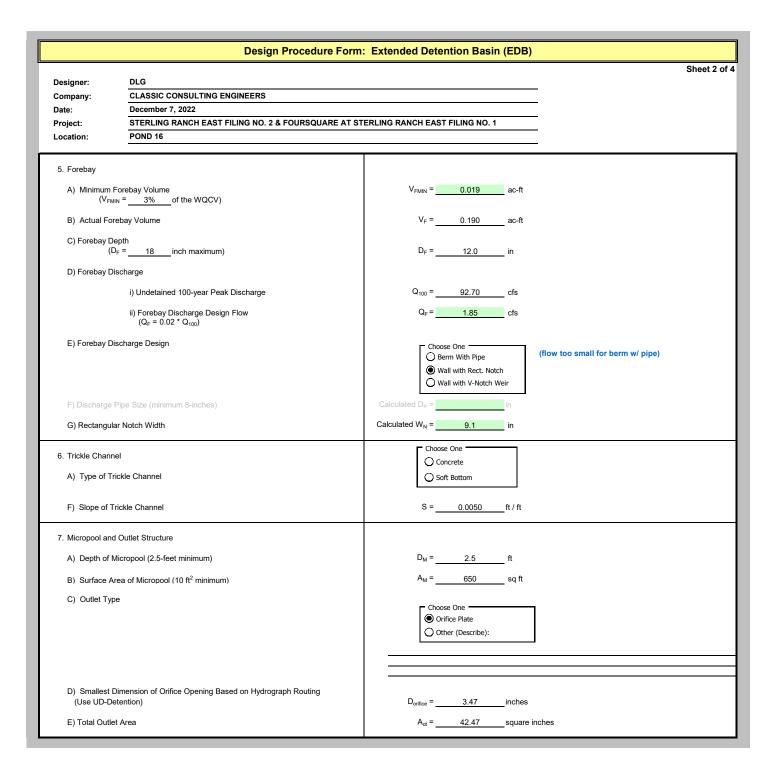
If nothing on the pond is being updated specifically with this SF2237 (no pond updates shown on CDs), calcs can be removed or label each sheet clearly as "for information only." And then if needed, the drainage report(s) with those calcs can be referenced in the text of this report.

DETENTION & STORMWATER

QUALITY POND

Pond calculations need to remain in report, as it covers 2 projects SF2236 & SF2237 - Include note that Pond is built as part of Project SF2236

Include summary table of all basins tributary to pond along with areas and % impervious to get a total overall % impervious for both design scenarios.


Include design of trickle channel

Spreadsheets will be reviewed with next submittal when % impervious has been updated.

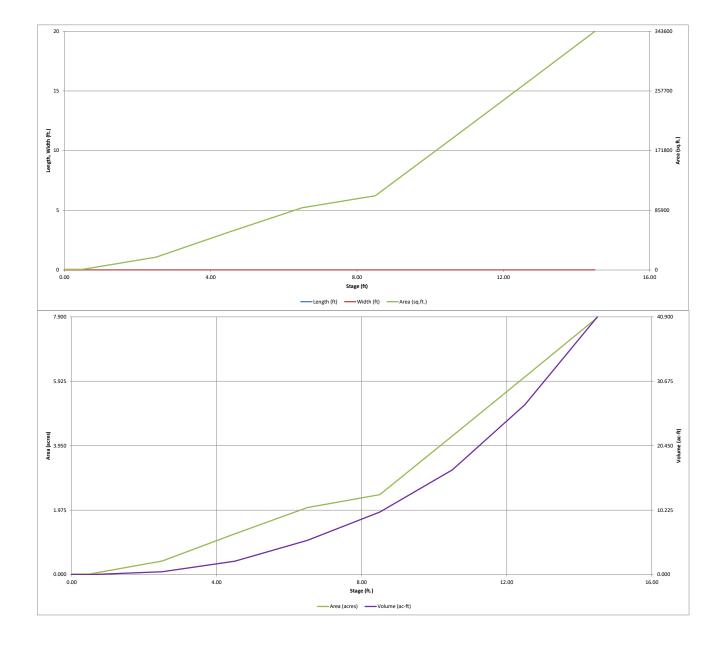
			LID-P	MP (Version	1.06. Noven	ber 2016)		ethod						
User Input			00-6			1010)								
Calculated cells				Designer:	dlg									
				Company:		ic Consulti	ng							
***Design Storm: 1-Hour Rain Depth WQCV Event	0.53	inches		Date:	Augu	st 17, 2020)							
••••Minor Storm: 1-Hour Rain Depth 5-Year Event	1.50	inches		Project:	Fours	quare at S	terling Ran	ch East Fil	ing No. 18	k Sterling R	anch East	Filing No.	2	
••••Major Storm: 1-Hour Rain Depth 100-Year Event	2.52	inches		Location:	Pond	16 INTERI	м							
Optional User Defined Storm CUHP														
(CUHP) NOAA 1 Hour Rainfall Depth and Frequency for User Defined Storm 100-Year Event	2.52													
Vax Intensity for Optional User Defined Storm 2.51496														
E INFORMATION (USER-INPUT)														
Sub-basin Identifier	FIL 1A	FSQ												
Receiving Pervious Area Soil Type	Sand	Sand												
Total Area (ac., Sum of DCIA, UIA, RPA, & SPA)	7.470	35.040												
Directly Connected Impervious Area (DCIA, acres)	2.480	8.140				<u> </u>			<u> </u>			<u> </u>		
Unconnected Impervious Area (UIA, acres)	2.760	5.700												
Receiving Pervious Area (RPA, acres)	2.230	6.730												
Separate Pervious Area (SPA, acres)	0.000	14.470												
RPA Treatment Type: Conveyance (C),	с	с												
Volume (V), or Permeable Pavement (PP)	C	C												
LCULATED RESULTS (OUTPUT)														
Total Calculated Area (ac, check against input)	7.470	35.040	Т	1										
Directly Connected Impervious Area (DCIA, %)	33.2%	23.2%												
Unconnected Impervious Area (UIA, %)	36.9%	16.3%				1	1		1	1		1		
Receiving Pervious Area (RPA, %)	29.9%	19.2%												
Separate Pervious Area (SPA, %)	0.0%	41.3%												
A _R (RPA / UIA)	0.808	1.181												
I _a Check	0.550	0.460												
f / I for WQCV Event:	11.0 0.6	11.0 0.6												
f / I for 5-Year Event: f / I for 100-Year Event:	0.6	0.6												
f / I for Optional User Defined Storm CUHP:	0.57	0.57												
IRF for WQCV Event:	0.63	0.58												
IRF for 5-Year Event:	0.87	0.85												
IRF for 100-Year Event:	0.88	0.86												
IRF for Optional User Defined Storm CUHP:	0.88	0.86												
Total Site Imperviousness: I _{total}	70.1%	39.5%												
Effective Imperviousness for WQCV Event:	56.6%	32.7%												
Effective Imperviousness for 5-Year Event:	65.3%	37.1%												
Effective Imperviousness for 100-Year Event: Effective Imperviousness for Optional User Defined Storm CUHP:	65.7% 65.7%	37.3%					<u> </u>			<u> </u>				
circultive imperviousness for optional user benned storm COHP:	03.7%	37.3%				I	I	I	I	I		I	1	
V / EFFECTIVE IMPERVIOUSNESS CREDITS WQCV Event CREDIT: Reduce Detention By:	18.3%	10.5%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/#
WQCV Event CREDIT: Reduce Detention By: This line only for 10-Year Event	18.3% N/A	10.5% N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/#
100-Year Event CREDIT**: Reduce Detention By:	6.0%	5.7%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N//
User Defined CUHP CREDIT: Reduce Detention By:	8.0%	4.4%				I	I	I	I	I	I	I		
	Total Site Imp	verviousness:	44.9%	,	lotes:									
Total Site Effective Imperv			36.9%				an infilment		fram 7-1-1					
Total Site Effective Imperv Total Site Effective Imperv		E Contraction of the second seco	36.9%				ge infiltration			3-3. equations fro	m Storage C	hanter of LIC	осм	
Total Site Effective Impervio			42.3%			d assumes th								

UD-BMP (Version 3.06, November 2016) Sheet 1 of 4 Design ::::::::::::::::::::::::::::::::::::		Design Procedure Form	: Extended Detention Basin (EDB)	
Company: CLASSIC CONSULTING ENDINEERS Data: December 7, 2022 Predict: December 7, 2022 Predict: POID 15 I. Besin Storage Volume N. Enterning A) Effective imperviournees of Tributary Area, I, B) Thotary Area's Imperviournees Rato (i = 1,/ 100) Imperviournees Rato (i = 1,/ 100) C) Contributing Watersted Area Area = 42.2 in Ruroff Producing Stom B) Tor Watersheds Cotatide of the Deriver Region, Depth of Average Ruroff Producing Stom Area = 42.2 in Coose One Water Quity Cepture Volume (WQCV) Based on 40-hour Dain Time (Vectors = (1.9 ' (0.91 ' r ² - 1.91 ' r ² - 0.76 ') / 12 ' Area.) Oodse One Water Quity Cepture Volume (WQCV) Based on 40-hour Dain Time (Vectors = (1.9 ' (0.91 ' r ² - 1.91 ' r ² - 0.76 ') / 12 ' Area.) C) For Watersheds Cotatide of the Deriver Region, Water Quity Cepture Volume (WQCV) Based on 40-hour Dain Time (Vectors = (1.9 ' (0.91 ' r ² - 1.91 ' r ² - 0.76 ') / 12 ' Area.) Vectors = 0.650 or 0.650 or 0.750 or 0.750 or 0.750 or 0.750 or			P (Version 3.06, November 2016)	Sheet 1 of 4
Date: Describer 7. 2022 Project: STELING RANCH EAST FLING NO. 2 & FOURSQUARE AT STELING RANCH EAST FLING RO. 1 Location: INTERIM 1. Basin Storage Volume INTERIM A) Effective Imperviousness Ratio (= 1,/ 100)	-			
Project: TELING PARCH EAST FLUNG NO. 2.2 FOURSQUARE AT STERLING RANCH EAST FLUNG NO.1 2000 11 NTERM 1. Basin Storage Volume A) Effective imperviousness of Tibulary Area, i, B) Tibulary Area's imperviousness Ratio (i = 1,/100)				
Image: Notestime Image: Notestime 1. Basin Storage Volume A) Effective Imperviousness of Tributary Area, I., B) Tributary Area's Imperviousness Rate (i = 1, / 100) C) Contributing Watershed Area D) For Watersheds Outside of the Deriver Region, Depth of Average Runoff Producing Storm D) For Watersheds Outside of the Deriver Region, Depth of Average Runoff Producing Storm D) For Watersheds Outside of the Deriver Region, Depth of Average Runoff Producing Storm P. Design Compet (Seete ELRV when also designing for flood control) P. Design Compet (Network = 10, °1 (0.91 + 1) - 1, 91 + °1 × 7 × 0 = 1) G) For Watersheds Outside of the Deriver Region, mater Quality Capture Volume (WQCV) Design Volume (Movie and Herrite WQCV Design Volume (Movie and Herrite WQCV) Design Volume (Movie and Herrite WQCV) Design Volume (Movie and Herrite Herrite Herrite (Herrite And Herrite Design Herrite (Herrite And Herrite Herrite (Herrite And Herrite Herrite Herrite (Herrite And Herrite Herrite Herrite (Herrite And Herrite Herrite Herrite (Herrite And Herrite Herrite Herrit			FERLING RANCH EAST FILING NO. 1	
1. Basin Storage Volume 1. Basin Storage Volume A) Effective imperviousness of Trbutary Area, 1,, B) Trbutary Area's Imperviousness Ratio (i = 1,/100) C) Contributing Watershed Area D) For Watersheds Outside of the Deriver Region, Depth of Average Rund Producing Stom E) Design Concept (Setect EURV when also designing for flood control) F) Design Volume (WQCV) Based on 40-hour Drain Time (Vocceon = (1.0 ⁺ (0.91 ⁺ 1 ⁻¹ - 1.9 ⁺ 1 ⁺ - 0.78 ⁺ 1)/12 ⁺ Area) F) Devign Volume (WQCV) Based on 40-hour Drain Time (Vocceon = (1.0 ⁺ (0.91 ⁺ 1 ⁺ - 1.9 ⁺ 1 ⁺ - 0.78 ⁺ 1)/12 ⁺ Area) C) For Watersheds Outside of the Deriver Region, Water Quality Capture Volume (WQCV) Design Volume (Vocceonext = (6/(Vocceol/0.43)) Water Quality Capture Volume (WQCV) Design Volume (Vocce on ext = (0.64/ 3 flement WQCV Design Volume assist) Viscace on ext = (0.64/ 3 flement WQCV Design Volume (Vocce on ext = (0.64/ 3 flement WQCV Design Volume (Vocce on ext = (0.64/ 3 flement WQCV Design Volume (Vocce on ext = (0.64/ 3 flement WQCV Design Volume (Vocce on ext = (0.64/ 3 flement WQCV Design Volume (Vocce on ext = (0.64/ 3 flement WQCV Design Volume (Vocce on ext = (0.64/ 3 flement WQCV Design Volume (Vocce on ext = (0.64/ 3 flement WQCV Design Volume (Vocce on ext = (0.64/ 3 flement WQCV Design Volume (Vocce on ext = (0.64/ 3 flement WQCV Design Volume (Vocce on ext = (0.64/ 3 flement WQCV Design Volume (Vocce on ext = (0.64/ 5 flement (Vocce + 1.20 ⁺ 1 ⁺¹⁰ Por HSG CD: EURV_c = 1.20 ⁺ 1 ⁺¹⁰ Por HSG CD: EURV_c = 1.20 ⁺ 1 ⁺¹⁰ Por HSG CD: EURV_c = 1.20 ⁺ 1 ⁺¹⁰ Por HSG Stopes (Matricont distatince	Location:			
A) Effective Imperviousness of Tributary Area, I, I, =23% B) Tributary Area's Imperviousness Rato (i = I_a' 100) I C) Contributing Watershed Area I D) For Watersheds Outside of the Deriver Region, Depth of Average Runoff Producing Storm Area =425_10ac B) Right Yourne (WQCV) Based on 40-hour Drain Time (Vectors eff. 10 (0.91 + f^-, 1.92 + f^-0.73 + 1)/12 + Area) Otosse One C) Design Volume (WQCV) Based on 40-hour Drain Time (Vectors eff. 10 (0.91 + f^-, 1.92 + f^-0.73 + 1)/12 + Area) Vectors eff. 20 (0.869 - ac-ft () So for Water Subity Capture Volume (WQCV) Design Volume (Vector) Design Volume (Clifty) () Predominant Watershed NRCS Soil Group Vectors ustrating ac-ft () Excess Uthan Runoff Volume (EURY) Design Volume (Clifty) Design	1. Desir Starses)			
 B) Tributary Area's Imperviouaness Rato (i = l_x/100) c) Contributing Watershed Area i) For Watersheds Outside of the Deriver Region, Depth of Average Runoff Producing Storm i) Diagn Volume (WQCV) Based on 40-hour Drain Time (Vescolov = (1,0⁻ 0,0⁺)⁺ f⁺ 0,0⁺ 1,19⁺ f⁺ 0,0⁺ 1/12⁺ Area) c) Design Volume (WQCV) Based on 40-hour Drain Time (Vescolov = (1,0⁻ 0,0⁺)⁺ f⁺ 1,19⁺ f⁺ 0,0⁺ 1/12⁺ Area) c) For Watersheds Outside of the Deriver Region, Water Quality Capture Volume (WQCV) Design Volume (VACV) Design Volume (CACV) Design Volume (VACV) Design Volume (VACV) Design Volume (UACV) Design Volume (VACV) Design Volume (VACV) Design Volume (VACV) Design Volume (VACV) Design Volume (UACV) Design Volume (UACV) Design Volume (UACV) Design Volume (VACV) Design Volume (UACV) Design Volu	•			
C) Contributing Watershed Anea Area =42.510ac D) For Watersheds Outside of the Deriver Region, Depth of Average Runoff Producing Storm	, .			
0) For Watersheds Outside of the Denver Region, Depth of Average Runoff Producing Storm 1) Design Concept (Gelect EURV when also designing for flood control) 1) Design Concept (Gelect EURV when also designing for flood control) 1) Design Volume (WQCV) Based on 40-hour Drain Time (Vicesser = (1.0, 0.91 + 1.19 + 7 + 0.78 + 1) / 12 + xrea) 1) Design Volume (WQCV) Design Volume (UVV) Design Volume (UVV) Design Volume (WQCV) Design Volume (UVV) Design Volume (UVVV) Design				
Runoff Producing Storm	,			
E) Design Concept (Select EURV when also designing for flood control)				
(Select EURV when also designing for flood control)	E) Desian Con	cept		
F) Design Volume (WQCV) Based on 40-hour Drain Time (Vdesion = (1.0 * (0.91 * 1 ² - 1.19 * 1 ² + 0.78 * 1) / 12 * Area) G) For Watersheds Outside of the Denver Region, Water Quality Capture Volume (WQCV) Design Volume (Vnecor ones = (d_n^* (Vdesion/0.43)) H) User Input of Water Coulity Capture Volume (WQCV) Design Volume (Only if a different WQCV Design Volume is desired) i) Predominant Watershed NRCS Soli Group i) Predominant Watershed NRCS Soli Group i) Excess Urban Runoff Volume (EURV) Design Volume (Only if a different WQCV Design Volume For HSG A: EURV _a = 1.38 * 1 ^{1.08} For HSG A: EURV _a = 1.38 * 1 ^{1.08} For HSG C/D: EURV _{co} = 1.20 * 1 ^{1.09} 2. Basin Shape: Length to Width Ratio (A basin length to Width Ratio of at least 2:1 will improve TSS reduction.) L : W = : 1.1 3. Basin Maximum Side Slopes (Horizontial distance per unit vertical, 4:1 or flatter preferred) Z =				
$(V_{DESIGN} = (1.0^{\circ} (0.91^{\circ} t^{\circ} - 1.19^{\circ} t^{\circ} + 0.78^{\circ} t)/ 12^{\circ} Area)$ G) For Watersheds Outside of the Deriver Region, Water Quality Capture Volume (WOCV) Design Volume ($V_{NOCVOTHER} = (0.643)$ ac-ft H) User Input of Water Quality Capture Volume (WOCV) Design Volume (Only if a different WQCV Design Volume (WOCV) Design Volume (Only if a different WQCV Design Volume (WOCV) Design Volume (Only if a different WQCV Design Volume (WOCV) Design Volume (Double is desired) VDESIGN USER* ac-ft i) Predominant Watershed NRCS Soil Group VDESIGN USER* ac-ft j) Excess Urban Runoff Volume (EURV) Design Volume For HSG A: EURV _A = 1.68 * 1 ^{1/20} For HSG A: EURV _B = 1.30 * 1 ^{1/20} EURV = 1.978 ac-ft 2. Basin Shape: Length to Width Ratio (A basin length to width ratio of at least 2:1 will improve TSS reduction.) L : W = 2.0 : 1 1 3. Basin Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred) Z = 4.00 : ft / ft ft 4. Inlet (A) Describe means of providing energy dissipation at concentrated =			Excess Urban Runoff Volume (EURV)	
Water Quality Capture Volume (WQCV) Design Volume (WQCV) Design Volume (Only if a different WQCV Design Volume is desired) Image: Water Quality Capture Volume (WQCV) Design Volume (Only if a different WQCV Design Volume is desired) I) Predominant Watershed NRCS Soil Group Image: Water Soil Group J) Excess Urban Runoff Volume (EURV) Design Volume For HSG A: EURV ₂ = 1.68 * 1 ^{1.28} For HSG A: EURV ₂ = 1.68 * 1 ^{1.28} For HSG A: EURV ₂ = 1.20 * 1 ^{1.06} EURV =			V _{DESIGN} = 0.659 ac-ft	
(Only if a different WQCV Design Volume is desired) Image: Choose One ima	Water Qual	ity Capture Volume (WQCV) Design Volume	V _{DESIGN OTHER} = 0.643 ac-ft	
I) Predominant Watershed NRCS Soil Group Image: A model bit B				
For HSG A: EURVA = 1.68 $*_{1}^{1.28}$ EURV = 1.978 ac-f t For HSG B: EURVB = 1.36 $*_{1}^{1.08}$ EURV = 2.0 1.978 ac-f t 2. Basin Shape: Length to Width Ratio (A basin length to width ratio of at least 2:1 will improve TSS reduction.) L : W = 2.0 : 1 3. Basin Side Slopes A) Basin Maximum Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred) Z = 4.00 ft / ft 4. Inlet A) Describe means of providing energy dissipation at concentrated Image: Concentrated Image: Concentrated	I) Predominant	Watershed NRCS Soil Group	● A ○ B	
(A basin length to width ratio of at least 2:1 will improve TSS reduction.) 3. Basin Side Slopes A) Basin Maximum Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred) 4. Inlet A) Describe means of providing energy dissipation at concentrated	For HSG A For HSG B	$x = URV_A = 1.68 * i^{128}$ $x = URV_B = 1.36 * i^{1.08}$	EURV = <u>1.978</u> ac-f t	
A) Basin Maximum Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred) Z =ft / ft 4. Inlet			L : W =: 1	
(Horizontal distance per unit vertical, 4:1 or flatter preferred) 4. Inlet A) Describe means of providing energy dissipation at concentrated	3. Basin Side Slop	bes		
A) Describe means of providing energy dissipation at concentrated			Z = ft / ft	
	4. Inlet			
inflow locations:				
	inflow locati	ions:		

