

Flying Horse North Filing No. 4 Final Drainage Report

▷ HRGREEN.COM

January 2024

Prepared For:

Mr. Drew Balsick Vice President / Project Manager Flying Horse Development, LLC 2138 Flying Horse Club Drive Colorado Springs, CO 80921 (719) 785-3237

Prepared By:

HR Green Development, LLC 1975 Research Parkway, Ste. 160 Colorado Springs, CO 80920 Contact: Richie Lyon, PE Richie.Lyon@hrgreen.com 719-318-0871

PCD File No. SF2422_

Table of Contents

Engine	er's Statement1
Develo	per's Statement1
El Paso	o County:1
Final D	rainage Report – Flying Horse North2
I. Ge	eneral Purpose, Location and Description2
a.	Purpose and Scope2
b.	DBPS Investigations
C.	Stakeholder Process
d.	Agency Jurisdictions
e.	General Project Description
f.	Data Sources
g.	Applicable Criteria and Standards4
II. Pr	oject Characteristics
a.	Location in Drainage Basin, Offsite Flows, Size6
b.	Compliance with DBPS9
C.	Site Characteristics
d.	Major Drainage Ways and Structures9
e.	Existing and proposed land uses10
III.	Hydrologic Analysis10
a.	Major Basins and Sub-basins
Majo	or Basin Description
Exis	ting Subbasin Description
Prop	oosed Subbasin Description
*Sur	nmary of routing included in Appendix D20
b.	Water Quality and Detention Facilities20
C.	Methodology
IV.	Hydraulic Analysis
a.	Major Drainageways
b.	Storm Sewer Infrastructure and Culvert Pipes
V. Er	nvironmental Evaluations
a.	Significant Existing or Potential Wetland and Riparian Areas Impacts

b.	Stormwater Quality Considerations and Proposed Practices	25
C.	Permitting Requirements	26
d.	4-Step Process	26
VI.	Drawings	27
VII.	Drainage and Bridge Fees	27
VIII.	Permanent Control Measure Cost Estimates	27
IX.	Summary	29
Х.	References	30

Appendices

- A. Maps & Exhibits
- B. Hydrology Calculations
- C. Hydraulic Calculations
- D. Pond Calculations
- E. Referenced Report Excerpts
- F. Site Drainage Maps

Engineer's Statement

This report and plan for the drainage design of the development, Flying Horse North Filing No. 4, was prepared by me (or under my direct supervision) and is correct to the best of my knowledge and belief. Said report and plan has been prepared in accordance with the *El Paso County Drainage Criteria* Manual and is in conformity with the master plan of the drainage basin. I understand that El Paso County does not and will not assume liability for drainage facilities designed by others. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Richie Lyon, PE Date State of Colorado No. 53921 For and on behalf of HR Green Development, LLC

Developer's Statement

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Flying Horse Development, LLC

Drew Balsick

Date

Vice President

Flying Horse Development, LLC 2138 Flying Horse Club Drive

Colorado Springs, CO 80921

El Paso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2 and the Engineering Criteria Manual, as amended.

Joshua Palmer, P.E.

Date

County Engineer/ECM Administrator

Final Drainage Report – Flying Horse NorthI. General Purpose, Location and Description

a. Purpose and Scope

The Purpose of this Final Drainage Report (FDR) is to identify specific solutions to drainage concerns for onsite and offsite tributary areas resulting from the development of the subdivision to be platted. The FDR is to describe the onsite and offsite drainage patterns, existing and proposed storm infrastructure as it relates to water quality and stormwater detention for any proposed or existing facilities, the planned storm water management for the Flying Horse North development for Filing No. 4.

The Preliminary Drainage Report for Flying Horse North Preliminary Plan and Final Drainage Report for Flying Horse North Filing No. 1 is a combined Preliminary Drainage Report (PDR) and Final Drainage Report (FDR) that was developed by Classic Consulting, latest revision June 2018. The combined PDR/FDR was approved by the County in September of 2018 and is included in Appendix E. This approved report identifies the proposed Filing No. 4 area for the PDR and Preliminary Plan portion of the report.

A more recent Master Development Drainage Plan (MDDP) was prepared by HR Green Development, LLC. and was approved by the County in September of 2022, entitled *Flying Horse North Master Development Drainage Plan* latest revision date of September 9, 2022. This MDDP also referenced the Classic Consulting report from 2018 for master drainage design of the proposed Filing No. 4 area.

The items discussed in this FDR include final plat layout, land uses, and drainage patterns for Filing No. 4. Included in this report are final hydrologic and hydraulic drainage calculations and design as required for the final design of the development of the single-family residential estate lot areas with assumed conservative drainage analysis for a future Flats area. This report references the aforementioned reports to compare and contrast findings in the final design to ensure that existing infrastructure and facilities are not negatively impacted by this development.

b. DBPS Investigations

Flying Horse North is split by the Arkansas River Basin and South Platte Basin. Within the South Platte Basin, the site is withing the East Cherry Creek Drainage Basin. A Drainage Basin Planning Study (DBPS) does not currently exist for the East Cherry Creek Drainage Bain. This FDR is consistent with the 2022 MDDP which complies with standard El Paso County regulations regarding drainage within this corridor.

The Filing No. 4 area falls within the East Cherry Creek Basin which is to consist of 2.5-acre single-family residential estate lots. Proposed developed areas are provided with water quality and full spectrum detention (FSD) prior to release offsite. Areas that are tributary to Flying Horse Filing No. 4 have no increase in required stormwater quality or detention volumes. There is a relatively small area of 2.5-acre single-family lots that drain directly offsite. There is no proposed basin transfer and therefore the historical drainage patterns are to remain in place including at the roadway and lots at the major basin delineation.

c. Stakeholder Process

There are no amendments to the current DBPS.

d. Agency Jurisdictions

Listed below are the jurisdictions that this project will conform to:

El Paso County

Federal Emergency Management Agency

e. General Project Description

Flying Horse North Filing No. 4 is in El Paso County jurisdiction and is located within the larger Flying Horse North subdivision. The overall Flying Horse North development is bordered by Highway 83 to the west, Black Forest Road to the east, Cathedral Pines to the south, and High Forest Ranch to the north. The greater Flying Horse North area contains approximately 1,459 acres within the whole Section 36, Township 11 South, Range 66 West of the Sixth Principal Meridian, and a portion of Section 30 and 31, Township 11 South, and Range 65 West of the Sixth Principal Meridian. The Flying Horse Filing No. 4 area is 175.76 acres in total.

This FDR covers Filing No. 4 and includes offsite upstream and downstream areas to analyze existing and proposed drainageways and facilities. The Filing No. 4 area totals approximately 175.8 acres including 48 total 2.5-acre single-family residential estate lots. The development includes the single-family residential estate lots, 60' width rights-of-way that consist of asphalt paved roadways with roadside swale sections and electric easements, and three full spectrum detention pond facilities.

Filing No. 4 was previously assessed in the 2018 Classic Consulting report with a similar land use plan that included 2-acre single-family residential estate lots and roadways. This report assesses the lots as 2.5-acre lots. The layout shown in the developed conditions hydrology map of this report and the corresponding construction drawings differs slightly from the approved FDR/PDR with adjusted roadway alignments and lot lines. However, the drainage patterns, typical roadway section, and land use densities are similar.

The existing vegetative cover is 90 percent as evidenced by a field survey and aerial imagery. The existing vegetation includes native grasses and weeds, shrubs, and pinyon pine trees. Previous clearing of future planned roadways was done several years ago, and native grass and weeds have covered those areas.

f. Data Sources

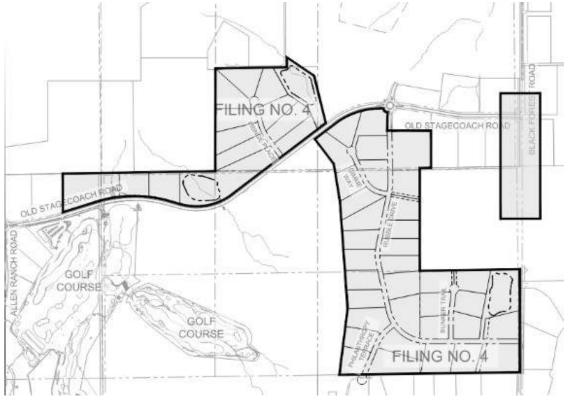


Figure 1 – Vicinity Map

Listed Below are the technical resources reviewed in the preparation of this MDDP:

El Paso County Drainage Criteria Manual (DCM)

Mile High Flood District

NOAA Atlas 14

NRCS Soil Survey for El Paso County Area, Colorado

FEMA FIRM 08041C0305G and FIRM 08041C0315G (eff. 12/7/2018)

El Paso County Assessor Property Records

Preliminary Drainage Report for Flying Horse North Preliminary Plan and Final Drainage Report for Flying Horse North Filing No. 1 prepared by Classic Consulting – June 2018

Flying Horse North Master Development Drainage Report prepared by HR Green Development, LLC. – latest revision September 9, 2022

g. Applicable Criteria and Standards

Per El Paso County Criteria Manual, flows from the proposed site will be limited to historic flows to maintain the stability of the existing channels within the drainage basins. The master plan follows the Drainage Criteria Manual for El Paso County which refers to the City of Colorado Springs Drainage

Criteria Manuals as amended. Criteria within the County and City manuals refer to the Mile High Flood District manuals, particularly for extended detention basin design and runoff reduction calculations which are utilized in this report.

A distinct difference in the 2018 FDR/PDR and this report are the hydrologic methodologies utilized to compute peak runoff values. The 2018 Classic Consulting report utilized the NRCS Curve Number method in order to be consistent with their previous MDDP for the greater Flying Horse North master development. The NRCS Curve Number method was used for the future development of the area that is now proposed as Filing No. 4 for the portion of the report considered to be a Preliminary Drainage Report and it was used for sub-basins that did not exceed 100 acres. Typically, the Rational Method is used for hydrologic computations when basin analysis is under 100 acres due to the NRCS Curve Number method vielding smaller minor and major storm event peak runoff values. The resultant hydraulics in this report are similar to that of the approved 2018 FDR/PDR on a basin-by-basin basis, however, any differences in calculated stormwater runoff will be discussed. The difference in methodologies between the 2018 report and this report result in larger cumulative stormwater runoff values reported for the minor and major storm events. Due to the more conservative nature of the Rational Method, cumulative peak flow rates are greater than that of the 2018 FDR/PDR for the minor and major storm events for downstream design points. Because of the discrepancy between methodologies of the NRCS Curve Number and Rational Method's, existing hydrology calculations have been completed on the proposed Filing No. 4 area. This was done to determine if any downstream mitigation was needed, which will be discussed later in this report.

HR Green has previously discussed this discrepancy in hydrologic methodology with El Paso County engineering staff. The chosen method for most hydrologic computations included with this Report is the Rational Method to ensure sound design of the storm infrastructure for Filing No. 4 including swales, channels, culvert pipes, inlets, and roadway capacities. In addition to the Rational Method, major and minor storm events have also been modeled using the Colorado Urban Hydrograph Procedure (CUHP), version 2.0.0, and EPA Storm Water Management Model (SWMM), version 5.1. This methodology allows CUHP generated hydrographs from a number of sub-catchments, to be combined and routed through a series of links (channels, gutters, pipes, dummy links, etc.) and nodes (junctures, storage, diversion, etc.) to compute the resultant hydrographs at any number of design points within the watershed. CUHP / SWMM calculations were performed primarily for sizing the site detention facilities.

It was discussed that no existing drainage infrastructure will require redesign or retrofits unless explicit discrepancies in detention volumes are discovered as the tributary areas and percent imperviousness for respective detention ponds have not changed significantly between the 2018 FDR/PDR and this report for Filing No. 4. Due to the use of the NRCS Curve Number method in the 2018 FDR/PDR, the peak runoff values in this report are larger than that of the approved 2018 FDR/PDR. To complete a fair assessment of the impacts downstream of the site, existing hydrology calculations have been completed and included in Appendix B. As discussed with County engineering staff, while peak runoff values have increased due to the use of this development as all other drainage parameters remain consistent with the 2018 FDR/PDR. Review of the CUHP / SWMM generated hydrology results in peak values generally less than calculated with the Rational Method. The resultant peak runoff figures are used to assess all existing

and proposed stormwater infrastructure associated with Filing No. 4's development, as well as a future Filing No. 5 development for Pond B in particular.

II. Project Characteristics

a. Location in Drainage Basin, Offsite Flows, Size

Filing No. 4 is located within the East Cherry Creek Basin. There is not a current planning study of the drainage basin, but generally it slopes from southwest to northeast. The basin eventually flows into the South Platte River.

Within the portion of the East Cherry Creek Basin investigated with this Report, three major drainage basins have been designated by the proposed pond in which the area is draining to. One drainage basin consists of seven sub-basins, "A" basins, conveyed to the proposed detention pond at Design Point A6, Pond A. The respective contributing flow from the sub-basins is shown in the table below:

Basin Name	Acreage	5 Year Flow (cfs)	100 Year Flow (cfs)
A1	9.6	5.2	22.1
A2	10.8	6.7	27.6
A3	72.7	21.2	126.2
A4	18.4	10.2	42.0
A5	6.1	3.7	15.4
A6	2.8	1.8	7.2
A7	8.1	5.1	20.9

Drainage within the "A" drainage basin flows ultimately from the southwest to northeast to reach Pond A. Design points are located at proposed culverts underneath roadways and proposed swales that direct flow to the detention pond. Drainage outfalls from Pond A into an existing channel that ultimately outfalls to the South Platte River.

The second drainage basin consists of six sub-basins, "B" basins, conveyed to the proposed detention pond at Design Point B3, Pond B. Two Basins, B5 and B6, flow directly offsite. Additional volume has been included in Pond B to compensate for these basins, see additional discussion below. The respective contributing flow from the sub-basins is shown in the table below:

Basin Name	Acreage	5 Year Flow (cfs)	100 Year Flow (cfs)
B1	57.8	15.9	97.5
B2	35.8	18.2	73.1
B3	1.1	1.5	4.0
B4	11.0	8.0	28.1
B5	10.6	6.3	25.9
B6	16.0	8.7	35.8

Drainage within the "B" drainage basin flows ultimately from the southeast to northwest to reach Pond B. Design points are located at an existing culvert under Old Stagecoach Road and at existing and proposed

swales that direct flow to the detention pond. Drainage outfalls from Pond B into an existing channel that ultimately outfalls to the South Platte River.

The third drainage basin consists of five sub-basins, "C" basins, conveyed to the proposed detention pond at Design Point C2, Pond C. Two of the basins, C4 and C5, flow directly offsite. Additional volume has been included in Pond C to compensate for these basins, see additional discussion below. The respective contributing flow from the sub-basins is shown in the table below:

Basin Name	Acreage	5 Year Flow (cfs)	100 Year Flow (cfs)
C1	10.5	8.7	37.2
C2	20.9	1.9	5.9
C3	9.3	11.3	50.6
C4	11.0	2.9	11.9
C5	11.0	1.4	5.7

Drainage within the "C" drainage basin flows ultimately from south to north to reach Pond C. Design points are located at existing and proposed culverts underneath roadways and proposed swales that direct flow to the detention pond. Drainage outfalls from Pond C into an existing channel that ultimately outfalls to the South Platte River.

There are five sub-basins that drain directly offsite due to the natural drainage patterns. These sub-basins have relatively small areas within Filing No. 4 and include parts of the 2.5-acre single-family residential estate lots at the northeast & western edges of the development. Additional volume has been included in Pond A to compensate for these basins, see additional discussion below.

Basin Name	Acreage	5 Year Flow (cfs)	100 Year Flow (cfs)
G1	2.6	1.7	6.8
G2	4.4	1.3	9.7
H1	5.2	3.4	13.9
H2	14.5	9.1	37.5
H3	36.8	9.1	66.9

There are two sub-basins that will drain to future proposed detention ponds. Currently, drainage from these basins will follow historic drainage patterns flowing to the northeast utilizing existing culverts within Old Stagecoach Road to outfall into existing channels. The respective flow from the sub-basins are shown in the table below:

Basin Name	Acreage	5 Year Flow (cfs)	100 Year Flow (cfs)
F1	12.2	7.3	30.0
F2	13.9	8.1	33.3
F3	16.7	4.5	11.4

This Filing No. 4 FDR utilizes tributary areas, runoff coefficients (when comparing the NRCS Curve Number method and the Rational Method), and percent imperviousness for respective sub-basins and downstream detention facilities that match the amended layout as compared to 2018 Classic Consulting

FDR/PDR which utilized its 2016 PUD layout of the subdivision. Changes in the peak runoff numbers as compared to the 2018 report are due to the change in hydrologic computation methodology as well as the change in the overall layout within Filing No. 4 per the PUD Minor Amendment. Due to these differences in the computational methodology between the previously approved 2018 FDR and the values being calculated in this report, additional analysis of existing conditions has been completed. The existing conditions major flow values have been added to Appendix B. A table showing the Classic 2018 FDR/PDR NRCS Method peak runoff values compared to the HR Green 2024 FDR Rational Method peak runoff values for proposed conditions is provided below. The basins in this table that qualify for large lot exclusion under ECM code I.7.1.B.5 are Basins B4, B5, B6, C4, C5, G1, G2, H1, H2, and H3.

Basin Name		Area	(acre)	Proposed	Proposed Q5 (cfs)		ed Q100 fs)
Classic	HRG	Classic	HRG	Classic	HRG	Classic	HRG
CC-13C	A1	9.9	9.6	3.4	5.2	16.5	22.1
OS-15	A3	70.8	72.7	14.8	21.2	84.2	126.2
CC-13A	A4	19.3	18.4	5.4	10.2	27.3	42.0
	A2		10.8		6.7		27.6
CC-13B	A5	25.5	6.1	7.2	3.7	36.1	15.4
CC-13B	A6	25.5	2.8	1.2	1.8	30.1	7.2
	A7] [8.1		5.1		20.9
CC-10	B1	85.6	57.8	14.1	15.9	91.9	97.5
CC-8	B2	7.7	35.8	2.5	18.2	12.0	73.1
00.11	B3	10.0	1.1	5.0	1.5	00.4	4.0
CC-11	B4	18.6	11.0	5.0	8.0	28.1	28.1
CC-12	B5	12.2	10.6	3.9	6.3	18.7	25.9
not labeled	B6		16.0		8.7		35.8
CC-15	C1	12.8	15.9	4.3	8.7	20.4	37.2
	C2 2.0		1.9		5.9		
CC-20	C3]	21.4	10.0	11.3	61.0	50.6
CC-20	C4	39.3	4.3	12.9	2.9	01.0	11.9
	C5] [2.3		1.4		5.7
CC-16	F1	16.3	12.2	4.6	7.3	23.6	30.0
CC-17	F2	25.0	13.9	6.5	8.1	32.8	33.3
OS-16	F3	4.5	16.7	1.5	4.5	7.2	11.4
CC-14	G1	4.6	2.6	1.6	1.7	7.8	6.8
not labeled	G2		4.4		1.3		9.7
CC-13D	H1	- 18.8	5.2	6.2	3.4	20.2	13.9
00-130	H2	10.0	14.5	0.2	9.1	29.2	37.5
not labeled	H3		36.8		9.1		66.9

It is important to note that while there is an increase in peak runoff for these basins as compared to the 2018 report, there is a discrepancy in methodology. The proposed improvements with this report will be designed using the updated values and pond sizing, which relies on a historic model, will be designed using CUHP / SWMM including a historic model. As seen in Appendix B, the peak runoffs have increased due to the discrepancy in methodology and the updates in basin delineation, however the total flowrates being released off-site into Cherry Creek basin has been reduced overall. While there is a slight increase of runoff downstream for the basins that qualify for large lot inclusion, over-detention has been provided in the three proposed detention ponds for these basins flowing offsite to ensure the total flows being released downstream have been reduced. Combined for all three site outfalls providing detention with Filing No. 4, the total flow released off-site has been reduced by 4% in the major storm event. Because of this no downstream mitigation is proposed.

b. Compliance with DBPS

This FDR is in general conformance with the current drainage flows of the East Cherry Creek Basin. Flying Horse North will construct multiple full spectrum detention facilities to limit the effects of development and mimic natural flow patterns. The Filing No. 4 development will follow historic drainage patterns and utilize the existing natural swales throughout the area for conveyance of stormwater runoff toward respective proposed detention facilities.

Existing downstream infrastructure is currently limited to the historic drainage channels and minimal downstream improvements exist. As such, the site restricts offsite flow rates to not exceed historic flow rates. The site's ultimate outfalls will generally be along the same historic tributaries. Although outfall rates will be at or below historic, the cumulative volume of runoff will increase and therefore downstream facilities may see an increase in the duration of flows. This may provide a net benefit to the downstream facilities by providing more water to assist with the sustenance of vegetation, however it should be noted that increased volume may expedite potential erosion or channel movement. Any deviations from the approved 2018 Classic Consulting PDR/FDR in terms of runoff flow rate and water quality and detention volumes are assessed within this report to show compliance with the previously approved report in terms of capacities for drainage facilities including roadside swales, natural drainageways, and detention ponds.

c. Site Characteristics

Per the NRCS web soil survey, the site is made up entirely of Type B soils. Filing No. 4 is within the East Cherry Creek Basin which consists of Peyton sandy loam and Peyton-Pring complex. See Appendix A for the NRCS soil map.

The current ground cover in Filing No. 4 is short to mid-grass prairie grasslands and former farmland which consists of non-native weeds and grasses. This portion of the site has very few, if any, trees and a minimal number of shrubs are found on the site.

d. Major Drainage Ways and Structures

No major drainage ways exist within the development; however, small tertiary tributaries are within the site currently and function to convey flows to unnamed tributaries. These informal drainage ways are assessed within this report for stormwater runoff capacity and water surface elevations during the 100-year event as future development of single-family residential lots with basement or walkout conditions is

considered. Roadside swales are included as a part of the typical roadway section and are assessed within sub-basins to ensure that swale and culvert pipe capacities are met and do not result in excessive pooling in the roadway sections, per code.

The existing minor drainage channels within the site are planned to be maintained to the maximum extent possible, however, do not require improvements or formal platting of drainage easements as a part of this filing as none of these drainageways exceed criteria requiring permanent control measures or platting for continued maintenance by the Metro District or County. These channels will continue to be used for conveyance of storm drainage flows in their natural state. The limits of construction and disturbance plan for no significant earthwork alterations to the existing minor drainage channels that would affect the drainage patterns or capacity of the sections throughout the filing as they are proven to have sufficient capacities for their respective tributary areas and to maintain the natural features of the site including existing trees and vegetation. These natural tertiary channels do not have the requisite velocities or scouring to justify permanent control measures such as turf rolled matting.

Other drainageways of note including roadside swales are described within this report with parameters to demonstrate compliance with swale design criteria and capacities. Culvert pipes are sized to convey upstream flow under proposed roadways and maintain historic drainage patterns. Roadside swales are prescribed matting products for various areas in order to minimize erosion and sediment runoff downstream per hydraulic analysis.

e. Existing and proposed land uses

The existing Filing No. 4 area is open rangeland within a forested area consisting of sparse native grasses, weeds, and pinyon pine trees as well as baren pervious soil. The existing Filing No. 4 area consists of no development other than a previously cut-in maintenance pathway that was originally planned as the future roadway corridor and golf cart paths. As part of Filing No. 1, a road was constructed along with facilities to support a golf course. The Filing No. 4 development will connect to these existing roadways at the boundary between the two filings.

The 2018 Classic Consulting PDR/FDR assumed 2-acre single-family residential estate lot development with the same percent imperviousness within the filing area. This report includes the final design layout of 2.5-acre lots with rural roadway sections. Any deviations in basin areas, land use acreages, and resultant composite coefficients are shown within this report and demonstrated to meet downstream stormwater runoff and volume capacities for proposed and existing facilities.

III. Hydrologic Analysis

a. Major Basins and Sub-basins

Major Basin Description

Per FEMA FIRM 08041C0305G and 08041C0315G (eff. 12/7/2018), Flying Horse North has the East Cherry Creek run through the northwest portion of the site. This portion is not within Filing No. 4 boundary. Currently, FEMA shows a LOMR effective April 4th, 2019 Base Flood Elevations and Zone A. Per the El Paso County Land Development Code Chapter 8 Section 8.4.2.B.1.e.i, the base flood elevations for Zone A will be determined once the platted lots are solidified and are confirmed within 300-ft of the current floodplain designation. Certification of the flood elevations will be via the FEMA

CLOMR/LOMR process or Floodplain Certification Letter. This LOMR or any FEMA floodplain identified in the FIRM maps do not have any affect on Filing No. 4 as there are no FEMA Floodplains within this Filing.

The site has been divided into several major drainage basins where each basin is tributary to a full spectrum detention pond facility with the exception of basins that drain directly offsite which have supporting water quality runoff reduction calculations. These basins and associated sub-basins are described in more detail in the next section of this report.

Existing Subbasin Description

The existing conditions for Filing No. 4 are consistent with the conditions and hydrology map presented within the 2022 HR Green Development MDDP. The previous report's existing and developed conditions drainage maps are included in Appendix E of this report for reference.

The following basins are presented on the Existing Conditions Drainage Map within the appendix and are described as follows:

Existing Basin A1: 71.50 acres, undeveloped (Q₅ = 19.2 cfs, Q₁₀₀ = 141.1 cfs)

Runoff generated in this basin sheet flows from the southwest to the northwest over existing topography through native grass till it is concentrated in an existing channel at design point A1. Slopes in this basin average between 5% and 15% with a maximum elevation of 7675' and a minimum elevation of 7565'.

Existing Basin A2: 56.45 acres, undeveloped (Q_5 = 16.5 cfs, Q_{100} = 121.2 cfs)

Runoff generated in this basin sheet flows from the west to east over existing topography through native grass till it is concentrated in an existing channel flowing to the north to design point A2. Slopes in this basin average between 4% and 12% with a maximum elevation of 7645' and a minimum elevation of 7525'.

Existing Basin B1: 93.60 acres, undeveloped / roadway (minor collector) ($Q_5 = 24.1$ cfs, $Q_{100} = 155.8$ cfs)

Basin B1 is delineated across both Filing No. 4 and proposed Filing No. 5 within the Flying Horse North Project. Runoff generated in this basin sheet flows generally from the southeast to the northwest over existing topography through native grass till it is concentrated in an existing tributary flowing to the north to design point B1. Concentrated flow at design point B1 is discharged through an existing public 48-inch reinforced concrete culvert. Slopes in this basin average between 4.8% and 11.2% with a maximum elevation of 7645' and a minimum elevation of 7540'.

Basin B1 is identified as Basin CC-10 in the Classic Consulting FDR. Where design point B1 is located on the Existing Conditions Map in this report where Classic Consulting used design point 26. The developed conditions at design point 26 are Q_5 =14.1 cfs and Q_{100} =91.9 cfs. The existing public culvert was adequately sized to pass these existing flowrates.

Existing Basin B2: 15.74 acres undeveloped / roadway (minor collector) ($Q_5 = 7.2$ cfs, $Q_{100} = 31.1$ cfs)

This basin is located north of the existing Old Stagecoach Road. Runoff generated in this basin flows offsite to the north. Runoff sheet flows from the east and west within the basin over existing topography through native grass till it is concentrated in an existing tributary flowing to the north to design point B2.

Slopes in this basin average between 0% and 14.4% with a maximum elevation of 7585' and a minimum elevation of 7525'.

Existing Basin B3: 11.28 acres, undeveloped (Q₅ = 3.1 cfs, Q₁₀₀ = 23.1 cfs)

This basin is located at the north end of the site. Runoff generated in this basin sheet flows offsite from the east to west over existing topography through native grass. Slopes in this basin average between 5.5% and 13% with a maximum elevation of 7585' and a minimum elevation of 7535'.

Existing Basin B4: 12.36 acres, undeveloped (Q₅ = 4.8 cfs, Q₁₀₀ = 25.3 cfs)

This basin is located north of the existing Old Stagecoach Road. Runoff generated in this basin flows offsite to the north. Runoff sheet flows from the east and west within the basin over existing topography through native grass till it is concentrated in an existing tributary flowing to the north to design point B4. Slopes in this basin average between 6% and 35% with a maximum elevation of 7555' and a minimum elevation of 7510'.

Existing Basin C1: 12.47 acres, undeveloped / roadway (minor collector) ($Q_5 = 6.0$ cfs, $Q_{100} = 28.1$ cfs)

Runoff generated in this basin sheet flows generally from the southeast to the northwest over existing topography through native grass till it is concentrated at design point C1. Concentrated flow at design point C1 is discharged through an existing public dual 30-inch reinforced concrete culvert. Slopes in this basin average between 2% and 7.5% with a maximum elevation of 7615' and a minimum elevation of 7570'.

Basin C1 is identified as Basin CC-15 in the Classic Consulting FDR. The developed flow rates from basin CC-15 are Q_5 =4.3 cfs and Q_{100} =20.4 cfs. The existing public dual culvert was adequately sized to pass these existing flowrates.

Existing Basin C2: 22.36 acres, roadway (minor collector) (Q₅ = 8.9 cfs, Q₁₀₀ = 49.3 cfs)

This basin is located north of the existing Old Stagecoach Road. Runoff generated in this basin flows offsite to the north. Runoff sheet flows from the east and west within the basin over existing topography through native grass till it is concentrated in an existing tributary flowing to the north to design point C2. Slopes in this basin average between 3.5% and 12.5% with a maximum elevation of 7585' and a minimum elevation of 7530'.

Existing Basin C3: 4.56 acres, undeveloped ($Q_5 = 1.4 \text{ cfs}$, $Q_{100} = 10.4 \text{ cfs}$)

This basin is located at the north end of the site. Runoff generated in this basin sheet flows offsite to the north over existing topography through native grass. Slopes in this basin average between 4.0% and 8.2% with a maximum elevation of 7565' and a minimum elevation of 7545'.

Existing Basin C4: 2.27 acres, undeveloped (Q₅ = 0.7 cfs, Q₁₀₀ = 4.8 cfs)

This basin is located at the north end of the site. Runoff generated in this basin sheet flows offsite to the west and north over existing topography through native grass and is concentrated in an existing tributary at design point C4. Slopes in this basin average between 8.0% and 13% with a maximum elevation of 7560' and a minimum elevation of 7525'.

Existing Basin F1: 11.08 acres, undeveloped (Q_5 = 3.9 cfs, Q_{100} = 23.9 cfs)

Runoff generated in this basin sheet flows generally from the south to the north over existing topography through native grass till it is concentrated at design point F1. Concentrated flow at design point F1 is discharged through an existing public 30-inch reinforced concrete culvert. Slopes in this basin average between 2% and 7.5% with a maximum elevation of 7615' and a minimum elevation of 7570'.

Basin F1 is identified as Basin CC-16 in the Classic Consulting FDR. The developed flow rates from basin CC-16 are Q_5 =4.6 cfs and Q_{100} =23.6 cfs. The existing public culvert was adequately sized to pass these existing flowrates.

Existing Basin F2: 34.75 acres, undeveloped (Q₅ = 11.4 cfs, Q₁₀₀ = 72.3 cfs)

Runoff generated in this basin sheet flows generally from the south to the north over existing topography through native grass till it is concentrated in a roadside ditch along Old Stagecoach and flows to the east to design point F2. Concentrated flow at design point F2 is discharged through an existing public 36-inch reinforced concrete culvert. Slopes in this basin average between 2% and 10% with a maximum elevation of 7615' and a minimum elevation of 7570'.

Basin F1 is identified as Basin CC-17 in the Classic Consulting FDR. The developed flow rates from basin CC-17 are Q_5 =6.5 cfs and Q_{100} =32.8 cfs. The existing public culvert was adequately sized to pass these existing flowrates.

Existing Basin G1: 7.67 acres, undeveloped ($Q_5 = 2.4 \text{ cfs}$, $Q_{100} = 17.3 \text{ cfs}$)

This basin is located on the east side of the site. Runoff generated in this basin sheet flows to the east over existing topography through native grass before being concentrated at design point G1. Flows from this basin flow in an existing channel to basin H1. Slopes in this basin average between 3.5% and 11.8% with a maximum elevation of 7615' and a minimum elevation of 7555'.

Existing Basin H1: 56.27 acres, undeveloped (Q₅ = 17.1 cfs, Q₁₀₀ = 125.8 cfs)

Runoff generated in this basin flows over existing topography through native grass within the basin and is concentrated in an existing channel flowing to the east to design point H2. Slopes in this basin average between 2% and 25% with a maximum elevation of 7620' and a minimum elevation of 7515'.

Existing Basin R1: 0.92 acres, undeveloped / roadway (Q₅ = 1.6 cfs, Q₁₀₀ = 3.4 cfs)

Runoff generated in this basin briefly flows over existing topography through native grass and flows across one-lane of existing roadway from the south to the north. The existing slopes along the roadway range from 0.5% to 1.0%.

The onsite basins relevant to this report that are utilized in the 2018 report are the following: Basins CC-8, CC-10, CC-11, CC-12, CC-13A, CC-13B, CC-13C, CC-13D, CC-14, CC-15, CC-16, CC-17, and CC-20

The offsite basins relevant to this report that are utilized in the 2018 report are the following: OS-15

Proposed Subbasin Description

The net area of some basins described in this report may differ from the 2018 Classic Consulting FDR/PDR due to changes of alignment of proposed roads and slight adjustments of the delineations with new topographic survey information. The net $Q_5 \& Q_{100}$ values may differ in this report because of the

different methodologies used between the reports. Classic Consulting's FDR had used a Curve Number Method to report 5-year and 100-year drainage flows while this report utilizes the Rational Method to determine peak flow values. The Rational Method yields higher minor and major storm peak runoff values. Because of these two discrepancies, the values reported in this FDR may be higher across all design points that had also been evaluated in Classic Consulting's FDR from 2018.

The following basins are presented on the Developed Conditions Drainage Map within the appendix and are described as follows:

Proposed Basin A1: 9.57 acres, undeveloped / residential (2.5 acre lots) ($Q_5 = 5.2$ cfs, $Q_{100} = 22.1$ cfs)

Runoff generated in this basin sheet flows from west to east over existing topography through native grass. The runoff will flow over proposed 2.5-acre lots until it is concentrated in the proposed roadside ditches along Stable Ford Terrace and Rubble Drive. The flows are directed to the east under Rubble Drive at design point A1 through a proposed public 18-inch RCP culvert (Culvert 4) to Basin A2.

Proposed Basin A2: 10.79 acres, residential (2.5 acre lots) (Q₅ = 6.7 cfs, Q₁₀₀ = 27.6 cfs)

Runoff generated in this basin first sheet flows over existing topography through proposed 2.5-acre lots, then combines with upstream tributary flows in a proposed private tertiary swale represented as section B-B. Runoff will also be collected in roadside ditches along the northside of Rubble Drive and the west side of Bunker Trail. Combined flows are directed to the east to basin A5 through a proposed public 42-inch RCP culvert (Culvert 11).

Proposed Basin A3: 72.74 acres, undeveloped / residential (5.0 acre lots) ($Q_5 = 21.2$ cfs, $Q_{100} = 126.2$ cfs)

Runoff generated in this basin sheet flows from south to north over existing topography through native grass. Stormwater will travel through proposed five-acre lots within Filing No. 5 and through proposed 2.5-acre lots within Filing No.4. The flows are collected in an existing public channel with a 70-foot drainage easement represented as section A-A on the plans and directed to design point A3. Runoff will continue in this existing channel to basin A4.

Proposed Basin A4: 18.39 acres, residential (2.5 acre lots) ($Q_5 = 10.2$ cfs, $Q_{100} = 42.0$ cfs)

Runoff generated in this basin sheet flows over existing topography through proposed 2.5-acre lots and is combined with flows from upstream tributary basin A3 in an existing public channel represented as section A-A on the plans. Runoff will also be collected in roadside ditches along the south side of Rubble Drive and the west side of Stableford Terrace. Combined flows are directed to the north to basin A6 through a proposed public 60-inch RCP culvert (Culvert 2).

From Classic Consulting's FDR for Flying Horse North Filing No. 1, Basin A4 was identified as Basin CC-13A. Classic's FDR reported a total basin area for CC-13A to be 19.3 acres with a Q_5 =5.4 CFS and a Q_{100} =27.3 CFS. The cumulative flow at design point 28 (this includes basins CC-13A and OS-15) shown in this report has a net area of 90.1 acres, a net Q_5 =19.8 CFS, and a net Q_{100} =110 CFS. See the statement preceding Basin A1 description for an explanation of discrepancies between values reported here and values reported in Classic Consulting's 2018 FDR.

Proposed Basin A5: 6.10 acres, residential (2.5 acre lots) ($Q_5 = 3.7$ cfs, $Q_{100} = 15.4$ cfs)

Runoff generated in this basin sheet flows over existing topography through proposed 2.5-acre lots and combines with the flows from upstream tributary basins A1 and A2 in a proposed private tertiary swale represented as section I-I on the plans. Runoff will also be collected in roadside ditches along the north side of Rubble Drive and the east side of Bunker Trail. The combined flows are directed to the east to basin A6 through a proposed private 48-inch RCP culvert (Culvert 12).

Proposed Basin A6: 2.76 acres, residential (2.5 acre lots) (Q₅ = 1.8 cfs, Q₁₀₀ = 7.2 cfs)

Runoff generated in this basin sheet flows over existing topography through proposed 2.5-acre lots and combines with flows from upstream tributary basins A3 and A4 in a proposed public channel represented as section H-H on the plans. Runoff will also be collected in roadside ditches along the north side of Rubble Drive. Combined flows from basins A1-A6 will discharge at a 100-year rate 102.7 CFS via a rundown rock chute into proposed detention Pond A.

From Classic Consulting's FDR for Flying Horse North Filing No. 1, Basin A6 was identified as Basin CC-13B. Classic's FDR reported a total basin area for CC-13B to be 25.5 acres with a $Q_5=7.2$ CFS and a $Q_{100}=36.1$ CFS. The cumulative flow at design point 29 (this includes basins CC-13A – CC-13C and OS-15) shown in this report have a net area of 125.5 acres, a net $Q_5=26.6$ CFS, and a net $Q_{100}=155$ CFS. See the statement preceding Basin A1 description for an explanation of discrepancies between values reported here and values reported in Classic Consulting's 2018 FDR.

Proposed Basin A7: 8.11 acres, residential (2.5 acre lots) ($Q_5 = 5.1$ cfs, $Q_{100} = 20.9$ cfs)

Runoff generated in this basin travels via sheet flow over existing topography into the proposed Pond A. Within the pond, flows travel through trickle channels and outfall through a proposed private Type-C modified outlet structure. The reduced 100-year flow outfalling from Pond A is 160 CFS.

Proposed Basin B1: 57.78 acres, undeveloped / roadway (minor collector) / residential (2.5 acre lots) ($Q_5 = 15.9 \text{ cfs}$, $Q_{100} = 97.5 \text{ cfs}$)

Runoff generated in this basin sheet flows over existing topography from southeast to northwest through proposed 2.5-acre lots. Runoff is collected in an existing private tertiary swale and existing roadside ditches along Old Stagecoach Road and directed to basin B2.

Proposed Basin B2: 35.77 acres roadway (minor collector) / residential (2.5 acre lots) (Q_5 = 18.2 cfs, Q_{100} = 73.1 cfs)

Runoff generated in this basin sheet flows over existing topography from south to north. Minimal flow produced within Basin B2 will travel shallow concentrated flow in existing roadside ditches along Old Stagecoach Road. Combined flows from basin B1 and B2 are directed to the north to basin B3 through an existing public 48-inch RCP culvert.

From Classic Consulting's FDR for Flying Horse North Filing No. 1, Basin B2 (and Basin B1) was identified as Basin CC-10. Classic's FDR reported a total basin area for CC-10 to be 85.6 acres with a Q_5 =14.1 CFS and a Q_{100} =91.9 CFS. The cumulative flow at design point 26 (this includes basins CC-8 and CC-10) shown in this report have a net area of 93.3 acres, a net Q_5 = 15.9 CFS, and a net Q_{100} =102 CFS. The cumulative flow calculated with this report at design point B2 is significantly higher at Q5 = 33.2 CFS and Q100 = 285.8 CFS due to the discrepancies in methodology used between reports. The existing 48-inch RCP culvert must be modified to a dual 48-inch RCP culvert accommodate the increase in flows.

See Appendix C for calculations on this existing culvert calculations and proposed culvert improvement calculations.

Proposed Basin B3: 1.10 acres, roadway (minor collector) / residential (2.5 acre lots) ($Q_5 = 1.5$ cfs, $Q_{100} = 4.0$ cfs)

Runoff generated in this basin sheet flows over existing topography and travels via shallow concentrated flow in existing roadside ditches north of Old Stagecoach Road. Combined flows from basins B1, B2 and B3 travel through a proposed private channel represented as section F-F on the plans. The combined 100-year flow totaling to 102.8 CFS is collected in proposed detention Pond B via a proposed rundown rock chute.

Proposed Basin B4: 11.00 acres, roadway (minor collector) / residential (2.5 acre lots) ($Q_5 = 8.0$ cfs, $Q_{100} = 28.1$ cfs)

Runoff generated in this basin sheet flows over existing topography to detention Pond B. Within Pond B, runoff travels through trickle channels to a private Type-C modified outfall structure. The reduced 100-year flow outfalling from Pond B is 216.5 CFS.

Proposed Basin B5: 10.62 acres, residential (2.5 acre lots) (Q₅ = 6.3 cfs, Q₁₀₀ = 25.9 cfs)

Runoff in from this basin is generated completely within the proposed 2.5 acres lots. The runoff will follow existing drainage patterns and sheet flow directly offsite to the west to existing channels and tributaries. Pond B has volume capacity for over-detention of this basin. This area is included in the large lot exclusion (ECM I.7.1.B.5). The flow leaving this site in the proposed conditions is higher than the flow leaving the site in the existing conditions when doing a direct comparison analysis. This is due to the increase in imperviousness from 2% in the undeveloped land use condition, to 11% in the residential land use condition. However, a SWMM model has been developed to analyze the discharge from the site in the historic condition and the developed condition. This is a more detailed analysis of the overall discharges offsite to ensure that they are at or below historic rates. As shown in the detention pond summary table in Appendix D, the overall post development discharge from basin B is 262 CFS which is the same as the overall predevelopment discharge from basin B. As mentioned before, Pond B has volume capacity for over-detention for Basin B5 to ensure that the discharge from the overall site will remain at or below historical rates. Additionally, channel analysis has been done to ensure that the existing channel can handle the increase in offsite flows at design point B5. See channel calculations for Section K-K in Appendix C as well as the cross-section on sheet DR5 in the drainage plans.

Proposed Basin B6: 15.96 acres, residential (2.5 acre lots) ($Q_5 = 8.7$ cfs, $Q_{100} = 35.8$ cfs)

Runoff in from this basin is generated completely within the proposed 2.5 acres lots. The runoff will follow existing drainage patterns and sheet flow directly offsite to the north to existing channels and tributaries. Pond B has volume capacity for over-detention of this basin. This area is included in the large lot exclusion (ECM I.7.1.B.5). The proposed flow leaving this site is higher than the flow leaving the site in the existing conditions when doing a direct comparison analysis. This is due to the increase in imperviousness from 2% in the undeveloped land use condition, to 11% in the residential land use condition. However, a SWMM model has been developed to analyze the discharge from the site in the historic condition and the developed condition. This is a more detailed analysis of the overall discharges offsite to ensure that they are at or below historic rates. As shown in the detention pond summary table in Appendix D, the overall post development discharge from basin B is 262 CFS which is the same as the

overall predevelopment discharge from basin B. As mentioned before, Pond B has volume capacity for over-detention for Basin B6 to ensure that the discharge from the overall site will remain at or below historical rates. Additionally, channel analysis has been done to ensure that the existing channel can handle the increase in offsite flows at design point B6. See channel calculations for Section J-J in Appendix C as well as the cross-section on sheet DR5 in the drainage plans.

Proposed Basin C1: 15.94 acres, undeveloped / roadway (minor collector) / residential (2.5 acre lots) ($Q_5 = 8.7$ cfs, $Q_{100} = 37.2$ cfs)

Runoff generated from this basin will sheet flow over existing topography to the north and east. Runoff will also flow through proposed roadside ditches along the west side of Gimme Way and eventually discharge through a proposed public 18-inch culvert (Culvert 7). Runoff outfalls from this culvert into a proposed public channel represented as section E-E on the plans. Stormwater from this channel will travel through an existing public 30-inch culvert under Old Stagecoach Road to basin C2.

The flow calculated with this report at design point C1 is significantly higher than what was calculated in the Classic Consulting FDR due to the discrepancies in methodology used between reports. The existing 30-inch RCP culvert must be modified to a dual 30-inch RCP culvert accommodate the increase in flows. See Appendix C for calculations on this existing culvert calculations and proposed culvert improvement calculations.

Proposed Basin C2: 1.98 acres, roadway (minor collector) / residential (2.5 acre lots) (Q_5 = 1.9 cfs, Q_{100} = 5.9 cfs)

Runoff generated in this basin will sheet flow over existing topography to a proposed private channel represented as section G-G on the plans. Combined flows from Basin C1 and C2 in this swale will discharge to detention Pond C via a rundown rock chute.

From Classic Consulting's FDR for Flying Horse North Filing No. 1, Basin C2 was identified as Basin CC-20. Classic's FDR reported a total basin area for CC-20 to be 39.3 acres with a Q_5 = 12.9 CFS and a Q_{100} = 61.0 CFS. The cumulative flow at design point 27 (this includes basins CC-15 and CC-20) shown in this report have a net area of 52.1 acres, a net Q_5 = 17.2 CFS, and a net Q_{100} = 81 CFS. See the statement preceding Basin A1 description for an explanation of discrepancies between values reported here and values reported in Classic Consulting's 2018 FDR.

Proposed Basin C3: 21.39 acres, undeveloped / roadway (minor collector) / residential (2.5 acre lots) ($Q_5 = 11.3 \text{ cfs}$, $Q_{100} = 50.6 \text{ cfs}$)

Runoff generated in this basin mostly sheet flows to Pond C over existing topography. A portion of this basin flows through Fringe Place and is collected in the roadside ditches before traveling through a proposed 18-inch culvert (Culvert 10) to outfall towards Pond C. The concentrated flow from this culvert will outfall to a level spreader to change the flow from concentrated flow to sheet flow to travel the rest of the way to the pond. Flow within the pond will travel via trickle channels and outfall through a private Modified Type-C Outlet Structure. The reduced 100-year flow outfalling from Pond C is 57.4 cfs

Proposed Basin C4: 4.31 acres, residential (2.5 acre lots) ($Q_5 = 2.9$ cfs, $Q_{100} = 11.9$ cfs)

Runoff in from this basin is generated completely within the proposed 2.5-acre lots. The runoff will follow existing drainage patterns and sheet flow directly offsite to the north. Pond C has volume capacity for over-detention of this basin. This area is included in the large lot exclusion (ECM I.7.1.B.5) and are

excluded from water quality treatment requirements. The proposed flow leaving this site is significantly higher than the flow leaving the site in the existing conditions when doing a direct comparison analysis. This is due to the increase in imperviousness from 2% in the undeveloped land use condition, to 11% in the residential land use condition. However, a SWMM model has been developed to analyze the discharge from the site in the historic condition and the developed condition. There was an issue within the rational sheet and the incorrect C factor was being used for the existing conditions calculations. This issue has been resolved and the difference in flow rates is much less significant now. Further discussion has been added to the report to discuss any differences between proposed and existing conditions at these locations. As shown in the detention pond summary table in Appendix D, the overall post development discharge from basin C is 73.2 CFS which is less than overall predevelopment discharge from basin C is 73.2 CFS which is less than overall predevelopment discharge from basin C is 73.2 cFS which is less than overall predevelopment discharge from basin C is 73.2 cFS which is less than overall predevelopment discharge from basin C is 73.2 cFS which is less than overall predevelopment discharge from basin C is 73.2 cFS which is less than overall predevelopment discharge from basin C is 73.2 cFS which is less than overall predevelopment discharge from basin C is 73.2 cFS which is less than overall predevelopment discharge from basin C is 73.2 cFS which is less than overall predevelopment discharge from basin C is 73.2 cFS which is less than overall predevelopment discharge from basin C is 73.2 cFS which is less than overall predevelopment discharge from basin C is 73.2 cFS which is less than overall predevelopment discharge from basin C is 73.2 cFS which is less than overall predevelopment discharge from basin C is 73.2 cFS which is less than overall predevelopment discharge from the site will remain a

Proposed Basin C5: 2.27 acres, residential (2.5 acre lots) (Q₅ = 1.4 cfs, Q₁₀₀ = 5.7 cfs)

Runoff in from this basin is generated on existing ground cover. The runoff will follow existing drainage patterns and sheet flow directly offsite to the north to existing channels and tributaries. Pond C has volume capacity for over-detention of this basin. This area is included in the large lot exclusion (ECM I.7.1.B.5) and are excluded from water quality treatment requirements. The proposed flow leaving this site is significantly higher than the flow leaving the site in the existing conditions when doing a direct comparison analysis. This is due to the increase in imperviousness from 2% in the undeveloped land use condition, to 11% in the residential land use condition. However, a SWMM model has been developed to analyze the discharge from the site in the historic condition and the developed condition. There was an issue within the rational sheet and the incorrect C factor was being used for the existing conditions calculations. This issue has been resolved and the difference in flow rates is much less significant now. Further discussion has been added to the report to discuss any differences between proposed and existing conditions at these locations. As shown in the detention pond summary table in Appendix D, the overall post development discharge from basin C is 73.2 CFS which is less than overall predevelopment discharge from basin C of 78 CFS. As mentioned before, Pond C has volume capacity for over-detention for Basin C5 to ensure that the discharge from the site will remain at or below historical rates. Additionally, channel analysis has been done to ensure that the existing channel can handle the increase in offsite flows at design point C5. See channel calculations for Section L-L in Appendix C as well as the crosssection on sheet DR5 in the drainage plans.

Proposed Basin F1: 12.18 acres, residential (2.5 acre lots) (Q₅ = 7.3 cfs, Q₁₀₀ = 30.0 cfs)

Runoff generated in this basin will sheet flow across existing topography and flow in the proposed roadside ditches along Rubble Drive and existing roadside ditches along Old Stagecoach Road. Flows from this basin will eventually travel through an existing public 30-inch culvert under Old Stagecoach Road and outfall to the north where it will continue to follow existing drainage conditions. Runoff from this basin is anticipated to be collected in a future detention pond that is to be built with the future filing to the north of Filing No. 4. Before this future filing is constructed and the detention pond is functioning, the discharge from Basin F1 will be collected in a temporary sediment basin to the north. Runoff will outfall

from the existing culvert and follow natural tertiary swales before being collected in the temporary sediment basin located to the north of Old Stagecoach Road.

From Classic Consulting's FDR for Flying Horse North Filing No. 1, Basin F1 was identified as Basin CC-16. Classic's FDR reported a total basin area for CC-16 to be 16.3 acres with a Q_5 = 4.6 CFS and a Q_{100} = 23.6 CFS. These differences in flows are due to the discrepancies in methodology between reports. Although the flows in this report are higher, analysis has been completed to ensure the downstream infrastructure is adequately sized to pass these increased flows.

Proposed Basin F2: 13.89 acres, residential (2.5 acre lots) (Q₅ = 8.1 cfs, Q₁₀₀ = 33.3 cfs)

Runoff generated in this basin will sheet flow across existing topography and flow in the existing roadside ditches along Old Stagecoach Road to the east until eventually flowing to the north under the road through a proposed public dual 36-inch culvert. Runoff from this basin is anticipated to be collected in a future detention pond that is to be built with the future filing to the north of Filing No. 4. Before this future filing is constructed and the detention pond is functioning, the discharge from Basin F2 will be collected in a temporary sediment basin to the north. Runoff will outfall from the existing culvert and follow natural tertiary swales before being collected in the temporary sediment basin located to the north of Old Stagecoach Road.

Proposed Basin F3: 16.74 acres, undeveloped (Q₅ = 4.5 cfs, Q₁₀₀ = 11.4 cfs)

Runoff generated in this basin will sheet flow across existing topography and flow in the existing roadside ditches along Old Stagecoach Road to the east until eventually flowing to the north under the road through a proposed public dual 36-inch culvert. Runoff from this basin is anticipated to be collected in a future detention pond that is to be built with the future filing to the north of Filing No. 4. Before this future filing is constructed and the detention pond is functioning, the combined discharge from Basin F2 and F3 will be collected in a temporary sediment basin to the north. Runoff will outfall from the proposed culvert and follow natural tertiary swales before being collected in the temporary sediment basin located to the north of Old Stagecoach Road.

Proposed Basin G1: 2.55 acres, residential (2.5 acre lots) (Q₅ = 1.7 cfs, Q₁₀₀ = 6.8 cfs)

Runoff from this basin will sheet flow over existing topography through proposed 2.5-acre lots. The runoff will follow existing drainage patterns and sheet flow to the east and be collected in an existing tertiary swale in Basin G2. This area is included in the large lot exclusion (ECM I.7.1.B.5) and are excluded from water quality treatment requirements.

Proposed Basin G2: 4.42 acres, roadway (minor arterial) ($Q_5 = 1.3$ cfs, $Q_{100} = 9.7$ cfs)

Runoff in from this basin is generated on existing ground cover. The runoff will follow existing drainage patterns and travel shallow concentrated flow through an existing tertiary swale to an existing stock pond that has no records or design plans. Runoff will continue to an existing private channel represented as D-D on the plans.

Proposed Basin H1: 5.20 acres, residential (2.5 acre lots) (Q₅ = 3.4 cfs, Q₁₀₀ = 13.9 cfs)

Runoff generated in this basin sheet flows from west to east through proposed 2.5 acre-lots and travels shallow concentrated flow in the proposed roadside ditches on the west side of Rubble Drive. The flows are directed to the east under Rubble Drive through a proposed public 18-inch RCP culvert (Culvert 5) to

Basin H2. The majority of this basin area is included in the large lot exclusion (ECM I.7.1.B.5) and is excluded from water quality treatment requirements. 0.28 acres of this basin is roadway grading and is also excluded from the water quality volume standard (ECM I.7.1.C.1) as the total area from Basin H1 and Basin H2 leaving the site is less than 1 acre.

Proposed Basin H2: 14.46 acres, residential (2.5 acre lots) ($Q_5 = 9.1$ cfs, $Q_{100} = 37.5$ cfs)

Runoff generated in this basin sheet flows through 2.5-acre lots and travels shallow concentrated flow in an existing private channel represented as section C-C on the plans. The majority of this basin area is included in the large lot exclusion (ECM I.7.1.B.5) and is excluded from water quality treatment requirements. 0.28 acres of this basin is roadway grading and is also excluded from the water quality volume standard (ECM I.7.1.C.1) as the total area from Basin H1 and Basin H2 leaving the site is less than 1 acre.

Proposed Basin H3: 36.80 acres, roadway (minor arterial) (Q₅ = 9.1 CFS, Q₁₀₀ = 66.9 CFS)

Runoff generated in this basin is offsite flow collected in an existing private channel that captures all the flows from Basins G1 and G2 and Basins H1 and H2. This existing channel follows existing drainage patterns and is represented as section D-D on the plan.

Proposed Basin R1: 0.92 acres, undeveloped / roadway ($Q_5 = 2.4$ cfs, $Q_{100} = 4.5$ cfs)

Runoff generated in this basin briefly flows over existing topography through native grass and flows across redeveloped roadway from the south to the north. The existing slopes along the roadway range from 0.5% to 3.0%. The area within this basin is excluded from post-construction stormwater management as defined in the MS4 permit part I E.4.a.i.(B) that states if the site adds less than 1 acre of paved area per mile it is excluded roadway development.

Runoff Comparison of Existing and Proposed Conditions				
Historic Design Point	Proposed Design Point	Historic Q ₁₀₀ (cfs)	Proposed Q ₁₀₀ (cfs)	
A2 + H1	A7	267.4	248.5	
B1+B2+B3+B4	B4	262.7	262.4	
C2+C3+C4	C3	78	73.2	

*Summary of routing included in Appendix D

b. Water Quality and Detention Facilities

There are three Full Spectrum Detention ponds that are proposed within this filing. Full Spectrum Detention (FSD) is a design concept introduced by the Mile High Flood District (MHFD, Urbonas and Wulliman 2005) that provides better control of the full range of runoff rates that pass through detention facilities than the conventional multi-stage concept. This concept also provides some mitigation of increased runoff volumes by releasing a portion of the increased runoff volume at a low rate over an extended period of time. Site detention ponds are designed as FSDs to provide the required volume stages for Water Quality Capture Volume (WQCV), Excess Urban Runoff Volume (EURV), and the 100-year stage (flood control volume). In FSDs, the flood volume is equal to the entire volume and is inclusive of the EURV and the WQCV.

Areas tributary to storage facilities are greater than 5 acres. Therefore, detention volumes have been determined using the CUHP/MHFD SWMM methodology. When multiple basins are tributary to a single pond, basins are first routed together within the SWMM program to develop a combined detention pond inflow hydrograph. The hydrographs were then added to a Mile High Flood District MHFD-Detention workbook for each pond. Then the release curve / estimated outlet condition was adjusted until the desired peak pond outflow was achieved. Once the 100-year peak release rate was confirmed, resultant stage-release curves were transferred back to the prepared SWMMs and re-run to confirm the similar results as found with the MHFD-Detention analysis.

The MHFD-Detention workbook is utilized to design the outlet structures with orifice plates and restrictor plates. The outlet structures and plates are designed to achieve the target release rates of the various stages: WQCV at 40 hours, and EURV and 100-year release rates within the requisite 120 hours, with the goal of being in the range of 52 to 72 hours, as feasible for the runoff conditions. The developed condition outlet flow rates are not to exceed predeveloped conditions, and over-detention is provided within the three ponds to account for sub-basins that drain directly offsite without capture per the existing drainage patterns of the site.

The ponds include the required infrastructure such as concrete forebays, an emergency spillway with riprap weirs, concrete trickle channels, and a 2.5-foot depth micro-pool attached to the outlet structure. Ponds include 15'-20' width maintenance paths with vehicular access to the bottom of pond to access forebays and outlet structures for continued maintenance. The pathways have access from the public right-of-way and proper turning radii and longitudinal and cross slopes for a maintenance vehicle. The ponds include 1.0-foot of freeboard to the emergency spillway berm of the pond with the crest elevation at or above the 100-year water surface elevation. The spillways are sized with a trapezoidal weir for the 100-year inflow with rip-rap prescribed for the outflow velocity as energy dissipation.

The proposed ponds are described below.

Pond A (Design Point A5) provides WQCV and EURV for the stormwater runoff from the A basins and includes over-detention to account for nearby sub-basins that drain directly offsite to ensure that the released stormwater to downstream properties and infrastructure is equal to or less than historical runoff. This is confirmed by comparing the routed peak flows of similar basins in the historic condition, to the routed peak flows inclusive of detention in the developed condition. Both historic and developed SWMM models note this location as O_BASIN_H and modeling results at this location are included in the table below.

The A basins include areas of upstream offsite developed single-family residence RR-5 lots, undeveloped open space area, onsite developed area for proposed 2.5-acre single-family residential lots and rural local residential roadways. The pond includes a minimum 1.0-foot of freeboard to the top of berm and the 100-year water surface elevation is below the crest of the emergency spillway weir.

The MHFD-Detention / SWMM analysis yields the following pond sizing results:

Proposed Pond A

(Ownership and maintenance by the Flying Horse North HOA)

WQCV (ac-ft)	EURV (ac-ft)	100-year / Total Volume (ac-ft)
0.53	0.83	2.23

Pond A hydraulics are summarized in the following table:

	Peak Inflow (cfs)	Design Release / Outflow (cfs)	Time to Drain 99% of Inflow Volume (hrs)	Historic Peak Flowrate at O_BASIN_H	Developed Peak Flowrate at O_BASIN_H
Minor Storm (Q5)	42.5	31.3	52	52	38
Major Storm (Q100)	183.8	156.0	41	267	249

Pond A includes a concrete forebay sized for the required volume of the inflow, a 4-foot width concrete trickle channel with 6" vertical concrete curb, a 2.5-foot depth concrete micro pool, and an outlet structure that is includes a top trash rack, orifice plate, and restrictor plate on the outlet pipe.

Pond B (Design Point B) provides WQCV and EURV for the stormwater runoff from the B basins as well as over-detention of nearby sub-basins that drain directly offsite and converge with the ultimate downstream drainageway that Pond B outfalls to. This is confirmed by comparing the routed peak flows of similar basins in the historic condition, to the routed peak flows inclusive of detention in the developed condition. Both historic and developed SWMM models note this location as O_BASIN_B and modeling results at this location are included in the table below.

It is noted that the B basins include future developed conditions for a future Filing No. 5 so that this future development may be designed and constructed to drain to Pond B with minimal future improvements or retrofits to the pond.

The B basins consist of Filing No. 4 site area for 2.5-acre single-family residential development and local rural residential roadways. The pond includes a minimum 1.0-foot of freeboard to the top of berm and the 100-year water surface elevation is below the crest of the emergency spillway weir.

The MHFD-Detention / SWMM analysis yields the following pond sizing results:

Proposed Pond B

(Ownership and maintenance by the Flying Horse North HOA)

WQCV (ac-ft)	EURV (ac-ft)	100-year / Total Volume (ac-ft)
0.50	0.81	2.17

Pond B hydraulics are described in the following table:

	Peak Inflow (cfs)	Design Release/Outflow (cfs)	Time to Drain 99% of Inflow Volume (hrs)	Historic Peak Flowrate at O_BASIN_B	Developed Peak Flowrate at O_BASIN_B
Minor Storm (Q5)	59.1	49.2	50	58	54
Major Storm (Q100)	247.1	216.0	36	263	262

Pond B includes a concrete forebay sized for the required volume of the inflow, a 4-foot width concrete trickle channel with 6" vertical concrete curb, a 2.5-foot depth concrete micro pool, and an outlet structure that is includes a top trash rack, orifice plate, and restrictor plate on the outlet pipe.

Pond C (Design Point C) provides WQCV and EURV for the stormwater runoff from the C basins as well as over-detention of nearby sub-basins that drain directly offsite and converge with the ultimate downstream drainageway that Pond C outfalls to. This is confirmed by comparing the routed peak flows of similar basins in the historic condition, to the routed peak flows inclusive of detention in the developed condition. Both historic and developed SWMM models note this location as O_BASIN_C and modeling results at this location are included in the table below.

Proposed Pond C

(Ownership and maintenance by the Flying Horse North HOA)

WQCV (ac-ft)	EURV (ac-ft)	100-year / Total Volume (ac-ft)
0.23	0.39	0.90

Pond C hydraulics are described in the following table:

	Peak Inflow (cfs)	Design Release/Outflow (cfs)	Time to Drain 99% of Inflow Volume (hrs)	Historic Peak Flowrate at O_BASIN_C	Developed Peak Flowrate at O_BASIN_C
Minor Storm (Q5)	18.0	10.2	59	19	11
Major Storm (Q100)	69.0	62.4	50	78	73

Pond C includes a concrete forebay sized for the required volume of the inflow, a 4-foot width concrete trickle channel with 6" vertical concrete curb, a 2.5-foot depth concrete micro pool, and an outlet structure that is includes a top trash rack, orifice plate, and restrictor plate on the outlet pipe.

A comparison of the existing conditions as identified in the 2022 MDDP, and proposed conditions releasing off-site from the identified Filing No. 4 boundary into Cherry Creek is provided below to show that the detention being provided on site from the proposed ponds in Filing No. 4 will negate any impact downstream.

Basin ID	Existing Conditions (HRG MDDP 2022)	Proposed Conditions (HRG Filing 4 FDR 2024)
Cherry Creek	371.2 CFS	24.0 CFS

c. Methodology

Design rainfall was determined utilizing Table 6-2 from the City of Colorado Springs Drainage Criteria Manual to determine the 5-year and 100-year rainfall values for the 1-hour events. The 1-hour rainfall depths are 1.5 and 2.52 in/hr respectively.

The proposed development will consist of 48 2.5-acre single-family residential estate lots which are assumed at a percent imperviousness of 11% per the County ECM Table 3-1 Typical Values of Percent Impervious within Appendix L of the ECM which provides guidance for larger rural lot developments. Existing golf course areas are to remain undisturbed and utilize a land use category of "lawn" with a percent imperviousness of 2% per the County ECM Table 6-6 land use table. Composite coefficients, rainfall intensities, and runoff flow rates are calculated on a Rational Method spreadsheet and provided within the Appendix. As discussed previously, the Rational Method used in this report will result in higher peak flow rates for the minor and major storm events as compared to the 2018 Classic Consulting FDR/PDR which utilized the NRCS Curve Number Method. Design points within Filing No. 4 are designed per the findings of this report which utilizes the Rational Method and CUHP/SWMM modeling.

Mile High Flood District (MHFD) UD-BMP Runoff Reduction calculations are provided to demonstrate WQCV reduction for the sub-basins that drain directly offsite, however the sub-basins that drain directly off-site do fall under ECM code I.7.1.B.5, which excludes areas of "large lots" to require water quality.

Areas tributary to storage facilities are greater than 5 acres. Therefore, detention volumes have been determined using the CUHP/MHFD SWMM methodology. When multiple basins are tributary to a single pond, basins are first routed together within the SWMM program to develop a combined detention pond inflow hydrograph. The hydrographs were then added to a MHFD-Detention workbook for each pond. Then the release curve / estimated outlet condition was adjusted until the desired peak pond outflow was achieved. Once the 100-year peak release rate was confirmed, resultant stage-release curves were transferred back to the prepared SWMMs and re-run to confirm the similar results as found with the MHFD-Detention analysis.

The MHFD-Detention workbook is utilized to design the outlet structures with orifice plates and restrictor plates. The outlet structures and plates are designed to achieve the target release rates of the various stages: WQCV at 40 hours, and EURV and 100-year release rates within the requisite 120 hours, with the goal of being in the range of 52 to 72 hours, as feasible for the runoff conditions.

Reference to the 2018 Classic Consulting PDR/FDR set of calculations and spreadsheets is included to demonstrate compliance and consistency with the previously approved report which anticipated similar land uses and basin acreages tributary to existing stormwater facilities.

IV. Hydraulic Analysis

a. Major Drainageways

There are no major drainageways that exist within the development of Filing No. 4; however, small tertiary tributaries are within the site currently and function to convey flows to unnamed tributaries. These tertiary drainage ways are analyzed within this report to assess the water surface elevation within the swales during the 100-year storm event and determine buildability of lots adjacent to these sections. Roadside swales are to be constructed at a minimum to meet the typical roadway section (4:1 for 10' and 3:1 for 9'

resulting in a total swale depth of 2.5'). The roadside swales are assessed along the roadways that capture sub-basins and result in cumulative flow. All of the proposed roadside swales will be installed with lining. The existing channel, labeled as Section A-A on the Drainage Plans will be installed with lining. The proposed tertiary swales label as Section F-F, G-G, H-H, and I-I on the Drainage Plans will also be armored with lining. See Appendix C for all swale and channel lining calculations.

b. Storm Sewer Infrastructure and Culvert Pipes

The Filing No. 4 development consists of rural development with 2.5-acre single family residential estate lots and rural roadway sections with roadside swales. The storm infrastructure within these areas consist of public culvert pipes for roadway crossings and consideration for future public culvert pipes for future driveways for each lot. Culvert calculations and graphics are provided within the Appendix of this report to demonstrate culvert capacities and show any roadway/driveway overtopping as a result of peak flows. The culverts are designed to have full capacity of the minor (5-year) storm event and a maximum of 4" of roadway or driveway pooling during the major (100-year) storm event.

The level spreader located in Basin C3 to disperse concentrated flow from Culvert 12 to sheet flow was designed using the criteria outlined in the Mile High Flood District Criteria Manual, Volume 3. The width of the level spreader was calculated using the 2-year flow from the tributary area in the following equation:

$$W = Q_2 / 0.05$$

A 2-year of 0.9 cfs was used to provide a width of 18 feet. The minimum length of 14 feet was used.

V. Environmental Evaluations

a. Significant Existing or Potential Wetland and Riparian Areas Impacts

As part of this work, the developer has engaged Bristlecone Ecology, LLC to perform environmental studies of the site that will be submitted with the planning documents. These documents have been included in the greater 2016 PUD as well as previous Final Plat filings. Major information in the report concerning wetlands concludes that there is a wetland associated with Black Squirrel Creek. Black Squirrel Creek is known to be a jurisdictional stream. This filing does not include this drainage basin.

At this time, there are no improvements proposed for Black Squirrel Creek. The minimal impact to the stream will keep the natural habitat intact and the natural function of the Creek as it is to maintain the wetland habitat.

b. Stormwater Quality Considerations and Proposed Practices

As part of the development, full spectrum detention facilities will be installed to provide water quality for the development. The facilities are designed using El Paso County criteria and provide stormwater quality by slowing the release of stormwater captured by the ponds and allowing solids to settle out. Additionally, when possible, the existing natural drainage ways will be used to convey stormwater to more closely mimic the natural hydrologic and hydraulic cycle. Some of the drainage ways will be used to convey water to the ponds and others will receive water from the ponds and in both scenarios will provide additional water quality benefits.

On site practices for the estate homes includes direct discharge of roof and hardscape runoff to the surrounding landscaped areas. This would include discharge of the gutters onto landscape areas vs. directly connecting to storm sewer and as discussed above as well using natural ditches and swales where it is logical and makes sense to convey stormwater in lieu of storm sewer piping.

c. Permitting Requirements

When work infringes upon the wetlands or floodplain a 404 Permit will be required. If the work within the waterways is minimal, it will likely be covered under a nationwide 404 permit; it is however possible that an individual permit will be required.

The Colorado Department of Public Health and Environment will require permits for any disturbance that exceeds 1 acre of land. Should groundwater be encountered, a dewatering permit will also be required.

El Paso County will require an Erosion and Stormwater Quality Control Permit, and any other construction permits required to complete the construction of the site.

Should development occur which affects the floodplain, FEMA will require a permit for work withing the floodplain prior to the commencement of any construction or development within any special flood hazard area (SFHA). If the infrastructure is to be installed within the channel the designer shall route the design through the proper FEMA channels whether that be with a no rise certification or via the CLOMR/LOMR process should a more major improvement within the floodplain be proposed. At this time the project does not propose any direct development within the floodplain, however storm infrastructure will discharge into the existing FEMA channel.

d. 4-Step Process

In accordance with the Engineering Criteria Manual I.7.2.A and DCM V2, this site has implemented the four-step process to minimize adverse impacts of urbanization. The four-step process includes reducing runoff volumes, stabilizing drainageways, treating the water quality capture volume, and considering the need for Industrial Commercial BMPs.

Step 1 – Reducing Runoff Volumes: Disturbed areas on site are routed to one of the three proposed detention ponds on site, Pond A, Pond B, or Pond C. The runoff reduction volumes for the disturbed areas are provided in these ponds. The areas that are not disturbed and drain directly offsite fall within the large lot exclusion under ECM code I.7.1.B.5 and are excluded from runoff reduction.

Step 2 – Stabilize Drainageways: The existing tertiary drainage ways are assessed for stormwater runoff capacity, velocity, and shear stress. Any altered drainage ways will be designed in a manner that provides water quality benefits through infiltration and the removal of pollutants via phytoremediation. Vegetation and/or matting will also be selected to stabilize the drainage ways by reducing the velocity of flows and decreasing any scour. These improvements help stabilize drainageways and minimize erosion and sediment runoff. Roadside ditches are stabilized swales by way of compaction per the roadway typical section and are also prescribed any required seeding, erosion control blanketing, and/or matting.

Step 3 – Provide WQCV: Runoff from this development is treated through capture and slow release of the WQCV via detention ponds that are designed per current El Paso County DCM V2 and the MHFD. Proposed ponds A, B and C provide WQCV for their respective tributary basins. 77% of the site includes disturbed areas that are routed through the proposed detention ponds and outfall to the East Cherry

Creek Basin. 23% of the site is not disturbed and flows directly offsite. These areas are not tributary to a detention pond have been proven to be excluded from WQCV requirements as they fall under the "large lot" exclusion 1.7.1.B.5 of the El Paso County ECM. While runoff reduction is not required for these areas, it is being provided with well managed stormwater practices. The areas that fall under the exclusion under 1.7.1.B.5 of the El Paso County ECM may not exceed 10 percent imperviousness unless a study specific to the watershed and/or MS4 shows that expected soil and vegetation conditions are suitable for infiltration/filtration of the WQCV for a typical site, and the permittee accepts such study as applicable with the MS4 boundaries. The maximum total lot impervious covered under this exclusion shall be 20 percent. 1 acre of disturbed area on site is excluded from water quality treatment per El Paso County ECM I.7.1.C.1 and flows directly off site. There are 2.30 acres of disturbed area that runs directly offsite and is not included under the exclusion 1.7.1.B.5 or 1.7.1.C.1. This area is identified as Separate Pervious Areas (SPA) and does not receive runoff from impervious areas. Additionally, 0.92 acres of disturbed area along Black Forest Road is excluded from water quality treatment as defined in the MS4 permit part I E.4.a.i.(B) that states if the site adds less than 1 acre of paved area per mile it is excluded roadway development.

Step 4 – Consider the need for Industrial and Commercial BMP's: A site specific storm water quality and erosion control plan and narrative will be prepared with subsequent land use approvals prepared in conjunction with the report prior to any construction. Site specific temporary source control BMPs as well as permanent BMPs are detailed in this plan and narrative. Guidelines detailed in the El Paso DCM V2 4.2 pertaining to the covering and storage handline and spill containment and control shall be followed as necessary. This filing does not contain any commercial or industrial land use.

VI. Drawings

Please refer to the appendices for the Vicinity Map, FEMA Floodplain Map, NRCS Soils Map, hydrology and hydraulic calculations, and drainage basin maps. Reference materials from previously approved reports are included in the appendix including the 2018 Classic Consulting FDR/PDR calculations and drainage maps.

VII. Drainage and Bridge Fees

The East Cherry Creek Basin does not currently have a Drainage Basin Fee.

VIII. Permanent Control Measure Cost Estimates

There are three (3) permanent, private full-spectrum detention ponds within Filing No. 4. A cost estimate of the construction and infrastructure for each respective pond is provided below and reflected in the Financial Assurances Estimate for the filing.

Pond A - Cost Estimate for Permanent Control Measure								
Item (All Private)	Quantity	Unit	\$/Unit		Tota	al		
Earthwork (Cut)	2860	CY	\$	8.00	\$	22,880.00		
Earthwork (Fill)	6930	CY	\$	5.00	\$	34,650.00		
Maintenance Access Path	850	LF	\$	15.00	\$	12,750.00		
Concrete Rundown	955	SF	\$	20.00	\$	19,100.00		

Forebay (w/ walls, baffle wall, rebar)	990	SF	\$ 25.00	\$ 24,750.00
Rip-Rap *	485	CY	\$ 55.00	\$ 26,669.50
Trickle Channel	305	LF	\$ 20.00	\$ 6,100.00
Outlet Structure **	1	EA	\$ 27,500.00	\$ 27,500.00
Outlet Pipe (69.8 LF of 54" RCP)	69.8	LF	\$ 320.00	\$ 22,336.00
Outlet Pipe FES (54")	1	EA	\$ 1,920.00	\$ 1,920.00
			TOTAL	\$ 198,655.50

Notes:

* Rip-Rap cost item includes forebay rip-rap, emergency spillway rip-rap, and outlet pipe outfall rip-rap. Excludes site rip-rap (swales to rundown). Includes all quantities for respective sizes and types (43.1 CY of D_{50} =9", 441.8 CY of D_{50} =18"). \$/Unit is the weighted cost.