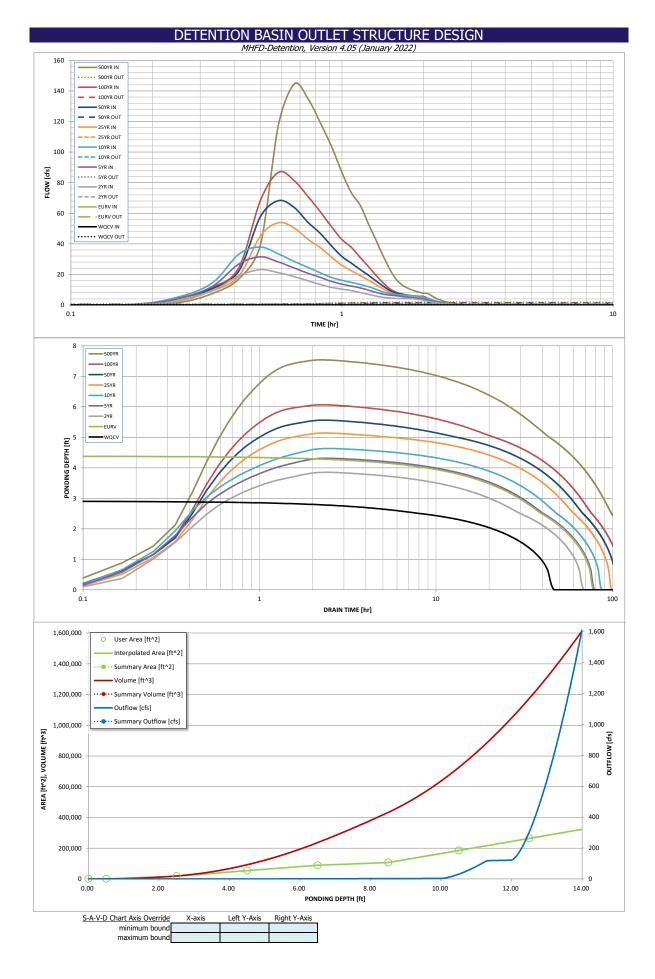
	Design Procedure Form	: Extended Detention Basin (EDB)	
Designer: Company: Date: Project: Location:	DLG CLASSIC CONSULTING ENGINEERS December 7, 2022 STERLING RANCH EAST FILING NO. 2 & FOURSQUARE AT ST POND 16		et 3 of 4
8. Initial Surchar	ge Volume		
	nitial Surcharge Volume recommended depth is 4 inches)	D _{IS} = in	
	nitial Surcharge Volume rolume of 0.3% of the WQCV)	V _{IS} = <u>84.1</u> cu ft	
C) Initial Surch	narge Provided Above Micropool	V _s = <u>325.0</u> cu ft	
9. Trash Rack			
A) Water Qua	ality Screen Open Area: A _t = A _{ot} * 38.5*(e ^{-0.095D})	A _t = <u>1,176</u> square inches	
in the USDCM	reen (If specifying an alternative to the materials recommended 1, indicate "other" and enter the ratio of the total open are to the re for the material specified.)	Aluminum Amico-Klemp SR Series with Cross Rods 2" O.C.	
	Other (Y/N): N		
C) Ratio of To	tal Open Area to Total Area (only for type 'Other')	User Ratio =	
D) Total Wate	r Quality Screen Area (based on screen type)	A _{total} = <u>1656</u> sq. in.	
	esign Volume (EURV or WQCV) lesign concept chosen under 1E)	H= <u>10</u> feet	
F) Height of W	/ater Quality Screen (H _{TR})	H _{TR} = <u>148</u> inches	
	/ater Quality Screen Opening (W _{opening}) f 12 inches is recommended)	W _{opening} = <u>12.0</u> inches	

	Design Procedure Form	Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	DLG CLASSIC CONSULTING ENGINEERS December 7, 2022 STERLING RANCH EAST FILING NO. 2 & FOURSQUARE AT S POND 16	Sheet 4 of 4
10. Overflow Em A) Describe	abankment embankment protection for 100-year and greater overtopping:	
	Overflow Embankment tal distance per unit vertical, 4:1 or flatter preferred)	
11. Vegetation		Choose One Irrigated Not Irrigated Not Irrigated IN THE BOTTOM OF THE BASIN
12. Access		
A) Describe	Sediment Removal Procedures	
Notes:		

DETENTION BASIN STAGE-STORAGE TABLE BUILDER


BASIN STAGE-STONASS

Project: STERLING RANCH EAST FILING NO. 2 & FOURSQUARE	T STERLIN	G RANCH EA	ST FIL	ING N
Basin ID: POND FSD-16 INTERIM				

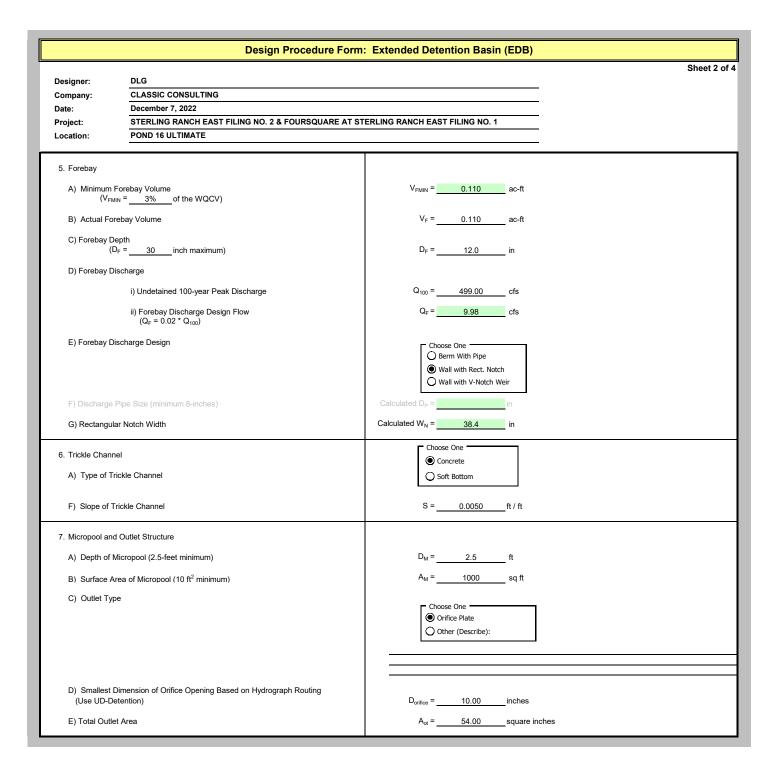

Basin ID:	POND FSD-	16 INTERIM	1											
ZONE 3	2												_	
	ZONE 1							\	U .	se ne	wer ve	ersion	of	
			-											+ 000
		100-YE	AR				1.		S	breads	sneet	uated	Augu	st 202
ZONE	E 1 AND 2	ORIFIC	CE CE		Depth Increment =		ft				Optional			г т
PERMANENT ORIFICATION ORIFICATIONO ORIFICATION ORIFICA	Configurati	on (Retenti	on Pond)		Stage - Storage	Stage	Optional Override	Length	Width	Area	Override	Area	Volume	Volume
Example 2010	oonnguraa		on rona,		Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft 3)	(ac-ft)
Watershed Information					Top of Micropool		0.00				1,027	0.024		
Selected BMP Type =	EDB				7092		0.50				1,027	0.024	514	0.012
		_												
Watershed Area =	42.51	acres			7094		2.50				18,288	0.420	19,828	0.455
Watershed Length =	1,800	ft			7096		4.50				54,450	1.250	92,566	2.125
Watershed Length to Centroid =	900	ft			7098		6.50			-	89,516	2.055	236,532	5.430
Watershed Slope =	0.040	ft/ft			7100		8.50				106,783	2.451	432,831	9.936
Watershed Imperviousness =	42.30%	percent			7102		10.50				185,108	4.249	724,722	16.637
Percentage Hydrologic Soil Group A =	100.0%	percent			7104		12.50				263,928	6.059	1,173,758	26.946
	0.0%				7104									
Percentage Hydrologic Soil Group B =		percent			/106		14.50				343,298	7.881	1,780,984	40.886
Percentage Hydrologic Soil Groups C/D =	0.0%	percent												
Target WQCV Drain Time =	40.0	hours												
Location for 1-hr Rainfall Depths =	User Input													
After providing required inputs above in	cluding 1-bour	rainfall												
depths, click 'Run CUHP' to generate run														
the embedded Colorado Urban Hydro	ograph Proced	ure.	Optional Use	er Overrides										
Water Quality Capture Velume (MOOD -	0.650	acres fact	Optional Ost	-										
Water Quality Capture Volume (WQCV) =	0.659	acre-feet	-	acre-feet										
Excess Urban Runoff Volume (EURV) =	1.978	acre-feet		acre-feet									l	
2-yr Runoff Volume (P1 = 1.19 in.) =	1.490	acre-feet	1.19	inches										
5-yr Runoff Volume (P1 = 1.5 in.) =	1.999	acre-feet	1.50	inches										7
10-yr Runoff Volume (P1 = 1.75 in.) =	2.405	acre-feet	1.75	inches									1	
25-yr Runoff Volume (P1 = 2 in.) =	-	acre-feet	2.00	inches								1	1	
50-yr Runoff Volume (P1 = 2.25 in.) =	3.848	acre-feet	2.25	inches									1	
				-										
100-yr Runoff Volume (P1 = 2.52 in.) =	4.774	acre-feet	2.52	inches	-								l	
500-yr Runoff Volume (P1 = 3.48 in.) =	7.951	acre-feet	3.48	inches										
Approximate 2-yr Detention Volume =	1.263	acre-feet												
Approximate 5-yr Detention Volume =	1.670	acre-feet								-				
Approximate 10-yr Detention Volume =	2.054	acre-feet												
Approximate 25-yr Detention Volume =	2.539	acre-feet												
Approximate 20-yr Detention Volume =	2.359	acre-feet								-			-	
Approximate 100-yr Detention Volume =	3.296	acre-feet												
Define Zones and Basin Geometry														
Zone 1 Volume (WQCV) =	0.659	acre-feet								-				
Zone 2 Volume (EURV - Zone 1) =	1.320	acre-feet												
Zone 3 Volume (100-year - Zones 1 & 2) =		acre-feet												
Total Detention Basin Volume =	3.296	acre-feet												
Initial Surcharge Volume (ISV) =	user	ft ³												
Initial Surcharge Depth (ISD) =	user	ft												
Total Available Detention Depth (H _{total}) =	user	ft												
Depth of Trickle Channel (H _{TC}) =	user	ft												
Slope of Trickle Channel (S_{TC}) =	user	ft/ft												
		-												
Slopes of Main Basin Sides (S _{main}) =	user	H:V												
Basin Length-to-Width Ratio $(R_{L/W})$ =	user													
		_												
Initial Surcharge Area (A _{ISV}) =	user	ft ²												
Surcharge Volume Length (L _{ISV}) =	user	ft								-				
Surcharge Volume Width (W _{ISV}) =	user	ft												
Depth of Basin Floor (H _{FLOOR}) =		ft												
Length of Basin Floor (L _{FLOOR}) =		ft												
		- 1												
Width of Basin Floor (W _{FLOOR}) =	user	ft												
Area of Basin Floor (A_{FLOOR}) =	user	ft ²												
Volume of Basin Floor (V _{FLOOR}) =	user	ft 3												
Depth of Main Basin (H _{MAIN}) =	user	ft												
Length of Main Basin (L_{MAIN}) =	user	ft												
Width of Main Basin (W _{MAIN}) =	user	ft										1	1	
Area of Main Basin (A _{MAIN}) =		ft ²											1	
Volume of Main Basin (V _{MAIN}) =		ft ³						-		-			1	
											-			
Calculated Total Basin Volume (V _{total}) =	user	acre-feet			-									
													-	
											-			
													1	-
										-				
													-	
					-									
													+	
										-				
										-				
														—
													-	
											-			
													1	
						-						<u> </u>		
													1	
											-		+	
													1	
													1	
														-
										-				
													1	
						-					-	-	-	

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.05 (January 2022)