** Outlet Structure cost item includes micropool, trash rack, orifice plate, restrictor plate.

Pond B - Cost Estimate for Permanent Control Measure								
Item (All Private)	Quantity	Unit	\$/U	nit	Total			
Earthwork (Cut)	6826	CY	\$	5.00	\$	34,130.00		
Earthwork (Fill)	5744	CY	\$	6.00	\$	34,464.00		
Maintenance Access Path	435	LF	\$	15.00	\$	6,525.00		
Concrete Rundown	1240	SF	\$	20.00	\$	24,800.00		
Forebay (w/ walls, baffle wall, rebar)	900	SF	\$	25.00	\$	22,500.00		
Rip-Rap *	392	CY	\$	52.50	\$	20,564.25		
Trickle Channel	208	LF	\$	20.00	\$	4,160.00		
Outlet Structure **	1	EA	\$	32,500.00	\$	32,500.00		
Outlet Pipe (61 LF of 60" RCP)	61.0	LF	\$	374.00	\$	22,814.00		
Outlet Pipe FES (60")	1	EA	\$	2,244.00	\$	2,244.00		
				TOTAL	\$	204,701.25		

Notes:

* Rip-Rap cost item includes forebay rip-rap, emergency spillway rip-rap, and outlet pipe outfall rip-rap. Excludes site rip-rap (swales to rundown). Includes all quantities for respective sizes and types (47.2 CY of D_{50} =9", 344.5 CY of D50=18"). \$/Unit is the weighted cost.

** Outlet Structure cost item includes micropool, trash rack, orifice plate, restrictor plate.

Pond C - Cost Estimate for Permanent Control Measure								
Item (All Private)	Quantity	Unit	\$/U	nit	Total			
Earthwork (Cut)	15155	CY	\$	5.00	\$	75,775.00		
Earthwork (Fill)	4756	CY	\$	6.00	\$	28,536.00		
Maintenance Access Path	800	LF	\$	15.00	\$	12,000.00		
Concrete Rundown	715	SF	\$	20.00	\$	14,300.00		
Forebay (w/ walls, baffle wall, rebar)	430	SF	\$	25.00	\$	10,750.00		
Rip-Rap *	268	CY	\$	50.00	\$	13,405.00		
Trickle Channel	290	LF	\$	20.00	\$	5,800.00		
Outlet Structure **	1	EA	\$	17,250.00	\$	17,250.00		
Outlet Pipe (46.2 LF of 36" RCP)	46.2	LF	\$	151.00	\$	6,976.20		
Outlet Pipe FES (36")	1	EA	\$	906.00	\$	906.00		
TOTAL \$ 185								

Notes:

* Rip-Rap cost item includes forebay rip-rap, emergency spillway rip-rap, and outlet pipe outfall rip-rap. Excludes site rip-rap (swales to rundown). Includes all quantities for respective sizes and types (43.1 CY of D_{50} =9", 5.6 CY of D_{50} =12", 223.6 CY of D_{50} =18") \$/Unit is the weighted cost.

** Outlet Structure cost item includes micropool, trash rack, orifice plate, restrictor plate.

All pond infrastructure is private and is owned and maintained by the Flying Hose North Metropolitan District per their respective Tract ownership and maintenance assigns. All private infrastructure within these permanent control measure cost estimates are not included in Section 2 Public Improvements within the Financial Assurances Estimate form for the filing. The total of the permanent control measure financial assurances is included within Section 1 – Grading and Erosion Control (Construction and Permanent BMP's) as an added line item to represent each pond and its respective cost.

IX. Summary

Flying Horse North Filing No. 4 is a 175.8-acre single-family residential estate lot development area that will contain paved roadways and roadside ditch sections and three Full Spectrum Detention ponds.

Pond B accounts for future development within Filing No. 5, anticipated to consist of local rural residential roadways within 60' public rights-of-way and single-family residential estate lots of 2.5 acres FSDs are proposed to provide water quality and detention to release the stormwater at or below historical rates.

The Filing No. 4 final design is assessed for stormwater capacity of roadway sections, roadside swales and the existing tertiary drainage ways to ensure that development of the 2.5-acre single-family residential estate lots will not be negatively impacted by drainage conditions, including existing and proposed altered areas for the roadway and lot construction phases.

All County and MHFD drainage design standards are met. It is anticipated that there will be no negative impacts to downstream and surrounding developments and facilities due to the development of Filing No. 4.

X. References

El Paso County – Drainage Criteria Manual, 2014

City of Colorado Springs - Drainage Criteria Manual, May 2014

Urban Storm Drainage Criteria Manual, Urban Drainage Flood Control District, January 2018

Mile High Flood District Urban Storm Drainage Criteria Manual Volumes 1, 2, and 3; latest revisions

Mile High Flood District Software Resources and Tools (MHFD-Detention, UD-Inlet, UD-BMP)

United States Department of Agriculture National Resources Conservation Service Rock Chute Design Data Spreadsheet

Preliminary Drainage Report for Flying Horse North Preliminary Plan and Final Drainage Report for Flying Horse North Filing No. 1, Classic Consulting Engineers and Surveyors, November 2017

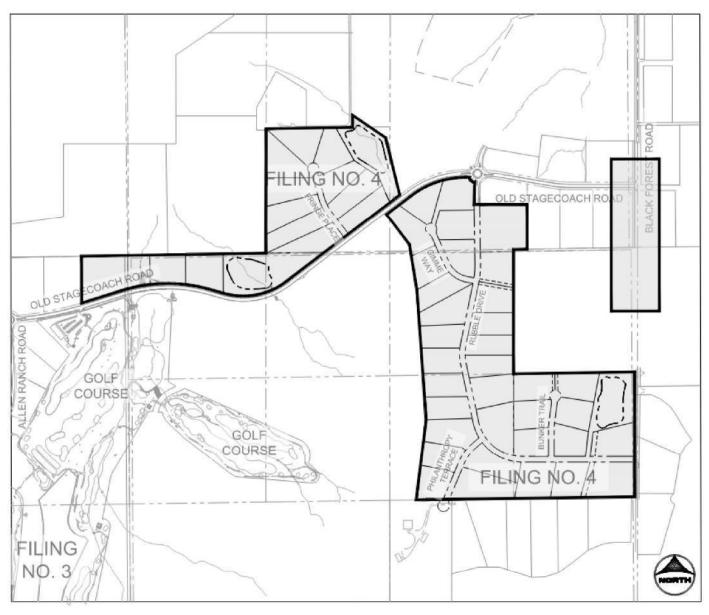
Flying Horse North Master Development Drainage Plan, HR Green Development, LLC., September 2022

Flying Horse North Irrigation Reservoir Embankment Design Report, Classic Consulting Engineers and Surveyors, latest revision June 2018, County approved on September 25, 2018

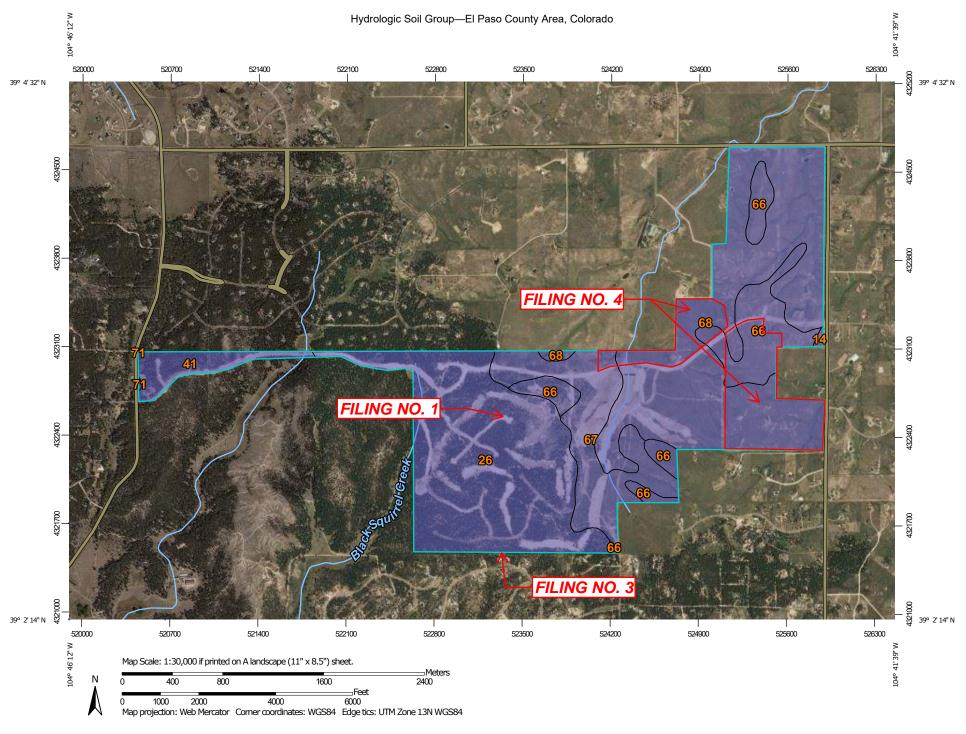
Black Squirrel Drainage Basin Planning Study (DBPS), URS Consultants, January 1989

Flying Horse North Filing No. 3 Final Drainage Report Project No.: 211030.20

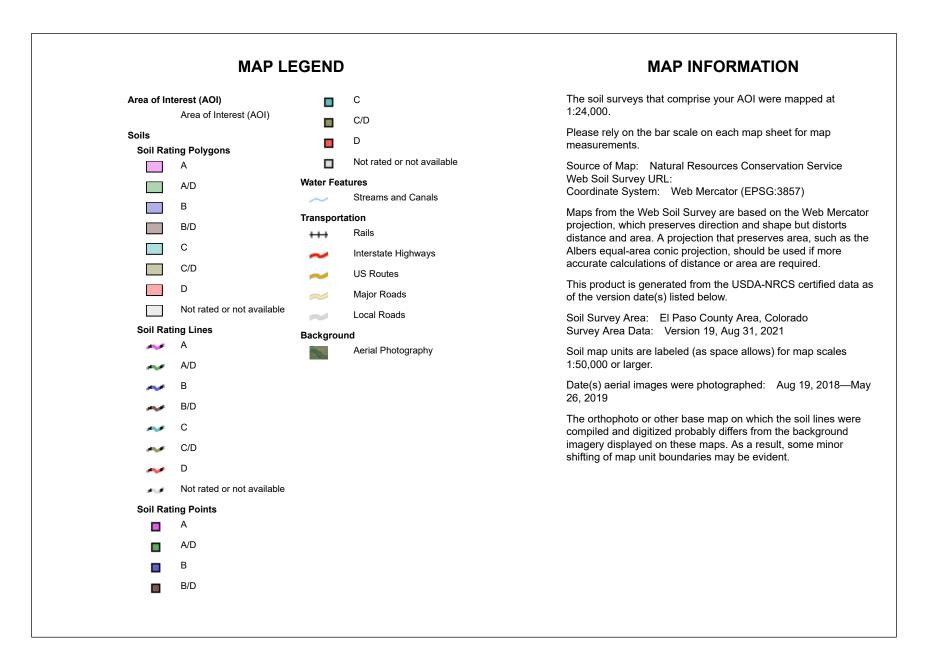
El Paso County, Colorado


APPENDIX A

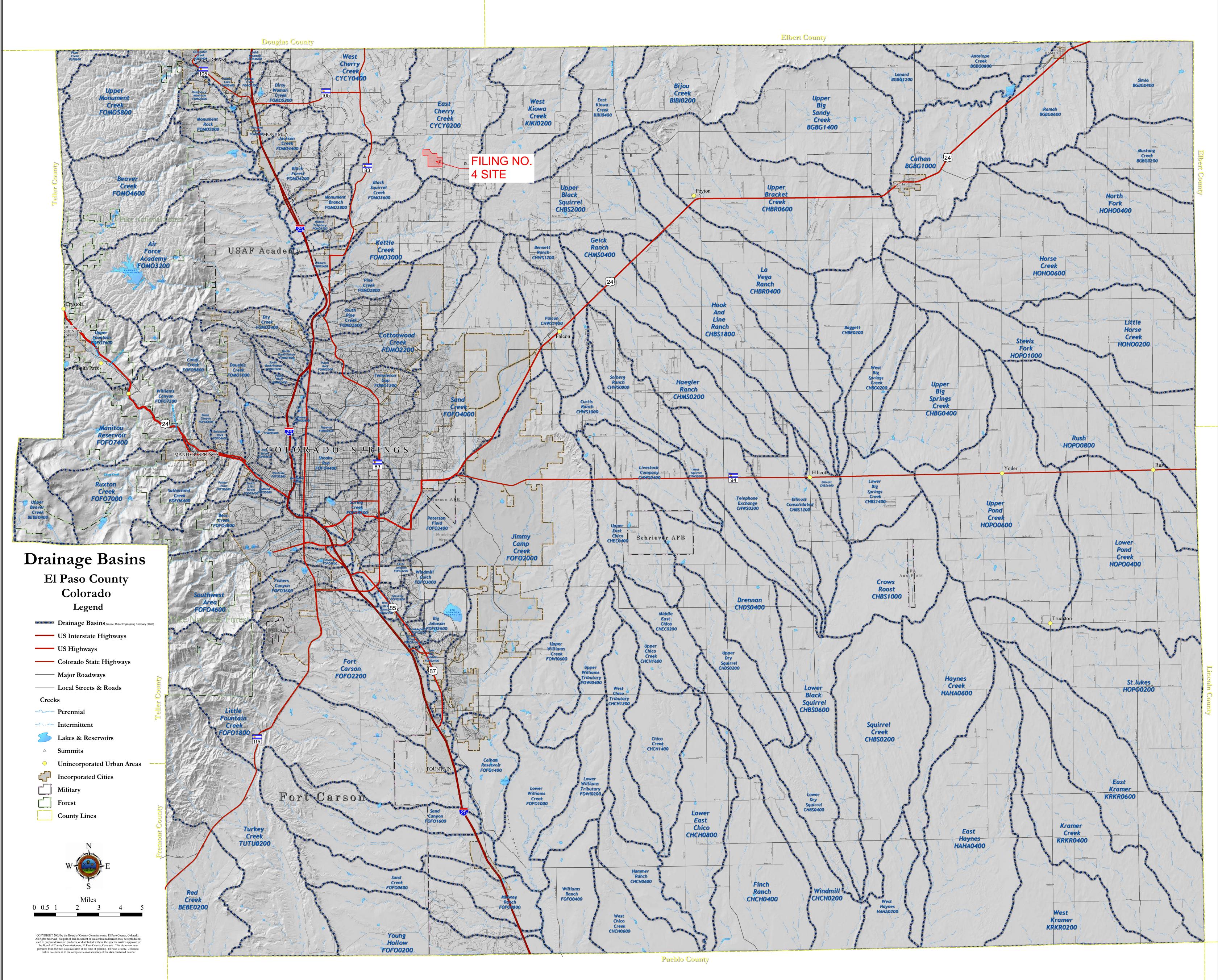
VICINITY MAP NRCS SOILS MAP FEMA FLOODPLAIN MAP EL PASO COUNTY MAJOR DRAINAGE BASINS MAP


VICINITY MAP

FLYING HORSE NORTH FILING NO. 4


A PORTION OF SECTION 36, TOWNSHIP 11 SOUTH, RANGE 66 WEST OF THE SIXTH PRINCIPAL MERIDIAN COUNTY OF EL PASO, STATE OF COLORADO

NO SCALE



USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
14	Brussett loam, 1 to 3 percent slopes	В	1.9	0.1%
26	Elbeth sandy loam, 8 to 15 percent slopes	В	474.2	33.7%
41	Kettle gravelly loamy sand, 8 to 40 percent slopes	В	53.4	3.8%
66	Peyton sandy loam, 1 to 5 percent slopes	В	160.9	11.4%
67	Peyton sandy loam, 5 to 9 percent slopes	В	182.8	13.0%
68	Peyton-Pring complex, 3 to 8 percent slopes	В	533.4	37.9%
71	Pring coarse sandy loam, 3 to 8 percent slopes	В	0.6	0.0%
Totals for Area of Inter	rest		1,407.3	100.0%

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or **floodways** have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Sillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whiche/oot elevations. These BFEs are intended for flood elevation, Information, decordingly and elouid not be used as the cella service of flood elevation. hould not be used as the sole source of flood elevation information. Accordingly flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North Coastal Base Flood Elevations shown on this map apply only landward of 0.0 North American Vertical Datum of 1998 (NAVB8). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM. this FIRM

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway withs and other pertinent floodway data are provided in the Flood Insurance Study report for his jurisdiction

Certain areas not in Special Flood Hazard Areas may be protected by flood contro structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The **projection** used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The **horizontal datum** was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1928 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following ddress:

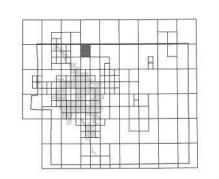
NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highwa Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for **bench mari** shown on this map, please contact the information Services Branch of the Nation Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by EI Paso County, Colorado Springs Utilities, City of Fountain, Bureau of Land Management, National Oceanic and Atmospheric Administration, United States Geological Survey, and Anderson Consulting Engineers, Inc. These data are current as of 2006.

This map reflects more detailed and up-to-date stream channel configurations and This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplain delineations than those shown on the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

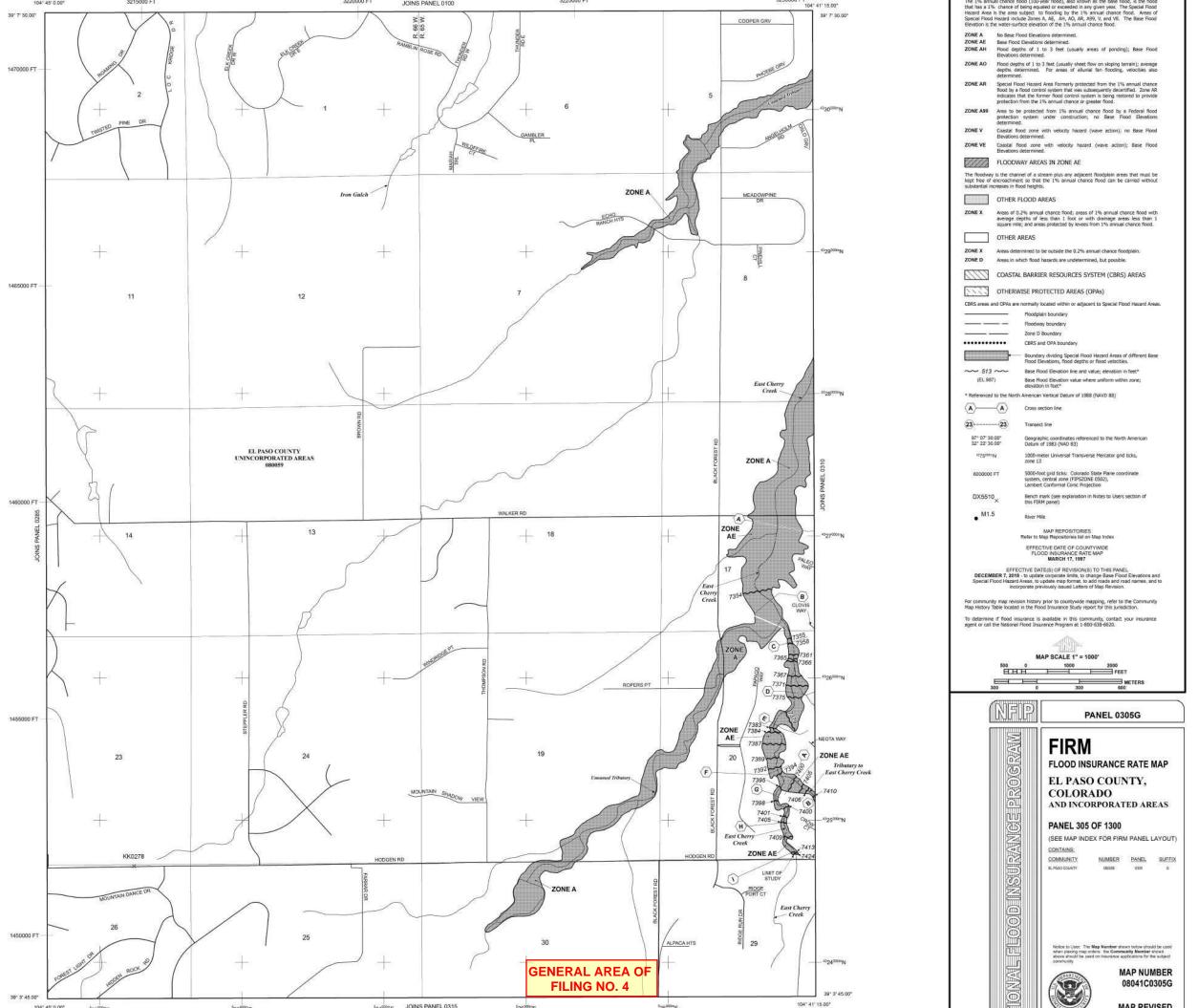
Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate mmunity officials to verify current corporate limit locations.


Please refer to the separately printed Map Index for an overview map of the count Isolwing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is

Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2827 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website at bitr/utwow mee fena onu? also be reached by http://www.msc.fema.gov/.

If you have **questions about this map** or questions concerning the National Flood Insurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

	Vertical Datum
Flooding Source	Offset (ft)
REFER TO SECTION 3 3 OF THE EL	PASO COUNTY FLOOD INSURANCE STUD
	CAL DATUM CONVERSION INFORMATION



This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Additional Flood Hazard information and resources and available from local communities and the Colorad Water Conservation Board.

5× 4000mm JOINS PANEL 0315 * 45' n on

104" 41' 15.00*

MAD REVISED

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The horizontal datum was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website a http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12

National Geodetic Survey SSMC-3, #9202 1315 East-West Highway

Silver Spring, MD 20910-3282

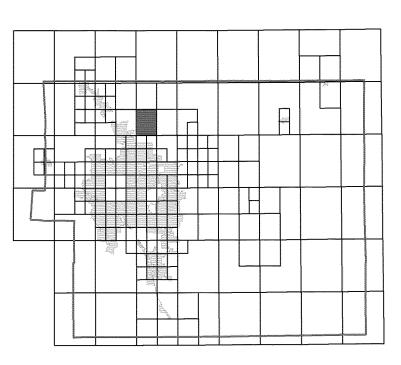
To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by EI Paso County, Colorado Springs Utilities, City of Fountain, Bureau of Land Management, National Oceanic and Atmospheric Administration, United States Geological Survey, and Anderson Consulting Engineers, Inc. These data are current as of 2006.

This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

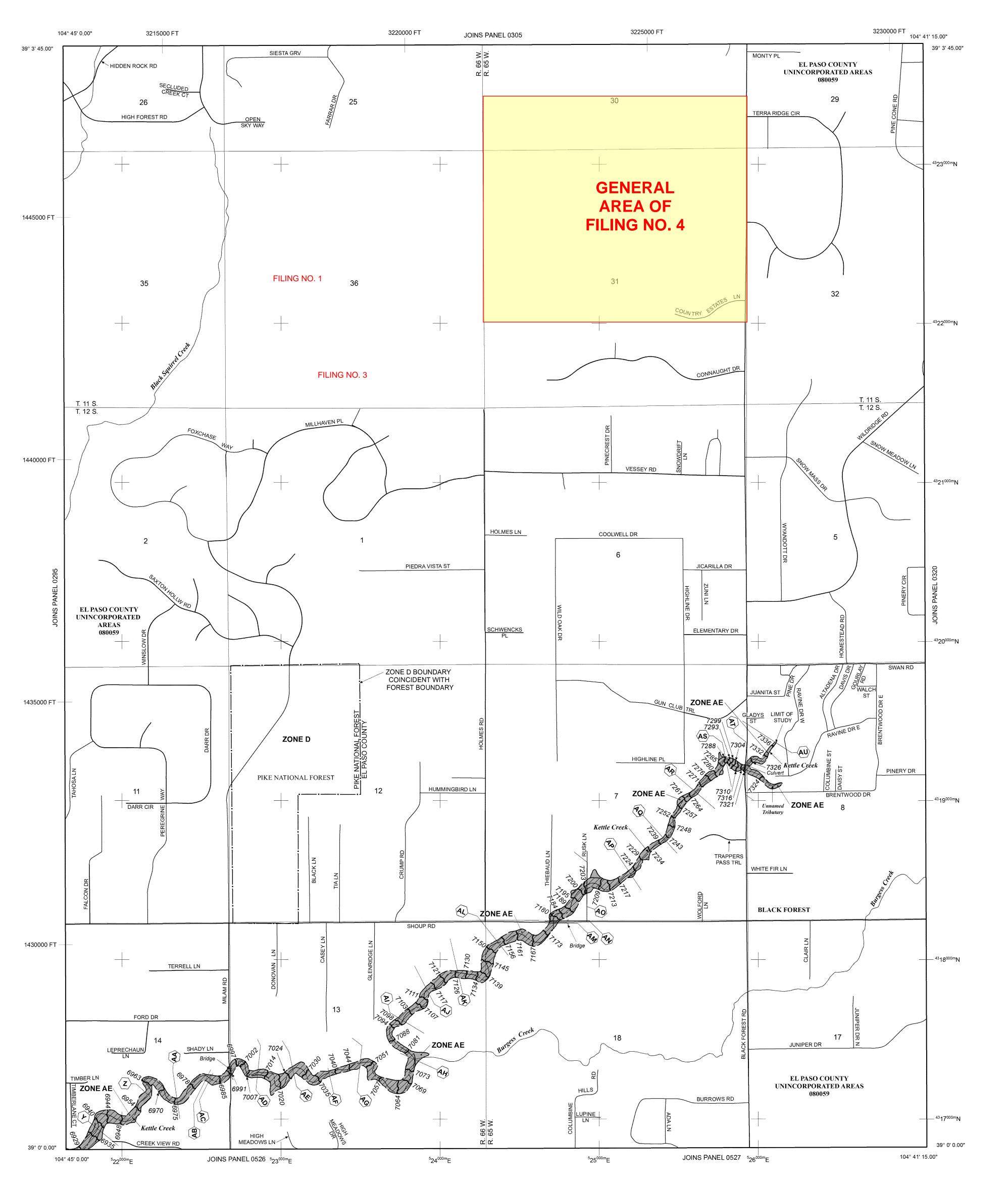
Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.


Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website a http://www.msc.fema.gov/.

If you have questions about this map or questions concerning the National Flood Insurance Program in general, please call 1-877-FEMA MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

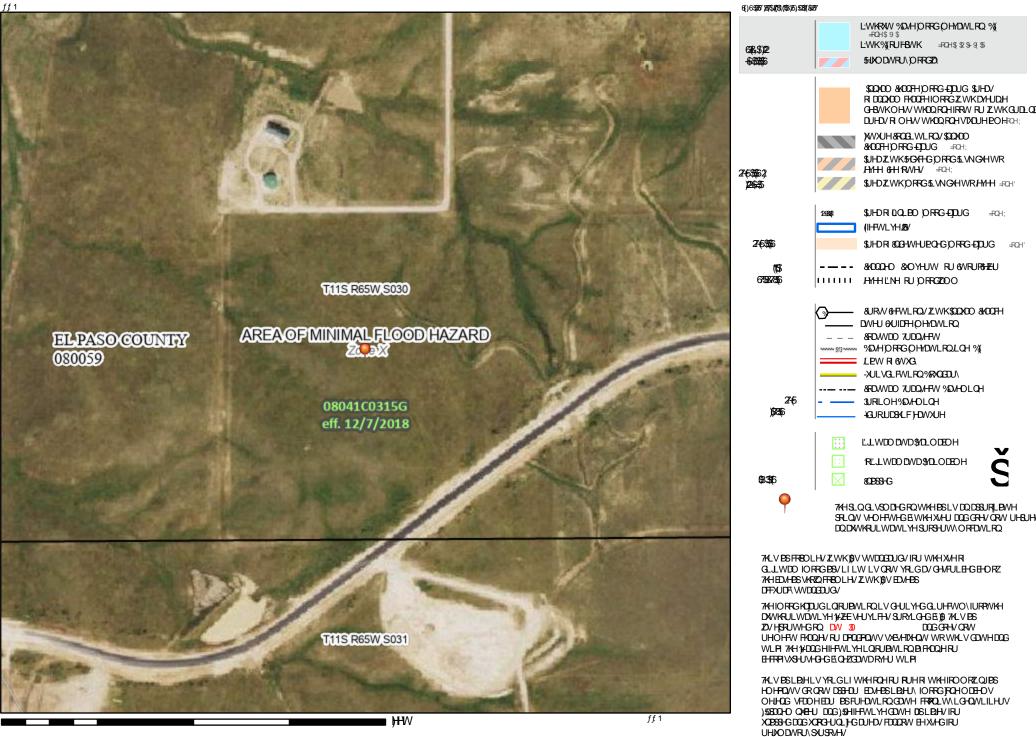
El Paso County Vertical Datum Offset Table **Vertical Datum** Flooding Source Offset (ft)

REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION


Panel Location Map

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

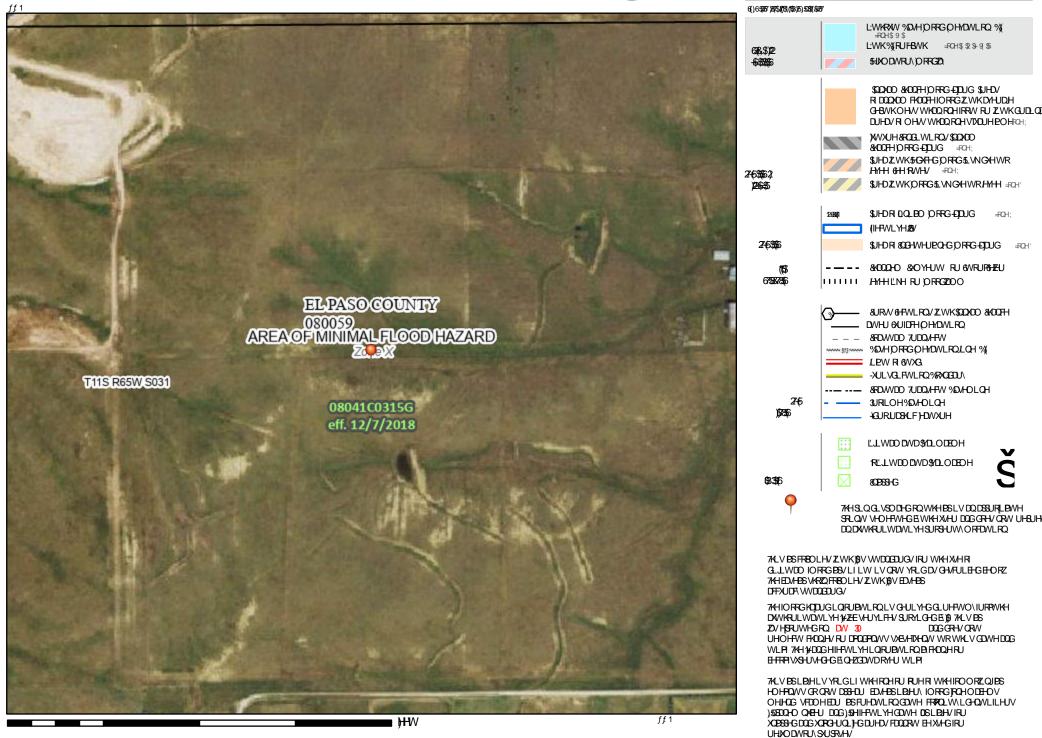


	LEGEND FLOOD HAZARD AREAS (SFHAS) SUBJECT TO
The 1% annual chance floo that has a 1% chance of b	ION BY THE 1% ANNUAL CHANCE FLOOD od (100-year flood), also known as the base flood, is the flood leing equaled or exceeded in any given year. The Special Flood ubject to flooding by the 1% annual chance flood. Areas of
Special Flood Hazard includ Elevation is the water-surfa	ie Zones A, AE, AH, AO, AR, A99, V, and VE. The Base Flood ce elevation of the 1% annual chance flood.
ZONE AEBase Flood IZONE AHFlood depth	od Elevations determined. Elevations determined. ns of 1 to 3 feet (usually areas of ponding); Base Flood
depths dete	s of 1 to 3 feet (usually sheet flow on sloping terrain); average ermined. For areas of alluvial fan flooding, velocities also
flood by a f	d Hazard Area Formerly protected from the 1% annual chance lood control system that was subsequently decertified. Zone
provide prot ZONE A99 Area to be	s that the former flood control system is being restored to rection from the 1% annual chance or greater flood. protected from 1% annual chance flood by a Federal flood
determined. ZONE V Coastal floo	d zone with velocity hazard (wave action); no Base Flood
Elevations d ZONE VE Coastal floo Elevations d	od zone with velocity hazard (wave action); Base Flood
	AY AREAS IN ZONE AE el of a stream plus any adjacent floodplain areas that must be
	so that the 1% annual chance flood can be carried without
ZONE X Areas of 0.2	OOD AREAS
square mile;	oths of less than 1 foot or with drainage areas less than 1 and areas protected by levees from 1% annual chance flood.
ZONE X Areas determ	REAS mined to be outside the 0.2% annual chance floodplain.
	ch flood hazards are undetermined, but possible. BARRIER RESOURCES SYSTEM (CBRS) AREAS
	ISE PROTECTED AREAS (OPAs)
CBRS areas and OPAs are r	normally located within or adjacent to Special Flood Hazard Areas. Floodplain boundary
	Floodway boundary Zone D Boundary
•••••	CBRS and OPA boundary Boundary dividing Special Flood Hazard Areas of different Base
~~~ 513 ~~~	Flood Elevations, flood depths or flood velocities. Base Flood Elevation line and value; elevation in feet*
(EL 987) * Referenced to the North A	Base Flood Elevation value where uniform within zone; elevation in feet* American Vertical Datum of 1988 (NAVD 88)
	Cross section line
<b>2323</b> 97° 07' 30.00"	Transect line Geographic coordinates referenced to the North American
32° 22' 30.00" 4275 ^{000m} N	Datum of 1983 (NAD 83) 1000-meter Universal Transverse Mercator grid ticks,
6000000 FT	zone 13 5000-foot grid ticks: Colorado State Plane coordinate system, central zone (FIPSZONE 0502),
DX5510 ×	Lambert Conformal Conic Projection Bench mark (see explanation in Notes to Users section of this FIRM panel)
• M1.5	River Mile
F	MAP REPOSITORIES Refer to Map Repositories list on Map Index
	EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP MARCH 17, 1997
DECEMBER 7, 2018 - Special Flood Hazard A	TIVE DATE(S) OF REVISION(S) TO THIS PANEL to update corporate limits, to change Base Flood Elevations and reas, to update map format, to add roads and road names, and to orate previously issued Letters of Map Revision.
	n history prior to countywide mapping, refer to the Community n the Flood Insurance Study report for this jurisdiction.
	rance is available in this community, contact your insurance lood Insurance Program at 1-800-638-6620.
500	MAP SCALE 1" = 1000' 0 1000 2000
	Image: Contract of the second secon
MAN	FIRM
	FLOOD INSURANCE RATE MAP
XOR:	EL PASO COUNTY, COLORADO
	AND INCORPORATED AREAS
	PANEL 315 OF 1300
NE	(SEE MAP INDEX FOR FIRM PANEL LAYOUT)
	COMMUNITY         NUMBER         PANEL         SUFFIX           EL PASO COUNTY         080059         0315         G
	Notice to User: The <b>Map Number</b> shown below should be used when placing map orders: the <b>Community Number</b> shown above should be used on insurance applications for the
	Shown above should be used on insulance applications for the subject community.
AME	08041C0315G
	MAP REVISED DECEMBER 7, 2018
	DECEMIDER 7, 2010 Federal Emergency Management Agency

# DWLRODO ØRRGEDUGDHU )51WWH



### HHOG




%DMH25, PUHU\6RXUFH 865 DWLRODO DS

# DWLRODO ØRRGEDUGDHU )51WWH



### HHOG



%DVHBS, BUHU\ 6RXUFH 886 10WL RODO DS

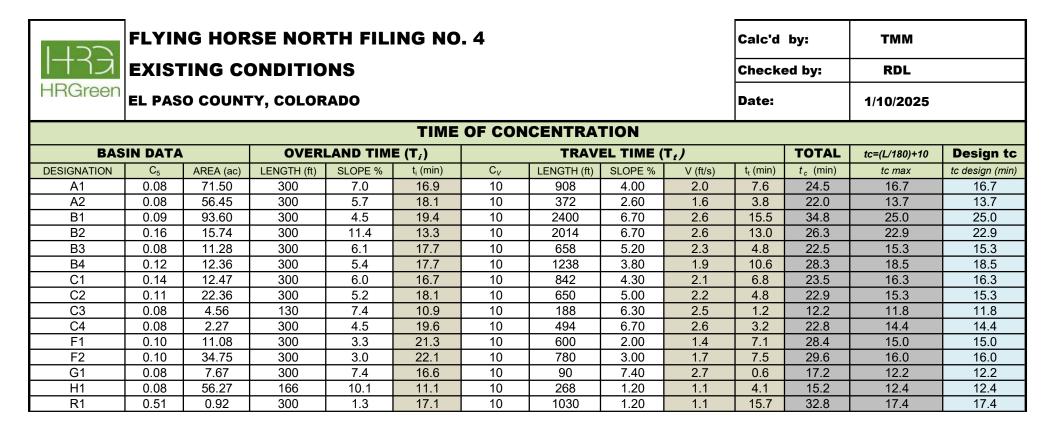


Flying Horse North Filing No. 4 Final Drainage Report Project No.: 211030

El Paso County, Colorado

# **APPENDIX B**

# **HYDROLOGY CALCULATIONS**




Flying Horse North Filing No. 3 Final Drainage Report Project No.: 211030.20

El Paso County, Colorado

# RATIONAL METHOD CALCULATIONS – EXISTING CONDITIONS

			FLYING H	ORSE NORT	'H FILI	NG NO. 4	L						Calc'd	by:					тмм	
			EXI	STING CON	DITIO	NS						<u>c</u>	hecke	d by:					RDL	
HRGreen		COLORAI	00							Date						1/11/2025	5			
					COMP	OSITE 'C'	FAC	TORS	5											
	GOLF COURSE /		RESIDENTIAL	RESIDENTIAL			GOL	F COU	RSE /			R	SIDE	TIAL	RES	SIDEN	TIAL	C	OMPOSIT	E
BASIN	UNDEVELOPED	ROADWAY	(2.5 AC LOT)	(5.0 AC LOT)	TOTAL	SOIL TYPE	UND	EVELO	OPED	RO	ADWA	(2	.5 AC	LOT)	(5.0	0 AC L	.от)	IMPER	VIOUSNE	SS & C
		•	ACRES			1	%	<b>C</b> ₅	<b>C</b> ₁₀₀	%	C ₅ C ₁	oo %	C ₅ *	C ₁₀₀ *	%	<b>C</b> ₅ *	C ₁₀₀ *	%I	C ₅	C ₁₀₀
A1	71.50	0.00	0.00	0.00	71.50	В	2	0.08	0.35		0.90 0.		0.17	0.42	7	0.14	0.39	2.0	0.08	0.35
A2	56.45	0.00	0.00	0.00	56.45	В	2	0.08	0.35	100	0.90 0.	96 11	0.17	0.42	7	0.14	0.39	2.0	0.08	0.35
B1	92.08	1.53	0.00	0.00	93.60	В	2	0.08	0.35	100	0.90 0.	96 11	0.17	0.42	7	0.14	0.39	3.6	0.09	0.36
B2	14.25	1.49	0.00	0.00	15.74	В	2	0.08	0.35	100	0.90 0.	96 11	0.17	0.42	7	0.14	0.39	11.3	0.16	0.41
B3	11.28	0.00	0.00	0.00	11.28	В	2	0.08	0.35	100	0.90 0.	96 11	0.17	0.42	7	0.14	0.39	2.0	0.08	0.35
B4	11.73	0.63	0.00	0.00	12.36	B	2	0.08	0.35	100	0.90 0.	96 11	0.17	0.42	7	0.14	0.39	7.0	0.12	0.38
C1	11.53	0.94	0.00	0.00	12.47	В	2	0.08	0.35		0.90 0.		0.17	0.42	7	0.14	0.39	9.4	0.14	0.40
C2	21.42	0.94	0.00	0.00	22.36	В	2	0.08	0.35		0.90 0.		0.17	0.42	7	0.14	0.39	6.1	0.11	0.38
C3	4.56	0.00	0.00	0.00	4.56	В	2	0.08	0.35	100	0.90 0.	96 11	0.17	0.42	7	0.14	0.39	2.0	0.08	0.35
C4	2.27	0.00	0.00	0.00	2.27	В	2	0.08	0.35		0.90 0.		0.17	0.42	7	0.14	0.39	2.0	0.08	0.35
F1	10.80	0.28	0.00	0.00	11.08	В	2	0.08	0.35		0.90 0.		0.17	0.42	7	0.14	0.39	4.5	0.10	0.37
F2	34.08	0.67	0.00	0.00	34.75	В	2	0.08	0.35		0.90 0.		0.17	0.42	7	0.14		3.9	0.10	0.36
G1	7.67	0.00	0.00	0.00	7.67	В	2	0.08			0.90 0.		0.17	0.42	7	0.14		2.0	0.08	0.35
H1	56.27	0.00	0.00	0.00	56.27	В	2	0.08	0.35		0.90 0.		0.17	0.42	7	0.14	0.39	2.0	0.08	0.35
R1	0.44	0.49	0.00	0.00	0.92	В	2	0.08	0.35	100	0.90 0.	96 11	0.17	0.42	10	0.14	0.39	53.7	0.51	0.67
GRAND TOTAL	406.32	6.33	0.00	0.00	413.28													3.65%	0.12	0.46



1.1	22	FLY	<b>ING</b>	HORS	SE NO	DRTH F	LINC	G NO.	4	Calc	'd by:	ТММ				
	イゴ		E	XISTI	NG C	ONDIT	ONS			Chec	ked by:	RDL				
	Green		D	ESIGN	I STO	RM: 5-Y	<b>EAR</b>			Da	nte:	1/10/2025				
												3.358889249				
			DI	RECT	RUNO	FF		т	OTAL	RUNO	FF	REMARKS				
DESIGN POINT	BASIN ID	AREA (ac)	C5	t _c (min)	C₅*A (ac)	/ (in./ hr.)	Q (cfs)	t _c (min)	C₅*A (ac)	/ (in./ hr.)	Q (cfs)					
A1	A1	71.50	0.08	16.7	5.72	3.36	19.2					FLOW TO DESIGN POINT A1				
A2	A2	56.45	0.08	13.7	4.52	3.65	16.5	16.7	10.24	3.36	34.4	COMBINED FLOW FROM BASINS A1 AND A2 TO DESIGN POINT A2				
B1	B1	93.60	0.09	25.0	8.74	2.75	24.1	10.7	10.24	3.30	34.4	FLOW TO DEISGN POINT B1				
B2	B2	15.74	0.16	22.9	2.48	2.89	7.2					COMBINED FLOW FROM BASINS B1 AND B2 TO DESIGN POINT B2				
B3	B3	11.28	0.08	15.3	0.90	3.49	3.1	25.0	11.22	2.75	30.9					
 B4	B4	12.36	0.12		1.51	3.20	4.8					FLOW TO DESIGN POINT B3				
												OFFSITE FLOW TO DESIGN POINT B4				
C1	C1	12.47	0.14	16.3	1.77	3.39	6.0					OFFSITE FLOW TO DESIGN POINT C1				
C2	C2	22.36	0.11	15.3	2.56	3.49	8.9	16.3	4.33	3.39	14.7	COMBINED FLOW FROM BASINS C1 AND C2 TO DESIGN POINT C2				
C3	C3	4.56	0.08	11.8	0.36	3.89	1.4	10.0	4.00	0.00	14.7	OFFSITE FLOW TO DESIGN POINT C3				
C4	C4	2.27	0.08	14.4	0.18	3.58	0.7					OFFSITE FLOW TO DESIGN POINT C4				
F1	F1	11.08	0.10	15.0	1.12	3.52	3.9					OFFSITE FLOW TO EXISTING CULVERT AT DESIGN POINT F1				
F2	F2	34.75	0.10	16.0	3.33	3.42	11.4									
												OFFSITE FLOW TO EXISTING CULVERT AT DESIGN POINT F1				
G1	G1	7.67	0.08		0.61	3.83	2.4				FLOW TO DESIGN POINT G1					
H1	H1	56.27	0.08	12.4	4.50	3.81	17.1	12.4	5.12	3.81	COMBINED FLOW FROM BASINS G1 AND H1 TO DESIGN POINT H1					
R1	R1	0.92	0.51	17.4	0.47	3.30	1.6	12.4	0.12	0.01	FLOW TO DPR1					



# FLYING HORSE NORTH FILING NO. 4 Calc'd by: TMM EXISTING CONDITIONS Checked by: RDL DESIGN STORM: 100-YEAR Date: 1/10/2025

			D	IRECT	RUNG	OFF			TOTAL P	RUNOF	F	REMARKS
DESIGN PONT	BASIN ID	AREA (ac)	C ₁₀₀	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	t _e (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	
A1	A1	71.50	0.35	16.7	25.03	5.64	141.1					FLOW TO DESIGN POINT A1
A2	A2	56.45	0.35	13.7	19.76	6.13	121.2	16.7	44.78	8.51	381.1	COMBINED FLOW FROM BASINS A1 AND A2 TO DESIGN POINT A2
B1	B1	93.60	0.36	25.0	33.69	4.62	155.8	10.7	44.70	0.51	301.1	FLOW TO DEISGN POINT B1
B2	B2	15.74	0.41	22.9	6.42	4.85	31.1	05.0	40.44	7.04	047.4	COMBINED FLOW FROM BASINS B1 AND B2 TO DESIGN POINT B2
B3	B3	11.28	0.35	15.3	3.95	5.86	23.1	25.0	40.11	7.91	317.1	FLOW TO DESIGN POINT B3
B4	B4	12.36	0.38	18.5	4.71	5.38	25.3					OFFSITE FLOW TO DESIGN POINT B4
C1	C1	12.47	0.40	16.3	4.94	5.69	28.1					OFFSITE FLOW TO DESIGN POINT C1
C2	C2	22.36	0.38	15.3	8.40	5.86	49.3					
	-							16.3	13.34	8.54	114.0	COMBINED FLOW FROM BASINS C1 AND C2 TO DESIGN POINT C2
C3	C3	4.56	0.35	11.8	1.60	6.52	10.4					OFFSITE FLOW TO DESIGN POINT C3
C4	C4	2.27	0.35	14.4	0.79	6.01	4.8					OFFSITE FLOW TO DESIGN POINT C4
F1	F1	11.08	0.37	15.0	4.05	5.91	23.9					OFFSITE FLOW TO EXISTING CULVERT AT DESIGN POINT F1
F2	F2	34.75	0.36	16.0	12.57	5.75	72.3					OFFSITE FLOW TO EXISTING CULVERT AT DESIGN POINT F1
G1	G1	7.67	0.35	12.2	2.68	6.44	17.3					FLOW TO DESIGN POINT G1
H1	H1	56.27	0.35	12.4	19.69	6.39	125.8					COMBINED FLOW FROM BASINS G1 AND H1 TO DESIGN POINT H1
R1	R1	0.92	0.67	17.4	0.62	5.54	3.4	12.4	22.38	8.96	200.5	FLOW TO DPR1
		0.02	0.01		0.02	0.04	0.1					



Flying Horse North Filing No. 3 Final Drainage Report Project No.: 211030.20

El Paso County, Colorado

# RATIONAL METHOD CALCULATIONS – DEVELOPED CONDITIONS

			FLYING H	ORSE NORT	'H FILI	NG NO. 4	ŀ						Ca	alc'd	by:					тмм				
1772			PRO	POSED CON	DITIO	NS							Ch	ecked	l by:					RDL				
HRGreen			EL F	PASO COUNTY,	COLORAI	00								Date						1/11/2025				
					COMP	OSITE 'C'	FAC'	TORS	\$						- 1									
BASIN	GOLF COURSE / UNDEVELOPED	ROADWAY	RESIDENTIAL (2.5 AC LOT)	RESIDENTIAL (5.0 AC LOT)	TOTAL	SOIL TYPE		[;] COU EVEL(		RO	ADV	IAY		DEN 5 AC I			DEN AC L		IMPER	OMPOSIT /IOUSNE FACTOR				
		•	ACRES	•			%	<b>C</b> ₅	<b>C</b> ₁₀₀	%I	<b>C</b> ₅	<b>C</b> ₁₀₀	<b>%I</b>	<b>C</b> ₅ *	<b>C</b> ₁₀₀ *	%	C ₅ *	<b>C</b> ₁₀₀ *	%I	C ₅	<b>C</b> ₁₀₀			
A1	1.02	0.00	8.55	0.00	9.57	В	2	0.08	0.35	100	0.90	0.96	11	0.17	0.42	7	0.14	0.39	10.0	0.16	0.41			
A2	0.00	0.00	10.79	0.00	10.79	В	2	0.08	0.35	100	0.90	0.96	11	0.17	0.42	7	0.14	0.39	11.0	0.17	0.42			
A3	42.91	0.00	0.00	29.83	72.74	В	2	0.08	0.35	100	0.90	0.96	11	0.17	0.42	7	0.14	0.39	4.1	0.10	0.37			
A4	0.00	0.00	18.39	0.00	18.39	В	2	0.08	0.35				11	0.17	0.42	7	0.14	0.39	11.0	0.17	0.42			
A5	0.00	0.00	6.10	0.00	6.10	В	2	0.08	0.35	100			11	0.17	0.42	7	0.14	0.39	11.0	0.17	0.42			
A6	0.00	0.00	2.76	0.00	2.76	В	2	0.08	0.35				11	0.17	0.42	7	0.14	0.39	11.0	0.17	0.42			
A7	0.00	0.00	8.11	0.00	8.11	В	2	0.08	0.35	100			11	0.17	0.42	7	0.14	0.39	11.0	0.17	0.42			
B1	48.37	0.41	9.00	0.00	57.78	В	2	0.08	0.35			0.96	11	0.17	0.42	7	0.14	0.39	4.1	0.10	0.36			
B2	0.00	0.28	35.49	0.00	35.77	В	2	0.08	0.35				11	0.17	0.42	7	0.14	0.39	11.7	0.18	0.42			
B3	0.00	0.28	0.82	0.00	1.10	В	2	0.08	0.35	100			11	0.17	0.42	7	0.14	0.39	33.7	0.36	0.56			
B4	0.00	0.65	10.35	0.00	11.00	В	2	0.08	0.35				11	0.17	0.42	7	0.14	0.39	16.3	0.21	0.45			
B5	0.00	0.00	10.62	0.00	10.62	В	2	0.08	0.35	100			11	0.17	0.42	7	0.14	0.39	11.0	0.17	0.42			
B6	0.00	0.00	15.96	0.00	15.96	В	2	0.08	0.35	100			11	0.17	0.42	7	0.14	0.39	11.0	0.17	0.42			
C1	4.83	0.40	10.71	0.00	15.94	В	2	0.08	0.35				11	0.17	0.42	7	0.14	0.39	10.5	0.16	0.41			
C2	0.00	0.22	1.76	0.00	1.98	В	2	0.08	0.35			0.96	11	0.17	0.42	7	0.14	0.39	20.9	0.25	0.48			
C3	6.30	0.23	14.86	0.00	21.39	В	2	0.08	0.35					0.17	0.42	7	0.14	0.39	9.3	0.15	0.40			
C4	0.00	0.00	4.31	0.00	4.31	В	2	0.08	0.35	100			11	0.17	0.42	7	0.14	0.39	11.0	0.17	0.42			
C5	0.00	0.00	2.27	0.00	2.27	В	2	0.08	0.35				11	0.17	0.42	7	0.14	0.39	11.0	0.17	0.42			
F1	0.00	0.00	12.18	0.00	12.18	В	2	0.08	0.35				11	0.17	0.42	7	0.14	0.39	11.0	0.17	0.42			
F2	0.00	0.00	13.89	0.00	13.89	В	2	0.08	0.35				11	0.17	0.42	7	0.14	0.39	11.0	0.17	0.42			
F3	16.74	0.00	0.00	0.00	16.74	В	2	0.08	0.35				11	0.17	0.42	8	0.14	0.39	2.0	0.08	0.35			
G1	0.00	0.00	2.55	0.00	2.55	В	2	0.08	0.35			0.96	11	0.17	0.42	/	0.14	0.39	11.0	0.17	0.42			
G2 H1	4.42	0.00	0.00 5.20	0.00	4.42 5.20	B	2	0.08	0.35				11	0.17	0.42	1	0.14	0.39	2.0 11.0	0.08	0.35			
H1 H2	0.00	0.00	5.20	0.00	5.20	B	2	0.08	0.35				11	0.17		7	0.14	0.39	-	0.17	0.42			
<u>н</u> 2 Н3	36.80	0.00	0.00	0.00	36.80	B	2	0.08	0.35				11	0.17	0.42	7	0.14	0.39	11.0 2.0	0.17	0.42			
R1	0.11	0.00	0.00	0.00	0.92	B	2	0.08	0.35			0.96	11 11	0.17	0.42	/ 8	0.14	0.39	2.0	0.08	0.35			
NI.	0.11	0.01	0.00	0.00	0.92	D	2	0.00	0.35	100	0.90	0.90	11	0.17	0.42	0	0.14	0.39	00.0	0.00	0.09			
TOTAL ONSITE	113.97	3.05	171.11	29.83	317.97														8.00%	0.14	0.39			
	44.00	0.00	00.40	0.00	74.00														0.040/	0.40	0.00			

TOTAL ONSITE	113.97	3.05	171.11	29.83	317.97							8.00%	0.14	0.39
TOTAL OFFSITE	41.22	0.00	33.16	0.00	74.38							6.01%	0.12	0.38
GRAND TOTAL	161.49	3.28	219.13	29.83	413.74							7.90%	0.14	0.39



# FLYING HORSE NORTH FILING NO. 4

Calc'd by:	тмм
Checked by:	RDL
Date:	1/10/2025

### **PROPOSED CONDITIONS**

					TIME	OF COM	CENTRA	TION				•	
BAS	IN DATA		OVER		E (T;)		TRAV	EL TIME (	$T_t$		TOTAL	tc=(L/180)+10	Design tc
DESIGNATION	C ₅	AREA (ac)	LENGTH (ft)	SLOPE %	t _i (min)	C _V	LENGTH (ft)	SLOPE %	V (ft/s)	t _t (min)	t _c (min)	tc max	tc design (min)
A1	0.16	9.57	300	7.0	15.6	10	908	4.0	2.0	7.6	23.2	16.7	16.7
A2	0.17	10.79	300	5.7	16.5	10	372	2.6	1.6	3.8	20.4	13.7	13.7
A3	0.10	72.74	300	11.0	14.2	10	2230	4.0	2.0	18.6	32.8	24.1	24.1
A4	0.17	18.39	300	6.3	16.0	10	1115	2.2	1.5	12.5	28.5	17.9	17.9
A5	0.17	6.10	300	7.4	15.2	10	442	7.4	2.7	2.7	17.9	14.1	14.1
A6	0.17	2.76	300	11.0	13.3	10	227	11.4	3.4	1.1	14.4	12.9	12.9
A7	0.17	8.11	300	7.6	15.0	10	317	7.7	2.8	1.9	16.9	13.4	13.4
B1	0.10	57.78	300	4.5	19.2	10	2400	6.7	2.6	15.5	34.7	25.0	25.0
B2	0.18	35.77	300	11.4	13.0	10	2014	6.7	2.6	13.0	26.0	22.9	22.9
B3	0.36	11.00	300	12.0	10.3	10	293	11.6	3.4	1.4	11.8	13.3	11.8
B4	0.21	10.62	300	12.0	12.3	10	844	3.7	1.9	7.3	19.6	16.4	16.4
B5	0.17	10.62	300	6.1	16.2	10	658	5.2	2.3	4.8	21.0	15.3	15.3
B6	0.17	15.96	300	5.4	16.8	10	1238	3.8	1.9	10.6	27.4	18.5	18.5
C1	0.16	15.94	300	6.0	16.4	10	842	4.3	2.1	6.8	23.2	16.3	16.3
C2	0.25	1.98	300	5.2	15.6	10	257	6.0	2.4	1.7	17.3	13.1	13.1
C3	0.15	21.39	300	5.2	17.4	10	650	5.0	2.2	4.8	22.2	15.3	15.3
C4	0.17	4.31	130	7.4	10.0	10	188	6.3	2.5	1.2	11.2	11.8	11.2
C5	0.17	2.27	300	4.5	17.9	10	494	6.7	2.6	3.2	21.1	14.4	14.4
F1	0.17	12.18	300	3.3	19.8	10	600	2.0	1.4	7.1	26.9	15.0	15.0
F2	0.17	13.89	300	3.0	20.5	10	780	3.0	1.7	7.5	28.0	16.0	16.0
F3	0.08	16.74	300	3.0	22.5	10	960	4.0	2.0	8.0	30.5	17.0	17.0
G1	0.17	2.55	300	7.4	15.2	10	90	7.4	2.7	0.6	15.7	12.2	12.2
G2	0.08	4.42	300	6.9	17.0	10	250	6.9	2.6	1.6	18.6	13.1	13.1
H1	0.17	5.20	166	10.1	10.2	10	268	1.2	1.1	4.1	14.2	12.4	12.4
H2	0.17	14.46	300	5.0	17.3	10	286	3.1	1.8	2.7	20.0	13.3	13.3
H3	0.08	36.80	300	5.0	18.9	10	1489	3.1	1.8	14.1	33.0	19.9	19.9
R1	0.80	0.92	300	0.5	11.9	10	1030	2.7	1.6	10.4	22.3	17.4	17.4

	1	1	FLYI	NG H	IOR	SE NO	ORTH F	FILIN	IG NO	). 4	<u>Calc</u>	Ilc'd by: TMM						
		-		PR	OPO	SED	CONDI	TION	IS		Check	ed by:	RDL					
	<u> </u>			D	ESIG	N STO	RM: 5-	YEAR				Date:	1/10/2025					
HR	Gre	en								I		I						
									_			_						
				DIF	RECT	RUNC	DFF		Т		RUNOF	F	REMARKS					
STREET	DESIGN POINT	BASIN ID	AREA (ac)	C ₅	t _c (min)	C ₅ *A (ac)	/ (in./ hr.)	Q (cfs)	t _e (min)	С ₅ *А (ас)	/ (in./ hr.)	Q (cfs)						
	A1	A1	9.57	0.16	16.7	1.54	3.36	5.2					OVERLAND FLOW TO DP A1					
	A2	A2	10.79	0.17	13.7	1.84	3.65	6.7										
		A 2	70.74	0.40	04.4	7 50	0.04	04.0	16.7	3.37	3.36	11.3	COMBINED BASIN A1 AND A2 FLOW IN PROPOSED SWALE TO DPA2					
	A3	A3	72.74	0.10	24.1	7.53	2.81	21.2					FLOW TO DPA3					
	A4	A4	18.39	0.17	17.9	3.13	3.26	10.2										
		٨٢	0.40	0.47	444	1.0.1	0.04		24.1	10.66	2.81	30.0	COMBINED BASIN A3 AND A4 FLOW IN EXISTING SWALE TO DPA4					
	A5	A5	6.10	0.17	14.1	1.04	3.61	3.7	16.7	4.41	3.36	14.8	COMBINED BASIN A1, A2, AND 5 FLOW IN PROPOSED SWALE TO DPA5					
	A6	A6	2.76	0.17	12.9	0.47	3.74	1.8	10.1		0.00	14.0						
									24.1	11.13	2.81	31.3	COMBINED BASIN A1 - A6 FLOW INTO POND A					
	A7	A7	8.11	0.17	13.4	1.38	3.69	5.1	16.7	5.79	3.36	19.5	FLOW FROM A7 TO POND A COMBINED BASIN FLOW A1 - A7					
	B1	B1	57.78	0.10	25.0	5.77	2.75	15.9	10.7	5.79	5.50	19.5						
													FLOW TO DPB1					
	B2	B2	35.77	0.18	22.9	6.29	2.89	18.2	25.0	12.07	2.75	22.0						
	B3	B3	1.10	0.36	11.8	0.39	3.89	1.5	25.0	12.07	2.75	33.2	COMBINED BASIN B1 AND B2 FLOW					
				0.00		0.00	0.00		25.0	12.46	2.75	34.3	COMBINED B1 - B3 BASIN FLOW TO POND B					
	B4	B4	11.00	0.21	16.4	2.35	3.39	8.0	05.0	11.00	0.75		FLOW FROM B4 TO POND B					
	B5	B5	10.62	0.17	15.3	1.81	3.49	6.3	25.0	14.80	2.75	40.8	COMBINED BASIN FLOW B1 - B4					
			10.02	0.17	10.0	1.01	5.45	5.5					OFFSITE BASIN FLOW					
	B6	B6	15.96	0.17	18.5	2.72	3.20	8.7					OFFSITE BASIN FLOW					
	C1	C1	15.94	0.16	16.3	2.57	3.39	8.7					FLOW TO DPC1					
	C2	C2	1.98	0.25	13.1	0.50	3.72	1.9										
	02		1.90	0.20	13.1	0.50	5.12	1.9	16.3	3.06	3.39	10.4	COMBINED C1 AND C2 BASIN FLOW TO POND C					
	C3	C3	21.39	0.15	15.3	3.24	3.49	11.3					FLOW FROM CS TO POND C					
			4.04	0 4 7	14.0	0.70	2.00		16.3	6.30	3.39	21.4	COMBINED FLOWS C1 - C3					
	C4	C4	4.31	0.17	11.2	0.73	3.96	2.9					OFFSITE BASIN FLOW					
	C5	C5	2.27	0.17	14.4	0.39	3.58	1.4					OFFSITE BASIN FLOW					
I																		

E DETENTION)
E DETENTION)
SED FUTURE DETENTION)
·
LOWS
LOW
FLOW



FLYING HORSE NORTH FILI PROPOSED CONDITION		Calc'd	by: Check	TMM RDL
DESIGN STORM: 100-	YEAR	D	Date:	1/10/2025
DIRECT RUNOFF	TOTAL R	UNOFF		REMARKS

				RECI	RUN						· •	REMARKS	
STREET	DESIGN PONT	BASIN ID	AREA (ac)	C100	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	
	A1	A1	9.57	0.41	16.7	3.92	5.64	22.1					OVERLAND FLOW TO DP A1
	A2	A2	10.79	0.42	13.7	4.50	6.13	27.6					
				0.07		00.70	4 70	100.0	16.7	8.42	8.51	71.7	COMBINED BASIN A1 AND A2 FLOW IN PROPOSED SWALE TO DPA2
	A3	A3	72.74	0.37	24.1	26.73	4.72	126.2					FLOW TO DPA3
	A4	A 4	18.39	0.40	17.0	7.67	E 47	42.0					
	A4	A4	18.39	0.42	17.9	1.07	5.47	42.0	24.1	24.40	7.06	274.0	COMBINED BASIN A3 AND A4 FLOW IN EXISTING SWALE TO DPA4
	A5	A5	6.10	0.42	14.1	2.54	6.06	15.4		34.40	7.90	274.0	COMDINED DASIN AS AND A4 FLOW IN EXISTING SWALE TO DPA4
	AJ	AJ	0.10	0.42	14.1	2.04	0.00	13.4	16.7	10.97	8.51	93.3	COMBINED BASIN A1, A2, AND 5 FLOW IN PROPOSED SWALE TO DPA5
	A6	A6	2.76	0.42	12.9	1.15	6.29	7.2		10.97	0.01	33.3	COMDINED DASIN AT, AZ, AND STEOW IN FROFOSED SWALL TO DEAS
	70	7.0	2.70	0.42	12.5	1.15	0.23	1.2	24.1	35 55	7.96	283.2	COMBINED BASIN A1 - A6 FLOW INTO POND A
	A7	A7	8.11	0.42	13.4	3.38	6.19	20.9		00.00	1.00		FLOW FROM A7 TO POND A
									16.7	14.35	8.51	122.1	COMBINED BASIN FLOW A1 - A7
	B1	B1	57.78	0.36	25.0	21.08	4.62	97.5					FLOW TO DPB1
	B2	B2	35.77	0.42	22.9	15.07	4.85	73.1					
									25.0	36.15	7.91	285.8	COMBINED BASIN B1 AND B2 FLOW
	B3	B3	1.10	0.56	11.8	0.61	6.53	4.0					
									25.0	36.76	7.91	290.7	COMBINED B1 - B3 BASIN FLOW TO POND B
	B4	B4	11.00	0.45	16.4	4.94	5.69	28.1					FLOW FROM B4 TO POND B
	55		10.00	0.40	45.0	1.10			25.0	41.70	7.91	329.7	COMBINED BASIN FLOW B1 - B4
	B5	B5	10.62	0.42	15.3	4.43	5.86	25.9					OFFSITE BASIN FLOW
	B6	B6	15.96	0.42	18.5	6.66	5.38	35.8					
	БО	DU	15.90	0.42	10.5	0.00	5.30	35.0					OFFSITE BASIN FLOW
	C1	C1	15.94	0.41	16.3	6.54	5.69	37.2					
			10.94	0.41	10.3	0.04	5.09	51.2					FLOW TO DPC1
	C2	C2	1.98	0.48	13.1	0.95	6.25	5.9					
	<u> </u>			0.10		0.00	0.20		16.3	7.49	8.54	64.0	COMBINED C1 AND C2 BASIN FLOW TO POND C
	C3	C3	21.39	0.40	15.3	8.62	5.86	50.6					FLOW FROM CS TO POND C
									16.3	16.11	8.54	137.6	
	C4	C4	4.31	0.42	11.2	1.80	6.64	11.9					OFFSITE BASIN FLOW
1	C5	C5	2.27	0.42	14.4	0.95	6.01	5.7					OFFSITE BASIN FLOW



STREET

1	7		FL۱	<b>/ING</b>			IORTH			10.4	Calc	'd by:	ТММ
╀	-≻	<u> </u>					ED CO					<u>Check</u>	RDL
L	I				DES	IGN S	TORM:	100-`	YEAR			<u>Date:</u>	1/10/2025
(	Gre	en											
				DI	RECT	RUN	OFF		Т	OTAL R	UNOF	F	REMARKS
	DESIGN PONT	BASIN ID	AREA (ac)	C100	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	
	F1	F1	12.18	0.42	15.0	5.08	5.91	30.0					FLOW TO DPF1 (TO PROPOSED FUTURE DETENTION)
	F2	F2	13.89	0.42	16.0	5.79	5.75	33.3					FLOW TO DPF2 (TO PROPOSED FUTURE DETENTION)
	F3	F3	16.74	0.08	17.0	1.34	8.49	11.4					FLOW TO DPF2 (TO PROPOSED FUTURE DETENTION)
									17.0	7.13	8.49	60.5	
_	G1	G1	2.55	0.42	12.2	1.06	6.44	6.8					FLOW TO DPG1
	G2	G2	4.42	0.35	13.1	1.55	6.26	9.7					
									13.1	2.61	8.88	23.2	COMBINED BASIN G1 AND G2 FLOWS
_	H1	H1	5.20	0.42	12.4	2.17	6.39	13.9					FLOW TO DPH1
	H2	H2	14.46	0.42	13.3	6.03	6.22	37.5					
				0.12	10.0	0.00	0.22		13.3	4.78	8.86	42.3	COMBINE BASIN H1 AND H2 FLOW
	H3	H3	36.80	0.35	19.9	12.88	5.19	66.9					
									19.9	20.27	8.25	167.1	
	R1	R1	0.92	0.89	17.4	0.82	5.54	4.5					FLOW TO DPR1



Flying Horse North Filing No. 4 Final Drainage Report Project No.: 211030

El Paso County, Colorado

# COLORADO URBAN HYDROGRAPH PROCEDURE (CUHP)

# **CUHP SUBCATCHMENTS - HISTORIC**

Columns with this color heading are for required user-input Columns with this color heading are for optional override values Columns with this color heading are for program-calculated values

									ession Storage ed inches)	Но	rton's Infiltrat Parameters	ion	DCIA
Subcatchment Name	EPA SWMM Target Node	Raingage	Area (mi ² )	Length to Centroid (mi)	Length (mi)	Slope (ft/ft)	Percent Imperviousness	Pervious	Impervious	Initial Rate (in/hr)	Decay Coefficient (1/seconds)	Final Rate (in/hr)	Level 0, 1, or 2
A1	A1	100-Year	0.11172	0.24808	0.50417	0.044	2	0.4	0.1	4.5	0.0018	0.6	0
A2	A2	100-Year	0.0882	0.28006	0.49237	0.055	2	0.4	0.1	4.5	0.0018	0.6	0
B1	B1	100-Year	0.14625	0.17679	0.556	0.039	3.6	0.4	0.1	4.5	0.0018	0.6	0
B2	B2	100-Year	0.07147	0.17404	0.27683	0.046	5.2	0.4	0.1	4.5	0.0018	0.6	0
B3	B3	100-Year	0.01763	0.07669	0.17258	0.062	2	0.4	0.1	4.5	0.0018	0.6	0
B4	B4	100-Year	0.01931	0.09155	0.17623	0.056	7	0.4	0.1	4.5	0.0018	0.6	0
C1	C1	100-Year	0.01948	0.05134	0.17182	0.048	9.4	0.4	0.1	4.5	0.0018	0.6	0
C2	C2	100-Year	0.03494	0.08962	0.21493	0.044	6.1	0.4	0.1	4.5	0.0018	0.6	0
C3	C3	100-Year	0.00713	0.03548	0.07618	0.064	2	0.4	0.1	4.5	0.0018	0.6	0
C4	C4	100-Year	0.00355	0.03177	0.08547	0.072	2	0.4	0.1	4.5	0.0018	0.6	0
F1	F1	100-Year	0.01731	0.07509	0.26483	0.035	4.5	0.4	0.1	4.5	0.0018	0.6	0
F2	F2	100-Year	0.05429	0.18144	0.41906	0.035	3.9	0.4	0.1	4.5	0.0018	0.6	0
G1	G1	100-Year	0.01198	0.0589	0.24273	0.056	2	0.4	0.1	4.5	0.0018	0.6	0
H1	H1	100-Year	0.08792	0.10799	0.50482	0.047	2	0.4	0.1	4.5	0.0018	0.6	0

<u>5-Year Historic Results</u> Summary of Unit Hydrograph Parameters Used By Program and Calculated Results (Version 2.0.1)

				Un	it Hydrograp	oh Paramet	ers and Res	ults			Excess	Precip.		Storm H	lydrograph	
Catchment Name/ID	User Comment for Catchment	ст	Ср	W50 (min.)	W50 Before Peak	W75 (min.)	W75 Before Peak	Time to Peak (min.)	Peak (cfs)	Volume (c.f)	Excess (inches)	Excess (c.f.)	Time to Peak (min.)	Peak Flow (cfs)	Total Volume (c.f.)	Runoff per Unit Area (cfs/acre)
A1		0.157	0.175	32.8	4.71	17.0	3.33	7.9	102	259,548	0.22	57,209	40.0	20	57,208	0.28
A2		0.157	0.158	36.2	4.68	18.8	3.31	7.8	73	204,906	0.22	45,165	41.0	14	45,164	0.25
B1		0.152	0.192	26.6	4.22	13.8	2.99	7.0	165	339,768	0.24	81,189	38.0	33	81,182	0.35
B2		0.148	0.135	25.0	2.89	13.0	2.04	4.8	86	166,039	0.26	42,781	36.0	18	42,775	0.38
B3		0.157	0.076	23.6	1.68	12.3	1.19	2.8	22	40,958	0.22	9,028	35.0	4	9,026	0.36
B4		0.142	0.072	25.3	1.71	13.2	1.21	2.8	23	44,861	0.28	12,511	35.0	5	12,509	0.40
C1		0.135	0.069	19.4	1.34	10.1	0.94	2.2	30	45,256	0.31	13,917	33.0	6	13,920	0.52
C2		0.145	0.096	22.4	1.96	11.6	1.38	3.3	47	81,173	0.27	21,774	35.0	10	21,772	0.43
C3		0.157	0.051	16.4	0.94	8.5	0.66	1.6	13	16,564	0.22	3,650	32.0	2	3,646	0.47
C4		0.157	0.037	21.9	0.92	11.4	0.65	1.5	5	8,247	0.22	1,817	35.0	1	1,816	0.38
F1		0.150	0.072	33.1	2.14	17.2	1.51	3.6	16	40,215	0.25	10,032	37.0	3	10,031	0.29
F2		0.151	0.122	37.7	3.84	19.6	2.71	6.4	43	126,127	0.24	30,579	40.0	9	30,579	0.26
G1		0.157	0.064	29.8	1.77	15.5	1.25	3.0	12	27,832	0.22	6,132	36.0	2	6,131	0.30
H1		0.157	0.157	24.1	3.22	12.5	2.27	5.4	109	204,256	0.22	45,021	37.0	20	45,019	0.36

#### <u>100-Year Historic Results</u> Summary of Unit Hydrograph Parameters Used By Program and Calculated Results (Version 2.0.1)

				Un	it Hydrogra	ph Paramet	ers and Res	ults			Excess	Precip.		Storm H	lydrograph	
Catchment Name/ID	User Comment for Catchment	ст	Ср	W50 (min.)	W50 Before Peak	W75 (min.)	W75 Before Peak	Time to Peak (min.)	Peak (cfs)	Volume (c.f)	Excess (inches)	Excess (c.f.)	Time to Peak (min.)	Peak Flow (cfs)	Total Volume (c.f.)	Runoff per Unit Area (cfs/acre)
A1		0.157	0.175	32.8	4.70	17.0	3.32	7.8	102	259,548	1.33	344,851	46.0	97	344.849	1.36
A2		0.157	0.157	36.2	4.67	18.8	3.30	7.8	73	204,906	1.33	272,251	47.0	71	272,247	1.26
B1		0.151	0.191	26.6	4.20	13.8	2.97	7.0	165	339,768	1.35	457,853	43.0	149	457,810	1.59
B2		0.146	0.134	25.0	2.87	13.0	2.03	4.8	86	166,039	1.37	226,897	41.0	76	226,872	1.66
B3		0.157	0.076	23.6	1.68	12.3	1.19	2.8	22	40,958	1.33	54,419	41.0	19	54,406	1.67
B4		0.140	0.072	25.3	1.69	13.1	1.19	2.8	23	44,861	1.39	62,267	41.0	20	62,254	1.64
C1		0.132	0.068	19.4	1.32	10.1	0.93	2.2	30	45,256	1.42	64,121	39.0	25	64,134	1.98
C2		0.143	0.095	22.4	1.94	11.6	1.37	3.2	47	81,173	1.38	111,795	40.0	40	111,781	1.78
C3		0.157	0.051	16.4	0.94	8.5	0.66	1.6	13	16,564	1.33	22,008	36.0	10	21,986	2.12
C4		0.157	0.037	21.9	0.92	11.4	0.65	1.5	5	8,247	1.33	10,958	40.0	4	10,950	1.74
F1		0.148	0.072	33.0	2.12	17.2	1.50	3.5	16	40,215	1.36	54,620	44.0	15	54,615	1.34
F2		0.150	0.122	37.6	3.81	19.6	2.70	6.4	43	126,127	1.35	170,409	47.0	43	170,407	1.23
G1		0.157	0.064	29.8	1.77	15.5	1.25	2.9	12	27,832	1.33	36,979	42.0	11	36,973	1.41
H1		0.157	0.157	24.1	3.21	12.5	2.27	5.3	109	204,256	1.33	271,387	41.0	94	271,372	1.67

# **CUHP SUBCATCHMENTS - DEVELOPED**

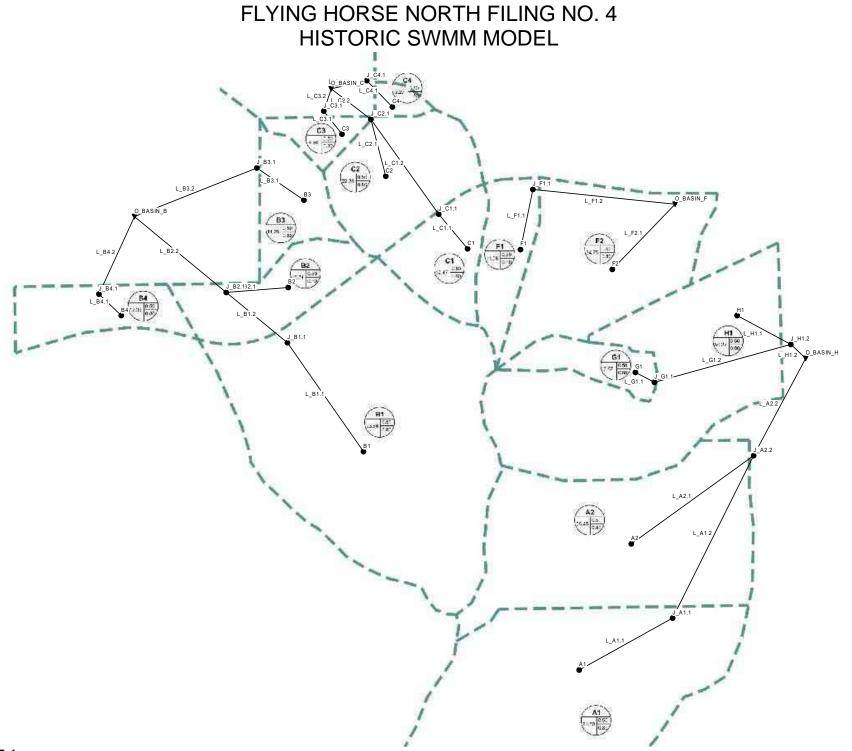
Columns with this color heading are for required user-input Columns with this color heading are for optional override values Columns with this color heading are for program-calculated values

								· · · · · · · · · · · · · · · · · · ·	ession Storage d inches)		rton's Infiltrat Parameters	ion	DCIA
Subcatchment Name	EPA SWMM Target Node	Raingage	Area (mi ² )	Length to Centroid (mi)	Length (mi)	Slope (ft/ft)	Percent Imperviousness	Pervious	Impervious	Initial Rate (in/hr)	Decay Coefficient (1/seconds)	Final Rate (in/hr)	Level 0, 1, or 2
A1	A1	100-Year	0.01495	0.06629	0.22879	0.040	10.2	0.4	0.05	4.5	0.0018	0.6	0
A2	A2	100-Year	0.01686	0.06174	0.12727	0.026	11.0	0.4	0.05	4.5	0.0018	0.6	0
A3	A3	100-Year	0.11366	0.24242	0.47917	0.040	4.1	0.4	0.05	4.5	0.0018	0.6	0
A4	A4	100-Year	0.02873	0.20436	0.26799	0.022	11.0	0.4	0.05	4.5	0.0018	0.6	0
A5	A5	100-Year	0.00386	0.03409	0.09981	0.114	11.0	0.4	0.05	4.5	0.0018	0.6	0
A6	A6	100-Year	0.00997	0.05587	0.14053	0.074	11.0	0.4	0.05	4.5	0.0018	0.6	0
A7	A7	100-Year	0.0127	0.05492	0.11686	0.077	11.0	0.4	0.05	4.5	0.0018	0.6	0
B1	B1	100-Year	0.15562	0.17803	0.51136	0.068	4.1	0.4	0.05	4.5	0.0018	0.6	0
B2	B2	100-Year	0.05589	0.21155	0.43826	0.068	11.7	0.4	0.05	4.5	0.0018	0.6	0
B3	B3	100-Year	0.00172	0.01705	0.08902	0.116	33.7	0.4	0.05	4.5	0.0018	0.6	0
B4	B4	100-Year	0.01719	0.12121	0.21496	0.037	10.2	0.4	0.05	4.5	0.0018	0.6	0
B5	B5	100-Year	0.01659	0.08051	0.14458	0.052	11.0	0.4	0.05	4.5	0.0018	0.6	0
B6	B6	100-Year	0.02494	0.05130	0.16422	0.038	11.0	0.4	0.05	4.5	0.0018	0.6	0
C1	C1	100-Year	0.02491	0.07630	0.21629	0.043	10.5	0.4	0.05	4.5	0.0018	0.6	0
C2	C2	100-Year	0.00309	0.05303	0.10549	0.060	20.9	0.4	0.05	4.5	0.0018	0.6	0
C3	C3	100-Year	0.03342	0.09570	0.20540	0.050	9.3	0.4	0.05	4.5	0.0018	0.6	0
C4	C4	100-Year	0.00673	0.03561	0.06045	0.063	11.0	0.4	0.05	4.5	0.0018	0.6	0
C5	C5	100-Year	0.00355	0.03788	0.08236	0.067	11.0	0.4	0.05	4.5	0.0018	0.6	0
F1	F1	100-Year	0.02005	0.07509	0.26483	0.020	11.0	0.4	0.05	4.5	0.0018	0.6	0
F2	F2	100-Year	0.02064	0.10766	0.26980	0.030	11.0	0.4	0.05	4.5	0.0018	0.6	0
F3	F3	100-Year	0.026156	0.09124	0.22906	0.036	11.0	0.4	0.05	4.5	0.0018	0.6	0
G1	G1	100-Year	0.00398	0.02309	0.07386	0.074	11.0	0.4	0.05	4.5	0.0018	0.6	0
G2	G2	100-Year	0.00691	0.05845	0.10417	0.069	2.0	0.4	0.05	4.5	0.0018	0.6	0
H1	H1	100-Year	0.00813	0.07519	0.06572	0.012	11.0	0.4	0.05	4.5	0.0018	0.6	0
H2	H2	100-Year	0.02259	0.05209	0.08858	0.031	11.0	0.4	0.05	4.5	0.0018	0.6	0
H3	H3	100-Year	0.0575	0.08230	0.27341	0.031	2.0	0.4	0.05	4.5	0.0018	0.6	0

### 5-Year Developed Results Summary of Unit Hydrograph Parameters Used By Program and Calculated Results (Version 2.0.1)

_				Un	it Hydrograj	ph Paramet	ers and Res	ults			Excess	Precip.		Storm H	ydrograph	
					W50		W75	Time to					Time to		Total	Runoff per
				W50	Before	W75	Before	Peak		Volume	Excess	Excess	Peak	Peak Flow	Volume	Unit Area
Catchment Name/ID	User Comment for Catchment	СТ	Ср	(min.)	Peak	(min.)	Peak	(min.)	Peak (cfs)	(c.f)	(inches)	(c.f.)	(min.)	(cfs)	(c.f.)	(cfs/acre)
A1		0.132	0.061	29.6	1.68	15.4	1.19	2.8	15	34,732	0.32	11,022	36.0	4	11,019	0.38
A2		0.129	0.063	22.6	1.39	11.8	0.98	2.3	22	39,169	0.33	12,920	35.0	5	12,921	0.48
A3		0.151	0.170	32.0	4.49	16.7	3.17	7.5	106	264,055	0.24	64,659	39.0	22	64,655	0.30
A4		0.129	0.080	47.0	3.18	24.4	2.25	5.3	18	66,746	0.33	22,016	41.0	5	22,015	0.27
A5		0.129	0.032	20.6	0.81	10.7	0.57	1.4	6	8,968	0.33	2,958	33.0	1	2,955	0.51
A6		0.129	0.050	22.3	1.15	11.6	0.81	1.9	13	23,162	0.33	7,640	35.0	3	7,639	0.49
A7		0.129	0.055	18.0	1.06	9.3	0.75	1.8	21	29,505	0.33	9,732	31.0	5	9,726	0.57
B1		0.151	0.196	21.8	3.58	11.3	2.53	6.0	214	361,536	0.25	88,754	36.0	42	88,751	0.42
B2		0.127	0.106	34.1	3.08	17.7	2.18	5.1	49	129,844	0.34	44,014	38.0	13	44,011	0.36
B3		0.099	0.024	14.4	0.56	7.5	0.40	0.9	4	3,996	0.64	2,563	30.0	1	2,548	1.04
B4		0.119	0.060	35.6	1.94	18.5	1.37	3.2	14	39,936	0.40	15,955	37.0	4	15,953	0.38
B5		0.129	0.062	23.3	1.42	12.1	1.00	2.4	21	38,542	0.33	12,713	35.0	5	12,714	0.47
B6		0.129	0.075	17.9	1.33	9.3	0.94	2.2	42	57,941	0.33	19,111	32.0	9	19,115	0.58
C1		0.131	0.076	24.0	1.70	12.5	1.20	2.8	31	57,871	0.32	18,701	35.0	7	18,697	0.46
C2		0.113	0.027	31.6	0.96	16.5	0.68	1.6	3	7,179	0.46	3,318	35.0	1	3,316	0.46
C3		0.135	0.089	22.2	1.81	11.5	1.28	3.0	45	77,641	0.31	23,934	35.0	10	23,930	0.47
C4		0.129	0.042	14.8	0.77	7.7	0.55	1.3	14	15,635	0.33	5,157	31.0	3	5,150	0.66
C5		0.129	0.031	23.3	0.86	12.1	0.61	1.4	5	8,247	0.33	2,720	35.0	1	2,718	0.47
F1		0.129	0.068	34.8	2.11	18.1	1.49	3.5	17	46,580	0.33	15,364	37.0	4	15,362	0.34
F2		0.129	0.069	37.3	2.27	19.4	1.61	3.8	17	47,951	0.33	15,816	37.0	4	15,816	0.32
F3		0.129	0.077	27.5	1.92	14.3	1.36	3.2	29	60,766	0.33	20,043	36.0	7	20,041	0.42
G1		0.129	0.033	16.2	0.71	8.4	0.50	1.2	7	9,246	0.33	3,050	31.0	2	3,045	0.62
G2		0.157	0.050	24.1	1.23	12.5	0.87	2.0	9	16,053	0.22	3,542	35.0	2	3,542	0.35
H1		0.129	0.045	30.2	1.35	15.7	0.96	2.3	8	18,888	0.33	6,230	36.0	2	6,230	0.38
H2		0.129	0.072	14.7	1.11	7.6	0.78	1.9	46	52,481	0.33	17,311	31.0	10	17,301	0.67
H3		0.157	0.130	21.1	2.41	11.0	1.70	4.0	82	133,584	0.22	29,485	35.0	15	29,484	0.40

### <u>100-Year Developed Results</u> Summary of Unit Hydrograph Parameters Used By Program and Calculated Results (Version 2.0.1)


				Un	it Hydrograj	h Paramet	ers and Res	ults			Excess	Precip.		Storm H	ydrograph	
					W50		W75	Time to					Time to		Total	Runoff per
				W50	Before	W75	Before	Peak		Volume	Excess	Excess	Peak	Peak Flow	Volume	Unit Area
Catchment Name/ID	User Comment for Catchment	СТ	Ср	(min.)	Peak	(min.)	Peak	(min.)	Peak (cfs)	(c.f)	(inches)	(c.f.)	(min.)	(cfs)	(c.f.)	(cfs/acre)
A1		0.130	0.060	29.5	1.66	15.4	1.17	2.8	15	34,732	1.43	49,514	41.0	14.3	49,504	1.50
A2		0.127	0.062	22.5	1.37	11.7	0.97	2.3	22	39,169	1.44	56,348	40.0	19.6	56,353	1.81
A3		0.150	0.169	32.0	4.46	16.7	3.15	7.4	106	264,055	1.35	357,276	45.0	101.6	357,257	1.40
A4		0.127	0.079	46.8	3.13	24.4	2.21	5.2	18	66,746	1.44	96,019	50.0	20.0	96,014	1.09
A5		0.127	0.032	20.5	0.80	10.7	0.57	1.3	6	8,968	1.44	12,901	40.0	4.7	12,888	1.92
A6		0.127	0.049	22.2	1.13	11.5	0.80	1.9	13	23,162	1.44	33,321	40.0	11.7	33,314	1.83
A7		0.127	0.054	17.9	1.05	9.3	0.74	1.7	21	29,505	1.44	42,445	36.0	17.1	42,413	2.11
B1		0.150	0.194	21.8	3.55	11.3	2.51	5.9	214	361,536	1.35	489,397	41.0	182.0	489,384	1.83
B2		0.125	0.105	34.0	3.04	17.7	2.15	5.1	49	129,844	1.45	188,018	45.0	49.5	188,002	1.38
B3		0.098	0.024	14.1	0.56	7.3	0.40	0.9	4	3,996	1.75	7,002	35.0	3.0	6,962	2.77
B4		0.118	0.060	35.4	1.93	18.4	1.36	3.2	15	39,936	1.51	60,315	45.0	15.1	60,311	1.37
B5		0.127	0.061	23.2	1.39	12.1	0.98	2.3	21	38,542	1.44	55,446	40.0	18.9	55,452	1.78
B6		0.127	0.074	17.8	1.31	9.3	0.93	2.2	42	57,941	1.44	83,352	36.0	33.9	83,372	2.12
C1		0.128	0.075	24.0	1.67	12.5	1.18	2.8	31	57,871	1.43	82,851	40.0	27.7	82,825	1.74
C2		0.111	0.027	31.4	0.95	16.3	0.67	1.6	3	7,179	1.57	11,299	41.0	3.0	11,293	1.52
C3		0.132	0.087	22.1	1.78	11.5	1.26	3.0	45	77,641	1.42	109,982	40.0	39.0	109,959	1.82
C4		0.127	0.041	14.8	0.76	7.7	0.54	1.3	14	15,635	1.44	22,492	35.0	10.3	22,461	2.40
C5		0.127	0.031	23.2	0.85	12.1	0.60	1.4	5	8,247	1.44	11,865	40.0	4.0	11,855	1.77
F1		0.127	0.067	34.6	2.08	18.0	1.47	3.5	17	46,580	1.44	67,009	45.0	17.3	66,999	1.35
F2		0.127	0.068	37.2	2.24	19.4	1.58	3.7	17	47,951	1.44	68,981	46.0	16.9	68,979	1.28
F3		0.127	0.075	27.4	1.89	14.3	1.33	3.1	29	60,766	1.44	87,416	41.0	26.6	87,405	1.59
G1		0.127	0.032	16.1	0.70	8.4	0.49	1.2	7	9,246	1.44	13,302	35.0	5.7	13,278	2.26
G2		0.157	0.050	24.1	1.23	12.5	0.87	2.0	9	16,053	1.33	21,329	40.0	7.2	21,331	1.64
H1		0.127	0.045	30.1	1.33	15.7	0.94	2.2	8	18,888	1.44	27,171	41.0	7.7	27,174	1.48
H2		0.127	0.071	14.7	1.09	7.6	0.77	1.8	46	52,481	1.44	75,498	36.0	35.0	75,456	2.42
H3		0.157	0.130	21.1	2.40	11.0	1.70	4.0	82	133,584	1.33	177,493	40.0	66.9	177,491	1.82



Flying Horse North Filing No. 4 Final Drainage Report Project No.: 211030

El Paso County, Colorado

# STORM WATER MANAGEMENT MODEL (SWMM)





REPORT_START_TIM END_DATE END_TIME SWEEP_START SWEEP_END DRY_DAYS REPORT_STEP WET_STEP DRY_STEP		01/01 12/31 0 00:05: 00:05: 01:00:	00 00 00			
ROUTING_STEP INERTIAL_DAMPING NORMAL_FLOW_LIM: FORCE_MAIN_EQUAY VARIABLE_STEP LENGTHENING_STEJ MIN_SURFAREA MAX_TRIALS HEAD_TOLERANCE SYS_FLOW_TOL LAT_FLOW_TOL LAT_FLOW_TOL MINIMUM_STEP THREADS	G ITED FION P	BOTH H-W 0.75	L			
[FILES] ;;Interfacing F: USE INFLOWS "SWI [EVAPORATION] ;;Data Source	MM_Exi Para	meters	_	100.txt"		
[FILES] ;;Interfacing F: USE INFLOWS "SWN [EVAPORATION] ;;Data Source ;; CONSTANT DRY_ONLY	MM_Exi Para	meters	_	100.txt"		
[FILES] ;;Interfacing F: USE INFLOWS "SWI [EVAPORATION] ;;Data Source ;;	MM_Exi Para 0.0 NO Elev	meters	MaxDepth	InitDepth	SurDepth	Aponde 



J_H1.2 J_F1.1 J_B4.1 J_B2.1 J_B3.1 J_C3.1 J_C2.1 J_C4.1	7516     0       7572     0       7510     0       7522     0       7533     0       7544     0       7529     0       7524     0	0						
[OUTFALLS] ;;Name	Elevation 1	Type Stage I			е То			
;; O_BASIN_B O_BASIN_C O_BASIN_F O_BASIN_H	7510 E 7520 E 7547 E 7515 E	FREE FREE FREE FREE	N N	10 10 10				
MaxFlow		To Node	_	-		OutOffset	InitFlow	
<pre> ;; L_A1.1 L_A2.1 L_A2.1 L_A1.2 L_G1.1 L_H1.1 L_G1.2 L_F1.1 L_B1.1 L_B2.1 L_B3.1 L_C3.1 L_C4.1 L_G1.2 L_C2.1 L_A2.2 L_H1.2 L_F2.1 L_F1.2 L_B4.2 L_B2.2 L_B3.2 L_C3.2 L_C2.2 L_C4.2 [XSECTIONS]</pre>	A1 A2 J_A1.1 G1 H1 J_G1.1 F1 B1 B2 J_B1.1 B3 C3 C4 C1 J_C1.1 C2 J_A2.2 J_H1.2 F2 J_F1.1 J_B3.1 J_C3.1 J_C2.1 J_C2.1 J_C2.1 J_C2.1 J_C2.1 J_C2.1 J_C2.1 J_C2.1 J_C2.1 J_C2.1 J_C2.1 J_C2.1 J_C2.1 J_C2.1 J_C2.1 J_C2.1 J_C2.1 J_C2.1 J_C2.1 J_C2.1 J_C2.1 J_C2.1 J_C3.1 J_C3.1 C2 J_C3.1 J_C3.1 C2 J_C3.1 J_C3.1 C2 J_C3.1 J_C3.1 C2 J_C3.1 J_C3.1 C2 J_C3.1 J_C3.1 C2 J_C3.1 J_C3.1 J_C3.1 C2 J_C3.1 J_C3.1 J_C3.1 C2 J_C3.1 J_C3.1 J_C3.1 C2 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1 J_C3.1	$J_A1.1  J_A2.2  J_A2.2  J_G1.1  J_H1.2  J_H1.2  J_F1.1  J_B2.1  J_B2.1  J_B3.1  J_C3.1  J_C4.1  J_C2.1  J_C2.1  J_C2.1  O_BASIN_H  O_BASIN_F  O_BASIN_F  O_BASIN_B  O_BASIN_B  O_BASIN_B  O_BASIN_C  O$	$\begin{array}{c} 400\\ 400\\ 1505\\ 400\\ 400\\ 1031\\ 400\\ 400\\ 400\\ 400\\ 400\\ 400\\ 400\\ 40$	.013 .013 .013 .013 .013 .013 .013 .013				
;;Link	Shape	Geom1	Geom2			arrels Cu	lvert	
		5 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0	0         1           0         1           0         1           4         1           0         1           4         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1			



L_B4.2 L_B2.2 L_B3.2 L_C3.2 L_C2.2	DUMMY DUMMY DUMMY DUMMY	0 0 0 0		0 0 0 0	0 0 0 0
L_C4.2 [REPORT] ;;Reporting Opt: INPUT NO CONTROLS NO SUBCATCHMENTS A: NODES ALL LINKS ALL		0	0	0	0
[TAGS]					
[MAP] DIMENSIONS -272 Units None		2727.273 100	000.000		
[COORDINATES] ;;Node	X-Coord				
;; A1 A2 B1 B2 C1 C2 C3 C4 H1 G1 F2 F1 J_B1.1 J_A1.1 J_G1.1 J_C1.1 J_A1.1 J_G1.1 J_C1.1 J_F1.1 J_B4.1 J_B3.1 J_C2.1 J_C2.1 J_C4.1 O_BASIN_B O_BASIN_F O_BASIN_H	6821.306 7424.143 4340.564 3974.670 3649.430 1528.598 539.885 4327.012 4083.620 4930.061 8083.297 6452.759 7199.961 6142.933 3459.707 7898.053 7691.867 5206.186 8837.854 9262.835 6292.001 1230.461 2599.178 3107.364 3882.630 4421.738 4424.717 1697.993 3969.007 7931.750 9436.296	3779 4852 6856 7755 6587 7190 8051 8522 8833 6216 5966 6960 7183 6100 2920 5647 7592 4805 6865 8125 8787 8625 9261 7563 8692 9261 7563 7563	3.617 9.802 9.584 9.633 9.162 9.337 9.157 9.763 9.243 9.255 9.857 9.501 9.962 9.194 1.502 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.052 9.055 9.393 9.255 9.393 9.255 9.393 9.255 9.393 9.255 9.393 9.255 9.393 9.255 9.393 9.255 9.393 9.255 9.393 9.255 9.393 9.255 9.393 9.255 9.393 9.255 9.393 9.393 9.255 9.393 9.393 9.393 9.254 9.393 9.393 9.254 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.393 9.		
[VERTICES] ;;Link ;;	X-Coord	Y-Cc		-	



EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.012)

Flying Horse North Filing No. 4 Final Drainage Report

WARNING 04: minimum elevation drop used for Conduit L_B4.2

**** Analysis Options **** Flow Units ..... CFS Process Models: Rainfall/Runoff ..... NO RDII ..... NO Snowmelt ..... NO Groundwater ..... NO Flow Routing ..... YES Ponding Allowed ..... NO Water Quality ..... NO Flow Routing Method ..... KINWAVE Starting Date ..... 01/01/2005 00:00:00 Ending Date ..... 01/05/2005 00:00:00 Antecedent Dry Days ..... 0.0 Report Time Step ..... 00:05:00 Routing Time Step ..... 60.00 sec

*****	Volume	Volume
Flow Routing Continuity	acre-feet	10^6 gal
******		
Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.000	0.000
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	8.818	2.873
External Outflow	8.842	2.881
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	-0.282	



#### Flying Horse North Filing No. 4 Final Drainage Report SWMM Historic Modeling Output 5-year Event

### 

		Average	Maximum	Maximum	Time	of Max	Reported
		Depth	Depth	HGL		irrence	Max Depth
Node	Туре	Feet	Feet	Feet	days	hr:min	Feet
A1	JUNCTION	0.00	0.00	7605.00		00:00	0.00
A2	JUNCTION	0.00	0.00	7597.00	0	00:00	0.00
B1	JUNCTION	0.00	0.00	7572.00	0	00:00	0.00
B2	JUNCTION	0.00	0.00	7558.00	0	00:00	0.00
в3	JUNCTION	0.00	0.00	7558.00	0	00:00	0.00
В4	JUNCTION	0.00	0.00	7552.00	0	00:00	0.00
C1	JUNCTION	0.00	0.00	7586.00	0	00:00	0.00
C2	JUNCTION	0.00	0.00	7562.00	0	00:00	0.00
C3	JUNCTION	0.00	0.00	7553.00	0	00:00	0.00
C4	JUNCTION	0.00	0.00	7536.00	0	00:00	0.00
Н1	JUNCTION	0.00	0.00	7550.00	0	00:00	0.00
G1	JUNCTION	0.00	0.00	7585.00	0	00:00	0.00
F2	JUNCTION	0.00	0.00	7568.00	0	00:00	0.00
F1	JUNCTION	0.00	0.00	7582.00	0	00:00	0.00
J B1.1	JUNCTION	0.00	0.00	7536.00	0	00:00	0.00
J_A1.1	JUNCTION	0.01	0.63	7565.63	0	00:41	0.63
J_G1.1	JUNCTION	0.00	0.17	7555.17	0	00:37	0.17
J_C1.1	JUNCTION	0.00	0.00	7570.00	0	00:00	0.00
J_A2.2	JUNCTION	0.01	0.72	7525.72	0	00:44	0.72
J_H1.2	JUNCTION	0.00	0.17	7516.17	0	00:44	0.17
J_F1.1	JUNCTION	0.01	1.07	7573.07	0	00:35	1.07
J_B4.1	JUNCTION	0.00	0.00	7510.00	0	00:00	0.00
J_B2.1	JUNCTION	0.00	0.00	7522.00	0	00:00	0.00
J_B3.1	JUNCTION	0.00	0.00	7533.00	0	00:00	0.00
J_C3.1	JUNCTION	0.00	0.00	7544.00	0	00:00	0.00
J C2.1	JUNCTION	0.00	0.00	7529.00	0	00:00	0.00
J_C4.1	JUNCTION	0.00	0.00	7524.00	0	00:00	0.00
O BASIN B	OUTFALL	0.00	0.00	7510.00	0	00:00	0.00
O BASIN C	OUTFALL	0.00	0.00	7520.00	0	00:00	0.00
O BASIN F	OUTFALL	0.01	1.06	7548.06	Ő	00:39	1.05
O BASIN H	OUTFALL	0.01	0.72	7515.72	0	00:47	0.72
		0.01	0.72		0		0.72

****

Node Inflow Summary

Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	0ccu	of Max rrence hr:min	Lateral Inflow Volume 10^6 gal		Flow Balance Error Percent
A1	JUNCTION	19.90	19.90	0	00:41	0.428	0.428	0.000
A2	JUNCTION	14.37	14.37	0	00:42	0.338	0.338	0.000
В1	JUNCTION	32.86	32.86	0	00:39	0.607	0.607	0.000
В2	JUNCTION	17.57	17.57	0	00:37	0.32	0.32	0.000
в3	JUNCTION	4.06	4.06	0	00:36	0.0675	0.0675	0.000
В4	JUNCTION	4.18	4.18	0	00:37	0.074	0.074	0.000
C1	JUNCTION	6.43	6.43	0	00:34	0.104	0.104	0.000
C2	JUNCTION	9.54	9.54	0	00:36	0.163	0.163	0.000
С3	JUNCTION	2.16	2.16	0	00:33	0.0273	0.0273	0.000
C4	JUNCTION	0.86	0.86	0	00:36	0.0136	0.0136	0.000
Н1	JUNCTION	20.18	20.18	0	00:38	0.337	0.337	0.000
G1	JUNCTION	2.27	2.27	0	00:37	0.0459	0.0459	0.000
F2	JUNCTION	1.97	1.97	0	00:44	0.074	0.074	0.000
F1	JUNCTION	21.05	21.05	0	00:35	0.274	0.274	0.000
J B1.1	JUNCTION	0.00	32.86	0	00:39	0	0.607	0.000
J_A1.1	JUNCTION	0.00	19.90	0	00:41	0	0.428	0.000
J_G1.1	JUNCTION	0.00	2.27	0	00:37	0	0.0459	0.000
J_C1.1	JUNCTION	0.00	6.43	0	00:34	0	0.104	0.000
J A2.2	JUNCTION	0.00	33.39	0	00:44	0	0.77	0.000
J H1.2	JUNCTION	0.00	22.00	0	00:38	0	0.383	0.000
J F1.1	JUNCTION	0.00	21.05	0	00:35	0	0.274	0.000



J B4.1	JUNCTION	0.00	4.18	0	00:37	0	0.074	0.000
J B2.1	JUNCTION	0.00	50.33	0	00:38	0	0.927	0.000
J_B3.1	JUNCTION	0.00	4.06	0	00:36	0	0.0675	0.000
J_C3.1	JUNCTION	0.00	2.16	0	00:33	0	0.0273	0.000
J_C2.1	JUNCTION	0.00	15.94	0	00:36	0	0.267	0.000
J_C4.1	JUNCTION	0.00	0.86	0	00:36	0	0.0136	0.000
O BASIN B	OUTFALL	0.00	58.46	0	00:38	0	1.07	0.000
O BASIN C	OUTFALL	0.00	18.92	0	00:36	0	0.308	0.000
O BASIN F	OUTFALL	0.00	22.28	0	00:39	0	0.35	0.000
O_BASIN_H	OUTFALL	0.00	52.26	0	00:44	0	1.15	0.000

No nodes were flooded.

	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
Outfall Node	Pcnt	CFS	CFS	10^6 gal
O BASIN B	3.40	12.15	58.46	1.069
O BASIN C	3.09	3.85	18.92	0.308
O BASIN F	4.64	2.92	22.28	0.350
o_basin_h	6.77	6.60	52.26	1.155
System	4.47	25.52	145.71	2.881

#### *****

Link Flow Summary

		Maximum	Time	of Max	Maximum	Max/	Max/
		Flow	Occu	irrence	Veloc	Full	Full
Link	Type				ft/sec	Flow	Depth
L A1.1	DUMMY		·				
	DUMMY						
	CONDUIT				4.24	0 01	0.12
	DUMMY		0	00:40	4.24	0.01	0.12
L H1.1		20.18		00:38			
L G1.2		2.17			2.36	0 00	0.04
L F1.1	DIIMMY	21.05	0	00:35	2.50	0.00	0.04
L B1.1	DUMMY			00:39			
L B2.1	DUMMY			00:37			
L B1.2	DUMMY			00:39			
L B4.1		4.18		00:37			
L B3.1		4.06		00:36			
L C3.1	DUMMY			00:33			
L C4.1	DUMMY			00:36			
L C1.1		6.43		00:34			
L C1.2		6.43		00:34			
L C2.1		9.54		00:36			
L A2.2		33.23		00:47	3.61	0.02	0.14
L H1.2	DUMMY			00:38			
L F2.1	DUMMY	1.97		00:44			
L F1.2		20.37			4.69	0.18	0.53
L B4.2		4.18		00:37			
L B2.2		50.33		00:38			
L B3.2	DUMMY	4.06		00:36			
L C3.2	DUMMY	2.16		00:33			
L C2.2		15.94		00:36			
L C4.2		0.86					
-							



Flying Horse North Filing No. 4 Final Drainage Report SWMM Historic Modeling Output 5-year Event

### 

No conduits were surcharged.

Analysis begun on:	W	ed	Sep	11	10:15:11	2024
Analysis ended on:	W	ed	Sep	11	10:15:11	2024
Total elapsed time	: <	1	sec			



EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.012)

Flying Horse North Filing No. 4 Final Drainage Report

WARNING 04: minimum elevation drop used for Conduit L B4.2

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

* * * * * * * * * * * * * * *		
Analysis Options *****		
Flow Units Process Models:	CFS	
Rainfall/Runoff	NO	
RDII	NO	
Snowmelt	NO	
Groundwater	NO	
Flow Routing	YES	
Ponding Allowed	NO	
Water Quality	NO	
Flow Routing Method	KINWAVE	
Starting Date	01/01/2005	00:00:00
Ending Date	01/05/2005	00:00:00
Antecedent Dry Days	0.0	
Report Time Step	00:05:00	
Routing Time Step	60.00 sec	

******	Volume	Volume
Flow Routing Continuity	acre-feet	10^6 gal
******		
Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.000	0.000
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	50.816	16.559
External Outflow	50.865	16.575
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.000	0.000
Continuity Error (%)	-0.095	



#### **** Node Depth Summary *********

			Maximum			of Max	
N		Depth	Depth	HGL Feet		rrence	*
Node	Туре	Feet	Feet	reet		hr:min	Feet
A1	JUNCTION	0.00	0.00	7605.00	0	00:00	0.00
A2	JUNCTION	0.00	0.00	7597.00	0	00:00	0.00
B1	JUNCTION	0.00	0.00	7572.00	0	00:00	0.00
B2	JUNCTION	0.00	0.00	7558.00	0	00:00	0.00
В3	JUNCTION	0.00	0.00	7558.00	0	00:00	0.00
В4	JUNCTION	0.00	0.00	7552.00	0	00:00	0.00
C1	JUNCTION	0.00	0.00	7586.00	0	00:00	0.00
C2	JUNCTION	0.00	0.00	7562.00	0	00:00	0.00
C3	JUNCTION	0.00	0.00	7553.00	0	00:00	0.00
C4	JUNCTION	0.00	0.00	7536.00	0	00:00	0.00
H1	JUNCTION	0.00	0.00	7550.00	0	00:00	0.00
G1	JUNCTION	0.00	0.00	7585.00	0	00:00	0.00
F2	JUNCTION	0.00	0.00	7568.00	0	00:00	0.00
Fl	JUNCTION	0.00	0.00	7582.00	0	00:00	0.00
J_B1.1	JUNCTION	0.00	0.00	7536.00	0	00:00	0.00
J_A1.1	JUNCTION	0.02	1.41	7566.41	0	00:47	1.41
J_G1.1	JUNCTION	0.01	0.41	7555.41	0	00:43	0.41
J_C1.1	JUNCTION	0.00	0.00	7570.00	0	00:00	0.00
J_A2.2	JUNCTION	0.03	1.71	7526.71	0	00:49	1.71
J_H1.2	JUNCTION	0.01	0.41	7516.41	0	00:48	0.41
J_F1.1	JUNCTION	0.02	1.88	7573.88	0	00:39	1.87
J_B4.1	JUNCTION	0.00	0.00	7510.00	0	00:00	0.00
J_B2.1	JUNCTION	0.00	0.00	7522.00	0	00:00	0.00
J_B3.1	JUNCTION	0.00	0.00	7533.00	0	00:00	0.00
J_C3.1	JUNCTION	0.00	0.00	7544.00	0	00:00	0.00
J_C2.1	JUNCTION	0.00	0.00	7529.00	0	00:00	0.00
J_C4.1	JUNCTION	0.00	0.00	7524.00	0	00:00	0.00
O_BASIN_B	OUTFALL	0.00	0.00	7510.00	0	00:00	0.00
O_BASIN_C	OUTFALL	0.00	0.00	7520.00	0	00:00	0.00
O_BASIN_F	OUTFALL	0.02	1.87	7548.87	0	00:42	1.86
O_BASIN_H	OUTFALL	0.03	1.71	7516.71	0	00:51	1.71

****

Node Inflow Summary

Node	Туре	Maximum Lateral Inflow CFS		Occu days		Lateral Inflow Volume 10^6 gal	Inflow Volume	Flow Balance Error Percent
A1	JUNCTION	97.12	97.12	0	00:47	2.58	2.58	0.000
A2	JUNCTION	71.21	71.21	0	00:48	2.04	2.04	0.000
В1	JUNCTION	148.90	148.90	0	00:44	3.42	3.42	0.000
В2	JUNCTION	75.76	75.76	0	00:42	1.7		0.000
в3	JUNCTION	18.83	18.83	0	00:42	0.407	0.407	0.000
В4	JUNCTION	19.56	19.56	0	00:42	0.446	0.446	0.000
C1	JUNCTION	24.71	24.71	0	00:40	0.48	0.48	0.000
C2	JUNCTION	39.79	39.79	0	00:41	0.836	0.836	0.000
C3	JUNCTION	9.67	9.67	0	00:37	0.164	0.164	0.000
C4	JUNCTION	3.96	3.96	0	00:41	0.0819	0.0819	0.000
Н1	JUNCTION	93.99	93.99	0	00:42	2.03	2.03	0.000
G1	JUNCTION	10.83	10.83	0	00:43	0.277	0.277	0.000
F2	JUNCTION	10.52	10.52	0	00:55	0.446	0.446	0.000
F1	JUNCTION	94.56	94.56	0	00:39	1.65	1.65	0.000
J B1.1	JUNCTION	0.00	148.90	0	00:44	0	3.42	0.000
J A1.1	JUNCTION	0.00	97.12	0	00:47	0	2.58	0.000
J_G1.1	JUNCTION	0.00	10.83	0	00:43	0	0.277	0.000
J_C1.1	JUNCTION	0.00	24.71	0	00:40	0	0.48	0.000
J A2.2	JUNCTION	0.00	167.62	0	00:49	0	4.62	0.000
J H1.2	JUNCTION	0.00	104.43	0	00:43	0	2.31	0.000
J F1.1	JUNCTION	0.00	94.56	0	00:39	0	1.65	0.000
J_B4.1	JUNCTION	0.00	19.56	0	00:42	0	0.446	0.000

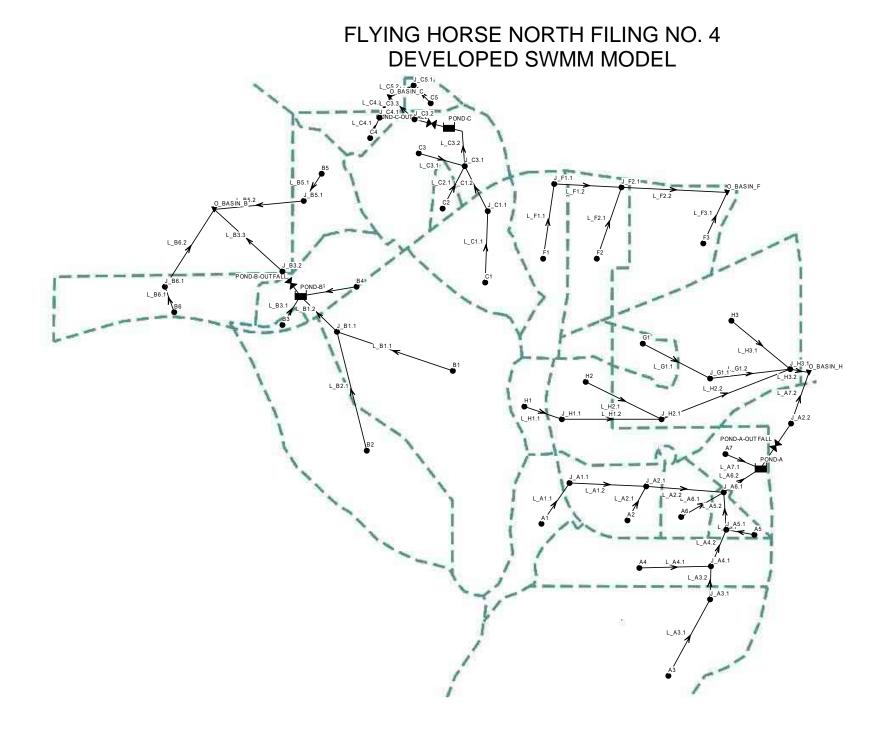


J B2.1	JUNCTION	0.00	224.49	0	00:43	0	5.12	0.000
J_B3.1	JUNCTION	0.00	18.83	0	00:42	0	0.407	0.000
J_C3.1	JUNCTION	0.00	9.67	0	00:37	0	0.164	0.000
J_C2.1	JUNCTION	0.00	64.49	0	00:41	0	1.32	0.000
J C4.1	JUNCTION	0.00	3.96	0	00:41	0	0.0819	0.000
O_BASIN_B	OUTFALL	0.00	262.74	0	00:43	0	5.97	0.000
O_BASIN_C	OUTFALL	0.00	78.00	0	00:41	0	1.56	0.000
O_BASIN_F	OUTFALL	0.00	103.21	0	00:43	0	2.1	0.000
O_BASIN_H	OUTFALL	0.00	267.35	0	00:49	0	6.93	0.000

No nodes were flooded.

**************************************	ummary				
Outfall Node	Flow Freq Pcnt	Avg Flow CFS	Max Flow CFS	Total Volume 10^6 gal	←
O_BASIN_B O_BASIN_C O_BASIN_F O_BASIN_H	3.52 3.23 4.83 7.10	65.57 18.71 16.86 37.77	262.74 78.00 103.21 267.35	5.974 1.562 2.104 6.933	
System	4.67	138.92	699.63	16.574	

These max flow values are used to set the detention pond release rates.


Detention pond release plus undetained flow must be less than or equal to these values.

					Maximum		
		Flow	Occu	irrence	Veloc	Full	Full
Link					ft/sec	Flow	Depth
L A1.1	DUMMY	97.12	0	00:47			
L_A2.1	DUMMY						
L_A1.2					6.49	0.06	0.28
L_G1.1	DUMMY	10.83	0	00:43			
L_H1.1	DUMMY	93.99	0	00:42			
					3.94	0.01	0.10
L_F1.1	DUMMY	94.56	0	00:39			
L_B1.1	DUMMY	148.90	0	00:44			
L B2.1	DUMMY	75.76	0	00:42			
L_B1.2	DUMMY	148.90	0	00:44			
L_B4.1	DUMMY						
L_B3.1	DUMMY	18.83	0	00:42			
		9.67					
L_C4.1	DUMMY	3.96	0	00:41			
L_C1.1	DUMMY	24.71	0	00:40			
L_C1.2	DUMMY	24.71	0	00:40			
L C2.1	DUMMY	39.79	0	00:41			
L_A2.2	CONDUIT	167.38	0	00:51	5.81	0.11	0.34
L_H1.2	DUMMY	104.43	0	00:43			
L_F2.1	DUMMY	10.52	0	00:55			
L_F1.2	CONDUIT		0	00:42	6.76	0.84	0.94
L_B4.2	DUMMY	19.56	0	00:42			
L B2.2	DUMMY	224.49	0	00:43			
L_B3.2	DUMMY						
L_C3.2	DUMMY	9.67	0	00:37			
L_C2.2	DUMMY						
L_C4.2	DUMMY	3.96	0	00:41			



No conduits were surcharged.

Analysis begun on: Wed Sep 04 10:57:37 2024 Analysis ended on: Wed Sep 04 10:57:37 2024 Total elapsed time: < 1 sec





Final Drainage r	Notes th Filing eport	No. 4		
[OPTIONS] ;;Option FLOW_UNITS INFILTRATION FLOW_ROUTING LINK_OFFSETS MIN_SLOPE ALLOW_PONDING SKIP_STEADY_STAT	Value CFS HORTO KINWA DEPTH 0 NO	N VE		
START_DATE START_TIME REPORT_START_DAT REPORT_START_TIM END_DATE SWEEP_START SWEEP_END DRY_DAYS REPORT_STEP WET_STEP DRY_STEP ROUTING_STEP	01/01 00:00 E 01/01 E 00:00 01/02 00:00 01/01 12/31 0 00:05 00:05 01:00 0:02:	:00 /2005 :00 /2005 :00 :00 :00		
INERTIAL_DAMPING NORMAL_FLOW_LIMI FORCE_MAIN_EQUAT VARIABLE_STEP LENGTHENING_STEP MIN_SURFAREA MAX_TRIALS HEAD_TOLERANCE SYS_FLOW_TOL LAT_FLOW_TOL MINIMUM_STEP THREADS	TED BOTH ION H-W 0.75			
[FILES] ;;Interfacing Fi USE INFLOWS "SWM		d_Interface	_100.txt"	
[EVAPORATION] ;;Data Source				
;;Data Source ;; CONSTANT DRY_ONLY				
;;Data Source ;; CONSTANT DRY_ONLY [JUNCTIONS]	0.0 NO Elevation	MaxDepth	InitDepth	

Aponded



F2 G1 H1 H2 H3 J_A1.1 J_A2.1 J_A2.2 J_A3.1 J_A4.1 J_A5.1 J_A6.1 J_B1.1 J_C1.1 J_C1.1 J_C1.1 J_G1.1 J_H2.1 J_H2.1 J_H3.1 F3 J_F1.1 J_F2.1 J_B3.2 J_B5.1 J_B6.1 J_C3.2 J_C3.1	7576 7585 7610 7570 7550 7560 7525 7566 7525 7548 7536 7536 7536 7536 7536 7533 7555 7594 7555 7594 7554 7554 7558 7514 7558 7522 7533 7510 7544 7522 7533 7510								
[OUTFALLS] ;;Name					ted Route I	0			
;;				 NC					
O_BASIN_B O_BASIN_C O_BASIN_F O_BASIN_H	7520	FREE		NC					
O BASIN F	7547	FREE		NC					
O BASIN H	7515	FREE		NC					
[STORAGE] ;;Name Ksat IMD	Elev.	MaxDept	h InitDepth	Shape	Curve Name/Pa	rams	N/A	Fevap	Psi
;;									
;;	_								
;;	_				POND-A_STORAG	··	0	0	
;;	_				POND-A_STORAG POND-B_STORAG	Е Е	0 0	0 0	
;;	_				POND-A_STORAG POND-B_STORAG POND-C_STORAG	Е Е Е	0 0 0	0 0 0	
;; POND-A POND-B POND-C	_				POND-A_STORAG POND-B_STORAG POND-C_STORAG	E E E	0 0 0	0 0 0	
;; POND-A POND-B POND-C [CONDUITS]	7530 7528 7530	7 10 10	0 0 0	TABULAR TABULAR TABULAR					
;; POND-A POND-B POND-C [CONDUITS] ;;Name	7530 7528 7530	7 10 10	0 0 0	TABULAR TABULAR TABULAR	POND-A_STORAG POND-B_STORAG POND-C_STORAG Roughness				
;; POND-A POND-B POND-C [CONDUITS] ;;Name MaxFlow	7530 7528 7530 From Noo	7 10 10 de	0 0 0 To Node	TABULAR TABULAR TABULAR Length					
;; POND-A POND-B POND-C [CONDUITS] ;;Name MaxFlow ;;	7530 7528 7530 From Noo	7 10 10 de	0 0 0 To Node	TABULAR TABULAR TABULAR Length	Roughness	InOffset	OutOffset		
;; POND-A POND-B POND-C [CONDUITS] ;;Name MaxFlow ;;	7530 7528 7530 From Noo	7 10 10 de	0 0 0 To Node	TABULAR TABULAR TABULAR Length	Roughness	InOffset	OutOffset	InitFlow	
;; POND-A POND-B POND-C [CONDUITS] ;;Name MaxFlow ;;	7530 7528 7530 From Noo	7 10 10 de	0 0 0 To Node	TABULAR TABULAR TABULAR Length	Roughness	InOffset	OutOffset	InitFlow 	  0
;; POND-A POND-B POND-C [CONDUITS] ;;Name MaxFlow ;;	7530 7528 7530 From Noo	7 10 10 de	0 0 0 To Node	TABULAR TABULAR TABULAR Length	Roughness	InOffset	OutOffset	InitFlow  0 0	0
;; POND-A POND-B POND-C [CONDUITS] ;;Name MaxFlow ;;	7530 7528 7530 From Noo	7 10 10 de	0 0 0 To Node	TABULAR TABULAR TABULAR Length	Roughness	InOffset	OutOffset  0 0 0	InitFlow  0 0 0	0 0
;; POND-A POND-B POND-C [CONDUITS] ;;Name MaxFlow ;; L_A1.1 L_A2.1 L_A1.2 L_G1.1		7 10 10 de	0 0 0 To Node J_A1.1 J_A2.1 J_A2.1 J_A2.1 J_G1.1	TABULAR TABULAR Length 400 400 840 400	Roughness .013 .013 .035 .013	InOffset  0 0 0 0 0	OutOffset  0 0 0 0 0	InitFlow 0 0 0 0 0	0 0 0
;; POND-A POND-B POND-C [CONDUITS] ;;Name MaxFlow ;; L_A1.1 L_A1.1 L_A2.1 L_A1.2 L_G1.1 L_H3.1		7 10 10 de	0 0 0 To Node J_A1.1 J_A2.1 J_A2.1 J_G1.1 J_H3.1	TABULAR TABULAR Length 400 400 840 400 400	Roughness .013 .013 .035 .013 .013	InOffset 0 0 0 0 0 0	OutOffset 0 0 0 0 0 0 0	InitFlow 0 0 0 0 0 0	0 0 0 0
;; POND-A POND-B POND-C [CONDUITS] ;;Name MaxFlow ;; L_A1.1 L_A2.1 L_A1.2 L_G1.1 L_H3.1 L_G1.2	 7530 7528 7530 From Noo  A1 A2 J_A1.1 G1 H3 J_G1.1	7 10 10 de	0 0 0 To Node J_A1.1 J_A2.1 J_A2.1 J_A2.1 J_G1.1 J_H3.1 J_H3.1 J_H3.1	TABULAR TABULAR TABULAR Length 400 400 840 400 400 1031	Roughness .013 .013 .035 .013 .013 .013 .035	InOffset 0 0 0 0 0 0 0 0	OutOffset 0 0 0 0 0 0 0 0 0	InitFlow 0 0 0 0 0 0 0 0	0 0 0 0
;; POND-A POND-B POND-C [CONDUITS] ;;Name MaxFlow ;; L_A1.1 L_A2.1 L_A1.2 L_A1.2 L_G1.1 L_H3.1 L_H3.1 L_G1.2 L_F1.1	 7530 7528 7530 From Noo  A1 A2 J_A1.1 G1 H3 J_G1.1 F1	7 10 10 de	0 0 0 To Node  J_A1.1 J_A2.1 J_A2.1 J_A2.1 J_A2.1 J_H3.1 J_H3.1 J_H3.1 J_H3.1 J_F1.1	TABULAR TABULAR TABULAR Length 400 400 840 400 400 1031 400	Roughness .013 .013 .035 .013 .013 .013 .035 .013	InOffset  0 0 0 0 0 0 0 0 0	OutOffset 0 0 0 0 0 0 0 0 0 0 0 0	InitFlow 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0
;; POND-A POND-B POND-C [CONDUITS] ;;Name MaxFlow ;; L_A1.1 L_A2.1 L_A1.2 L_G1.1 L_H3.1 L_G1.2 L_G1.2 L_F1.1 L_B1.1		7 10 10 de	0 0 0 To Node J_A1.1 J_A2.1 J_A2.1 J_A2.1 J_G1.1 J_H3.1 J_H3.1 J_F1.1 J_F1.1 J_B1.1	TABULAR TABULAR TABULAR Length 400 400 840 400 400 1031 400 400 400	Roughness .013 .013 .035 .013 .013 .013 .035 .013 .013	InOffset  0 0 0 0 0 0 0 0 0 0 0	OutOffset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	InitFlow 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0
;; POND-A POND-B POND-C [CONDUITS] ;;Name MaxFlow ;; L_A1.1 L_A2.1 L_A1.2 L_G1.1 L_H3.1 L_G1.2 L_F1.1 L_B1.1 L_B2.1		7 10 10 de	0 0 0 To Node J_A1.1 J_A2.1 J_A2.1 J_A2.1 J_G1.1 J_H3.1 J_H3.1 J_H3.1 J_H3.1 J_H3.1 J_B1.1 J_B1.1	TABULAR TABULAR Length 400 400 840 400 1031 400 400 400 400 400 400	Roughness .013 .013 .013 .013 .013 .013 .013 .013	InOffset 0 0 0 0 0 0 0 0 0 0 0 0 0	OutOffset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	InitFlow 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0
<pre>;; POND-A POND-B POND-C [CONDUITS] ;;Name MaxFlow ;; L_A1.1 L_A2.1 L_A1.2 L_G1.1 L_H3.1 L_G1.2 L_F1.1 L_B1.1 L_B1.1 L_B2.1 L_B1.2</pre>		7 10 10 de	0 0 0 To Node J_A1.1 J_A2.1 J_A2.1 J_G1.1 J_G1.1 J_H3.1 J_H3.1 J_H3.1 J_F1.1 J_B1.1 J_B1.1 POND-B	TABULAR TABULAR TABULAR Length 400 400 840 400 1031 400 400 400 400 400 400	Roughness .013 .013 .013 .013 .013 .013 .013 .013	InOffset 0 0 0 0 0 0 0 0 0 0 0 0 0	OutOffset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	InitFlow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0
;; POND-A POND-B POND-C [CONDUITS] ;;Name MaxFlow ;; L_A1.1 L_A2.1 L_A1.2 L_G1.1 L_H3.1 L_G1.2 L_F1.1 L_B1.1 L_B2.1		7 10 10 de	0 0 0 To Node J_A1.1 J_A2.1 J_A2.1 J_A2.1 J_G1.1 J_H3.1 J_H3.1 J_H3.1 J_H3.1 J_H3.1 J_B1.1 J_B1.1	TABULAR TABULAR Length 400 400 840 400 1031 400 400 400 400 400 400	Roughness .013 .013 .013 .013 .013 .013 .013 .013	InOffset 0 0 0 0 0 0 0 0 0 0 0 0 0	OutOffset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	InitFlow 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0
;; POND-A POND-B POND-C [CONDUITS] ;;Name MaxFlow ;; L_A1.1 L_A2.1 L_A1.2 L_G1.1 L_H3.1 L_G1.2 L_F1.1 L_B1.1 L_B2.1 L_B1.2 L_B6.1		7 10 10 de	0 0 0 To Node J_A1.1 J_A2.1 J_A2.1 J_G1.1 J_H3.1 J_H3.1 J_H3.1 J_F1.1 J_B1.1 J_B1.1 POND-B J_B6.1	TABULAR TABULAR TABULAR Length 400 400 840 400 1031 400 400 400 400 400 400 400 400	Roughness .013 .013 .035 .013 .013 .035 .013 .013 .013 .013 .013 .013	InOffset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OutOffset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	InitFlow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0
;; POND-A POND-B POND-C [CONDUITS] ;;Name MaxFlow ;; L_A1.1 L_A2.1 L_A1.2 L_G1.1 L_H3.1 L_G1.2 L_F1.1 L_B1.1 L_B1.1 L_B2.1 L_B1.2 L_B1.2 L_B6.1 L_B5.1		7 10 10 de	0 0 0 To Node J_A1.1 J_A2.1 J_A2.1 J_G1.1 J_H3.1 J_H3.1 J_F1.1 J_B1.1 J_B1.1 J_B1.1 J_B1.1 J_B1.1 J_B1.1 J_B1.1 J_B1.1 J_B1.1 J_B1.1 J_B1.1 J_B1.1	TABULAR TABULAR TABULAR Length 400 400 840 400 400 400 400 400 400 400	Roughness .013 .013 .035 .013 .013 .013 .013 .013 .013 .013 .013	InOffset  0 0 0 0 0 0 0 0 0 0 0 0 0	OutOffset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	InitFlow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0
;; POND-A POND-B POND-C [CONDUITS] ;;Name MaxFlow ;; L A1.1 L A2.1 L A1.2 L G1.1 L A2.1 L A1.2 L G1.1 L H3.1 L G1.2 L F1.1 L B1.1 L B2.1 L B1.2 L B6.1 L B5.1 L C4.1		7 10 10 de	0 0 0 J_A1.1 J_A2.1 J_A2.1 J_A2.1 J_G1.1 J_H3.1 J_F1.1 J_H3.1 J_F1.1 J_B1.1 J_B1.1 J_B1.1 J_B5.1 J_B5.1 J_C4.1	TABULAR TABULAR Length 400 400 840 400 400 1031 400 400 400 400 400 400 400 400 400 40	Roughness .013 .013 .013 .013 .013 .013 .013 .013	InOffset 0 0 0 0 0 0 0 0 0 0 0 0 0	OutOffset 0 0 0 0 0 0 0 0 0 0 0 0 0	InitFlow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0
<pre>;; POND-A POND-B POND-C [CONDUITS] ;;Name MaxFlow ;; L_A1.1 L_A2.1 L_A1.2 L_G1.1 L_H3.1 L_G1.2 L_G1.1 L_B3.1 L_B2.1 L_B1.1 L_B2.1 L_B1.2 L_B5.1 L_B5.1 L_C4.1 L_C5.1</pre>		7 10 10 de	0 0 0 To Node J_A1.1 J_A2.1 J_A2.1 J_G1.1 J_H3.1 J_H3.1 J_H3.1 J_B1.1 J_B1.1 J_B1.1 J_B1.1 J_B1.1 J_B5.1 J_C4.1 J_C5.1	TABULAR TABULAR TABULAR Length 400 400 400 400 400 400 400 400 400 40	Roughness .013 .013 .035 .013 .013 .013 .013 .013 .013 .013 .013	InOffset 0 0 0 0 0 0 0 0 0 0 0 0 0	OutOffset 0 0 0 0 0 0 0 0 0 0 0 0 0	InitFlow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
<pre>;; POND-A POND-B POND-C [CONDUITS] ;;Name MaxFlow ;; L_A1.1 L_A2.1 L_A1.2 L_G1.1 L_H3.1 L_G1.2 L_F1.1 L_B1.1 L_B2.1 L_B1.2 L_B6.1 L_B5.1 L_C4.1 L_C5.1 L_C1.1</pre>		7 10 10 de	0 0 0 To Node J_A1.1 J_A2.1 J_A2.1 J_G1.1 J_H3.1 J_H3.1 J_H3.1 J_F1.1 J_B1.1 J_B1.1 J_B1.1 J_B1.1 J_B5.1 J_C4.1 J_C5.1 J_C1.1	TABULAR TABULAR TABULAR Length 	Roughness .013 .013 .035 .013 .013 .013 .013 .013 .013 .013 .013	InOffset 0 0 0 0 0 0 0 0 0 0 0 0 0	OutOffset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	InitFlow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