Provember 1992 Province of pro		DE	TENTION								
Prince: Prince D. 2. Production of DS 10. Prince Prince: Prince DS 10. Production Prince: Prince DS 10. Prince Prince: Prince DS 10. Prince DS 10. Prince Prince: Prince DS 10. Princ		DE					SIGN				
Line of the set of th			EAST FILING NO.				NO. 1				
	ZONE 3	PUND FSD-16 IN	ERIM		Estimated	Estimated					
Image: Information of the second se							Outlet Type				
Image: Description of the set of				Zone 1 (WQCV)	2.91	0.659	Orifice Plate				
Image Construction Detect Control Location Question Plant Image Question Question Question Question Question Plant Control Control Plant Control Control Plant Control Control Plant Control Control Plant		100-YEAR ORIFICE									
Use: Inst. of Underfahl-Online Art Update Update Update In Effection RPI Underfahl Online Art Underfahl Online Art Underfahl Online Art NA Telefahle Selection Provide Control NA Telefahle Selection Provide Control NA Underfahl Online Art NA Telefahle Selection Provide Control NA Telefahle Selection Provide Control NA Underfahl Online Art NA Telefahle Selection Provide Control NA Telefahle Selection	2001	Configuration (R	etention Pond)	Zone 3 (100-year)			Weir&Pipe (Restrict)				
Uder also Office Entrol er NA rice Uder data Office Centrol er NA rece User Josit, Office Rese, names office or Entrol Edge Static Web (psicely), tax sidementals, RMP) With Control Actions per Non + School Province Static Static Web (psicely), tax sidementals, RMP) With Control Web (psicely), tax sidementals,	•	• •		BMP)	TOLAT (all 2011es)	3.290]	Calculated Parame	eters for Underdrair	<u>1</u>	
Line Louit. Online flate with one a more of the control form of	-		-	the filtration media	surface)						
Cerebol of Locate 10 (Rife - Lipsc) 0.000 (r) (rable to asks hothow at Sage = 0 f) WQ Differs Area of Sach - NA Fet Differ Pate: Differ Vetal Spaces - NA 0.000 r/ (r)	Underdrain Orifice Diameter =	N/A	inches			Underdrai	n Orifice Centroid =	N/A	feet		
Depth at bo of zone using Orthor Plane - Driffice Plane: Orthor Versa per flow Discipling Section 20 (Section Versa per flow + Section Versa per flow + Sect	User Input: Orifice Plate with one or more orifi	ces or Elliptical Slot	t Weir (typically use	ed to drain WQCV a	nd/or EURV in a se	dimentation BMP)		Calculated Parame	eters for Plate		
Once Point: Online Version Office Area per Rom = Number Network Number Network Number Network Number Network Number Network Line Insut: Stage and Table Area of Table Office Area per Rom = Number Network N				-	•	-	•				
Diffice Pase: NA Space NA			-	n bottom at Stage =	= 0 ft)		•	-			
Base of Orfice Cerection (Normal Control Normal Contrel Normal Contrel Normal Control Normal Control Normal Contrel No											
Base of Orfice Cerection (Normal Control Normal Contrel Normal Contrel Normal Control Normal Control Normal Contrel No											
Base of Orice Certoid (Min Base 1 (optional) Base 1 (optional) </td <td>User Input: Stage and Total Area of Each Orific</td> <td>e Row (numbered</td> <td>from lowest to hig</td> <td>hPL</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	User Input: Stage and Total Area of Each Orific	e Row (numbered	from lowest to hig	hPL							
Ordine Area (op. index) 3.50 0.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 Rev 13 (opticus) Rev 14 (opticus) Rev 15 (opticus)	~				Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)		
Base of office Carolo (10) Invest of Captore and (10) Base 12 (captore) Base 12 (c											
Stope of once Control (n) Image: Status of the stope of	Orifice Area (sq. inches)	3.50	8.00	18.00	18.00						
Oritic Area (og. Inches) Inches Calculated Parameters for Vertical Orifice User Input: Vertical Orifice Circular or Restanquart NA		Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)		
User Ingut: Vertical Onfice (Circular or Rectangular) Calculated Parameters for Vertical Onfice Area Extra Confice Depth at top of Zone using vertical Onfice Damater = N/A N/A N/A N/A User Ingut: Vertical Onfice Character = N/A N/A N/A N/A User Ingut: Overflow Weir Control Damater = N/A N/A N/A N/A User Ingut: Overflow Weir Control Damater = Zone Using Vertical Onfice Control Ingent Control Damater = Zone Using Vertical Onfice Control Ingent Control Damater = Zone Using Vertical Onfice Control Ingent Control Damater = Zone Using Vertical Onfice Control Vertical Damaters for Overflow Weir Control Damater = Zone Using Vertical Damater = Zone Using Verting Vertical Damater =											
Invent of Vertical Orifice = Ind. Selection Not Selection Depth at top of Zone using Vertical Orifice = N/A N/A R(relative to basin bottom at Stage = 0 ft) Vertical Orifice Centrol = N/A N/A R(relative to basin bottom at Stage = 0 ft) Vertical Orifice Centrol = N/A N/A R(relative to basin bottom at Stage = 0 ft) Vertical Orifice Centrol = N/A N/A R(relative to basin bottom at Stage = 0 ft) Vertical Orifice Centrol = N/A N/A R(relative to basin bottom at Stage = 0 ft) Vertical Orifice Centrol = N/A N/A R(relative to basin bottom at Stage = 0 ft) Horizon Stage Larght N/A R(relative to basin bottom at Stage = 0 ft) Horizon Stage Larght N/A R(relative to basin bottom at Stage = 0 ft) Horizon Stage Larght N/A R(relative to basin bottom at Stage = 0 ft) Horizon Stage Larght N/A R(relative to basin bottom at Stage = 0 ft) Horizon Stage Larght N/A R(relative to basin bottom at Stage = 0 ft) Horizon Stage Larght R(relative to basin bottom at Stage = 0 ft) Horizon Stage Larght R(relative to basin bottom at Stage = 0 ft) N/A R(relative to basin bottom at Stage = 0 ft) N/A R(relative to basin bottom at Stage = 0 ft) N/A R(relative	Orifice Area (sq. inches)										
Invert of Vertical Orifice =N/A	User Input: Vertical Orifice (Circular or Rectand			7						ifice	
Depth at top of Zone using Vertical Onfrice Dameter = N/A N/A <th< td=""><td></td><td></td><td></td><td>A (uslative to be sit</td><td></td><td>0.8)</td><td>tiant Orifing Array</td><td></td><td></td><td>c²</td></th<>				A (uslative to be sit		0.8)	tiant Orifing Array			c ²	
Vertical Orifice Diameter = N/A N/A n/A User Input: Overflow Weir Clorepbox with Flat or Stoped Grate and Outlet Pipe OR Restrangular/Trapezoidal Weir and No Outlet Pipe). Calculated Brameters for Overflow Weir Stope Length = 2000 N/A freet Overflow Weir Front Edge Height, Ho = 2000 N/A freet Overflow Weir Stope Length = 4.00 N/A freet Overflow Weir Grate Stope = 0.00 N/A freet Overflow Weir Stope Length = 4.00 N/A freet Overflow Weir Grate Stope = 0.00 N/A freet Overflow Rear Near Mice Near Wole Crite Stope = 55.66 N/A freet Overflow Weir Grate Stope = 0.00 N/A freet Overflow Rear Ore Area Wo Debrie = 55.66 N/A freet Overflow Weir Grate Stope = 0.00 N/A freet Overflow Rear Ore Area Wo Debrie = 55.66 N/A freet Overflow Weir Grate Stope = 0.00 N/A freet Overflow Rear Ore Rear Ore No Debrie = 55.66 N/A freet Overflow Grate Dipen term 2000 in Area freet Overflow Rear Ore Rear Ore No Debrie = 55.66 N/A					-	,					
Zone 3 weir Not Selected Overflow Weir Front Edge Height, Ho = 20.00 N/A feet Overflow Weir Scape Length = 10.00 N/A feet Overflow Weir Grate Stope = 0.00 N/A feet Overflow Weir Scape Length = 8.01 N/A feet Overflow Weir Grate Type = Type C Grate N/A feet Overflow Grate Open Area VID Open Kare VID OPEN			-		- bottom ut blage -			14/7	ци		
Zone 3 weir Not Selected Overflow Weir Front Edge Height, Ho = 20.00 N/A feet Overflow Weir Scape Length = 10.00 N/A feet Overflow Weir Grate Stope = 0.00 N/A feet Overflow Weir Scape Length = 8.01 N/A feet Overflow Weir Grate Type = Type C Grate N/A feet Overflow Grate Open Area VID Open Kare VID OPEN		· · ·		4							
Zone 3 weir Not Selected Overflow Weir Front Edge Height, Ho = 20.00 N/A feet Overflow Weir Scape Length = 10.00 N/A feet Overflow Weir Grate Stope = 0.00 N/A feet Overflow Weir Scape Length = 8.01 N/A feet Overflow Weir Grate Type = Type C Grate N/A feet Overflow Grate Open Area VID Open Kare VID OPEN								<u></u>			
Overflow Weir Front Edge Height, Ho 10.00 N/A freet Overflow Weir Front Edge Length 20.00 N/A feet Overflow Weir Single Length 4.00 N/A feet Overflow Weir Grate Stope 4.00 N/A feet Overflow Weir Single Length 4.00 N/A feet Overflow Grate Open Area / 100 'ry Orfice Area 55.63 N/A feet Overflow Grate Open Area w/ Debris 55.63 N/A ft ² Overflow Grate Open Area / 100 'ry Orfice Area 50.66 N/A ft ² Sold N/A ft ² User Input: Outlet Pipe w/ Flow Restrictor Pites, Restrictor Pites, Restrictor Not Selected Calculated Parameters for Outlet Pipe W/ Flow Restrictor Pites Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe Eastor NA ft (elstavc to basin bottom at Stage = 0 ft) Outlet Orfice Area = 6.95 N/A ft ² Restrictor Pite Veight Aveo Trapezoidal inches Half-Central Angle of Restrictor Not Selected 1.24 N/A fteet Splitway Creat Length 1.00 fteet Splitway Create Pipe S	User Input: Overflow Weir (Dropbox with Flat o			ectangular/Trapezoi	dal Weir and No Oi	<u>utiet Pipe)</u>				veir	
Overflow Weir Grate Siges = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = 0.00 N/A Free Hv Grate Open Area //100-/v Orifice Area = Overflow Grate Open Area w/o Debris = 0.01 N/A Side User Input: Outlet Pipe w/ Flow Restriction Plate Debris Clogging % = Type C Grate 50% N/A Side Side N/A Side Tree Colume Side Colume Side Colume Side N/A Side Tree User Input: Outlet Pipe w/ Flow Restriction Plate Outlet Pipe Diameter = Side 2.50 N/A Inches Tree Colume Side Colume	Overflow Weir Front Edge Height, Ho =			ft (relative to basin l	bottom at Stage = 0	ft) Height of Grat	e Upper Edge, $H_t =$			feet	
Horiz Length of Weir Siles = Overflow Grate Type $\frac{4.00}{\text{Create}}$ N/A Product Type C Gratefree N/A WOverflow Grate Open Area wy Debris = $\frac{55.68}{27.84}$ N/A N/Afree Type C GrateUser Input: Outlet Pipe W/ How Restriction Plate Depth to Invert of Outlet Pipe a Outlet Pipe barnetic = $\frac{50\%}{2.50}$ N/A%User Input: Outlet Pipe W/ How Restriction Plate Outlet Pipe barnetic = $\frac{2.50}{2.50}$ N/Aft (distance below basin bottom at Stage = 0 ft) Outlet Orfice Centroid = $\frac{2.50}{1.24}$ N/Aft cOutlet Orfice Area Spillway Inter Stage $\frac{12.20}{1.65}$ N/Aft (distance below basin bottom at Stage = 0 ft) Spillway Crest Length = $\frac{12.20}{1.65}$ N/Aft cSpillway Inter Stage Spillway Inter Stage $\frac{12.20}{1.60}$ ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth = $\frac{0.99}{1.3.99}$ feetSpillway Inter Stage Spillway Inter Stage Spillway Inter Stage = $\frac{10.00}{1.00}$ feetSpillway Design Flow Depth = $\frac{0.99}{2.425}$ feetRouted Hydrograph ResultsThe user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).Church Restriction Return Revice (fs)N/AN/A 1.19 1.50 1.75 2.00 2.25 2.52 3.484 Church Revices Represervement Revice (fs)N/AN/A 1.490 1.999 2.405 <										feet	
Overflow Grate TypeType C GrateN/A%Overflow Grate Open Area v/ Debris $\overline{27.84}$ N/A%Debris Clogging %Type C GrateN/A%User Input: Outlet Pipe w/ How Restriction Plate (Circular Orifice, Restrictor Plate, or Not SelectedCalculated Parameters for Outlet Pipe w/ How Restriction PlateOutlet Orifice Area =Calculated Parameters for Outlet Orifice Area =Calculated Parameters for Outlet Orifice Area =Calculated Parameters for Outlet Orifice Area =Calculated Parameters for SullawCalculated Parameters for SullawRestrictor Nate Height Above TrapezoidalCalculated Parameters for SullawSullway Invert Stage =12.00ft (relative to basin bottom at Stage = 0 ft)Spillway Invert Stage =Spillway Invert Stage =10.00feetSpillway Crest LengthNet Construction of the default CDHP hydrographs and nunoff volumes by entering new values in the Inflow Hydrograph Stable (Columns W through AF)Calculated Parameters for SullwayCalculated Parameters for SullwaySpillway Crest LengthCalculated Parameters for SullwaySpillway Crest LengthCalculated Parameters for Sullway<						•	•			c ²	
Debris Clogging % =Sol%N/AUser Input: Outlet Pipe w/ How Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)Calculated Parameters for Outlet Pipe w/ How Restriction PlateDepth to Invert of Outlet PipeZon 3 Restrictor Not SelectedOutlet Orifice, Restrictor Not SelectedCalculated Parameters for Outlet PipeOutlet Orifice Centrol =1.24N/AOutlet Orifice Centrol =Calculated Parameters for SpillwayOutlet Orifice Centrol =Calculated Parameters for SpillwaySpillway (Rectangular or Trapezoida)Calculated Parameters for SpillwaySpillway Cest Ength =155.00The user can override the default CUHP hydrographs and runoff volume at Top of Freeboard =13.99reetOutlet Orifice, Restrictor Plate Kight N/AN/AN/AColspan="4">Calculated Parameters for SpillwaySpillway Cest Ingth ESpillway Cest Ingth ESpillway Cest Ingth ESpillway Cest Ingth ESpillway Cest Ingth E <th col<="" td=""><td>5</td><td></td><td></td><td>reet</td><td></td><td>•</td><td></td><td></td><td></td><td></td></th>	<td>5</td> <td></td> <td></td> <td>reet</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td>	5			reet		•				
Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected Outlet Pipe Diameter = 2.50 N/A ft (distance below basin botom at Stage = 0 ft) Outlet Orifice Centrol = 6.95 N/A ft ² Restrictor Plate Height Above Pipe Invert = 26.00 inches Half-Central Angle of Restrictor Plate on Pipe = 1.24 N/A ftet User Input: Emergency Spillway (Rectangular or Trapezoidal) inches Half-Central Angle of Restrictor Plate on Pipe = 0.09 ftet Spillway Crest Length 12.00 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depta 0.99 fteet Spillway Crest Length 12.00 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depta 0.99 fteet Spillway End Slopes = 6.00 H:V Basin Area at Top of Freeboard = 7.42 acres Spillway End Slopes = 0.00 fteet 1.99 1.640 3.135 3.848 4.774 7.951 None Hour Park Origin Stom Return Pariod Clopes N/A N/A 0.499 1.999 2.405 3.135 3.848				%	0			27101	,,,		
Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected Outlet Pipe Diameter = 2.50 N/A ft (distance below basin botom at Stage = 0 ft) Outlet Orifice Centrol = 6.95 N/A ft ² Restrictor Plate Height Above Pipe Invert = 26.00 inches Half-Central Angle of Restrictor Plate on Pipe = 1.24 N/A ftet User Input: Emergency Spillway (Rectangular or Trapezoidal) inches Half-Central Angle of Restrictor Plate on Pipe = 0.09 ftet Spillway Crest Length 12.00 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depta 0.99 fteet Spillway Crest Length 12.00 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depta 0.99 fteet Spillway End Slopes = 6.00 H:V Basin Area at Top of Freeboard = 7.42 acres Spillway End Slopes = 0.00 fteet 1.99 1.640 3.135 3.848 4.774 7.951 None Hour Park Origin Stom Return Pariod Clopes N/A N/A 0.499 1.999 2.405 3.135 3.848	User Territo Outlet Disc / Elson Destriction Dist		Daatuiatan Diata an			6	la data d Dava a atau				
Depth to Invert of Outlet Pipe 2.50 N/A ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area = Outlet Pipe Diameter = 6.95 N/A ft ² feet Restrictor Plate Height Above Pipe Invert = 26.00 inches Half-Central Angle of Restrictor Plate on Pipe = 1.24 N/A feet User Input: Emergency Spillway (Rectangular or Trapezoidal) inches Half-Central Angle of Restrictor Plate on Pipe = 1.05 N/A ffet Spillway Invert Stage = Spillway Crest Length = 165.00 ffeet Stage at Top of Freeboard = 0.99 feet 13.99 feet 3.99 feet 3.99 feet 3.69 acres - 7.42 acres acres 3.09 feet 3.00 3.05 3.08 3.08 4.774 3.05 3.135 3	User Input: Outlet Pipe w/ Flow Restriction Plat			Rectangular Orifice	2		alculated Parameters			<u>ate</u>	
Restrictor Plate Height Above Pipe Invert = 26.00 inches Half-Central Angle of Restrictor Plate on Pipe = 1.65 N/A radians User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Calculated Parameters for Spillway Spillway Crest Length = 155.00 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth = 0.99 feet Spillway Crest Length = 100.0 feet Stage at Top of Freeboard = 7.42 acres Freeboard above Max Water Surface = 1.00 feet Basin Area at Top of Freeboard = 36.98 acre-ft The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). Design Storm Return Period N/A N/A 1.490 1.999 2.405 3.135 3.848 4.774 7.951 Inflow Hydrograph Volume (arceft) = N/A N/A 1.490 1.999 2.405 3.135 3.848 4.774 7.951 OPTIONAL Overide Fredevelopment Peak (Cid) = N/A N/A 0.4 0.6 0.02 0.22	Depth to Invert of Outlet Pipe =			ft (distance below b	asin bottom at Stage	= 0 ft) C	utlet Orifice Area =			ft ²	
User Input: Emergency Spillway Invert Stage Calculated Parameters for Spillway Invert Stage Spillway Invert Stage 12.00 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth 0.99 feet Spillway End Slopes = 6.00 H:V Basin Area at Top of Freeboard = 7.42 acres Spillway End Slopes = 6.00 H:V Basin Area at Top of Freeboard = 7.42 acres Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). CuHP Runoff Volume (acreft) 0.659 1.978 1.490 1.999 2.405 3.135 3.848 4.774 7.951 CUHP Predevelopment Peak Q(cfs) N/A N/A 1.490 1.999 2.405 3.135 3.848 4.774 7.951 OPTIONAL Override Predevelopment Peak Q(cfs) N/A N/A 0.40 0.7 1.0 9.4 18.8 30.71 7.42 3.848 4.774 7.951 OPTIONAL Override Predevelopment Peak Q(cfs) N/A N/A 1.490			N/A								
Spillway Invert Stage 12.00 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 0.99 feet Spillway End Slopes 6.00 H:V Basin Area at Top of Freeboard = 13.99 feet Spillway End Slopes 6.00 H:V Basin Area at Top of Freeboard = 7.42 accres Freeboard above Max Water Surface = 1.00 feet Basin Volume at Top of Freeboard = 36.98 accres Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). WQCV EURV 2 Year 5 Year 100 Year 500 Year On-Hour Rainfall Depth (in = 0.659 1.978 1.490 1.999 2.405 3.135 3.848 4.774 7.951 CUHP Revelopment Peak Q (cfs) N/A N/A 0.4 0.7 1.0 9.4 18.8 30.7 69.3 OPTIONAL Override Predevelopment Peak Q (cfs) N/A N/A 0.4 0.7 1.0 9.4 18.8 30.7 69.3	Restrictor Plate Height Above Pipe Invert =	26.00		inches	Half-Cent	ral Angle of Restrie	ctor Plate on Pipe =	1.65	N/A	radians	
Spillway Crest Length = Spillway End Slopes = 165.00 feet Stage at Top of Freeboard = Basin Area at Top of Freeboard = Basin Area at Top of Freeboard = Basin Volume at Top of Freeboard = 36.98 feet Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). Design Storm Return Period One-Hour Rainfall Depth (in) CUHP Runoff Volum (eare-ft) Inflow Hydrograph Volume (are-ft) CUHP Runoff Volume (acre-ft) CUHP Runoff Volume (acre-ft) CUHP Runoff Volume (acre-ft) Reak Inflow (cfs) = N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 3.48 OPTIONAL Override Predevelopment Peak Q(cfs) = N/A N/A 1.490 1.999 2.405 3.135 3.848 4.774 7.951 OPTIONAL Override Predevelopment Peak Q(cfs) = N/A N/A 0.4 0.7 1.0 9.4 18.8 30.7 69.3 Predevelopment Value (cfs) = N/A N/A 0.6 0.6 0.9 1.2 1.4 2.0 Reatio Peak Outflow Q(cfs) = N/A N/A N/A N/A 0.6 0.9 1.2 1.4 2.0	User Input: Emergency Spillway (Rectangular o	r Trapezoidal)						Calculated Parame	eters for Spillway		
Spillway End Stopes = 6.00 H:V Basin Area at Top of Freeboard = 7.42 acres Freeboard above Max Water Surface = 1.00 feet Basin Volume at Top of Freeboard = 36.98 acres Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). One-Hour Rainfall Depth (in) N/A N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 3.48 OH-Hour exinifall Depth (in) N/A N/A 1.490 1.999 2.405 3.135 3.848 4.774 7.951 CHP redevelopment Peak Q (r5) N/A N/A 1.490 1.999 2.405 3.135 3.848 4.774 7.951 CHP redevelopment Peak Q (r5) N/A N/A 0.7 1.0 9.4 18.8 30.7 69.3 Predevelopment Peak Inflow Q (r5) N/A N/A N/A 0.1 0.01 0.02 </td <td>Spillway Invert Stage=</td> <td>12.00</td> <td>ft (relative to basi</td> <td>n bottom at Stage =</td> <td>= 0 ft)</td> <td></td> <td></td> <td></td> <td>feet</td> <td></td>	Spillway Invert Stage=	12.00	ft (relative to basi	n bottom at Stage =	= 0 ft)				feet		
Freeboard above Max Water Surface = 1.00 feet Basin Volume at Top of Freeboard = 36.98 acre-ft Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). WQCV EURV 2 Year 50 Year 100 Year 50 Year 100 Year 500 Year OPTIONAL Override Predevelopment Peak Q (cfs) N/A <						5					
Ne user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). Neture Period One-Hour Rainfall Depth (in = N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 3.48 CUHP Runoff Volume (acre-ft) = N/A N/A 1.490 1.999 2.405 3.135 3.848 4.774 7.951 CUHP Runoff Volume (acre-ft) = N/A N/A 1.490 1.999 2.405 3.135 3.848 4.774 7.951 CUHP Predevelopment Peak Q (cfs) = N/A N/A 0.4 0.7 1.0 9.4 18.8 30.7 69.3 OPTIONAL Override Predevelopment Peak Q (cfs) = N/A N/A 0.4 0.7 1.0 9.4 18.8 30.7 69.3 Predevelopment Peak Q (cfs) = N/A N/A 0.01 0.02 0.02 0.22 0.44 0.72 1.63 Predevelopment Veak Q (cfs) = N/A N/A N/A							•				
Design Storm Return Period WQCV EURV 2 Year 5 Year 10 Year 25 Year 50 Year 100 Year 500 Year One-Hour Rainfall Depth (in) N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 3.48 CUHP Runoff Volume (arce-t) 0.659 1.978 1.490 1.999 2.405 3.135 3.848 4.774 7.951 CUHP Predevelopment Qearce (cfs) N/A N/A 0.4 0.7 1.0 9.4 18.8 30.7 69.3 OPTIONAL Override Predevelopment Peak Q (cfs) N/A N/A 0.4 0.7 1.0 9.4 18.8 30.7 69.3 OPTIONAL Override Predevelopment Veak Q (cfs) = N/A N/A 0.4 0.6 0.2 0.02 0.4 0.72 1.63 Predevelopment Unit Peak Flow, q (cfs/acre) = N/A N/A 0.4 0.6 0.5 0.6 0.6 0.9 1.2 1.4 2.0 Ratio Peak Outflow Q (cfs) = N/A N/A <		100				babiir Foldine at		00000			
Design Storm Return Period WQCV EURV 2 Year 5 Year 10 Year 25 Year 50 Year 100 Year 500 Year One-Hour Rainfall Depth (in) N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 3.48 CUHP Runoff Volume (arce-t) 0.659 1.978 1.490 1.999 2.405 3.135 3.848 4.774 7.951 CUHP Predevelopment Qearce (cfs) N/A N/A 0.4 0.7 1.0 9.4 18.8 30.7 69.3 OPTIONAL Override Predevelopment Peak Q (cfs) N/A N/A 0.4 0.7 1.0 9.4 18.8 30.7 69.3 OPTIONAL Override Predevelopment Veak Q (cfs) = N/A N/A 0.4 0.6 0.2 0.02 0.4 0.72 1.63 Predevelopment Unit Peak Flow, q (cfs/acre) = N/A N/A 0.4 0.6 0.5 0.6 0.6 0.9 1.2 1.4 2.0 Ratio Peak Outflow Q (cfs) = N/A N/A <	Routed Hydrograph Results	The user can over	rride the default (1.	IHP hydrographs an	d runoff volumes h	v entering new va	lues in the Inflow H	/drographs table (i	Columns W through	AF).	
CUHP Runoff Volume (acre-ft) Inflow Hydrograph Volume (acre-ft) (CHP Predevelopment Peak Q(fs) Predevelopment Peak Q(fs) Predevelopment Peak Q(fs) Predevelopment Unit Peak Flow, q (cfs/acre) Peak Inflow Q (cfs) Peak Inflow Q (cfs) Peak Outflow Q (cfs) Pack Outflow to Predevelopment Q Peak Inflow Q (cfs) Pack Outflow Q (cfs) Time to Drain 97% of Inflow Volume (hours) MAX 1.490 1.999 2.405 3.135 3.848 4.774 7.951 0.4 0.4 0.7 1.0 9.4 18.8 30.7 69.3 0.4 0.4 0.7 1.0 9.4 18.8 30.7 69.3 0.4 0.4 0.4 0.7 1.0 9.4 0.4 0.7 1.63 0.4 0.6 0.5 0.6 0.6 0.9 1.2 1.4 2.0 0.4 0.6 0.5 0.6 0.6 0.1 0.1 0.0 0.0 0.4 0.6 0.5 0.6 0.6 0.1 0.1 0.0 0.0 0.4 0.6 0.5 0.6 0.6 0.1 0.1 0.0 0.0 0.7 1.10		WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year	
Inflow Hydrograph Volume (acre-ft) CUHP Predevelopment Peak Q (cfs) = N/A N/A 1.490 1.999 2.405 3.135 3.848 4.774 7.951 OPTIONAL Overide Predevelopment Peak Q (cfs) = N/A N/A 0.4 0.7 1.0 9.4 18.8 30.7 69.3 OPTIONAL Overide Predevelopment Peak Q (cfs) = N/A N/A 0.4 0.7 1.0 9.4 18.8 30.7 69.3 Predevelopment Unit Peak Flow, q (cfs/acre) = N/A N/A 0.01 0.02 0.02 0.22 0.44 0.72 1.63 Peak Inflow Q (cfs) = N/A N/A N/A 0.6 0.5 0.6 0.6 0.9 1.2 1.4 2.0 Ratio Peak Outflow to Predevelopment Q = N/A N/A N/A N/A 0.6 0.6 0.1 0.1 0.0 0.0 Structure Controlling Flow = N/A											
CUHP Predevelopment Peak Q (cfs) N/A N/A 0.4 0.7 1.0 9.4 18.8 30.7 69.3 OPTIONAL Override Predevelopment Peak Q (cfs) N/A N/A N/A 0.4 0.7 1.0 9.4 18.8 30.7 69.3 Predevelopment Vait Predevelopment Vait Predevelopment Vait Peak Flow, q (cfs) = N/A N/A 0.01 0.02 0.02 0.22 0.44 0.72 1.63 Peak Inflow Q (cfs) N/A N/A N/A 23.1 31.5 37.9 53.8 68.2 86.8 144.6 Peak Nutflow Q (cfs) N/A N/A N/A 0.6 0.6 0.6 0.9 1.2 1.4 2.0 Ratio Peak Outflow Q (cfs) N/A N/A N/A N/A 0.8 0.6 0.1 0.1 0.0 0.0 Structure Controlling Flow Plate <											
Predevelopment Unit Peak Flow, q (cfs/acre) = N/A N/A 0.01 0.02 0.02 0.22 0.44 0.72 1.63 Peak Inflow Q (cfs) = N/A N/A N/A 23.1 31.5 37.9 53.8 68.2 86.8 144.6 Peak Outflow Q (cfs) = 0.4 0.6 0.5 0.6 0.6 0.9 1.2 1.4 2.0 Ratio Peak Outflow to Predevelopment Q = N/A N/A N/A N/A 0.8 0.6 0.1 0.1 0.0 0.0 Max Velocity through Grate 1 (fps) = M/A N/A N/A <t< td=""><td></td><td>N/A</td><td>N/A</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		N/A	N/A								
Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow Q (cfs) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Max Velocity through Grate 2 (fps) = Max Method Volume (hours) = Maximum Ponding Depth (tr) = Max Maximum Ponding Depth (tr) = Maximum Ponding Depth (tr				0.01	0.02	0.02	0.22	0.44	0.72	1.63	
Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = N/A N/A N/A N/A 0.6 0.1 0.1 0.0 0.0 Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = N/A	Peak Inflow Q (cfs) =	N/A	N/A		31.5		53.8	68.2		144.6	
Structure Controlling Flow = Plate N/A N/A <td></td>											
Max Velocity through Grate 2 (fps) = N/A	Structure Controlling Flow =	Plate	Plate	Plate	Plate	Plate	Plate	Plate	Plate	Plate	
Time to Drain 97% of Inflow Volume (hours) = 43 70 62 71 77 87 93 99 114 Time to Drain 99% of Inflow Volume (hours) = 45 74 65 75 82 94 100 108 >120 Maximum Ponding Depth (ft) = 2.91 4.38 3.85 4.31 4.63 5.14 5.56 6.06 7.54 Area at Maximum Ponding Depth (acres) = 0.59 1.20 0.98 1.17 1.30 1.50 1.68 1.88 2.26											
Maximum Ponding Depth (ft) = 2.91 4.38 3.85 4.31 4.63 5.14 5.56 6.06 7.54 Area at Maximum Ponding Depth (acres) = 0.59 1.20 0.98 1.17 1.30 1.50 1.68 1.88 2.26	Time to Drain 97% of Inflow Volume (hours) =	43	70	62	71	77	87	93	99	114	
Area at Maximum Ponding Depth (acres) = 0.59 1.20 0.98 1.17 1.30 1.50 1.68 1.88 2.26											
Maximum Volume Stored (acre-ft) = 0.662 1.978 1.400 1.895 2.291 2.992 3.676 4.565 7.652											
	Maximum Volume Stored (acre-ft) =	0.662	1.978	1.400	1.895	2.291	2.992	3.676	4.565	7.652	

DETENTION BASIN OUTLET STRUCTURE DESIGN


Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

	The user can o	verride the calcu	ulated inflow hy	drographs from	this workbook	with inflow hydr	ographs develop	oed in a separate	program.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	0.03	1.50
	0:15:00	0.00	0.00	2.63	4.28	5.34	3.60	4.52	4.43	7.48
	0:20:00	0.00	0.00	9.41	12.34	14.59	9.25	10.81	11.61	17.13
	0:25:00	0.00	0.00	19.09	26.79	33.24	19.04	22.31	24.50	39.16
	0:30:00	0.00	0.00	23.07	31.46	37.88	45.01	57.73	68.23	117.81
	0:35:00	0.00	0.00	21.11	28.10	33.40	53.82	68.23	86.78	144.59
	0:40:00	0.00	0.00	18.55	24.12	28.48	50.28	63.68	81.27	134.88
	0:45:00	0.00	0.00	15.76	20.74	24.58	42.86	53.94	70.85	118.91
	0:55:00	0.00	0.00	13.39 11.52	17.95 15.31	20.95 17.92	37.41 31.19	46.71 38.53	60.78 50.94	103.43 86.65
	1:00:00	0.00	0.00	10.30	13.61	16.10	25.87	31.65	42.81	73.33
	1:05:00	0.00	0.00	9.42	12.37	14.72	22.40	27.30	37.66	65.36
	1:10:00	0.00	0.00	8.15	11.20	13.38	19.20	23.19	31.16	53.40
	1:15:00	0.00	0.00	6.94	9.75	12.01	16.32	19.52	25.29	42.64
	1:20:00	0.00	0.00	5.86	8.25	10.32	13.30	15.74	19.54	32.35
	1:25:00	0.00	0.00	5.03	7.07	8.53	10.68	12.43	14.55	23.52
	1:30:00	0.00	0.00	4.54	6.42	7.52	8.27	9.47	10.61	16.86
	1:35:00	0.00	0.00	4.31	6.09	6.95	6.89	7.84	8.38	13.10
	1:40:00	0.00	0.00	4.18	5.50	6.53	6.11	6.91	7.18	10.93
	1:45:00	0.00	0.00	4.10	5.02	6.23	5.62	6.34	6.39	9.45
	1:50:00 1:55:00	0.00	0.00	4.04	4.67	6.02	5.28	5.95	5.87	8.46
	2:00:00	0.00	0.00	3.56 3.13	4.40 4.09	5.74 5.23	5.06 4.90	5.70 5.51	5.49 5.24	7.76
	2:05:00	0.00	0.00	2.38	3.11	3.97	3.74	4.20	3.94	5.44
	2:10:00	0.00	0.00	1.76	2.29	2.89	2.73	3.05	2.87	3.94
	2:15:00	0.00	0.00	1.30	1.68	2.11	1.99	2.23	2.10	2.87
	2:20:00	0.00	0.00	0.94	1.22	1.53	1.45	1.62	1.54	2.10
	2:25:00	0.00	0.00	0.68	0.86	1.10	1.03	1.15	1.09	1.48
	2:30:00	0.00	0.00	0.47	0.60	0.77	0.72	0.81	0.77	1.04
	2:35:00	0.00	0.00	0.32	0.42	0.54	0.51	0.57	0.54	0.73
	2:40:00	0.00	0.00	0.20	0.28	0.35	0.34	0.38	0.36	0.47
	2:45:00	0.00	0.00	0.11	0.17	0.20	0.20	0.22	0.21	0.27
	2:50:00 2:55:00	0.00	0.00	0.05	0.09	0.09	0.10	0.11	0.10	0.13
	3:00:00	0.00	0.00	0.02	0.03	0.03	0.03	0.03	0.03	0.04
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00 4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00 4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00 4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00 5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

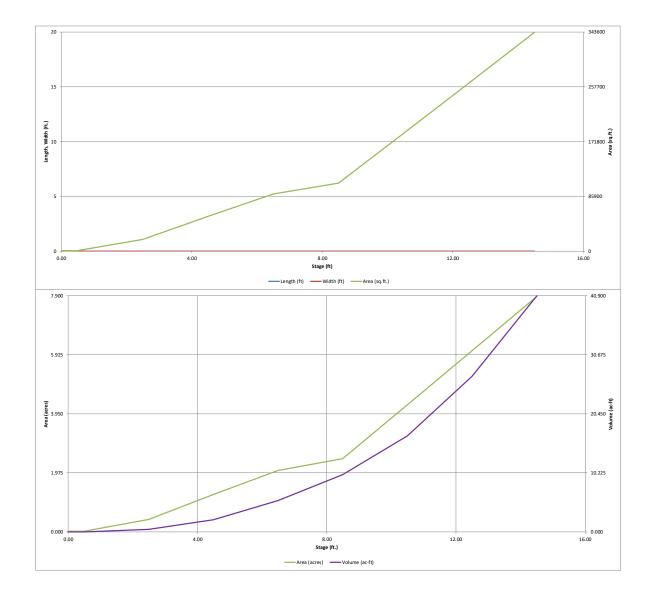
			110	BMP (Version 3				ethod						
User Input			00-	own (version :		201 2010]								
Calculated cells				Designer:	dlg									
				Company:		c Consultii	ng							
***Design Storm: 1-Hour Rain Depth WQCV Event	0.53	inches		Date:	Augus	st 17, 2020								
***Minor Storm: 1-Hour Rain Depth 5-Year Event	1.50	inches		Project:	Fours	quare at S	terling Ran	ich East Fili	ng No. 1 8	Sterling R	anch East	Filing No. 2	2	
***Major Storm: 1-Hour Rain Depth 100-Year Event	2.52	inches		Location:	Pond	16 ULTIM	ATE							
Optional User Defined Storm CUHP		1												
(CUHP) NOAA 1 Hour Rainfall Depth and Frequency for User Defined Storm 100-Year Event	2.52													
ax Intensity for Optional User Defined Storm 2.51496														
INFORMATION (USER-INPUT)														
Sub-basin Identifier	FIL 1A	FSQ	FUTURE											
Receiving Pervious Area Soil Type	Sand	Sand	Sand	I T				7						
•	7./	25.515	470											<u> </u>
Total Area (ac., Sum of DCIA, UIA, RPA, & SPA)	7.470 2.480	35.040 8.140	178.390 25.950											
Directly Connected Impervious Area (DCIA, acres) Unconnected Impervious Area (UIA, acres)	2.480	8.140 5.700	25.950 72.810	\vdash										
Receiving Pervious Area (RPA, acres)	2.230	6.730	58.630											
Separate Pervious Area (SPA, acres)	0.000	14.470	21.000											
RPA Treatment Type: Conveyance (C),	c	с	с											
Volume (V), or Permeable Pavement (PP)	Ľ	Ľ	Ľ											
CULATED RESULTS (OUTPUT)														
Total Calculated Area (ac, check against input)	7.470	35.040	178.390											
Directly Connected Impervious Area (DCIA, %)	33.2%	23.2%	14.5%											
Unconnected Impervious Area (UIA, %)	36.9%	16.3%	40.8%											
Receiving Pervious Area (RPA, %)	29.9%	19.2%	32.9%											
Separate Pervious Area (SPA, %) A _R (RPA / UIA)	0.0%	41.3% 1.181	11.8% 0.805											
I _a Check	0.550	0.460	0.550											
f / I for WQCV Event:	11.0	11.0	11.0											
f / I for 5-Year Event:	0.6	0.6	0.6											
f / I for 100-Year Event:	0.6	0.6	0.6											
f / I for Optional User Defined Storm CUHP:	0.57	0.57	0.57											
IRF for WQCV Event:	0.63	0.58	0.63											
IRF for 5-Year Event:	0.87	0.85	0.87											
IRF for 100-Year Event:	0.88	0.86	0.88											
IRF for Optional User Defined Storm CUHP: Total Site Imperviousness: Jury	0.88	0.86	0.88											
Effective Imperviousness for WQCV Event:	56.6%	39.5%	40.4%											
Effective Imperviousness for 5-Year Event:	65.3%	37.1%	50.0%											
Effective Imperviousness for 100-Year Event:	65.7%	37.3%	50.5%											
Effective Imperviousness for Optional User Defined Storm CUHP:	65.7%	37.3%	50.5%											
/ EFFECTIVE IMPERVIOUSNESS CREDITS														
WQCV Event CREDIT: Reduce Detention By: This line only for 10-Year Event	18.3% N/A	10.5% N/A	18.3% N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
100-Year Event CREDIT**: Reduce Detention By:	6.0%	5.7%	N/A 8.6%	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A
User Defined CUHP CREDIT: Reduce Detention By:	8.0%	4.4%	8.6%											
	Total Site Imp	oerviousness:	53.3%	M	lotes:									
Total Site Effective Imperv			39.8%			-Ampt avera	ge infiltratio	n rate values	from Table 3	1-3.				
Total Site Effective Imper-		-	48.4%		Flood con	trol detentio	n volume cre	edits based or	n empirical e	quations fro	m Storage Ch	hapter of USI	DCM.	
Total Site Effective Impervio			48.9%		** Method	assumes th	at 1-hour rai	nfall depth is	equivalent t	o 1-hour inte	nsity for cale	ulation nurr	hosod	