;; POND-A POND-B POND-C [CONDUITS] ;;Name MaxFlow ;; L_A1.1 L_A2.1 L_A1.2 L_G1.1 L_H3.1 L_G1.2 L_F1.1 L_B1.1 L_B2.1 L_B1.2 L_B6.1 L_B5.1 L_C5.1 L_C5.1 L_C1.2		7 10 10 de	0 0 0 To Node J_A1.1 J_A2.1 J_A2.1 J_G1.1 J_H3.1 J_H3.1 J_H3.1 J_H3.1 J_H3.1 J_B1.1 J_B1.1 J_B1.1 J_B1.1 J_B5.1 J_C5.1 J_C1.1 J_C3.1	TABULAR TABULAR TABULAR Length 400 400 840 400 400 400 400 400 400 400	Roughness .013 .013 .035 .013 .013 .013 .013 .013 .013 .013 .013	InOffset 0 0 0 0 0 0 0 0 0 0 0 0 0	OutOffset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	InitFlow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
<pre>;; POND-A POND-B POND-C [CONDUITS] ;;Name MaxFlow ;; L_A1.1 L_A2.1 L_A1.2 L_G1.1 L_H3.1 L_G1.2 L_F1.1 L_B1.1 L_B2.1 L_B1.2 L_B6.1 L_B5.1 L_C4.1 L_C5.1 L_C1.1 L_C1.2 L_C2.1</pre>	7530 7528 7530 From Noc A1 A2 J_A1.1 G1 H3 J_G1.1 F1 B1 B2 J_B1.1 B6 C4 C5 C1 J_C1.1 C2	7 10 10 de	0 0 0 To Node J_A1.1 J_A2.1 J_A2.1 J_A2.1 J_H3.1 J_H3.1 J_F1.1 J_B1.1 J_B1.1 J_B1.1 J_B1.1 J_B5.1 J_C4.1 J_C5.1 J_C1.1 J_C3.1 J_C3.1	TABULAR TABULAR TABULAR Length 400 400 840 400 400 400 400 400 400 400	Roughness .013 .013 .035 .013 .013 .013 .013 .013 .013 .013 .013	InOffset 0 0 0 0 0 0 0 0 0 0 0 0 0	OutOffset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	InitFlow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
<pre>;; POND-A POND-B POND-C [CONDUITS] ;;Name MaxFlow ;; L_A1.1 L_A2.1 L_A1.2 L_G1.1 L_H3.1 L_G1.2 L_F1.1 L_B1.1 L_B2.1 L_B1.2 L_B6.1 L_B5.1 L_C4.1 L_C5.1 L_C1.2 L_C1.1 L_C1.2 L_C2.1 L_A3.1 L_A3.2 L_A4.2</pre>	7530 7528 7530 From Noo Al A2 J_A1.1 G1 H3 J_G1.1 F1 B1 B2 J_B1.1 B6 C4 C5 C1 J_C1.1 C2 A3	7 10 10 de	0 0 0 To Node J_A1.1 J_A2.1 J_A2.1 J_G1.1 J_H3.1 J_H3.1 J_H3.1 J_H3.1 J_B1.1 J_B1.1 J_B1.1 J_B1.1 J_B5.1 J_C4.1 J_C5.1 J_C4.1 J_C3.1 J_C3.1 J_A3.1	TABULAR TABULAR TABULAR Length 400 400 400 400 400 400 400 400 400 40	Roughness .013 .013 .035 .013 .013 .013 .013 .013 .013 .013 .013	InOffset 0 0 0 0 0 0 0 0 0 0 0 0 0	OutOffset 0 0 0 0 0 0 0 0 0 0 0 0 0	InitFlow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
<pre>;; POND-A POND-B POND-C [CONDUITS] ;;Name MaxFlow ;; L_A1.1 L_A2.1 L_A1.2 L_G1.1 L_H3.1 L_G1.2 L_F1.1 L_B1.1 L_B2.1 L_B1.2 L_B6.1 L_B5.1 L_C4.1 L_C5.1 L_C1.1 L_C1.2 L_C2.1 L_A3.1 L_A3.2 L_A4.2 L_A4.1</pre>		7 10 10 de	0 0 0 0 To Node J_A1.1 J_A2.1 J_A2.1 J_G1.1 J_H3.1 J_H3.1 J_F1.1 J_B1.1 J_B1.1 POND-B J_B6.1 J_B5.1 J_C4.1 J_C5.1 J_C3.1 J_C3.1 J_C3.1 J_A3.1 J_A3.1 J_A4.1 J_A4.1	TABULAR TABULAR TABULAR Length 400 400 840 400 400 400 400 400 400 400	Roughness .013 .013 .035 .013 .013 .013 .013 .013 .013 .013 .013	InOffset 	OutOffset 0 0 0 0 0 0 0 0 0 0 0 0 0	InitFlow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
<pre>;; POND-A POND-B POND-C [CONDUITS] ;;Name MaxFlow ;; L_A1.1 L_A2.1 L_A1.2 L_G1.1 L_H3.1 L_G1.2 L_G1.1 L_B1.1 L_B2.1 L_B1.2 L_B6.1 L_B5.1 L_C4.1 L_C5.1 L_C4.1 L_C5.1 L_C1.2 L_C2.1 L_A3.1 L_A3.2 L_A4.2 L_A4.1 L_A6.1</pre>	7530 7528 7530 From Noo A1 A2 J_A1.1 G1 H3 J_G1.1 F1 B1 B2 J_B1.1 B6 C4 C5 C1 J_C1.1 C2 A3 J_A3.1 J_A4.1 A4 A6	7 10 10 de	0 0 0 J_A1.1 J_A2.1 J_A2.1 J_H3.1 J_H3.1 J_H3.1 J_H3.1 J_H3.1 J_B1.1 J_B1.1 J_B1.1 J_B5.1 J_C4.1 J_C5.1 J_C3.1 J_C3.1 J_A3.1 J_A4.1 J_A4.1 J_A6.1	TABULAR TABULAR TABULAR Length 400 400 400 400 400 400 400 400 400 40	Roughness .013 .013 .035 .013 .013 .013 .013 .013 .013 .013 .013	InOffset 0 0 0 0 0 0 0 0 0 0 0 0 0	OutOffset 0 0 0 0 0 0 0 0 0 0 0 0 0	InitFlow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
<pre>;; POND-A POND-B POND-C [CONDUITS] ;;Name MaxFlow ;; L_A1.1 L_A2.1 L_A1.2 L_G1.1 L_H3.1 L_G1.2 L_F1.1 L_B1.1 L_B2.1 L_B1.2 L_B6.1 L_B5.1 L_C4.1 L_C5.1 L_C1.1 L_C1.2 L_C2.1 L_A3.1 L_A3.2 L_A4.2 L_A4.1</pre>	7530 7528 7530 From Nod A1 A2 J_A1.1 G1 H3 J_G1.1 F1 B1 B2 J_B1.1 B6 B5 C4 C5 C1 J_C1.1 C2 A3 J_A3.1 J_A4.1 A4	7 10 10 de	0 0 0 0 To Node J_A1.1 J_A2.1 J_A2.1 J_G1.1 J_H3.1 J_H3.1 J_F1.1 J_B1.1 J_B1.1 POND-B J_B6.1 J_B5.1 J_C4.1 J_C5.1 J_C3.1 J_C3.1 J_C3.1 J_A3.1 J_A3.1 J_A4.1 J_A4.1	TABULAR TABULAR TABULAR Length 400 400 840 400 400 400 400 400 400 400	Roughness .013 .013 .013 .013 .013 .013 .013 .013	InOffset 	OutOffset 0 0 0 0 0 0 0 0 0 0 0 0 0	InitFlow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

	-7	3
HR	Gre	een

L A5.1 L A2.2 L A7.1 L A6.2 L H1.1 L H2.1 L H2.2 L A7.2 L H3.2 L B3.1 L B3.1 L F3.1 L F3.1 L F1.2 L F2.2 L B6.2 L B3.3 L B5.2 L C3.3 L C5.2 [OUTLETS]	A5 J_A2.1 A7 J_A6.1 H1 H2 J_H1.1 J_H2.1 J_A2.2	J_A5.1 J_A6.1 POND-A POND-A J_H1.1 J_H2.1 J_H2.1 J_H3.1 O_BASIN H	400 545 400 400 400 860 400 680	.013 .035 .013 .013 .013 .013 .035 .013				0 0 0 0 0 0 0 0
L_H3.2 L_B3.1 L_B4.1 L_C3.2	J_H3.1 B3 B4 J_C3.1	O_BASIN_H POND-B POND-B POND-C	400 400 400 400	.013 .013 .013 .013	0 0 0	0 0 0	0 0 0	0 0 0
L_C3.1 L_F2.1 L_F3.1 L_F1.2 L F2.2	C3 F2 F3 J_F1.1 J F2.1	J_C3.1 J_F2.1 O_BASIN_F J_F2.1 O BASIN F	400 400 400 580 620	.013 .013 .013 .030 .030	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
L_B6.2 L_B3.3 L_B5.2 L_C4.2 L_C3.3	J_B6.1 J_B3.2 J_B5.1 J_C4.1 J_C3.2	O_BASIN_B O_BASIN_B O_BASIN_B O_BASIN_C O_BASIN_C	400 400 400 400 400	.013 .013 .013 .013 .013	0 0 0 0		0 0 0 0 0	0 0 0 0
L_C5.2	J_C5.1	O_BASIN_C	400	.013	0	0	0	0
		To Node				QTable/Qcoeff	Qexpon	Gated
POND-A-OUTFALL POND-B-OUTFALL POND-C-OUTFALL [XSECTIONS]	POND-A POND-B POND-C	J_A2.2 J_B3.2 J_C3.2	0 0 0	TABULI TABULI TABULI	AR/DEPTH AR/DEPTH AR/DEPTH	POND-A_RELEAS POND-B_RELEAS POND-C_RELEAS	E E	NO NO NO
;;Link	Shape	Geoml	Geom2				Culvert	
L A1.1	DUMMY	0	0	0	0	1		
	DIMMY	0	0	0	0	1		
L_A2.1 L_A1.2	DUMMY TRAPEZOIDAL	0 4	0 4	0 4	0 4	1 1		
T_A1.2	DUMMY TRAPEZOIDAL DUMMY DUMMY	0 4 0	4 0	0 4 0	0 4 0	1 1		
L_A2.1 L_A1.2 L_G1.1 L_H3.1 L_G1.2	TRAPEZOIDAL DUMMY DUMMY TRAPEZOIDAL	0	0	0 4 0 0 4	0 4 0 0 4	1		
L_H3.1 L_G1.2 L_F1_1	TRAPEZOIDAL DUMMY DUMMY TRAPEZOIDAL DUMMY	0 4 0	0 5 0	0 4 0	0 4 0	1 1 1 1		
L_H3.1 L_G1.2 L_F1_1	TRAPEZOIDAL DUMMY DUMMY TRAPEZOIDAL DUMMY	0 4 0	0 5 0 0	0 4 0 0	0 4 0 0	1 1 1 1 1		
L_H3.1 L_G1.2 L_F1_1	TRAPEZOIDAL DUMMY DUMMY TRAPEZOIDAL DUMMY	0 4 0	0 5 0 0 0	0 4 0	0 4 0	1 1 1 1		
L_H3.1 L_G1.2 L_F1_1	TRAPEZOIDAL DUMMY DUMMY TRAPEZOIDAL DUMMY	0 4 0	0 5 0 0 0 0 0	0 4 0 0 0 0 0	0 4 0 0 0 0	1 1 1 1 1 1 1 1		
L_H3.1 L_G1.2 L_F1_1	TRAPEZOIDAL DUMMY DUMMY TRAPEZOIDAL DUMMY	0 4 0	0 5 0 0 0 0 0	0 4 0 0 0 0 0 0	0 4 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1		
L_H3.1 L_G1.2 L_F1_1	TRAPEZOIDAL DUMMY DUMMY TRAPEZOIDAL DUMMY	0 4 0	0 5 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1		
L_H3.1 L_G1.2 L_F1.1 L_B2.1 L_B1.2 L_B6.1 L_B5.1 L_C4.1 L_C5.1	TRAPEZOIDAL DUMMY TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY	0 4 0 0 0 0 0 0 0 0	0 5 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0	0 4 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1		
L_H3.1 L_G1.2 L_F1.1 L_B2.1 L_B1.2 L_B6.1 L_B5.1 L_C4.1 L_C5.1	TRAPEZOIDAL DUMMY TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY	0 4 0 0 0 0 0 0 0 0	0 5 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1		
L_H3.1 L_G1.2 L_F1.1 L_B1.1 L_B2.1 L_B5.1 L_B5.1 L_C4.1 L_C5.1 L_C1.1 L_C1.2 L_C2.1	TRAPEZOIDAL DUMMY TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 5 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
L_H3.1 L_G1.2 L_F1.1 L_B2.1 L_B2.2 L_B6.1 L_C4.1 L_C5.1 L_C1.1 L_C1.2 L_C2.1 L_A3.1	TRAPEZOIDAL DUMMY TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
L_H3.1 L_G1.2 L_F1.1 L_B1.1 L_B2.1 L_B5.1 L_B5.1 L_C4.1 L_C5.1 L_C1.1 L_C1.2 L_C2.1	TRAPEZOIDAL DUMMY TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 5 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
$ \begin{array}{c} L \\ H3.1 \\ L \\ G1.2 \\ L \\ F1.1 \\ L \\ B1.1 \\ L \\ B2.1 \\ L \\ B5.1 \\ L \\ C4.1 \\ L \\ C5.1 \\ L \\ C5.1 \\ L \\ C1.1 \\ L \\ C2.1 \\ L \\ C2.1 \\ L \\ A3.1 \\ L \\ A3.2 \\ L \\ A4.2 \\ L \\ A4.1 \end{array} $	TRAPEZOIDAL DUMMY TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TRAPEZOIDAL TRAPEZOIDAL DUMMY	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1		
$ \begin{array}{c} L \\ H3.1 \\ L \\ H4.2 \\ L \\ H4.1 \\ L \\$	TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TRAPEZOIDAL TRAPEZOIDAL DUMMY DUMMY	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1		
$ \begin{array}{c} L & H3.1 \\ L & H3.1 \\ L & G1.2 \\ L & F1.1 \\ L & B1.1 \\ L & B2.1 \\ L & B2.1 \\ L & B6.1 \\ L & C4.1 \\ L & C5.1 \\ L & C4.1 \\ L & C5.1 \\ L & C1.1 \\ L & C1.2 \\ L & C1.2 \\ L & A3.1 \\ L & A3.2 \\ L & A4.2 \\ L & A4.1 \\ L & A6.1 \\ L & A5.2 \\ \end{array} $	TRAPEZOIDAL DUMMY TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL DUMMY DUMMY	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
$ \begin{array}{c} L & H3.1 \\ L & H3.1 \\ L & G1.2 \\ L & F1.1 \\ L & B1.1 \\ L & B2.1 \\ L & B5.1 \\ L & C4.1 \\ L & C5.1 \\ L & C4.1 \\ L & C5.1 \\ L & C1.1 \\ L & C1.2 \\ L & C2.1 \\ L & A3.2 \\ L & A4.2 \\ L & A4.2 \\ L & A4.2 \\ L & A4.1 \\ L & A5.2 \\ L & A5.1 \\ \end{array} $	TRAPEZOIDAL DUMMY TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TRAPEZOIDAL TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1		
$ \begin{array}{c} L & H3.1 \\ L & H3.1 \\ L & G1.2 \\ L & F1.1 \\ L & B1.1 \\ L & B2.1 \\ L & B2.1 \\ L & B6.1 \\ L & C4.1 \\ L & C5.1 \\ L & C4.1 \\ L & C5.1 \\ L & C1.1 \\ L & C1.2 \\ L & C1.2 \\ L & A3.1 \\ L & A3.2 \\ L & A4.2 \\ L & A4.1 \\ L & A6.1 \\ L & A5.2 \\ \end{array} $	TRAPEZOIDAL DUMMY TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL DUMMY DUMMY	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
$ \begin{array}{c} L \\ H3.1 \\ L \\ H3.1 \\ L \\ B1.1 \\ L \\ B2.1 \\ L \\ B2.1 \\ L \\ B5.1 \\ L \\ C4.1 \\ L \\ C5.1 \\ L \\ C4.1 \\ L \\ C5.1 \\ L \\ C1.2 \\ L \\ C2.1 \\ L \\ A3.1 \\ L \\ A3.2 \\ L \\ A4.2 \\ L \\ A4.2 \\ L \\ A4.1 \\ L \\ A6.1 \\ L \\ A5.2 \\ L \\ A5.2 \\ L \\ A5.1 \\ L \\ A5.2 \\ L \\ A5.2 \\ L \\ A5.1 \\ L \\ A5.2 \\ L \\ A5.1 \\ L \\ A5.2 \\ L \\ A5.2 \\ L \\ A5.1 \\ L \\$	TRAPEZOIDAL DUMMY TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TRAPEZOIDAL TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
$ \begin{array}{c} L \\ H3.1 \\ L \\ H3.1 \\ L \\ H3.1 \\ L \\ H3.2 \\$	TRAPEZOIDAL DUMMY TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TRAPEZOIDAL TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
$ \begin{array}{c} L \\ H3.1 \\ L \\ G1.2 \\ L \\ F1.1 \\ L \\ B1.1 \\ L \\ B2.1 \\ L \\ B5.1 \\ L \\ C4.1 \\ L \\ C5.1 \\ L \\ C5.1 \\ L \\ C1.1 \\ L \\ C1.2 \\ L \\ C2.1 \\ L \\ A3.2 \\ L \\ A4.2 \\ L \\ A4.2 \\ L \\ A4.2 \\ L \\ A4.1 \\ L \\ A5.2 \\ L \\ A4.2 \\ L \\ A4.1 \\ L \\ A5.2 \\ L \\ A4.2 \\ L \\ A4.1 \\ L \\ A5.1 \\ L \\ A5.2 \\ L \\ A4.2 \\ L \\ A4.1 \\ L \\ A5.1 \\ L \\ A5.2 \\ L \\ A4.1 \\ L \\ A6.1 \\ L \\ A5.2 \\ L \\ A4.1 \\ L \\ A6.1 \\ L \\ A5.2 \\ L \\ A4.1 \\ L \\ A6.1 \\ L \\ A5.2 \\ L \\ A4.1 \\ L \\ A6.1 \\ L \\ A5.2 \\ L \\ A1.1 \\ L \\ A5.1 \\ L \\$	TRAPEZOIDAL DUMMY TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0			
$ \begin{array}{c} L \\ H3.1 \\ L \\ H3.1 \\ L \\ G1.2 \\ L \\ F1.1 \\ L \\ B2.1 \\ L \\ B2.1 \\ L \\ B5.1 \\ L \\ C4.1 \\ L \\ C5.1 \\ L \\ C4.1 \\ L \\ C5.1 \\ L \\ C2.1 \\ L \\ C2.1 \\ L \\ C2.1 \\ L \\ A3.1 \\ L \\ A3.2 \\ L \\ A4.2 \\ L \\ A4.2 \\ L \\ A4.1 \\ L \\ A6.1 \\ L \\ A5.2 \\ L \\ A4.2 \\ L \\ A4.1 \\ L \\ A6.1 \\ L \\ A5.2 \\ L \\ A4.1 \\ L \\ A6.1 \\ L \\ A5.2 \\ L \\ A4.1 \\ L \\ A6.1 \\ L \\ A5.2 \\ L \\ A4.1 \\ L \\ A6.1 \\ L \\ A5.2 \\ L \\ A7.1 \\ L \\ A6.2 \\ L \\ A7.1 \\ L \\ A6.2 \\ L \\ A7.1 \\ L \\ A6.2 \\ L \\ A1.1 \\ L \\ A1.2 \\ L \\ A1.1 \\ L \\ A1.2 \\ L \\ A1.1 \\ L \\ A1.1 \\ L \\ A2.2 \\ L \\ A1.1 \\ L \\ A1.2 \\ L \\ A1.1 \\ L \\ A1.1 \\ L \\ A1.2 \\ L \\ A1.1 \\ L \\ A1.1 \\ L \\ A1.2 \\ L \\ A1.1 \\ L \\$	TRAPEZOIDAL DUMMY DUMMY TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TRAPEZOIDAL TRAPEZOIDAL DUMMY TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0			
$ \begin{array}{c} L \\ H3.1 \\ L \\ G1.2 \\ L \\ F1.1 \\ L \\ B1.1 \\ L \\ B2.1 \\ L \\ B5.1 \\ L \\ C4.1 \\ L \\ C5.1 \\ L \\ C5.1 \\ L \\ C1.1 \\ L \\ C1.2 \\ L \\ C2.1 \\ L \\ A3.2 \\ L \\ A4.2 \\ L \\ A4.2 \\ L \\ A4.2 \\ L \\ A4.1 \\ L \\ A5.2 \\ L \\ A4.2 \\ L \\ A4.1 \\ L \\ A5.2 \\ L \\ A4.2 \\ L \\ A4.1 \\ L \\ A5.1 \\ L \\ A5.2 \\ L \\ A4.2 \\ L \\ A4.1 \\ L \\ A5.1 \\ L \\ A5.2 \\ L \\ A4.1 \\ L \\ A6.1 \\ L \\ A5.2 \\ L \\ A4.1 \\ L \\ A6.1 \\ L \\ A5.2 \\ L \\ A4.1 \\ L \\ A6.1 \\ L \\ A5.2 \\ L \\ A4.1 \\ L \\ A6.1 \\ L \\ A5.2 \\ L \\ A1.1 \\ L \\ A5.1 \\ L \\$	TRAPEZOIDAL DUMMY DUMMY TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0			
$ \begin{array}{c} L \\ H3.1 \\ L \\$	TRAPEZOIDAL DUMMY TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TRAPEZOIDAL TRAPEZOIDAL DUMMY DUMMY DUMMY TRAPEZOIDAL DUMMY TRAPEZOIDAL DUMMY TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0			
$ \begin{array}{c} L \\ H3.1 \\ L \\ G1.2 \\ L \\ F1.1 \\ L \\ B1.1 \\ L \\ B2.1 \\ L \\ B6.1 \\ L \\ B5.1 \\ L \\ C4.1 \\ L \\ C5.1 \\ L \\ C1.1 \\ L \\ C1.2 \\ L \\ C2.1 \\ L \\ A3.2 \\ L \\ A4.2 \\ L \\ A5.2 \\ L \\ A5.1 \\ L \\ A5.2 \\ L \\ A7.1 \\ L \\ A6.2 \\ L \\ A7.1 \\ L \\ A6.3 \\ A7.1 \\ L \\ A6.2 \\ L \\ A7.1 \\ L \\ A6.2 \\ L \\ A7.1 \\ L \\ A6.2 \\ L \\ A7.2 \\ L \\ B3.1 \\ \end{array} $	TRAPEZOIDAL DUMMY DUMMY TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TRAPEZOIDAL TRAPEZOIDAL DUMMY DUMMY TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0			
$ \begin{array}{c} L \\ H3.1 \\ L \\ H3.1 \\ L \\ G1.2 \\ L \\ F1.1 \\ L \\ B2.1 \\ L \\ B2.1 \\ L \\ B5.1 \\ L \\ C4.1 \\ L \\ C5.1 \\ L \\ C4.1 \\ L \\ C5.1 \\ L \\ C1.2 \\ L \\ C2.1 \\ L \\ C2.1 \\ L \\ A3.1 \\ L \\ A3.2 \\ L \\ A4.2 \\ L \\ A4.2 \\ L \\ A4.2 \\ L \\ A4.1 \\ L \\ A5.2 \\ L \\ A4.1 \\ L \\ A5.1 \\ L \\ A5.2 \\ L \\ A5.1 \\ L \\ A5.1 \\ L \\ A5.2 \\ L \\ A7.1 \\ L \\ A6.2 \\ L \\ H1.1 \\ L \\ H2.1 \\ L \\ H1.2 \\ L \\ H1.2 \\ L \\ H3.2 \\ L \\ A7.2 \\ L \\ B3.1 \\ L \\ B4.1 \end{array} $	TRAPEZOIDAL DUMMY DUMMY TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TRAPEZOIDAL TRAPEZOIDAL DUMMY TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0			
$ \begin{array}{c} L \\ H3.1 \\ L \\ H3.1 \\ L \\ G1.2 \\ L \\ F1.1 \\ L \\ B2.1 \\ L \\ B2.1 \\ L \\ B5.1 \\ L \\ C4.1 \\ L \\ C5.1 \\ L \\ C5.1 \\ L \\ C1.2 \\ L \\ C2.1 \\ L \\ C2.1 \\ L \\ A3.1 \\ L \\ A3.2 \\ L \\ A4.2 \\ L \\ A4.2 \\ L \\ A4.2 \\ L \\ A4.2 \\ L \\ A4.1 \\ L \\ A5.2 \\ L \\ A5.1 \\ L \\ A5.2 \\ L \\ A5.1 \\ L \\ A5.2 \\ L \\ A5.1 \\ L \\ A4.2 \\ L \\ A4.1 \\ L \\ A5.2 \\ L \\ A5.1 \\ L \\ A5.2 \\ L \\ A5.1 \\ L \\ A5.2 \\ L \\ A5.1 \\ L \\ A4.1 \\ L \\ A5.2 \\ L \\ A5.1 \\ L \\ A5.1 \\ A4.1 \\ L \\ A5.2 \\ L \\ A4.1 \\ L \\ A5.2 \\ L \\ A4.1 \\ L \\ A5.2 \\ L \\ A5.1 \\ A4.1 \\ L \\ A5.2 \\ L \\ A5.1 \\ A4.1 \\ L \\ A5.2 \\ L \\ A5.1 \\ A4.1 \\ L \\ A5.2 \\ L \\ A5.1 \\ A4.1 \\ L \\ A5.2 \\ L \\ A4.1 \\ L \\ A5.2 \\ L \\ A5.1 \\ A4.1 \\ L \\ A5.2 \\ L \\ A5.1 \\ A4.1 \\ L \\ A5.2 \\ L \\ A5.1 \\ A4.1 \\ L \\ A5.2 \\ L \\ A5.1 \\ A4.1 \\ L \\ A5.2 \\ L \\ A5.1 \\ A4.1 \\ L \\ A5.2 \\ L \\ A5.1 \\ A4.1 \\ L \\ A5.2 \\ L \\ A5.1 \\ A4.1 \\ L \\ A5.2 \\ L \\ A5.1 \\ A4.1 \\ L \\ A5.2 \\ L \\ A5.1 \\ A4.1 \\ L \\ A5.2 \\ L \\ A5.1 \\ A4.1 \\ L \\ A5.2 \\ L \\ A5.1 \\ A4.1 \\ L \\ A5.2 \\ L \\ A5.1 \\ A4.1 \\ L \\ A5.2 \\ A4.1 \\ A5.1 \\ A5.1$	TRAPEZOIDAL DUMMY TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TRAPEZOIDAL TRAPEZOIDAL DUMMY DUMMY TRAPEZOIDAL DUMMY DUMMY TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0			
$ \begin{array}{c} L \\ H3.1 \\ L \\ H3.1 \\ L \\ G1.2 \\ L \\ F1.1 \\ L \\ B2.1 \\ L \\ B2.1 \\ L \\ B5.1 \\ L \\ C4.1 \\ L \\ C5.1 \\ L \\ C4.1 \\ L \\ C5.1 \\ L \\ C1.2 \\ L \\ C2.1 \\ L \\ C2.1 \\ L \\ A3.1 \\ L \\ A3.2 \\ L \\ A4.2 \\ L \\ A4.2 \\ L \\ A4.2 \\ L \\ A4.1 \\ L \\ A5.2 \\ L \\ A4.1 \\ L \\ A5.1 \\ L \\ A5.2 \\ L \\ A5.1 \\ L \\ A5.1 \\ L \\ A5.2 \\ L \\ A7.1 \\ L \\ A6.2 \\ L \\ H1.1 \\ L \\ H2.1 \\ L \\ H1.2 \\ L \\ H1.2 \\ L \\ H3.2 \\ L \\ A7.2 \\ L \\ B3.1 \\ L \\ B4.1 \end{array} $	TRAPEZOIDAL DUMMY DUMMY TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY TRAPEZOIDAL TRAPEZOIDAL DUMMY TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL TRAPEZOIDAL DUMMY DUMMY DUMMY DUMMY DUMMY	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0			



L_F3.1	DUMMY	0	0
L_F1.2	TRIANGULAR	2	16
L_F2.2	TRIANGULAR	2	16
L B6.2	DUMMY	0	0
L B3.3	DUMMY	0	0
		Ő	Õ
L_D3.2 L_C4.2	DUMMY DUMMY	0	0
1_04.2	DUMMI		
L_C3.3	DUMMY	0	0
L_C5.2	DUMMY	0	0
[CURVES]	-		
	Туре		
;;			
POND-A_RELEASE	Rating	0	0
POND-A_RELEASE		0.5	0.04
POND-A_RELEASE		1	0.08
POND-A_RELEASE		1.5	0.12
POND-A RELEASE		2	0.17
POND-A RELEASE		2.5	0.21
POND-A RELEASE		2.72	0.23
POND-A RELEASE			0.31
POND-A RELEASE			0.34
POND-A RELEASE		3.18 3.5	16.14
POND-A RELEASE		4	65.05
POND-A_RELEASE		4.5	132.43
POND-A_RELEASE		4.85	160.22
POND-A_RELEASE		5	162.26
POND-A_RELEASE		5.5	229.95
POND-A_RELEASE		6	352.81
POND-A_RELEASE		6.5	516.42
POND-A_RELEASE		7	716.74
;			
POND-B_RELEASE	Rating	0	0
POND-B RELEASE		0.5	0.05
POND-B RELEASE		1	0.11
POND-B RELEASE		1.5	0.15
POND-B RELEASE		2	0.23
POND-B RELEASE		2.28 2.5	0.26
POND-B_RELEASE		2 5	0.29
POND-B RELEASE			0.33
POND-B RELEASE		3	6.89
POND-B RELEASE		3.5	59.48
POND-B RELEASE		4	139.49
POND-B RELEASE		4.5	208.28
POND-B RELEASE		4.98	216.56
_			216.9
POND-B_RELEASE			
POND-B_RELEASE		5.5	225.2
POND-B_RELEASE		6	277.32
POND-B_RELEASE			370.54
POND-B_RELEASE		7	495.34
;			
POND-C_RELEASE	Rating	0	0
POND-C_RELEASE		0.5 1.5	0.02
POND-C_RELEASE		1.5	0.06
POND-C_RELEASE		2	0.09
POND-C_RELEASE		2.24	0.1
POND-C_RELEASE		2.5	0.11
POND-C_RELEASE		2.62	0.11
POND-C_RELEASE		3	18.98
POND-C RELEASE		3.47	64.63
POND-C RELEASE		3.5	65.06
POND-C RELEASE		4.5	96.21
POND-C RELEASE		5	146.69
POND-C RELEASE		5.5	217.39
POND-C RELEASE		6	308.17
POND-C RELEASE		6.5	419.52
_		7	419.32 552.1
POND-C_RELEASE		1	JJZ.1
;	Ctowers	0	1.0
POND-A_STORAGE	Storage	0	10
POND-A_STORAGE		0.5	376
POND-A_STORAGE		1	2192
POND-A_STORAGE		1.5	7097
POND-A_STORAGE		2	14797
POND-A_STORAGE		2.5	22565



POND-A_STORAGE POND-A_STORAGE POND-A_STORAGE POND-A_STORAGE POND-A_STORAGE POND-A_STORAGE POND-A_STORAGE POND-A_STORAGE POND-A_STORAGE POND-A_STORAGE POND-A_STORAGE POND-A_STORAGE POND-A_STORAGE		2.72 3 3.18 3.5 4 4.5 4.85 5.5 6 6.5 7	25765.12 29838 32505.96 37249 43958 49678 52552.9 53785 56812 59334 62623 64854
POND-B_STORAGE POND-B_STORAGE POND-B_STORAGE POND-B_STORAGE POND-B_STORAGE POND-B_STORAGE POND-B_STORAGE POND-B_STORAGE POND-B_STORAGE POND-B_STORAGE POND-B_STORAGE POND-B_STORAGE POND-B_STORAGE POND-B_STORAGE POND-B_STORAGE POND-B_STORAGE POND-B_STORAGE POND-B_STORAGE POND-B_STORAGE POND-B_STORAGE POND-B_STORAGE POND-B_STORAGE	Storage	0 0.5 1 1.5 2 2.28 2.5 2.84 3 3.5 4 4.5 4.98 5 5.5 6 6.5 7	10 2138.28 7169.09 13715.31 18728.56 21475.96 23634.63 26332.66 27602.32 30042.07 32273.85 34626.01 36954.85 39551.85 39551.39 42124.62 44775.53 47666.69
POND-C_STORAGE POND-C_STORAGE POND-C_STORAGE POND-C_STORAGE POND-C_STORAGE POND-C_STORAGE POND-C_STORAGE POND-C_STORAGE POND-C_STORAGE POND-C_STORAGE POND-C_STORAGE POND-C_STORAGE POND-C_STORAGE POND-C_STORAGE POND-C_STORAGE POND-C_STORAGE POND-C_STORAGE	Storage	0 0.5 1.5 2.19 2.5 2.53 3 3.37 3.5 4.5 5 5.5 6 6.5 7	10 261 5965 12887 16037.58 21178 21693.94 29777 35491.28 37499 50444 55960 55960 55960 55960 55960
[REPORT] ;;Reporting Opti- INPUT NO CONTROLS NO SUBCATCHMENTS AL NODES ALL LINKS ALL			
[TAGS] [MAP] DIMENSIONS -2727 Units None	.273 0.000	12727.273	10000.000
[COORDINATES] ;;Node ;; A1 A2 A3 A4 A5 A6 A7 B1	X-Coord  5852.080 7253.258 7842.026 7654.898 8567.718 7691.411 8102.180 4814.939		Y-Coord 3834.143 3852.399 2547.067 3400.553 3870.655 4062.348 4564.398 5640.594



B2	3809.784	4700.287
в3	3128.872	6182.544
B4	3689.350	6622.589
B5	3680.086	7734.282
В6	1608.409	6446.756
C1	5491.219	6900.512
C2	4958.533	7794.498
C3	4508.350	7693.203
C4	3842.208	8378.137
C5	4926.108	8827.446
F1	6130.442	7178.435
F2	6914.644	7135.956
G1	7043.309	5951.884
H1	5895.032	5135.830
H2 H3	6698.374 8081.329	5426.070
		6231.386
J_A1.1 J A2.1	6185.259 7358.232	4313.373 4349.886
J A2.2	8781.879	5021.807
J_A3.1	7837.462	2948.708
J A4.1	8106.744	3514.656
J A5.1	8298.436	3984.758
J A6.1	8239.103	4185.578
J B1.1	3457.748	6099.167
J C1.1	5315.201	7525.839
J C3.1	4958.533	8044.629
J G1.1	7838.601	5550.458
J H1.1	6091.980	5063.270
J H2.1	7341.047	5001.076
J H3.1	8775.757	5660.875
F3	7754.737	7140.178
J F1.1	6332.068	7815.629
J F2.1	6999.076	7802.964
J B3.2	2819.437	6804.229
J_B5.1	3129.490	8044.439
J_B6.1	1425.618	6790.570
J_C4.1	3963.640	8666.499
J_C3.2	4340.348	8769.237
J_C5.1	4454.502	9024.181
O_BASIN_B	2013.301	7541.059
O_BASIN_C	4058.768	8921.442
O_BASIN_F O BASIN H	8033.360	7731.197
	8999.559	5612.652
POND-A	8427.940	4487.213
	3022.335	6516.052
POND-C	4762.717	8491.463
[VERTICES]		
	X-Coord	Y-Coord
	4921.476	8456.882



EPA STORM WATER MANAGEMENT M		
WARNING 04: minimum elevatio	n drop used for C	Conduit L_B6.2
*****	*****	****
NOTE: The summary statistics		
based on results found at ev not just on results from eac		
**************************************		
****		
Analysis Options *****		
Flow Units C	FS	
Process Models:		
Rainfall/Runoff N		
RDII N Snowmelt N		
Groundwater N		
Flow Routing Y	ES	
Ponding Allowed N		
Water Quality N Flow Routing Method K	TNWAVE	
Starting Date 0		0
Ending Date 0		0
Antecedent Dry Days 0 Report Time Step 0	.0	
Routing Time Step 1		
**************************************	Volume	Volume 10^6 gal
Flow Routing Continuity		10^6 gal
Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.000	0.000
Groundwater Inflow RDII Inflow	0.000	0.000 0.000
External Inflow	0.000 10.906	3.554
External Outflow	9.8/4	3.217
Flooding Loss	0.000	0.000
Evaporation Loss Exfiltration Loss	0.000 0.000	0.000 0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	1.007	0.328
Continuity Error (%)	0.231	
****	* * * *	
Highest Flow Instability Ind		
All links are stable.		
****		
Routing Time Step Summary		
Minimum Time Step	: 120.00 sec	
Average Time Step	: 120.00 sec	
Maximum Time Step	: 120.00 sec	
Percent in Steady State	: 0.00	
Minimum Time Step Average Time Step Maximum Time Step Percent in Steady State Average Iterations per Step Percent Not Converging	: 0.00	



Flying Horse North Filing No. 4 Final Drainage Report SWMM Developed Modeling Output 5-year Event

		Average	Maximum	Maximum	Time	of Max	Reported
		Depth	Depth	HGL	Occu	rrence	Max Depth
Node	Туре	Feet	Feet	Feet	days	hr:min	Feet
Al	JUNCTION	0.00	0.00 0.00 0.00 0.00	7621.00	0	00:00	0.00
A2	JUNCTION	0.00	0.00	7590.00	0	00:00	0.00
A3	JUNCTION	0.00	0.00	7605.00	0	00:00	0.00
A4	JUNCTION	0.00	0.00	7590.00	0	00:00	0.00
A5	JUNCTION	0.00	0.00	7550.00	0	00:00	0.00
A6	JUNCTION	0 00	0 00	7555 00	0	00.00	0.00
A7	JUNCTION	0 00	0 00	7550 00	0	00.00	0.00
B1	JUNCTION	0 00	0 00	7572 00	0	00.00	0.00
B2	JUNCTION	0 00	0.00	7574 00	Ő	00.00	0.00
B3	JUNCTION	0.00	0.00	7555 00	0	00.00	0.00
B4	JUNCTION	0.00	0.00	7558 00	0	00.00	0.00
B5	TUNCTION	0.00	0.00	7558 00	0	00.00	0.00
B5 B6	TUNCTION	0.00	0.00	7552 00	0	00.00	0.00
C1	TINCTION	0.00	0.00	7596.00	0	00.00	0.00
C1 C2	JUNCTION	0.00	0.00	7562.00	0	00:00	0.00
C2 C3	JUNCIION	0.00	0.00	7562.00	0	00:00	0.00
C3	JUNCTION	0.00	0.00	7562.00	0	00:00	0.00
C4	JUNCTION	0.00	0.00	7553.00	0	00:00	0.00
C5	JUNCTION	0.00	0.00	/536.00	0	00:00	0.00
F1	JUNCTION	0.00	0.00	7582.00	0	00:00	0.00
F2	JUNCTION	0.00	0.00	/5/6.00	0	00:00	0.00
G1	JUNCTION	0.00	0.00	7585.00	0	00:00	0.00
Н1	JUNCTION	0.00	0.00	7610.00	0	00:00	0.00
Н2	JUNCTION	0.00	0.00	7570.00	0	00:00	0.00
нЗ	JUNCTION	0.00	0.00	7550.00	0	00:00	0.00
J_A1.1	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	0.01	0.25	7600.25	0	00:38	0.24
J_A2.1	JUNCTION	0.02	0.48	7566.48	0	00:38	0.47
J_A2.2	JUNCTION	0.07	0.65	7525.65	0	01:04	0.65
J_A3.1	JUNCTION	0.03	0.61	7562.61	0	00:42	0.61
J_A4.1	JUNCTION	0.06	1.01	7549.01	0	00:42	1.01
J_A5.1	JUNCTION	0.06	1.01	7539.01	0	00:44	1.01
J_A6.1	JUNCTION JUNCTION JUNCTION	0.02	0.48	7536.48	0	00:40	0.48
J_B1.1	JUNCTION	0.00	0.00	7536.00	0	00:00	0.00
J_C1.1	JUNCTION	0.00	0.00	7570.00	0	00:00	0.00
J_C3.1	JUNCTION	0.00	0.00	7533.00	0	00:00	0.00
J_G1.1	JUNCTION	0.00	0.14	7555.14	0	00:32	0.13
J_H1.1	JUNCTION	0.01	0.16	7594.16	0	00:38	0.15
J H2.1	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION	0.01	0.17	7560.17	0	00:36	0.17
J НЗ.1	JUNCTION	0.01	0.17	7514.17	0	00:36	0.17
F3	JUNCTION	0.00	0.00	7568.00	0	00:00	0.00
J F1.1	JUNCTION	0.04	0.58	7572.58	0	00:38	0.58
J F2.1	JUNCTION	0.06	0.79	7558.79	0	00:40	0.79
J_B3.2	JUNCTION	0.00	0.00	7522.00	0	00:00	0.00
J_B5.1	JUNCTION	0.00	0.00	7533.00	0	00:00	0.00
J_B6.1	JUNCTION	0.00	0.00	7510.00	0	00:00	0.00
J_C4.1	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL STORAGE STORAGE STORAGE	0.00	0.00	7544.00	0	00:00	0.00
J_C3.2	JUNCTION	0.00	0.00	7529.00	0	00:00	0.00
J_C5.1	JUNCTION	0.00	0.00	7524.00	0	00:00	0.00
O BASIN B	OUTFALL	0.00	0.00	7510.00	0	00:00	0.00
O BASIN C	OUTFALL	0.00	0.00	7520.00	0	00:00	0.00
O BASIN F	OUTFALL	0.06	0.79	7547.79	0	00:44	0.79
O BASIN H	OUTFALL.	0.07	0.65	7515.65	0	01:06	0.65
POND-A	STORAGE	2.82	3.62	7533.62	0	01:04	3.62
POND-B	STORAGE	2.52	3.53	7531.53	0	00:52	3.53
POND-C	STORAGE	2.40	2.81	7532.81	õ	01:04	2.81
		2.10	2.01		5		2.01



### ****

### Node Inflow Summary

		Maximum	Maximum			Lateral Inflow Volume	Total	Flow
		Lateral	Total	Time	of Max	Inflow	Inflow	Balance
		Inflow	Inflow	0ccu	rrence	Volume	Volume	Error
Node 	Туре	CFS	CFS	days 	hr:min	10^6 gal	10^6 gal	Percent
A1	JUNCTION	3.65	3.65	0	00:38	0.0824	0.0824	0.000
A2	JUNCTION	5.20	5.20	0	00:36	0.0966	0.0966	0.000
A3	JUNCTION	22.12	22.12	0	00:42	0.484	0.484	0.000
A4	JUNCTION	4.90	4.90	0	00:42	0.165	0.165	0.000
A5	JUNCTION	1.27	1.27	0	00:36	0.0221	0.0221	0.000
A6	JUNCTION	3.10	3.10	0	00:36	0.0571	0.0571	0.000
A7	JUNCTION	4.66	4.66	0	00:34	0.0727	0.0727	0.000
B1	JUNCTION	41.84	41.84	0	00:38	0.664	0.664	0.000
В2	JUNCTION	12.80	12.80	0	00:40	0.329	0.329	0.000
в3	JUNCTION	1.15	1.15	0	00:32	0.0191	0.0191	0.000
В4	JUNCTION	4.22	4.22	0	00:38	0.119	0.119	0.000
в5	JUNCTION	5.00	5.00	0	00:36	0.0951	0.0951	0.000
В6	JUNCTION	9.22	9.22	0	00:34	0.143	0.143	0.000
C1	JUNCTION	7.24	7.24	0	00:38	0.14	0.14	0.000
C2	JUNCTION	0.92	0.92	0	00:38	0.0248	0.0248	0.000
C3	JUNCTION	10.04	10.04	0	00:36	0.179	0.179	0.000
C4	JUNCTION	2.85	2.85	0	00:32	0.0385	0.0385	0.000
C5	JUNCTION	1.06	1.06	0	00:36	0.0203	0.0203	0.000
Fl	JUNCTION	4.40	4.40	0	00:38	0.115	0.115	0.000
F2	JUNCTION	4.27	4.27	0	00:40	0.118	0.118	0.000
G1	JUNCTION	1.58	1.58	0	00:32	0.0228	0.0228	0.000
Н1	JUNCTION	2.00	2.00	0	00:38	0.0466	0.0466	0.000
H2	JUNCTION	9.63	9.63	0	00:34	0.129	0.129	0.000
Н3	JUNCTION	14.61	14.61	0	00:38	0.221	0.221	0.000
J_A1.1	JUNCTION	0.00	3.65	0	00:38	0	0.0824	0.000
J_A2.1	JUNCTION	0.00	8.55	0	00:38	0	0.179	0.000
J_A2.2	JUNCTION	0.00	27.78	0	01:04	0	0.847	0.000
J_A3.1	JUNCTION	0.00	22.12	0	00:42	0	0.484	0.000
J_A4.1	JUNCTION	0.00	26.97	0	00:42	0	0.648	0.000
J_A5.1	JUNCTION	0.00	28.01	0	00:44	0	0.671	0.000
J_A6.1	JUNCTION	0.00	39.08	0	00:42	0	0.907	0.000
J_B1.1	JUNCTION	0.00	54.54	0	00:38	0	0.993	0.000
J_C1.1	JUNCTION	0.00	7.24	0	00:38	0	0.14	0.000
J_C3.1	JUNCTION	0.00	18.18	0	00:36	0	0.344	0.000
J_G1.1	JUNCTION	0.00	1.58	0	00:32	0	0.0228	0.000
J_H1.1	JUNCTION	0.00	2.00	0	00:38	0	0.0466	0.000
J_H2.1	JUNCTION	0.00	10.83	0	00:36	0	0.176	0.000
J_H3.1	JUNCTION	0.00	26.60	0	00:38	0	0.42	0.000
F3	JUNCTION	6.96	6.96	0	00:38	0.15	0.15	0.000
J_F1.1	JUNCTION	0.00	4.40	0	00:38	0	0.115	0.000
J_F2.1	JUNCTION	0.00	8.63	0	00:40	0	0.233	0.000
J_B3.2	JUNCTION	0.00	44.34	0	00:52	0	1.01	0.000
J_B5.1	JUNCTION	0.00	5.00	0	00:36	0	0.0951	0.000
J_B6.1	JUNCTION	0.00	9.22	0	00:34	0	0.143	0.000
J_C4.1	JUNCTION	0.00	2.85	0	00:32	0	0.0385	0.000
J_C3.2	JUNCTION	0.00	9.59	0	01:04	0	0.259	0.000
J_C5.1	JUNCTION	0.00	1.06	0	00:36	0	0.0203	0.000
O_BASIN_B	OUTFALL	0.00	53.58	0	00:50	0	1.25	0.000
O_BASIN_C	OUTFALL	0.00	10.99	0	01:02	0	0.318	0.000
O_BASIN_F	OUTFALL	0.00	15.21	0	00:42	0	0.383	0.000
O_BASIN_H	OUTFALL	0.00	38.01	0	01:04	0	1.27	0.000
POND-A	STORAGE	0.00	43.06	0	00:42	0	0.98	0.391
POND-B	STORAGE	0.00	59.75	0	00:38	0	1.13	0.426
POND-C	STORAGE	0.00	18.18	0	00:36	0	0.344	0.588

No nodes were flooded.

^{****} 



#### Flying Horse North Filing No. 4 Final Drainage Report SWMM Developed Modeling Output 5-year Event

#### *****

Storage Volume Summary

Storage Unit	Average	Avg	Evap	Exfil	Maximum	Max	Time of Max	Maximum
	Volume	Pcnt	Pcnt	Pcnt	Volume	Pcnt	Occurrence	Outflow
	1000 ft3	Full	Loss	Loss	1000 ft3	Full	days hr:min	CFS
POND-A	27.285	12	0	0	52.312	22	0 01:04	27.78
POND-B	26.141	8	0	0	50.023	16	0 00:52	44.34
POND-C	15.113	4	0	0	23.875	6	0 01:02	9.59

***** Outfall Loading Summary

	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
Outfall Node	Pcnt	CFS	CFS	10^6 gal
O_BASIN_B	99.44	1.94	53.58	1.249
O BASIN C	99.44	0.50	10.99	0.318
O BASIN F	18.61	3.19	15.21	0.383
O_BASIN_H	99.31	1.97	38.01	1.266
System	79.20	7.60	104.35	3.217

***** Link Flow Summary

		Maximum	Time	of Max	Maximum	Max/	Max/
					Veloc		
Link	Туре		days		ft/sec	Flow	Depth
L A1.1	DUMMY	3.65		00:38			
L_A2.1	DUMMY	5.20	0	00:36			
L_A1.2	CONDUIT	3.58	0	00:42	2.98	0.00	0.06
	DUMMY	1.58	0	00:32			
L_H3.1	DUMMY	14.61 1.40	0	00:38			
L_G1.2	CONDUIT	1.40	0	00:42	2.09	0.00	0.03
L_F1.1	DUMMY	4.40	0	00:38			
L B1.1	DUMMY	41.84	0	00:38			
L_B2.1	DUMMY	12.80	0	00:40			
L B1.2	DUMMY	54.54	0	00:38			
L_B6.1	DUMMY	9.22	0	00:34			
L_B5.1	DUMMY	5.00	0	00:36			
L_C4.1	DUMMY	2.85	0	00:32			
L_C5.1	DUMMY	1.06	0	00:36			
L_C1.1	DUMMY	7.24	0	00:38			
L_C1.2	DUMMY	7 24	0	00:38			
L_C2.1	DUMMY	0.92	0	00:38			
L_A3.1	DUMMY	22.12	0	00:42			
L_A3.2	CONDUIT	22.07	0		4.29		
L_A4.2	CONDUIT	26.95	0	00:44	4.42	0.20	0.51
L_A4.1	DUMMY	4.90	0	00:42			
L_A6.1	DUMMY	3.10	0	00:36			
L_A5.2	DUMMY	28.01	0	00:44			
L_A5.1	DUMMY	1.27	0	00:36			
L_A2.2	CONDUIT	8.53	0		4.61	0.04	0.24
L_A7.1	DUMMY	4.66	0	00:34			
L_A6.2	DUMMY	39.08	0	00:42			
L_H1.1	DUMMY	2.00	0	00:38			
L_H2.1	DUMMY	9.63	0	00:34			
L_H1.2	CONDUIT	1.94	0		2.28		
	CONDUIT		0	00:36	11.08	0.00	0.04
L_A7.2	CONDUIT	27.68	0	01:06	3.40	0.02	0.13
L_H3.2	DUMMY	26.60	0	00:38			
L_B3.1	DUMMY	1.15	0	00:32			
L_B4.1	DUMMY	4.22	0	00:38			



Flying Horse North Filing No. 4 Final Drainage Report SWMM Developed Modeling Output 5-year Event

L C3.2	DUMMY	18.18	0	00:36			
L_C3.1	DUMMY	10.04	0	00:36			
L_F2.1	DUMMY	4.27	0	00:40			
L_F3.1	DUMMY	6.96	0	00:38			
L_F1.2	CONDUIT	4.38	0	00:42	3.31	0.04	0.29
L_F2.2	CONDUIT	8.60	0	00:44	3.50	0.08	0.39
L B6.2	DUMMY	9.22	0	00:34			
L_B3.3	DUMMY	44.34	0	00:52			
L_B5.2	DUMMY	5.00	0	00:36			
L_C4.2	DUMMY	2.85	0	00:32			
L_C3.3	DUMMY	9.59	0	01:04			
L_C5.2	DUMMY	1.06	0	00:36			
POND-A-OUTFALL	DUMMY	27.78	0	01:04			
POND-B-OUTFALL	DUMMY	44.34	0	00:52			
POND-C-OUTFALL	DUMMY	9.59	0	01:04			

#### ***** Conduit Surcharge Summary

No conduits were surcharged.

Analysis begun on:		Thu	Sep	05	13:59:33	2024
Analysis ended on:		Thu	Sep	05	13:59:33	2024
Total elapsed time	:	< 1	sec			

J:\2021\211030\Design\Calc\Drainage\FDR-Filing_4\Appendix D - WQ & Detention\CUHP-SWMM\SWMM_PR_out_5.docx



EPA STORM WATER MANAGEMENT N			
WARNING 04: minimum elevation	on drop use	ed for Co	nduit L_B6.2
NOTE: The summary statistic based on results found at en not just on results from eac	s displayed very comput ch reportir	d in this tational f ng time st	report are time step, tep.
<pre>************************************</pre>	CFS NO NO NO VO VO XINWAVE D1/01/2005 D1/02/2005 D.0 00:05:00	00:00:00	
<pre>************************************</pre>	0.0 0.0 52.4 51.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	eet	Volume 10^6 gal 0.000 0.000 0.000 17.104 16.757 0.000 0.000 0.000 0.000 0.000 0.332
All links are stable. All links are stable. ************************************	: 120.00 : 120.00 : 120.00 : 0.00	) sec ) )	



#### Flying Horse North Filing No. 4 Final Drainage Report SWMM Developed Modeling Output 100-year Event

### ****

Node Depth Summary

		Average	Mavimum	Mavimum	 Тіто	of Max	Reported
		Depth	Depth	HGL	Occu	rrence	Max Depth
Node	Туре	Feet	Feet	Feet	days	hr:min	Feet
	Type JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION						
Al	JUNCTION	0.00	0.00	7621.00	0	00:00	0.00
A2	JUNCTION	0.00	0.00	7590.00	0	00:00	0.00
A3	JUNCTION	0.00	0.00	7605.00	0	00:00	0.00
A4	JUNCTION	0.00	0.00	7590.00	0	00:00	0.00
A5	JUNCTION	0.00	0.00	7550.00	0	00:00	0.00
A6	JUNCTION	0.00	0.00	7555.00	0	00:00	0.00
A7	JUNCTION	0.00	0.00	7550.00	0	00:00	0.00
B1	JUNCTION	0.00	0.00	7572.00	0	00:00	0.00
B2 B3	JUNCTION	0.00	0.00	7574.00	0	00:00	0.00
B3	JUNCTION	0.00	0.00	7555.00	0	00:00	0.00
B4	JUNCTION	0.00	0.00	7558.00	0	00:00	0.00
B5 B6	JUNCTION	0.00	0.00	7558.00	0	00:00	0.00
C1	JUNCTION	0.00	0.00	7596.00	0	00:00	0.00
C1 C2	TUNCTION	0.00	0.00	7562.00	0	00.00	0.00
C2 C3	JUNCTION	0.00	0.00	7562.00	0	00.00	0.00
C4	TUNCTION	0.00	0.00	7553 00	0	00.00	0.00
C5	TUNCTION	0.00	0.00	7536.00	0	00.00	0.00
F1	JUNCTION	0.00	0.00	7582 00	0	00.00	0.00
F2	JUNCTION	0.00	0.00	7576.00	0	00.00	0.00
G1	JUNCTION	0.00	0.00	7585 00	0	00.00	0.00
H1	JUNCTION	0.00	0.00	7610.00	0	00:00	0.00
н2	JUNCTION	0.00	0.00	7570.00	0	00:00	0.00
H3	JUNCTION	0.00	0.00	7550.00	0	00:00	0.00
J A1.1	JUNCTION	0.03	0.52	7600.52	0	00:44	0.52
J_A2.1	JUNCTION	0.05	0.90	7566.90	0	00:44	0.90
J_A2.2	JUNCTION	0.14	1.68	7526.68	0	01:02	1.68
J_A3.1	JUNCTION	0.08	1.35	7563.35	0	00:48	1.34
J_A4.1	JUNCTION	0.13	1.93	7549.93	0	00:48	1.93
J_A5.1	JUNCTION	0.13	1.93	7539.93	0	00:50	1.93
J_A6.1	JUNCTION	0.05	0.90	7536.90	0	00:46	0.90
J_B1.1	JUNCTION	0.00	0.00	7536.00	0	00:00	0.00
J_C1.1	JUNCTION	0.00	0.00	7570.00	0	00:00	0.00
J_C3.1	JUNCTION	0.00	0.00	7533.00	0	00:00	0.00
J_G1.1	JUNCTION	0.01	0.29	7555.29	0	00:38	0.28
J_H1.1	JUNCTION	0.02	0.34	7594.34	0	00:44	0.34
J_H2.1	JUNCTION	0.02	0.37	7560.37	0	00:40	0.37
J_H3.1	JUNCTION	0.02	0.37	7514.37	0	00:40	0.37
F3	JUNCTION	0.00	0.00	7568.00	0	00:00	0.00
J_F1.1	JUNCTION	0.07	0.96	7572.96	0	00:46	0.96
J_F2.1	JUNCTION	0.10	1.32	7559.32	0	00:48	1.32
J_B3.2	JUNCTION	0.00	0.00	7522.00	0	00:00	0.00
J_B5.1	JUNCTION	0.00	0.00	7533.00	0	00:00	0.00
J_B6.1	JUNCTION	0.00	0.00	7510.00	0	00:00	0.00
J_C4.1	JUNCTION	0.00	0.00	7544.00	0	00:00	0.00
J_C3.2 J C5.1	JUNCTION	0.00	0.00	7529.00	0	00:00	0.00
J_CS.I O BASIN B	JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL STORAGE STORAGE	0.00	0.00	7510 00	0	00:00	0.00
O BASIN C	OUTFALL	0.00	0.00	7520.00	0	00:00	0.00
O BASIN F	OUTFALL	0.00	1 32	7548 32	0	00.50	1.32
O BASIN H	OUTFALL.	0 14	1 68	7516 68	0	01.04	1.68
POND-A	STORAGE	2 90	4 89	7534 89	0	01.02	4.89
POND-B	STORAGE	2.59	5.22	7533.22	Ő	00:56	5.21
POND-C	STORAGE	2.44	5.22 3.44	7533.44	õ	00:54	3.44
					5		



#### ****

### Node Inflow Summary

			Maximum		<i>c</i>	Lateral	Total	Flow
			Total			Inflow	Inflow Volume	Balance
Node	Trino		Inflow CFS			10^6 gal	VOLUME	Percent
NOGE	Туре					10 0 gai		
Al	JUNCTION JUNCTION	14.30	14.30	0	00:44	0.37		0.000
A2	JUNCTION	19.57	19.57	0	00:42	0.422	0.422	0.000
A3	JUNCTION	101.45	101.45	0	00:48	2.67	2.67	0.000
A4	JUNCTION	20.00	20.00	0	00:52	0.718	0.718	0.000
A5	JUNCTION	4.73	4.73	0	00:42	2.67 0.718 0.0964 0.249 0.317	0.0964	0.000
A6	JUNCTION	11.66	11.66	0	00:42	0.249	0.249	0.000
A7	JUNCTION	17.12	17.12	0	00:38	0.317	0.317	0.000
B1	JUNCTION	181.77	181.77	0	00:42	3.66	3.66	0.000
B2	JUNCTION	49.44	49.44	0	00:46	1.41	1.41	0.000
В3	JUNCTION	3.01	3.01	0	00:38	3.66 1.41 0.0521 0.451	0.0521	0.000
B4	JUNCTION	15.04	15.04	0	00:46	0.451	0.451	0.000
B5	JUNCTION	18.88	18.88	0	00:42	0.415	0.415	0.000
B6	JUNCTION	33.86	33.86	0	00:38	0.624	0.624	0.000
C1	JUNCTION	27.69	27.69	0	00:42	0.62	0.62	0.000
C2	JUNCTION	3.00	3.00	0	00:44	0.0845	0.0845	0.000
C3	JUNCTION	39.03	39.03	0	00:42	0.823	0.823	0.000
C4	JUNCTION	10.29	10.29	0	00:38	0.168	0.168	0.000
C5	JUNCTION	4.01	4.01	0	00:42	0.0887	0.0887	0.000
F1 F2	JUNCTION	1/.2/	1/.2/	0	00:46	0.501	0.501	0.000
F/2	JUNCTION	16.94	16.94	0	00:48	0.516	0.516	0.000
G1 II1	JUNCTION	7 60	J./4	0	00:38	0.0994	0.0994	0.000
HI	JUNCTION	7.00	7.00	0	00:44	0.203	0.203	0.000
HZ 112	JUNCTION	35.02	33.02	0	00:38	0.000	0.000	0.000
п.5 т. л.1 1	TUNCTION	00.07	1/ 30	0	00:42	1.33	1.33	0.000
J A2 1	JUNCTION	0.00	14.50	0	00.44	0	0.37	0.000
J A2 2	TUNCTION	0.00	160.82	0	01.02	0	4 71	0.000
T A3 1	JUNCTION	0.00	101 45	0	00.48	0	2 67	-0.000
J A4.1	JUNCTION	0.00	121.26	0	00:48	0	3.39	0.000
J A5.1	JUNCTION	0.00	125.49	0	00:50	0	3.49	0.000
J A6.1	JUNCTION	0.00	169.54	0	00:48	0	4.53	0.000
J B1.1	JUNCTION	0.00	230.41	0	00:44	0.0521 0.451 0.415 0.624 0.0845 0.823 0.168 0.0887 0.501 0.501 0.203 0.565 1.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.07	0.000
J C1.1	JUNCTION	0.00	27.69	Ō	00:42	0	0.62	0.000
J_C3.1	JUNCTION	0.00	69.70	0	00:42	0	1.53	0.000
J_G1.1	JUNCTION	0.00	5.74	0	00:38	0	0.0994	0.000
J H1.1	JUNCTION	0.00	7.68	0	00:44	0	0.203	0.000
J H2.1	JUNCTION	0.00	41.20	0	00:40	0	0.768	0.000
J_H3.1	JUNCTION	0.00	113.43	0	00:42	0	2.2	0.000
F3	JUNCTION	26.57	26.57	0	00:44	0.654	0.654	0.000
J F1.1	JUNCTION	0.00	17.27	0	00:46	0	0.501	0.000
J_F2.1	JUNCTION	0.00	34.20	0	00:48	0	1.02	0.000
J_B3.2	JUNCTION	0.00	215.66	0	00:56	0	5.45	0.000
J_B5.1	JUNCTION	0.00	18.88	0	00:42	0	0.415	0.000
J_B6.1	JUNCTION	0.00	33.86	0	00:38	0	0.624	0.000
J_C4.1	JUNCTION	0.00	10.29	0	00:38	0	0.168	0.000
J_C3.2	JUNCTION	0.00	61.92	0	00:54	0	1.44	0.000
J_C5.1	JUNCTION	0.00	4.01	0	00:42	0	0.0887	0.000
O_BASIN_B	OUTFALL	0.00	260.91	0	00:48	0	6.49	0.000
O_BASIN_C	OUTFALL	0.00	73.21	0	00:52	0	1.7	0.000
O_BASIN_F	OUTFALL	0.00	60.23	0	00:48	0	1.67	0.000
O_BASIN_H	OUTFALL	0.00	248.45	0	00:54	0	6.9	0.000
POND-A	STORAGE	0.00	185.08	0	00:48	0	4.85	0.166
F1 F2 G1 H1 H2 H3 J_A1.1 J_A2.1 J_A2.2 J_A3.1 J_A4.1 J_A5.1 J_A6.1 J_B1.1 J_C1.1 J_G1.1 J_G1.1 J_H1.1 J_F2 J_F1.1 J_F2.1 J_B5.1 J_B5.1 J_C3.2 J_S5.1 J_C3.2 J_C5.1 O_BASIN_B O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_BASIN_F O_DA_F OND-A POND-B POND-C	STORAGE	0.00	248.09	0	00:44	0	5.57	0.119
POND-C	STORAGE	0.00	69.70	0	00:42	0	1.53	0.259

#### ****

No nodes were flooded.



#### Flying Horse North Filing No. 4 Final Drainage Report SWMM Developed Modeling Output 100-year Event

#### ****

### Storage Volume Summary

Storage Unit	Average Volume 1000 ft3	Avg Pcnt Full	Evap Pcnt Loss		Maximum Volume 1000 ft3	Max Pcnt Full	Time of Max Occurrence days hr:min	Maximum Outflow CFS
POND-A	30.297	13	0	0	111.834	47	0 01:02	160.82
POND-B	28.109	9	0	0	101.570	32	0 00:56	215.66
POND-C	15.997	4	0	0	43.891	11	0 00:54	61.92

	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
Outfall Node	Pcnt	CFS	CFS	10^6 gal
O BASIN B	99.44	10.09	260.91	6.486
O BASIN C	99.44	2.64	73.21	1.697
O BASIN F	19.17	13.49	60.23	1.671
O_BASIN_H	99.31	10.76	248.45	6.903
System	79.34	36.98	639.55	16.756



#### Flying Horse North Filing No. 4 Final Drainage Report SWMM Developed Modeling Output 100-year Event

### ****

Link Flow Summary

		Maximum	Time	of Max	Maximum	Max/	Max/
		Flow	Occi	irrence	Veloc	Full	Full
Link	Type	CFS	days	hr:min	Maximum  Veloc  ft/sec	Flow	Depth
		1 4 20					
L_AL.I	DUMMY	14.30	0	00:44			
L_A2.1	CONDUTE	14.26	0	00:42	4 51	0 01	0 1 2
L_A1.2	CUNDULT	14.20	0	00:40	4.51	0.01	0.13
	DUMMY	5.74	0	00:38			
L_H3.1	CONDUTE	00.87	0	00:42	2 27	0 00	0 07
	DIMMY	17 27	0	00:44	3.21	0.00	0.07
	DUMMY	101 77	0	00:40			
	DUMMY	101.11	0	00:42			
	DUMMY	49.44	0	00:40			
	DUMMY	230.41	0	00.44			
L_B0.1 T_B5_1	DUMMY	10 00	0	00:38			
L_ВЈ.1 Т.С.4.1	DUMMY	10.00	0	00:42			
L_C4.1 T_C5_1	DIMMY	10.29	0	00.38			
	DIMMY	27 69	0	00.42			
	DIMMY	27.09	0	00.42			
	DIMMY	27.09	0	00.42			
1_C2.1 T_3 1	DIMMY	101 45	0	00.44			
L_A3.1	CONDUTT	101.43	0	00.48	6 61	0 06	0 27
L_A3.2	CONDUIT	121 20	0	00.40	6.46	0.00	0.27
L_A4.2 L_A/ 1	DIMMY	20 00	0	00.50	0.40	0.92	0.90
L A6 1	DUMMY	11 66	0	00.32			
L A5 2	DUMMY	125 49	0	00.42			
L A5 1	DUMMY	1 73	0	00.30			
	CONDUTT	33 11	0	00:42	6 59	0 16	0 45
T. A7 1	DIIMMY	17 12	0	00.10	0.00	0.10	0.10
L_A6_2	DUMMY	169 54	0	00.30			
ц. н1 1	DUMMY	7 68	0	00.10			
L_H2.1	DUMMY	35.02	0	00:38			
L_H1.2	CONDUTT	7.65	0	00:48	3.59	0.00	0.07
 т H2 . 2	CONDUTT	41.25	0	00:40	17.31	0.01	0.09
T. A7 2	CONDUTT	160 81	0	01.04	5 75	0 10	0 34
L H3.2	DUMMY	113.43	0	00:42	0.70	0.10	0.01
L B3.1	DUMMY	3.01	0	00:38			
L B4.1	DUMMY	15.04	0	00:46			
L_C3.2	DUMMY	69.70	0	00:42			
L_C3.1	DUMMY	39.03	0	00:42			
L_F2.1	DUMMY	16.94	0	00:48			
L L_F3.1	DUMMY	26.57	0	00:44			
L F1.2	CONDUIT	17.26	0	00:48	4.65	0.14	0.48
L F2.2	CONDUIT	34.14	0	00:50	4.91	0.33	0.66
L B6.2	DUMMY	33.86	0	00:38			
L_B3.3	DUMMY	215.66	0	00:56			
L_B5.2	DUMMY	18.88	0	00:42			
L_C4.2	DUMMY	10.29	0	00:38			
L_C3.3	DUMMY	61.92	0	00:54			
L_C5.2	DUMMY	4.01	0	00:42			
POND-A-OUTFALL	DUMMY	160.82	0	01:02			
POND-B-OUTFALL	DUMMY	215.66	0	00:56			
Link L_A1.1 L_A2.1 L_A1.2 L_G1.1 L_H3.1 L_G1.2 L_F1.1 L_B1.1 L_B2.1 L_C4.1 L_C5.1 L_C4.1 L_C5.1 L_C4.1 L_C2.1 L_A3.2 L_A4.1 L_A3.2 L_A4.2 L_A4.1 L_A5.2 L_A5.1 L_A5.2 L_A5.1 L_A2.2 L_A7.1 L_H1.2 L_H1.1 L_H2.2 L_A7.2 L_H3.2 L_A7.2 L_H3.2 L_A7.2 L_H3.2 L_S3.1 L_C3.2 L_C3.1 L_C3.2 L_C3.1 L_C3.2 L_C3.1 L_C3.2 L_C3.1 L_C3.2 L_C3.1 L_C3.2 L_C3.1 L_C3.2 L_C3.1 L_C3.2 L_C3.1 L_C3.2 L_C3.1 L_C3.2 L_C3.1 L_F2.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.2 L_F3.2 L_F3.2 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.2 L_F3.2 L_F3.2 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.1 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2 L_F3.2	DUMMY	61.92	0	00:54			

Conduit Surcharge Summary

No conduits were surcharged.

Analysis begun on: Thu Sep 05 13:58:30 2024 Analysis ended on: Thu Sep 05 13:58:30 2024 Total elapsed time: < 1 sec

#### ${\small SWWM}\ hydrographs\ representing\ runoff\ entering\ ponds,\ transferred\ to\ MHFD-Detention$

	Table - Node		
		POND	
Days	Hours	5-Year	100-Year
0	0:05:00	0	0
0	0:10:00	0.01	0.02
0	0:15:00	0.1	0.11
0	0:20:00	0.3	0.29
0	0:25:00	2.36	1.83
0	0:30:00	11.47	19.59
0	0:35:00	31.46	96.08
0	0:40:00	42.49	161.92
0	0:45:00	42.09	182.46
0	0:50:00	38.34	183.84
0	0:55:00	34.02	175.93
0	1:00:00	30.05	164.79
0	1:05:00	26.4	153.37
0	1:10:00	23.39	142.09
0	1:15:00	20.9	126.74
0	1:20:00	18.58	110.87
0	1:25:00	16.3	96.01
0	1:30:00	14.09	82.24
0	1:35:00	12.12	69.97
0	1:40:00	10.6	60.01
0	1:45:00	9.32	52.05
0	1:50:00	8.13	45.12
0	1:55:00	7.07	39.03
0	2:00:00	6.16	33.71
0	2:05:00	5.36	29.08
0	2:10:00	4.62	29.08
0	2:10:00		24.94
0	2:20:00	3.92 3.25	
0	2:25:00		17.72
-		2.63	14.39
0	2:30:00	2.05	11.28
0	2:35:00	1.57	8.63
0	2:40:00	1.25	6.76
0	2:45:00	1.04	5.46
0	2:50:00	0.88	4.45
0	2:55:00	0.76	3.64
0	3:00:00	0.65	2.98
0	3:05:00	0.55	2.43
0	3:10:00	0.45	1.96
0	3:15:00	0.37	1.57
0	3:20:00	0.29	1.23
0	3:25:00	0.21	0.91
0	3:30:00	0.15	0.63
0	3:35:00	0.11	0.44
0	3:40:00	0.09	0.32
0	3:45:00	0.07	0.23
0	3:50:00	0.06	0.16
0	3:55:00	0.05	0.12
0	4:00:00	0.04	0.08
0	4:05:00	0.03	0.06
0	4:10:00	0.03	0.04
0	4:15:00	0.02	0.03
0	4:20:00	0.02	0.02
0	4:25:00	0.01	0.02
-		-	-

	Table - Node	e Total Inflov	N
		POND	-В
Days	Hours	5-Year	100-Yea
0	0:05:00	0	0
0	0:10:00	0.02	0.03
0	0:15:00	0.29	0.32
0	0:20:00	0.84	0.81
0	0:25:00	5.28	4.04
0	0:30:00	28.18	47.72
0	0:35:00	55.99	177.86
0	0:40:00	59.11	240.83
0	0:45:00	52.91	247.06
0	0:50:00	45.39	236.61
0	0:55:00	39.31	219.08
0	1:00:00	33.91	200.33
0	1:05:00	28.93	183.22
0	1:10:00	24.45	163.76
0	1:15:00	21.11	137.51
0	1:20:00	18.47	115.66
0	1:25:00	15.99	97.45
0	1:30:00	13.64	81.53
0	1:35:00	11.47	67.41
0	1:40:00	9.51	54.87
0	1:45:00	7.57	43.86
0	1:50:00	5.83	33.94
0	1:55:00	4.79	26.61
0	2:00:00	4.12	21.52
0	2:05:00	3.56	17.61
0	2:10:00	3.01	14.31
0	2:15:00	2.51	11.6
0	2:20:00	2.04	9.28
0	2:25:00	1.6	7.3
0	2:30:00	1.18	5.61
0	2:35:00	0.81	4.07
0	2:40:00	0.55	2.75
0	2:45:00	0.4	1.87
0	2:50:00	0.31	1.28
0	2:55:00	0.24	0.88
0	3:00:00	0.19	0.58
0	3:05:00	0.15	0.37
0	3:10:00	0.12	0.23
0	3:15:00	0.09	0.15
0	3:20:00	0.07	0.11
0	3:25:00	0.05	0.08
0	3:30:00	0.04	0.07
0	3:35:00	0.03	0.05
0	3:40:00	0.02	0.04
0	3:45:00	0.01	0.03
0	3:50:00	0.01	0.02
0	3:55:00	0.00	0.01
0	4:00:00	0.00	0.01
0	4:05:00	0.00	0.00
0	4:10:00	0.00	0.00
0	4:15:00	0.00	0.00
0	4:20:00	0.00	0.00
	4:25:00	0.00	0.00

Table - Node Total Inflow					
	POND-C				
Dava	Hours	5-Year	-C 100-Year		
Days 0	0:05:00	0	0		
0	0:10:00	0.01	0.02		
0	0:15:00	0.01	0.02		
0	0:20:00	0.10	0.17		
0	0:25:00	3.1	2.4		
0	0:30:00	12.19	23.71		
0	0:35:00	12.19	57.21		
0	0:40:00	17.52	69.03		
0	0:45:00	17.52	68.8		
0	0:50:00	13.42	65.25		
0	0:55:00	11.68	60.06		
0	1:00:00	10.12	54.88		
0	1:05:00	8.65	50.27		
0	1:10:00	7.28	44.01		
0	1:15:00	6.21	36.31		
0	1:20:00	5.39	30.18		
0	1:25:00	4.68	25.27		
0	1:30:00	4.00	23.27		
0	1:35:00	3.44	17.52		
0	1:40:00	2.82	14.24		
0	1:45:00	2.82	14.24		
0	1:50:00	1.56	8.38		
0	1:55:00	1.00	6		
0	2:00:00	0.81	4.2		
0	2:05:00	0.63	2.99		
0	2:10:00	0.00	2.00		
0	2:15:00	0.38	1.45		
0	2:20:00	0.29	0.96		
0	2:25:00	0.22	0.61		
0	2:30:00	0.16	0.37		
0	2:35:00	0.12	0.25		
0	2:40:00	0.09	0.18		
0	2:45:00	0.07	0.13		
0	2:50:00	0.05	0.1		
0	2:55:00	0.04	0.07		
0	3:00:00	0.02	0.05		
0	3:05:00	0.02	0.04		
0	3:10:00	0.01	0.02		
0	3:15:00	0.01	0.02		
0	3:20:00	0.01	0.01		
0	3:25:00	0.00	0.01		
0	3:30:00	0.00	0.00		
0	3:35:00	0.00	0.00		
0	3:40:00	0.00	0.00		
0	3:45:00	0.00	0.00		
0	3:50:00	0.00	0.00		
0	3:55:00	0.00	0.00		
0	4:00:00	0.00	0.00		
0	4:05:00	0.00	0.00		
0	4:10:00	0.00	0.00		
0	4:15:00	0.00	0.00		
0	4:20:00	0.00	0.00		
0	4:25:00	0.00	0.00		

#### ${\small \mathsf{SWWM}}\ {\small \mathsf{hydrographs}}\ {\small \mathsf{representing}}\ {\small \mathsf{runoff}}\ {\small \mathsf{entering}}\ {\small \mathsf{ponds}}, {\small \mathsf{transferred}}\ {\small \mathsf{to}}\ {\small \mathsf{MHFD-Detention}}$

Table - Node Total Inflow				
		POND	-A	
Days	Hours	5-Year	100-Year	
0	4:30:00	0.01	0.02	
0	4:35:00	0.01	0.01	
0	4:40:00	0.01	0.01	
0	4:45:00	0.01	0.01	
0	4:50:00	0.00	0.01	
0	4:55:00	0.00	0.01	
0	5:00:00	0.00	0.00	
0	5:05:00	0.00	0.00	
0	5:10:00	0.00	0.00	
0	5:15:00	0.00	0.00	
0	5:20:00	0.00	0.00	
0	5:25:00	0.00	0.00	
0	5:30:00	0.00	0.00	
0	5:35:00	0.00	0.00	
0	5:40:00	0.00	0.00	
0	5:45:00	0.00	0.00	
0	5:50:00	0.00	0.00	
0	5:55:00	0.00	0.00	
0	6:00:00	0.00	0.00	

Table - Node Total Inflow				
		POND	-В	
Days	Hours	5-Year	100-Year	
0	4:30:00	0.00	0.00	
0	4:35:00	0.00	0.00	
0	4:40:00	0.00	0.00	
0	4:45:00	0.00	0.00	
0	4:50:00	0.00	0.00	
0	4:55:00	0.00	0.00	
0	5:00:00	0.00	0.00	
0	5:05:00	0.00	0.00	
0	5:10:00	0.00	0.00	
0	5:15:00	0.00	0.00	
0	5:20:00	0.00	0.00	
0	5:25:00	0.00	0.00	
0	5:30:00	0.00	0.00	
0	5:35:00	0.00	0.00	
0	5:40:00	0.00	0.00	
0	5:45:00	0.00	0.00	
0	5:50:00	0.00	0.00	
0	5:55:00	0.00	0.00	
0	6:00:00	0.00	0.00	

Table - Node Total Inflow				
		POND-C		
Days	Hours	5-Year	100-Year	
0	4:30:00	0.00	0.00	
0	4:35:00	0.00	0.00	
0	4:40:00	0.00	0.00	
0	4:45:00	0.00	0.00	
0	4:50:00	0.00	0.00	
0	4:55:00	0.00	0.00	
0	5:00:00	0.00	0.00	
0	5:05:00	0.00	0.00	
0	5:10:00	0.00	0.00	
0	5:15:00	0.00	0.00	
0	5:20:00	0.00	0.00	
0	5:25:00	0.00	0.00	
0	5:30:00	0.00	0.00	
0	5:35:00	0.00	0.00	
0	5:40:00	0.00	0.00	
0	5:45:00	0.00	0.00	
0	5:50:00	0.00	0.00	
0	5:55:00	0.00	0.00	
0	6:00:00	0.00	0.00	



Flying Horse North Filing No. 4 Final Drainage Report Project No.: 211030

El Paso County, Colorado

## **APPENDIX C**

## **HYDRAULIC CALCULATIONS**



Flying Horse North Filing No. 3 Final Drainage Report Project No.: 211030.20

El Paso County, Colorado

# **EXISTING CULVERT CALCULATIONS**

Crest Width (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Oct 22 2024

### Existing 48-inch Culvert - DPB2 (Old Stagecoach Road)

= 50.00

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 7532.00 = 123.98 = 1.33 = 7533.65 = 48.0	<b>Calculations</b> Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 285.80 = 285.80 = (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 48.0	Qtotal (cfs)	= 285.80
No. Barrels	= 1	Qpipe (cfs)	= 181.21
n-Value	= 0.012	Qovertop (cfs)	= 104.59
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 14.53
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 14.74
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7535.89
		HGL Up (ft)	= 7537.43
Embankment		Hw Elev (ft)	= 7544.58
Top Elevation (ft)	= 7543.81	Hw/D (ft)	= 2.73
Top Width (ft)	= 36.00	Flow Regime	= Inlet Control
· · · · · · · · · · · · · · · · · · ·		-	

Elev (ft) Existing 48-inch Culvert - DPB2 (Old Stagecoach Road) Hw Depth (ft) - 12.35 7546.00 niet 7544.00 10.35 7542.00 8.35 7540.00 -6.35 7538.00 -4.35 7536.00 2.35 7534.00 0.35 7532.00 -1.65 7530.00 --3.65 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 - Circular Culvert HGL Embank Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Oct 22 2024

### Existing 30-inch Culvert - DPC1 (Old Stagecoach Road)

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 7564.75 = 82.63 = 4.54 = 7568.50 = 30.0	<b>Calculations</b> Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 37.20 = 37.20 = (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 30.0	Qtotal (cfs)	= 37.20
No. Barrels	= 1	Qpipe (cfs)	= 34.15
n-Value	= 0.012	Qovertop (cfs)	= 3.05
Culvert Type	<ul> <li>Circular Concrete</li> </ul>	Veloc Dn (ft/s)	= 7.36
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 8.17
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7566.99
		HGL Up (ft)	= 7570.49
Embankment		Hw Elev (ft)	= 7572.05
Top Elevation (ft)	= 7572.00	Hw/D (ft)	= 1.42
Top Width (ft)	= 50.00	Flow Regime	= Inlet Control

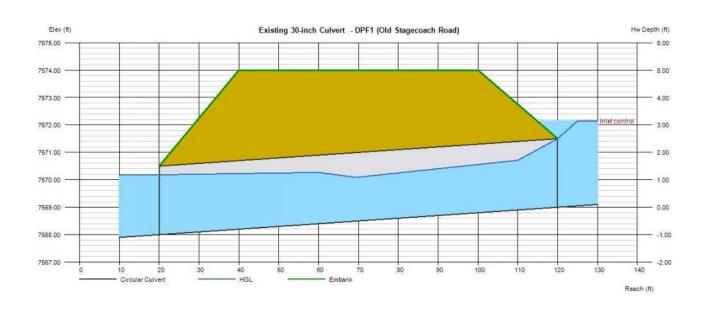
Elev (ft) Existing 30-inch Culvert - DPC1 (Old Stagecoach Road) Hw Depth (ft) - 4.50 7573.00 7572.00 3.50 7571.00 2.50 7570.00 1.50 7569.00 0.50 7568.00 -0.50 7567.00 -1.50 7566.00 -2.50 7565.00 -3.50 7564.00 -4.50 7563.00 --5.50 10 20 30 40 50 60 70 80 90 100 110 120 130 Circular Culvert HGI Embank Reach (ft)

Crest Width (ft)

=	7572.00
=	50.00
=	100.00

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Dec 3 2024


## Existing 30-inch Culvert - DPF1 (Old Stagecoach Road)

Invert Elev Dn (ft) Pipe Length (ft) Slope (%)	= 7568.00 = 100.00 = 1.00	<b>Calculations</b> Qmin (cfs) Qmax (cfs)	= 30.00 = 30.00
Invert Elev Up (ft) Rise (in)	= 7569.00 = 30.0	Tailwater Elev (ft)	= (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 30.0	Qtotal (cfs)	= 30.00
No. Barrels	= 1	Qpipe (cfs)	= 30.00
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 6.60
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 7.64
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7570.18
		HGL Up (ft)	= 7570.87
Embankment		Hw Elev (ft)	= 7572.15
Top Elevation (ft)	= 7574.00	Hw/D (ft)	= 1.26
		_, <u>`</u> ´.	

Top Width (ft) Crest Width (ft)

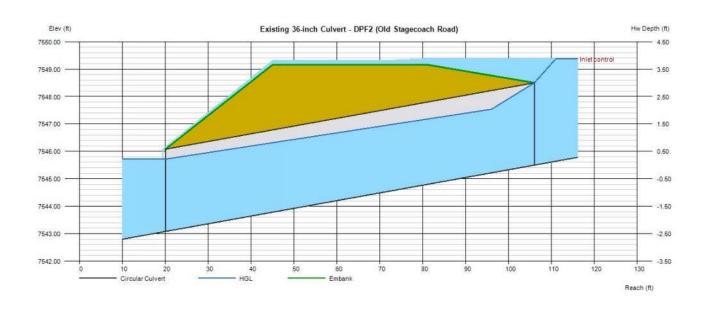
=	7574.00
=	60.00
=	100.00

Qtotal (cfs)	=	30.00
Qpipe (cfs)	=	30.00
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	6.60
Veloc Up (ft/s)	=	7.64
HGL Dn (ft)	=	7570.18
HGL Up (ft)	=	7570.87
Hw Elev (ft)	=	7572.15
Hw/D (ft)	=	1.26
Flow Regime	=	Inlet Control



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Dec 4 2024


## Existing 36-inch Culvert - DPF2 (Old Stagecoach Road)

Invert Elev Dn (ft)	= 7543.08	Calculations	
Pipe Length (ft)	= 86.00	Qmin (cfs)	= 60.50
Slope (%)	= 2.81	Qmax (cfs)	= 60.50
Invert Elev Up (ft)	= 7545.50	Tailwater Élev (ft)	= (dc+D)/2
Rise (in)	= 36.0		
Shape	= Circular	Highlighted	
Span (in)	= 36.0	Qtotal (cfs)	= 60.50
No. Barrels	= 1	Qpipe (cfs)	= 48.94
n-Value	= 0.012	Qovertop (cfs)	= 11.56
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 7.43
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 8.51
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7545.72
		HGL Up (ft)	= 7547.78
Embankment		Hw Elev (ft)	= 7549.38
Top Elevation (ft)	= 7549.16	Hw/D (ft)	= 1.29

Top Width (ft) Crest Width (ft)

=	7549.16
=	36.00
=	40.00

Qtotal (cfs)	=	60.50
Qpipe (cfs)	=	48.94
Qovertop (cfs)	=	11.56
Veloc Dn (ft/s)	=	7.43
Veloc Up (ft/s)	=	8.51
HGL Dn (ft)	=	7545.72
HGL Up (ft)	=	7547.78
Hw Elev (ft)	=	7549.38
Hw/D (ft)	=	1.29
Flow Regime	=	Inlet Control





Flying Horse North Filing No. 4 Final Drainage Report Project No.: 211030

El Paso County, Colorado

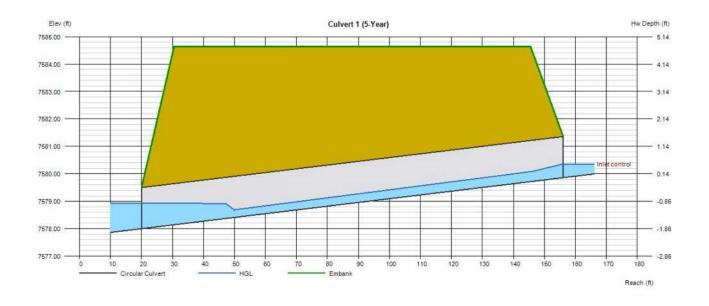
## **CULVERT CALCULATIONS**

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 23 2024

### Culvert 1 (5-Year)

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 7578.00 = 136.05 = 1.37 = 7579.86 = 18.0	<b>Calculations</b> Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 1.00 = 1.00 = (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 1.00
No. Barrels	= 1	Qpipe (cfs)	= 1.00
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	<ul> <li>Circular Concrete</li> </ul>	Veloc Dn (ft/s)	= 0.86
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 2.92
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7578.94
		HGL Up (ft)	= 7580.23
Embankment		Hw Elev (ft)	= 7580.36
Top Elevation (ft)	= 7584.64	Hw/D (ft)	= 0.33


Т Top Width (ft) Crest Width (ft)

=	7584.64
=	115.00
_	30.00

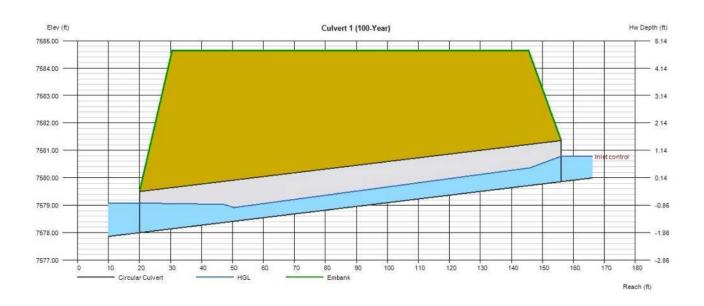
30.00

Qpipe (cis)	=	1.00
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	0.86
Veloc Up (ft/s)	=	2.92
HGL Dn (ft)	=	7578.94
HGL Up (ft)	=	7580.23
Hw Elev (ft)	=	7580.36
Hw/D (ft)	=	0.33
Flow Regime	=	Inlet Cor

= Inlet Control



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.


### Culvert 1 (100-Year)

Invert Elev Dn (ft) Pipe Length (ft) Slope (%)	= 7578.00 = 136.05 = 1.37	<b>Calculations</b> Qmin (cfs) Qmax (cfs)	= 3.00 = 3.00
Invert Elev Up (ft) Rise (in)	= 7579.86 = 18.0	Tailwater Elev (ft)	= (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 3.00
No. Barrels	= 1	Qpipe (cfs)	= 3.00
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 2.20
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 4.02
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7579.08
		HGL Up (ft)	= 7580.52
Embankment		Hw Elev (ft)	= 7580.79

Top Elevation (ft) Top Width (ft) Crest Width (ft)

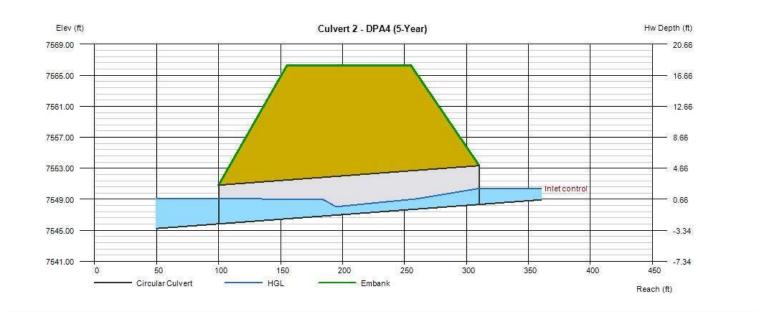
=	7584.64
=	115.00
=	30.00

	_	5.00
Qpipe (cfs)	=	3.00
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	2.20
Veloc Up (ft/s)	=	4.02
HGL Dn (ft)	=	7579.08
HGL Up (ft)	=	7580.52
Hw Elev (ft)	=	7580.79
Hw/D (ft)	=	0.62
Flow Regime	=	Inlet Control



Wednesday, Oct 23 2024

Crest Width (ft)

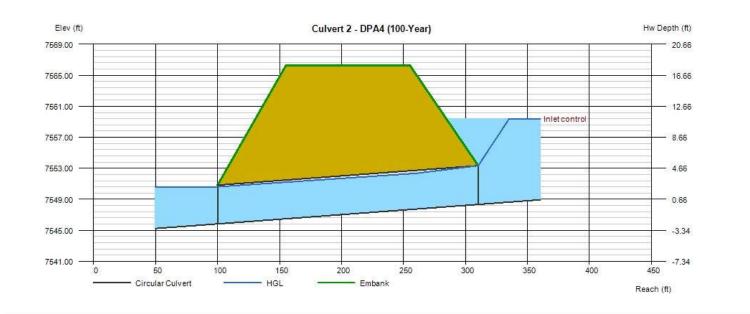

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

= 270.00

Friday, Sep 13 2024

### Culvert 2 - DPA4 (5-Year)

Invert Elev Dn (ft)	= 7545.83	Calculations	
Pipe Length (ft)	= 210.30	Qmin (cfs)	= 30.00
Slope (%)	= 1.19	Qmax (cfs)	= 30.00
Invert Elev Up (ft)	= 7548.34	Tailwater Élev (ft)	= (dc+D)/2
Rise (in)	= 60.0		ΥΥΥΥ Υ
Shape	= Circular	Highlighted	
Span (in)	= 60.0	Qtotal (cfs)	= 30.00
No. Barrels	= 1	Qpipe (cfs)	= 30.00
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 2.21
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 5.95
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7549.09
		HGL Up (ft)	= 7549.86
Embankment		Hw Elev (ft)	= 7550.40
Top Elevation (ft)	= 7566.27	Hw/D (ft)	= 0.41
Top Width (ft)	= 100.00	Flow Regime	= Inlet Control
/ /		~	




Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

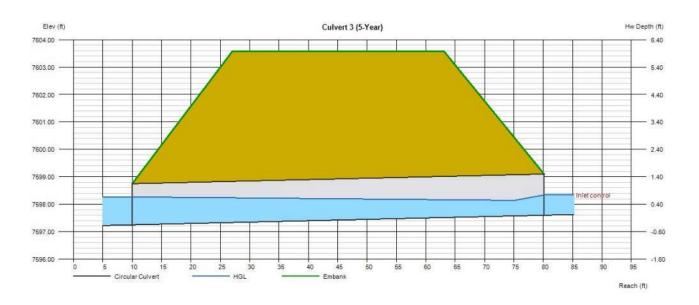
Friday, Sep 13 2024

### Culvert 2 - DPA4 (100-Year)

Invert Elev Dn (ft)	= 7545.83	Calculations	
Pipe Length (ft)	= 210.30	Qmin (cfs)	= 274.00
Slope (%)	= 1.19	Qmax (cfs)	= 274.00
Invert Elev Up (ft)	= 7548.34	Tailwater Élev (ft)	= (dc+D)/2
Rise (in)	= 60.0	. ,	, , , , , , , , , , , , , , , , , , ,
Shape	= Circular	Highlighted	
Span (in)	= 60.0	Qtotal (cfs)	= 274.00
No. Barrels	= 1	Qpipe (cfs)	= 274.00
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	<ul> <li>Circular Concrete</li> </ul>	Veloc Dn (ft/s)	= 14.18
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 14.59
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7550.61
		HGL Up (ft)	= 7552.90
Embankment		Hw Elev (ft)	= 7559.41
Top Elevation (ft)	= 7566.27	Hw/D (ft)	= 2.21
Top Width (ft)	= 100.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 270.00		



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.


### Culvert 3 (5-Year)

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 7597.25 = 70.14 = 0.50 = 7597.60 = 18.0	<b>Calculations</b> Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 2.00 = 2.00 = (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 2.00
No. Barrels	= 1	Qpipe (cfs)	= 2.00
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	<ul> <li>Circular Concrete</li> </ul>	Veloc Dn (ft/s)	= 1.57
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 3.56
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7598.27
		HGL Up (ft)	= 7598.13
Embankment		Hw Elev (ft)	= 7598.34

E Top Elevation (ft) Top Width (ft) Crest Width (ft)

= 7603.58 = 36.00 = 20.00

I

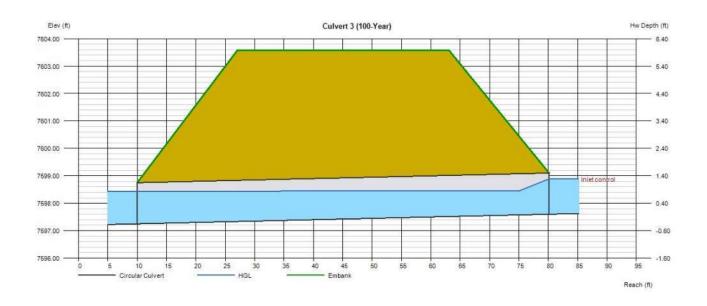


Wednesday, Oct 23 2024

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

### Culvert 3 (100-Year)

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 7597.25 = 70.14 = 0.50 = 7597.60 = 18.0	<b>Calculations</b> Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 5.00 = 5.00 = (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 5.00
No. Barrels	= 1	Qpipe (cfs)	= 5.00
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	<ul> <li>Circular Concrete</li> </ul>	Veloc Dn (ft/s)	= 3.35
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 4.75
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7598.43
		HGL Up (ft)	= 7598.46
Embankment		Hw Elev (ft)	= 7598.89


### Ε Top Elevation (ft) Top Width (ft)

Crest Width (ft)

=	7603.58
=	36.00
=	20.00

Qmin (cfs)	= 5.00
Qmax (cfs)	= 5.00
Tailwater Elev (ft)	= (dc+D)/2

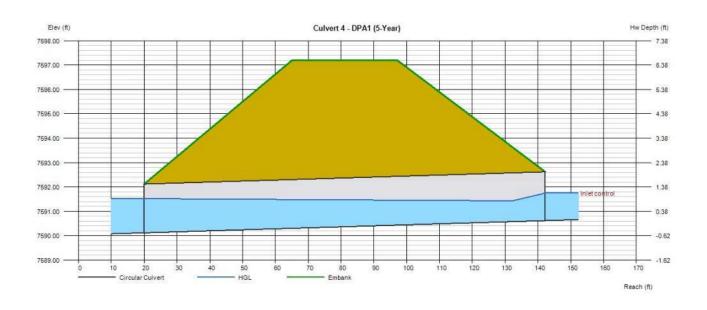
Qtotal (cfs)	=	5.00
Qpipe (cfs)	=	5.00
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	3.35
Veloc Up (ft/s)	=	4.75
HGL Dn (ft)	=	7598.43
HGL Up (ft)	=	7598.46
Hw Elev (ft)	=	7598.89
Hw/D (ft)	=	0.86
Flow Regime	=	Inlet Control



Wednesday, Oct 23 2024

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Sep 11 2024


### Culvert 4 - DPA1 (5-Year)

Invert Elev Dn (ft) Pipe Length (ft) Slope (%)	= 7590.12 = 122.21 = 0.41	<b>Calculations</b> Qmin (cfs) Qmax (cfs)	= 5.20 = 5.20
Invert Elev Up (ft) Rise (in)	= 7590.62 = 24.0	Tailwater Elev (ft)	= (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 5.20
No. Barrels	= 1	Qpipe (cfs)	= 5.20
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 2.21
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 4.41
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7591.52
		HGL Up (ft)	= 7591.42
Embankment		Hw Elev (ft)	= 7591.75
Top Elevation (ft)	= 7597 20	Hw/D (ft)	= 0.56

Top Elevation (ft) Top Width (ft) Crest Width (ft)

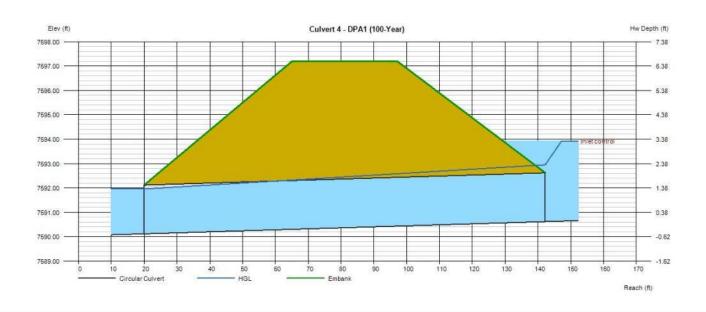
=	7597.20
=	32.00
=	75.00

Qtotal (cfs) =	5.20
Qpipe (cfs) =	5.20
Qovertop (cfs) =	0.00
Veloc Dn (ft/s) =	2.21
Veloc Up (ft/s) =	4.41
HGL Dn (ft) =	7591.52
HGL Up (ft) =	7591.42
Hw Elev (ft) =	7591.75
Hw/D (ft) =	0.56
Flow Regime =	Inlet Control



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Sep 11 2024


### Culvert 4 - DPA1 (100-Year)

Invert Elev Dn (ft)	= 7590.12	Calculations	
( )			
Pipe Length (ft)	= 122.21	Qmin (cfs)	= 22.10
Slope (%)	= 0.41	Qmax (cfs)	= 22.10
Invert Elev Up (ft)	= 7590.62	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 24.0		, , , , , , , , , , , , , , , , , , ,
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 22.10
No. Barrels	= 1	Qpipe (cfs)	= 22.10
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 7.31
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 7.03
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7591.96
		HGL Up (ft)	= 7592.95
Embankment		Hw Elev (ft)	= 7593.93
Top Elevation (ft)	= 7597 20	Hw/D (ft)	= 1.65

Top Elevation (ft) Top Width (ft) Crest Width (ft)

=	7597.20
=	32.00
=	75.00

Qiulai (013)	- 22.10
Qpipe (cfs)	= 22.10
Qovertop (cfs)	= 0.00
Veloc Dn (ft/s)	= 7.31
Veloc Up (ft/s)	= 7.03
HGL Dn (ft)	= 7591.96
HGL Up (ft)	= 7592.95
Hw Elev (ft)	= 7593.93
Hw/D (ft)	= 1.65
Flow Regime	= Inlet Control



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Sep 11 2024


#### Culvert 5 - DPH1 (5-Year)

Invert Elev Dn (ft)	= 7588.21	Calculations	
Pipe Length (ft)	= 151.43	Qmin (cfs)	= 3.40
Slope (%)	= 1.06	Qmax (cfs)	= 3.40
Invert Elev Up (ft)	= 7589.82	Tailwater Élev (ft)	= (dc+D)/2
Rise (in)	= 18.0		, , , , , , , , , , , , , , , , , , ,
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 3.40