	Design Procedure Form	: Extended Detention Basin (EDB)	
		P (Version 3.06, November 2016)	Sheet 1 of 4
Designer: Company:	DLG CLASSIC CONSULTING		
Date:	December 7, 2022		
Project:	STERLING RANCH EAST FILING NO. 2 & FOURSQUARE AT ST	FERLING RANCH EAST FILING NO. 1	
Location:	POND 16 ULTIMATE		
1. Basin Storage	Volume		
A) Effective Imp	perviousness of Tributary Area, I _a	I _a =%	
B) Tributary Are	ea's Imperviousness Ratio (i = $I_a/100$)	i =0.489	
C) Contributing	g Watershed Area	Area = <u>220.900</u> ac	
	heds Outside of the Denver Region, Depth of Average ducing Storm	d ₆ = in	
	-	Choose One	
E) Design Con (Select EUF	κν when also designing for flood control)	O Water Quality Capture Volume (WQCV)	
		Excess Urban Runoff Volume (EURV)	
	ıme (WQCV) Based on 40-hour Drain Time (1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = <u>3.742</u> ac-ft	
Water Qua	heds Outside of the Denver Region, lity Capture Volume (WQCV) Design Volume _{ER} = (d _e [*] (V _{DESIGN} /0.43))	V _{DESIGN OTHER} = <u>3.655</u> ac-ft	
	of Water Quality Capture Volume (WQCV) Design Volume fferent WQCV Design Volume is desired)	V _{DESIGN USER} =ac-ft	
I) Predominant	t Watershed NRCS Soil Group	Choose One A B C / D	
For HSG A For HSG E	an Runoff Volume (EURV) Design Volume $\lambda: EURV_A = 1.68 * i^{1.28}$ $B: EURV_B = 1.36 * i^{1.08}$ $D: EURV_{CD} = 1.20 * i^{1.08}$	EURV = <u>12.378</u> ac-f t	
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W = <u>2.0</u> : 1	
3. Basin Side Slop	pes		
	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = ft / ft	
4. Inlet			
	eans of providing energy dissipation at concentrated		
inflow locat	UIIS.		

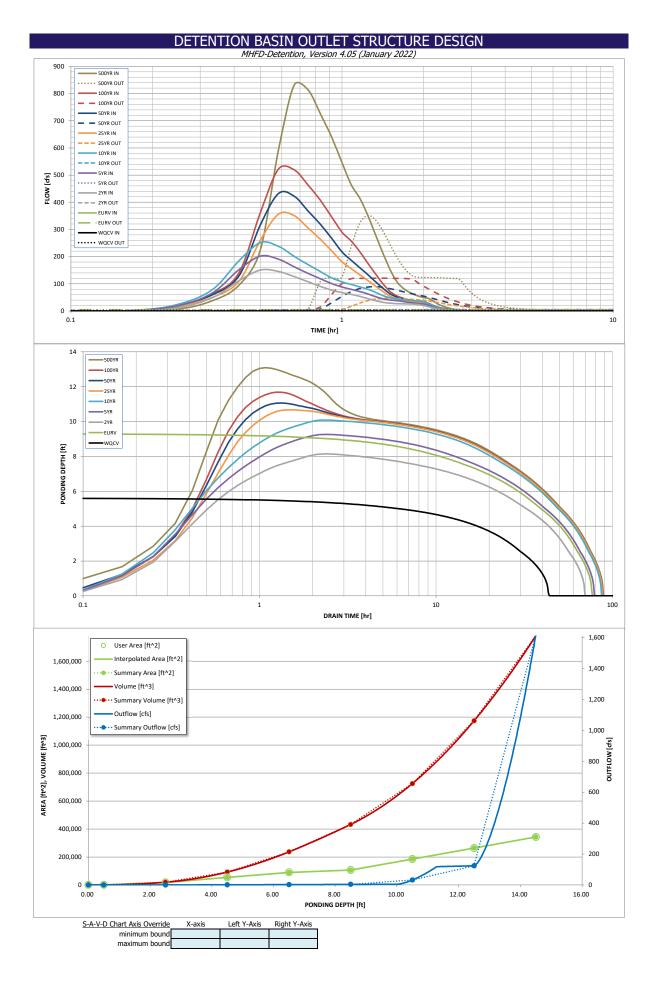
	Design Procedure Form	: Extended Detention Basin (EDB)	
Designer: Company: Date: Project: Location:	DLG CLASSIC CONSULTING December 7, 2022 STERLING RANCH EAST FILING NO. 2 & FOURSQUARE AT S POND 16 ULTIMATE	Sheet	3 of 4
8. Initial Surcha	rge Volume		
	Initial Surcharge Volume recommended depth is 4 inches)	D _{IS} = in	
	nitial Surcharge Volume volume of 0.3% of the WQCV)	$V_{IS} = $ 477.6 cu ft	
C) Initial Suro	sharge Provided Above Micropool	V _s = <u>500.0</u> cu ft	
9. Trash Rack			
A) Water Qu	ality Screen Open Area: A _t = A _{ot} * 38.5*(e ^{-0.095D})	A _t = <u>804</u> square inches	
in the USDCI	creen (If specifying an alternative to the materials recommended M, indicate "other" and enter the ratio of the total open are to the are for the material specified.)	Aluminum Amico-Klemp SR Series with Cross Rods 4" O.C.	
	Other (Y/N): N		
C) Ratio of T	otal Open Area to Total Area (only for type 'Other')	User Ratio =	
D) Total Wat	er Quality Screen Area (based on screen type)	A _{total} = <u>1044</u> sq. in.	
	Design Volume (EURV or WQCV) design concept chosen under 1E)	H= <u>10</u> feet	
F) Height of \	Nater Quality Screen (H _{TR})	H _{TR} = 148 inches	
	Vater Quality Screen Opening (W _{opening}) of 12 inches is recommended)	W _{opening} = <u>12.0</u> inches	

	Design Procedure Form	n: Extended Detention Basin (EDB)
Desimon	DLG	Sheet 4 of 4
Designer:	CLASSIC CONSULTING	
Company: Date:	December 7, 2022	
	STERLING RANCH EAST FILING NO. 2 & FOURSQUARE AT S	
Project: Location:	POND 16 ULTIMATE	TERLING RANCH EAST FILING NO. 1
Location:		
10. Overflow Emb	pankment	
A) Describe e	embankment protection for 100-year and greater overtopping:	
	overflow Embankment al distance per unit vertical, 4:1 or flatter preferred)	
11. Vegetation		Choose One Irrigated Not Irrigated
12. Access		
A) Describe S	Sediment Removal Procedures	
Notes:		

DETENTION BASIN STAGE-STORAGE TABLE BUILDER


MHFD-Detention, Version 4.05 (January 2022)

Project: STERLING RANCH EAST FILING NO. 2 & FOURSQUARE AT STERLING RANCH EAST FILING NO. 1
Basin ID: POND FSD-16


-ZONE 3	POND FSD-	16	LTIN											
ZONE	2 ZONE 1				-									
		1		<u> </u>										
		100-YE	AR E		Depth Increment =		ft							
PERMANENT ZONE POOL Example Zon		tion (Potor	- tion Bond)		Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
	econngura	uon (Reter	nuon Fond)		Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft 3)	(ac-ft)
Watershed Information		1			Top of Micropool		0.00	-			1,027	0.024		
Selected BMP Type = Watershed Area =	EDB	-			7092		0.50				1,027	0.024	514	0.012
Watershed Area = Watershed Length =	220.90 4,000	acres ft			7094 7096		2.50 4.50	-			18,288 54,450	0.420	19,828 92,566	0.455 2.125
Watershed Length to Centroid =	2,000	ft			7098		6.50				89,516	2.055	236,532	5.430
Watershed Slope =	0.040	ft/ft			7100		8.50	-			106,783	2.451	432,831	9.936
Watershed Imperviousness =	48.90%	percent			7102		10.50	-		-	185,108	4.249	724,722	16.637
Percentage Hydrologic Soil Group A =	75.0%	percent			7104 7106		12.50 14.50				263,928	6.059	1,173,758	26.946
Percentage Hydrologic Soil Group B = Percentage Hydrologic Soil Groups C/D =	25.0%	percent percent			7106		14.50	-			343,298	7.881	1,780,984	40.886
Target WQCV Drain Time =	40.0	hours						-						
Location for 1-hr Rainfall Depths =	User Input							-	-	-				
After providing required inputs above in								-		-				
depths, click 'Run CUHP' to generate run the embedded Colorado Urban Hydro	orr nydrograpr ograph Procedu	is using ire.	Optional Use	r Overrides	-					-				
Water Quality Capture Volume (WQCV) =	3.742	acre-feet	Optional Osc	acre-feet				-	-	-				
Excess Urban Runoff Volume (EURV) =	12.165	acre-feet		acre-feet				-						
2-yr Runoff Volume (P1 = 1.19 in.) =	9.612	acre-feet	1.19	inches				-						
5-yr Runoff Volume (P1 = 1.5 in.) = 10-yr Runoff Volume (P1 = 1.75 in.) =		acre-feet acre-feet	1.50	inches inches						-				
10-yr Runoff Volume (P1 = 1.75 in.) = 25-yr Runoff Volume (P1 = 2 in.) =	15.734 20.864	acre-feet	2.00	inches				-		-				
50-yr Runoff Volume (P1 = 2.25 in.) =	24.964	acre-feet	2.00	inches				-	-	-				
100-yr Runoff Volume (P1 = 2.52 in.) =	30.507	acre-feet	2.52	inches				-		-				
500-yr Runoff Volume (P1 = 3.48 in.) =	48.117	acre-feet	3.48	inches						-				
Approximate 2-yr Detention Volume =	8.133 10.834	acre-feet acre-feet						-						
Approximate 5-yr Detention Volume = Approximate 10-yr Detention Volume =	10.834	acre-feet acre-feet						-		-				
Approximate 25-yr Detention Volume =	16.099	acre-feet												
Approximate 50-yr Detention Volume =	17.679	acre-feet								-				
Approximate 100-yr Detention Volume =	19.927	acre-feet						-		-]	
Define Zones and Basin Geometry								-						
Zone 1 Volume (WQCV) =	3.742	acre-feet						-						
Zone 2 Volume (EURV - Zone 1) =	8.423	acre-feet						-		-				
Zone 3 Volume (100-year - Zones 1 & 2) =	7.762	acre-feet												
Total Detention Basin Volume =	19.927	acre-feet			-									
Initial Surcharge Volume (ISV) = Initial Surcharge Depth (ISD) =	user	ft ³						-		-				
Total Available Detention Depth (H _{total}) =	user	ft						-		-				
Depth of Trickle Channel (H _{TC}) =	user	ft												
Slope of Trickle Channel (S _{TC}) =	user	ft/ft						-	-	-				
Slopes of Main Basin Sides (S _{main}) =	user	H:V						-						
Basin Length-to-Width Ratio $(R_{L/W}) =$	user	1						-						
Initial Surcharge Area (A _{ISV}) =	user	ft ²						-	-	-				
Surcharge Volume Length $(L_{ISV}) =$		ft						-						
Surcharge Volume Width (W_{ISV}) =		ft						-	-					
Depth of Basin Floor (H _{FLOOR}) =		ft			-					-				
Length of Basin Floor $(L_{FLOOR}) =$ Width of Basin Floor $(W_{FLOOR}) =$		ft ft						-	-	-				
Area of Basin Floor (A _{FLOOR}) =		ft ²						-						
Volume of Basin Floor (V _{FLOOR}) =		ft ³						-						
Depth of Main Basin (H _{MAIN}) =	user	ft						-						
Length of Main Basin (L _{MAIN}) = Width of Main Basin (W _{MAIN}) =	user	ft ft						-						
Area of Main Basin (A _{MAIN}) =		ft ²						-		-				
Volume of Main Basin (V _{MAIN}) =	user	ft ³												
Calculated Total Basin Volume (V _{total}) =		acre-feet				-		-	-	-				
								-						
										1 1				
										-				
								-		-				
								-						
									-					
								-		-				
								-						
										-				
								-		-				
									1 1	1 1				
								-		-				
								-		-				
										-			<u> </u>	
								-		-				
										-				
										-				
								-						
								-		-				
								1 1	1 1	1 1]	
									-	-				
								-		-				
								-	-	-				
					•	-	-	-	-	-		-		

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.05 (January 2022)

	DE	TENTION				CLON			
	DE		BASIN OU FD-Detention, Ver		CTURE DE	SIGN			
Project:	STERLING RANCH		2 & FOURSQUARE			10.1			
	POND FSD-16								
ZONE 2 ZONE 2 ZONE 1	\frown			Estimated	Estimated				
				Stage (ft)	Volume (ac-ft)	Outlet Type	1		
VOLOMET EDHAT MOCA			Zone 1 (WQCV)	5.60	3.742	Orifice Plate			
ZONE 1 AND 2	-100-YEAR ORIFICE		Zone 2 (EURV)		8.423	Orifice Plate			
PERMANENT ORIFICES POOL Example Zone	Configuration (R	etention Pond)	Zone 3 (100-year)		7.762	Weir&Pipe (Restrict)			
•	•			Total (all zones)	19.927		Coloridate d Devenue		
User Input: Orifice at Underdrain Outlet (typical Underdrain Orifice Invert Depth =	N/A	-	the filtration media	surface)	Under	drain Orifice Area =	N/A	ters for Underdrair ft ²	<u>l</u>
Underdrain Orifice Diameter =		inches	the middlon medic	surface)		• Orifice Centroid =	N/A	feet	
		1]	
User Input: Orifice Plate with one or more orifi	ces or Elliptical Slot	Weir (typically use	ed to drain WQCV a	nd/or EURV in a se	dimentation BMP)		Calculated Parame		
Centroid of Lowest Orifice =	0.00		n bottom at Stage =	,	-	ice Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate =	10.00		n bottom at Stage =	= 0 ft)		iptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing = Orifice Plate: Orifice Area per Row =	30.00 N/A	inches sq. inches				ical Slot Centroid = Iliptical Slot Area =	N/A N/A	feet ft ²	
Office Plate. Office Alea per Row -	N/A	sq. inches			L		N/A	Inc	
User Input: Stage and Total Area of Each Orific	ce Row (numbered	from lowest to hig	hest)						
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)		2.50	5.00	7.50					
Orifice Area (sq. inches)	10.00	14.00	18.00	18.00					
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Orifice Area (sq. inches)									
									·
User Input: Vertical Orifice (Circular or Rectang	gular)		-				Calculated Parame	eters for Vertical Or	fice
	Not Selected	Not Selected					Not Selected	Not Selected	_
Invert of Vertical Orifice =	N/A	N/A		n bottom at Stage =		tical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A		n bottom at Stage =	= 0 ft) Vertica	I Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches						
User Input: Overflow Weir (Dropbox with Flat of	or Sloped Grate and	1 Outlet Pipe OR Re	ectangular/Tranezoi	idal Weir and No O	utlet Pine)		Calculated Parame	eters for Overflow V	Veir
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	10.00	N/A	ft (relative to basin l	bottom at Stage = 0	ft) Height of Grat	e Upper Edge, H _t =	10.00	N/A	feet
Overflow Weir Front Edge Length =	20.00	N/A	feet		Overflow W	/eir Slope Length =	4.00	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V	Gra	ate Open Area / 10	00-yr Orifice Area =	8.01	N/A	
Horiz. Length of Weir Sides =	4.00	N/A	feet			Area w/o Debris =	55.68	N/A	ft ²
Overflow Grate Type =	Type C Grate	N/A	0/	0	verflow Grate Ope	n Area w/ Debris =	27.84	N/A	ft ²
Debris Clogging % =	50%	N/A	%						
User Input: Outlet Pipe w/ Flow Restriction Plate	e (Circular Orifice.	Restrictor Plate, or	Rectangular Orifice	2)	Ca	Iculated Parameter	s for Outlet Pipe w	Flow Restriction P	ate
<u></u>	Zone 3 Restrictor	Not Selected	1	*			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	2.50	N/A	ft (distance below b	asin bottom at Stage	= 0 ft) O	utlet Orifice Area =	6.95	N/A	ft ²
Outlet Pipe Diameter =	48.00	N/A	inches		Outle	t Orifice Centroid =	1.24	N/A	feet
Restrictor Plate Height Above Pipe Invert =	26.00		inches	Half-Cent	ral Angle of Restric	tor Plate on Pipe =	1.65	N/A	radians
							<u></u>		
User Input: Emergency Spillway (Rectangular of Spillway Invert Stage	<u> </u>	ft (rolation to be .	n hottom at Ct	- 0 #)	Caller -	ocian Elaw Daati	Calculated Parame		
Spillway Invert Stage= Spillway Crest Length =	12.50 165.00	ft (relative to basi feet	n bottom at Stage =	= υ π)	-17	esign Flow Depth= Fop of Freeboard =	0.99 14.49	feet feet	
Spillway Crest Length = Spillway End Slopes =	6.00	H:V			-	Fop of Freeboard =	7.87	acres	
Freeboard above Max Water Surface =		feet				Fop of Freeboard =	40.81	acre-ft	
	1.00				busin volume at		10.01		
Routed Hydrograph Results			IHP hydrographs an						
Design Storm Return Period = One-Hour Rainfall Depth (in) =	WQCV N/A	EURV N/A	2 Year 1.19	5 Year 1.50	10 Year 1.75	25 Year 2.00	50 Year 2.25	100 Year 2.52	500 Year 3.48
CUHP Runoff Volume (acre-ft) =	3.742	12.165	9.612	12.723	15.734	20.864	24.964	30.507	48.117
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	9.612	12.723	15.734	20.864	24.964	30.507	48.117
CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A N/A	N/A N/A	2.7	4.5	23.4	95.7	140.7	204.0	401.9
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A N/A	N/A N/A	0.01	0.02	0.11	0.43	0.64	0.92	1.82
Peak Inflow Q (cfs) =	N/A	N/A	150.6	202.0	251.4	356.3	431.8	522.1	831.8
Peak Outflow Q (cfs) =	2.1 N/A	4.3 N/A	3.6 N/A	4.3 0.9	6.4 0.3	47.1 0.5	89.5 0.6	120.4 0.6	351.0 0.9
Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =	N/A Plate	N/A Plate	N/A Plate	0.9 Plate	0.3 Overflow Weir 1	0.5 Overflow Weir 1	0.6 Overflow Weir 1	0.6 Outlet Plate 1	0.9 Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.0	0.8	1.5	2.1	2.2
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	39 42	66 72	61 66	68 74	73 81	72 81	70 80	69 79	64 75
Maximum Ponding Depth (ft) =	5.60	9.30	8.14	9.26	10.08	10.67	11.06	11.68	13.08
Area at Maximum Ponding Depth (acres) =	1.69	3.17	2.38	3.13	3.86	4.39	4.75	5.32	6.59
Maximum Volume Stored (acre-ft) =	3.744	12.185	9.043	12.028	14.893	17.329	19.111	22.282	30.613

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

	The user can o		ulated inflow hy	drographs from	this workbook v	with inflow hydr	ographs develop	ed in a separate	program.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	1.41	0.14	6.99
	0:15:00	0.00	0.00	12.21	20.07	24.98	16.83	21.70	20.67	37.86
	0:20:00	0.00	0.00	49.11	66.72	79.33	50.64	59.60	63.19	94.42
	0:25:00	0.00	0.00	111.20	151.82	184.04	108.46	128.80	139.80	224.58
	0:30:00	0.00	0.00	150.58	201.95	251.41	259.91	316.40	362.03	592.28
	0:35:00 0:40:00	0.00	0.00	145.26 126.21	190.30 162.37	237.77 200.87	356.29 350.63	431.75 422.14	522.15 519.41	831.79 813.28
	0:45:00	0.00	0.00	120.21	138.30	170.70	305.16	367.71	463.17	724.72
	0:50:00	0.00	0.00	90.18	118.39	144.43	262.80	318.16	406.47	639.02
	0:55:00	0.00	0.00	76.60	100.58	121.54	220.91	267.11	345.70	546.49
	1:00:00	0.00	0.00	67.44	88.14	107.09	180.79	217.40	290.26	463.21
	1:05:00	0.00	0.00	61.04	79.31	97.31	155.18	186.12	256.61	413.13
	1:10:00	0.00	0.00	53.26	71.33	88.27	132.49	158.30	216.52	348.07
	1:15:00 1:20:00	0.00	0.00	44.89	62.10	79.24 68.40	111.15 90.25	132.30	173.45	277.16
	1:25:00	0.00	0.00	37.56 31.86	52.35 44.41	56.53	90.25 71.39	106.66 83.51	134.49 100.06	212.48 155.43
	1:30:00	0.00	0.00	28.64	40.34	48.93	55.02	63.82	72.90	112.14
	1:35:00	0.00	0.00	27.11	38.32	44.73	45.13	52.04	56.99	86.82
	1:40:00	0.00	0.00	26.29	35.19	41.78	39.43	45.14	48.00	71.90
	1:45:00	0.00	0.00	25.79	31.89	39.63	35.92	40.84	41.87	61.48
	1:50:00	0.00	0.00	25.41	29.52	38.17	33.49	37.92	37.83	54.46
	1:55:00 2:00:00	0.00	0.00	23.08 20.13	27.78 25.91	36.48 33.55	31.93 30.83	36.06 34.76	35.00 33.03	49.47 46.07
	2:05:00	0.00	0.00	15.98	20.83	26.66	25.16	28.31	26.61	36.85
	2:10:00	0.00	0.00	11.72	15.13	19.21	18.14	20.36	19.15	26.37
	2:15:00	0.00	0.00	8.55	10.99	13.86	13.11	14.68	13.86	19.02
	2:20:00	0.00	0.00	6.18	7.93	10.00	9.50	10.63	10.10	13.83
	2:25:00	0.00	0.00	4.42	5.54	7.09	6.70	7.49	7.15	9.76
	2:30:00	0.00	0.00	3.05	3.78	4.93	4.66	5.19	4.95	6.75
	2:35:00 2:40:00	0.00	0.00	2.07	2.60	3.42 2.21	3.29	3.67	3.50 2.30	4.74
	2:45:00	0.00	0.00	1.30 0.72	1.72 1.02	1.26	2.18	2.42	1.35	3.09 1.79
	2:50:00	0.00	0.00	0.32	0.50	0.58	0.63	0.69	0.65	0.84
	2:55:00	0.00	0.00	0.11	0.16	0.17	0.20	0.22	0.20	0.25
	3:00:00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00 3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00 3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00 4:40:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00 5:00:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00 5:20:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00 6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
l	0.00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

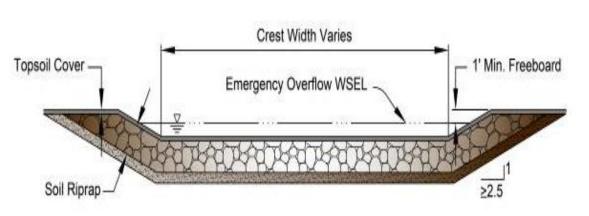
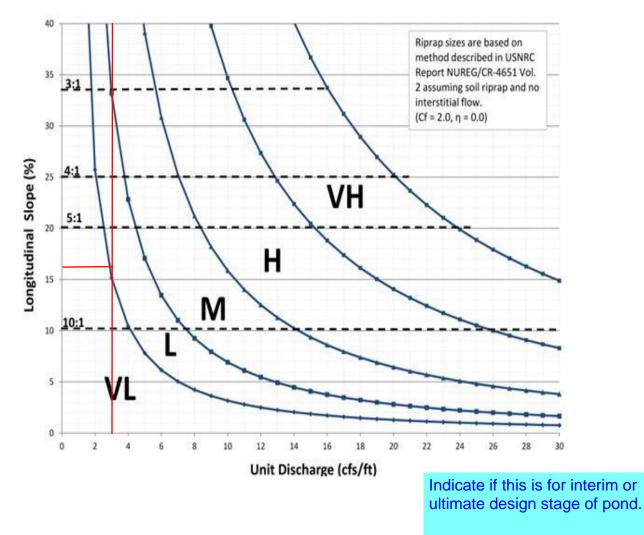
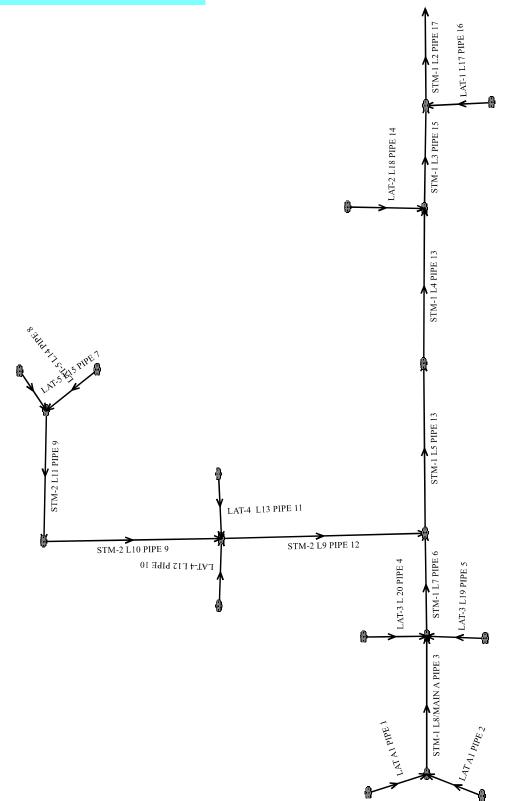



Figure 13-12c. Emergency Spillway Protection


Figure 13-12d. Riprap Types for Emergency Spillway Protection

HYDRAULIC GRADE LINE (HGL) CALCULATIONS

System will be reviewed with next submittal when flows have been updated due to revised C-values.

System Input Summary 100 year

Backwater Calculations:

Tailwater Elevation (ft): 7097.55

Manhole Input Summary:

		Given Flow	/	Sub Basin	Information					
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution (cfs)	Drainage Area (Ac.)	Runoff Coefficient	5yr Coefficient	Overland Length (ft)	Overland Slope (%)	Gutter Length (ft)	Gutter Velocity (fps)
OUTFALL 1	7102.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
STM-1 L1 PIPE 17	7107.04	92.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
STM-1 L2 PIPE 17	7111.17	92.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
STM-1 L3 PIPE 15	7112.39	77.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LAT-2 L18 PIPE 14	7112.63	13.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
STM-1 L4 PIPE 13	7117.81	65.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
STM-1 L5 PIPE 13	7117.57	65.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
STM-1 L7 PIPE 6	7116.79	44.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LAT-3 L19 PIPE 5	7116.90	6.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

STM-1 L8/MAIN A PIPE 3	7117.53	25.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LAT A1 PIPE 2	7117.80	9.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LAT A1 PIPE 1	7118.07	16.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LAT-3 L 20 PIPE 4	7116.90	14.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
STM-2 L9 PIPE 12	7119.40	22.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
STM-2 L10 PIPE 9	7126.37	6.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
STM-2 L11 PIPE 9	7125.97	6.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LAT-5 L15 PIPE 7	7126.07	5.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LAT-5 L14 PIPE 8	7126.07	1.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LAT-4 L13 PIPE 11	7119.57	2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LAT-4 L12 PIPE 10	7119.57	14.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LAT-1 L17 PIPE 16	7111.06	15.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Manhole Output Summary:

	Local Cont	ribution				Total D	esign Flow			
Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak Flow (cfs)	Comment
OUTFALL 1	0.00	0.00	0.00	0.00	0.00	7.97	11.63	0.14	92.70	
STM-1 L1 PIPE 17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	92.70	
STM-1 L2 PIPE 17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	92.70	
STM-1 L3 PIPE 15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	77.80	
LAT-2 L18 PIPE 14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	13.30	
STM-1 L4 PIPE 13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.20	
STM-1 L5 PIPE 13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.20	
STM-1 L7 PIPE 6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	44.00	
LAT-3 L19 PIPE 5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.10	
STM-1 L8/MAIN A PIPE 3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	25.50	
LAT A1 PIPE 2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.90	
LAT A1 PIPE 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	16.10	
LAT-3 L 20 PIPE 4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	14.00	

STM-2 L9 PIPE 12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	22.20
STM-2 L10 PIPE 9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.70
STM-2 L11 PIPE 9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.70
LAT-5 L15 PIPE 7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.80
LAT-5 L14 PIPE 8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.30
LAT-4 L13 PIPE 11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.00
LAT-4 L12 PIPE 10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	14.10
LAT-1 L17 PIPE 16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	15.70

Sewer Input Summary:

		Elevation			Loss Coeffic	cients		Given Dime	ensions	
Element Name	Sewer Length (ft)	Downstream Invert (ft)	Slope (%)	Upstream Invert (ft)	Mannings n	Bend Loss	Lateral Loss	Cross Section	Rise (ft or in)	Span (ft or in)
STM-1 L1 PIPE 17	79.03	7094.50	0.8	7095.13	0.013	0.05	1.00	CIRCULAR	42.00 in	42.00 in
STM-1 L2 PIPE 17	119.33	7095.24	0.8	7096.19	0.013	0.10	1.00	CIRCULAR	42.00 in	42.00 in
STM-1 L3 PIPE 15	68.60	7097.20	2.2	7098.71	0.013	0.05	0.25	CIRCULAR	42.00 in	42.00 in
LAT-2 L18 PIPE 14	24.67	7101.69	3.6	7102.58	0.013	1.00	0.00	CIRCULAR	24.00 in	24.00 in

STM-1 L4 PIPE 13	368.17	7099.21	1.0	7102.89	0.013	0.05	0.25	CIRCULAR	36.00 in	36.00 in
STM-1 L5 PIPE 13	278.55	7102.99	1.0	7105.78	0.013	0.10	1.00	CIRCULAR	36.00 in	36.00 in
STM-1 L7 PIPE 6	84.52	7106.24	4.4	7109.96	0.013	0.05	0.25	CIRCULAR	30.00 in	30.00 in
LAT-3 L19 PIPE 5	5.67	7113.06	1.9	7113.17	0.013	1.00	0.00	CIRCULAR	18.00 in	18.00 in
STM-1 L8/MAIN A PIPE 3	500.69	7110.46	0.5	7112.96	0.013	0.05	0.25	CIRCULAR	30.00 in	30.00 in
LAT A1 PIPE 2	5.68	7113.96	0.5	7113.99	0.013	1.01	0.00	CIRCULAR	18.00 in	18.00 in
LAT A1 PIPE 1	26.95	7113.46	0.5	7113.59	0.013	0.48	0.00	CIRCULAR	24.00 in	24.00 in
LAT-3 L 20 PIPE 4	24.67	7112.55	1.0	7112.80	0.013	1.00	0.00	CIRCULAR	24.00 in	24.00 in
STM-2 L9 PIPE 12	249.88	7106.86	3.1	7114.61	0.013	1.00	0.00	CIRCULAR	24.00 in	24.00 in
STM-2 L10 PIPE 9	490.62	7115.44	1.0	7120.35	0.013	0.05	1.00	CIRCULAR	18.00 in	18.00 in
STM-2 L11 PIPE 9	48.37	7120.65	1.0	7121.13	0.013	1.00	1.00	CIRCULAR	18.00 in	18.00 in
LAT-5 L15 PIPE 7	26.43	7121.64	1.0	7121.90	0.013	0.29	0.00	CIRCULAR	18.00 in	18.00 in
LAT-5 L14 PIPE 8	9.55	7121.63	1.0	7121.73	0.013	0.29	0.00	CIRCULAR	18.00 in	18.00 in
LAT-4 L13 PIPE 11	5.67	7115.61	1.1	7115.67	0.013	1.00	0.00	CIRCULAR	18.00 in	18.00 in
LAT-4 L12 PIPE 10	24.67	7115.11	1.0	7115.36	0.013	1.00	0.00	CIRCULAR	24.00 in	24.00 in
LAT-1 L17 PIPE 16	38.87	7100.03	7.8	7103.06	0.013	1.00	0.00	CIRCULAR	24.00 in	24.00 in

Sewer Flow Summary:

	Full Flov	v Capacity	Critical	Flow	Norma	l Flow					
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	Velocity (fps)	Depth (in)	Velocity (fps)	Froude Number	Flow Condition	Flow (cfs)	Surcharged Length (ft)	Comment
STM-1 L1 PIPE 17	90.23	9.38	42.00	9.64	42.00	9.64	0.00	Pressurized	92.70	79.03	
STM-1 L2 PIPE 17	90.23	9.38	42.00	9.64	42.00	9.64	0.00	Pressurized	92.70	119.33	
STM-1 L3 PIPE 15	149.63	15.55	33.10	9.57	21.49	15.70	2.33	Supercritical Jump	77.80	48.64	
LAT-2 L18 PIPE 14	43.04	13.70	15.75	6.09	9.16	12.07	2.83	Supercritical	13.30	0.00	
STM-1 L4 PIPE 13	66.88	9.46	31.06	10.06	28.72	10.78	1.20	Supercritical Jump	65.20	224.20	
STM-1 L5 PIPE 13	66.88	9.46	31.06	10.06	28.72	10.78	1.20	Supercritical	65.20	0.00	
STM-1 L7 PIPE 6	86.27	17.57	26.49	9.59	15.18	17.66	3.12	Supercritical Jump	44.00	31.37	
LAT-3 L19 PIPE 5	14.52	8.22	11.45	5.14	8.14	7.86	1.92	Supercritical	6.10	0.00	
STM-1 L8/MAIN A PIPE 3	29.08	5.92	20.65	7.08	21.78	6.68	0.90	Pressurized	25.50	500.69	
LAT A1 PIPE 2	7.45	4.21	18.00	5.60	18.00	5.60	0.00	Pressurized	9.90	5.68	
LAT A1 PIPE 1	16.04	5.11	24.00	5.12	24.00	5.12	0.00	Pressurized	16.10	26.95	

LAT-3 L 20 PIPE 4	22.68	7.22	16.17	6.22	13.64	7.60	1.39	Supercritical	14.00	0.00
STM-2 L9 PIPE 12	39.94	12.71	20.18	7.87	12.78	13.05	2.49	Supercritical Jump	22.20	50.16
STM-2 L10 PIPE 9	10.53	5.96	12.02	5.34	10.43	6.31	1.31	Supercritical Jump	6.70	109.28
STM-2 L11 PIPE 9	10.53	5.96	12.02	5.34	10.43	6.31	1.31	Supercritical	6.70	0.00
LAT-5 L15 PIPE 7	10.53	5.96	11.15	5.04	9.53	6.10	1.35	Supercritical	5.80	0.00
AT-5 L14 PIPE 8	10.53	5.96	5.12	3.14	4.27	4.05	1.42	Supercritical	1.30	0.00
AT-4 L13 PIPE 11	11.05	6.25	6.40	3.55	5.19	4.74	1.50	Pressurized	2.00	5.67
AT-4 L12 PIPE 10	22.68	7.22	16.23	6.24	13.70	7.61	1.39	Supercritical Jump	14.10	22.98
AT-1 L17 PIPE 16	63.35	20.17	17.14	6.54	8.14	16.72	4.19	Supercritical	15.70	0.00

• A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).

• If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.