No. Barrels	= 1	Qpipe (cfs)	= 3.40
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 2.45
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 4.18
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7589.31
		HGL Up (ft)	= 7590.52
Embankment		Hw Elev (ft)	= 7590.82
Top Elevation (ft)	= 7599.53	Hw/D (ft)	= 0.67
		<u>`</u> ´.	

Top Width (ft) Crest Width (ft)

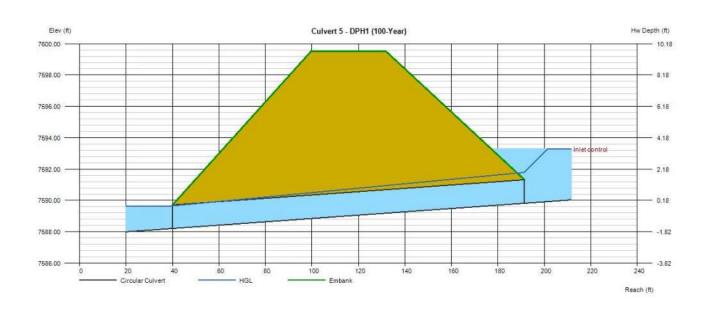
=	7599.53
=	32.00
=	125.00

= Inlet Control



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 12 2024


### Culvert 5 - DPH1 (100-Year)

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft)	= 7588.21 = 151.43 = 1.06 = 7589.82	<b>Calculations</b> Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 13.90 = 13.90 = (dc+D)/2
Rise (in)	= 18.0		
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 13.90
No. Barrels	= 1	Qpipe (cfs)	= 13.90
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 7.98
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 7.87
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7589.65
		HGL Up (ft)	= 7591.79
Embankment		Hw Elev (ft)	= 7593.28
Top Elevation (ft)	= 7599.53	Hw/D (ft)	= 2.31

Top Width (ft) Crest Width (ft)

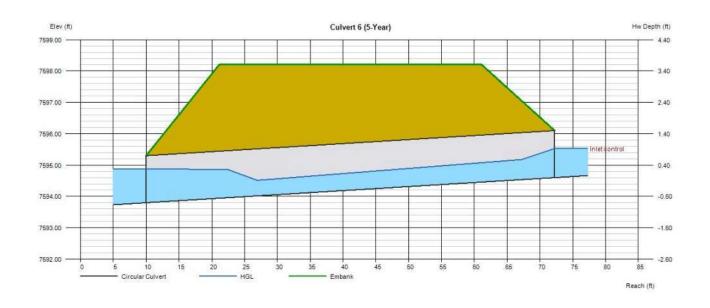
=	7599.53
=	32.00
=	125.00

Qpipe (cfs)	=	13.90
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	7.98
Veloc Up (ft/s)	=	7.87
HGL Dn (ft)	=	7589.65
HGL Up (ft)	=	7591.79
Hw Elev (ft)	=	7593.28
Hw/D (ft)	=	2.31
Flow Regime	=	Inlet Control



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

#### Wednesday, Oct 23 2024


#### Culvert 6 (5-Year)

Invert Elev Dn (ft)	= 7593.80	Calculations	
Pipe Length (ft)	= 62.24	Qmin (cfs)	= 3.00
Slope (%)	= 1.29	Qmax (cfs)	= 3.00
Invert Elev Up (ft)	= 7594.60	Tailwater Élev (ft)	= (dc+D)/2
Rise (in)	= 18.0		( )
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 3.00
No. Barrels	= 1	Qpipe (cfs)	= 3.00
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 2.20
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 4.02
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7594.88
		HGL Up (ft)	= 7595.26
Embankment		Hw Elev (ft)	= 7595.53
Top Flowation (ft)	- 7509.00		- 0.62

Top Elevation (ft) Top Width (ft) Crest Width (ft)

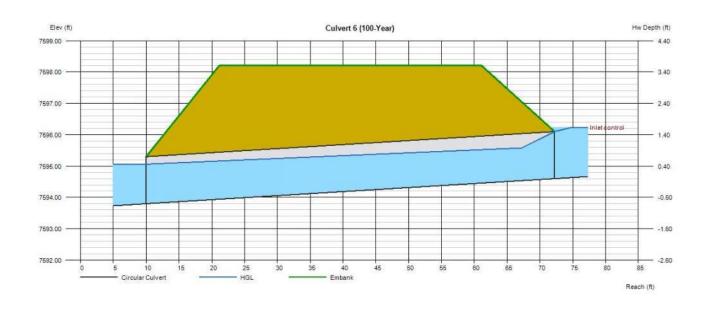
=	7598.20
=	40.00
=	40.00

3.00
3.00
0.00
2.20
4.02
7594.88
7595.26
7595.53
0.62
Inlet Control



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

#### Wednesday, Oct 23 2024


#### Culvert 6 (100-Year)

Invert Elev Dn (ft) Pipe Length (ft)	= 7593.80 = 62.24	Calculations Qmin (cfs)	= 7.00
Slope (%)	= 1.29	Qmax (cfs)	= 7.00
Invert Elev Up (ft)	= 7594.60	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 18.0		
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 7.00
No. Barrels	= 1	Qpipe (cfs)	= 7.00
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 4.41
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 5.45
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7595.06
		HGL Up (ft)	= 7595.62
Embankment		Hw Elev (ft)	= 7596.23
Top Elevation (ft)	- 7508.20		- 1.00

Top Elevation (ft) Top Width (ft) Crest Width (ft)

= 7598.20 = 40.00 = 40.00

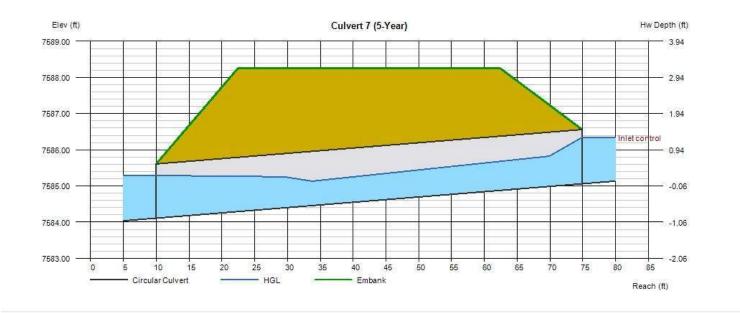
Highlighted		
Qtotal (cfs)	=	7.00
Qpipe (cfs)	=	7.00
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	4.41
Veloc Up (ft/s)	=	5.45
HGL Dn (ft)	=	7595.06
HGL Up (ft)	=	7595.62
Hw Elev (ft)	=	7596.23
Hw/D (ft)	=	1.09
Flow Regime	=	Inlet Control



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

#### Culvert 7 (5-Year)

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 7584.11 = 64.88 = 1.46 = 7585.06 = 18.0	<b>Calculations</b> Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 5.00 = 5.00 = (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 5.00
No. Barrels	= 1	Qpipe (cfs)	= 5.00
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 3.35
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 4.77
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7585.29
		HGL Up (ft)	= 7585.92
Embankment		Hw Elev (ft)	= 7586.34
Top Elevation (ft)	= 7588.25	Hw/D (ft)	= 0.85


Top Elevation (ft) Top Width (ft) Crest Width (ft)

=	7588.25
=	40.00
=	40.00

Friday,	Sep	13 2024

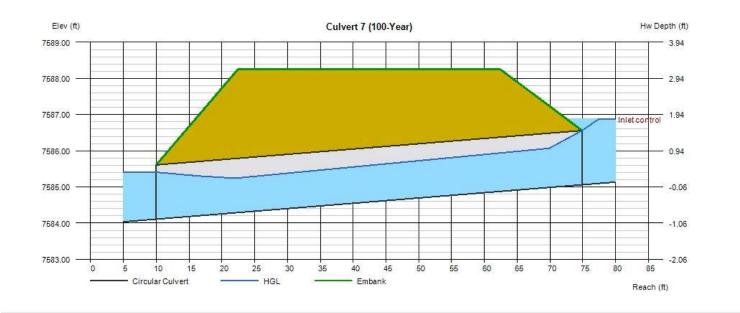
Qmax (cfs) Tailwater Elev (ft)	= 5.00 = (dc+D)/2
Highlighted	
Qtotal (cfs)	= 5.00
Qpipe (cfs)	= 5.00
Qovertop (cfs)	= 0.00
Veloc Dn (ft/s)	= 3.35
Veloc Up (ft/s)	= 4.77
HGL Dn (ft)	= 7585.29
HGL Up (ft)	= 7585.92
Hw Elev (ft)	= 7586.34
Hw/D (ft)	= 0.85
Flow Regime	= Inlet Cont





Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

#### Culvert 7 (100-Year)


Invert Elev Dn (ft) Pipe Length (ft) Slope (%)	= 7584.11 = 64.88 = 1.46	<b>Calculations</b> Qmin (cfs) Qmax (cfs)	= 8.00 = 8.00
Invert Elev Up (ft)	= 7585.06	Tailwater Elev (ft)	= (dc+D)/2
Rise (in) Shape	= 18.0 = Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 8.00
No. Barrels	= 1	Qpipe (cfs)	= 8.00
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 4.92
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 5.79
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7585.41
		HGL Up (ft)	= 7586.16
Embankment		Hw Elev (ft)	= 7586.87
Top Elevation (ft)	= 7588.25	Hw/D (ft)	= 1.21

Top Elevation (ft) Top Width (ft) Crest Width (ft)

=	7588.25
=	40.00
=	40.00

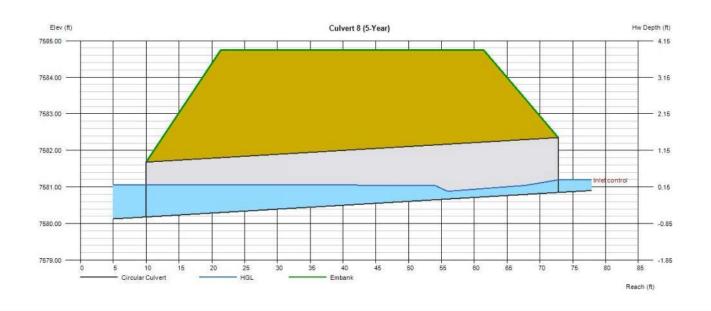
= 5
= 7
= 7
= 7
= 1
=

= Inlet Control



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 23 2024


#### Culvert 8 (5-Year)

Invert Elev Dn (ft) Pipe Length (ft) Slope (%)	= 7580.18 = 62.79 = 1.07	Calculations Qmin (cfs) Qmax (cfs)	= 0.50 = 0.50
Invert Elev Up (ft) Rise (in)	= 7580.85 = 18.0	Tailwater Elev (ft)	= (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 0.50
No. Barrels	= 1	Qpipe (cfs)	= 0.50
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 0.46
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 2.42
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7581.06
		HGL Up (ft)	= 7581.11
Embankment		Hw Elev (ft)	= 7581.20
Top Elevation (ft)	= 7584.75	Hw/D (ft)	= 0.23

Top Elevation (ft) Top Width (ft) Crest Width (ft)

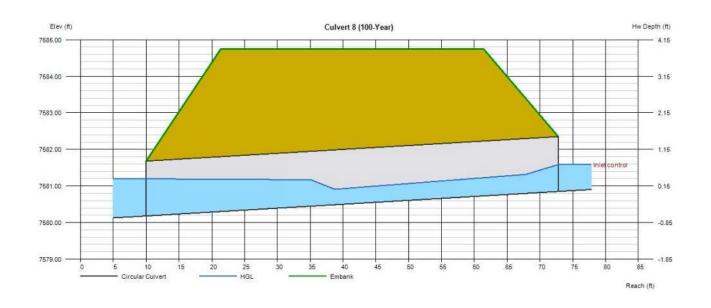
/584./5 = = 40.00 = 33.00

Qtotal (cfs)	=	0.50
Qpipe (cfs)	=	0.50
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	0.46
Veloc Up (ft/s)	=	2.42
HGL Dn (ft)	=	7581.06
HGL Up (ft)	=	7581.11
Hw Elev (ft)	=	7581.20
Hw/D (ft)	=	0.23
Flow Regime	=	Inlet Control



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 23 2024


#### Culvert 8 (100-Year)

Invert Elev Dn (ft) Pipe Length (ft) Slope (%)	= 7580.18 = 62.79 = 1.07	<b>Calculations</b> Qmin (cfs) Qmax (cfs)	= 2.00 = 2.00
Invert Elev Up (ft) Rise (in)	= 7580.85 = 18.0	Tailwater Elev (ft)	= (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 2.00
No. Barrels	= 1	Qpipe (cfs)	= 2.00
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	<ul> <li>Circular Concrete</li> </ul>	Veloc Dn (ft/s)	= 1.57
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 3.56
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7581.20
		HGL Up (ft)	= 7581.38
Embankment		Hw Elev (ft)	= 7581.58
Top Elevation (ft)	= 7584.75	Hw/D (ft)	= 0.49

Top Width (ft) Crest Width (ft)

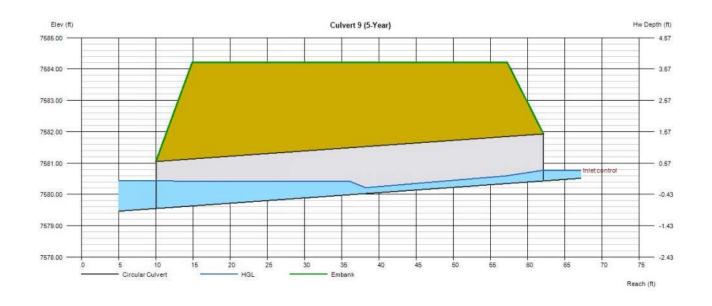
= 40.00 = 33.00

Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	1.57
Veloc Up (ft/s)	=	3.56
HGL Dn (ft)	=	7581.20
HGL Up (ft)	=	7581.38
Hw Elev (ft)	=	7581.58
Hw/D (ft)	=	0.49
Flow Regime	=	Inlet Control



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 23 2024


#### Culvert 9 (5-Year)

Invert Elev Dn (ft)	= 7579.55	Calculations	
Pipe Length (ft)	= 52.11	Qmin (cfs)	= 0.50
Slope (%)	= 1.69	Qmax (cfs)	= 0.50
Invert Elev Up (ft)	= 7580.43	Tailwater Élev (ft)	= (dc+D)/2
Rise (in)	= 18.0		
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 0.50
No. Barrels	= 1	Qpipe (cfs)	= 0.50
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 0.46
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 2.42
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7580.43
		HGL Up (ft)	= 7580.69
Embankment		Hw Elev (ft)	= 7580.77
Top Elevation (ft)	- 758/ 01		- 0.23

Top Elevation (ft) Top Width (ft) Crest Width (ft)

=	7584.21
=	42.34
=	35.00

) ) S
3
)
2
0.43
0.69
0.77
3
t Control

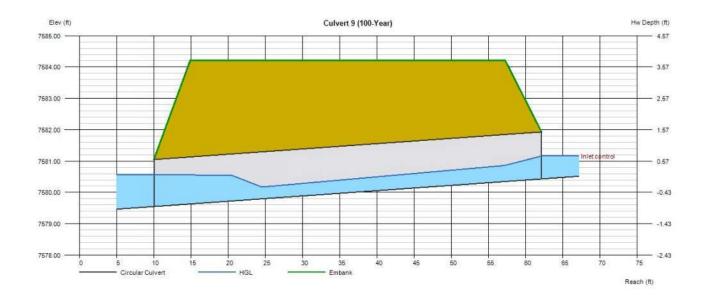


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

#### Wednesday, Oct 23 2024

#### Culvert 9 (100-Year)

Invert Elev Dn (ft) Pipe Length (ft)	= 7579.55 = 52.11	<b>Calculations</b> Qmin (cfs)	= 2.00
Slope (%)	= 1.69	Qmax (cfs)	= 2.00
Invert Elev Up (ft)	= 7580.43	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 18.0		
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 2.00
No. Barrels	= 1	Qpipe (cfs)	= 2.00
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 1.57
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 3.56
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7580.57
		HGL Up (ft)	= 7580.96
Embankment		Hw Elev (ft)	= 7581.16
Top Elevation (ft)	= 7584.21	Hw/D (ft)	= 0.49


Top Elevation (ft) Top Width (ft)

Crest Width (ft)

=	7584.21
=	42.34
=	35.00

=	2.00
=	0.00
=	1.57
=	3.56
=	7580.
=	7580.
=	7581.
=	0.49
=	Inlet (

= Inlet Control



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Sep 13 2024

-3.57

450.0

### Culvert 10 (5-Year)

7561.00

0.0

50.0

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 0.79		<b>Calculations</b> Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 3.00 = 3.00 = (dc+D)/2
Shape Span (in) No. Barrels n-Value Culvert Type Culvert Entrance Coeff. K,M,c,Y,k	= Circular = 18.0 = 1 = 0.012 = Circular Concrete	eadwall (C)	Highlighted Qtotal (cfs) Qpipe (cfs) Qovertop (cfs) Veloc Dn (ft/s) Veloc Up (ft/s) HGL Dn (ft) HGL Up (ft)	= 3.00 = 3.00 = 0.00 = 2.20 = 4.02 = 7563.90 = 7565.23
<b>Embankment</b> Top Elevation (ft) Top Width (ft) Crest Width (ft)	= 7569.07 = 32.00 = 60.00		Hw Elev (ft) Hw/D (ft) Flow Regime	= 7565.25 = 7565.50 = 0.62 = Inlet Control
Elev (ft)		Profile		Hw Depth (ft)
7570.00				5.43
7569.00				4.43
7568.00				3.43
7567.00	E	mbankment		2.43
7566.00				1.43
7565.00			2	• Hw 0.43
7564.00 HGL	221.65 Lf	of 18(in) @ 0.79	%	-0.57
7563.00				-1.57
7562.00				-2.57

250.0

300.0

350.0

400.0

200.0

100.0

150.0

Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Sep 13 2024

-3.57

450.0

### Culvert 10 (100-Year)

7561.00

0.0

50.0

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in) Shape Span (in) No. Barrels n-Value Culvert Type Culvert Entrance Coeff. K,M,c,Y,k <b>Embankment</b> Top Elevation (ft) Top Width (ft) Crest Width (ft)	= 0.79 = 7564.57 = 18.0 = Circular = 18.0 = 1 = 0.012 = Circular Concrete		Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft) Highlighted Qtotal (cfs) Qpipe (cfs) Qovertop (cfs) Veloc Dn (ft/s) Veloc Up (ft/s) HGL Dn (ft) HGL Up (ft) Hw Elev (ft) Hw/D (ft) Flow Regime	= $5.00$ = $5.00$ = $(dc+D)/2$ = $5.00$ = $5.00$ = $0.00$ = $3.35$ = $4.77$ = $7564.00$ = $7565.43$ = $7565.86$ = $0.86$ = Inlet Control Hw Depth (ft)
		Profile		
7570.00				5.43
7569.00				4.43
7567.00	Em	bankment		2.43
7566.00				
7565.00	221.65 Lf c	of 16(in) @ 0.79	%	0.43
7564.00 HGL				-0.57
7563.00				-1.57
7562.00				-2.57

250.0

300.0

350.0

400.0

200.0

100.0

150.0

Reach (ft)

Crest Width (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

= 93.00

Wednesday, Sep 11 2024

### Culvert 11 - DPA2 (5-Year)

Invert Elev Dn (ft)	= 7559.50	Calculations	
Pipe Length (ft)	= 106.87	Qmin (cfs)	= 11.30
Slope (%)	= 0.43	Qmax (cfs)	= 11.30
Invert Elev Up (ft)	= 7559.96	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 42.0		
Shape	= Circular	Highlighted	
Span (in)	= 42.0	Qtotal (cfs)	= 11.30
No. Barrels	= 1	Qpipe (cfs)	= 11.30
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	<ul> <li>Circular Concrete</li> </ul>	Veloc Dn (ft/s)	= 1.72
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 4.86
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7561.76
		HGL Up (ft)	= 7560.98
Embankment		Hw Elev (ft)	= 7561.35
Top Elevation (ft)	= 7566.53	Hw/D (ft)	= 0.40
Top Width (ft)	= 32.00	Flow Regime	= Inlet Control

Elev (ft) Culvert 11 - DPA2 (5-Year) Hw Depth (ft) 7567.00 7.04 7566.00 6.04 7565.00 5.04 7564.00 4.04 7563.00 3.04 7562.00 2.04 et control In 7561.00 1.04 7560.00 0.04 7559.00 -0.96 7558.00 --1.96 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 Circular Culvert - HGL Embank Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Sep 11 2024

### Culvert 11 - DPA2 (100-Year)

Invert Elev Dn (ft) Pipe Length (ft) Slope (%)	= 7559.50 = 106.87 = 0.43	Calculations Qmin (cfs) Qmax (cfs)	= 71.70 = 71.70
Invert Elev Up (ft) Rise (in)	= 7559.96 = 42.0	Tailwater Elev (ft)	= (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 42.0	Qtotal (cfs)	= 71.70
No. Barrels	= 1	Qpipe (cfs)	= 71.70
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 8.01
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 9.17
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7562.58
		HGL Up (ft)	= 7562.61
Embankment		Hw Elev (ft)	= 7564.51
Top Elevation (ft)	= 7566.53	Hw/D (ft)	= 1.30
Top Width (ft)	= 32.00	Flow Regime	= Inlet Control

Top Width (ft) Crest Width (ft)

=	7566.53
=	32.00
=	93.00

lev (ft)		Culvert 11 - DPA2 (100-Y	ear)				1	Hw Dep
.00								Г
.00					-		-	-
.00								-
00						$\square$	Inlet control	-
					7	i i		-
.00								-
00						-		-
00		<u> </u>				-		-
00						-		-
			90 100		120	130	140	
00 10 20	30 40 50 6	60 70 80	90 100	110				150

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 30 2024

### Culvert 12 - DPA5 (5-Year)

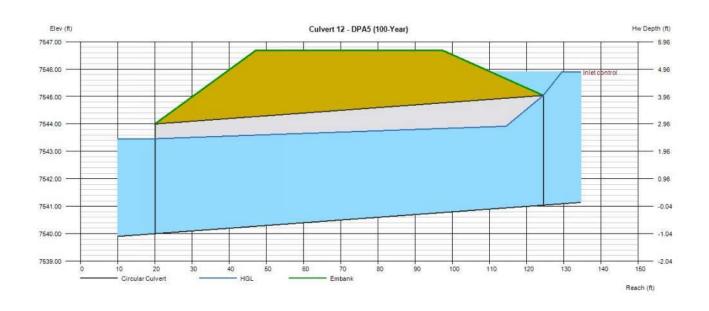
Invert Elev Dn (ft)	= 7540.00	Calculations	
Pipe Length (ft)	= 104.44	Qmin (cfs)	= 14.80
Slope (%)	= 1.00	Qmax (cfs)	= 14.80
Invert Elev Up (ft)	= 7541.04	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 48.0		, , ,
Shape	= Circular	Highlighted	
Span (in)	= 48.0	Qtotal (cfs)	= 14.80
No. Barrels	= 1	Qpipe (cfs)	= 14.80
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	<ul> <li>Circular Concrete</li> </ul>	Veloc Dn (ft/s)	= 1.74
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 5.10
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7542.56
		HGL Up (ft)	= 7542.17
Embankment		Hw Elev (ft)	= 7542.56
Top Elevation (ft)	= 7546.69	Hw/D (ft)	= 0.38
Top Width (ft)	= 50.00	Flow Regime	= Inlet Control

Top Width (ft) Crest Width (ft) = 50.00 = 100.00

5.
Inlet control

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

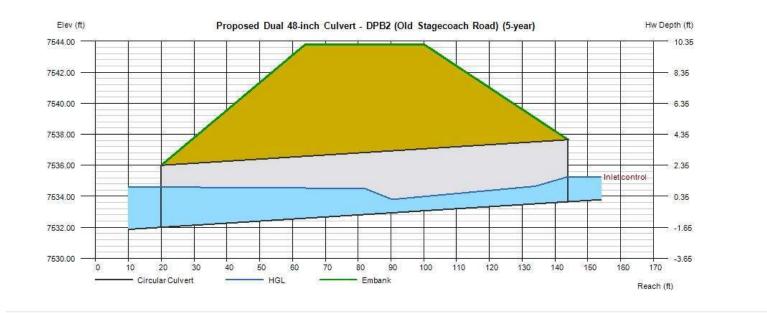
Wednesday, Oct 30 2024


### Culvert 12 - DPA5 (100-Year)

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 7540.00 = 104.44 = 1.00 = 7541.04 = 48.0	<b>Calculations</b> Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 93.30 = 93.30 = (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 48.0	Qtotal (cfs)	= 93.30
No. Barrels	= 1	Qpipe (cfs)	= 93.30
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 8.07
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 9.47
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7543.46
		HGL Up (ft)	= 7543.97
Embankment		Hw Elev (ft)	= 7545.89
Top Elevation (ft)	= 7546.69	Hw/D (ft)	= 1.21

Top Width (ft) Crest Width (ft)

=	7546.69
=	50.00
=	100.00


inginginoa		
Qtotal (cfs)	=	93.30
Qpipe (cfs)	=	93.30
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	8.07
Veloc Up (ft/s)	=	9.47
HGL Dn (ft)	=	7543.46
HGL Up (ft)	=	7543.97
Hw Elev (ft)	=	7545.89
Hw/D (ft)	=	1.21
Flow Regime	=	Inlet Control

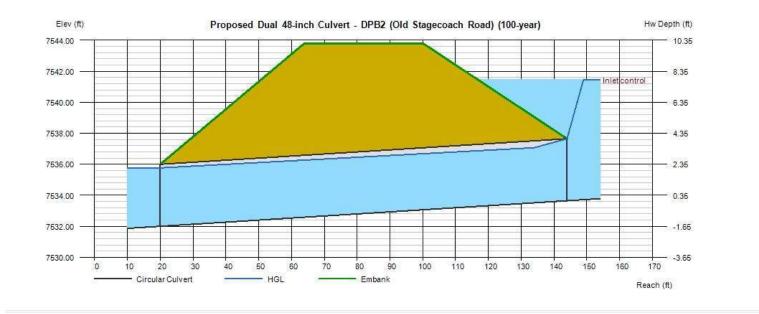


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

### Proposed Dual 48-inch Culvert - DPB2 (Old Stagecoach Road) (5-year)

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 7532.00 = 123.98 = 1.33 = 7533.65 = 48.0	<b>Calculations</b> Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 33.20 = 33.20 = (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 48.0	Qtotal (cfs)	= 33.20
No. Barrels	= 2	Qpipe (cfs)	= 33.20
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 1.92
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 5.27
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7534.60
		HGL Up (ft)	= 7534.84
Embankment		Hw Elev (ft)	= 7535.27
Top Elevation (ft)	= 7543.81	Hw/D (ft)	= 0.40
Top Width (ft)	= 36.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 50.00		




Crest Width (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

= 50.00

### Proposed Dual 48-inch Culvert - DPB2 (Old Stagecoach Road) (100-year)

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 7532.00 = 123.98 = 1.33 = 7533.65 = 48.0	<b>Calculations</b> Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 285.80 = 285.80 = (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 48.0	Qtotal (cfs)	= 285.80
No. Barrels	= 2	Qpipe (cfs)	= 285.80
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	<ul> <li>Circular Concrete</li> </ul>	Veloc Dn (ft/s)	= 11.64
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 12.16
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7535.77
		HGL Up (ft)	= 7537.19
Embankment		Hw Elev (ft)	= 7541.45
Top Elevation (ft)	= 7543.81	Hw/D (ft)	= 1.95
Top Width (ft)	= 36.00	Flow Regime	= Inlet Control



Crest Width (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

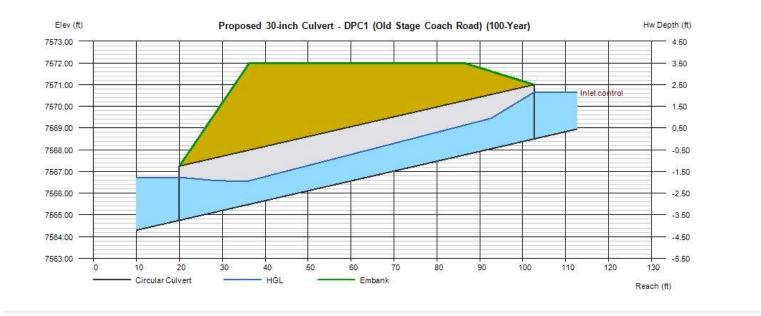
= 100.00

### Proposed 30-inch Culvert - DPC1 (Old Stage Coach Road) (5-Year)

Invort Flov Dn (ft)	= 7564.75	Coloulationa	
Invert Elev Dn (ft)		Calculations	o <b>T</b> o
Pipe Length (ft)	= 82.63	Qmin (cfs)	= 8.70
Slope (%)	= 4.54	Qmax (cfs)	= 8.70
Invert Elev Up (ft)	= 7568.50	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 30.0		
Shape	= Circular	Highlighted	
Span (in)	= 30.0	Qtotal (cfs)	= 8.70
No. Barrels	= 2	Qpipe (cfs)	= 8.70
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	<ul> <li>Circular Concrete</li> </ul>	Veloc Dn (ft/s)	= 1.32
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 3.98
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7566.34
		HGL Up (ft)	= 7569.19
Embankment		Hw Elev (ft)	= 7569.38
Top Elevation (ft)	= 7572.00	Hw/D (ft)	= 0.35
Top Width (ft)	= 50.00	Flow Regime	= Inlet Control
		-	

Elev (ft) Proposed 30-inch Culvert - DPC1 (Old Stage Coach Road) (5-Year) Hw Depth (ft) 7573.00 - 4.50 7572.00 3.50 7571.00 - 2.50 7570.00 -1.50 Inlet control 7569.00 - 0.50 7568.00 -0.50 7567.00 -1.50 7566.00 - -2.50 7565.00 -3.50 7564.00 -4.50 7563.00 -5.50 100 110 120 130 0 10 20 30 40 50 60 70 80 90 Circular Culvert HGL Embank Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.


### Proposed 30-inch Culvert - DPC1 (Old Stage Coach Road) (100-Year)

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 7564.75 = 82.63 = 4.54 = 7568.50 = 30.0	<b>Calculations</b> Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 37.20 = 37.20 = (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 30.0	Qtotal (cfs)	= 37.20
No. Barrels	= 2	Qpipe (cfs)	= 37.20
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	<ul> <li>Circular Concrete</li> </ul>	Veloc Dn (ft/s)	= 4.46
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 6.25
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7566.73
		HGL Up (ft)	= 7569.96
Embankment		Hw Elev (ft)	= 7570.65
Top Elevation (ft)	= 7572.00	Hw/D (ft)	= 0.86
Top Width (ft)	= 50.00	Flow Regime	= Inlet Control

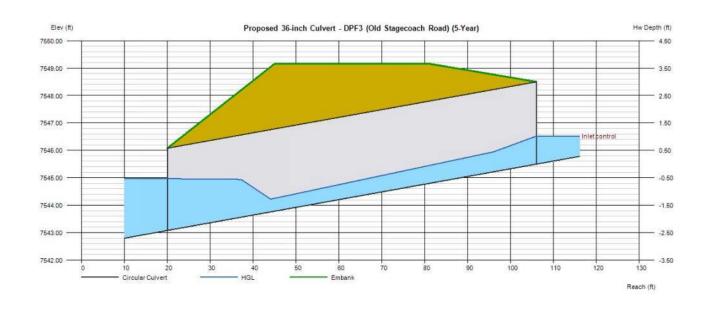
I op Width (ft) Crest Width (ft)

=	7572.00
=	50.00
=	100.00

		01.20
	Qovertop (cfs)	= 0.00
	Veloc Dn (ft/s)	= 4.46
all (C)	Veloc Up (ft/s)	= 6.25
<b>'</b> , 0.5	HGL Dn (ft)	= 7566.73
	HGL Up (ft)	= 7569.96
	Hw Elev (ft)	= 7570.65
	Hw/D (ft)	= 0.86
	Flow Regime	= Inlet Conti
	C C	



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.


### Proposed 36-inch Culvert - DPF3 (Old Stagecoach Road) (5-Year)

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft)	= 7543.08 = 86.00 = 2.81 = 7545.50	<b>Calculations</b> Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 12.30 = 12.30 = (dc+D)/2
Rise (in)	= 36.0		
Shape	= Circular	Highlighted	
Span (in)	= 36.0	Qtotal (cfs)	= 12.30
No. Barrels	= 2	Qpipe (cfs)	= 12.30
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 1.31
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 4.23
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7544.97
		HGL Up (ft)	= 7546.28
Embankment		Hw Elev (ft)	= 7546.52
Top Elevation (ft)	= 7549.16	Hw/D (ft)	= 0.34

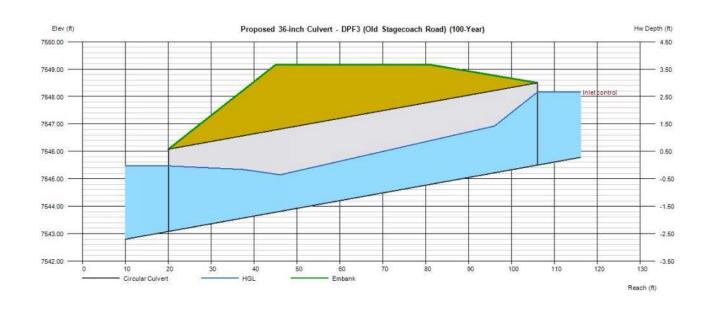
Top Width (ft) Crest Width (ft)

=	7549.16
=	36.00
=	40.00

Highlighted	
Qtotal (cfs)	= 12.30
Qpipe (cfs)	= 12.30
Qovertop (cfs)	= 0.00
Veloc Dn (ft/s)	= 1.31
Veloc Up (ft/s)	= 4.23
HGL Dn (ft)	= 7544.97
HGL Up (ft)	= 7546.28
Hw Elev (ft)	= 7546.52
Hw/D (ft)	= 0.34
Flow Regime	= Inlet Control



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.


### Proposed 36-inch Culvert - DPF3 (Old Stagecoach Road) (100-Year)

Invert Elev Dn (ft)	= 7543.08	Calculations	
Pipe Length (ft)	= 86.00	Qmin (cfs)	= 60.50
Slope (%)	= 2.81	Qmax (cfs)	= 60.50
Invert Elev Up (ft)	= 7545.50	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 36.0		
Shape	= Circular	Highlighted	
Span (in)	= 36.0	Qtotal (cfs)	= 60.50
No. Barrels	= 2	Qpipe (cfs)	= 60.50
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 5.01
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 6.92
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7545.47
		HGL Up (ft)	= 7547.28
Embankment		Hw Elev (ft)	= 7548.16
Top Elevation (ft)	= 7549 16	Hw/D (ft)	= 0.89

I op Elevation (ft) Top Width (ft) Crest Width (ft)

=	7549.16
=	36.00
=	40.00

Qpipe (cfs)	=	60.50
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	5.01
Veloc Up (ft/s)	=	6.92
HGL Dn (ft)	=	7545.47
HGL Up (ft)	=	7547.28
Hw Elev (ft)	=	7548.16
Hw/D (ft)	=	0.89
Flow Regime	=	Inlet Control



Crest Width (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

= 56.00

Friday, Oct 25 2024

### Pond A Outlet Pipe (5-Year)

Invert Elev Dn (ft)	= 7527.25	Calculations	
Pipe Length (ft)	= 69.69	Qmin (cfs)	= 31.30
Slope (%)	= 3.24	Qmax (cfs)	= 31.30
Invert Elev Up (ft)	= 7529.51	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 54.0		. ,
Shape	= Circular	Highlighted	
Span (in)	= 54.0	Qtotal (cfs)	= 31.30
No. Barrels	= 1	Qpipe (cfs)	= 31.30
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	<ul> <li>Circular Concrete</li> </ul>	Veloc Dn (ft/s)	= 2.73
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 6.17
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7530.30
		HGL Up (ft)	= 7531.11
Embankment		Hw Elev (ft)	= 7531.67
Top Elevation (ft)	= 7538.00	Hw/D (ft)	= 0.48
Top Width (ft)	= 15.00	Flow Regime	= Inlet Control

Elev (ft) Pond A Outlet Pipe (5-Year) Hw Depth (ft) 7539.00 9.49 7.49 7537.00 7535.00 5.49 7533.00 -3.49 niet control 7531.00 - 1.49 7529.00 -0.51 -2.51 7527.00 7525.00 -4.51 55 70 75 80 85 90 0 5 10 15 20 25 30 35 40 45 50 60 65 - Circular Culvert HGL Embank Reach (ft)

Crest Width (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

= 56.00

Friday, Oct 25 2024

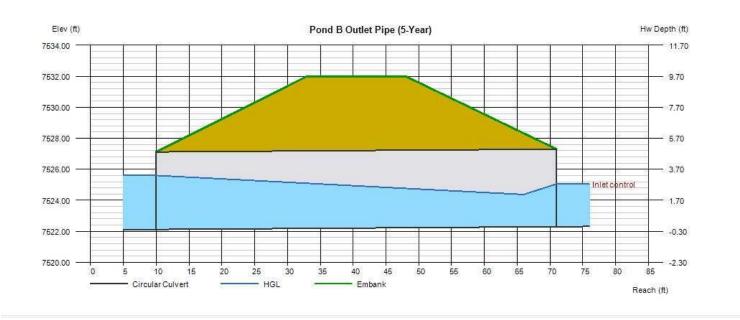
### Pond A Outlet Pipe (100-Year)

Invert Elev Dn (ft)	= 7527.25	Calculations	
Pipe Length (ft)	= 69.69	Qmin (cfs)	= 156.00
Slope (%)	= 3.24	Qmax (cfs)	= 156.00
Invert Elev Up (ft)	= 7529.51	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 54.0		
Shape	= Circular	Highlighted	
Span (in)	= 54.0	Qtotal (cfs)	= 156.00
No. Barrels	= 1	Qpipe (cfs)	= 156.00
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 10.30
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 11.28
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7531.33
		HGL Up (ft)	= 7533.16
Embankment		Hw Elev (ft)	= 7536.28
Top Elevation (ft)	= 7538.00	Hw/D (ft)	= 1.50
Top Width (ft)	= 15.00	Flow Regime	= Inlet Control

Elev (ft) Pond A Outlet Pipe (100-Year) Hw Depth (ft) 9.49 7539.00 7537.00 7.49 nlet control 7535.00 5.49 7533.00 -3.49 7531.00 - 1.49 7529.00 -0.51 -2.51 7527.00 7525.00 -4.51 45 70 75 80 85 90 0 5 10 15 20 25 30 35 40 50 55 60 65 - Circular Culvert HGL Embank Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Oct 25 2024


### Pond B Outlet Pipe (5-Year)

Invert Elev Dn (ft)	= 7522.12	Calculations	
Pipe Length (ft)	= 60.98	Qmin (cfs)	= 49.20
Slope (%)	= 0.29	Qmax (cfs)	= 49.20
Invert Elev Up (ft)	= 7522.30	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 60.0		. ,
Shape	= Circular	Highlighted	
Span (in)	= 60.0	Qtotal (cfs)	= 49.20
No. Barrels	= 1	Qpipe (cfs)	= 49.20
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 3.37
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 6.88
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7525.60
		HGL Up (ft)	= 7524.26
Embankment		Hw Elev (ft)	= 7525.05
Top Elevation (ft)	= 7532.00	Hw/D (ft)	= 0.55
	4 = 0.0		

Top Width (ft) Crest Width (ft)

=	7532.00
=	15.00
=	40.00

Qpipe (cts)	=	49.20
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	3.37
Veloc Up (ft/s)	=	6.88
HGL Dn (ft)	=	7525.60
HGL Up (ft)	=	7524.26
Hw Elev (ft)	=	7525.05
Hw/D (ft)	=	0.55
Flow Regime	=	Inlet Control



Crest Width (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

= 40.00

Friday, Oct 25 2024

### Pond B Outlet Pipe (100-Year)

Invert Elev Dn (ft)	= 7522.12	Calculations	
Pipe Length (ft)	= 60.98	Qmin (cfs)	= 213.60
Slope (%)	= 0.29	Qmax (cfs)	= 213.60
Invert Elev Up (ft)	= 7522.30	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 60.0		
Shape	= Circular	Highlighted	
Span (in)	= 60.0	Qtotal (cfs)	= 213.60
No. Barrels	= 1	Qpipe (cfs)	= 213.60
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 11.34
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 12.25
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7526.70
		HGL Up (ft)	= 7526.45
Embankment		Hw Elev (ft)	= 7530.35
Top Elevation (ft)	= 7532.00	Hw/D (ft)	= 1.61
Top Width (ft)	= 15.00	Flow Regime	= Inlet Control

Pond B Outlet Pipe (100-Year) Elev (ft) Hw Depth (ft) - 11.70 7534.00 7532.00 9.70 Inlet ce ontrol 7530.00 7.70 7528.00 -5.70 7526.00 - 3.70 7524.00 1.70 7522.00 -0.30 7520.00 -2.30 50 75 80 85 0 10 15 20 25 30 35 40 45 55 60 65 70 5 - Circular Culvert - HGL Embank Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Oct 25 2024

### Pond C Outlet Pipe (5-Year)

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 7528.00 = 57.68 = 0.50 = 7528.29 = 36.0	<b>Calculations</b> Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 10.20 = 10.20 = (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 36.0	Qtotal (cfs)	= 10.20
No. Barrels	= 1	Qpipe (cfs)	= 10.20
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 2.03
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 4.88
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7530.01
		HGL Up (ft)	= 7529.30
Embankment		Hw Elev (ft)	= 7529.68
Top Elevation (ft)	= 7537.00	Hw/D (ft)	= 0.46
Top Width (ft)	= 15.00	Flow Regime	= Inlet Control

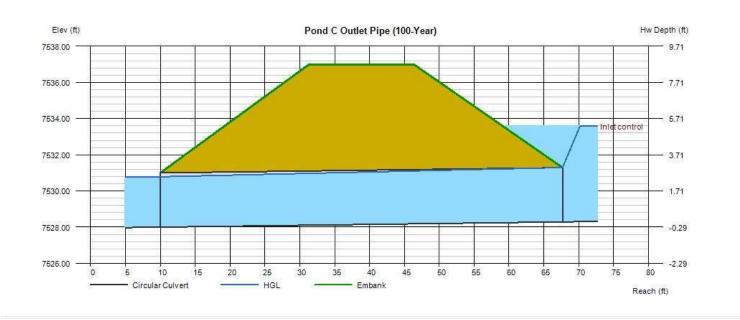
Top Width (ft) Crest Width (ft)

=	7537.00	
=	15.00	
=	20.00	

9.71		1		Ť.	Ĩ.	Ì	1	T.	Ĩ	Ĩ	1		1	1		538.00 -
- 7.71																536.00 -
- 5.71	8											-	34.			534.00 —
- 3.71			5													532.00 -
— 1.71	Inletcontrol										 		_	_		530.00 —
-0.29											- 19 					528.00 -
										30					-	526.00 -

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Oct 25 2024


### Pond C Outlet Pipe (100-Year)

Invert Elev Dn (ft)	= 7528.00	Calculations	
Pipe Length (ft)	= 57.68	Qmin (cfs)	= 64.20
Slope (%)	= 0.50	Qmax (cfs)	= 64.20
Invert Elev Up (ft)	= 7528.29	Tailwater Élev (ft)	= (dc+D)/2
Rise (in)	= 36.0		, , , , , , , , , , , , , , , , , , ,
Shape	= Circular	Highlighted	
Span (in)	= 36.0	Qtotal (cfs)	= 64.20
No. Barrels	= 1	Qpipe (cfs)	= 64.20
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 9.38
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 9.08
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7530.79
		HGL Up (ft)	= 7531.30
Embankment		Hw Elev (ft)	= 7533.58
Top Elevation (ft)	= 7537.00	Hw/D (ft)	= 1.76
	- 45.00		- Inlat Cantur

Top Width (ft) Crest Width (ft)

=	7537.00
=	15.00
=	20.00

Qtotal (cfs)	=	64.20
Qpipe (cfs)	=	64.20
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	9.38
Veloc Up (ft/s)	=	9.08
HGL Dn (ft)	=	7530.79
HGL Up (ft)	=	7531.30
Hw Elev (ft)	=	7533.58
Hw/D (ft)	=	1.76
Flow Regime	=	Inlet Control





Flying Horse North Filing No. 4 Final Drainage Report Project No.: 211030

El Paso County, Colorado

# **SWALE CALCULATIONS**

#### Worksheet for SECTION A1 - RUBBLE DRIVE

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	3.50 %	
Left Side Slope	3.000 H:V	
Right Side Slope	4.000 H:V	
Discharge	42.00 cfs	
Results		
Normal Depth	1.4 ft	
Flow Area	6.9 ft ²	
Wetted Perimeter	10.2 ft	
Hydraulic Radius	0.7 ft	
Top Width	9.81 ft	
Critical Depth	1.6 ft	
Critical Slope	2.05 %	
Velocity	6.10 ft/s	
Velocity Head	0.58 ft	
Specific Energy	1.98 ft	
Froude Number	1.285	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	1.4 ft	
Critical Depth	1.6 ft	
Channel Slope	3.50 %	
Critical Slope	2.05 %	

#### Worksheet for SECTION A2 - RUBBLE DRIVE

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	2.80 %	
Left Side Slope	3.000 H:V	
Right Side Slope	4.000 H:V	
Discharge	31.60 cfs	
Results		
Normal Depth	1.3 ft	
Flow Area	6.0 ft ²	
Wetted Perimeter	9.6 ft	
Hydraulic Radius	0.6 ft	
Top Width	9.20 ft	
Critical Depth	1.4 ft	
Critical Slope	2.13 %	
Velocity	5.23 ft/s	
Velocity Head	0.42 ft	
Specific Energy	1.74 ft	
Froude Number	1.137	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	1.3 ft	
Critical Depth	1.4 ft	
Channel Slope	2.80 %	
Critical Slope	2.13 %	

#### Worksheet for SECTION B - GIMME WAY

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	2.50 %	
Left Side Slope	3.000 H:V	
Right Side Slope	4.000 H:V	
Discharge	37.90 cfs	
Results		
Normal Depth	1.4 ft	
Flow Area	7.2 ft ²	
Wetted Perimeter	10.5 ft	
Hydraulic Radius	0.7 ft	
Top Width	10.06 ft	
Critical Depth	1.5 ft	
Critical Slope	2.08 %	
Velocity	5.24 ft/s	
Velocity Head	0.43 ft	
Specific Energy	1.86 ft	
Froude Number	1.091	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	1.4 ft	
Critical Depth	1.5 ft	
Channel Slope	2.50 %	
Critical Slope	2.08 %	

#### Worksheet for SECTION C - STABLEFORD TERRACE

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	1.90 %	
Left Side Slope	3.000 H:V	
Right Side Slope	4.000 H:V	
Discharge	22.10 cfs	
Results		
Normal Depth	1.2 ft	
Flow Area	5.3 ft ²	
Wetted Perimeter	9.0 ft	
Hydraulic Radius	0.6 ft	
Top Width	8.65 ft	
Critical Depth	1.2 ft	
Critical Slope	2.23 %	
Velocity	4.14 ft/s	
Velocity Head	0.27 ft	
Specific Energy	1.50 ft	
Froude Number	0.928	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	1.2 ft	
Critical Depth	1.2 ft	
Channel Slope	1.90 %	
Critical Slope	2.23 %	

#### Worksheet for SECTION D - BUNKER TRAIL

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Solve For	Normai Deptir	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	3.10 %	
Left Side Slope	3.000 H:V	
Right Side Slope	4.000 H:V	
Discharge	27.60 cfs	
Results		
Normal Depth	1.2 ft	
Flow Area	5.3 ft ²	
Wetted Perimeter	8.9 ft	
Hydraulic Radius	0.6 ft	
Top Width	8.58 ft	
Critical Depth	1.3 ft	
Critical Slope	2.17 %	
Velocity	5.25 ft/s	
Velocity Head	0.43 ft	
Specific Energy	1.65 ft	
Froude Number	1.183	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	1.2 ft	
Critical Depth	1.3 ft	
Channel Slope	3.10 %	
Critical Slope	2.17 %	

#### **Worksheet for SECTION E - FRINGE PLACE**

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
501761101	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	3.10 %	
Left Side Slope	4.000 H:V	
Right Side Slope	5.000 H:V	
Discharge	50.60 cfs	
Results		
Normal Depth	1.4 ft	
Flow Area	8.8 ft ²	
Wetted Perimeter	12.9 ft	
Hydraulic Radius	0.7 ft	
Top Width	12.55 ft	
Critical Depth	1.5 ft	
Critical Slope	2.02 %	
Velocity	5.78 ft/s	
Velocity Head	0.52 ft	
Specific Energy	1.91 ft	
Froude Number	1.220	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	1.4 ft	
Critical Depth	1.5 ft	
Channel Slope	3.10 %	
Critical Slope	2.02 %	



Flying Horse North Filing No. 4 Final Drainage Report Project No.: 211030

El Paso County, Colorado

# DRAINAGE CHANNEL SECTION CALCULATIONS

#### **Worksheet for SECTION A-A**

Friction Method	Manning Formula	
Solve For	Normal Depth	
nput Data		
Channel Slope	2.20 %	

#### **Section Definitions**

Station (ft)	Elevation (ft)
0+00	7,565.15
0+49	7,560.92
0+82	7,558.00
0+97	7,556.00
1+19	7,554.00
1+55	7,554.00
1+87	7,560.00
2+20	7,564.00
2+33	7,565.25

#### **Roughness Segment Definitions**

Start Station		Ending Station	Roughness Coefficient
0+00, 7,565.15)		(2+33, 7,565.25)	0.0
Options			
Current Roughness Weighted Method	Pavlovskii's Method		
Open Channel Weighting Method	Pavlovskii's Method		
Closed Channel Weighting Method	Pavlovskii's Method		
Results			
Normal Depth	1.1 ft		
Roughness Coefficient	0.035		
Elevation	7,555.06 ft		
Elevation Range	7,554.0 to 7,565.3 ft		
Flow Area	47.3 ft ²		
Wetted Perimeter	53.6 ft		
Hydraulic Radius	0.9 ft		
Top Width	53.49 ft		
Normal Depth	1.1 ft		
Critical Depth	1.1 ft		
Critical Slope	1.84 %		
Velocity	5.79 ft/s		
Velocity Head	0.52 ft		
Specific Energy	1.58 ft		
Froude Number	1.086		
Flow Type	Supercritical		

# **Worksheet for SECTION A-A**

GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	1.1 ft	
Critical Depth	1.1 ft	
Channel Slope	2.20 %	
Critical Slope	1.84 %	

#### **Worksheet for SECTION B-B**

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	1.90 %	
Discharge	71.70 cfs	

#### **Section Definitions**

<b>C</b> haltan	Elso a lísis
Station	Elevation
(ft)	(ft)
0+00	7,589.08
0+35	7,588.00
0+73	7,585.93
0+89	7,584.00
1+08	7,584.00
1+29	7,585.70
1+51	7,586.83
1+72	7,588.27
1+88	7,589.13

#### **Roughness Segment Definitions**

Start Station		Ending Station	Roughness Coefficient
0+00, 7,589.08)		(1+88, 7,589.13)	0.0
Options			
Current Roughness Weighted Method	Pavlovskii's Method		
Open Channel Weighting Method	Pavlovskii's Method		
Closed Channel Weighting Method	Pavlovskii's Method		
Results			
Normal Depth	0.7 ft		
Roughness Coefficient	0.035		
Elevation	7,584.70 ft		
Elevation Range	7,584.0 to 7,589.1 ft		
Flow Area	18.3 ft ²		
Wetted Perimeter	33.3 ft		
Hydraulic Radius	0.5 ft		
Top Width	33.21 ft		
Normal Depth	0.7 ft		
Critical Depth	0.7 ft		
Critical Slope	2.21 %		
Velocity	3.92 ft/s		
Velocity Head	0.24 ft		
Specific Energy	0.94 ft		
Froude Number	0.932		
Flow Type	Subcritical		

# Worksheet for SECTION B-B

GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	0.7 ft	
Critical Depth	0.7 ft	
Channel Slope	1.90 %	
Critical Slope	2.21 %	

# **Worksheet for SECTION C-C**

Project Description		
Friction Method	Manning	
Solve For	Formula Normal Depth	
50176 1 01	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	3.00 %	
Left Side Slope	4.00 H:V	
Right Side Slope	4.00 H:V	
Discharge	42.40 cfs	
Results		
Normal Depth	1.4 ft	
Flow Area	7.6 ft ²	
Wetted Perimeter	11.3 ft	
Hydraulic Radius	0.7 ft	
Top Width	10.99 ft	
Critical Depth	1.5 ft	
Critical Slope	2.06 %	
Velocity	5.61 ft/s	
Velocity Head	0.49 ft	
Specific Energy	1.86 ft	
Froude Number	1.193	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	1.4 ft	
Critical Depth	1.5 ft	
Channel Slope	3.00 %	
Critical Slope	2.06 %	

#### **Worksheet for SECTION D-D**

Manning Formula	
Normal Depth	
1.90 % 167.40 cfs	
	Formula Normal Depth 1.90 %

#### **Section Definitions**

Station	Elevation
(ft)	(ft)
0+00	7,540.10
0+25	7,538.00
0+72	7,532.16
0+94	7,530.00
1+08	7,529.51
1+77	7,529.95
1+91	7,532.00
2+27	7,536.14
2+37	7,538.00
2+67	7,540.29

#### **Roughness Segment Definitions**

Start Station	Ending Station	Roughness Coefficient	
(0+00, 7,540.10)	(2+67, 7,540.29)		0.035

Options		
Current Roughness Weighted	Pavlovskii's	
Method	Method	
Open Channel Weighting	Pavlovskii's	
Method	Method	
Closed Channel Weighting Method	Pavlovskii's Method	
Metriod	Method	
Results		
Normal Depth	0.8 ft	
Roughness Coefficient	0.035	
Elevation	7,530.26 ft	
Elevation Range	7,529.5 to	
Elevation Range	7,540.3 ft	
Flow Area	44.9 ft ²	
Wetted Perimeter	88.3 ft	
Hydraulic Radius	0.5 ft	
Top Width	88.21 ft	
Normal Depth	0.8 ft	
Critical Depth	0.7 ft	
Critical Slope	2.28 %	
Velocity	3.73 ft/s	
Velocity Head	0.22 ft	
Specific Energy	0.97 ft	
Froude Number	0.922	
Flow Type	Subcritical	

# **Worksheet for SECTION D-D**

GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	0.8 ft	
Critical Depth	0.7 ft	
Channel Slope	1.90 %	
Critical Slope	2.28 %	

## **Worksheet for SECTION E-E**

Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	9.00 %	
Left Side Slope	5.00 H:V	
Right Side Slope	4.00 H:V	
Discharge	5.00 cfs	
Results		
Normal Depth	0.5 ft	
Flow Area	1.0 ft ²	
Wetted Perimeter	4.4 ft	
Hydraulic Radius	0.2 ft	
Top Width	4.31 ft	
Critical Depth	0.6 ft	
Critical Slope	2.76 %	
Velocity	4.84 ft/s	
Velocity Head	0.36 ft	
Specific Energy	0.84 ft	
Froude Number	1.742	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	0.5 ft	
Critical Depth	0.6 ft	
Channel Slope	9.00 %	
Critical Slope	2.76 %	

## Worksheet for SECTION F-F

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	2.20 %	
Left Side Slope	4.00 H:V	
Right Side Slope	3.00 H:V	
Discharge	297.40 cfs	
Results		
Normal Depth	3.2 ft	
Flow Area	35.6 ft ²	
Wetted Perimeter	23.2 ft	
Hydraulic Radius	1.5 ft	
Top Width	22.31 ft	
Critical Depth	3.4 ft	
Critical Slope	1.58 %	
Velocity	8.37 ft/s	
Velocity Head	1.09 ft	
Specific Energy	4.27 ft	
Froude Number	1.168	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	3.2 ft	
Critical Depth	3.4 ft	
Channel Slope	2.20 %	
Critical Slope	1.58 %	

#### **Worksheet for SECTION G-G**

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	8.20 %	
Left Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Discharge	21.00 cfs	
Results		
Normal Depth	0.9 ft	
Flow Area	3.1 ft ²	
Wetted Perimeter	7.2 ft	
Hydraulic Radius	0.4 ft	
Top Width	7.00 ft	
Critical Depth	1.1 ft	
Critical Slope	2.26 %	
Velocity	6.86 ft/s	
Velocity Head	0.73 ft	
Specific Energy	1.61 ft	
Froude Number	1.830	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	0.9 ft	
Critical Depth	1.1 ft	
Channel Slope	8.20 %	
Critical Slope	2.26 %	

#### **Worksheet for SECTION H-H**

Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	2.00 %	
Left Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Discharge	283.20 cfs	
Results		
Normal Depth	3.0 ft	
Flow Area	36.6 ft ²	
Wetted Perimeter	24.9 ft	
Hydraulic Radius	1.5 ft	
Top Width	24.18 ft	
Critical Depth	3.2 ft	
Critical Slope	1.60 %	
Velocity	7.75 ft/s	
Velocity Head	0.93 ft	
Specific Energy	3.96 ft	
Froude Number	1.111	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	3.0 ft	
Critical Depth	3.2 ft	
Channel Slope	2.00 %	
Critical Slope	1.60 %	

# Worksheet for SECTION I-I

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	6.50 %	
Left Side Slope	4.000 H:V	
Right Side Slope	5.000 H:V	
Discharge	93.30 cfs	
Results		
Normal Depth	1.5 ft	
Flow Area	10.5 ft ²	
Wetted Perimeter	14.1 ft	
Hydraulic Radius	0.7 ft	
Top Width	13.74 ft	
Critical Depth	1.9 ft	
Critical Slope	1.87 %	
Velocity	8.90 ft/s	
Velocity Head	1.23 ft	
Specific Energy	2.76 ft	
Froude Number	1.795	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	1.5 ft	
Critical Depth	1.9 ft	
Channel Slope	6.50 %	
Critical Slope	1.87 %	

## **Worksheet for SECTION J-J**

Project Description		
Friction Method	Manning	
Solve For	Formula Normal Depth	
	•	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	5.00 %	
Left Side Slope	12.00 H:V	
Right Side Slope	21.00 H:V	
Bottom Width	13.56 ft	
Discharge	35.80 cfs	
Results		
Normal Depth	0.4 ft	
Flow Area	8.3 ft ²	
Wetted Perimeter	27.1 ft	
Hydraulic Radius	0.3 ft	
Top Width	27.05 ft	
Critical Depth	0.5 ft	
Critical Slope	2.52 %	
Velocity	4.31 ft/s	
Velocity Head	0.29 ft	
Specific Energy	0.70 ft	
Froude Number	1.373	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
	č	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	0.4 ft	
Critical Depth	0.5 ft	
Channel Slope	5.00 %	
Critical Slope	2.52 %	

#### Worksheet for SECTION K-K

Project Description				
Friction Method	Manning			
	Formula			
Solve For	Normal Depth			
Input Data				
Channel Slope	4.70 %			
Discharge	25.90 cfs			
		Section Definitions		
	Station (ft)		Elevation (ft)	
		0+00		7,555.8
		0+24		7,555.9
		0+50		7,555.3
		0+80		7,553.8
		1+00		7,553.2
		1+29		7,553.6
		1+29		7,555.0
		2+00		7,559.0
	Dou		-	
Chart Chatian	Rou	ghness Segment Definitio		Coefficient
Start Station		Ending Station	-	Coefficient
(0+00, 7,555.80)		(2+00, 7,55	9.08)	0.03
Options				
Current Roughness Weighted	Pavlovskii's Method			
Method	Method			
Open Channel Weighting	Pavlovskii's			
Open Channel Weighting Method	Pavlovskii's Method			
Open Channel Weighting	Pavlovskii's			
Open Channel Weighting Method Closed Channel Weighting	Pavlovskii's Method Pavlovskii's			
Open Channel Weighting Method Closed Channel Weighting Method Results	Pavlovskii's Method Pavlovskii's Method			
Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth	Pavlovskii's Method Pavlovskii's Method 0.4 ft			
Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient	Pavlovskii's Method Pavlovskii's Method 0.4 ft 0.035			
Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation	Pavlovskii's Method Pavlovskii's Method 0.4 ft 0.035 7,553.66 ft 7,553.3 to			
Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range	Pavlovskii's Method Pavlovskii's Method 0.4 ft 0.035 7,553.66 ft 7,553.3 to 7,559.1 ft			
Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area	Pavlovskii's Method Pavlovskii's Method 0.4 ft 0.035 7,553.66 ft 7,553.3 to 7,559.1 ft 8.4 ft ²			
Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter	Pavlovskii's Method Pavlovskii's Method 0.4 ft 0.035 7,553.66 ft 7,553.3 to 7,559.1 ft 8.4 ft ² 43.3 ft			
Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius	Pavlovskii's Method Pavlovskii's Method 0.4 ft 0.035 7,553.66 ft 7,553.3 to 7,559.1 ft 8.4 ft ² 43.3 ft 0.2 ft			
Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width	Pavlovskii's Method Pavlovskii's Method 0.4 ft 0.035 7,553.66 ft 7,553.3 to 7,559.1 ft 8.4 ft ² 43.3 ft 0.2 ft 43.34 ft			
Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth	Pavlovskii's Method Pavlovskii's Method 0.4 ft 0.035 7,553.66 ft 7,553.3 to 7,559.1 ft 8.4 ft ² 43.3 ft 0.2 ft 43.34 ft 0.4 ft			
Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth	Pavlovskii's Method Pavlovskii's Method 0.4 ft 0.035 7,553.66 ft 7,553.3 to 7,559.1 ft 8.4 ft ² 43.3 ft 0.2 ft 43.34 ft 0.4 ft 0.4 ft 0.4 ft			
Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope	Pavlovskii's Method Pavlovskii's Method 0.4 ft 0.035 7,553.66 ft 7,553.3 to 7,559.1 ft 8.4 ft ² 43.3 ft 0.2 ft 43.34 ft 0.4 ft 0.4 ft 0.4 ft 0.4 ft 0.4 ft 0.4 ft			
Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	Pavlovskii's Method Pavlovskii's Method 0.4 ft 0.035 7,553.66 ft 7,553.3 to 7,559.1 ft 8.4 ft ² 43.3 ft 0.2 ft 43.34 ft 0.4 ft 0.4 ft 0.4 ft 2.97 % 3.08 ft/s			
Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	Pavlovskii's Method Pavlovskii's Method 0.4 ft 0.035 7,553.66 ft 7,553.3 to 7,559.1 ft 8.4 ft ² 43.3 ft 0.2 ft 43.34 ft 0.4 ft 0.4 ft 0.4 ft 2.97 % 3.08 ft/s 0.15 ft			
Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head Specific Energy	Pavlovskii's Method Pavlovskii's Method 0.4 ft 0.035 7,553.66 ft 7,553.3 to 7,559.1 ft 8.4 ft ² 43.3 ft 0.2 ft 43.34 ft 0.4 ft 0.4 ft 0.4 ft 2.97 % 3.08 ft/s 0.15 ft 0.54 ft			
Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	Pavlovskii's Method Pavlovskii's Method 0.4 ft 0.035 7,553.66 ft 7,553.3 to 7,559.1 ft 8.4 ft ² 43.3 ft 0.2 ft 43.34 ft 0.4 ft 0.4 ft 0.4 ft 2.97 % 3.08 ft/s 0.15 ft			

Downstream Depth

0.0 ft

#### Worksheet for SECTION K-K

GVF Input Data		
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	0.4 ft	
Critical Depth	0.4 ft	
Channel Slope	4.70 %	
Critical Slope	2.97 %	

## **Worksheet for SECTION L-L**

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	2.80 %	
Left Side Slope	10.00 H:V	
Right Side Slope	9.00 H:V	
Bottom Width	33.00 ft	
Discharge	5.70 cfs	
Results		
Normal Depth	0.1 ft	
Flow Area	3.6 ft ²	
Wetted Perimeter	35.0 ft	
Hydraulic Radius	0.1 ft	
Top Width	35.03 ft	
Critical Depth	0.1 ft	
Critical Slope	3.93 %	
Velocity	1.57 ft/s	
Velocity Head	0.04 ft	
Specific Energy	0.15 ft	
Froude Number	0.858	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	0.1 ft	
Critical Depth	0.1 ft	
Channel Slope	2.80 %	
Critical Slope	3.93 %	
and a cope	0.00 /3	

#### **Worksheet for SECTION M-M**

Project Description		
Friction Method	Manning	
Solve For	Formula Normal Depth	
Input Data	·	
-	0.035	
Roughness Coefficient Channel Slope	3.20 %	
Left Side Slope	5.20 % 7.00 H:V	
Right Side Slope	5.00 H:V	
Bottom Width	3.50 ft	
Discharge	17.60 cfs	
	17.00 CIS	 
Results		
Normal Depth	0.6 ft	
Flow Area	4.3 ft ²	
Wetted Perimeter	10.8 ft	
Hydraulic Radius	0.4 ft	
Top Width	10.74 ft	
Critical Depth	0.6 ft	
Critical Slope	2.41 %	
Velocity	4.10 ft/s	
Velocity Head	0.26 ft	
Specific Energy	0.86 ft	
Froude Number	1.143	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 ft	 
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	 
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	0.6 ft	
Critical Depth	0.6 ft	
Channel Slope	3.20 %	
Critical Slope	2.41 %	
	2.11 /0	



Flying Horse North Filing No. 3 Final Drainage Report Project No.: 211030.20

El Paso County, Colorado

# **CHANNEL LINING CALCULATIONS**

FROUDE NUMBER CALCULATIONS			CALCULATED BY:	тмм	DATE:	9/4/2024
PROJECT: 211030 FILING NO. 4		CHECKED BY:	RHL			
		Froude Number C	Calculations: 100-YR			
Section	Velocity	Gravitational Constant	Hydraulic depth	Xsectional Area	top Width	Froude #
-	ft/s	ft/s^2	ft	ft^2	ft	N/A
A-A	5.79	32.17	0.88	47.30	53.49	1.09
В-В	3.92	32.17	0.55	18.3	33.21	0.93
C-C	5.61	32.17	0.69	7.59	10.99	1.19
D-D	3.91	32.17	0.55	48.5	88.91	0.93
E-E	4.84	32.17	0.23	1.0	4.31	1.77
F-F	7.56	32.17	1.34	39.4	29.43	1.15
G-G	6.86	32.17	0.44	3.1	7.00	1.82
H-H	7.75	32.17	1.51	36.6	24.18	1.11
1-1	8.90	32.17	0.76	10.5	13.74	1.79
J-J	4.31	32.17	0.31	8.3	27.05	1.37
К-К	3.08	32.17	0.19	8.4	43.34	1.23
L-L	1.57	32.17	0.10	3.6	35.03	0.86
M-M	4.10	32.17	0.40	4.3	10.74	1.14
SECTION A1	6.10	32.17	0.70	6.9	9.81	1.28
SECTION A2	5.23	32.17	0.65	6.0	9.2	1.14
SECTION B	5.24	32.17	0.72	7.2	10.06	1.09
SECTION C	4.14	32.17	0.61	5.3	8.65	0.93
SECTION D	5.25	32.17	0.62	5.3	8.58	1.18
SECTION E	5.78	32.17	0.70	8.8	12.55	1.22

S	SHEAR STRESS & CHANNEL LIN	INGS	CALC	ULATED BY:	тмм	DATE:	9/4/2024				
	PROJECT: 211030 FILING NO	. 4	СН	ECKED BY:	RHL						
	Shear Stress Ca	Iculations: 100-YR					(	Channel Lini	ng Determination		
Section	unit weight of water	Depth of flow	Slope	Shear Stress		Ca	alculated Values		P300 Max	Values	
-	lb/ft^3	ft	ft/ft	lb/ft^2		Section	Shear Stress	Velocity	Shear Stress	Velocity	Lining Required
A-A	62.43	1.10	0.022	1.51		A-A	1.51	5.79	3	9	) NONE
B-B	62.43	0.70	0.019	0.83		B-B	0.83	3.92	3	9	9 P300
C-C	62.43	1.40	0.030	2.62		C-C	2.62	5.61	3	9	9 P300
D-D	62.43	0.80	0.019	0.95		D-D	0.95	3.91	3	g	) NONE
E-E	62.43	0.50	0.090	2.81		E-E	2.81	4.84	3	9	9 P300
F-F	62.43	2.70	0.022	3.71		F-F	3.71	7.56	3	9	9 TMAX
G-G	62.43	0.90	0.082	4.61		G-G	4.61	6.86	3	9	9 TMAX
H-H	62.43	3.00	0.020	3.75		H-H	3.75	7.75	3	9	) TMAX
I-I	62.43	1.50	0.065	6.09		I-I	6.09	8.90	3	9	9 TMAX
J-J	62.43	0.40	0.050	1.25		J-J	1.25	4.31	3	9	) NONE
K-K	62.43	0.40	0.047	1.17		К-К	1.17	3.08	3	9	) NONE
L-L	62.43	0.10	0.028	0.17		L-L	0.17	1.57	3	9	) NONE
M-M	62.43	0.60	0.032	1.20		M-M	1.20	4.10	3	9	9 NONE
SECTION A1	62.43	1.40	0.035	3.06		SECTION A1	3.06	6.10	3	9	9 TMAX
SECTION A2	62.43	1.30	0.028	2.27		SECTION A2	2.27	5.23	3	9	9 P300
SECTION B	62.43	1.40	0.025	2.19		SECTION B	2.19	5.24	3	9	9 P300
SECTION C	62.43	1.20	0.019	1.42		SECTION C	1.42	4.14	3	9	9 P300
SECTION D	62.43	1.20	0.031	2.32		SECTION D	2.32	5.25	3	9	9 P300
SECTION E	62.43	1.40	0.031	2.71		SECTION E	2.71	5.78	3	9	9 P300



Flying Horse North Filing No. 4 Final Drainage Report Project No.: 211030

El Paso County, Colorado

# **RIPRAP SIZING ANALYSIS**

	FLYING HORSE NO	RTH FILING NO. 4	<u>Calc'd by:</u>	ТММ
コートインゴ	2110	Checked by:	RHL	
HRGreen	FES 1D F	Date:	9/3/2024	
	1		L.	
	Flow (Q) 3 0			
	Tailwater depth (Y _t )	0.60	ft	
	Conduit Diameter (D _c )	18	in	
	Expansion Factor (per Fig. 9-35	) 6.5		
	Soil Type	Non-Cohesive Soils		
	Calculated P	arameters		
	Froude Parameter (Q/D ^{2.5} )	1.09		
	D ₅₀ =	1.35	in	
	UDFCD Riprap Type =	Type VL		
	Design D ₅₀ =		in	
	Minimum Mantle Thickness =	12		
	Minimum Length of Apron =	4.5	ft	
	brap was calculated using Equation $d_{ss} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$			
		-		
$L_p = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_t}{Y_t}\right)$	- W Equation 9-11	$A_t = \frac{Q}{V}$		Equation 9-12
Where:	W	here:		
$L_p$ = length of protecti	on (ft)	Q = design discharge (cfs)		
W = width of the cond	luit (ft, use diameter for circular conduits)	V = the allowable non-eroding velocity	ity in the downstream	channel (ft/sec)
$Y_t = $ tailwater depth (fi		$A_t$ = required area of flow at allowab	le velocity (ft ² )	
$\theta$ = the expansion ang	le of the culvert flow			
Note:				
¹ Calculations follow	criteria in the USDCM Vol.2 Cha	apter 9		
² Calculations assum		•		
	ssumes y _t /D _t =0.4 in cases where	v. is unknown or a hydraulic	iump is suspect	ed
downstream of the o			Jump is suspeed	
	l.2 in no case should L _p be less th	han 3D. nor does L. need to b	be greater than	10D
	e parameter is less than 6.0. wh			
	uired by $1/4 D_c$ for each whole r		-	

	FLYING HORSE NORTH FILING NO. 4			ТММ		
コートインゴ	21103	Checked by:	RHL			
HRGreen	FES 2D R	Date:	9/12/2024			
	1		L			
	Input Parameters					
	Flow (Q) 274					
	Tailwater depth (Y _t )	2.00	ft			
	Conduit Diameter (D _c )	60	in			
	Expansion Factor (per Fig. 9-35)	2.5				
	Soil Type	Non-Cohesive Soils				
	Calculated Par	rameters	1			
	Froude Parameter (Q/D ^{2.5} )	4.90				
	D ₅₀ =	20.31	in			
	UDFCD Riprap Type =	Type VH				
	Design D ₅₀ =	24	in			
	Minimum Mantle Thickness =	48	in			
	Minimum Length of Apron =	56.0	ft			
Calculated minimum le	$d_{so} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$ Ength of apron was calculated using E	quations 9-11 and 9-12 in the	USDCM Vol. 2			
$L_p = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_t}{Y_t}\right)$	- W Equation 9-11	$A_t = \frac{Q}{V}$		Equation 9-12		
Where:	Whe	re:				
$L_p = \text{length of protection}$		Q = design discharge (cfs)				
W = width of the cond	uit (ft, use diameter for circular conduits)	V = the allowable non-eroding veloci	ity in the downstream	channel (ft/sec)		
$Y_t$ = tailwater depth (ft	)	$A_t$ = required area of flow at allowable	le velocity (ft ² )			
$\theta$ = the expansion angle	le of the culvert flow					
Note:						
¹ Calculations follow	criteria in the USDCM Vol.2 Chap	iter 9				
² Calculations assum	e a circular culvert					
³ This spreadsheet as	sumes y,/D,=0.4 in cases where y	r, is unknown or a hydraulic	jump is suspect	ed		
³ This spreadsheet assumes y _t /D _t =0.4 in cases where y _t is unknown or a hydraulic jump is suspected downstream of the outlet.						
⁴ Per the USDCM Vol.2 in no case should L _p be less than 3D, nor does L _p need to be greater than 10D						
whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increased and the second secon						
the maximum L _p req	uired by 1/4 $D_c$ for each whole nu	mber by which the Froude	parameter is gro	eater than 6		

	FLYING HORSE NORTH FILING NO. 4			ТММ
ヨイゴ	2110	Checked by:	RHL	
HRGreen	FES 3D R	Date:	9/12/2024	
	Input Parameters			
	Flow (Q) 5 c			
	Tailwater depth (Y _t )	0.60	ft	
	Conduit Diameter (D _c )	18	in	
	Expansion Factor (per Fig. 9-35)	) 6.25		
	Soil Type	Non-Cohesive Soils		
			1	
	Calculated Pa Froude Parameter (Q/D ^{2.5} )			
	$D_{50} =$	1.81	in	
	UDFCD Riprap Type =	2.26 Type VL		
	Design $D_{50}$ =		in	
	Minimum Mantle Thickness =	12		
	Minimum Length of Apron =	4.5		
Coloulated D. for rin	ron was calculated using Fauati	an 0, 16 in the USDCM Val 2		
	rap was calculated using Equation			
	$d_{\rm ss} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$			
Calculated minimum le	ngth of apron was calculated using	Equations 9-11 and 9-12 in the	USDCM Vol. 2	
$L_p = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_t}{Y_t} - \frac{1}{2}\right) \left(\frac{A_t}{Y_t} - \frac{A_t}{Y_t} - \frac{1}{2}\right) \left(\frac{A_t}{Y_t} - \frac{A_t}{Y_t} - $	W Equation 9-11	$A_t = \frac{Q}{V}$		Equation 9-12
Where:	WI	here:		
$L_p$ = length of protection	on (ft)	Q = design discharge (cfs)		
W = width of the condu	uit (ft, use diameter for circular conduits)	V = the allowable non-eroding veloci	ty in the downstream	channel (ft/sec)
$Y_t = $ tailwater depth (ft		$A_t$ = required area of flow at allowable	le velocity (ft ² )	
$\theta$ = the expansion angl	e of the culvert flow			
Note:				
¹ Calculations follow	criteria in the USDCM Vol.2 Cha	pter 9		
² Calculations assume	e a circular culvert			
³ This spreadsheet as	sumes y _t /D _t =0.4 in cases where	y, is unknown or a hydraulic	jump is suspect	ted
downstream of the o		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , ,	
⁴ Per the USDCM Vol	.2 in no case should L _p be less th	nan 3D, nor does L _n need to b	e greater than	10D
	e parameter is less than 6.0. wh			
	uired by 1/4 D _c for each whole n	•	-	-

	FLYING HORSE NORTH FILING NO. 4			ТММ	
オイゴ	2110	Checked by:	RHL		
HRGreen	FES 4D I	<u>Date:</u>	9/12/2024		
	Input Para	ameters			
	Flow (Q) 22.1 c				
	Tailwater depth (Y _t )	0.80	ft		
	Conduit Diameter (D _c )	24	in		
	Expansion Factor (per Fig. 9-35	5) 3.75			
	Soil Type	Non-Cohesive Soils			
	Calculated P	arameters			
	Froude Parameter (Q/D ^{2.5} )	3.91			
	D ₅₀ =	6.48	in		
	UDFCD Riprap Type =	Type L			
	Design D ₅₀ =		in		
	Minimum Mantle Thickness =	18	in		
	Minimum Length of Apron =	13.2	ft		
Calculated minimum le	$d_{ss} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$ ength of apron was calculated using	g Equations 9-11 and 9-12 in the	USDCM Vol. 2		
$L_p = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_t}{Y_t}\right)$		$A_t = \frac{Q}{V}$		Equation 9-12	
Where:	W	here:			
$L_p$ = length of protect	ion (ft)	Q = design discharge (cfs)			
W = width of the con	duit (ft, use diameter for circular conduits)	V = the allowable non-eroding veloci	ty in the downstream	channel (ft/sec)	
$Y_t = $ tailwater depth (t	t)	$A_t$ = required area of flow at allowable	le velocity (ft2)		
$\theta$ = the expansion ang	le of the culvert flow				
Note:					
4	criteria in the USDCM Vol.2 Cha	anter 9			
Calculations tollow					
² Calculations assum		w is unknown or a hydraulic	iump is suspect	- od	
² Calculations assum ³ This spreadsheet a	ssumes y _t /D _t =0.4 in cases where	e y _t is unknown or a hydraulic	jump is suspect	ted	
² Calculations assum ³ This spreadsheet a downstream of the	ssumes y _t /D _t =0.4 in cases where outlet.				
² Calculations assum ³ This spreadsheet a downstream of the ⁴ Per the USDCM Vo	ssumes y _t /D _t =0.4 in cases where outlet. I.2 in no case should L _p be less t	han 3D, nor does L _p need to b	be greater than	10D	
² Calculations assum ³ This spreadsheet a downstream of the ⁴ Per the USDCM Vo whenever the Frouc	ssumes y _t /D _t =0.4 in cases where outlet.	han 3D, nor does L _p need to b benever the Froude paramete	be greater than r is greater than	10D n 6, increase	

	FLYING HORSE NORTH FILING NO. 4			тмм			
ヨイゴ	2110	Checked by:	RHL				
HRGreen	FES 5D F	Date:	9/12/2024				
			-				
	Input Parameters						
	Flow (Q) 13.9						
	Tailwater depth (Y _t )	0.60	ft				
	Conduit Diameter (D _c )	18	in				
	Expansion Factor (per Fig. 9-35	) 2.5					
	Soil Type	Non-Cohesive Soils					
	Calculated P	arameters	1				
	Froude Parameter (Q/D ^{2.5} )	5.04					
	$D_{50} =$	6.27	in				
	UDFCD Riprap Type =	Type L					
	Design $D_{50}$ =	9	in				
	Minimum Mantle Thickness =	18					
	Minimum Length of Apron =	7.8					
Calculated minimum le	$d_{ss} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$ Ength of apron was calculated using	Equations 9-11 and 9-12 in the	USDCM Vol. 2				
$L_p = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_t}{Y_t}\right)$	- W Equation 9-11	$A_t = \frac{Q}{V}$		Equation 9-12			
Where:	W	here:					
$L_p = \text{length of protection}$	on (ft)	Q = design discharge (cfs)					
W = width of the cond	luit (ft, use diameter for circular conduits)	V = the allowable non-eroding velocities	ity in the downstream	channel (ft/sec)			
$Y_t$ = tailwater depth (fi	0	$A_t$ = required area of flow at allowab	le velocity (ft ² )				
$\theta$ = the expansion ang	le of the culvert flow						
Note:							
¹ Calculations follow	criteria in the USDCM Vol.2 Cha	ipter 9					
² Calculations assum	e a circular culvert						
³ This spreadsheet as	ssumes $y_t/D_t=0.4$ in cases where	v ₊ is unknown or a hydraulic	jump is suspect	ed			
downstream of the o			<b>,</b>				
⁴ Per the USDCM Vol.2 in no case should $L_p$ be less than 3D, nor does $L_p$ need to be greater than 10D							
whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increased the froude parameter is greater than 6, increased the froude parameter is greater than 6.0.							
the maximum $L_p$ required by 1/4 $D_c$ for each whole number by which the Froude parameter is greater than 0, increases the maximum $L_p$ required by 1/4 $D_c$ for each whole number by which the Froude parameter is greater than 0.							
	$p_p$ equiled by $p_1$ equiled by $p_1$ equiled by the end of the reduce parameter is greater than $\sigma$						
L							

	FLYING HORSE NOF	<u>Calc'd by:</u>	ТММ		
ヨオイズ	2110	Checked by:	RHL		
HRGreen	FES 6D R	Date:	9/12/2024		
	· · · · ·				
	Input Parameters				
	Flow (Q) 7 c				
	Tailwater depth (Y _t )	ft			
	Conduit Diameter (D _c )	18	in		
	Expansion Factor (per Fig. 9-35)	5			
	Soil Type	Non-Cohesive Soils			
	Calculated Pa	rameters			
	Froude Parameter (Q/D ^{2.5} )	2.54			
	D ₅₀ =	3.16	in		
	UDFCD Riprap Type =	Type VL			
	Design D ₅₀ =		in		
	Minimum Mantle Thickness =	12	in		
	Minimum Length of Apron =	4.5	ft		
Calculated minimum le	$d_{ss} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$ Ength of apron was calculated using	Faultions 9-11 and 9-12 in the			
$L_p = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_t}{Y_t}\right)$		$A_t = \frac{Q}{V}$		Equation 9-12	
	<i>,</i>				
Where:	Wh				
$L_p =$ length of protecti W = width of the cond	uit (ft, use diameter for circular conduits)	Q = design discharge (cfs)			
$Y_r$ = tailwater depth (fi		V = the allowable non-eroding veloci		channel (ft/sec)	
$\theta$ = the expansion ang		$A_t$ = required area of flow at allowab	le velocity (ft ² )		
Note:					
1	criteria in the USDCM Vol.2 Cha	nter Q			
² Calculations assum					
2		u is unknown or o budroulie	iump is suspect	o d	
	ssumes y _t /D _t =0.4 in cases where [•]	y _t is unknown of a hydraulic	jump is suspect	eu	
downstream of the outlet. ⁴ Per the USDCM Vol.2 in no case should L _p be less than 3D, nor does L _p need to be greater than 10D					
	whenever the Froude parameter is less than 6.0. whenever the Froude paramete the maximum $L_p$ required by 1/4 $D_c$ for each whole number by which the Froude				

	FLYING HORSE NO	RTH FILING NO. 4	Calc'd by:	тмм	
	2110	Checked by:	RHL		
HRGreen	FES 7D F	Date:	9/12/2024		
	Input Parameters				
	Flow (Q) 8 c				
	Tailwater depth (Y _t )	0.60	ft		
	Conduit Diameter (D _c )	18	in		
	Expansion Factor (per Fig. 9-35	i) 4.5			
	Soil Type	Non-Cohesive Soils			
	Calculated P				
	Froude Parameter (Q/D ^{2.5} )	2.90			
	$D_{50} =$	3.61	in		
	UDFCD Riprap Type =	Type VL			
	Design $D_{50}$ =		in		
	Minimum Mantle Thickness =	12			
	Minimum Length of Apron =	5.25			
	$d_{so} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$				
	ngth of apron was calculated using		USDCM Vol. 2		
$L_p = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_t}{Y_t}\right)$	W Equation 9-11	$A_t = \frac{Q}{V}$		Equation 9-12	
Where:	W	here:			
$L_p$ = length of protection	on (ft)	Q = design discharge (cfs)			
W = width of the condu	uit (ft, use diameter for circular conduits)	V = the allowable non-eroding veloci	ty in the downstream	channel (ft/sec)	
$Y_r = $ tailwater depth (ft)		$A_t$ = required area of flow at allowable	le velocity (ft ² )		
$\theta$ = the expansion angle	e of the culvert flow				
Note:					
¹ Calculations follow	criteria in the USDCM Vol.2 Cha	apter 9			
² Calculations assume	e a circular culvert				
³ This spreadsheet as	sumes y _t /D _t =0.4 in cases where	y, is unknown or a hydraulic	jump is suspect	ed	
downstream of the o					
⁴ Per the USDCM Vol	.2 in no case should $L_p$ be less the the set of the	han 3D, nor does L _o need to b	e greater than	10D	
	e parameter is less than 6.0. wh				
the maximum L _p requ	the maximum $L_p$ required by 1/4 $D_c$ for each whole number by which the Froude parameter is greater than 6				
Ī					

211030Checked bizRHLFES 8D RIPRAPDate:9/12/2024Input ParametersHow (Q)2Tailwater depth (Y_1)0.60Conduit Diameter (D_2)18Expansion Factor (per Fig. 9-35)6.5Soil TypeNon-Cohesive SoilsDesign $D_{co}$ =0.90DFCD Riprap Type =Type VLDesign $D_{co}$ =6Minimum Mantle Thickness =12Minimum Mantle Thickness =12Minimum Length of Apron =4.5Acculated Dsg for riprap was calculated using Equation 9-16 in the USDCM Vol 2. $d = \frac{0.023Q}{Y_1^{1/2}D_2^{1/4}}$ Calculated from the conduction (f) $P = design discharge (cfs)$ Prevent Mathematic Transmission For the conduction (f) $P = design discharge (cfs)$ Prevent Mathematic Transmission For the USDCM Vol 2. $P = design discharge (cfs)$ Prevent Mathematic Thick and the transmission of the conduction (f) $P = design discharge (cfs)$ Prevent Mathematic Thick and the transmission of the conduction (f) $P = design discharge (cfs)$ Prevent Mathematic Thick and the transmission of the conduction (f) $P = design discharge (cfs)$ Prevent Mathematic Thick and the conduction of the conduction (f) $P = design discharge (cfs)$ Prevent Mathematic The conduction (f) $P = design discharge (cfs)$ Prevent Mathematic The conduction (f) $P = design discharge (cfs)$ Prevent Mathematic The conduction (f) $P = design discharge (cfs)$ Prevent Mathematic The conduction (f) $P = design discharge (cfs)$ <th></th> <th>FLYING HORSE NOR</th> <th>TH FILING NO. 4</th> <th><u>Calc'd by:</u></th> <th>тмм</th>		FLYING HORSE NOR	TH FILING NO. 4	<u>Calc'd by:</u>	тмм	
In roteenInput ParametersFlow (Q)Tailwater depth (Y_1)Onduit Diameter (D_2)Tailwater depth (Y_1)Soil TypeSoil TypeSoil TypeCalculated ParametersFroude Parameter (Q/D ² 5)D_50 =0.73D_50 =0.73D_50 =0.73D_50 =0.73D_50 =0.74DubPCD Riprap Type =Type VLDesign D_50 =Minimum Mentle Thickness =121Minimum Length of Apron =4.5ftCalculated using Equation 9-16 in the USDCM Vol 2. $d = = \frac{0.023Q}{Y_1^{1/2}D_n^{0.5}}$ Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2 $L_r = (\frac{1}{2 \tan 0} (\frac{M}{Y_1} - M)$ Equation 9-11 $d = \frac{Q}{r}$ Where: $L_r$ = funder depth (f) $P$ = width of the conduit (fi, use diameter for circular condurit) $P$ = the approximation (f) $P$ = width of the conduct for circular conduction $P$ = the approximation of the cultert flow $P$ = the spansion angle of the cultert flow $A$ = required area of flow at allowable velocity (ft) $P$ = the spansion angle of the cultertThis spreadsheet assumes $y_1/D_r=0.4$ in cases where $y_1$ is unknown or a hydraulic jump is suspected downstream of the outlet.Per the USDCM Vol.2 in no case should $L_p$ be less than 3D, nor does $L_p$ need to be greater than 10Dwhenever the Froude parameter is les	オイオ	2110:	Checked by:	RHL		
Flow (Q)2cfsTailwater depth (Y,)0.60ftConduit Diameter (D,)18Expansion Factor (per Fig. 9-35)6.5Soil TypeNon-Cohesive SoilsImage: Soil TypeNon-Cohesive SoilsSoil TypeNon-Cohesive SoilsImage: Soil TypeType VLDsg =0.90Image: Soil Type =Type VLDsg =0.90Image: Soil Typ	HRGreen	FES 8D R	Date:	9/12/2024		
Flow (Q)2cfsTailwater depth (Y,)0.60ftConduit Diameter (D,)18Expansion Factor (per Fig. 9-35)6.5Soil TypeNon-Cohesive SoilsImage: Soil TypeNon-Cohesive SoilsSoil TypeNon-Cohesive SoilsImage: Soil TypeType VLDsg =0.90Image: Soil Type =Type VLDsg =0.90Image: Soil Typ						
Tailwater depth $(Y_1)$ 0.60 ftConduit Diameter $(D_c)$ 18Expansion Factor (per Fig. 9-35)6.5Soil TypeNon-Cohesive SoilsFroude Parameter $(Q/D^{2.5})$ 0.73 $D_{50} =$ 0.90UDFCD Riprap Type =Type VLDesign $D_{50} =$ 6Minimum Mantle Thickness =12Minimum Length of Apron =4.5ftCalculated using Equation 9-16 in the USDCM Vol 2. $d_a = \frac{0.023Q}{r_L^{-1}D_c^{0.3}}$ Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2 $L_e = \left(\frac{1}{2 \tan \theta} i) \left(\frac{A_i}{r_i} - \mu'\right)$ Equation 9-16Where: $L_e = \log_{10} h of protection (fl)$ $\mu$ = with of the conduit (fl, use diameter for circular conduits) $\mu$ = design discharge (cfs) $\mu$ = ubacker depth (f) $h_e$ = required area of flow at allowable velocity (ft?) $\theta$ = the calculations follow criteria in the USDCM Vol.2 Chapter 9Calculations follow criteria in the USDCM Vol.2 Chapter 9Calculations follow criteria in the USDCM Vol.2 Chapter 9Calculations assume a circular culvertThis spreadsheet assumes $y_e/D_e=0.4$ in cases where $y_i$ is unknown or a hydraulic jump is suspected downstream of the outlet.Per the USDCM Vol.2 in no case should $L_p$ be less than 3D, nor does $L_p$ need to be greater than 6 increase		Input Parameters				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Flow (Q) 2				
Expansion Factor (per Fig. 9-35)6.5Soil TypeNon-Cohesive Soils $\overline{Soil Type}$ Non-Cohesive Soils $\overline{Soil Type}$ Non-Cohesive Soils $\overline{Soil Type}$ 0.73 $\overline{D_{50}} =$ 0.90UDFCD Riprap Type =Type VIDesign $D_{50} =$ 6Minimum Mantle Thickness =12Minimum Length of Apron =4.5Calculated $D_{50}$ for riprap was calculated using Equation 9-16 in the USDCM Vol 2. $d = = \frac{0.023Q}{Y_c^{1/2}D_s^{0.1}}$ Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2 $L_{r} = \left(\frac{1}{2tand}\left(\frac{d}{Y_{r}} - W\right)$ Equation 9-11 $d = \frac{Q}{V}$ Equation 9-12Where:Where: $L_{r} = length of protection (ft)$ $Q = design discharge (cfs)$ $W = width of the conduit (ft. use diameter for circular conduit)Y =  the allowable non-eroding velocity in the downstream channel (ft/sec)Y_{r} tailwater depth (ft)A =  required area of flow at allowable velocity (ft)\theta the expansion angle of the culvert flowA =  required area of flow at allowable velocity (ft)T his spreadsheet assumes y_r/D_r = 0.4 in cases where y_t is unknown or a hydraulic jump is suspected downstream of the outlet.P or the USDCM Vol.2 in no case should L_p be less than 3D, nor does L_p need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase$		Tailwater depth (Y _t )	0.60	ft		
Soil TypeNon-Cohesive SoilsCalculated ParametersFroude Parameter (Q/D ^{2.5} )0.73D_{50} =0.90INFOLD Riprap Type =Type VIDesign D ₅₀ =0.90Minimum Mantle Thickness =12Minimum Length of Apron =4.5ftCalculated D ₅₀ for riprap was calculated using Equation 9-16 in the USDCM Vol 2. $d = = \frac{0.023Q}{Y_L^{1/2}D_2^{0.1}}$ Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol 2 $L_r = \left(\frac{1}{2 \tan \theta} \left(\frac{A}{Y_L} - W\right)$ Equation 9-11 $A_l = \frac{Q}{Y_r}$ Varee:Where: $L_r = (a elength of protection (fh)P = design discharge (cfs)W = width of the conduit (fh, use diameter for circular conduit)P = the allowable non-eroding velocity in the downstream channel (ft/sec)Y = taiward edpth (f)A_r = required area of flow at allowable velocity (ft2)\theta = the expansion angle of the culvert flowA_r = required area of flow at allowable velocity (ft2)This spreadsheet assumes y_r/D_t=0.4 in cases where y_t is unknown or a hydraulic jump is suspected downstream of the outlet.Per the USDCM Vol.2 in no case should L_p be less than 3D, nor does L_p need to be greater than 10D whenever the Froude parameter is greater than 6, increase$		Conduit Diameter (D _c )	18	in		
Calculated ParametersFroude Parameter (Q/D25)0.73D_{50} =0.90UDFCD Riprap Type =Type VLDesign D_{50} =6Minimum Mantle Thickness =12Minimum Length of Apron =4.5ftCalculated D_{50} for riprap was calculated using Equation 9-16 in the USDCM Vol 2. $d'' = \frac{0.023Q}{Y_L^{-12}D_L^{0.13}}$ Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol 2. $d'' = \frac{0.023Q}{Y_L^{-12}D_L^{0.13}}$ Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol 2. $L_r = \left(\frac{1}{2 \tan \theta} \int_{t}^{t} \frac{4}{Y_r} - W\right)$ Equation 9-11 $d_r = \frac{Q}{Y'}$ Equation 9-12Where: $L_r = length of protection (fh)$ $W$ width of the conduit (ft, use diameter for circular conduit) $T$ the allowable non-croding velocity in the downstream channel (ft/sec) $Y_r = laidward edpth (ft)$ $d = equation 4$ $d = equation 5$ $W$ there: $L_r$ $L_r$ $L_r$ $M = to the conduit (ft) use diameter for circular conduit)H = required area of flow at allowable velocity (ft2)H = to the conduct (ft) use diameter for circular conduit)H = required area of flow at allowable velocity (ft2)H = the conduct (ft) use the conduct$		Expansion Factor (per Fig. 9-35)	6.5			
Froude Parameter $(Q/D^{2.5})$ 0.73 $D_{50} =$ 0.90UDFCD Riprap Type =Type VLDesign $D_{50} =$ 6Minimum Mantle Thickness =12Minimum Length of Apron =4.5ftCalculated $D_{50}$ for riprap was calculated using Equation 9-16 in the USDCM Vol 2. $d = \frac{0.023Q}{Y_1^{1/2}D_c^{0.3}}$ Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2 $L_{r_e} = \left(\frac{1}{2tan \theta} \left(\frac{A_e}{Y_e} - W\right)$ Equation 9-11 $A_e = \frac{Q}{V}$ Vere: $L_{r_e} = (chi f) forection (fl)W = widh of the conduit (ft, use diameter for circular conduits)Y = tailwater depth (fl)\theta = the expansion angle of the culvert flowVote:Calculations follow criteria in the USDCM Vol. 2 Chapter 9Calculations sume a circular culvertThis spreadsheet assumes y_e/D_t=0.4 in cases where y_t is unknown or a hydraulic jump is suspected downstream of the outlet.Per the USDCM Vol.2 in no case should L_p be less than 3D, nor does L_p need to be greater than 6, increase$		Soil Type	Non-Cohesive Soils			
Froude Parameter $(Q/D^{2.5})$ 0.73 $D_{50} =$ 0.90UDFCD Riprap Type =Type VLDesign $D_{50} =$ 6Minimum Mantle Thickness =12Minimum Length of Apron =4.5ftCalculated $D_{50}$ for riprap was calculated using Equation 9-16 in the USDCM Vol 2. $d = \frac{0.023Q}{Y_1^{1/2}D_c^{0.3}}$ Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2 $L_{r_e} = \left(\frac{1}{2tan \theta} \left(\frac{A_e}{Y_e} - W\right)$ Equation 9-11 $A_e = \frac{Q}{V}$ Vere: $L_{r_e} = (chi f) forection (fl)W = widh of the conduit (ft, use diameter for circular conduits)Y = tailwater depth (fl)\theta = the expansion angle of the culvert flowVote:Calculations follow criteria in the USDCM Vol. 2 Chapter 9Calculations sume a circular culvertThis spreadsheet assumes y_e/D_t=0.4 in cases where y_t is unknown or a hydraulic jump is suspected downstream of the outlet.Per the USDCM Vol.2 in no case should L_p be less than 3D, nor does L_p need to be greater than 6, increase$		Calculated Pa	rameters	1		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
UPFCD Riprap Type =Type VI Design D_{50} =Design D_{50} =6Minimum Mantle Thickness =12Minimum Length of Apron =4.5Calculated D_{50} for riprap was calculated using Equation 9-16 in the USDCM Vol 2. $d = = \frac{0.023Q}{Y_t^{1/2}D_c^{0.3}}$ Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2 $L_p = \left(\frac{1}{2\tan\theta}\right)\left(\frac{A_v}{Y_c} - W\right)$ Equation 9-11 $A_i = \frac{Q}{V}$ Equation 9-12Where:Where: $L_p = (and the conduit (fit, use diameter for circular conduit))P = the allowable non-eroding velocity in the downstream channel (fit/sec)Y_i = tailwater depth (fit)A_i = required area of flow at allowable velocity (fit)\theta = the expansion angle of the culvert flowA_i = required area of flow at allowable velocity (fit)Note:Calculations follow criteria in the USDCM Vol.2 Chapter 9Calculations ssume a circular culvertThis spreadsheet assumes y_i/D_t=0.4 in cases where y_t is unknown or a hydraulic jump is suspected downstream of the outlet.Per the USDCM Vol.2 in no case should L_p be less than 3D, nor does L_p need to be greater than 10D whenever the Froude parameter is greater than 6, increase$				in		
Design $D_{50} =$ 6Minimum Mantle Thickness =12Minimum Length of Apron =4.5Calculated $D_{50}$ for riprap was calculated using Equation 9-16 in the USDCM Vol 2. $d = = \frac{0.023Q}{Y_t^{1/2}D_c^{0.3}}$ Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol 2. $L_{\varphi} = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_t}{Y_t} - W\right)$ Equation 9-11 $A_t = \frac{Q}{V}$ Equation 9-12Where: $L_{\varphi} = (angh of protection (fh)$ $W = width of the conduit (fh, use diameter for circular conduits)Y_t = tailwater depth (fh)\varphi = the conduct (fh, use diameter for circular conduits)Y_t = tailwater depth (fh)\varphi = the conduct (fh)\psi = the conduct (fh)$						
Minimum Mantle Thickness =12Minimum Length of Apron =4.5Minimum Length of Apron =4.5Calculated D ₅₀ for riprap was calculated using Equation 9-16 in the USDCM Vol 2. $d_{sr} = \frac{0.023Q}{Y_t^{12}D_c^{0.3}}$ Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2 $L_r = \left(\frac{1}{2 \tan \theta} \right) \left(\frac{4}{Y_r} - W\right)$ Equation 9-11 $A_r = \frac{Q}{V}$ Where: $L_r = \text{length of protection (fl)}$ $W = \text{width of the conduit (ft, use diameter for circular conduits)}$ $Y_r = \text{tailwater depth (ff)}$ $\theta = \text{the expansion angle of the culvert flow}$ Vote:Calculations follow criteria in the USDCM Vol.2 Chapter 9Calculations follow criteria in the USDCM Vol.2 Chapter 9Calculations assume a circular culvertThis spreadsheet assumes $y_r/D_t=0.4$ in cases where $y_t$ is unknown or a hydraulic jump is suspected downstream of the outlet.Per the USDCM Vol.2 in no case should $L_p$ be less than 3D, nor does $L_p$ need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase				in		
Minimum Length of Apron =4.5ftCalculated D50 for riprap was calculated using Equation 9-16 in the USDCM Vol 2. $d_{s} = \frac{0.023Q}{Y_t^{1/2}D_c^{0.3}}$ Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2 $L_r = \left(\frac{1}{2 \tan \theta} \right) \left(\frac{A_r}{Y_r} - W\right)$ Equation 9-11 $A_r = \frac{Q}{V}$ Equation 9-12Where: $L_r = length of protection (ft)$ $Q = design discharge (cfs)$ $V = the allowable non-eroding velocity in the downstream channel (ft/sec)A_r = required area of flow at allowable velocity (ft2)Vote:···Calculations follow criteria in the USDCM Vol.2 Chapter 9·Calculations follow criteria in the USDCM Vol.2 Chapter 9Calculations assume a circular culvertThis spreadsheet assumes y_1/D_t=0.4 in cases where y_t is unknown or a hydraulic jump is suspected downstream of the outlet.Per the USDCM Vol.2 in no case should L_p be less than 3D, nor does L_p need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase$		- •••				
Calculated D ₅₀ for riprap was calculated using Equation 9-16 in the USDCM Vol 2. $d_{s} = \frac{0.023Q}{r_{t}^{1/2}D_{c}^{0.3}}$ Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2 $L_{r} = \left(\frac{1}{2 \tan \theta} \right) \left(\frac{A_{r}}{V_{t}} - W\right) \qquad \text{Equation 9-11} \qquad A_{r} = \frac{Q}{V} \qquad \text{Equation 9-12}$ Where: $L_{r} = \text{length of protection (ff)} \qquad Q = \text{design discharge (cfs)} \qquad V = \text{the allowable non-eroding velocity in the downstream channel (ft/sec)} \qquad A_{r} = \text{required area of flow at allowable velocity (ft2)} \qquad A_{r} = \text{required area of flow at allowable velocity (ft2)} \qquad Calculations assume a circular culvert This spreadsheet assumes y_{t}/D_{t}=0.4 in cases where y_{t} is unknown or a hydraulic jump is suspected downstream of the outlet.Per the USDCM Vol.2 in no case should L_{p} be less than 3D, nor does L_{p} need to be greater than 10D whenever the Froude parameter is greater than 6, increase$						
Where:Where: $L_p$ = length of protection (ft) $Q$ = design discharge (cfs) $W$ = width of the conduit (ft, use diameter for circular conduits) $V$ = the allowable non-eroding velocity in the downstream channel (ft/sec) $Y_r$ = tailwater depth (ft) $A_r$ = required area of flow at allowable velocity (ft²) $\theta$ = the expansion angle of the culvert flow $A_r$ = required area of flow at allowable velocity (ft²)* Calculations follow criteria in the USDCM Vol.2 Chapter 9* Calculations assume a circular culvert* This spreadsheet assumes $y_t/D_t$ =0.4 in cases where $y_t$ is unknown or a hydraulic jump is suspecteddownstream of the outlet.* Per the USDCM Vol.2 in no case should $L_p$ be less than 3D, nor does $L_p$ need to be greater than 10Dwhenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase		$d_{\rm so} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$		USDCM Vol. 2		
Where:Where: $L_p$ = length of protection (ft) $Q$ = design discharge (cfs) $W$ = width of the conduit (ft, use diameter for circular conduits) $V$ = the allowable non-eroding velocity in the downstream channel (ft/sec) $Y_r$ = tailwater depth (ft) $V$ = the allowable non-eroding velocity (ft²) $\theta$ = the expansion angle of the culvert flow $V =$ the allowable non-eroding velocity (ft²)Note: $Calculations follow criteria in the USDCM Vol.2 Chapter 9Calculations assume a circular culvertThis spreadsheet assumes y_t/D_t=0.4 in cases where y_t is unknown or a hydraulic jump is suspectedHownstream of the outlet.Per the USDCM Vol.2 in no case should L_p be less than 3D, nor does L_p need to be greater than 10Dwhenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase$	$L_p = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_t}{Y_t}\right)$	W Equation 9-11	$A_t = \frac{Q}{V}$		Equation 9-12	
$L_{p} = \text{length of protection (ft)} \qquad Q = \text{design discharge (cfs)} \\ V = \text{width of the conduit (ft, use diameter for circular conduits)} \\ Y_{r} = \text{tailwater depth (ft)} \\ \theta = \text{the expansion angle of the culvert flow} \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ $	Where:	Wh				
$W =$ width of the conduit (ft, use diameter for circular conduits) $V =$ the allowable non-eroding velocity in the downstream channel (ft/sec) $Y_r =$ tailwater depth (ft) $A_t =$ required area of flow at allowable velocity (ft²) $\theta =$ the expansion angle of the culvert flow $A_t =$ required area of flow at allowable velocity (ft²)Vote:Calculations follow criteria in the USDCM Vol.2 Chapter 9Calculations assume a circular culvertThis spreadsheet assumes $y_t/D_t=0.4$ in cases where $y_t$ is unknown or a hydraulic jump is suspecteddownstream of the outlet.Per the USDCM Vol.2 in no case should L _p be less than 3D, nor does L _p need to be greater than 10Dwhenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase	- Store Sectory and					
$Y_t$ = tailwater depth (ft) $\theta$ = the expansion angle of the culvert flow $A_t$ = required area of flow at allowable velocity (ft²)Note:Calculations follow criteria in the USDCM Vol.2 Chapter 9Calculations assume a circular culvertThis spreadsheet assumes $y_t/D_t$ =0.4 in cases where $y_t$ is unknown or a hydraulic jump is suspected downstream of the outlet.Per the USDCM Vol.2 in no case should $L_p$ be less than 3D, nor does $L_p$ need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase			20 DAME LINK CONTRACTOR OF C	ity in the downstream	channel (ft/sec)	
$\theta$ = the expansion angle of the culvert flow Note: Calculations follow criteria in the USDCM Vol.2 Chapter 9 Calculations assume a circular culvert This spreadsheet assumes y _t /D _t =0.4 in cases where y _t is unknown or a hydraulic jump is suspected downstream of the outlet. Per the USDCM Vol.2 in no case should L _p be less than 3D, nor does L _p need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase	$Y_t$ = tailwater depth (ft	)			(10 500)	
Calculations follow criteria in the USDCM Vol.2 Chapter 9 Calculations assume a circular culvert This spreadsheet assumes $y_t/D_t=0.4$ in cases where $y_t$ is unknown or a hydraulic jump is suspected downstream of the outlet. Per the USDCM Vol.2 in no case should $L_p$ be less than 3D, nor does $L_p$ need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase	$\theta$ = the expansion angle	e of the culvert flow	in required area of now at anomalo	ie (eleeny (it )		
Calculations follow criteria in the USDCM Vol.2 Chapter 9 Calculations assume a circular culvert This spreadsheet assumes $y_t/D_t=0.4$ in cases where $y_t$ is unknown or a hydraulic jump is suspected downstream of the outlet. Per the USDCM Vol.2 in no case should $L_p$ be less than 3D, nor does $L_p$ need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase	Note:					
Calculations assume a circular culvert This spreadsheet assumes $y_t/D_t=0.4$ in cases where $y_t$ is unknown or a hydraulic jump is suspected downstream of the outlet. Per the USDCM Vol.2 in no case should $L_p$ be less than 3D, nor does $L_p$ need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase	1	criteria in the USDCM Vol 2 Char	nter 9			
⁴ This spreadsheet assumes y _t /D _t =0.4 in cases where y _t is unknown or a hydraulic jump is suspected downstream of the outlet. ⁴ Per the USDCM Vol.2 in no case should L _p be less than 3D, nor does L _p need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase						
downstream of the outlet. ^I Per the USDCM Vol.2 in no case should L _p be less than 3D, nor does L _p need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase			, is unknown or a hydraulis	iump is suspect	ad	
⁴ Per the USDCM Vol.2 in no case should L _p be less than 3D, nor does L _p need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase			yt is unknown of a nyurdulle	Jump is suspect	.eu	
whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase						
The maximum $L_p$ required by $L_1 + D_c$ for each whole number by which the ribude parameter is greater than 0						
		the maximum $L_p$ required by 1/4 $D_c$ for each whole number by which the Froude parameter is greater than				

	FLYING HORSE NO	RTH FILING NO. 4	<u>Calc'd by:</u>	тмм	
コートインゴ	2110	Checked by:	RHL		
HRGreen	FES 9D R	Date:	9/12/2024		
			I		
	Input Parameters				
	Flow (Q) 2 c				
	Tailwater depth (Y _t )	0.60	ft		
	Conduit Diameter (D _c )	18	in		
	Expansion Factor (per Fig. 9-35	) 6.5			
	Soil Type	Non-Cohesive Soils			
	Calculated Pa	arameters			
	Froude Parameter (Q/D ^{2.5} )	0.73			
	D ₅₀ =	0.90	in		
	UDFCD Riprap Type =	Type VL			
	Design D ₅₀ =		in		
	Minimum Mantle Thickness =	12			
	Minimum Length of Apron =	4.5	ft		
	rap was calculated using Equation $d = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$ in the properties of the second state states and the second states are specified using the second states are speci		USDCM Vol. 2		
$L_p = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_t}{Y_t} - \frac{1}{2}\right) \left(\frac{A_t}{Y_t} - \frac{A_t}{Y_t} - \frac{1}{2}\right) \left(\frac{A_t}{Y_t} - \frac{A_t}{Y_t} - $		$A_t = \frac{Q}{V}$		Equation 9-12	
Where:					
$L_p = \text{length of protection}$		ere:			
	uit (ft, use diameter for circular conduits)	Q = design discharge (cfs)	ity in the downstroom	abannal (Alaza)	
$Y_r = $ tailwater depth (ft)		V = the allowable non-eroding veloci		(Insec)	
$\theta$ = the expansion angle	e of the culvert flow	$A_t$ = required area of flow at allowab	le velocity (It-)		
- 2					
Note:					
	criteria in the USDCM Vol.2 Cha	pter 9			
² Calculations assume					
³ This spreadsheet as	sumes y _t /D _t =0.4 in cases where	y _t is unknown or a hydraulic	jump is suspect	ed	
downstream of the o					
	.2 in no case should L _p be less th				
	e parameter is less than 6.0. wh		-		
the maximum L _p requ	uired by 1/4 D _c for each whole n	umber by which the Froude	parameter is gr	eater than 6	

	RTH FILING NO. 4	Calc'd by:	тмм	
	211030 FES 10D RIPRAP		RHL	
HRGreen FES 10D			9/11/2024	
		I		
Input Para	ameters			
Flow (Q)		cfs		
Tailwater depth (Y _t )	0.60	ft		
Conduit Diameter (D _c )	18	in		
Expansion Factor (per Fig. 9-35				
Soil Type	Non-Cohesive Soils			
Calculated P	aramatara			
Froude Parameter (Q/D ^{2.5} )				
	1.81	:		
D ₅₀ =	2.26	111		
UDFCD Riprap Type =	Type VL	in		
Design D ₅₀ =		in in		
Minimum Mantle Thickness = Minimum Length of Apron =	12			
Minimum Length of Apron –	4.5	Inc		
Calculated $D_{50}$ for riprap was calculated using Equati	on 9-16 in the USDCM Vol 2.			
$d_{so} = \frac{0.023Q}{Y_t^{1.2} D_c^{0.3}}$				
Calculated minimum length of apron was calculated using	Equations 9-11 and 9-12 in the	USDCM Vol. 2		
$L_{p} = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_{t}}{Y_{t}} - W\right) $ Equation 9-11	$A_t = \frac{Q}{V}$		Equation 9-12	
Where: W	here:			
$L_p$ = length of protection (ft)	Q = design discharge (cfs)			
W = width of the conduit (ft, use diameter for circular conduits)	ty in the downstream	channel (ft/sec)		
$Y_t$ = tailwater depth (ft)	$A_t =$ required area of flow at allowable	le velocity (ft ² )		
$\theta$ = the expansion angle of the culvert flow				
Note:				
¹ Calculations follow criteria in the USDCM Vol.2 Cha	unter 9			
² Calculations assume a circular culvert				
2	the state of the day the		1	
³ This spreadsheet assumes $y_t/D_t=0.4$ in cases where	y _t is unknown or a hydraulic	jump is suspect	ed	
downstream of the outlet.				
⁴ Per the USDCM Vol.2 in no case should L _p be less than 3D, nor does L _p need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase				
whenever the Froude parameter is less than 6.0. wh the maximum $L_p$ required by 1/4 $D_c$ for each whole r		-		

FLYING HORSE NORTH FILING NO. 4		<u>Calc'd by:</u>	тмм	
ートイン	Control211030RGreenFES 11D RIPRAP		Checked by:	RHL
HRGreen			Date:	9/12/2024
	Input Para	ameters		
	Flow (Q)	71.7	cfs	
	Tailwater depth (Y _t )	1.60	ft	
	Conduit Diameter (D _c )	48	in	
	Expansion Factor (per Fig. 9-35	) 5.5		
	Soil Type	Non-Cohesive Soils		
	Calculated P			
	Froude Parameter (Q/D ^{2.5} )	2.24		
	D ₅₀ =	7.43	in	
	UDFCD Riprap Type =	Type L		
	Design D ₅₀ =	9		
	Minimum Mantle Thickness =	18		
	Minimum Length of Apron =	27.3	ii.	
Calculated D ₅₀ for rip	orap was calculated using Equati	on 9-16 in the USDCM Vol 2.		
	$d_{55} = \frac{0.023Q}{Y_t^{1.2} D_c^{0.3}}$			
Calculated minimum le	ength of apron was calculated using	Equations 9-11 and 9-12 in the	USDCM Vol. 2	
$L_p = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_t}{Y_t}\right)$	-W Equation 9-11	$A_t = \frac{Q}{V}$		Equation 9-12
Where:	W	here:		
$L_p = \text{length of protection}$	ion (ft)	Q = design discharge (cfs)		
W = width of the conduit (ft, use diameter for circular conduits) $V$ = the allowable non-eroding veloc		ity in the downstream	channel (ft/sec)	
$Y_t$ = tailwater depth (ft) $A_t$ = required area of flow at allowal			le velocity (ft2)	
$\theta$ = the expansion ang	le of the culvert flow			
Note:				
	criteria in the USDCM Vol.2 Cha	opter 9		
² Calculations assum				
2		v. is unknown or a hydraulic	iumn is suspect	ed
³ This spreadsheet assumes $y_t/D_t=0.4$ in cases where $y_t$ is unknown or a hydraulic jump is suspected downstream of the outlet.				
⁴ Per the USDCM Vol.2 in no case should $L_p$ be less than 3D, nor does $L_p$ need to be greater than 10D				
whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase				
the maximum $L_p$ required by 1/4 $D_c$ for each whole number by which the Froude parameter is greater than 6				
μ - 1	,		. 0	
<u> </u>				

FLYING HORSE NORTH FILING NO. 4			<u>Calc'd by:</u>	тмм	
	211030GreenFES 12D RIPRAP		Checked by:	RHL	
HRGreen			Date:	9/12/2024	
	Input Para	ameters			
	Flow (Q)	93.3	cfs		
	Tailwater depth (Y _t )	1.60	ft		
	Conduit Diameter (D _c )	48	in		
	Expansion Factor (per Fig. 9-35	) 4.5			
	Soil Type	Non-Cohesive Soils			
	Calculated P				
	Froude Parameter (Q/D ^{2.5} )	2.92			
	D ₅₀ =	9.67	in		
	UDFCD Riprap Type =	Type M			
	Design D ₅₀ =	12			
	Minimum Mantle Thickness =	24			
	Minimum Length of Apron =	34.5	ft		
Calculated D ₅₀ for riprap was calculated using Equation 9-16 in the USDCM Vol 2. $d_{ss} = \frac{0.023Q}{Y_t^{12}D_c^{0.3}}$ Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2					
$L_p = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_t}{Y_t}\right)$	W Equation 9-11	$A_t = \frac{Q}{V}$		Equation 9-12	
Where:	*	here:			
$L_p = \text{length of protection}$		Q = design discharge (cfs)			
	uit (ft, use diameter for circular conduits)	V = the allowable non-eroding veloci	ty in the downstream	channel (ft/sec)	
$V = \text{tailwater denth}(\hat{\mathbf{f}})$			channer (10 sec)		
$\theta =$ the expansion angle of the culvert flow $A_t$ = required area of flow at allowable velocity (ft ² )					
-2					
Note:					
	criteria in the USDCM Vol.2 Cha	ipter 9			
² Calculations assume					
-	sumes y _t /D _t =0.4 in cases where	y _t is unknown or a hydraulic	jump is suspect	ed	
downstream of the o					
4 Per the USDCM Vol.2 in no case should L $_{ m p}$ be less than 3D, nor does L $_{ m p}$ need to be greater than 10D					
whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase the maximum $L_p$ required by 1/4 $D_c$ for each whole number by which the Froude parameter is greater than 6					

	E NORTH FILING	6 NO. 4	Calc'd by:	тмм
	211030 FES 13D RIPRAP		Checked by:	RHL
HRGreen FES			Date:	10/25/2024
	put Parameters			
Flow (Q)		285.8 c ⁻		
Tailwater depth $(Y_t)$		2.87 ft		
Conduit Diameter (D _c )		86 ir	า	
Expansion Factor (per F		4.5		
Soil Type	Non-0	Cohesive Soils		
Calc	ulated Parameters			
Froude Parameter (Q/I		2.08		
$D_{50} =$		12.35 ir	h	
UDFCD Riprap Type =		Type H	1	
$\frac{ODFCD}{Design} D_{50} =$		18 ir	h	
Minimum Mantle Thick	mess =	36 ir		
Minimum Length of Ap		57.5 ft		
Calculated D ₅₀ for riprap was calculated using $d_{ss} = \frac{Q}{Y}$	$\frac{0.023Q}{t^{12}D_c^{0.3}}$			
Calculated minimum length of apron was calculat	ted using Equations 9-11	and 9-12 in the U	SDCM Vol. 2	
$L_{p} = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_{i}}{Y_{i}} - W\right) $ Equation 9.	$A_t = \frac{Q}{V}$			Equation 9-12
Where:	Where:			
$L_p$ = length of protection (ft)	Q = design discha	rge (cfs)		
W = width of the conduit (ft, use diameter for circular con	W = width of the conduit (ft, use diameter for circular conduits) $V$ = the allowable non-eroding velocity in the			channel (ft/sec)
$Y_t$ = tailwater depth (ft)	$A_t = required area$	of flow at allowable	velocity (ft2)	
$\theta$ = the expansion angle of the culvert flow				
Note:				
¹ Calculations follow criteria in the USDCM V	ol.2 Chapter 9			
² Calculations assume a circular culvert	·			
³ This spreadsheet assumes y _t /D _t =0.4 in case	s where v₊ is unknown	or a hydraulic iu	ump is suspect	ed
downstream of the outlet.				
4 Per the USDCM Vol.2 in no case should L _p $ m k$	e less than 3D, nor doe	es L _n need to be	greater than	10D whenever
the Froude parameter is less than 6.0. when maximum $L_p$ required by 1/4 $D_c$ for each who	ever the Froude param	eter is greater t	han 6, increas	e the

	FLYING HORSE NO	RTH FILING NO. 4	Calc'd by:	тмм
コートインゴ	HRGreen FES 14D RIPRAP		Checked by:	RHL
HRGreen			Date:	10/25/2024
			l	
	Input Para	imeters		
	Flow (Q)	37.2		
	Tailwater depth (Y _t )	2.00	ft	
	Conduit Diameter (D _c )	60	in	
	Expansion Factor (per Fig. 9-35			
	Soil Type	Non-Cohesive Soils		
	Calculated Pa	aramatara		
	Froude Parameter (Q/D ^{2.5} )	0.67	i.e.	
	D ₅₀ =	2.76	In	
	UDFCD Riprap Type =	Type VL	•	
	Design D ₅₀ =		in	
	Minimum Mantle Thickness =	12		
	Minimum Length of Apron =	12.0	ii ii	
	rap was calculated using Equation $d_{ss} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$			
	ngth of apron was calculated using	Equations 9-11 and 9-12 in the	USDCM Vol. 2	
$L_p = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_t}{Y_t}\right)$	W Equation 9-11	$A_t = \frac{Q}{V}$		Equation 9-12
Where:	WI	here:		
$L_p$ = length of protection	on (ft)	Q = design discharge (cfs)		
W = width of the cond	uit (ft, use diameter for circular conduits)	V = the allowable non-eroding veloci	ty in the downstream	channel (ft/sec)
$Y_t$ = tailwater depth (ft	)	$A_t$ = required area of flow at allowabl	e velocity (ft2)	
$\theta$ = the expansion angle	e of the culvert flow			
Note:				
	criteria in the USDCM Vol.2 Cha	pter 9		
² Calculations assume				
-	sumes y _t /D _t =0.4 in cases where	v. is unknown or a hydraulic	iumn is suspect	ed
downstream of the c		yt is annuolin or a nyaraano	Jump is suspeed	
	.2 in no case should L _p be less th	an 3D, nor does L, need to b	e greater than	10D whenever
the Froude paramete	er is less than 6.0. whenever the d by $1/4 D_c$ for each whole numl	Froude parameter is greater	than 6, increas	se the

LineLineLineRHLImage: Regree of the calculated parameter is greater than 6, increase the maximum L _p required by 1/4 0, for each whole number by which the Froude parameter is greater than 6.RHLImage: Regree of the calculated parameter (D ₂ )10/25/2024Image: Regree of the calculated parameter (D ₂ )0.45Soil TypeNon-Cohesive SoilsImage: Regree of the calculated parameters0.45Dyg =0.45Dyg =0.45Dyg =0.45Dyg =0.45Dyg =0.45Dyg =0.45Dyg =0.61Image: Regree of the calculated using Equation 9-16 in the USDCM Vol 2.Calculated Dyg for riprap was calculated using Equations 9-11 and 9-12 in the USDCM Vol 2.Calculated minimum length of Apron =12.67Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the downstream channel (thice) $L_{1} = \left(\frac{1}{2 \tan d}\right) \left(\frac{d}{N_{1}} - P\right)$ Rum Still $L_{2} = \left(\frac{1}{2 \tan d}\right) \left(\frac{d}{N_{1}} - P\right)$ Rum Still $L_{2} = \left(\frac{1}{2 \tan d}\right) \left(\frac{d}{N_{1}} - P\right)$ Rum Still $L_{2} = \left(\frac{1}{2 \tan d}\right) \left(\frac{d}{N_{1}} - P\right)$ Rum Still $L_{3} = (2 \tan d) (2 $		FLYING HORSE NO	RTH FILING NO. 4	Calc'd by:	тмм
In ICLECTInput ParametersFlow (Q)400Tailwater depth (Y1)2.40Tailwater depth (Y2)72Expansion Factor (per Fig. 9-35)4.5Soil TypeNon-Cohesive SoilsSoil TypeNon-Cohesive SoilsSoil Type0.45Dyse0.45Dyse0.45Dyse0.45Dyse0.45Dyse0.45Dyse0.45Dyse0.45Dyse0.45Dyse0.45Dyse0.45Dyse0.45Dyse0.45Dyse0.45Dyse0.45Dyse0.45Dyse0.45Dyse0.45Dyse0.45Dyse100Dyse0.45Dyse100Dyse100Dyse100Dyse100Dyse100Dyse100Dyse100Dyse100Dyse100Dyse100Dyse100Dyse100Dyse100Dyse100Dyse100Dyse100Dyse100Dyse100Dyse100Dyse100Dyse100Dyse100Dyse100Dyse100Dyse100Dyse100Dyse100Dyse <td< th=""><th></th><th colspan="2">211030</th><th>Checked by:</th><th>RHL</th></td<>		211030		Checked by:	RHL
Flow (Q)40Tailwater depth (Y1)2.40Conduit Diameter (D2)72inExpansion Factor (per Fig. 9-35)Soil TypeNon-Cohesive SoilsSoil TypeNon-Cohesive SoilsCalculated Parameters0.45D ₅₀ =0.45D ₅₀ =2.26InUDFCD Riprap Type =Type VLDesign D ₅₀ =Design D ₅₀ =6Minimum Mantle Thickness =12Minimum Length of Apron =18.0ftCalculated using Equation 9-16 in the USDCM Vol 2. $d_{\pi} = \frac{0.023Q}{Y_{L}^{12}D_{2}^{0.1}}$ Equation 9-12Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2 $L_{\mu} = \left(\frac{1}{2\tan\theta}\left(\frac{A}{Y_{\mu}} - \mu'\right)$ Equation 9-11 $A_{\mu} = \frac{Q}{\mu}$ Equation 9-12Where:Where: $L_{\mu} = (and) (A_{\mu} - \mu')$ Equation 20.11 $A_{\mu} = and (A_{\mu} - \mu')$ $A_{\mu} = capired area of flow at allowable velocity (th)\theta = design discharge (cfs)A_{\mu} = required area of flow at allowable velocity (th)\theta = destansion angle of the culvert flowA_{\mu} = required area of flow at allowable velocity (th)\theta = the expansion follow criteria in the USDCM Vol.2 Chapter 92Calculations follow criteria in the USDCM Vol.2 Chapter 9Calculations assume a circular culvert3This spreadsheet assumes y_{\mu}/D_{\mu}-D_{\mu} in cases where y_{\mu} is unknown or a hydraulic jump is suspected downstream of the outlet.The true USDCM Vol.2 in no case should t_{\mu} be less than 3D, nor does t_{\mu} need$	HRGreen	FES 14D	RIPRAP	Date:	10/25/2024
Flow (Q)40Tailwater depth (Y1)2.40Conduit Diameter (D2)72inExpansion Factor (per Fig. 9-35)Soil TypeNon-Cohesive SoilsSoil TypeNon-Cohesive SoilsCalculated Parameters0.45D ₅₀ =0.45D ₅₀ =2.26InUDFCD Riprap Type =Type VLDesign D ₅₀ =Design D ₅₀ =6Minimum Mantle Thickness =12Minimum Length of Apron =18.0ftCalculated using Equation 9-16 in the USDCM Vol 2. $d_{\pi} = \frac{0.023Q}{Y_{L}^{12}D_{2}^{0.1}}$ Equation 9-12Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2 $L_{\mu} = \left(\frac{1}{2\tan\theta}\left(\frac{A}{Y_{\mu}} - \mu'\right)$ Equation 9-11 $A_{\mu} = \frac{Q}{\mu}$ Equation 9-12Where:Where: $L_{\mu} = (and) (A_{\mu} - \mu')$ Equation 20.11 $A_{\mu} = and (A_{\mu} - \mu')$ $A_{\mu} = capired area of flow at allowable velocity (th)\theta = design discharge (cfs)A_{\mu} = required area of flow at allowable velocity (th)\theta = destansion angle of the culvert flowA_{\mu} = required area of flow at allowable velocity (th)\theta = the expansion follow criteria in the USDCM Vol.2 Chapter 92Calculations follow criteria in the USDCM Vol.2 Chapter 9Calculations assume a circular culvert3This spreadsheet assumes y_{\mu}/D_{\mu}-D_{\mu} in cases where y_{\mu} is unknown or a hydraulic jump is suspected downstream of the outlet.The true USDCM Vol.2 in no case should t_{\mu} be less than 3D, nor does t_{\mu} need$				1	
Tailwater depth $(Y_1)$ 2.40 ftConduit Diameter $(D_c)$ 72 inExpansion Factor (per Fig. 9-35)4.5 Soil TypeNon-Cohesive SoilsSoil TypeNon-Cohesive SoilsFroude Parameter $(Q/D^{2.5})$ 0.45 Ds_0 = $D_{50} =$ 2.26 inUDFCD Riprap Type =Type VL Design Ds_0 =Design Ds_0 =6 inMinimum Mantle Thickness =12 in Minimum Length of Apron =Minimum Length of Apron =18.0 ftCalculated Ds_0 for riprap was calculated using Equation 9-16 in the USDCM Vol 2. $d_{=} = \frac{0.023Q}{Y_r^{-1}D_c^{-1}}$ Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2 $L_r = \left(\frac{1}{2 \tan \theta} in \int_{Y_r}^{A_r} \mu^r in \int_{D_r}^{B_{11}} \mu_r in \int_{P_r}^{Q_r} \mu_r in in the use of flow at allowable velocity in the downstream channel (fl/sec)Y_r unitward rdeph (fl)\theta = the expansion angle of the culvert flowVote:* Calculations follow criteria in the USDCM Vol.2 Chapter 9Calculations assume a circular culvert* This spreadsheet assumes y_r/D_r = 0.4 in cases where y_r is unknown or a hydraulic jump is suspected downstream of the outlet.* Per the USDCM Vol.2 in no case should L_p be less than 3D, nor does L_p need to be greater than 10D whenever the Froude parameter is greater than 6.0. whenever the Froude parameter is greater than 6.0. whenever the Froude parameter is greater than 6.0.$		Input Para	ameters		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
Expansion Factor (per Fig. 9-35)4.5Soil TypeNon-Cohesive Soils $\overline{Soil Type}$ Non-Cohesive Soils $\overline{Soil Type}$ 0.45 $\overline{Soil Type}$ 0.45 $\overline{P_{50}} =$ 2.26 $\overline{P_{50}} =$ 7.26 $\overline{UDFCD}$ Riprap Type =Type VLDesign $D_{50} =$ 12 $\overline{D_{50}} =$ 18.0ft $\overline{D_{50}} =$ Calculated D ₅₀ for riprap was calculated using Equation 9-16 in the USDCM Vol 2. $\mathcal{L}_{r} = \left(\frac{1}{2\tan\theta}\int_{0}^{1} \frac{\mathcal{A}_{r}}{Y_{r}}\right)$ Equation 9-11 $\mathcal{L}_{r} = equired area of flow at allowable non-croding velocity in the downstream channel (fl/sec)Y_{r} tailwater depth (f)\mathcal{A}_{r} required area of flow at allowable velocity (ff)\theta = the equations angle of the culvert flow\mathcal{A}_{r} required area of flow at allowable velocity (ff)\theta = the equations assume a circular culvert\mathcal{A}_{r} required area of thow at allowable velocity (ff)\theta = the USDCM Vol.2 Chapter 9\mathcal{C} alculations assume a circular culvert\mathcal{A} Is spreadsheet assumes \gamma_{r}/D_{r}=0.4 in cases where \gamma_{r} is unknown or a hydraulic jump is suspected downs$		Tailwater depth (Y _t )	2.40	ft	
Soil TypeNon-Cohesive SoilsSoil TypeCalculated ParametersFroude Parameter ( $Q/D^{2.5}$ )0.45 $D_{50} =$ 2.26UDFCD Riprap Type =Type VLDesign $D_{50} =$ 6inMinimum Mantle Thickness =12inMinimum Length of Apron =18.0ftftCalculated $D_{50}$ for riprap was calculated using Equation 9-16 in the USDCM Vol 2. $d = = \frac{0.023Q}{Y_t^{1/3}D_s^{0.3}}$ Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2 $L_r = (\frac{1}{2 \tan \theta} (\frac{d}{Y_t} - W)$ Equation 9-11 $A_r = \frac{Q}{V}$ Where: $L_r$ = length of protection (ft) $W$ = the allowable non-croding velocity in the downstream channel (ft/sec) $Y$ = tailwater depth (ft) $A_r$ = required area of flow at allowable velocity (ft) $\theta$ = the expansion angle of the culvert flowNote: ² Calculations follow criteria in the USDCM Vol.2 Chapter 9 ² Calculations assume a circular culvert ³ This spreadsheet assumes $y_r/D_r=0.4$ in cases where $y_r$ is unknown or a hydraulic jump is suspected downstream of the outlet. ⁴ Per the USDCM Vol.2 in no case should L _p be less than 3D, nor does L _p need to be greater than 10D whenever the Froude parameter is greater than 6, increase the		Conduit Diameter (D _c )	72	in	
Calculated ParametersFroude Parameter (Q/D25)0.45Ds0 =2.26InUDFCD Riprap Type =Type VIDesign Ds0 =Design Ds0 =6Minimum Mantle Thickness =12Minimum Mantle Thickness =12InMinimum Length of Apron =18.0ftCalculated Ds0 for riprap was calculated using Equation 9-16 in the USDCM Vol 2. $d = = \frac{0.023Q}{V_t^{-12}D_c^{-3}}$ Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2 $L_r = (\frac{1}{2 \tan \theta})(\frac{A}{Y_c} - W)$ Equation 9-11Where:Where: $L_r = \log fin of protection (fi)$ $Q = design discharge (cfs)$ $W = width of the conduit (fit, use diameter for circular conduits)V = the allowable non-eroding velocity in the downstream channel (ft/sec)Y_r = tuitwater depth (fit)A = required area of flow at allowable velocity (ft2)\theta = the capansion angle of the cutvert flowA = required area of flow at allowable velocity (ft2)A = total cutors of low criteria in the USDCM Vol. 2 Chapter 9A = caparise assume a circular cutvert13 This spreadsheet assumes y_1/D_1=0.4 in cases where y_1 is unknown or a hydraulic jump is suspected downstream of the outlet.14 Per the USDCM Vol.2 in no case should L_p be less than 3D, nor does L_p need to be greater than 10D whenever the Froude parameter is greater than 6, increase the$		Expansion Factor (per Fig. 9-35	i) 4.5		
Froude Parameter $(Q/D^{2.5})$ 0.45 $D_{50} =$ 2.26UDFCD Riprap Type =Type VLDesign $D_{50} =$ 6Minimum Mantle Thickness =12Minimum Length of Apron =18.0ftCalculated $D_{50}$ for riprap was calculated using Equation 9-16 in the USDCM Vol 2. $d_{=} = \frac{0.023Q}{Y_{L}^{1.2}D_{c}^{0.3}}$ Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2 $L_{\mu} = \left(\frac{1}{2\tan\theta}\right)\left(\frac{A}{Y_{L}} - W\right)$ Equation 9-11 $A_{i} = \frac{Q}{Y}$ Equation 9-12Where:Where: $L_{\mu} = \log h of protection (fh)$ $Q = design discharge (efs)$ $W = width of the conduit (ft, use diameter for circular conduits)V = the allowable non-eroding velocity in the downstream channel (ft/sec)Y_{i} = tailwater depth (ft)A_{i} = required area of flow at allowable velocity (ft2)\theta = the expansion angle of the culvert flowA_{i} = required area of flow at allowable velocity (ft2)\theta^{2} Calculations follow criteria in the USDCM Vol.2 Chapter 92^{2} Calculations assume a circular culvertd^{3} This spreadsheet assumes y_{i}/D_{i}=0.4 in cases where y_{i} is unknown or a hydraulic jump is suspected downstream of the outlet.d^{4} Per the USDCM Vol.2 in no case should L_{p} be less than 3D, nor does L_{p} need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase the$		Soil Type	Non-Cohesive Soils		
Froude Parameter $(Q/D^{2.5})$ 0.45 $D_{50} =$ 2.26UDFCD Riprap Type =Type VLDesign $D_{50} =$ 6Minimum Mantle Thickness =12Minimum Length of Apron =18.0ftCalculated $D_{50}$ for riprap was calculated using Equation 9-16 in the USDCM Vol 2. $d_{=} = \frac{0.023Q}{Y_{L}^{1.2}D_{c}^{0.3}}$ Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2 $L_{\mu} = \left(\frac{1}{2\tan\theta}\right)\left(\frac{A}{Y_{L}} - W\right)$ Equation 9-11 $A_{i} = \frac{Q}{Y}$ Equation 9-12Where:Where: $L_{\mu} = \log h of protection (fh)$ $Q = design discharge (efs)$ $W = width of the conduit (ft, use diameter for circular conduits)V = the allowable non-eroding velocity in the downstream channel (ft/sec)Y_{i} = tailwater depth (ft)A_{i} = required area of flow at allowable velocity (ft2)\theta = the expansion angle of the culvert flowA_{i} = required area of flow at allowable velocity (ft2)\theta^{2} Calculations follow criteria in the USDCM Vol.2 Chapter 92^{2} Calculations assume a circular culvertd^{3} This spreadsheet assumes y_{i}/D_{i}=0.4 in cases where y_{i} is unknown or a hydraulic jump is suspected downstream of the outlet.d^{4} Per the USDCM Vol.2 in no case should L_{p} be less than 3D, nor does L_{p} need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase the$		Calculated P	arameters		
$\begin{array}{c c} \hline D_{50} = & 2.26 \\ \hline UDFCD Riprap Type = & Type VL \\ \hline Design D_{50} = & 6 \\ \hline in \\ \hline Minimum Mantle Thickness = & 12 \\ \hline in \\ \hline Minimum Length of Apron = & 18.0 \\ \hline ft \\ \hline \end{array}$ Calculated D ₅₀ for riprap was calculated using Equation 9-16 in the USDCM Vol 2. $d_{=} = \frac{0.023Q}{Y_{t}^{1/2}D_{a}^{0.2}}$ Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol 2 $L_{p} = \left(\frac{1}{2\tan\theta}\right)\left(\frac{A}{Y_{t}} - W\right) \qquad \text{Equation 9-11} \qquad A_{i} = \frac{Q}{Y} \qquad \text{Equation 9-12} \\ \hline Where: & Where: \\ L_{p} = length of protection (ft) \qquad Q = design discharge (cfs) \\ W = width of the conduit (ft, use diameter for circular conduits) \\ Y_{c} = tailwater depth (ft) \qquad A_{i} = required area of flow at allowable velocity (ft2) \\ \theta = the expansion angle of the culvert flow \\ \frac{1}{2}$ Calculations follow criteria in the USDCM Vol.2 Chapter 9 $\frac{2}{2}$ Calculations assume a circular culvert $\frac{1}{3}$ This spreadsheet assumes $y_{c}/D_{t}=0.4$ in cases where $y_{t}$ is unknown or a hydraulic jump is suspected downstream of the outlet. $\frac{1}{3}$ The USDCM Vol.2 in no case should $L_{p}$ be less than 3D, nor does $L_{p}$ need to be greater than 10D whenever the Froude parameter is greater than 6, increase the					
UDFCD Riprap Type =Type VI Design D_{50} =Design D_{50} =6Minimum Mantle Thickness =12Minimum Length of Apron =18.0ftCalculated D_{50} for riprap was calculated using Equation 9-16 in the USDCM Vol 2. $d = \frac{0.023Q}{Y_t^{1/2}D_c^{0.3}}$ Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2 $L_p = \left(\frac{1}{2 \tan \theta}\right) \left(\frac{A_t}{Y_t} - W\right)$ Equation 9-11 $A_t = \frac{Q}{V}$ Equation 9-12Where: $L_r = \text{length of protection (ff)}$ $W = \text{width of the conduit (A, use diameter for circular conduits)}$ $Y_r = \text{tailwater depth (ff)}$ $\theta = \text{the expansion angle of the culvert flow}$ A_t = required area of flow at allowable velocity (ft²) $\theta = \text{the expansion angle of the culvert flow}$ This spreadsheet assume a circular culvert ³ This spreadsheet assumes $y_t/D_t=0.4$ in cases where $y_t$ is unknown or a hydraulic jump is suspected downstream of the outlet. ⁴ Per the USDCM Vol.2 in no case should $L_p$ be less than 3D, nor does $L_p$ need to be greater than 10D whenever the Froude parameter is greater than 6, increase the				in	
Design $D_{50} = 1$ Image: Constraint of the second se					
Minimum Mantle Thickness =12Minimum Length of Apron =18.0ftCalculated D ₅₀ for riprap was calculated using Equation 9-16 in the USDCM Vol 2. $d_{w} = \frac{0.023Q}{r_{t}^{1/2}D_{e}^{0.3}}$ Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2 $L_{\mu} = \left(\frac{1}{2 \tan \theta}\right) \left(\frac{A}{r_{e}} - W\right)$ Equation 9-11 $A_{i} = \frac{Q}{V}$ Where: $L_{r} = \text{length of protection (ft)}$ $W = \text{width of the conduit (ft, use diameter for circular conduits)}$ $V = \text{the allowable non-eroding velocity in the downstream channel (ft/sec)$ $V_{r} = \text{tailwater depth (ft)}$ $q = \text{the expansion angle of the culvert flow}$ Note: ¹² ¹² ¹² ¹² ¹² ¹³ ¹⁴ ¹⁵ ¹⁶ ¹⁶ ¹⁶ ¹⁶ ¹⁷ ¹⁶ ¹⁷ ¹⁶ ¹⁷ ¹⁷ ¹⁸ ¹⁹ ¹⁹ ¹⁹ ¹⁰ ¹¹ ¹¹ ¹¹ ¹¹ <				in	
Minimum Length of Apron =18.0ftCalculated D50 for riprap was calculated using Equation 9-16 in the USDCM Vol 2. $d = \frac{0.023Q}{Y_t^{1/2}D_c^{0.3}}$ $d = \frac{0.023Q}{Y_t^{1/2}D_c^{0.3}}$ Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2 $L_r = \left(\frac{1}{2 \tan \theta}\right) \left(\frac{A_r}{Y_r} - W\right)$ Equation 9-11 $A_r = \frac{Q}{Y}$ Where:Where:Where: $V = 4eaign discharge (cfs)$ $V = the allowable non-eroding velocity in the downstream channel (ft/sec)$ $Y_r = tailwater depth (ft)$ $\theta = the expansion angle of the culvert flowV = the allowable non-eroding velocity (ft²)Note:A_r = required area of flow at allowable velocity (ft²)A_r = tailwater depth (ft)A_r = required area of flow at allowable velocity (ft²)A_r = tailwater depth (ft)A_r = required area of flow at allowable velocity (ft²)A_r = tailwater depth (ft)A_r = required area of flow at allowable velocity (ft²)A_r = required area of flow at allowable velocity (ft²)A_r = required area of flow at allowable velocity (ft²)A_r = required area of flow at allowable velocity (ft²)A_r = required area of flow at allowable velocity (ft²)A_r = required area of flow at allowable velocity (ft²)A_r = required area of flow at allowable velocity (ft²)A_r = required area of flow at allowable velocity (ft²)A_r = required area of flow at allowable velocity (ft²)A_r = required area of flow at allowable velocity (ft²)A_r = required area of flow at allowable velocity (ft²)A_r = required area of flow at allowable velocity (ft²)A_r = required area of flow at allowab$					
Calculated D ₅₀ for riprap was calculated using Equation 9-16 in the USDCM Vol 2. $d_{ss} = \frac{0.023Q}{Y_t^{1/2}D_c^{0.3}}$ Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2 $L_{p} = \left(\frac{1}{2 \tan \theta}\right) \left(\frac{A_{t}}{Y_{t}} - W\right)$ Equation 9-11 $A_{t} = \frac{Q}{Y^{t}}$ Equation 9-12 Where: $L_{p} = \text{length of protection (fh)}$ $Q = \text{design discharge (cfs)}$ $W = \text{width of the conduit (fh, use diameter for circular conduits)}$ $Y_{t} = \text{tailwater depth (fh)}$ $\theta = \text{the expansion angle of the culvert flow}$ Note: ¹ Calculations follow criteria in the USDCM Vol.2 Chapter 9 ² Calculations assume a circular culvert ³ This spreadsheet assumes $y_t/D_t=0.4$ in cases where $y_t$ is unknown or a hydraulic jump is suspected downstream of the outlet. ⁴ Per the USDCM Vol.2 in no case should $L_p$ be less than 3D, nor does $L_p$ need to be greater than 10D whenever the Froude parameter is greater than 6, increase the					
$L_{p} = \left(\frac{1}{2 \tan \theta}\right) \left(\frac{A_{r}}{Y_{r}} - W\right) \qquad \text{Equation 9-11} \qquad A_{r} = \frac{Q}{V} \qquad \text{Equation 9-12}$ Where: $L_{p} = \text{length of protection (ft)} \qquad Q = \text{design discharge (cfs)} \qquad V = \text{the allowable non-eroding velocity in the downstream channel (ft/sec)} \qquad Y_{r} = \text{tailwater depth (ft)} \qquad A_{r} = \text{required area of flow at allowable velocity (ft2)} \qquad \theta = \text{the expansion angle of the culvert flow} \qquad V = \text{the allowable non-eroding velocity (ft2)} \qquad \theta = \text{the expansion angle of the culvert flow} \qquad V = \text{the allowable velocity (ft2)} \qquad \theta = \text{the expansion angle of the culvert flow} \qquad V = \text{the allowable velocity (ft2)} \qquad \theta = \text{the expansion angle of the culvert flow} \qquad V = \text{the allowable velocity (ft2)} \qquad \theta = \text{the expansion angle of the culvert flow} \qquad V = \text{the allowable velocity (ft2)} \qquad \theta = \text{the expansion angle of the culvert flow} \qquad V = \text{the allowable velocity (ft2)} \qquad \theta = \text{the expansion angle of the culvert flow} \qquad V = \text{the allowable velocity (ft2)} \qquad \theta = \text{the expansion angle of the culvert} \qquad \Psi = \text{the USDCM Vol.2 Chapter 9} \qquad \Psi = the USDCM Vol.2 in no case should Lp be less than 3D, nor does Lp need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase the expansion of the culvert is less than 6.0. Whenever the Froude parameter is greater than 6, increase the expansion of the culvert is less than 6.0. Whenever the Froude parameter is greater than 6, increase the expansion is the super the fourter is less than 6.0. Whenever the Froude parameter is greater than 6, increase the expansion is the super the fourter is the fourter is the fourter is greater than 6, increase the fourter is greater than 6, increase the fourter is the fourter$	Calculated D ₅₀ for rip		on 9-16 in the USDCM Vol 2.		
Where:Where: $L_p$ = length of protection (ff) $Q$ = design discharge (cfs) $W'$ = width of the conduit (ft, use diameter for circular conduits) $V =$ the allowable non-eroding velocity in the downstream channel (ft/sec) $Y_r$ = tailwater depth (ff) $P$ = the allowable non-eroding velocity (ft²) $\theta$ = the expansion angle of the culvert flow $A_r$ = required area of flow at allowable velocity (ft²)Note:1 ¹ Calculations follow criteria in the USDCM Vol.2 Chapter 9 ² Calculations assume a circular culvert ³ This spreadsheet assumes $y_t/D_t=0.4$ in cases where $y_t$ is unknown or a hydraulic jump is suspecteddownstream of the outlet. ⁴ Per the USDCM Vol.2 in no case should $L_p$ be less than 3D, nor does $L_p$ need to be greater than 10D wheneverthe Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase the	Calculated minimum le	ngth of apron was calculated using	Equations 9-11 and 9-12 in the	USDCM Vol. 2	
$L_p$ = length of protection (ft) $Q$ = design discharge (cfs) $W$ = width of the conduit (ft, use diameter for circular conduits) $V$ = the allowable non-eroding velocity in the downstream channel (ft/sec) $Y_r$ = tailwater depth (ft) $A_r$ = required area of flow at allowable velocity (ft²) $\theta$ = the expansion angle of the culvert flow $A_r$ = required area of flow at allowable velocity (ft²) $\theta$ = the expansion angle of the culvert flow $A_r$ = required area of flow at allowable velocity (ft²) $\Phi$ = the expansion angle of the culvert flow $A_r$ = required area of flow at allowable velocity (ft²) $\Phi$ = the expansion angle of the culvert flow $A_r$ = required area of flow at allowable velocity (ft²) $\Phi$ = the expansion angle of the culvert $A_r$ = required area of flow at allowable velocity (ft²) $\Phi$ = the expansion angle of the culvert $A_r$ = required area of flow at allowable velocity (ft²) $\Phi$ = the USDCM Vol.2 chapter 9 $A_r$ = required area of flow at allowable velocity (ft²) $\Phi$ = 0.4 in cases where $y_t$ is unknown or a hydraulic jump is suspected $\Phi$ ownstream of the outlet. $\Phi$ = the USDCM Vol.2 in no case should $L_p$ be less than 3D, nor does $L_p$ need to be greater than 10D whenever $\Phi$ = froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase the	$L_p = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_t}{Y_t}\right)$	W Equation 9-11	$A_t = \frac{Q}{V}$		Equation 9-12
$W = \text{width of the conduit (ft, use diameter for circular conduits)} \qquad V = \text{the allowable non-eroding velocity in the downstream channel (ft/sec)} \\ Y_t = \text{tailwater depth (ft)} \qquad V = \text{the allowable non-eroding velocity in the downstream channel (ft/sec)} \\ A_t = \text{required area of flow at allowable velocity (ft^2)} \\ \theta = \text{the expansion angle of the culvert flow} \\ Note: \\ ^1 \text{Calculations follow criteria in the USDCM Vol.2 Chapter 9} \\ ^2 \text{Calculations assume a circular culvert}} \\ ^3 \text{This spreadsheet assumes } y_t/D_t = 0.4 \text{ in cases where } y_t \text{ is unknown or a hydraulic jump is suspected} \\ \text{downstream of the outlet.} \\ ^4 \text{ Per the USDCM Vol.2 in no case should } L_p \text{ be less than 3D, nor does } L_p \text{ need to be greater than 10D whenever} \\ \text{the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase the} \\ \end{array}$	Where:	W	here:		
$Y_t = \text{tailwater depth (ft)}$ $\theta = \text{the expansion angle of the culvert flow}$ At $e = \text{required area of flow at allowable velocity (ft2)}$ $\theta = \text{the expansion angle of the culvert flow}$ Note: ¹ Calculations follow criteria in the USDCM Vol.2 Chapter 9 ² Calculations assume a circular culvert ³ This spreadsheet assumes $y_t/D_t=0.4$ in cases where $y_t$ is unknown or a hydraulic jump is suspected downstream of the outlet. ⁴ Per the USDCM Vol.2 in no case should L _p be less than 3D, nor does L _p need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase the	$L_p$ = length of protection	on (ft)	Q = design discharge (cfs)		
$h_t$ – required area of now at anomable velocity (it') $h_t$ – required area of now at anomable velocity (it') Note: ¹ Calculations follow criteria in the USDCM Vol.2 Chapter 9 ² Calculations assume a circular culvert ³ This spreadsheet assumes $y_t/D_t$ =0.4 in cases where $y_t$ is unknown or a hydraulic jump is suspected downstream of the outlet. ⁴ Per the USDCM Vol.2 in no case should L _p be less than 3D, nor does L _p need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase the	W = width of the cond	uit (ft, use diameter for circular conduits)	V = the allowable non-eroding veloci	ty in the downstream	channel (ft/sec)
Note: ¹ Calculations follow criteria in the USDCM Vol.2 Chapter 9 ² Calculations assume a circular culvert ³ This spreadsheet assumes $y_t/D_t=0.4$ in cases where $y_t$ is unknown or a hydraulic jump is suspected downstream of the outlet. ⁴ Per the USDCM Vol.2 in no case should L _p be less than 3D, nor does L _p need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase the	$Y_t$ = tailwater depth (ft	)	$A_t$ = required area of flow at allowable	le velocity (ft2)	
<ol> <li>¹ Calculations follow criteria in the USDCM Vol.2 Chapter 9</li> <li>² Calculations assume a circular culvert</li> <li>³ This spreadsheet assumes y_t/D_t=0.4 in cases where y_t is unknown or a hydraulic jump is suspected downstream of the outlet.</li> <li>⁴ Per the USDCM Vol.2 in no case should L_p be less than 3D, nor does L_p need to be greater than 10D whenever the Froude parameter is greater than 6, increase the</li> </ol>	$\theta$ = the expansion angle	e of the culvert flow			
<ol> <li>¹ Calculations follow criteria in the USDCM Vol.2 Chapter 9</li> <li>² Calculations assume a circular culvert</li> <li>³ This spreadsheet assumes y_t/D_t=0.4 in cases where y_t is unknown or a hydraulic jump is suspected downstream of the outlet.</li> <li>⁴ Per the USDCM Vol.2 in no case should L_p be less than 3D, nor does L_p need to be greater than 10D whenever the Froude parameter is greater than 6, increase the</li> </ol>	Note:				
<ul> <li>² Calculations assume a circular culvert</li> <li>³ This spreadsheet assumes y_t/D_t=0.4 in cases where y_t is unknown or a hydraulic jump is suspected</li> <li>downstream of the outlet.</li> <li>⁴ Per the USDCM Vol.2 in no case should L_p be less than 3D, nor does L_p need to be greater than 10D whenever</li> <li>the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase the</li> </ul>		criteria in the USDCM Vol.2 Cha	apter 9		