• If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Existing		Calculate	ed	Used			
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
STM-1 L1 PIPE 17	92.70	CIRCULAR	42.00 in	42.00 in	48.00 in	48.00 in	42.00 in	42.00 in	9.62	Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise
STM-1 L2 PIPE 17	92.70	CIRCULAR	42.00 in	42.00 in	48.00 in	48.00 in	42.00 in	42.00 in	9.62	Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise
STM-1 L3 PIPE 15	77.80	CIRCULAR	42.00 in	42.00 in	33.00 in	33.00 in	42.00 in	42.00 in	9.62	
LAT-2 L18 PIPE 14	13.30	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	
STM-1 L4 PIPE 13	65.20	CIRCULAR	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	7.07	
STM-1 L5 PIPE 13	65.20	CIRCULAR	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	7.07	
STM-1 L7 PIPE 6	44.00	CIRCULAR	30.00 in	30.00 in	24.00 in	24.00 in	30.00 in	30.00 in	4.91	
LAT-3 L19 PIPE 5	6.10	CIRCULAR	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	1.77	1
STM-1 L8/MAIN A PIPE 3	25.50	CIRCULAR	30.00 in	30.00 in	30.00 in	30.00 in	30.00 in	30.00 in	4.91	1

LAT A1 PIPE 2	9.90	CIRCULAR	18.00 in	18.00 in	21.00 in	21.00 in	18.00 in	18.00 in	1.77	Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise
LAT A1 PIPE 1	16.10	CIRCULAR	24.00 in	24.00 in	27.00 in	27.00 in	24.00 in	24.00 in	3.14	Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise
LAT-3 L 20 PIPE 4	14.00	CIRCULAR	24.00 in	24.00 in	21.00 in	21.00 in	24.00 in	24.00 in	3.14	
STM-2 L9 PIPE 12	22.20	CIRCULAR	24.00 in	24.00 in	21.00 in	21.00 in	24.00 in	24.00 in	3.14	
STM-2 L10 PIPE 9	6.70	CIRCULAR	18.00 in	1.77						
STM-2 L11 PIPE 9	6.70	CIRCULAR	18.00 in	1.77						
LAT-5 L15 PIPE 7	5.80	CIRCULAR	18.00 in	1.77						
LAT-5 L14 PIPE 8	1.30	CIRCULAR	18.00 in	1.77						
LAT-4 L13 PIPE 11	2.00	CIRCULAR	18.00 in	1.77						
LAT-4 L12 PIPE 10	14.10	CIRCULAR	24.00 in	24.00 in	21.00 in	21.00 in	24.00 in	24.00 in	3.14	
LAT-1 L17 PIPE 16	15.70	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	

• Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.

• Sewer sizes should not decrease downstream.

• All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater Elevation (ft): 7097.55

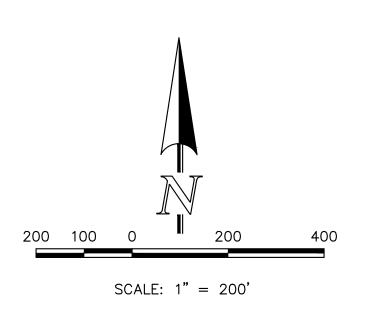
	Invert Elev.		Downstream Manhole Losses		HGL		EGL		
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)
STM-1 L1 PIPE 17	7094.50	7095.13	0.00	0.00	7098.00	7098.67	7099.44	0.67	7100.11
STM-1 L2 PIPE 17	7095.24	7096.19	0.14	0.00	7098.81	7099.82	7100.25	1.01	7101.26
STM-1 L3 PIPE 15	7097.20	7098.71	0.05	1.19	7101.48	7101.48	7102.50	0.39	7102.89
LAT-2 L18 PIPE 14	7101.69	7102.58	0.28	0.00	7102.58	7103.89	7104.10	0.37	7104.47
STM-1 L4 PIPE 13	7099.21	7102.89	0.07	0.69	7102.32	7105.48	7103.64	3.41	7107.05
STM-1 L5 PIPE 13	7102.99	7105.78	0.13	0.00	7105.61	7108.37	7107.19	2.74	7109.94
STM-1 L7 PIPE 6	7106.24	7109.96	0.06	1.01	7109.76	7112.17	7111.01	2.59	7113.60
LAT-3 L19 PIPE 5	7113.06	7113.17	0.19	0.00	7113.87	7114.12	7114.48	0.05	7114.53
STM-1 L8/MAIN A PIPE 3	7110.46	7112.96	0.02	1.14	7114.34	7116.27	7114.76	1.92	7116.68
LAT A1 PIPE 2	7113.96	7113.99	0.49	0.00	7116.76	7116.81	7117.25	0.05	7117.30

LAT A1 PIPE 1	7113.46	7113.59	0.20	0.00	7116.47	7116.61	7116.88	0.14	7117.02
LAT-3 L 20 PIPE 4	7112.55	7112.80	0.31	0.00	7113.69	7114.15	7114.59	0.16	7114.75
STM-2 L9 PIPE 12	7106.86	7114.61	0.78	0.00	7109.94	7116.29	7110.71	6.54	7117.25
STM-2 L10 PIPE 9	7115.44	7120.35	0.01	0.55	7117.59	7121.35	7117.82	3.98	7121.80
STM-2 L11 PIPE 9	7120.65	7121.13	0.22	0.00	7121.57	7122.13	7122.13	0.44	7122.58
LAT-5 L15 PIPE 7	7121.64	7121.90	0.05	0.00	7122.43	7122.83	7123.01	0.22	7123.22
LAT-5 L14 PIPE 8	7121.63	7121.73	0.00	0.00	7122.56	7122.56	7122.58	0.01	7122.58
LAT-4 L13 PIPE 11	7115.61	7115.67	0.02	0.00	7117.25	7117.26	7117.27	0.00	7117.28
LAT-4 L12 PIPE 10	7115.11	7115.36	0.31	0.00	7117.25	7117.34	7117.57	0.09	7117.66
LAT-1 L17 PIPE 16	7100.03	7103.06	0.39	0.00	7100.71	7104.49	7105.05	0.10	7105.15

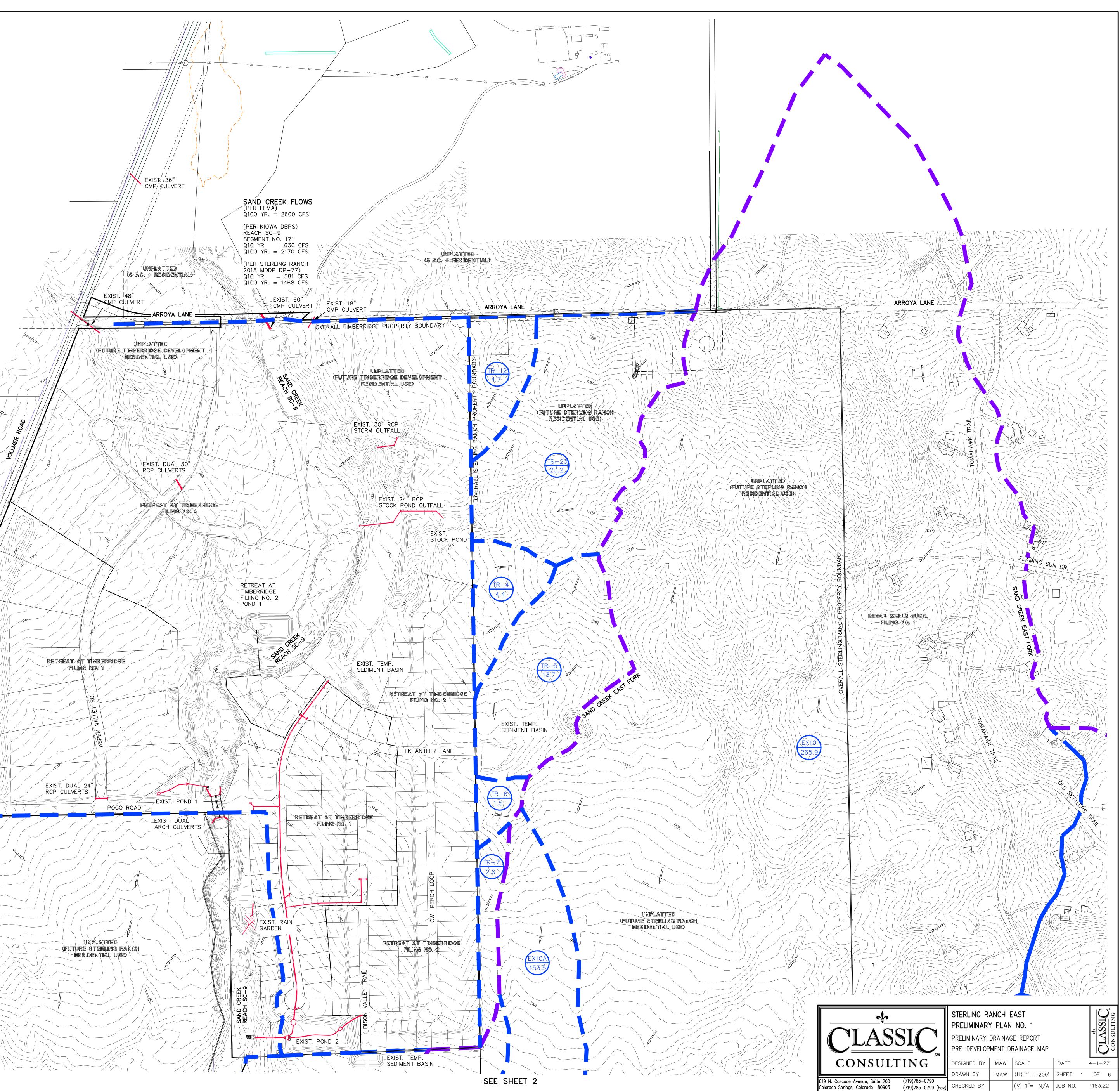
• Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.

- Bend loss = Bend K * V_fi ^ 2/(2*g)
- Lateral loss = V_fo ^ 2/(2*g)- Junction Loss K * V_fi ^ 2/(2*g).
- Friction loss is always Upstream EGL Downstream EGL.

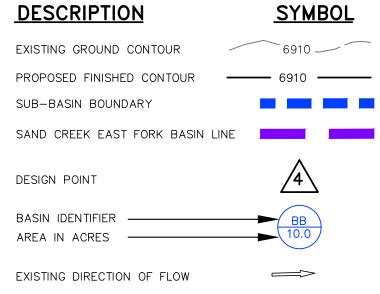
DRAINAGE MAPS


Provide copy of hydrology calculations that go with this drainage map and mark as "Reference Material from Previous Reports"

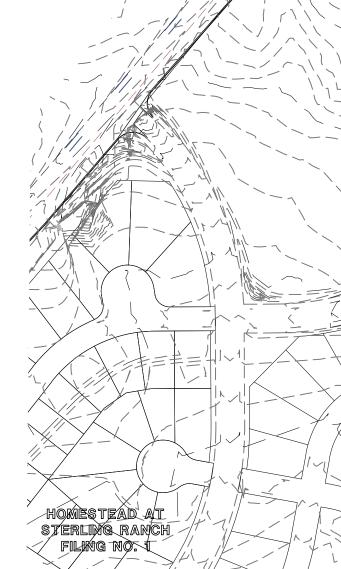
STERLING RANCH EAST PRELIMINARY PLAN NO. 1 Pre-Developed Subcatchment Runoff

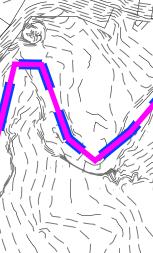

		SWMM	Peak Runoff	Peak Runoff
Subcatchment	Area	Imperv.	5 yr.	100 yr.
	(Ac.)	(%)	(CFS)	(CFS)
EX-10	265.9	7%	105	222
EX10A	153.5	5%	46	103
EX-11	214.3	4%	54	129
EX-13	94.8	6%	36	85
EX-4A	44.2	8%	19	50
EX-5	26.2	8%	12	32
EX-7	152.8	5%	46	105
EX-7A	2.4	2%	1	5
EX-8	32.2	2%	5	23
EX-8A	6.6	2%	2	9
EX-9	139.3	8%	59	122
EX-9A	21.8	5%	7	19
TR-12	4.7	5%	2	9
TR-20	23.2	7%	10	32
TR-4	4.4	5%	2	9
TR-5	13.7	5%	5	17
TR-6	1.5	5%	1	4
TR-7	2.6	5%	1	5

UNPLATTED (5 AC. + RESIDENTIAL)

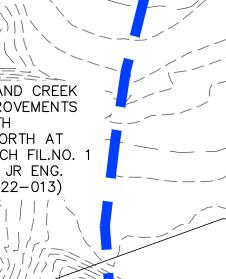

163

<u>LEGEND</u> <u>SYMBOL</u> **DESCRIPTION** 6910 _____ EXISTING GROUND CONTOUR PROPOSED FINISHED CONTOUR ----- 6910 -----SUB-BASIN BOUNDARY SAND CREEK EAST FORK BASIN LINE DESIGN POINT BASIN IDENTIFIER ------AREA IN ACRES ------EXISTING DIRECTION OF FLOW EXISTING STORM SEWER




EXISTING STORM SEWER

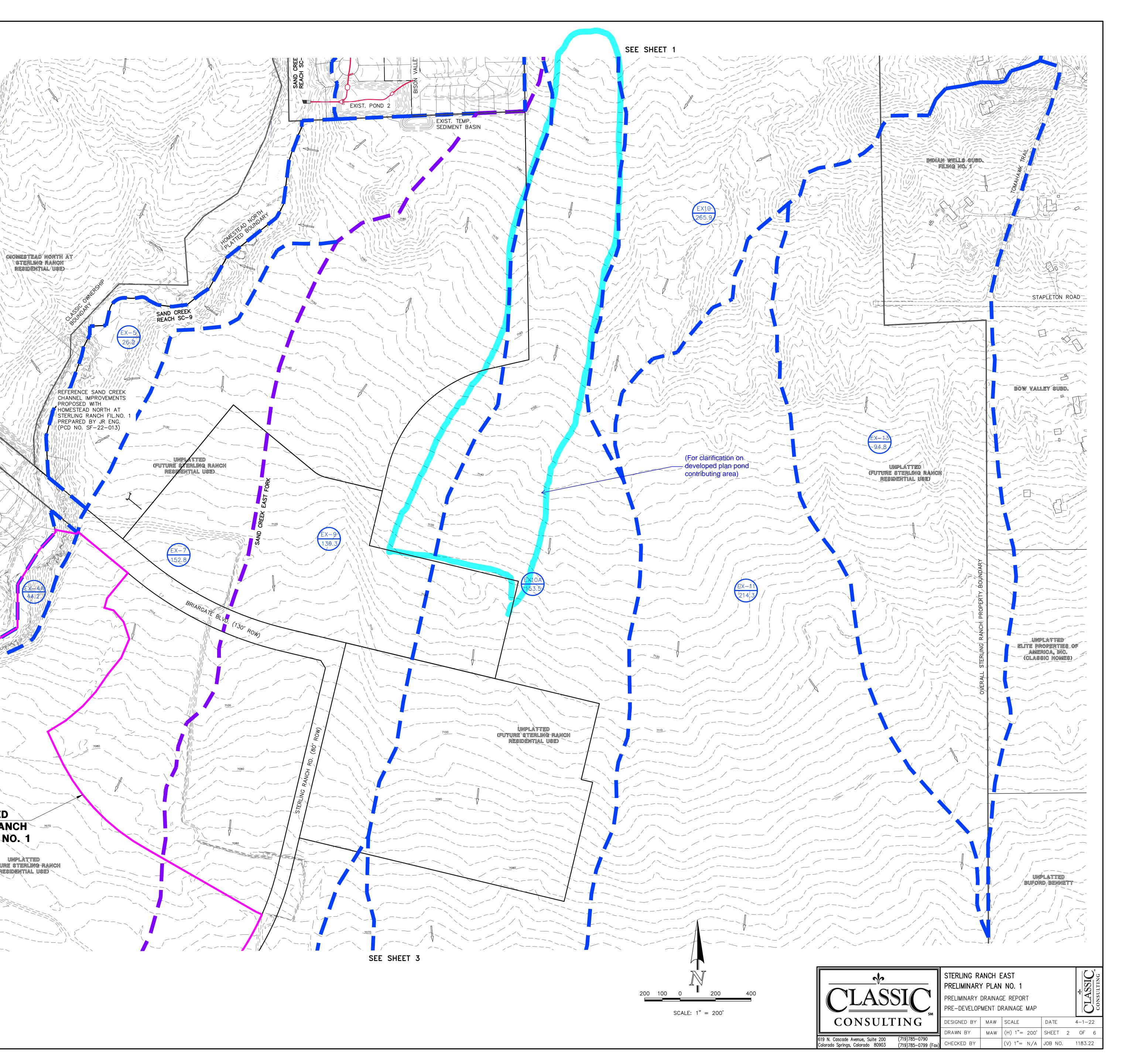
STERLING RANCH EAST PRELIMINARY PLAN NO. 1 Pre-Developed Subcatchment Runoff