³ This spreadsheet assumes y _t /D _t =0.4 in cases where y _t is unknown or a hydraulic jump is suspected downstream of the outlet. ⁴ Per the USDCM Vol.2 in no case should L _p be less than 3D, nor does L _p need to be greater than 10D whenever the Froude parameter is greater than 6, increase the	2				
downstream of the outlet. ⁴ Per the USDCM Vol.2 in no case should L _p be less than 3D, nor does L _p need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase the	2		y, is unknown or a hydraulic	iumn is suspect	red
⁴ Per the USDCM Vol.2 in no case should L _p be less than 3D, nor does L _p need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase the				Jump is suspeet	
the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase the			han 3D, nor does L, need to b	be greater than	10D whenever
	the Froude paramete	er is less than 6.0. whenever the	e Froude parameter is greater	r than 6, increas	se the

	FLYING HORSE NOF	RTH FILING NO. 4	<u>Calc'd by:</u>	тмм
ヨイゴ	211030		Checked by:	RHL
HRGreen	FES AD RIPRAP		Date:	10/25/2024
	Input Para	meters		
	Flow (Q)	156	cfs	
	Tailwater depth (Y _t )	1.80	ft	
	Conduit Diameter (D _c )	54	in	
	Expansion Factor (per Fig. 9-35)	3.5		
	Soil Type	Non-Cohesive Soils		
	Calculated Pa	romotors		
	Froude Parameter (Q/D ^{2.5} )	3.63		
	$D_{50} =$	13.54	in	
	UDFCD Riprap Type =	Type H		
	Design $D_{50} =$	18	in	
	Minimum Mantle Thickness =	36		
	Minimum Length of Apron =	44.9		
	$d_{so} = \frac{0.023Q}{Y_t^{1.2} D_c^{0.3}}$			
	ngth of apron was calculated using			
$L_p = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_t}{Y_t}\right)$	- W Equation 9-11	$A_t = \frac{Q}{V}$		Equation 9-12
Where:	Wh	ere:		
$L_p$ = length of protection	on (ft)	Q = design discharge (cfs)		
W = width of the condu	uit (ft, use diameter for circular conduits)	V = the allowable non-eroding veloci	ity in the downstream	channel (ft/sec)
$Y_t$ = tailwater depth (ft	)	$A_t$ = required area of flow at allowab	le velocity (ft2)	
$\theta$ = the expansion angl	e of the culvert flow			
Note:				
¹ Calculations follow	criteria in the USDCM Vol.2 Cha	pter 9		
² Calculations assume	e a circular culvert			
³ This spreadsheet as	sumes $y_t/D_t=0.4$ in cases where	y _t is unknown or a hydraulic	jump is suspect	ted
downstream of the o	outlet.			
⁴ Per the USDCM Vol	.2 in no case should L _p be less th	an 3D, nor does L _p need to b	be greater than	10D whenever
	er is less than 6.0. whenever the d by 1/4 D _c for each whole numb			
4				

	FLYING HORSE NORT	TH FILING NO. 4	Calc'd by:	тмм
ヨイイズ	211030		Checked by:	RHL
HRGreen	FES BD RII	PRAP	Date:	10/25/2024
	·			
	Input Param	eters		
	Flow (Q)	213.6	cfs	
	Tailwater depth (Y _t )	2.00	ft	
	Conduit Diameter (D _c )	60	in	
	Expansion Factor (per Fig. 9-35)	3.5		
	Soil Type	Non-Cohesive Soils		
	Calculated Para	ameters		
	Froude Parameter (Q/D ^{2.5} )	3.82		
	D ₅₀ =	15.83	in	
	UDFCD Riprap Type =	Туре Н		
	Design D ₅₀ =	18	in	
	Minimum Mantle Thickness =	36	in	
	Minimum Length of Apron =	57.3		
Calculated minimum le	$d_{so} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$ Ength of apron was calculated using Eq	uations 9-11 and 9-12 in the	USDCM Vol. 2	
$L_p = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_t}{Y_t}\right)$	-W Equation 9-11	$A_t = \frac{Q}{V}$		Equation 9-12
Where:	Where			
$L_p = \text{length of protecti}$	on (ft)	2 = design discharge (cfs)		
W = width of the cond	luit (ft, use diameter for circular conduits)	= the allowable non-eroding veloci	ty in the downstream	channel (ft/sec)
$Y_t$ = tailwater depth (fi	b)A	$t_t =$ required area of flow at allowabl	e velocity (ft2)	
$\theta$ = the expansion ang	le of the culvert flow			
Note:				
¹ Calculations follow	criteria in the USDCM Vol.2 Chapt	er 9		
² Calculations assum	e a circular culvert			
³ This spreadsheet as	ssumes $y_t/D_t=0.4$ in cases where $y_t$	is unknown or a hydraulic	jump is suspect	ed
downstream of the d		,		
⁴ Per the USDCM Vo	l.2 in no case should $L_p$ be less thar	n 3D, nor does $L_p$ need to b	e greater than	10D
	e parameter is less than 6.0. when			
the maximum L _p req	uired by 1/4 $D_c$ for each whole nur	nber by which the Froude	parameter is gr	eater than 6

	FLYING HORSE NOR	TH FILING NO. 4	<u>Calc'd by:</u>	ТММ
コートノブ	211030		Checked by:	RHL
HRGreen	HRGreen FES CD RIPRAP		<u>Date:</u>	10/25/2024
	1			
	Input Parar	neters		
	Flow (Q)	64.2	cfs	
	Tailwater depth (Y _t )	1.20		
	Conduit Diameter (D _c )	36	in	
	Expansion Factor (per Fig. 9-35)	3.25		
	Soil Type	Non-Cohesive Soils		
		·		
	Calculated Pa	rameters		
	Froude Parameter (Q/D ^{2.5} )	4.12		
	D ₅₀ =	10.24	in	
	UDFCD Riprap Type =	Туре М		
	Design D ₅₀ =	12	in	
	Minimum Mantle Thickness =	24		
	Minimum Length of Apron =	25.0	ft	
Calculated minimum le	$d_{ss} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$ ength of apron was calculated using E	Equations 9-11 and 9-12 in the	USDCM Vol. 2	
$L_p = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_t}{Y_t}\right)$	- W Equation 9-11	$A_t = \frac{Q}{V}$		Equation 9-12
Where:	Who	ere:		
$L_p = \text{length of protection}$	on (ft)	Q = design discharge (cfs)		
W = width of the cond	luit (ft, use diameter for circular conduits)	V = the allowable non-eroding veloci	ity in the downstream	channel (ft/sec)
$Y_t$ = tailwater depth (f	0	$A_t$ = required area of flow at allowab	le velocity (ft2)	
$\theta$ = the expansion ang	le of the culvert flow			
Note:				
	criteria in the USDCM Vol.2 Char	nter 9		
² Calculations assum				
		, is unknown or a hydraulis	iump is suspect	tod
downstream of the d	ssumes y _t /D _t =0.4 in cases where y	t is ulikilowil of a liyuraulic	Jump is suspect	leu
	I.2 in no case should L _p be less that	an 3D nor does I need to h	o greater than	10D whenever
	er is less than 6.0. whenever the			
	d by $1/4 D_c$ for each whole numb			
	, , , ,	,		



El Paso County, Colorado

# WEIR SECTION ANALYSIS MAJOR STORM (100-YEAR)

## **Worksheet for Pond A Rundown**

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.040	
Channel Slope	10.40 %	
Bottom Width	17.81 ft	
Discharge	284.00 cfs	
Results		
Normal Depth	1.3 ft	
Flow Area	22.3 ft ²	
Wetted Perimeter	20.3 ft	
Hydraulic Radius	1.1 ft	
Top Width	17.81 ft	
Critical Depth	2.0 ft	
Critical Slope	2.43 %	
Velocity	12.75 ft/s	
Velocity Head	2.52 ft	
Specific Energy	3.78 ft	
Froude Number	2.009	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	1.3 ft	
Critical Depth	2.0 ft	
Channel Slope	10.40 %	
Critical Slope	2.43 %	

### **Worksheet for Pond B Rundown**

Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient	0.040	
Channel Slope	5.00 %	
Bottom Width	16.75 ft	
Discharge	297.40 cfs	
Results		
Normal Depth	1.7 ft	
Flow Area	28.4 ft ²	
Wetted Perimeter	20.1 ft	
Hydraulic Radius	1.4 ft	
Top Width	16.75 ft	
Critical Depth	2.1 ft	
Critical Slope	2.45 %	
Velocity	10.46 ft/s	
Velocity Head	1.70 ft	
Specific Energy	3.40 ft	
Froude Number	1.415	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	1.7 ft	
Critical Depth	2.1 ft	
Channel Slope	5.00 %	
Critical Slope	2.45 %	

## Worksheet for Pond C Rundown

Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient	0.040	
Channel Slope	3.00 %	
Bottom Width	9.30 ft	
Discharge	63.70 cfs	
Results		
Normal Depth	1.1 ft	
Flow Area	10.5 ft ²	
Wetted Perimeter	11.6 ft	
Hydraulic Radius	0.9 ft	
Top Width	9.30 ft	
Critical Depth	1.1 ft	
Critical Slope	2.99 %	
Velocity	6.05 ft/s	
Velocity Head	0.57 ft	
Specific Energy	1.70 ft	
Froude Number	1.001	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	1.1 ft	
Critical Depth	1.1 ft	
Channel Slope	3.00 %	
Critical Slope	2.99 %	



El Paso County, Colorado

# **APPENDIX D**

## WATER QUALITY AND DETENTION CALCULATIONS

#### Flying Horse North Filing No. 4 - Detention Modeling Summary

	Pond A Develo	ped Parameters	6
Catchment			Percent
Name/ID	Area (sq.mi.)	Area (ac.)	Imperv.
A1	0.017	10.84	10.2
A2	0.017	10.79	11.0
A3	0.111	71.16	4.1
A4	0.029	18.71	11.0
A5	0.004	2.47	11.0
A6	0.010	6.38	11.0
A7	0.013	8.13	11.0
Total		128.48	7.1

Peak Stor	Peak Release	
(cu-ft) (ac-ft)		(cfs)
111,834	2.6	160.8

Pre-Develo	Pre-Development Flow		
Catchment	Catchment Peak Flow		
Name/ID	(cfs)		
A1	97.1		
A2	71.2		
G1	10.8		
H1	94.0		
Total 273.2			
O_BASIN_H	267.4		

Post-Develo	pment Flow	]
Catchment	Peak Flow	]
Name/ID	(cfs)	
A1	14.3	
A2	19.6	
A3	101.6	
A4	20.0	
A5	4.7	
A6	11.7	
A7	17.1	
G1	5.7	
G2	7.2	
H1	7.7	
H2	35.0	
H3	66.9	
Total	311.6	Direct summation
O_BASIN_H	248.5	Less than or equal to historic at same locati

Pond B Developed Parameters							
Catchment Percent							
Name/ID	Area (sq.mi.)	Area (ac.)	Imperv.				
B1	0.090	57.78	4.1				
B2	0.056	35.77	11.7				
B3	0.002	1.10	33.7				
Total		94.65	7.3				

Peak Stor	Peak Release		
(cu-ft)	(ac-ft)	(cfs)	
103,808	2.4	216.7	

Pre-Development Flow						
Catchment	Peak Flow					
Name/ID	(cfs)					
B1	148.9					
B2	75.8					
B3	18.8					
B4	19.6					
Total	263.0					
O_BASIN_B	262.7					

Post-Development Flow		]
Catchment	Peak Flow	
Name/ID	(cfs)	
B1	182.0	Detained
B2	49.5	Detained
B3	3.0	Detained
B4	15.1	Detained
B5	18.9	Undetained
B6	33.9	Undetained
Total	302.3	Direct summation
O BASIN B	262.4	Less than or equal to historic at same location

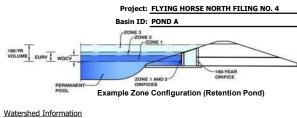
Pond C Developed Parameters								
Catchment Percent								
Name/ID	Area (sq.mi.)	Area (ac.)	Imperv.					
C1	0.025	15.94	10.5					
C2	0.003	1.98	20.9					
C3	0.033	21.39	9.3					
Total		39.31	10.4					

Peak Stor	Peak Release				
(cu-ft)	(cu-ft) (ac-ft)				

Pre-Development Flow						
Catchment	Peak Flow					
Name/ID	(cfs)					
C1	24.7					
C2	39.8					
C3	9.7					
C4	4.0					
Total	78.2					
O_BASIN_C 78.0						

Post-Development Flow		
Catchment Peak Flow		
Name/ID (cfs)		
C1	27.7	Detained
C2	3.0	Detained
C3	39.0	Detained
C4	10.3	Undetained
C5	4.0	Undetained
Total	84.1	Direct summation
O_BASIN_C	73.2	Less than or equal to historic at same locatio




El Paso County, Colorado

# **POND A**

#### DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

Depth Increment =

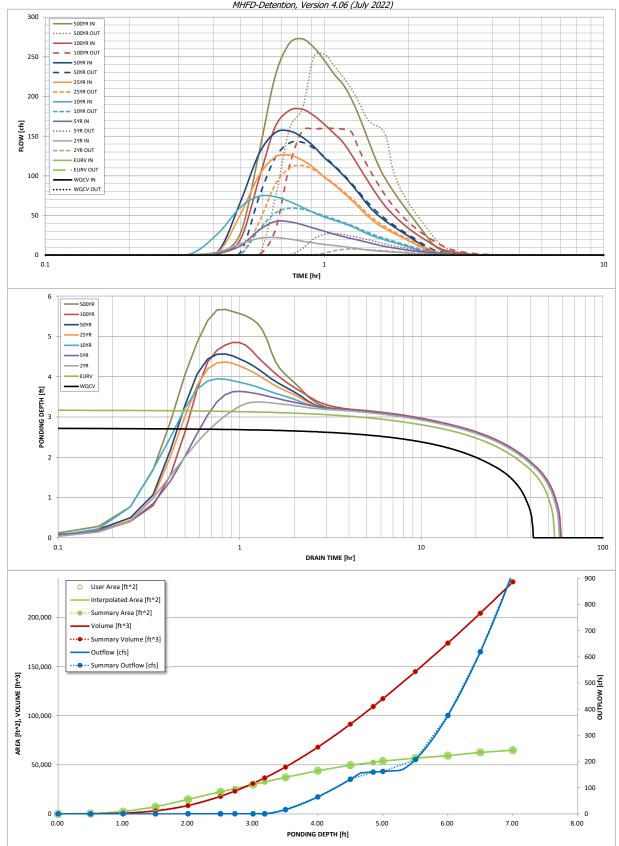


Selected BMP Type =	EDB	
Watershed Area =	128.48	acres
Watershed Length =	3,560	ft
Watershed Length to Centroid =	1,400	ft
Watershed Slope =	0.040	ft/ft
Watershed Imperviousness =	7.10%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	-

# After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

	7			
the embedded Colorado Urban Hydro	graph Procedu	ire.	Optional User	Overrio
Water Quality Capture Volume (WQCV) =	0.532	acre-feet		acre-fe
Excess Urban Runoff Volume (EURV) =	0.834	acre-feet		acre-fe
2-yr Runoff Volume (P1 = 1.19 in.) =	1.441	acre-feet	1.19	inches
5-yr Runoff Volume (P1 = 1.5 in.) =	3.437	acre-feet	1.50	inches
10-yr Runoff Volume (P1 = 1.75 in.) =	5.467	acre-feet	1.75	inches
25-yr Runoff Volume (P1 = 2 in.) =	9.207	acre-feet	2.00	inches
50-yr Runoff Volume (P1 = 2.25 in.) =	11.701	acre-feet	2.25	inches
100-yr Runoff Volume (P1 = 2.52 in.) =	15.348	acre-feet	2.52	inches
500-yr Runoff Volume (P1 = 3.14 in.) =	21.917	acre-feet		inches
Approximate 2-yr Detention Volume =	0.514	acre-feet		-
Approximate 5-yr Detention Volume =	0.830	acre-feet		
Approximate 10-yr Detention Volume =	2.029	acre-feet		
Approximate 25-yr Detention Volume =	2.980	acre-feet		
Approximate 50-yr Detention Volume =	3.081	acre-feet		
Approximate 100-yr Detention Volume =	4.055	acre-feet		
		-		

	Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ² )	Area (ft ² )	(acre)	(ft 3)	(ac-ft)
7532	Top of Micropool		0.00				10	0.000		
	7532.5		0.50				376	0.009	96	0.002
	7533.0		1.00				2,192	0.050	738	0.017
	7533.5		1.50				7,097	0.163	3,061	0.070
	7534.0		2.00				14,797	0.340	8,534	0.196
	7534.5		2.50				22,565	0.518	17,875	0.410
	7535.0		3.00				29,838	0.685	30,975	0.711
	7535.5		3.50				37,249	0.855	47,747	1.096
	7536.0		4.00				43,958	1.009	68,049	1.562
	7536.5		4.50				49,678	1.140	91,458	2.100
	7537.0		5.00				53,785	1.235	117,324	2.693
	7537.5		5.50				56,812	1.304	144,973	3.328
	7538.0		6.00				59,334	1.362	174,009	3.995
	7538.5		6.50				62,623	1.438	204,499	4.695
Iser Overrides	7539.0		7.00				64,854	1.489	236,368	5.426
acre-feet										
acre-feet										
inches										
inches										
inches										
inches										
inches										
inches										
inches										
ention										
s less than										
volume.										


#### Define Zones and Basin Geometry

Zone 1 Volume (WQCV) =	0.532	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.302	acre-feet
Zone 3 Volume (User Defined - Zones 1 & 2) =	1.726	acre-feet
Total Detention Basin Volume =	2.560	acre-feet

acre-feet Total detention acre-feet volume is less that acre-feet 100-year volume

	DF	TENTION	BASIN OUT	I FT STRU	CTURE DE	SIGN			
Duricati			1HFD-Detention, V			51011			
Project: Basin ID:		URTH FILING NO. 4	+						
ZONE 3				Estimated	Estimated				
				Stage (ft)	Volume (ac-ft)	Outlet Type			
VOLUME EURY WOCY			Zone 1 (WQCV)		0.53	Orifice Plate	]		
	100-YEAR		Zone 2 (EURV)		0.30	Circular Orifice			
PERMANENT ORIFICES	ORIFICE		Zone 3 (User)	4.90	1.73	Weir&Pipe (Restrict)			
POOL Example Zone	Configuration (Ref	ention Pond)	2016 3 (0361)	Total (all zones)	2.56	Wend pe (Resulet)	J		
User Input: Orifice at Underdrain Outlet (typical	v used to drain WC	OCV in a Filtration B	MP)		2.50	_	Calculated Parame	ters for Underdrair	ı
Underdrain Orifice Invert Depth =	N/A		the filtration media	surface)	Under	drain Orifice Area =	N/A	ft ²	-
Underdrain Orifice Diameter =	N/A	inches		,	Underdrair	n Orifice Centroid =	N/A	feet	
		-						-	
User Input: Orifice Plate with one or more orific	· · · ·	1	-		,		Calculated Parame		
Centroid of Lowest Orifice =	0.00	• •	n bottom at Stage =		-	ice Area per Row =	1.208E-02	ft ²	
Depth at top of Zone using Orifice Plate =	2.72 N/A	inches	n bottom at Stage =	= 0 π)		iptical Half-Width =	N/A	feet feet	
Orifice Plate: Orifice Vertical Spacing = Orifice Plate: Orifice Area per Row =	1.74	sq. inches (diamet	rar = 1-1/2 inches)		•	ical Slot Centroid = Elliptical Slot Area =	N/A N/A	ft ²	
Office Plate. Office Area per Row -	1.74	Jsq. inches (diamet	$e_1 = 1^{-1/2}$ inches)		L		N/A	lic	
User Input: Stage and Total Area of Each Orific	<u>e Row (numbere</u> d f	rom lowest to high	<u>est)</u>						_
· · · · · · · · · · · · · · · · · · ·	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	]
Stage of Orifice Centroid (ft)	0.00	0.90	1.80						
Orifice Area (sq. inches)	1.74	1.74	1.74						
		1	1			1		1	-
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	-
Stage of Orifice Centroid (ft)									-
Orifice Area (sq. inches)									
User Input: Vertical Orifice (Circular or Rectang	ular)						Calculated Parame	ters for Vertical Or	ifice
	Zone 2 Circular	Not Selected	1				Zone 2 Circular	Not Selected	1
Invert of Vertical Orifice =	2.72	N/A	ft (relative to basir	n bottom at Stage =	= 0 ft) Ve	rtical Orifice Area =	0.03	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	3.18	N/A	ft (relative to basir	bottom at Stage =	= 0 ft) Vertica	I Orifice Centroid =	0.10	N/A	feet
Vertical Orifice Diameter =	2.29	N/A	inches						
User Input: Overflow Weir (Dropbox with Flat o			ctangular/Trapezoid 1	al Weir and No Out	<u>let Pipe)</u>		Calculated Parame		<u>Veir</u>
	Zone 3 Weir	Not Selected							
	3 1 9	N/A	ft (rolativo to bacin l	anttom at Stago = 0 f	+) Height of Grat	e linner Edge H. –	Zone 3 Weir	Not Selected	foot
Overflow Weir Front Edge Height, Ho =	3.18	N/A N/A		pottom at Stage = 0 f		e Upper Edge, H _t = /eir Slope Length =	3.18	N/A	feet
Overflow Weir Front Edge Length =	22.00	N/A	feet	-	Overflow W	/eir Slope Length =	3.18 5.00	N/A N/A	feet feet
				Gr	Overflow W ate Open Area / 10		3.18	N/A	-
Overflow Weir Front Edge Length = Overflow Weir Grate Slope =	22.00 0.00	N/A N/A	feet H:V	Gi	Overflow W ate Open Area / 10 verflow Grate Open	/eir Slope Length = 00-yr Orifice Area =	3.18 5.00 5.30	N/A N/A N/A	feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	22.00 0.00 5.00	N/A N/A N/A	feet H:V	Gi	Overflow W ate Open Area / 10 verflow Grate Open	/eir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris =	3.18 5.00 5.30 76.56	N/A N/A N/A N/A	feet ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % =	22.00 0.00 5.00 Type C Grate 50%	N/A N/A N/A N/A N/A	feet H:V feet %	Gi Oʻ (	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Ope	Veir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris = en Area w/ Debris =	3.18 5.00 5.30 76.56 38.28	N/A N/A N/A N/A N/A	feet ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type =	22.00 0.00 5.00 Type C Grate 50% e (Circular Orifice, R	N/A N/A N/A N/A N/A estrictor Plate, or F	feet H:V feet %	Gi Oʻ (	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Ope	/eir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris =	3.18 5.00 5.30 76.56 38.28 s for Outlet Pipe w/	N/A N/A N/A N/A Flow Restriction P	feet ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate	22.00 0.00 5.00 Type C Grate 50% e (Circular Orifice, R Zone 3 Restrictor	N/A N/A N/A N/A N/A Restrictor Plate, or F Not Selected	feet H:V feet % Rectangular Orifice)	Gi Oʻ	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open	Veir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris = 2 Area w/ Debris = 2 Area w/ Debris = 2 Alculated Parameter:	3.18 5.00 5.30 76.56 38.28 s for Outlet Pipe w/ Zone 3 Restrictor	N/A N/A N/A N/A Flow Restriction P Not Selected	feet ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe =	22.00 0.00 5.00 Type C Grate 50% e (Circular Orifice, R Zone 3 Restrictor 2.50	N/A N/A N/A N/A N/A Restrictor Plate, or R Not Selected N/A	feet H:V feet % <u>Rectangular Orifice)</u> ft (distance below bi	Gi Oʻ (	Overflow W ate Open Area / 10 verflow Grate Open Verflow Grate Open <u>Cr</u> = 0 ft) 0	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = en Area w/ Debris = alculated Parameter: Putlet Orifice Area =	3.18 5.00 5.30 76.56 38.28 s for Outlet Pipe w/ Zone 3 Restrictor 14.44	N/A N/A N/A N/A Flow Restriction P Not Selected N/A	feet ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	22.00 0.00 5.00 Type C Grate 50% 2 (Circular Orifice, R Zone 3 Restrictor 2.50 54.00	N/A N/A N/A N/A N/A Restrictor Plate, or R Not Selected	feet H:V feet % <u>Rectangular Orifice)</u> ft (distance below be inches	Gi Or (	Overflow W ate Open Area / 10 verflow Grate Open Sverflow Grate Open <u>Cr</u> = 0 ft) O Outle	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = in Area w/ Debris = alculated Parameter: vutlet Orifice Area = t Orifice Centroid =	3.18 5.00 5.30 76.56 38.28 s for Outlet Pipe w/ Zone 3 Restrictor 14.44 2.06	N/A N/A N/A N/A N/A Flow Restriction P Not Selected N/A N/A	feet ft ² ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe =	22.00 0.00 5.00 Type C Grate 50% 2 (Circular Orifice, R Zone 3 Restrictor 2.50 54.00	N/A N/A N/A N/A N/A Restrictor Plate, or R Not Selected N/A	feet H:V feet % <u>Rectangular Orifice)</u> ft (distance below bi	Gi Or (	Overflow W ate Open Area / 10 verflow Grate Open Sverflow Grate Open <u>Cr</u> = 0 ft) O Outle	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = en Area w/ Debris = alculated Parameter: Putlet Orifice Area =	3.18 5.00 5.30 76.56 38.28 s for Outlet Pipe w/ Zone 3 Restrictor 14.44	N/A N/A N/A N/A Flow Restriction P Not Selected N/A	feet ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	22.00 0.00 5.00 Type C Grate 50% e (Circular Orifice, R Zone 3 Restrictor 2.50 54.00 46.00	N/A N/A N/A N/A N/A Restrictor Plate, or R Not Selected N/A	feet H:V feet % <u>Rectangular Orifice)</u> ft (distance below be inches	Gi Or (	Overflow W ate Open Area / 10 verflow Grate Open Sverflow Grate Open <u>Cr</u> = 0 ft) O Outle	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = in Area w/ Debris = alculated Parameter: vutlet Orifice Area = t Orifice Centroid =	3.18 5.00 5.30 76.56 38.28 s for Outlet Pipe w/ Zone 3 Restrictor 14.44 2.06	N/A N/A N/A N/A N/A Flow Restriction P Not Selected N/A N/A N/A	feet ft ² ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	22.00 0.00 5.00 Type C Grate 50% 2 (Circular Orifice, R Zone 3 Restrictor 2.50 54.00 46.00 Trapezoidal)	N/A N/A N/A N/A N/A NA Selected N/A N/A	feet H:V feet % <u>Rectangular Orifice)</u> ft (distance below be inches	Gr O' C asin bottom at Stage Half-Cent	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Car = 0 ft) O Outle ral Angle of Restric	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = in Area w/ Debris = alculated Parameter: vutlet Orifice Area = t Orifice Centroid =	3.18 5.00 5.30 76.56 38.28 s for Outlet Pipe w/ Zone 3 Restrictor 14.44 2.06 2.35	N/A N/A N/A N/A N/A Flow Restriction P Not Selected N/A N/A N/A	feet ft ² ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or	22.00 0.00 5.00 Type C Grate 50% e (Circular Orifice, R Zone 3 Restrictor 2.50 54.00 46.00 Trapezoidal) 5.25	N/A N/A N/A N/A N/A NA Selected N/A N/A	feet H:V feet % Rectangular Orifice) ft (distance below by inches inches	Gr O' C asin bottom at Stage Half-Cent	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Car = 0 ft) O Outle ral Angle of Restric Spillway D	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter: butlet Orifice Area = t Orifice Centroid = tor Plate on Pipe =	3.18 5.00 5.30 76.56 38.28 s for Outlet Pipe w/ Zone 3 Restrictor 14.44 2.06 2.35 Calculated Parame	N/A N/A N/A N/A N/A <u>Flow Restriction P</u> Not Selected N/A N/A N/A N/A	feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage=	22.00 0.00 5.00 Type C Grate 50% 2 (Circular Orifice, R Zone 3 Restrictor 2.50 54.00 46.00 Trapezoidal) 5.25	N/A N/A N/A N/A N/A Not Selected N/A N/A ft (relative to basin	feet H:V feet % Rectangular Orifice) ft (distance below by inches inches	Gr O' C asin bottom at Stage Half-Cent	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Ca = 0 ft) O Outle ral Angle of Restric Spillway D Stage at	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter butlet Orifice Area = tt Orifice Centroid = ttor Plate on Pipe = Design Flow Depth=	3.18 5.00 5.30 76.56 38.28 s for Outlet Pipe w/ Zone 3 Restrictor 14.44 2.06 2.35 Calculated Parame 0.71	N/A N/A N/A N/A N/A N/A NOT Selected N/A N/A N/A N/A ters for Spillway feet	feet ft ² ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	22.00 0.00 5.00 Type C Grate 50% 2 (Circular Orifice, R Zone 3 Restrictor 2.50 54.00 46.00 Trapezoidal) 5.25 100.00	N/A N/A N/A N/A N/A Not Selected N/A N/A ft (relative to basin feet	feet H:V feet % Rectangular Orifice) ft (distance below by inches inches	Gr O' C asin bottom at Stage Half-Cent	Overflow W ate Open Area / 10 verflow Grate Open Verflow Grate Open Ca = 0 ft) O Outle ral Angle of Restric Spillway D Stage at Basin Area at	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = in Area w/ Debris = alculated Parameter: Nutlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard =	3.18 5.00 5.30 76.56 38.28 s for Outlet Pipe w/ Zone 3 Restrictor 14.44 2.06 2.35 <u>Calculated Parame</u> 0.71 6.96	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet	feet ft ² ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	22.00 0.00 5.00 Type C Grate 50% 2 (Circular Orifice, R Zone 3 Restrictor 2.50 54.00 46.00 Trapezoidal) 5.25 100.00 4.00	N/A N/A N/A N/A N/A Not Selected N/A N/A ft (relative to basir feet H:V	feet H:V feet % Rectangular Orifice) ft (distance below by inches inches	Gr O' C asin bottom at Stage Half-Cent	Overflow W ate Open Area / 10 verflow Grate Open Verflow Grate Open Ca = 0 ft) O Outle ral Angle of Restric Spillway D Stage at Basin Area at	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter: Nutlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard =	3.18 5.00 5.30 76.56 38.28 s for Outlet Pipe w/ Zone 3 Restrictor 14.44 2.06 2.35 <u>Calculated Parame</u> 0.71 6.96 1.48	N/A N/A N/A N/A N/A N/A N/A N/A N/A tters for Spillway feet feet acres	feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	22.00 0.00 5.00 Type C Grate 50% 2 (Circular Orifice, R Zone 3 Restrictor 2.50 54.00 46.00 Trapezoidal) 5.25 100.00 4.00 1.00	N/A N/A N/A N/A N/A Not Selected N/A N/A ft (relative to basin feet H:V feet	feet H:V feet % Rectangular Orifice) ft (distance below be inches inches inches	Gi On C dasin bottom at Stage Half-Cent = 0 ft)	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Car = 0 ft) O Outle ral Angle of Restric Spillway D Stage at Basin Area at Basin Volume at	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter: Nutlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard =	3.18 5.00 5.30 76.56 38.28 s for Outlet Pipe w/ Zone 3 Restrictor 14.44 2.06 2.35 Calculated Parame 0.71 6.96 1.48 5.37	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft	feet ft ² ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period =	22.00 0.00 5.00 Type C Grate 50% 2 (Circular Orifice, R Zone 3 Restrictor 2.50 54.00 46.00 Trapezoidal) 5.25 100.00 4.00 1.00 The user can over WQCV	N/A N/A N/A N/A N/A N/A N/A N/A ft (relative to basin feet H:V feet H:V feet EURV	feet H:V feet % Rectangular Orifice) ft (distance below be inches inches h bottom at Stage =	Gr Ov C asin bottom at Stage Half-Cent = 0 ft) <u>6 runoff volumes bj</u> 5 Year	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Ca = 0 ft) O Utle ral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at untering new valk 10 Year	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter: butlet Orifice Area = t Orifice Centroid = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth = Top of Freeboard = 25 Year	3.18 5.00 5.30 76.56 38.28 s for Outlet Pipe w/ Zone 3 Restrictor 14.44 2.06 2.35 Calculated Parame 0.71 6.96 1.48 5.37 drographs table (Co 50 Year	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 2000 W through 100 Year	ffeet ft ² ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	22.00 0.00 5.00 Type C Grate 50% 2 (Circular Orifice, R Zone 3 Restrictor 2.50 54.00 46.00 Trapezoidal) 5.25 100.00 4.00 1.00 The user can over WQCV N/A	N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet <i>ride the default CU</i> N/A	feet H:V feet % Rectangular Orifice) ft (distance below be inches inches h bottom at Stage = HP hydrographs and 2 Year 1.19	Gr On C asin bottom at Stage Half-Cent = 0 ft) <u>6 runoff volumes b</u> <u>5 Year</u> 1.50	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open Car = 0 ft) O Outle ral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at (ventering new value) 1.75	Veir Slope Length = 20-yr Orifice Area = A rea w/o Debris = an Area w/ Debris = alculated Parameter: Nutlet Orifice Area = tt Orifice Centroid = ttor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeb	3.18 5.00 5.30 76.56 38.28 s for Outlet Pipe w/ Zone 3 Restrictor 14.44 2.06 2.35 Calculated Parame 0.71 6.96 1.48 5.37 drographs table (CC 50 Year 2.25	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period =	22.00 0.00 5.00 Type C Grate 50% 2 (Circular Orifice, R Zone 3 Restrictor 2.50 54.00 46.00 Trapezoidal) 5.25 100.00 4.00 1.00 The user can over WQCV	N/A N/A N/A N/A N/A N/A N/A N/A ft (relative to basin feet H:V feet H:V feet EURV	feet H:V feet % Rectangular Orifice) ft (distance below be inches inches h bottom at Stage =	Gr Ov C asin bottom at Stage Half-Cent = 0 ft) <u>6 runoff volumes bj</u> 5 Year	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Ca = 0 ft) O Utle ral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at untering new valk 10 Year	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter: butlet Orifice Area = t Orifice Centroid = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth = Top of Freeboard = 25 Year	3.18 5.00 5.30 76.56 38.28 s for Outlet Pipe w/ Zone 3 Restrictor 14.44 2.06 2.35 Calculated Parame 0.71 6.96 1.48 5.37 drographs table (Co 50 Year	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 2000 W through 100 Year	ffeet ft ² ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = User Override Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	22.00 0.00 5.00 Type C Grate 50% 2 (Circular Orifice, R Zone 3 Restrictor 2.50 54.00 46.00 Trapezoidal) 5.25 100.00 4.00 1.00 The user can over WQCV N/A 0.532 N/A N/A	N/A N/A N/A N/A N/A N/A Sestrictor Plate, or R Not Selected N/A N/A N/A ft (relative to basin feet H:V feet ride the default CU EURV N/A 0.834 N/A N/A	feet H:V feet % Rectangular Orifice) ft (distance below be inches inches h bottom at Stage = <u>HP hydrographs ann</u> <u>2 Year</u> 1.19 1.441	Gr Or asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50 3.437	Overflow W ate Open Area / 10 verflow Grate Open Verflow Grate Open Verflow Grate Open (20 20 20 20 20 20 20 20 20 20 20 20 20 2	Veir Slope Length = 20-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter Area w/ Debris = alculated Parameter alculated Par	3.18 5.00 5.30 76.56 38.28 s for Outlet Pipe w/ Zone 3 Restrictor 14.44 2.06 2.35 Calculated Parame 0.71 6.96 1.48 5.37 drographs table (CC 50 Year 2.25 11.701	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² ft ² feet radians <u><i>AF</i></u> ). <u>500 Year</u> <u>3.14</u> 21.917
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	22.00 0.00 5.00 Type C Grate 50% 2 (Circular Orifice, R Zone 3 Restrictor 2.50 54.00 46.00 1.00 Trapezoidal) 5.25 100.00 4.00 1.00 The user can over WQCV N/A 0.532 N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A ft (relative to basir feet H:V feet H:V feet H:V feet N/A 0.834 N/A N/A N/A	feet H:V feet % Rectangular Orifice) ft (distance below be inches inches h bottom at Stage = <u>HP hydrographs and</u> <u>2 Year 1.19 1.441 1.441 16.2</u>	Gr Ov asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50 3.437 3.005 44.9	Overflow W ate Open Area / 10 verflow Grate Open Verflow Grate Open Verflow Grate Open (Canonic Content (Canonic Content) (Canonic Content	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = In Area w/ Debris = alculated Parameter: Area w/ Debris = alculated Parameter: Autlet Orifice Area = t Orifice Centroid = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = 25 Year 2.00 9.207 9.207 120.7	3.18 5.00 5.30 76.56 38.28 s for Outlet Pipe w/ Zone 3 Restrictor 14.44 2.06 2.35 Calculated Parame 0.71 6.96 1.48 5.37 drographs table (CC 50 Year 2.25 11.701 11.701 151.3	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² ft ² fteet radians
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = User Override Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	22.00 0.00 5.00 Type C Grate 50% 2 (Circular Orifice, R Zone 3 Restrictor 2.50 54.00 46.00 Trapezoidal) 5.25 100.00 4.00 1.00 The user can over WQCV N/A 0.532 N/A N/A N/A N/A N/A	N/A	feet H:V feet 9% Rectangular Orifice) ft (distance below be inches inches h bottom at Stage = HP hydrographs and 2 Year 1.19 1.441 1.441 1.441 1.6.2	Gr On C asin bottom at Stage Half-Cent = 0 ft)	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open Car = 0 ft) O Uutle ral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at <i>rentering new valut</i> 1.75 5.467 5.467 6.7.6 0.53 74.2	Veir Slope Length = 00-yr Orifice Area = A rea w/o Debris = an Area w/ Debris = alculated Parameter: butlet Orifice Area = tt Orifice Centroid = tt Orifi	3.18 5.00 5.30 76.56 38.28 5 for Outlet Pipe w/ Zone 3 Restrictor 14.44 2.06 2.35 Calculated Parame 0.71 6.96 1.48 5.37 drographs table (CC 50 Year 2.25 11.701 11.701 151.3 1.18 156.4	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² ft ² feet radians <u>500 Year</u> 3.14 21.917 2.67.2 <u>2.08</u> 272.6
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs) are Peak Outflow Q (cfs) = Peak Det Peak Det Peak Q (cfs) = Peak Outflow Q (cfs) = Peak Det Peak Det Peak Q (cfs) = Peak Outflow Q (cfs) = Peak Det Peak Det Peak Q (cfs) = Peak D	22.00 0.00 5.00 Type C Grate 50% 2 (Circular Orifice, R Zone 3 Restrictor 2.50 54.00 46.00 Trapezoidal) 5.25 100.00 4.00 1.00 The user can over N/A 0.532 N/A N/A N/A N/A N/A 0.2	N/A N/A N/A N/A N/A N/A N/A N/A fet (relative to basin feet H:V feet H:V feet N/A 0.834 N/A N/A N/A N/A N/A N/A O.3	feet H:V feet 9% Rectangular Orifice) ft (distance below be inches inches n bottom at Stage = <u>HP hydrographs and 2 Year</u> 1.19 1.441 1.441 16.2 0.13 22.2 7.7	Gr Or asin bottom at Stage Half-Cent = 0 ft)	Overflow W ate Open Area / 10 verflow Grate Open Verflow Grate Open Verflow Grate Open (Gamma) = 0 ft) O Outle ral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at (1.75 5.467 5.467 5.467 5.467 6.76 0.53 74.2 59.2	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = In Area w/ Debris = alculated Parameter: Autlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 100 of Freeboard = 100 of Freeboard = 100 of Freeboard = 100 of 9.207 9.207 120.7 0.94 126.0 112.9	3.18 5.00 5.30 76.56 38.28 s for Outlet Pipe w/ Zone 3 Restrictor 14.44 2.06 2.35 Calculated Parame 0.71 6.96 1.48 5.37 drographs table (CC 50 Year 2.25 11.701 11.701 151.3 156.4 142.3	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Pradevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Untflow Q (cfs) = Peak Outflow Q (cfs) =	22.00 0.00 5.00 Type C Grate 50% 2 (Circular Orifice, R Zone 3 Restrictor 2.50 54.00 46.00 Trapezoidal) 5.25 100.00 4.00 1.00 7 N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A Estrictor Plate, or R Not Selected N/A N/A N/A N/A Eurore Ket H:V feet H:V feet Kit Kit Kit Kit Kit Kit Kit Kit Kit Ki	feet H:V feet % Rectangular Orifice) ft (distance below be inches inches h bottom at Stage = HP hydrographs and 2 Year 1.19 1.441 1.441 1.441 1.6.2 0.13 22.2 7.7 N/A	Gr Or C asin bottom at Stage Half-Cent = 0 ft)	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open Ca = 0 ft) O Utle ral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at 1.75 5.467 5.467 5.467 6.7.6 0.53 74.2 59.2 0.9	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter: butlet Orifice Area = t Orifice Centroid = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 2.00 9.207 9.207 1.20.7 0.94 1.26.0 1.12.9 0.9	3.18 5.00 5.30 76.56 38.28 s for Outlet Pipe w/ Zone 3 Restrictor 14.44 2.06 2.35 Calculated Parame 0.71 6.96 1.48 5.37 drographs table (CC 50 Year 2.25 11.701 11.701 11.701 11.701 151.3 1.18 156.4 142.3 0.9	N/A N/A N/A N/A N/A N/A Elow Restriction P Not Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 2.52 15.348 14.869 192.2 160 1.25 183.8 160 1.0	AF). 500 Year 3.14 21.917 21.917 21.917 22.08 272.6 273.4 0.9
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = User Override Inflow Hydrograph Volume (acre-ft) = USER Override Inflow Hydrograph Volume (acre-ft) = UHP Runoff Volume (acre-ft) = Peak Inflow Q (cfs) = Predevelopment Unit Peak Flow, q (cfs) = Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	22.00 0.00 5.00 Type C Grate 50% 2 (Circular Orifice, R Zone 3 Restrictor 2.50 54.00 46.00 Trapezoidal) 5.25 100.00 4.00 1.00 The user can over WQCV N/A 0.532 N/A N/A N/A N/A N/A N/A N/A N/A	N/A	feet H:V feet 9% Rectangular Orifice) ft (distance below be inches inches inches n bottom at Stage = <u>HP hydrographs and</u> <u>2 Year</u> 1.19 1.441 1.441 1.441 1.441 0.13 22.2 7.7 N/A Overflow Weir 1 0.09	Gr On Control of the stage Half-Cent = 0 ft) d runoff volumes by 5 Year Half-Cent = 0 ft) d runoff volumes by 5 Year Half-Cent = 0 ft) d runoff volumes by 5 Year 1.50 3.437 3.005 44.9 0.35 42.5 27.2 0.6 Overflow Weir 1 0.4	Overflow W ate Open Area / 10 verflow Grate Open Sverflow Grate Open Sverflow Grate Open Outle ral Angle of Restrict Spillway D Stage at Basin Volume at Basin Volume at Angle Of Restrict Spillway D Stage at Basin Volume at Overflow Veir 1 0.8	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = In Area w/ Debris = alculated Parameter: Autlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = 100 of Freeboard = 100 of Freeboard = 00 o	3.18 5.00 5.30 76.56 38.28 s for Outlet Pipe w/ Zone 3 Restrictor 14.44 2.06 2.35 Calculated Parame 0.71 6.96 1.48 5.37 drographs table (CC 50 Year 2.25 11.701 11.701 151.3 0.9 0.118 156.4 142.3 0.9 Overflow Weir 1 1.8	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet           ft²           ft²           ft²           fc²           fc²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (acreft) = CUHP Pradevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	22.00 0.00 5.00 Type C Grate 50% 2 (Circular Orifice, R Zone 3 Restrictor 2.50 54.00 46.00 Trapezoidal) 5.25 100.00 4.00 1.00 7 N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A Estrictor Plate, or R Not Selected N/A N/A N/A N/A Euror Euror N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet H:V feet 9% Rectangular Orifice) ft (distance below be inches inches h bottom at Stage = HP hydrographs and 2 Year 1.19 1.441 1.441 1.441 1.441 1.6.2 0.13 22.2 7.7 N/A Overflow Weir 1 0.09 N/A	Gr Ov C asin bottom at Stage Half-Cent = 0 ft)	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open Ca = 0 ft) O Utle ral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at 1.75 5.467 5.467 5.467 67.6 0.53 74.2 59.2 0.9 Overflow Weir 1 0.8 N/A	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter: butlet Orifice Area = t Orifice Centroid = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 2.00 9.207 9.207 1.20.7 0.94 1.26.0 1.12.9 0.9 Overflow Weir 1 1.5 N/A	3.18 3.18 5.00 5.30 76.56 38.28 s for Outlet Pipe w/ Zone 3 Restrictor 14.44 2.06 2.35 Calculated Parame 0.71 6.96 1.48 5.37 drographs table (CC 50 Year 2.25 11.701 11.701 151.3 1.18 156.4 142.3 0.9 Overflow Weir 1 1.8 N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet           ft²           ft²           ft²           ft²           ft²           ft²           feet           ata           ft²           fc²           fc²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow V (cfs) = Ratio Peak Outflow to Predevelopment Q = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (acre) fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	22.00 0.00 5.00 Type C Grate 50% 2 (Circular Orifice, R Zone 3 Restrictor 2.50 54.00 46.00 Trapezoidal) 5.25 100.00 4.00 1.00 The user can over WQCV N/A 0.532 N/A N/A N/A N/A N/A N/A N/A N/A	N/A	feet H:V feet 9% Rectangular Orifice) ft (distance below be inches inches n bottom at Stage = HP hydrographs ann 2 Year 1.19 1.441 1.441 1.6.2 0.13 22.2 7.7 N/A Overflow Weir 1 0.09 N/A 50	Gr On C asin bottom at Stage Half-Cent = 0 ft)	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open Carlow State of Restrict Spillway D Stage at Basin Area at Basin Volume at Centering new valut 1.75 5.467 5.467 6.7.6 0.53 74.2 59.2 0.9 Overflow Weir 1 0.8 N/A 39	Veir Slope Length = 00-yr Orifice Area = A rea w/o Debris = an Area w/ Debris = alculated Parameter butlet Orifice Area = tt Orifice Centroid = ttor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 100 of Freeboard = 100 of Freeboard = 100 of Freeboard = 100 of Preeboard = 100 of Preebo	3.18 3.18 5.00 5.30 76.56 38.28 s for Outlet Pipe w/ Zone 3 Restrictor 14.44 2.06 2.35 Calculated Parame 0.71 6.96 1.48 5.37 drographs table (CC 50 Year 2.25 11.701 151.3 1.18 156.4 142.3 0.9 Overflow Weir 1 1.8 N/A 27	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² ft ² feet radians <i>AF).</i> <b>500 Year</b> 3.14 21.917 21.917 267.2 2.08 272.6 253.4 0.9 Spillway 2.2 N/A 11
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (acreft) = CUHP Pradevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	22.00 0.00 5.00 Type C Grate 50% 2 (Circular Orifice, R Zone 3 Restrictor 2.50 54.00 46.00 Trapezoidal) 5.25 100.00 4.00 1.00 7 The user can over WQCV N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A Estrictor Plate, or R Not Selected N/A N/A N/A N/A Estrictor Plate, or R N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet H:V feet 9% Rectangular Orifice) ft (distance below be inches inches h bottom at Stage = HP hydrographs and 2 Year 1.19 1.441 1.441 1.441 1.6.2 0.13 22.2 7.7 N/A Overflow Weir 1 0.09 N/A 50 54 3.37	Gr Ov C asin bottom at Stage Half-Cent = 0 ft)	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open Ca = 0 ft) O Outle ral Angle of Restrice Spillway D Stage at Basin Volume at Basin Volume at Ca Basin Volume at Ca Basin Volume at Ca Basin Volume at Ca Basin Volume at Ca Basin Volume at Ca Spillway D Stage at Basin Volume at Ca Basin Volume at Ca Spillway D Stage at Basin Volume at Ca Spillway D Stage at Ca Spillway D Spillway D Spillwa	<pre>/eir Slope Length = 00-yr Orifice Area = Area w/o Debris = m Area w/ Debris = alculated Parameter: utlet Orifice Area = t Orifice Centroid = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 2.00 9.207 9.207 9.207 1.20.7 0.94 1.26.0 0.94 1.12.9 0.9 Overflow Weir 1 1.5 N/A 3.1 45 4.37</pre>	3.18 3.18 5.00 5.30 76.56 38.28 s for Outlet Pipe w/ Zone 3 Restrictor 14.44 2.06 2.35 Calculated Parame 0.71 6.96 1.48 5.37 drographs table (CC 50 Year 2.25 11.701 11.701 151.3 1.18 156.4 156.4 156.4 1.42.3 0.9 Overflow Weir 1 1.8 N/A 27 43 4.56	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet           ft²           ft²           ft²           ft²           ft²           feet           radians           200 Year           3.14           radians           21.917           21.917           2.08           272.6           2.08           253.4           0.9           Spillway           2.2           N/A           11           35           5.67
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = ONE-HOUR Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow 40 (cfs) = Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Maximum Ponding Depth (facres) =	22.00 0.00 5.00 Type C Grate 50% 2 (Circular Orifice, R Zone 3 Restrictor 2.50 54.00 46.00 Trapezoidal) 5.25 100.00 4.00 1.00 The user can over WQCV N/A 0.532 N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet H:V feet % Rectangular Orifice) ft (distance below be inches inches h bottom at Stage = HP hydrographs ann 2 Year 1.19 1.441 1.441 16.2 0.13 22.2 7.7 N/A Overflow Weir 1 0.09 N/A 50 54 3.37 0.81	Gr Or C asin bottom at Stage Half-Cent = 0 ft)	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open Car e 0 ft) O Uutle ral Angle of Restrict Spillway D Stage at Basin Volume at Basin Volume at Centering new value 10 Year 1.75 5.467 67.6 0.5 74.2 59.2 0.9 Overflow Weir 1 0.8 N/A 39 49 3.95 0.99	<pre>/eir Slope Length = 00-yr Orifice Area = Area w/o Debris = m Area w/ Debris = alculated Parameter: utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = tor Plate on Pipe = tor Plate on Pipe = 0 of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 0 of Freeboard = 2.00 9.207 120.7 0.94 126.0 112.9 0.99 0verflow Weir 1 1.5 N/A 31 4.37 1.10</pre>	3.18 3.18 5.00 5.30 76.56 38.28 s for Outlet Pipe w/ Zone 3 Restrictor 14.44 2.06 2.35 Calculated Parame 0.71 6.96 1.48 5.37 Calculated Parame 0.71 1.701 1.1701 1.18 1.56.4 1.42.3 0.9 Overflow Weir 1 1.8 N/A 27 4.56 1.15	N/A           ters for Spillway           feet           acre-ft           000 Year           2.52           15.348           14.869           192.2           160           1.25           183.8           160           1.0           Outlet Plate 1           2.1           N/A           22           41           4.85           1.20	feet ft ² ft ² ft ² feet radians <i>AF).</i> <b>500 Year</b> 3.14 21.917 21.917 267.2 2.08 2.72.6 2.53.4 0.9 Spillway 2.2 N/A 11 35 5.67 1.32
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = CUHP Runoff Volume (acre-ft) = User Override Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Maximum Ponding Depth (ft) = Area at Maximum Ponding Depth (fcres) = Maximum Volume Stored (acre-ft) =	22.00 0.00 5.00 Type C Grate 50% 2 (Circular Orifice, R Zone 3 Restrictor 2.50 54.00 46.00 Trapezoidal) 5.25 100.00 4.00 1.00 7 <i>the user can over</i> WQCV N/A 0.532 N/A N/A N/A N/A N/A N/A N/A N/A	N/A	feet H:V feet 9% Rectangular Orifice) ft (distance below be inches inches h bottom at Stage = HP hydrographs and 2 Year 1.19 1.441 1.441 1.441 1.6.2 0.13 22.2 7.7 N/A Overflow Weir 1 0.09 N/A 50 54 3.37	Gr On Control of the second se	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open Ca = 0 ft) O Outle ral Angle of Restrice Spillway D Stage at Basin Volume at Basin Volume at Ca Basin Volume at Ca Basin Volume at Ca Basin Volume at Ca Basin Volume at Ca Basin Volume at Ca Spillway D Stage at Basin Volume at Ca Basin Volume at Ca Spillway D Stage at Basin Volume at Ca Spillway D Stage at Ca Spillway D Spillway D Spillwa	<pre>/eir Slope Length = 00-yr Orifice Area = Area w/o Debris = m Area w/ Debris = alculated Parameter: utlet Orifice Area = t Orifice Centroid = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 2.00 9.207 9.207 9.207 1.20.7 0.94 1.26.0 0.94 1.12.9 0.9 Overflow Weir 1 1.5 N/A 3.1 45 4.37</pre>	3.18 3.18 5.00 5.30 76.56 38.28 s for Outlet Pipe w/ Zone 3 Restrictor 14.44 2.06 2.35 Calculated Parame 0.71 6.96 1.48 5.37 drographs table (CC 50 Year 2.25 11.701 11.701 151.3 1.18 156.4 156.4 156.4 1.42.3 0.9 Overflow Weir 1 1.8 N/A 27 43 4.56	N/A           Iters for Spillway           feet           feet           acres           acre-ft           100 Year           2.52           15.348           14.869           192.2           160           1.25           183.8           160           1.0           Outlet Plate 1           2.1           N/A           22           41           4.85           1.20           2.50	feet           ft²           ft²           ft²           ft²           ft²           feet           radians           200 Year           3.14           radians           21.917           21.917           2.08           272.6           2.08           253.4           0.9           Spillway           2.2           N/A           11           35           5.67
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = ONE-HOUR Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow 40 (cfs) = Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Maximum Ponding Depth (facres) =	22.00 0.00 5.00 Type C Grate 50% 2 (Circular Orifice, R Zone 3 Restrictor 2.50 54.00 46.00 Trapezoidal) 5.25 100.00 4.00 1.00 The user can over WQCV N/A 0.532 N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet H:V feet % Rectangular Orifice) ft (distance below be inches inches h bottom at Stage = HP hydrographs ann 2 Year 1.19 1.441 1.441 16.2 0.13 22.2 7.7 N/A Overflow Weir 1 0.09 N/A 50 54 3.37 0.81	Gr Or C asin bottom at Stage Half-Cent = 0 ft)	Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open Car e 0 ft) O Uutle ral Angle of Restrict Spillway D Stage at Basin Volume at Basin Volume at Centering new value 10 Year 1.75 5.467 67.6 0.5 74.2 59.2 0.9 Overflow Weir 1 0.8 N/A 39 49 3.95 0.99	<pre>/eir Slope Length = 00-yr Orifice Area = Area w/o Debris = m Area w/ Debris = alculated Parameter: utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = tor Plate on Pipe = tor Plate on Pipe = 0 of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 0 of Freeboard = 2.00 9.207 120.7 0.94 126.0 112.9 0.99 0verflow Weir 1 1.5 N/A 31 4.37 1.10</pre>	3.18 3.18 5.00 5.30 76.56 38.28 s for Outlet Pipe w/ Zone 3 Restrictor 14.44 2.06 2.35 Calculated Parame 0.71 6.96 1.48 5.37 Calculated Parame 0.71 1.701 1.1701 1.18 1.56.4 1.42.3 0.9 Overflow Weir 1 1.8 N/A 27 4.56 1.15	N/A           ters for Spillway           feet           acre-ft           000 Year           2.52           15.348           14.869           192.2           160           1.25           183.8           160           1.0           Outlet Plate 1           2.1           N/A           22           41           4.85           1.20	feet ft ² ft ² ft ² feet radians <i>AF).</i> <b>500 Year</b> 3.14 21.917 21.917 267.2 2.08 272.6 253.4 0.9 Spillway 2.2 N/A 11 35 5.67 1.32

Filing 4 Pond A_UD-Detention_KH, Outlet Structure



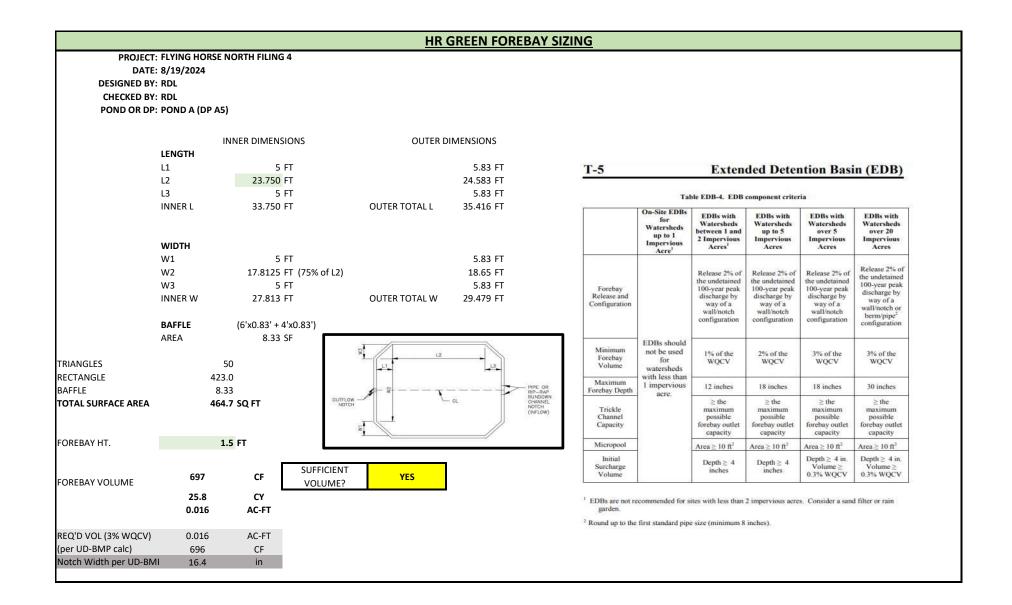
#### DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.06 (July 2022)

# DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

	SOURCE	CUHP	CUHP	CUHP	USER	CUHP	CUHP	CUHP	USER	CUHP
ne Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [c
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.02	0.03
ľ	0:15:00	0.00	0.00	0.08	0.10	0.17	0.11	0.15	0.11	0.22
	0:20:00	0.00	0.00	0.35	0.30	1.95	0.36	0.43	0.29	1.85
	0:25:00	0.00	0.00	4.04	2.36	27.62	3.85	5.06	1.83	26.88
	0:30:00	0.00	0.00	14.17	11.47	60.17	51.16	66.72	19.59	128.86
	0:35:00	0.00	0.00	21.13	31.46	74.24	100.43	127.66	96.08	225.74
	0:40:00	0.00	0.00	22.21	42.49	73.61	123.55	154.32	161.92	267.09
-	0:45:00	0.00	0.00	20.28	42.09	67.55	126.03	156.43	182.46	272.56
-	0:50:00	0.00	0.00	17.61	38.34	60.42	119.92	148.66	183.84	261.90
-	0:55:00 1:00:00	0.00	0.00	15.34	34.02	53.43	110.12	137.06	175.93	245.60
	1:05:00	0.00	0.00	13.42 12.05	30.05 26.40	48.07 43.94	98.07 88.75	122.87 112.15	164.79 153.37	228.11 215.24
	1:10:00	0.00	0.00	12.05	23.39	40.13	79.20	112.15	142.09	196.94
	1:15:00	0.00	0.00	9.27	20.90	36.37	69.50	89.18	126.74	174.54
	1:20:00	0.00	0.00	7.85	18.58	31.81	59.80	77.06	110.87	150.60
ł	1:25:00	0.00	0.00	6.55	16.30	27.25	50.53	65.20	96.01	127.37
	1:30:00	0.00	0.00	5.60	14.09	23.76	42.74	55.29	82.24	108.37
ľ	1:35:00	0.00	0.00	4.98	12.12	21.04	36.98	47.98	69.97	93.96
[	1:40:00	0.00	0.00	4.45	10.60	18.66	32.40	42.10	60.01	82.32
	1:45:00	0.00	0.00	3.96	9.32	16.48	28.40	36.94	52.05	71.99
ļ	1:50:00	0.00	0.00	3.47	8.13	14.45	24.78	32.28	45.12	62.66
	1:55:00	0.00	0.00	2.98	7.07	12.42	21.42	27.94	39.03	53.98
-	2:00:00	0.00	0.00	2.49	6.16	10.34	18.17	23.77	33.71	45.82
-	2:05:00	0.00	0.00	1.99	5.36	8.26	14.99	19.66	29.08	38.00
-	2:10:00	0.00	0.00	1.49	4.62	6.24	11.85	15.59	24.94	30.37
-	2:15:00 2:20:00	0.00	0.00	1.00	3.92	4.32	8.72	11.57	21.21	22.87
-	2:25:00	0.00	0.00	0.57	3.25 2.63	2.86	5.68 3.42	7.68 4.81	17.72 14.39	15.88 10.67
ŀ	2:30:00	0.00	0.00	0.31	2.05	1.57	2.13	3.16	11.28	7.38
	2:35:00	0.00	0.00	0.16	1.57	1.22	1.36	2.12	8.63	5.10
ľ	2:40:00	0.00	0.00	0.10	1.25	0.94	0.86	1.42	6.76	3.44
	2:45:00	0.00	0.00	0.09	1.04	0.72	0.54	0.94	5.46	2.22
ľ	2:50:00	0.00	0.00	0.07	0.88	0.53	0.34	0.62	4.45	1.35
[	2:55:00	0.00	0.00	0.05	0.76	0.38	0.21	0.39	3.64	0.76
[	3:00:00	0.00	0.00	0.04	0.65	0.26	0.13	0.26	2.98	0.46
	3:05:00	0.00	0.00	0.03	0.55	0.18	0.10	0.19	2.43	0.33
	3:10:00	0.00	0.00	0.03	0.45	0.12	0.07	0.14	1.96	0.25
	3:15:00	0.00	0.00	0.02	0.37	0.09	0.05	0.10	1.57	0.19
	3:20:00	0.00	0.00	0.01	0.29	0.07	0.04	0.08	1.23	0.15
-	3:25:00	0.00	0.00	0.01	0.21	0.05	0.03	0.06	0.91	0.11
-	3:30:00	0.00	0.00	0.01	0.15	0.03	0.02	0.04	0.63	0.07
-	3:35:00 3:40:00	0.00	0.00	0.00	0.11	0.02	0.01	0.03	0.44	0.05
	3:45:00	0.00	0.00	0.00	0.09	0.01	0.01	0.01	0.32	0.03
ŀ	3:50:00	0.00	0.00	0.00	0.07	0.00	0.00	0.01	0.23	0.01
-	3:55:00	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.10	0.00
ŀ	4:00:00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.08	0.00
	4:05:00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.06	0.00
ļ	4:10:00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.04	0.00
	4:15:00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.03	0.00
ŀ	4:20:00 4:25:00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.02	0.00
ŀ	4:30:00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00
ļ	4:35:00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.00
-	4:40:00 4:45:00	0.00	0.00	0.00	0.01 0.01	0.00	0.00	0.00	0.01 0.01	0.00
ŀ	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
ļ	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
	5:00:00 5:05:00	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.01 0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:25:00 5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ľ	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:45:00 5:50:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00
ŀ	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

#### DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.06 (July 2022)


Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Total Outflow [cfs] Total Area Volume Stage Stage Stage Area Area Volume Stage - Storage Description Outflow [ft] [cfs] [ft 2] [acres] [ft 3] [ac-ft] [ft²] Area Release 10 0.000 0 0.000 0.00 For best results, include the 10 0 10 0.00 0 0 0.00 stages of all grade slope 0.5 376 0.5 0.04 376 0.009 96 0.002 0.04 376 0.04 0 50 changes (e.g. ISV and Floor) 2,192 0.050 738 0.017 0.08 2,192 1 2192 0.08 1 0.08 1.00 from the S-A-V table on 7,097 0.163 3,061 0.070 0.12 7,097 1.5 7097 0.12 1.5 0.12 1.50 Sheet 'Basin'. 14,797 0.340 8,534 0.196 0.17 14,797 2 14797 0.17 2 0.17 2.00 2.50 22,565 0.518 17,875 0.410 0.21 Also include the inverts of all 22,565 2.5 22565 0.21 2.5 0.21 25,765 0.591 23,191 0.532 0.23 outlets (e.g. vertical orifice, 25,765 2.72 25765.12 0.23 2.72 0.23 2.72 29,838 0.711 overflow grate, and spillway, 29,838 3 29838 3 0.31 0.685 30,975 0.31 0.31 3.00 where applicable). 32,506 0.746 36.586 0.840 0.34 32,506 3.18 32505.96 0.34 3.18 0.34 3 18 3.50 37.249 0.855 47.747 1.096 16.14 37,249 3.5 37249 16.14 3.5 16.14 43,958 1.009 68,049 1.562 65.05 43,958 4 43958 65.05 4 65.05 4.00 4.5 49678 49,678 1.140 91,458 2.100 132.43 49,678 132.43 4.5 132.43 4.50 52,553 2,510 4.85 159.84 4.85 1.206 109.348 159.84 52,553 4.85 52552.9 159.84 5.00 53,785 1.235 117,324 2.693 162.09 53,785 5 53785 162.09 5 162.09 56,812 1.304 144,973 3.328 207.18 5.5 56812 207.18 5.5 207.18 56,812 5.50 59,334 1.362 174.009 3.995 375.90 59.334 6 59334 375.90 6 375.9 6.00 6.50 62,623 1.438 204,499 4.695 619.12 62,623 6.5 62623 619.12 6.5 619.12 64,854 1.489 236,368 5.426 922.97 64,854 7 64854 922.97 7 922.97 7.00

Worksheet Prot

	Design Procedure Form:	Extended Detention Basin (EDB)
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3
Designer:	RICHARD LYON, PE	
Company:	HR GREEN	
Date:	December 4, 2024 FLYING HORSE NORTH - FILING NO. 4	
Project: Location:	POND A	
1. Basin Storage \	/olume	
A) Effective Imp	perviousness of Tributary Area, I _a	l _a = 7.1 %
	ea's Imperviousness Ratio (i = $I_a/100$ )	
, ,		i =
C) Contributing	y Watershed Area	Area = <u>128.480</u> ac
	neds Outside of the Denver Region, Depth of Average lucing Storm	d ₆ = in
	-	Choose One
E) Design Cone (Select EUR	V when also designing for flood control)	Water Quality Capture Volume (WQCV)
		Excess Urban Runoff Volume (EURV)
	me (WQCV) Based on 40-hour Drain Time 1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} =ac-ft
G) For Watersh	heds Outside of the Denver Region,	V _{DESIGN OTHER} =ac-ft
Water Quali	ity Capture Volume (WQCV) Design Volume $_{R} = (d_{6}^{*}(V_{DESIGN}/0.43))$	
	of Water Quality Capture Volume (WQCV) Design Volume fferent WQCV Design Volume is desired)	V _{DESIGN USER} = 0.532 ac-ft
I) NRCS Hydro	logic Soil Groups of Tributary Watershed	
i) Percenta	age of Watershed consisting of Type A Soils	$HSG_A = 0 \%$
	age of Watershed consisting of Type B Soils age of Watershed consisting of Type C/D Soils	HSG _B = 100 % HSG _{CD} = 0 %
J) Excess Urba	an Runoff Volume (EURV) Design Volume	
For HSG A	: EURV _A = 1.68 * i ¹²⁸ : EURV _B = 1.36 * i ^{1.08}	EURV _{DESIGN} = ac-f t
	$(D: EURV_{B} = 1.36^{\circ})^{1}$ $(D: EURV_{C/D} = 1.20^{\circ})^{1.08}$	
K) User Input o	of Excess Urban Runoff Volume (EURV) Design Volume	EURV _{DESIGN USER} = 0.834 ac-f t
(Only if a dif	fferent EURV Design Volume is desired)	
2 Basin Shane: L	ength to Width Ratio	L : W = 2.0 : 1
	to width ratio of at least 2:1 will improve TSS reduction.)	
3. Basin Side Slop	es	
	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = 4.00 ft / ft
(		
4. Inlet		
A) Describe me	eans of providing energy dissipation at concentrated	
inflow location		
5. Forebay		
A) Minimum Fo (V _{FMIN}	rebay Volume = <u>3%</u> of the WQCV)	V _{FMIN} = 0.016 ac-ft
B) Actual Fore		V _F = 0.018 ac-ft
,		
C) Forebay Dep (D _F		D _F = 18.0 in
D) Forebay Disc	charge	
, ,	ed 100-year Peak Discharge	Q ₁₀₀ = 326.90 cfs
ii) Forebay (Q _F = 0.0	Discharge Design Flow 2 * Q ₁₀₀ )	Q _F =6.54cfs
E) Forebay Disc	charge Design	Choose One
		O Berm With Pipe Flow too small for berm w/ pipe
		Wall with Rect. Notch     Wall with V-Notch Weir
F) Discharge Pi	ipe Size (minimum 8-inches)	Calculated D _P =in
G) Rectangular	Notch Width	Calculated $W_N = 16.4$ in

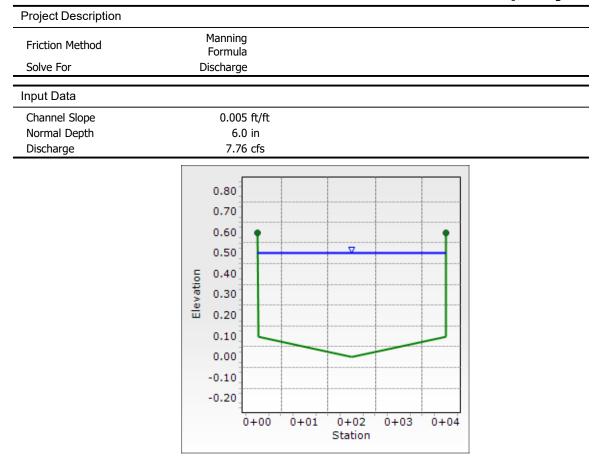
	Design Procedure Form:	Extended Detention Basin (EDB)	
Designer:	RICHARD LYON, PE		Sheet 2 of 3
Company:	HR GREEN		
Date:	December 4, 2024		
Project:	FLYING HORSE NORTH - FILING NO. 4		
Location:	POND A		
6. Trickle Channel		Choose One Concrete	
A) Type of Trick	kle Channel	Soft Bottom	
F) Slope of Tric	kle Channel	S = 0.0050 ft / ft	
7. Micropool and C	Dutlet Structure		
A) Depth of Mic	cropool (2.5-feet minimum)	D _M = <u>2.5</u> ft	
B) Surface Area	a of Micropool (10 ft ² minimum)	A _M = <u>10</u> sq ft	
C) Outlet Type			
		Choose One Orifice Plate	
		Other (Describe):	
	nension of Orifice Opening Based on Hydrograph Routing		
(Use UD-Detent	uon)	D _{orifice} = inches	
E) Total Outlet A	Area	A _{ot} =square inc	ches
0 Initial Courses	- Velime		
8. Initial Surcharge	o volume		Reference MHFD
	ial Surcharge Volume	D _{IS} = in	detention basin outlet
(Minimum red	commended depth is 4 inches)		structure design for any
	ial Surcharge Volume	V _{IS} = <del>70</del> cu ft	
(Minimum vol	lume of 0.3% of the WQCV)		information that is not
C) Initial Surcha	arge Provided Above Micropool	V _s =cu ft	available on this sheet.
9. Trash Rack			
A) Water Qualit	ty Screen Open Area: $A_t = A_{ct} * 38.5*(e^{-0.095D})$	A _t = square inc	ches
	en (If specifying an alternative to the materials recommended		
	indicate "other" and enter the ratio of the total open are to the for the material specified.)		
	Other (Y/N): N		
C) Ratio of Tota	Il Open Area to Total Area (only for type 'Other')	User Ratio =	
,	Quality Screen Area (based on screen type)	A _{total} =sq. in.	
	sign Volume (EURV or WQCV)	H=	
	design concept chosen under 1E)		
	ter Quality Screen (H _{TR} )	H _{TR} = inches	
	ter Quality Screen Opening (W _{copening} ) inches is recommended)	W _{opening} = inches	



## **Worksheet for Pond A Spillway**

Project Description		
Solve For	Headwater Elevation	
Input Data		
Discharge	183.80 cfs	
Crest Elevation	7,537.25 ft	
Tailwater Elevation	7,537.25 ft	
Crest Surface Type	Gravel	
Crest Breadth	50.00 ft	
Crest Length	100.0 ft	
Results		
Headwater Elevation	7,538.01 ft	
Headwater Height Above Crest	0.76 ft	
Tailwater Height Above Crest	0.00 ft	
Weir Coefficient	2.77 ft^(1/2)/s	
Submergence Factor	1.000	
Adjusted Weir Coefficient	2.77 ft^(1/2)/s	
Flow Area	76.1 ft ²	
Velocity	2.42 ft/s	
Wetted Perimeter	101.5 ft	
Top Width	100.00 ft	

Project Description					
Friction Method	Manning				
Solve For	Formula Discharge				
	5				
Input Data					
Channel Slope Normal Depth	0.005 ft/ft 6.0 in				
		ation De	finitions		
			efinitions		
Statio (ft)	n			Elevation (ft)	
		0+00			0.58
		0+00			0.08
		0+02			0.00
		0+04			0.08
		0+04			0.58
	Roughne	ss Segm	ent Definitions		
Start Station		Ending S		Roughness Coefficient	
0+00, 0.58)			(0+04, 0.58)		0.013
Options					
Current Roughness Weighted Method	Pavlovskii's Method				
Open Channel Weighting	Pavlovskii's				
Method	Method				
Closed Channel Weighting Method	Pavlovskii's Method				
Results					
Discharge	7.76 cfs				
Roughness Coefficient	0.013		-	FOREBAY RELEAS	
Elevation Range	0.0 to 0.6 ft			ND POND B MAX FO	
Flow Area	1.8 ft ²		RELEA	ASE RATE IS 3.75 C	FS
Wetted Perimeter	4.8 ft				
Hydraulic Radius	4.6 in				
Top Width	4.00 ft				
Normal Depth	6.0 in				
Critical Depth	6.4 in				
Critical Slope	0.004 ft/ft				
Velocity	4.24 ft/s				
Velocity Head	0.28 ft				
	0.78 ft				
Specific Energy					
Froude Number	1.103				
	1.103 Supercritical				
Froude Number					


#### **Worksheet for Pond A & B Trickle Channel Capacity**

Pond Trickle Channels and Spillways.fm8 8/19/2024

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 2

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	6.0 in	
Critical Depth	6.4 in	
Channel Slope	0.005 ft/ft	