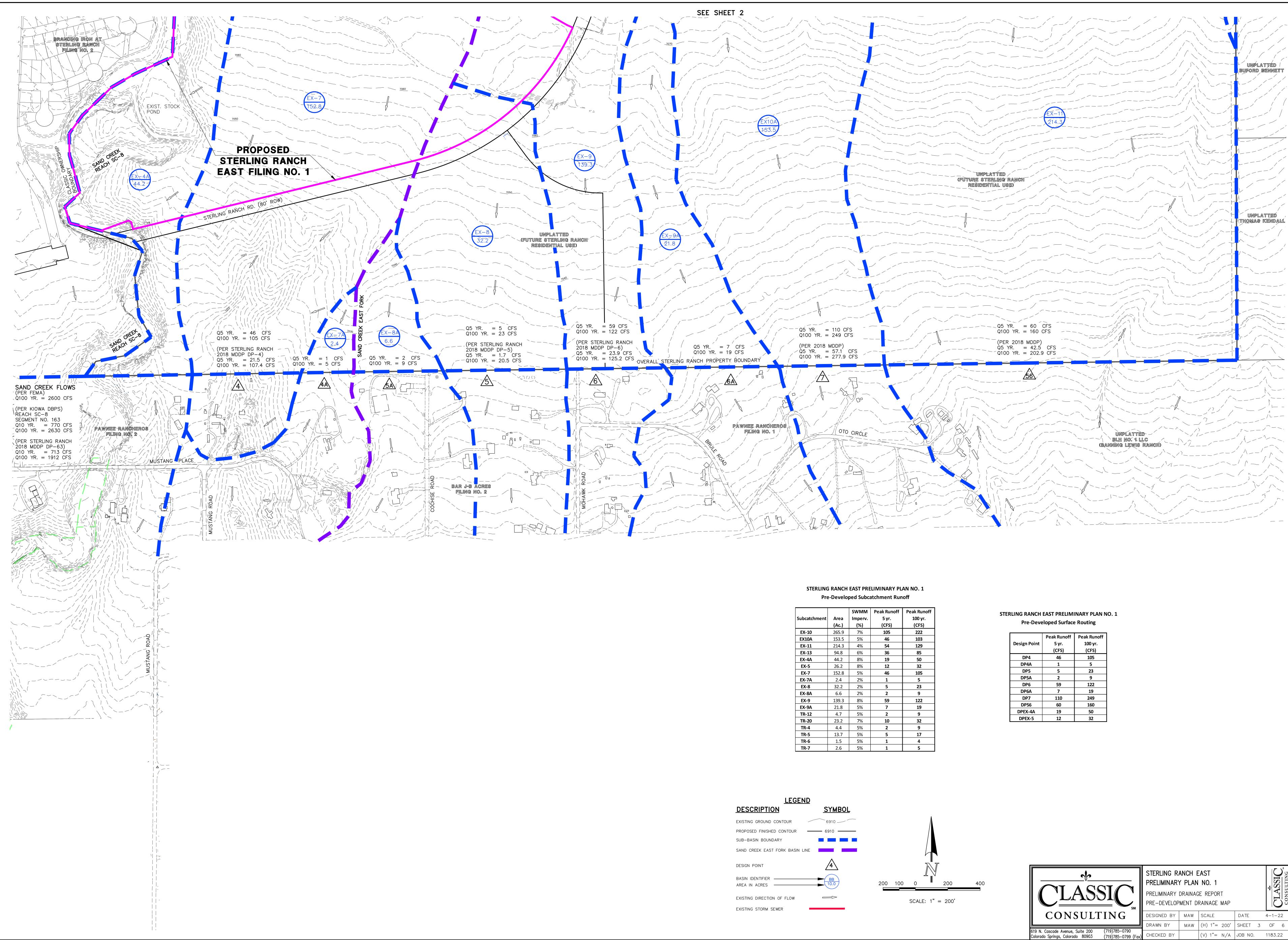

		SWMM	Peak Runoff	Peak Runoff
Subcatchment	Area	Imperv.	5 yr.	100 yr.
	(Ac.)	(%)	(CFS)	(CFS)
EX-10	265.9	7%	105	222
EX10A	153.5	5%	46	103
EX-11	214.3	4%	54	129
EX-13	94.8	6%	36	85
EX-4A	44.2	8%	19	50
EX-5	26.2	8%	12	32
EX-7	152.8	5%	46	105
EX-7A	2.4	2%	1	5
EX-8	32.2	2%	5	23
EX-8A	6.6	2%	2	9
EX-9	139.3	8%	59	122
EX-9A	21.8	5%	7	19
TR-12	4.7	5%	2	9
TR-20	23.2	7%	10	32
TR-4	4.4	5%	2	9
TR-5	13.7	5%	5	17
TR-6	1.5	5%	1	4
TR-7	2.6	5%	1	5

Branding Iron at Sterling Banch Filing No. 2

REFERENCE SAND CREEK CHANNEL IMPROVEMENTS PROPOSED WITH HOMESTEAD NORTH AT STERLING RANCH FIL.NO. 1 PREPARED BY JR ENG. (PCD NO. SF-22-013)

7060

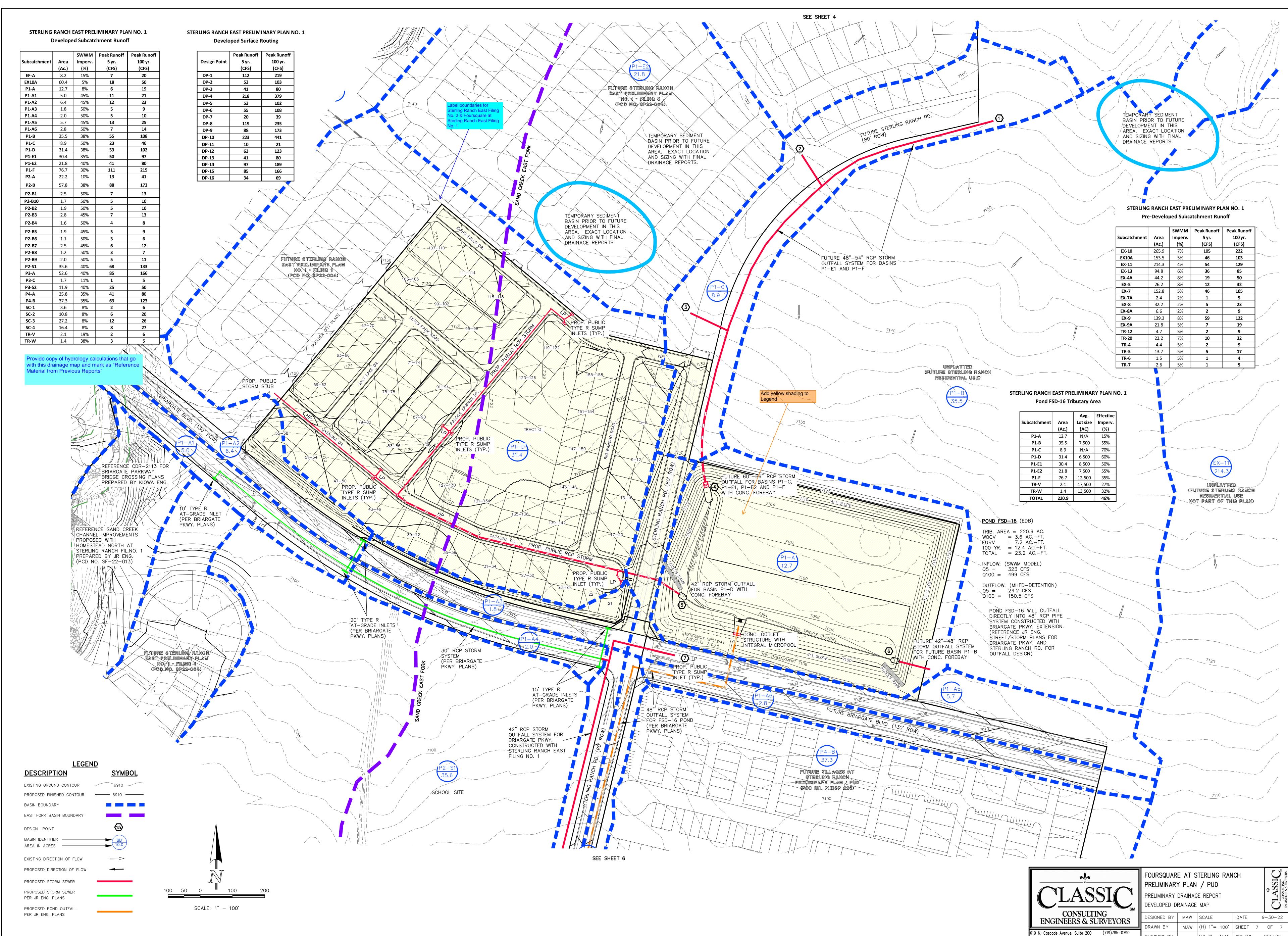

Homestead at Sterling Ranch Filing No. 2


PROPOSED STERLING RANCH EAST FILING NO. 1

UNPLÀTTED (FUTURE STERLING RANCH RESIDENTIAL USE)

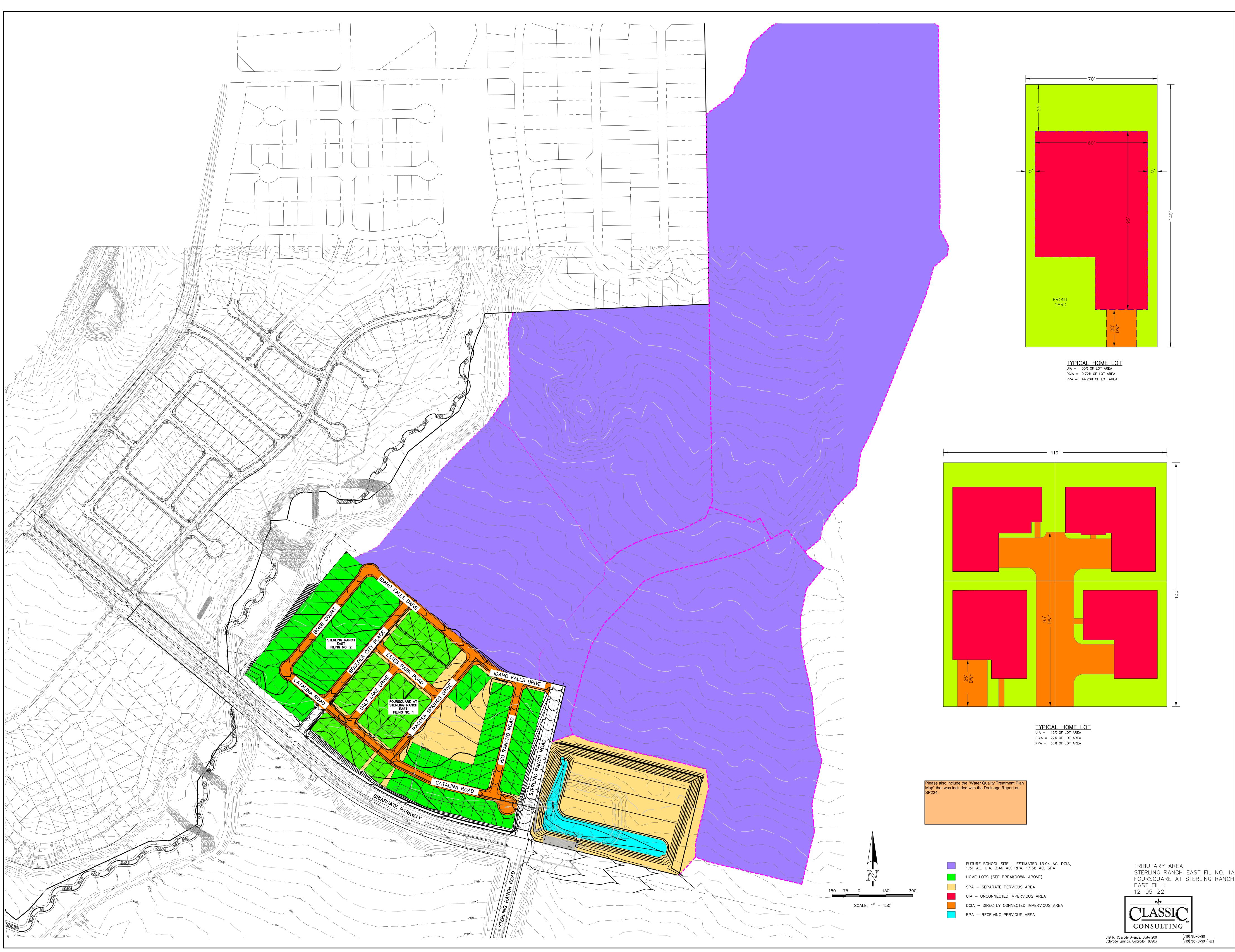
EX1,774

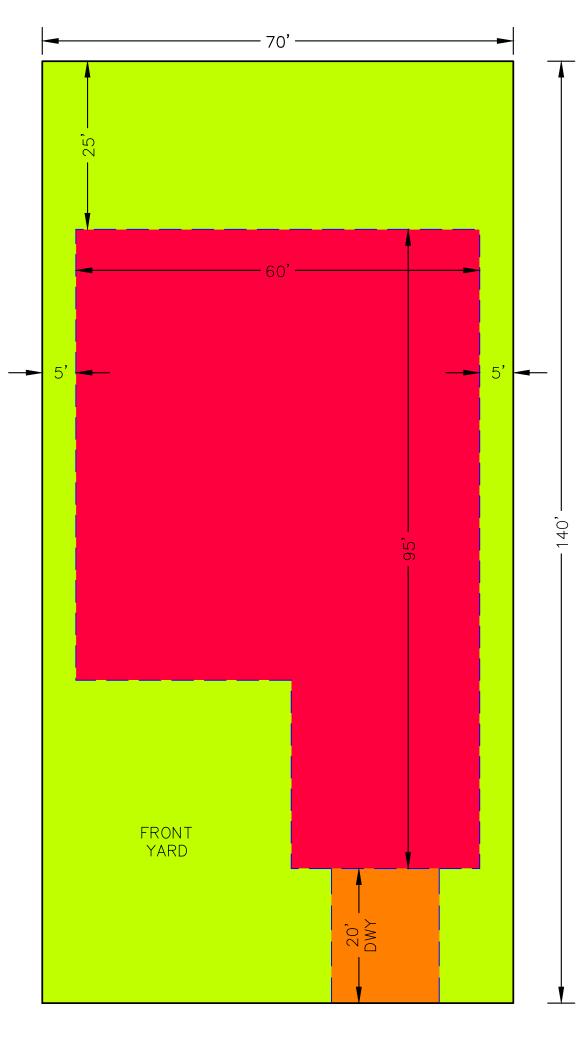
41412

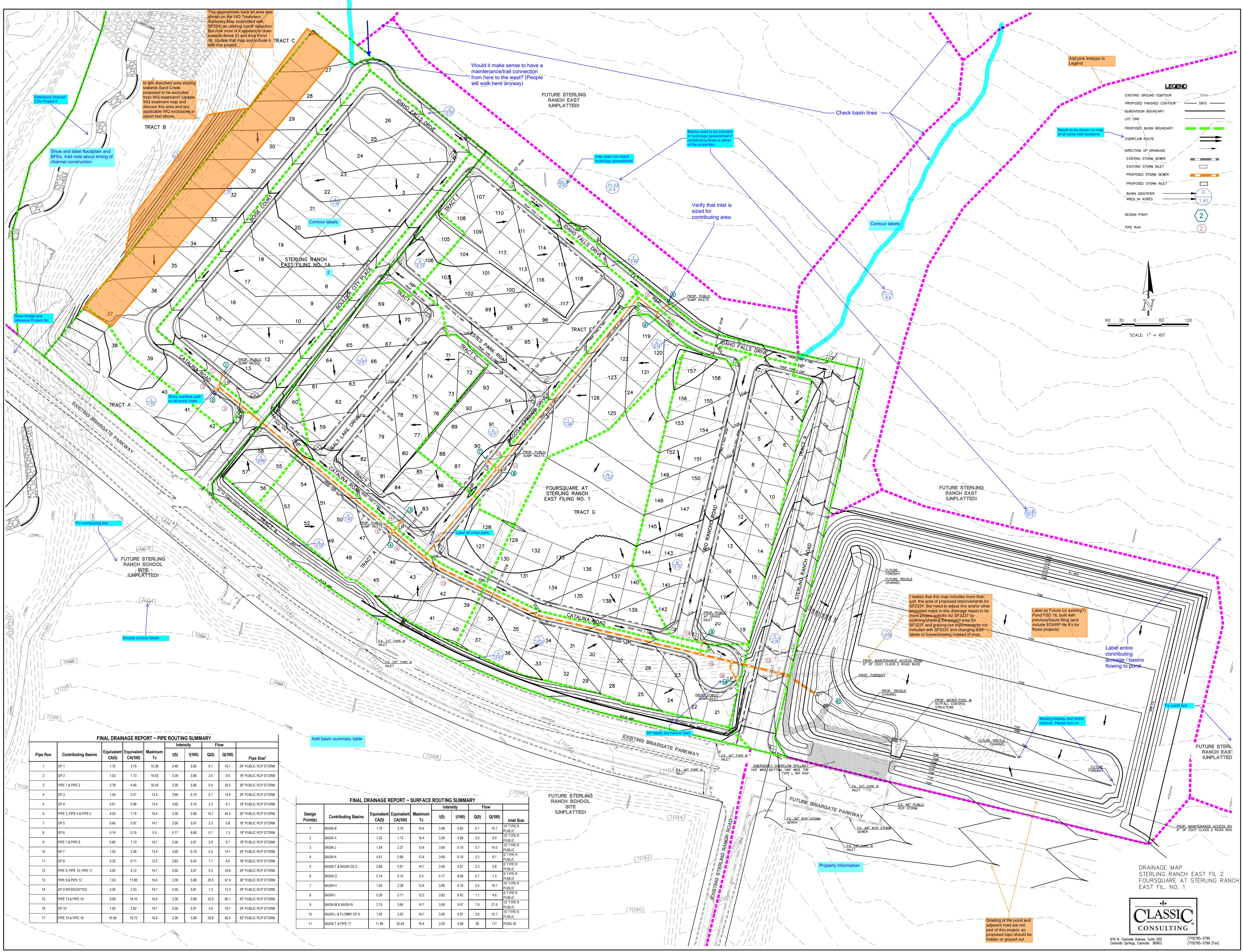

STERLING RANCH EAST PRELIMINARY PLAN NO. 3	1
Pre-Developed Subcatchment Runoff	

		SWMM	Peak Runoff	Peak Runoff
Subcatchment	Area	Imperv.	5 yr.	100 yr.
	(Ac.)	(%)	(CFS)	(CFS)
EX-10	265.9	7%	105	222
EX10A	153.5	5%	46	103
EX-11	214.3	4%	54	129
EX-13	94.8	6%	36	85
EX-4A	44.2	8%	19	50
EX-5	26.2	8%	12	32
EX-7	152.8	5%	46	105
EX-7A	2.4	2%	1	5
EX-8	32.2	2%	5	23
EX-8A	6.6	2%	2	9
EX-9	139.3	8%	59	122
EX-9A	21.8	5%	7	19
TR-12	4.7	5%	2	9
TR-20	23.2	7%	10	32
TR-4	4.4	5%	2	9
TR-5	13.7	5%	5	17
TR-6	1.5	5%	1	4
TR-7	2.6	5%	1	5

	Peak Runoff	Peak Runoff
Design Point	5 yr.	100 yr.
	(CFS)	(CFS)
DP4	46	105
DP4A	1	5
DP5	5	23
DP5A	2	9
DP6	59	122
DP6A	7	19
DP7	110	249
DP56	60	160
DPEX-4A	19	50
DPEX-5	12	32


LEGENE	<u>)</u> <u>SYMBOL</u>
ROUND CONTOUR	6910
FINISHED CONTOUR -	6910
I BOUNDARY	
EK EAST FORK BASIN LINI	
INT	4
ITIFIER	BB 10.0
IRECTION OF FLOW	


	UISSV IU *	CONSULTING
4	4-1-:	22
	OF	6



DEVELOPED D				
DESIGNED BY	MAW	SCALE	DATE S	9-30-22
DRAWN BY	MAW	(H) 1"= 100'	SHEET 7	OF 7
CHECKED BY		(V) 1"= N/A	JOB NO.	1183.20

Colorado Springs, Colorado 80903 (719)785–0799 (Fax)