Critical Slope	0.004 ft/ft	

## **Worksheet for Pond A & B Trickle Channel Capacity**



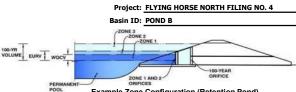
#### **Cross Section for Pond A & B Trickle Channel Capacity**

Pond Trickle Channels and Spillways.fm8 8/19/2024

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlowMaster [10.03.00.03] Page 1 of 1




El Paso County, Colorado

# POND B

#### DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Depth Increment =

MHFD-Detention, Version 4.06 (July 2022)



Example Zone Configuration (Retention Pond)

#### Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	105.65	acres
Watershed Length =	3,000	ft
Watershed Length to Centroid =	1,000	ft
Watershed Slope =	0.035	ft/ft
Watershed Imperviousness =	8.25%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	-

# After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Urban Hydro	graph Procedu	ire.	Optional User	Over
Water Quality Capture Volume (WQCV) =	0.50	acre-feet		acre-
Excess Urban Runoff Volume (EURV) =	0.81	acre-feet		acre-
2-yr Runoff Volume (P1 = 1.19 in.) =	1.27	acre-feet	1.19	inche
5-yr Runoff Volume (P1 = 1.5 in.) =	2.93	acre-feet	1.50	inche
10-yr Runoff Volume (P1 = 1.75 in.) =	4.61	acre-feet	1.75	inche
25-yr Runoff Volume (P1 = 2 in.) =	7.66	acre-feet	2.00	inche
50-yr Runoff Volume (P1 = 2.25 in.) =	9.71	acre-feet	2.25	inche
100-yr Runoff Volume (P1 = 2.52 in.) =	12.69	acre-feet	2.52	inche
500-yr Runoff Volume (P1 = 3.14 in.) =	18.09	acre-feet		inche
Approximate 2-yr Detention Volume =	0.50	acre-feet		
Approximate 5-yr Detention Volume =	0.80	acre-feet		
Approximate 10-yr Detention Volume =	1.83	acre-feet		
Approximate 25-yr Detention Volume =	2.63	acre-feet		
Approximate 50-yr Detention Volume =	2.73	acre-feet		
Approximate 100-yr Detention Volume =	3.57	acre-feet		

		Depth Increment =		ft							
ond)		Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ² )	Optional Override Area (ft ² )	Area (acre)	Volume (ft ³ )	Volume (ac-ft)
	7526	Top of Micropool		0.00				10	0.000		
		7526.5		0.50				2,138	0.049	537	0.012
		7527.0		1.00				7,169	0.165	2,864	0.066
		7527.5		1.50				13,715	0.315	8,085	0.186
		7528.0		2.00				18,729	0.430	16,196	0.372
		7528.5		2.50				23,635	0.543	26,787	0.615
		7529.0		3.00				27,602	0.634	39,596	0.909
		7529.5		3.50				30,042	0.690	54,007	1.240
		7530.0		4.00				32,274	0.741	69,586	1.597
		7530.5		4.50				34,626	0.795	86,311	1.981
		7531.0		5.00				37,052	0.851	104,230	2.393
		7531.5		5.50				39,551	0.908	123,381	2.832
		7532.0		6.00				42,125	0.967	143,800	3.301
		7532.5		6.50				44,776	1.028	165,525	3.800
onal Use	r Overrides	7533.0		7.00				47,667	1.094	188,636	4.330
	acre-feet										
	acre-feet										
1.19	inches										
1.50	inches										
1.75	inches										
2.00	inches										
2.25	inches										
2.52	inches										
	inches										
l deten											
	ess than										
-year ve	oiume.										

#### Define Zones and Basin Geometry

Zone 1 Volume (WQCV) =	0.50	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.31	acre-feet
Zone 3 Volume (User Defined - Zones 1 & 2) =	1.51	acre-feet
Total Detention Basin Volume =	2.32	acre-feet

**Total detention** volume is less th 100-year volume

#### DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.06 (July 2022) Project: FLYING HORSE NORTH FILING NO. 4 Basin ID: POND B Estimated Estimated Stage (ft) Volume (ac-ft) Outlet Type OLUME EURY WOCY Zone 1 (WQCV) 2.28 0.500 Orifice Plate 100-YEAR Zone 2 (EURV) 2.84 0.307 Circular Orifice Weir&Pipe (Restrict) PERM Zone 3 (User) 4.92 1.513 Example Zone Configuration (Retention Pond) Total (all zones) 2.320 User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Area N/A ft² Underdrain Orifice Centroid = Underdrain Orifice Diameter = N/A inches N/A feet User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate WQ Orifice Area per Row : Centroid of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) 1.521E-02 ft² Depth at top of Zone using Orifice Plate = 2.28 ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width = N/A feet Orifice Plate: Orifice Vertical Spacing = 9.20 Elliptical Slot Centroid : N/A feet inches Orifice Plate: Orifice Area per Row = 2.19 sq. inches (diameter = 1-5/8 inches) Elliptical Slot Area N/A ft2 User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft) 0.00 0.80 1.60 Orifice Area (sq. inches) 2.19 2.19 2 19 Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft) Orifice Area (sq. inches) User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifice Zone 2 Circular Not Selected Zone 2 Circular Not Selected Invert of Vertical Orifice = 2.28 N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area 0.01 N/A ft² Depth at top of Zone using Vertical Orifice = ft (relative to basin bottom at Stage = 0 ft) 2.84 N/A Vertical Orifice Centroid = 0.04 N/A feet Vertical Orifice Diameter = 1.00 N/A inches User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir and No Outlet Pipe) Calculated Parameters for Overflow Weir Zone 3 Weir Not Selected Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho = 2.85 N/A ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, $H_t$ = 2.85 N/A feet Overflow Weir Front Edge Length = 30.00 N/A feet Overflow Weir Slope Length = 5.00 N/A feet H:V Grate Open Area / 100-yr Orifice Area = Overflow Weir Grate Slope = 0.00 N/A 5.89 N/A Overflow Grate Open Area w/o Debris Horiz. Length of Weir Sides = 5.00 N/A feet 104.40 N/A ft² Type C Grate Overflow Grate Type = N/A Overflow Grate Open Area w/ Debris = 52.20 N/A ft Debris Clogging % = 50% N/A 0/0 User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe Outlet Orifice Area 3.70 N/A ft (distance below basin bottom at Stage = 0 ft) 17.71 N/A ft² Outlet Orifice Centroid 2.28 Outlet Pipe Diameter = 60.00 N/A inches N/A feet Restrictor Plate Height Above Pipe Invert = 50.75 inches Half-Central Angle of Restrictor Plate on Pipe = 2.33 N/A radians User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage= ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 5.10 0.86 feet Spillway Crest Length = 100.00 feet Stage at Top of Freeboard = 6.96 feet Spillway End Slopes = 4.00 lh:v Basin Area at Top of Freeboard 1.09 acres Freeboard above Max Water Surface = Basin Volume at Top of Freeboard = 1.00 feet 4.29 acre-ft Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF) EURV Design Storm Return Period WQCV 5 Year 10 Year 25 Year 50 Year 100 Year 500 Year 2 Year One-Hour Rainfall Depth (in) : N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 3.14 CUHP Runoff Volume (acre-ft) 0.500 0.807 1.270 2.932 4,609 7.657 9.710 12.690 18.086 User Override Inflow Hydrograph Volume (acre-ft) = N/A N/A 1.270 3.472 4.609 7.657 9.710 17.082 18.086 CUHP Predevelopment Peak O (cfs) = N/A N/A 14.9 41.7 63.1 109.6 138.0 172.8 240.7 OPTIONAL Override Predevelopment Peak Q (cfs) = N/A N/A 216.0 1.04 2.04 Predevelopment Unit Peak Flow, q (cfs/acre) = N/A N/A 0.14 0.39 0.60 1.31 2.28 Peak Inflow Q (cfs) = N/A N/A 21.5 59.1 70.7 116.9 145.3 247.1 248.6 Peak Outflow Q (cfs) : 0.3 0.3 45.1 59.7 109.1 139.2 216.0 216.7 Ratio Peak Outflow to Predevelopment Q = N/A N/A N/A 1.1 0.9 1.0 1.0 1.0 0.9 Structure Controlling Flow Vertical Orifice 1 Overflow Weir 1 Outlet Plate 1 Plate Outlet Plate Max Velocity through Grate 1 (fps) = N/A N/A 0.06 0.4 0.6 1.0 2.1 N/A 1.3 N/A N/A N/A N/A N/A N/A N/A Max Velocity through Grate 2 (fps) = N/A Time to Drain 97% of Inflow Volume (hours) = 48 48 41 31 16 14 38 27 Time to Drain 99% of Inflow Volume (hours) = 40 52 54 50 48 44 42 36 35 3.50 Maximum Ponding Depth (ft) : 2.28 2.84 3.00 3.39 3.83 4.00 4.99 5.04

Area at Maximum Ponding Depth (acres) =

Maximum Volume Stored (acre-ft) =

Elevation (ft) =

Pond Bottom (ft) =

0.49

0.50

7528.28

7526.00

0.60

0.81

7528.84

0.63

0.91

0.68

1.16

0.69

1.24

0.72

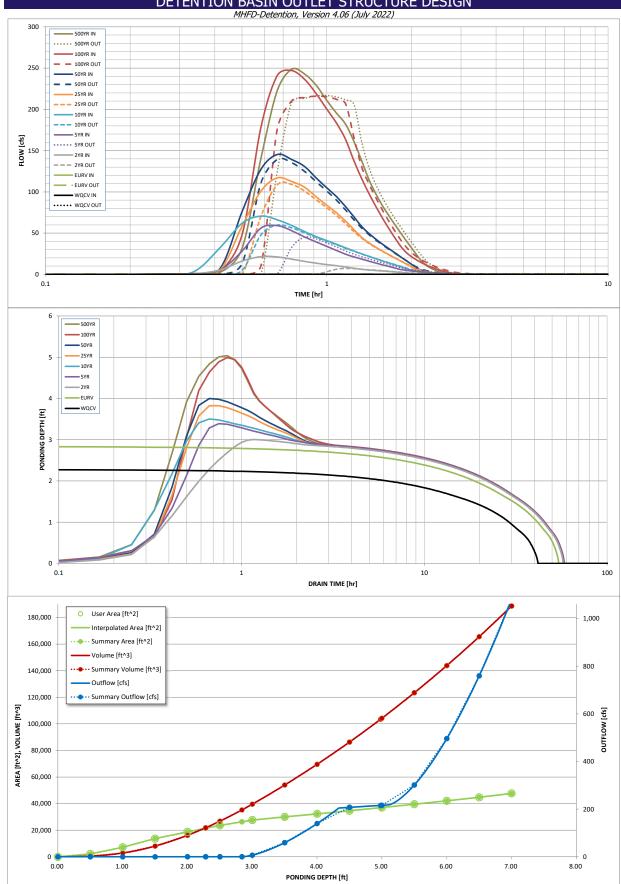
1.47

0.74

1.59

SWMM volume

0.85


2.38

7530.99

103,808

0.85

2.42



## DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	The user can o	verride the calcu	lated inflow hyd	lrographs from t	his workbook wi	th inflow hydrog	raphs developed	l in a separate pr	ogram.	
	SOURCE	CUHP	CUHP	CUHP	USER	CUHP	CUHP	CUHP	USER	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.02	0.00	0.00	0.01	0.03	0.05
	0:15:00	0.00	0.00	0.13	0.29	0.25	0.17	0.22	0.32	0.32
	0:20:00	0.00	0.00	0.50	0.84	2.56	0.51	0.61	0.81	2.42
	0:25:00	0.00	0.00	5.28	5.28	32.00	5.01	6.58	4.04	31.16
	0:30:00	0.00	0.00	16.15	28.18	61.85	58.31	75.74	47.72	140.12
	0:35:00	0.00	0.00	21.48	55.99	70.65	100.78	127.30	177.86	222.60
	0:40:00	0.00	0.00	21.19	59.11	66.12	116.93	145.33	240.83	248.61
	0:45:00	0.00	0.00	18.41	52.91	59.32	112.63	139.24	247.06	242.92
	0:55:00	0.00	0.00	15.77 13.51	45.39 39.31	51.88 45.74	105.76 94.10	130.83 116.93	236.61 219.08	229.34 210.73
	1:00:00	0.00	0.00	11.89	33.91	40.89	83.71	104.89	200.33	195.31
	1:05:00	0.00	0.00	10.45	28.93	36.47	74.57	94.22	183.22	182.16
	1:10:00	0.00	0.00	8.87	24.45	32.13	64.62	82.26	163.76	160.97
	1:15:00	0.00	0.00	7.27	21.11	28.23	54.18	69.62	137.51	137.05
	1:20:00	0.00	0.00	6.00	18.47	24.80	44.69	57.74	115.66	114.12
	1:25:00	0.00	0.00	5.21	15.99	21.68	37.99	49.23	97.45	96.67
	1:30:00	0.00	0.00	4.56	13.64	18.77	32.53	42.20	81.53	82.47
	1:35:00	0.00	0.00	3.98	11.47	16.17	27.90	36.24	67.41	70.56
	1:40:00	0.00	0.00	3.40	9.51	13.77	23.69	30.82	54.87	59.85
	1:45:00	0.00	0.00	2.83	7.57	0.20	19.86	25.89	43.86	50.04
	1:50:00 1:55:00	0.00	0.00	2.28	5.83	9.29 7.07	16.17	21.17	33.94	40.82
	2:00:00	0.00	0.00	1.71	4.79 4.12	4.87	12.63 9.19	16.64 12.28	26.61 21.52	32.21 24.12
	2:05:00	0.00	0.00	0.67	3.56	3.31	5.81	7.96	17.61	16.50
	2:10:00	0.00	0.00	0.42	3.01	2.45	3.59	5.15	14.31	11.29
	2:15:00	0.00	0.00	0.30	2.51	1.89	2.28	3.44	11.60	7.89
	2:20:00	0.00	0.00	0.23	2.04	1.47	1.48	2.35	9.28	5.46
	2:25:00	0.00	0.00	0.18	1.60	1.14	0.95	1.58	7.30	3.68
	2:30:00	0.00	0.00	0.13	1.18	0.86	0.62	1.08	5.61	2.39
	2:35:00	0.00	0.00	0.10	0.81	0.63	0.40	0.71	4.07	1.45
	2:40:00	0.00	0.00	0.07	0.55	0.45	0.25	0.46	2.75	0.84
	2:45:00 2:50:00	0.00	0.00	0.06	0.40	0.31	0.17	0.31	1.87	0.55
	2:55:00	0.00	0.00	0.05	0.31	0.21 0.15	0.12	0.22	1.28 0.88	0.38
	3:00:00	0.00	0.00	0.04	0.24	0.11	0.09	0.17	0.58	0.30
	3:05:00	0.00	0.00	0.02	0.15	0.08	0.05	0.09	0.37	0.18
	3:10:00	0.00	0.00	0.01	0.12	0.06	0.03	0.07	0.23	0.13
	3:15:00	0.00	0.00	0.01	0.09	0.03	0.02	0.05	0.15	0.09
	3:20:00	0.00	0.00	0.01	0.07	0.02	0.01	0.03	0.11	0.05
	3:25:00	0.00	0.00	0.00	0.05	0.01	0.01	0.02	0.08	0.03
	3:30:00	0.00	0.00	0.00	0.04	0.00	0.00	0.01	0.07	0.01
	3:35:00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.05	0.00
	3:40:00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.04	0.00
	3:45:00 3:50:00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.03	0.00
	3:50:00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00 4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00 4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00 5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00 6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

#### DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.06 (July 2022)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow		Area	Stage	Total Outflow	Stage
Stage - Storage Description	[ft]	[ft ² ]	[acres]	[ft ³ ]	[ac-ft]	[cfs]		[ft ² ]	Area	[cfs]	Release
	0.00	10	0.000	0	0.000	0.00	For best results, include the	10	0 10	0.00	0.0
		2,138	0.049	537	0.012	0.05	stages of all grade slope	2,138	0.5 2138.28	0.05	0.5 0.0
	0.50						changes (e.g. ISV and Floor)				
	1.00	7,169	0.165	2,864 8,085	0.066	0.11 0.15	from the S-A-V table on	7,169 13,715	1 7169.09 1.5 13715.31	0.11	1 0.11
	1.50	13,715 18,729		16,196			Sheet 'Basin'.	13,715	2 18728.56	0.15	2 0.23
	2.00	21,476	0.430	21,824	0.372 0.501	0.23	Also include the investo of all	21,476	2.28 21475.96	0.25	2.28 0.2
	2.28	23,635	0.493	21,824	0.615	0.20	Also include the inverts of all outlets (e.g. vertical orifice,	23,635	2.28 21475.96	0.20	2.28 0.2
	2.50	25,655	0.605	35,281	0.810	0.29	overflow grate, and spillway,	25,635	2.84 26332.66	0.29	2.84 0.3
	2.84	20,333	0.634	39,596	0.909	6.89	where applicable).	20,333	3 27602.32	6.89	3 6.89
	3.50	30,042	0.690	54,007	1.240	59.48		30,042	3.5 30042.07	59.48	3.5 59.4
	4.00	32,274	0.741	69,586	1.597	139.49	-	32,274	4 32273.85	139.49	4 139.4
	4.50	34,626	0.795	86,311	1.991	207.54	-	34,626	4.5 34626.01	207.54	4.5 207
	4.98	36,955	0.848	103,490	2.376	215.79		36,955	4.98 36954.82	215.79	4.98 215
	5.00	37,052	0.851	104,230	2.393	216.13		37,052	5 37051.85	216.13	5 216.
	5.50	39,551	0.908	123,381	2.832	301.25		39,551	5.5 39551.39	301.25	5.5 301
	6.00	42,125	0.967	143,800	3.301	495.87		42,125	6 42124.62	495.87	6 495.8
	6.50	44,776	1.028	165,525	3.800	759.26		44,776	6.5 44775.53	759.26	6.5 759
	7.00	47,667	1.094	188,636	4.330	1,080.97	1	47,667	7 47666.69	1,080.97	7 1080.
	7100	,				,			-11	,	1
							7				
							1				
							-				
							7				
							1				
							1				
							_				
							_				
							1				
							4				
							4				
							-				
							_				
							_				
							-				
							4				
							-				
							4				
							-				
							-				
							1				
							4				
							-				
							1				
							4				
							4				
							4				
			1				1				
							1				
							1				
							1				
							-				

	Design Procedure Form: I	Extended Detention Basin (EDB)
		(Version 3.07, March 2018) Sheet 1 of 3
Designer:		
Company:	HR GREEN December 4, 2024	
Date: Project:	FLYING HORSE NORTH - FILING NO. 4	
Location:	POND B	
1. Basin Storage \	/olume	
A) Effective Imp	erviousness of Tributary Area, I _a	I _a = 7.5 %
B) Tributary Are	a's Imperviousness Ratio (i = I _a / 100 )	i =
C) Contributing	Watershed Area	Area = <u>109.200</u> ac
	neds Outside of the Denver Region, Depth of Average lucing Storm	d ₆ = in
E) Design Cone (Select EUR	cept V when also designing for flood control)	Choose One Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)
F) Design Volu (V _{DESIGN} = (1	me (WQCV) Based on 40-hour Drain Time 1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} =ac-ft
Water Quali	neds Outside of the Denver Region, ity Capture Volume (WQCV) Design Volume $_{\rm R}$ = (d_6^*(V_{\rm DESIGN}/0.43))	V _{DESIGN OTHER} =ac-ft
	of Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Design Volume is desired)	V _{DESIGN USER} = 0.475 ac-ft
i) Percenta ii) Percenta	logic Soil Groups of Tributary Watershed ige of Watershed consisting of Type A Soils age of Watershed consisting of Type B Soils age of Watershed consisting of Type C/D Soils	$ \begin{array}{c c} HSG_{A} = & 0 & \% \\ HSG_{B} = & 100 & \% \\ HSG_{CD} = & 0 & \% \end{array} $
For HSG A For HSG B	an Runoff Volume (EURV) Design Volume : EURV _A = 1.68 * i ^{1.28} : EURV _n = 1.36 * i ^{1.08} /D: EURV _{CID} = 1.20 * i ^{1.08}	EURV _{DESIGN} = ac-f t
	f Excess Urban Runoff Volume (EURV) Design Volume ferent EURV Design Volume is desired)	EURV _{DESIGN USER} = 0.752 ac-ft
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W =: 1
3. Basin Side Slop	es	
	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = ft / ft
4. Inlet		
	eans of providing energy dissipation at concentrated	
inflow location		
5. Forebay		
A) Minimum Fo (V _{FMIN}		V _{FMIN} = ac-ft
B) Actual Fore		V _F =0.014 ac-ft
C) Forebay Dep		
(D _F D) Forebay Disc		$D_F = 18.0$ in
, -	ed 100-year Peak Discharge	Q ₁₀₀ = 187.60 cfs
,	Discharge Design Flow	$Q_F = $ 3.75 ofs
E) Forebay Disc	charge Design	Choose One
		Berm With Pipe     Flow too small for berm w/ pipe     Wall with Rect. Notch     Wall with V-Notch Weir
F) Discharge Pi	pe Size (minimum 8-inches)	Calculated D _P =in
G) Rectangular	Notch Width	Calculated W _N = <u>11.0</u> in

	Design Procedure Form:	Extended Detention Basin (EDB)	
Designer:	RICHARD LYON, PE		Sheet 2 of 3
Company:	HR GREEN		
Date:	December 4, 2024		
Project:	FLYING HORSE NORTH - FILING NO. 4 POND B		
Location:			
6. Trickle Channel		Choose One <ul> <li>Concrete</li> </ul>	
A) Type of Trick	kle Channel	Soft Bottom	
F) Slope of Tric	skle Channel	S = 0.0050 ft / ft	
7. Micropool and C	Dutlet Structure		
A) Depth of Mic	cropool (2.5-feet minimum)	D _M = 2.5 ft	
B) Surface Area	a of Micropool (10 ft ² minimum)	A _M = <u>10</u> sq ft	
C) Outlet Type			
		Choose One Orifice Plate	
		Other (Describe):	
	nension of Orifice Opening Based on Hydrograph Routing	D _{otifice} =inches	
(Use UD-Detent	uon)	D _{orifice} =inches	
E) Total Outlet A	Area	A _{ot} =square ir	nches
8. Initial Surcharge	e Volume		
A) Depth of Initi	ial Surcharge Volume	D _{IS} = in	Reference MHFD
	commended depth is 4 inches)		detention basin outlet
B) Minimum Initi	ial Surcharge Volume	V _{IS} = 02 cu ft	structure design for any
(Minimum vol	lume of 0.3% of the WQCV)		information that is not
C) Initial Surcha	arge Provided Above Micropool	V _s =cu ft	available on this sheet.
9. Trash Rack			
A) Water Qualit	ty Screen Open Area: $A_t = A_{ot} * 38.5*(e^{-0.095D})$	A _t =square ir	nches
in the USDCM,	en (If specifying an alternative to the materials recommended indicate "other" and enter the ratio of the total open are to the for the material specified.)		
	Other (Y/N): N		
C) Ratio of Tota	I Open Area to Total Area (only for type 'Other')	User Ratio =	
D) Total Water (	Quality Screen Area (based on screen type)	A _{total} =sq. in.	
	sign Volume (EURV or WQCV) design concept chosen under 1E)	H=	
F) Height of Wa	tter Quality Screen (H _{TR} )	H _{TR} = inches	
	ter Quality Screen Opening (W _{opening} ) inches is recommended)	W _{opening} = inches	

PROJECT	: FLYING HORSE N	ORTH FILING 4								
DATE	: 8/19/2024									
DESIGNED BY	: RDL									
CHECKED BY	: RDL									
POND OR DP	: POND B									
	IN	NER DIMENSIONS	OUTER D	IMENSIONS						
	LENGTH									
	L1	5 FT		5.83 FT	T-5		Exten	ded Deter	ntion Basi	n (EDB)
	L2	22.333 FT		23.166 FT	<u> </u>		2			
	L3	5 FT		5.83 FT		Tat	le EDB-4. EDB	component criter	ia	
	INNER L	32.333 FT	OUTER TOTAL L	33.999 FT		On-Site EDBs for Watersheds	EDBs with Watersheds	EDBs with Watersheds	EDBs with Watersheds	EDBs with Watersheds
	MIDTU					up to 1 Impervious	between 1 and 2 Impervious	up to 5 Impervious	over 5 Impervious	over 20 Impervious
	WIDTH W1	5 FT		5.83 FT		Acrel	Acres	Acres	Acres	Acres
	W2	16.74975 FT (75% of I	2)	5.83 FT 17.58 FT			2201 22 2			Release 2% of
	W3	10.74975 FT (75% 01) 5 FT	-2)	5.83 FT			Release 2% of the undetained	Release 2% of the undetained	Release 2% of the undetained	the undetained 100-year peak
	INNER W	26.750 FT	OUTER TOTAL W	28.416 FT	Forebay Release and		100-year peak discharge by	100-year peak discharge by	100-year peak discharge by	discharge by
		20.750 11	OUTER TOTAL W	20.410 11	Configuration		way of a wall/notch	way of a wall/notch	way of a wall/notch	way of a wall/notch or berm/pipe ²
	BAFFLE	(6'x0.83' + 4'x0.83')					configuration	configuration	configuration	configuration
	AREA	8.33 SF		N		EDBs should	5	2 2	-	
			SE 12		Minimum Forebay	not be used	1% of the	2% of the	3% of the	3% of the
FRIANGLES	50	0	_L1	13	Volume	for watersheds	WQCV	WQCV	WQCV	WQCV
RECTANGLE	374.0721668	3			Maximum	with less than 1 impervious	2222 (210)		1000 (1000)	
BAFFLE	8.33		1 S I.	PIPE OR RP-RAP RUNDOWN	Forebay Depth	acre.	12 inches	18 inches	18 inches	30 inches
FOTAL SURFACE AREA	415.7421668	³ SQ FT	NOTCH	- CL CHANNEL NOTCH (INFLOW)	Trickle	10452454041	≥ the maximum	≥ the maximum	≥ the maximum	≥ the maximum
				(INFCOM)	Channel Capacity		possible forebay outlet	possible forebay outlet	possible forebay outlet	possible forebay outlet
			s /	//	Capacity		capacity	capacity	capacity	capacity
OREBAY HT.	1.!	5 FT		1.0 m	Micropool		Area $\geq 10 \ \mathrm{ft}^2$	Area $\geq 10 \text{ ft}^2$	Area $\geq 10 \text{ ft}^2$	$Area \geq 10 \ ft^2$
	623.6132501	CF	YES		Initial Surcharge Volume		Depth ≥ 4 inches	Depth ≥ 4 inches	Depth ≥ 4 in. Volume ≥ 0.3% WQCV	Depth ≥ 4 in. Volume ≥ 0.3% WQCV
OREBAY VOLUME		VOLUN	IE?		2012 COCCERCION 1		di		A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.	100000000000
	23.09678704	CY			1 EDBs are not re	ecommended for si	tes with less than	2 impervious acre	s. Consider a sand	filter or rain
	0.01431619	AC-FT			garden.					
					² Round up to the	first standard pipe	size (minimum 8	inches).		
REQ'D VOL (3% WQCV)	0.01425	AC-FT								
per UD-BMP calc)	620.73	CF								

## **Worksheet for Pond B Spillway**

Project Description		
Solve For	Headwater Elevation	
Input Data		
Discharge	247.10 cfs	
Crest Elevation	7,531.10 ft	
Tailwater Elevation	7,522.00 ft	
Crest Surface Type	Gravel	
Crest Breadth	75.00 ft	
Crest Length	100.0 ft	
Results		
Headwater Elevation	7,532.02 ft	
Headwater Height Above Crest	0.92 ft	
Tailwater Height Above Crest	-9.10 ft	
Weir Coefficient	2.81 ft^(1/2)/s	
Submergence Factor	1.000	
Adjusted Weir Coefficient	2.81 ft^(1/2)/s	
Flow Area	91.8 ft ²	
Velocity	2.69 ft/s	
Wetted Perimeter	101.8 ft	
Top Width	100.00 ft	



El Paso County, Colorado

# **POND C**

### DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)



Depth Increment = ft

PERMANENT ORIFIC	Deput Increment =		Optional				Optional							
POOL Example Zone	Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume				
	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ² )	Area (ft ² )	(acre)	(ft 3)	(ac-ft)				
Watershed Information 7530					Top of Micropool		0.00				10	0.000		
Selected BMP Type =	EDB		Note: L / W	Ratio < 1	7530.5		0.50				249	0.006	65	0.001
Watershed Area =	39.31	acres	L / W Ratio	= 0.99	7531.0		1.00				1,554	0.036	516	0.012
Watershed Length =	1,300	ft			7531.5		1.50				5,593	0.128	2,302	0.053
Watershed Length to Centroid =	700	ft			7532.0		2.00				11,944	0.274	6,687	0.154
Watershed Slope =	0.055	ft/ft			7532.5		2.50				19,387	0.445	14,520	0.333
Watershed Imperviousness =	10.40%	percent			7533.0		3.00				26,211	0.602	25,919	0.595
Percentage Hydrologic Soil Group A =	0.0%	percent			7533.5		3.50				31,825	0.731	40,428	0.928
Percentage Hydrologic Soil Group B =	100.0%	percent			7534.0		4.00				35,777	0.821	57,329	1.316
Percentage Hydrologic Soil Groups C/D =	0.0%	percent			7534.5		4.50				38,050	0.874	75,785	1.740
Target WQCV Drain Time =	40.0	hours			7535.0		5.00				40,396	0.927	95,397	2.190
Location for 1-hr Rainfall Depths =	User Input				7535.5		5.50				42,815	0.983	116,199	2.668
After providing required inputs above incl	uding 1-hour	rainfall			7536.0		6.00				45,306	1.040	138,230	3.173
depths, click 'Run CUHP' to generate runo					7536.5		6.50				47,871	1.099	161,524	3.708
the embedded Colorado Urban Hydrog	graph Procedu	ire.	Optional User	r Overrides	7537.0		7.00				50,508	1.160	186,119	4.273
Water Quality Capture Volume (WQCV) =	0.227	acre-feet		acre-feet	7537.5		7.50				53,221	1.222	212,051	4.868
Excess Urban Runoff Volume (EURV) =	0.385	acre-feet		acre-feet										
2-yr Runoff Volume (P1 = 1.19 in.) =	0.534	acre-feet	1.19	inches										
5-yr Runoff Volume (P1 = 1.5 in.) =	1.166	acre-feet	1.50	inches										
10-yr Runoff Volume (P1 = 1.75 in.) =	1.796	acre-feet	1.75	inches										
25-yr Runoff Volume (P1 = 2 in.) =	2.914	acre-feet	2.00	inches										
50-yr Runoff Volume (P1 = 2.25 in.) =	3.678	acre-feet	2.25	inches										
100-yr Runoff Volume (P1 = 2.52 in.) =	4.777	acre-feet	2.52	inches										
500-yr Runoff Volume (P1 = 3.14 in.) =	6.781	acre-feet		inches										
Approximate 2-yr Detention Volume =	0.247	acre-feet												
Approximate 5-yr Detention Volume =	0.386	acre-feet												
Approximate 10-yr Detention Volume =	0.788	acre-feet												
Approximate 25-yr Detention Volume =	1.094	acre-feet												
Approximate 50-yr Detention Volume =	1.146	acre-feet												
Approximate 100-yr Detention Volume =	1.477	acre-feet												
Define Zones and Basin Geometry		-												
Zone 1 Volume (WQCV) =	0.227	acre-feet												
Zone 2 Volume (EURV - Zone 1) =	0.159	acre-feet	Total deten	tion										
Zone 3 Volume (User Defined - Zones 1 & 2) =	0.615	acre-feet	volume is le											
Total Detention Basin Volume =	1.000	acre-feet	100-year vo	oume.										

#### DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.06 (July 2022) Project: FLYING HORSE NORTH FILING NO. 4 Basin ID: POND C Estimated Estimated Stage (ft) Volume (ac-ft) Outlet Type OLUME EURY WOCY Zone 1 (WQCV) 2.24 0.227 Orifice Plate 100-YEAR Zone 2 (EURV) 2.62 0.159 Orifice Plate Weir&Pipe (Restrict) PERM Zone 3 (User) 3.60 0.615 Example Zone Configuration (Retention Pond) Total (all zones) 1.000 User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Area N/A ft² Underdrain Orifice Centroid = Underdrain Orifice Diameter = N/A inches N/A feet User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate WQ Orifice Area per Row : Centroid of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) 6.111E-03 ft² Depth at top of Zone using Orifice Plate = 2.62 ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width = N/A feet Orifice Plate: Orifice Vertical Spacing = 10.20 Elliptical Slot Centroid : N/A feet inches Orifice Plate: Orifice Area per Row = 0.88 sq. inches (diameter = 1-1/16 inches) Elliptical Slot Area N/A ft2 User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft) 0.00 0.87 1.75 Orifice Area (sq. inches) 0.88 0.88 0.88 Row 11 (optional) Row 9 (optional) Row 10 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft) Orifice Area (sq. inches) User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifice Not Selected Not Selected Not Selected Not Selected Invert of Vertical Orifice = N/A N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area N/A N/A ft² Depth at top of Zone using Vertical Orifice = ft (relative to basin bottom at Stage = 0 ft) N/A N/A Vertical Orifice Centroid = N/A N/A feet Vertical Orifice Diameter = N/A N/A inches User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir and No Outlet Pipe) Calculated Parameters for Overflow Weir Zone 3 Weir Not Selected Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho = 2.63 N/A ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, $H_t$ = 2.63 N/A feet Overflow Weir Front Edge Length = 8.00 N/A feet Overflow Weir Slope Length = 5.00 N/A feet H:V Grate Open Area / 100-yr Orifice Area = Overflow Weir Grate Slope = 0.00 N/A 3.97 N/A Horiz. Length of Weir Sides = 5.00 N/A feet Overflow Grate Open Area w/o Debris 27.84 N/A ft² Type C Grate Overflow Grate Type = N/A Overflow Grate Open Area w/ Debris = 13.92 N/A ft Debris Clogging % = 50% N/A 0/0 User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe Outlet Orifice Area 1.70 N/A ft (distance below basin bottom at Stage = 0 ft) 7.01 N/A ft² Outlet Orifice Centroid Outlet Pipe Diameter = 36.00 N/A inches 1.49 N/A feet Restrictor Plate Height Above Pipe Invert = 35.00 inches Half-Central Angle of Restrictor Plate on Pipe = 2.81 N/A radians User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage= ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 6.00 0.56 feet Spillway Crest Length = 53.00 feet Stage at Top of Freeboard = 7.56 feet Spillway End Slopes = 4.00 lh:v Basin Area at Top of Freeboard 1.22 acres Freeboard above Max Water Surface = Basin Volume at Top of Freeboard = 1.00 feet 4.87 acre-ft Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF, EURV Design Storm Return Period WQCV 5 Year 10 Year 25 Year 50 Year 100 Year 500 Year 2 Year One-Hour Rainfall Depth (in) : 3.14 N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 CUHP Runoff Volume (acre-ft) 0.227 0.385 0.534 1.166 1.796 2.914 3.678 4.777 6.781 3.678 User Override Inflow Hydrograph Volume (acre-ft) = N/A N/A 0.534 1.053 1.796 2.914 4.683 6.781 CUHP Predevelopment Peak O (cfs) = N/A N/A 6.8 18.3 27.1 47.3 59.0 74.0 102.5 OPTIONAL Override Predevelopment Peak Q (cfs) = N/A N/A 64.0 0.47 Predevelopment Unit Peak Flow, q (cfs/acre) = N/A N/A 0.17 0.69 1.20 1.50 1.63 2.61 Peak Inflow Q (cfs) = N/A N/A 10.6 18.0 32.2 51.2 63.0 69.0 107.2 Peak Outflow Q (cfs) : 0.1 0.1 8.4 19.1 38.3 48.6 57.4 74. Ratio Peak Outflow to Predevelopment Q = N/A N/A N/A 0.5 0.7 0.8 0.8 0.9 0.7 Structure Controlling Flow Overflow Weir 1 Outlet Plate Plate Plate Max Velocity through Grate 1 (fps) = N/A N/A 0.05 0.3 0. 1.4 1.7 2. N/A N/A N/A N/A N/A N/A N/A N/A Max Velocity through Grate 2 (fps) = N/A Time to Drain 97% of Inflow Volume (hours) = 54 54 49 43 34 57 30 26 57 Time to Drain 99% of Inflow Volume (hours) = 40 61 59 57 54 53 51 47 Maximum Ponding Depth (ft) : 2.24 2.62 2.74 2.97 3.22 3.57 3.73 3.86 4.62

Area at Maximum Ponding Depth (acres) =

Maximum Volume Stored (acre-ft) =

Elevation (ft) =

Pond Bottom (ft) =

0.36

0.23

7532.24

7530.00

0.48

0.39

7532.62

0.52

0.45

0.59

0.58

0.66

0.73

0.74

0.97

SWMM volume

SWMM release

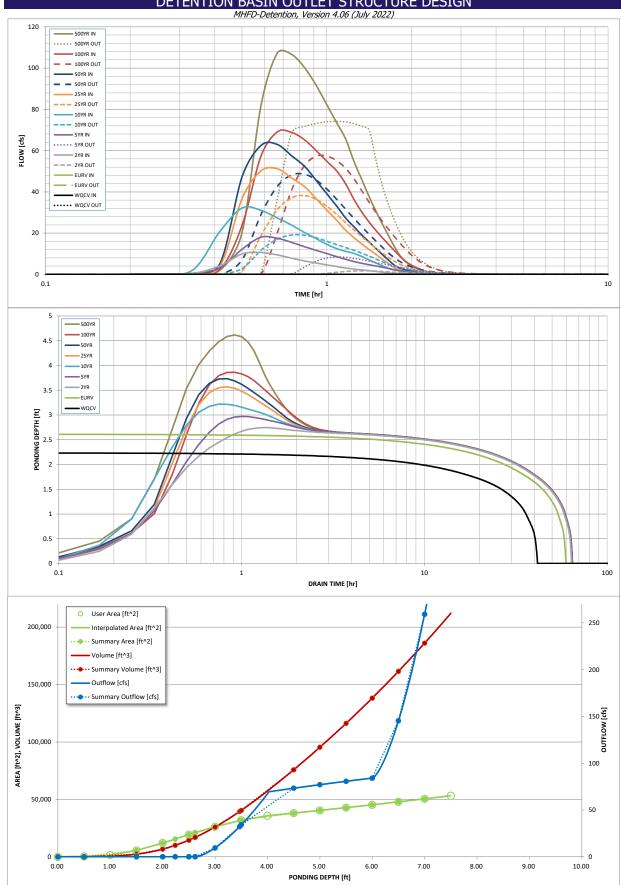
0.77

1.10

43.891

0.80

1.20


7533.86

1.01

61.9

0.89

1.84



## DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

	The user can o	verride the calcu	lated inflow hyd	rographs from t	his workbook wi	th inflow hydrog	raphs developed	l in a separate pr	ogram.	
	SOURCE	CUHP	CUHP	CUHP	USER	CUHP	CUHP	CUHP	USER	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.02	0.05
	0:15:00	0.00	0.00	0.13	0.16	0.26	0.17	0.21	0.17	0.30
	0:20:00	0.00	0.00	0.46	0.44	2.03	0.45	0.52	0.42	1.91
	0:25:00	0.00	0.00	4.10	3.10	20.74	3.87	5.06	2.40	20.17
	0:30:00	0.00	0.00	9.96	12.19	32.18	36.67	47.27	23.71	81.63
	0:35:00	0.00	0.00	10.60	18.04	31.02	50.08	62.48	57.21	107.23
	0:40:00	0.00	0.00	9.44	17.52	27.38	51.18	63.00	69.03	106.70
	0:45:00	0.00	0.00	7.85	15.52	23.86	46.69 42.59	57.48	68.80	100.27
	0:55:00	0.00	0.00	6.54 5.52	13.42 11.68	20.36 17.36	36.72	52.46 45.58	65.25 60.06	91.74 82.30
	1:00:00	0.00	0.00	4.58	10.12	14.59	31.23	39.08	54.88	73.61
	1:05:00	0.00	0.00	3.78	8.65	12.50	26.32	33.22	50.27	65.75
	1:10:00	0.00	0.00	3.09	7.28	11.19	21.43	27.38	44.01	54.71
	1:15:00	0.00	0.00	2.59	6.21	10.19	17.79	23.04	36.31	45.89
	1:20:00	0.00	0.00	2.16	5.39	8.66	14.73	19.11	30.18	37.59
	1:25:00	0.00	0.00	1.76	4.68	7.00	12.06	15.64	25.27	30.34
	1:30:00	0.00	0.00	1.38	4.04	5.46	9.55	12.42	21.11	24.01
	1:35:00	0.00	0.00	1.00	3.44	4.03	7.20	9.42	17.52	18.18
	1:40:00	0.00	0.00	0.65	2.82	2.77	4.98	6.59	14.24	12.87
	1:45:00	0.00	0.00	0.41	2.17	2.05	3.04	4.16	11.20 8.38	8.63
	1:50:00 1:55:00	0.00	0.00	0.32	1.56 1.10	1.68 1.38	1.99 1.36	2.85	8.38 6.00	6.12 4.50
	2:00:00	0.00	0.00	0.27	0.81	1.38	0.97	1.55	4.20	3.35
	2:05:00	0.00	0.00	0.18	0.63	0.86	0.65	1.08	2.99	2.30
	2:10:00	0.00	0.00	0.13	0.49	0.64	0.44	0.75	2.10	1.50
	2:15:00	0.00	0.00	0.10	0.38	0.46	0.29	0.51	1.45	0.93
	2:20:00	0.00	0.00	0.07	0.29	0.33	0.19	0.34	0.96	0.58
	2:25:00	0.00	0.00	0.06	0.22	0.22	0.14	0.24	0.61	0.41
	2:30:00	0.00	0.00	0.04	0.16	0.15	0.10	0.17	0.37	0.29
	2:35:00	0.00	0.00	0.03	0.12	0.11	0.07	0.12	0.25	0.22
	2:40:00 2:45:00	0.00	0.00	0.02	0.09	0.08	0.05	0.09	0.18	0.16
	2:45:00	0.00	0.00	0.02	0.07	0.06	0.04	0.07	0.13	0.12
	2:55:00	0.00	0.00	0.01	0.05	0.04	0.03	0.05	0.10	0.09
	3:00:00	0.00	0.00	0.00	0.04	0.02	0.02	0.02	0.05	0.03
	3:05:00	0.00	0.00	0.00	0.02	0.00	0.00	0.02	0.03	0.02
	3:10:00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.01
	3:15:00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00
	3:20:00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00 3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00 4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00 4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00 5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00 5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
l	0.00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

#### DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.06 (July 2022)

## Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

-	Stage	Area	Area	Volume	Volume	Total		Area	Stage	Total	Stage
Stage - Storage Description	[ft]	[ft ² ]	[acres]	[ft ³ ]	[ac-ft]	Outflow [cfs]		[ft ² ]	Area	Outflow [cfs]	Release
		10	0.000	0	0.000	0.00		10	0 10	0	0 0
	0.00	249	0.006	65	0.000	0.00	For best results, include the stages of all grade slope	249	0.5 249.43	0	0.5 0.02
	0.50	5,593	0.128	2,302	0.053	0.02	changes (e.g. ISV and Floor)	5,593	1.5 5592.99	0	1.5 0.02
	2.00	11,944	0.120	6,687	0.154	0.00	from the S-A-V table on	11,944	2 11944.46	0	2 0.09
WQCV	2.24	15,517	0.356	9,982	0.229	0.10	Sheet 'Basin'.	15,517	2.24 15517.1	0	2.24 0.1
	2.50	19,387	0.445	14,520	0.333	0.11	Also include the inverts of all	19,387	2.5 19387.47	0	2.5 0.11
EURV	2.62	21,025	0.483	16,944	0.389	0.11	outlets (e.g. vertical orifice,	21,025	2.62 21025.09	0	2.62 0.11
	3.00	26,211	0.602	25,919	0.595	9.55	overflow grate, and spillway, where applicable).	26,211	3 26210.88	10	3 9.55
100-YEAR	3.47	31,488	0.723	39,478	0.906	32.39	where applicable).	31,488	3.47 31487.98	32	3.47 32.39
	3.50	31,825	0.731	40,428	0.928	34.13		31,825	3.5 31824.82	34	3.5 34.13
	4.50	38,050 40,396	0.874	75,785 95,397	1.740 2.190	73.30 77.09	-	38,050 40,396	4.5 38050.1 5 40395.84	73 77	4.5 73.3 5 77.09
	5.00	40,396	0.927	116,199	2.190	80.70		40,396	5.5 42814.52	81	5.5 80.7
	6.00	45,306	1.040	138,230	3.173	84.16	-	45,306	6 45306.16	84	6 84.16
	6.50	47,871	1.099	161,524	3.708	145.40		47,871	6.5 47870.75	145	6.5 145.4
	7.00	50,508	1.160	186,119	4.273	259.29		50,508	7 50508.29	259	7 259.29
							]				
							4				
							-				
							4				
							1				
							-				
							-				
							1				
							_				
							-				
							-				
							-				
							-				
							-				
							_				
							-				
	-						-				
							-				
							-				
							-				
							]				
							1				
							4				
							4				
							1				
							1				
							4				
							4				
							1				
							4				
							4				
							1				
							]				
							4				
							4				
							1				
							4				
							4				
							1				
							]				

	Design Procedure Form: I	Extended Detention Basin (EDB)
		(Version 3.07, March 2018) Sheet 1 of 3
Designer:	RICHARD LYON, PE	
Company:	HR GREEN December 4, 2024	
Date: Project:	FLYING HORSE NORTH - FILING NO. 4	
Location:	POND C	
1. Basin Storage V	'olume	
A) Effective Imp	erviousness of Tributary Area, I _a	I _a = 10.4 %
B) Tributary Are	a's Imperviousness Ratio (i = I _a / 100 )	i =
C) Contributing	Watershed Area	Area = 39.300 ac
D) For Watersh Runoff Prod	eds Outside of the Denver Region, Depth of Average ucing Storm	d ₆ = in
E) Design Cono (Select EUR)	eept ✓ when also designing for flood control)	Choose One Utable Value (WQCV) Excess Urban Runoff Volume (EURV)
F) Design Volu (V _{DESIGN} = (1	ne (WQCV) Based on 40-hour Drain Time .0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = ac-ft
Water Quali	leds Outside of the Denver Region, ty Capture Volume (WQCV) Design Volume _i = (d ₆ "(V _{DESIGN} /0.43))	V _{DESIGN OTHER} =ac-ft
	f Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Design Volume is desired)	V _{DESIGN USER} = 0.227 ac-ft
<ul><li>i) Percenta</li><li>ii) Percenta</li></ul>	ogic Soil Groups of Tributary Watershed ge of Watershed consisting of Type A Soils ige of Watershed consisting of Type B Soils age of Watershed consisting of Type C/D Soils	$ \begin{array}{c c} HSG_{A} = & 0 & \% \\ HSG_{B} = & 100 & \% \\ HSG_{CD} = & 0 & \% \end{array} $
For HSG A For HSG B	n Runoff Volume (EURV) Design Volume EURV _A = 1.68 * $i^{1.26}$ EURV _n = 1.36 * $i^{1.08}$ D: EURV _{CD} = 1.20 * $i^{1.08}$	EURV _{DESIGN} = ac-f t
	f Excess Urban Runoff Volume (EURV) Design Volume ferent EURV Design Volume is desired)	EURV _{DESIGN USER} = 0.385 ac-ft
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W =: 1
3. Basin Side Slop	es	
A) Basin Maxim (Horizontal d	ium Side Slopes listance per unit vertical, 4:1 or flatter preferred)	Z = 4.00 ft / ft
4. Inlet		
	ans of providing energy dissipation at concentrated	
inflow location		
5. Forebay		
A) Minimum Fo (V _{FMIN}		V _{FMIN} = 0.005 ac-ft
B) Actual Foreb		V _F = ac-ft
C) Forebay Dep (D _F		D _F = 18.0 in
(D _F D) Forebay Disc		
, -	ed 100-year Peak Discharge	Q ₁₀₀ = 78.00 cfs
ii) Forebay (Q _F = 0.02	Discharge Design Flow * Q ₁₀₀ )	Q _F = cfs
E) Forebay Disc	harge Design	Choose One
		Obose One     Obsern With Pipe     Flow too small for berm w/ pipe     Wall with Rect. Notch     Wall with V-Notch Weir
F) Discharge Pi	pe Size (minimum 8-inches)	Calculated D _P = in
G) Rectangular	Notch Width	Calculated $W_N = 6.7$ in

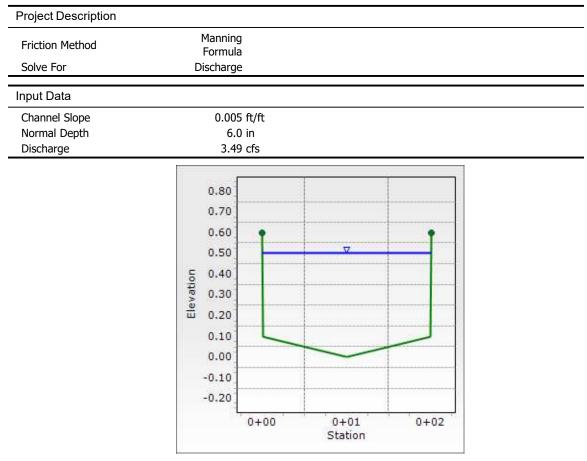
	Design Procedure Form:	Extended Detention Basin (EDB)	
Designer:	RICHARD LYON, PE		Sheet 2 of 3
Company:	HR GREEN		
Date:	December 4, 2024		
Project:	FLYING HORSE NORTH - FILING NO. 4		
Location:	POND C		
6. Trickle Channel		Choose One Concrete	
A) Type of Trick	kle Channel	Soft Bottom	
F) Slope of Tric	kle Channel	S = 0.0050 ft / ft	
7. Micropool and C	Dutlet Structure		
A) Depth of Mic	cropool (2.5-feet minimum)	D _M = 2.5 ft	
	a of Micropool (10 ft ² minimum)	A _M = <u>10</u> sq ft	
C) Outlet Type		Choose One Orifice Plate Other (Describe):	
D) Smallest Dir (Use UD-Detent	nension of Orifice Opening Based on Hydrograph Routing tion)	D _{orifice} =inches	
E) Total Outlet A	Area	A _{ot} =square in	ches
8. Initial Surcharge	Volume		Reference MHFD
	ial Surcharge Volume commended depth is 4 inches)	D _{IS} = in	detention basin outlet
	ial Surcharge Volume ume of 0.3% of the WQCV)	V _{IS} = cu ft	structure design for any information that is not
C) Initial Surcha	rge Provided Above Micropool	V _s =cu ft	available on this sheet.
9. Trash Rack			
A) Water Quali	ty Screen Open Area: A _t = A _{ot} * 38.5*(e ^{-0.095D} )	A _t =square in	ches
in the USDCM,	en (If specifying an alternative to the materials recommended indicate "other" and enter the ratio of the total open are to the for the material specified.)		
	Other (Y/N): N		
C) Ratio of Tota	I Open Area to Total Area (only for type 'Other')	User Ratio =	
D) Total Water (	Quality Screen Area (based on screen type)	A _{total} =sq. in.	
	ign Volume (EURV or WQCV) design concept chosen under 1E)	H= feet	
F) Height of Wa	ter Quality Screen (H _{TR} )	H _{TR} =	
	ter Quality Screen Opening (W _{openina} ) inches is recommended)	W _{opening} = inches	

PROJECT	: FLYING HORSE	NORTH FILING 4								
DATE	: 8/19/2024									
DESIGNED BY	: RDL									
CHECKED BY	: RDL									
POND OR DP	P: POND C									
		INNER DIMENSIONS	OUTER D	IMENSIONS						
	LENGTH									
	L1	5 FT		5.83 FT	T-5		Exten	ded Deter	tion Basi	n (EDB)
	L2	12.167 FT		13.000 FT						( /
	L3	5 FT		5.83 FT		Tat	ole EDB-4. EDB	component criter	ia	
	INNER L	22.167 FT	OUTER TOTAL L	23.833 FT		On-Site EDBs for Watersheds	EDBs with Watersheds	EDBs with Watersheds	EDBs with Watersheds over 5	EDBs with Watersheds
	WIDTH					up to 1 Impervious	between 1 and 2 Impervious	up to 5 Impervious	Impervious	over 20 Impervious
	WIDTH W1	5 FT		5.83 FT		Acrel	Acres	Acres	Acres	Acres
	W2	9.12525 FT (75% of )	2)	9.96 FT			201 20 2			Release 2% of
	W3	5 FT	-2)	5.83 FT			Release 2% of the undetained	Release 2% of the undetained	Release 2% of the undetained	the undetained 100-year peak
	INNER W	19.125 FT	OUTER TOTAL W	20.791 FT	Forebay Release and		100-year peak discharge by	100-year peak discharge by	100-year peak discharge by	discharge by
		19.125 11	OUTER TOTAL W	20.79111	Configuration		way of a wall/notch	way of a wall/notch	way of a wall/notch	way of a wall/notch or berm/pipe ²
	BAFFLE	(6'x0.83' + 4'x0.83')					configuration	configuration	configuration	configuration
	AREA	8.33 SF				EDBs should	5	2 2		
			2 12		Minimum Forebay	not be used	1% of the	2% of the	3% of the	3% of the
TRIANGLES		50	L1	1.3	Volume	for watersheds	WQCV	WQCV	WQCV	WQCV
RECTANGLE	111.02691	.68			Maximum	with less than	2 199212-5-12110	10000-00-0	Defendance -	20010000
BAFFLE		.33	1 S I	PIPE OR RIP-RAP RUNDOWN	Forebay Depth	1 impervious acre.	12 inches	18 inches	18 inches	30 inches
TOTAL SURFACE AREA	152.69691	.68 SQ FT	NOTCH	- CL CHANDOWN CHANNER NOTCH (INFLOW)	Trickle	00-00-00-00-0	≥ the maximum possible	≥ the maximum possible	≥ the maximum possible	≥ the maximum possible
			S. C.	//	Capacity		forebay outlet capacity	forebay outlet capacity	forebay outlet capacity	forebay outlet capacity
OREBAY HT.	:	1.5 FT		/	Micropool		Area $\geq 10 \text{ ft}^2$	Area $\geq 10 \text{ ft}^2$	Area ≥ 10 ft ²	Area ≥ 10 ft ²
					Initial	1	entranal aber and an		$Depth \ge 4$ in.	$Depth \ge 4$ in.
OREBAY VOLUME	229	CF SUFFICI VOLUM	YES		Surcharge Volume		Depth ≥ 4 inches	Depth ≥ 4 inches	Volume ≥ 0.3% WQCV	Volume ≥ 0.3% WQCV
UNEDAT VOLUME	8.483	CY								
	0.005	AC-FT			¹ EDBs are not re garden.	ecommended for si	ites with less than	2 impervious acre	s. Consider a sand	d filter or rain
	0.005	AU-FI			20 <del>0</del> 0404088011	6		(mala and		
REQ'D VOL (2% WQCV)	0.005	AC-FT			- Kound up to the	first standard pipe	e size (minimum 8	incries).		
per UD-BMP calc)	198	CF								
Notch Width per UD-BMP		in								

## Worksheet for Pond C Spillway

Project Description		
Solve For	Headwater Elevation	
Input Data		
Discharge	69.00 cfs	
Crest Elevation	7,536.00 ft	
Tailwater Elevation	7,528.00 ft	
Crest Surface Type	Gravel	
Crest Breadth	40.00 ft	
Crest Length	53.0 ft	
Results Headwater Elevation	7,536.61 ft	
Headwater Height Above Crest	0.61 ft	
Tailwater Height Above Crest	-8.00 ft	
Weir Coefficient	2.73 ft^(1/2)/s	
Submergence Factor	1.000	
Adjusted Weir Coefficient	2.73 ft^(1/2)/s	
Flow Area	32.4 ft ²	
Velocity	2.13 ft/s	
Wetted Perimeter	54.2 ft	
Top Width	53.00 ft	

## **Worksheet for Pond C Trickle Channel**


Project Description				
Friction Method	Manning Formula			
Solve For	Discharge			
	Discharge			
Input Data				
Channel Slope	0.005 ft/ft			
Normal Depth	6.0 in			
	Se	ction Definitions		
Stati			Elevation	
(ft)	)	0.00	(ft)	
		0+00		0.5
		0+00 0+01		0.0 0.0
		0+02		0.0
		0+02		0.5
	Roughne	ss Segment Definitio	ons	
Start Station		Ending Station	Roughness Coefficient	
(0+00, 0.58)		(0+02, 0.5	8)	0.01
Ontions				
Options				
Current Roughness Weighted Method	Pavlovskii's Method			
Open Channel Weighting	Pavlovskii's			
Method	Method			
Closed Channel Weighting	Pavlovskii's			
Method	Method			
Results				
Discharge	3.49 cfs			
Roughness Coefficient	0.013			
Elevation Range	0.0 to 0.6 ft			
Flow Area	0.9 ft ²			
Wetted Perimeter	2.8 ft			
Hydraulic Radius	3.9 in			
Top Width	2.01 ft			
Normal Depth	6.0 in			
Critical Depth	6.0 in			
Critical Slope	0.005 ft/ft			
Velocity	3.81 ft/s			
Velocity Head	0.23 ft			
C	0.73 ft			
Specific Energy				
Specific Energy Froude Number Flow Type	0.994 Subcritical			

Pond Trickle Channels and Spillways.fm8 8/19/2024

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 2

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	6.0 in	
Critical Depth	6.0 in	
Channel Slope	0.005 ft/ft	
Critical Slope	0.005 ft/ft	

## **Worksheet for Pond C Trickle Channel**



#### **Cross Section for Pond C Trickle Channel**

Pond Trickle Channels and Spillways.fm8 8/19/2024

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 1



Flying Horse North Filing No. 3 Final Drainage Report Project No.: 211030.20

El Paso County, Colorado

# SEPARATE PERVIOUS AREA (SPA) CALCULATIONS

	Design Procedure Form: Runoff Reduction											
				UD-BN	/IP (Version 3.0	7, March 2018)						Sheet 1 of 1
Designer:	Theresa McM											
Company:	HR GREEN L	LC										
Date:	January 13, 2	025										
Project:	Flying Horse	North Filing No	o. 4									
Location:	Black Forest	Road and Old	Stagecoach Ro	oad								
			-									
SITE INFORMATION (Us	SITE INFORMATION (User Input in Blue Cells)											
WQCV Rainfall Depth 0.60 inches												
Depth of Average Ru	noff Producing	g Storm, d ₆ =	0.43	inches (for V	/atersheds O	utside of the I	Denver Regio	n, Figure 3-1	in USDCM Vol. 3)			
Area Type	SPA											
Area ID												
Downstream Design Point ID												
Downstream BMP Type	None											
DCIA (ft ² )												
UIA (ft ² )												
RPA (ft ² )												
SPA (ft ² )	98,446											
HSG A (%)	0%											
HSG B (%)	100%											
HSG C/D (%)	0%											
Average Slope of RPA (ft/ft)												
UIA:RPA Interface Width (ft)												
L												
CALCULATED RUNOFF		1						1	I	1		
Area ID												
UIA:RPA Area (ft ² )												
L / W Ratio												
UIA / Area												
Runoff (in)	0.00											
Runoff (ft ³ )	0											
Runoff Reduction (ft ³ )	4922											
CALCULATED WQCV R		1						1	[			
Area ID												
WQCV (ft ³ )												
WQCV Reduction (ft ³ )	0											
WQCV Reduction (%)	-											
Untreated WQCV (ft ³ )	0											
CALCULATED DESIGN		LTS (sums re	sults from a	ll columns w	ith the same	Downstream	n Design Poir	nt ID)	1			
Downstream Design Point ID	2										<u> </u>	⊢───┤ ┃
DCIA (ft ² )	0											⊢
UIA (ft ² )	0											⊢−−−−┤ ┃
RPA (ft ² ) SPA (ft ² )	98,446											⊢───┤┃
	98,446											┝───┤┃
Total Area (ft ² )	96,446											
Total Impervious Area (ft ² ) WQCV (ft ³ )											1	
WQCV (II ) WQCV Reduction (ft ³ )	0											
WQCV Reduction (it ) WQCV Reduction (%)	0%											
Untreated WQCV (ft ³ )												
	L ~	1			1			1	1	1		
CALCULATED SITE RES	SULTS (sums	results from	all columns	in workshee	et)							
Total Area (ft ² )	98,446	]										
Total Impervious Area (ft ² )		1										
WQCV (ft ³ )	0	1										
WQCV Reduction (ft ³ )		1										
WQCV Reduction (it ) WQCV Reduction (%)	0%	1										
Untreated WQCV (ft ³ )	-	ĺ										
	·	1										



Flying Horse North Filing No. 4 Final Drainage Report Project No.: 211030

El Paso County, Colorado

# **APPENDIX E**

# **REFERENCE MATERIALS**

## INNOVATIVE DESIGN. CLASSIC RESULTS.

## PRELIMINARY DRAINAGE REPORT FOR FLYING HORSE NORTH PRELIMINARY PLAN AND FINAL DRAINAGE REPORT FOR FLYING HORSE NORTH FILING NO. 1

NOVEMBER 2017 Revised June 2018

Prepared for: **PRI #2 LLC** 6385 CORPORATE DRIVE SUITE 200 COLORADO SPRINGS CO 80919 (719) 592-9333

Prepared by: **CLASSIC CONSULTING ENGINEERS & SURVEYORS** 619 N. CASCADE AVE SUITE 200 COLORADO SPRINGS CO 80903 (719) 785-0790

Job no. 1096.11 PCD File No. SP-17-012 and SF-18-001



619 N. Cascade Ave, Suite 200 | Colorado Springs, CO 80903 | (719) 785-0790

and B-B channel calculations) These facilities not only meet all current drainage criteria but also remain consistent with the intent of the DBPS. It is also noted that these facilities release well under the predevelopment flows as established by the DBPS. Thus, the downstream corridor within the existing Reach 13 on the adjacent property will not be significantly affected with the installation of these full-spectrum facilities. Portions of the Cathedral Pines Development to the south contributes developed flows to this property. These flows will be accommodated in the various on-site facility designs. A smaller on-site basin at the southeast corner of section 36 releases historic flows onto the Cathedral Pines and the Edmonds Subdivision. An on-site detention/storm water quality facility is planned in this corridor to help mitigate development.

### East Cherry Creek Drainage Basin

The Palmer Divide traverses the eastern half of section 36 which defines the major basin line between the Black Squirrel Creek and the East Cherry Creek Basins. The vegetation also changes drastically in this area. The majority of the East Cherry Creek Basin contains very little trees and more grazing prairie land and meadows. This area defines the edge of Black Forest. In general, historic flow patterns in this basin travel in a northeasterly direction towards Hodgen Road. The MDDP designates several major design points along the north boundary. Again, multiple detention/storm water quality facilities are planned for these corridors and to be constructed along with future land development. This report has analyzed the downstream corridors along the north property line for the pre-development condition (per MDDP hydrology) and post-development condition (per UD-detention designed release). No significant erosion currently exists in these channels and we have been consistently maintaining proper BMPs along this property boundary. This effort will continue through final construction and revegetation of the permanent detention/SWQ facilities. (See Appendix for Sections D-D and E-E channel calculations). Portions of the Palmer Divide Subdivision and multiple large unplatted properties the south contribute developed flows to this property. These flows will be accommodated in the various on-site facility designs.

#### PROPOSED DRAINAGE CONDITIONS

The proposed land development within the Flying Horse North Filing No. 1 and future development within the remaining portions of the Preliminary Plan will be 2.5-5 acre large lot residential with associated paved streets and roadside ditches. The 18-hole private Golf Course with a club house site, driving range and



maintenance facility is also planned as a part of Filing No. 1. Based on the current El Paso County ECM Section I.7.1.B. and given the size of the lots within this entire development area, stormwater quality is not required to be provided. However, detention/EURV will still be provided in specific locations on-site to limit the on-site development flow release to remain consistent with pre-development conditions within the major drainage corridors. These proposed facilities will aide in limiting any detrimental effects on downstream corridors. At specific areas where the Filing No. 1 development creates concentrated flows into future development areas, temporary sediment basins will be constructed to minimize sediment transfer downstream and off-site. The Filing No. 1 Final Drainage Report portion of this report will define the permanent facilities providing an Excess Urban Runoff Volume (EURV) in the lower portion of the facility storage volume with an outlet control device. Frequent and infrequent inflows are released at rates approximating undeveloped conditions. This concept provides some mitigation of increased runoff volume by releasing a portion of the increased runoff at a low rate over an extended period of time, up to 72 hours. This means that frequent storms, smaller than the 2 year event, will be reduced to very low flows near or below the sediment carrying threshold value for downstream drainage ways. Also, by incorporating an outlet structure that limits the 100-year runoff to the undeveloped condition rate, the discharge hydrograph for storms between the 2 year and the 100 year event will approximate the hydrograph for the undeveloped conditions and will help effectively mitigate the effects of this development. Again, prior to any land development beyond the Filing No. 1 Final Plat area, additional final drainage reports, final plats and construction plans will be required detailing this criteria.

Given the rural nature of this development, roadside ditches are planned along all roadways. Concrete curb and gutter will only be used at the round-about locations and along the jurisdictional dam embankment as required by the State. The typical roadside ditch will be designed as a V-ditch with a depth of 24 inches. The natural terrain within much of this development creates some steeper slopes on many of the roadways. These slopes range from 1% to 10%. An analysis of the roadside ditches was performed in order to determine the necessary ditch lining required to maintain allowable velocity and shear stress. The following three basic ditch improvements are recommended throughout the development: (See Appendix for reference)

 Revegetation with native seeding (Grass lined only) Slope 2% or less and minimal flow



- Erosion Control Blanket (North American Green SC150 or equiv.) with native seeding Slope 5% or less and max. flow range of 7-43 cfs.
- Turf Reinforcement Mat (North American Green P300 or equiv.) with natives seeding Slope 10% or less and max. flow of 70 cfs.

The specific ditch lining locations will be shown on the street improvements plans

The following hydrology descriptions will start at the western edge of the Flying Horse North property and move east into the East Cherry Creek Basin, describing the development within the Filing No. 1 area first.

### FLYING HORSE NORTH FILING NO.1

#### Black Squirrel Creek Drainage Basin

As mentioned previously, Flying Horse North is located in the upper region of the Black Squirrel Creek Drainage Basin. Per the approved DBPS for Black Squirrel Creek, the reaches in this area were proposed to remain as natural as possible. There were no recommendations for detention facilities within the area that is Flying Horse North, but due to current drainage criteria, detention/EURV facilities will be proposed with this development.

High Forest Ranch Detention Pond 26 outfalls onto the property at the very northwest corner of the site. These existing flows will continue to enter the site and travel within the natural channel towards the existing 48" CMP culvert crossing at Hwy. 83. Drainage easements across the proposed lots in this area will be provided on the final plat. The existing stock pond within lots 2 and 3 will be removed with grading of the road in this area. Tract B is platted in order to provide a detention/EURV facility for the lots and public road in this area. This facility will be constructed with Filing No. 1 with ownership and maintenance by the Flying Horse North HOA.

**Design Point 1 (Q₂ = 2 cfs Q₅ = 3 cfs, Q₁₀₀ = 11 cfs)** represents the existing off-site and on-site developed flows from Basins OS-1A and BS-2B. The combined flow from these basins travel to a low point just east of Stagecoach Road where a proposed 24" RCP culvert will be installed to convey these flows under the road. (See Appendix for culvert design)



**Design Point 26 (** $Q_2 = 3 \text{ cfs } Q_5 = 16 \text{ cfs}$ ,  $Q_{100} = 102 \text{ cfs}$ **)** represents the full build-out developed flows from Basins CC-8 and CC-10. Basin CC-8 represents future residential lots and CC-10 mostly future passive park area. These flows will continue to sheet flow towards the low-point where a 48" RCP culvert is sized to handle the fully developed flows at this location. (See Appendix for culvert design) After crossing Stagecoach Road, these flows will continue to flow directly into the existing stock pond just north of the roadway. This facility will provided sediment control for the small developed roadway area. Upon future development and plating of the lots planned within these basins, this stock pond will be formally designed into a detention facility.

**Basin CC-15 (Q₂ = 1 cfs Q₅ = 4 cfs, Q₁₀₀ = 20 cfs)** represents the full build-out developed flows from the future residential lots tributary to this basin. These flows will continue to sheet flow towards the low-point where a 30" RCP culvert is sized to handle the fully developed flows at this location. (See Appendix for culvert design) A downstream sediment basin will be installed to provide sediment control for the small developed roadway area.

**Basin CC-16 (** $Q_2 = 1 \text{ cfs } Q_5 = 5 \text{ cfs}$ ,  $Q_{100} = 24 \text{ cfs}$ **)** represents the full build-out developed flows from the future residential lots tributary to this basin. These flows will continue to sheet flow towards the low-point at the southwest corner of Old Stagecoach Road and Rubble Drive where a 24" RCP culvert is sized to handle the fully developed flows at this location. (See Appendix for culvert design) A downstream sediment basin will be installed to provide sediment control for the small developed roadway area.

**Design Point 30 (Q**₂ = 0.7 cfs Q₅ = 2 cfs, Q₁₀₀ = 10 cfs) represents the full build-out developed flows from Basin CC-18. This Basin represents future residential lots. The flows will continue to sheet flow towards the low-point where a 24" RCP culvert is sized to handle the fully developed flows at this location. (See Appendix for culvert design) A downstream sediment basin will be installed to provide sediment control for the small developed roadway area.

**Design Point 31 (** $Q_2 = 0.9$  cfs  $Q_5 = 3$  cfs,  $Q_{100} = 15$  cfs) represents the full build-out developed flows from Basin CC-19 and the upstream release from DP-30. This Basin represents future residential 5 ac. lots. The flows will continue to sheet flow within a proposed drainage easement towards the existing low-point where an existing 24" CMP culvert will adequately handle the fully developed flows at this location.



Basin BS-26 ( $Q_2 = 0.04$  cfs  $Q_5 = 0.4$  cfs,  $Q_{100} = 3$  cfs) represents sheet flow from the extreme rear portion of a future residential lot. This area of the lot will likely not be built upon, therefore not significantly changing the drainage conditions from the pre-development condition. The pre-development flow from the historic basin area equals  $Q_2 = 0.04$  cfs  $Q_5 = 0.4$  cfs,  $Q_{100} = 3$  cfs. Also, given the lot size, no water quality is required.

Basins BS-31 ( $Q_2 = 0.3 \text{ cfs } Q_5 = 2 \text{ cfs}$ ,  $Q_{100} = 12 \text{ cfs}$ ), BS-32 ( $Q_2 = 0.3 \text{ cfs } Q_5 = 2 \text{ cfs}$ ,  $Q_{100} = 9 \text{ cfs}$ ) and BS-33 ( $Q_2 = 0.8 \text{ cfs } Q_5 = 3 \text{ cfs}$ ,  $Q_{100} = 15 \text{ cfs}$ ) represent smaller basins that will continue to sheet flow offsite to the south. These basins represent some golf course development and multiple future residential lots. Given the lot size, no water quality is required. However, permanent sediment basins will be installed downstream of the golf course development to provide sediment control. Developed flows released from these basins will not be significantly different than the pre-development flows.

#### East Cherry Creek Drainage Basin

The following basins are not tributary to the Filing No. 1 platting area but are within the East Chery Creek Drainage Basin and planned for future residential lot development.

**Design Point 28 (** $Q_2 = 5 \text{ cfs } Q_5 = 20 \text{ cfs}$ ,  $Q_{100} = 110 \text{ cfs}$ **)** represents the full build-out developed flows from Basins OS-13 and CC-13A. Basin CC-13A represents future residential lots and OS-13 platted, 5-ac. zoned residential property. These flows will continue to sheet flow towards the low-point where a future culvert will be installed to handle the fully developed flows at this location. The flows are then conveyed in the natural channel towards Design Point 29.

**Design Point 29 (Q**₂ = 6 cfs Q₅ = 27 cfs, Q₁₀₀ = 155 cfs) represents the full build-out developed flows from Basins CC-13B, CC-13C and release from DP-28. These basins represent future residential lots. At this location, a future detention facility will be installed to meet EURV requirements and release predevelopment flow quantities. This future facility will be constructed in a tract with ownership and maintenance by the Flying Horse North HOA.



**Basin CC-13D** ( $Q_2 = 2 \text{ cfs } Q_5 = 6 \text{ cfs}$ ,  $Q_{100} = 29 \text{ cfs}$ ) represents future residential lots that will continue to sheet flow off-site. Given the lot size, no water quality is required. However, a permanent sediment basin will be installed just prior to release off-site to provide sediment control. Developed flows released from this basin will not be significantly different than the pre-development flows.

Basin CC-14 ( $Q_2 = 0.4$  cfs  $Q_5 = 2$  cfs,  $Q_{100} = 8$  cfs) represents sheet flow from the rear portion of two future residential lots. The majority of this area is not anticipated to be developed, therefore not significantly changing the drainage conditions from the pre-development condition. Also, given the lot size, no water quality is required.

**Design Point 27 (** $Q_2 = 4 \text{ cfs } Q_5 = 17 \text{ cfs}$ ,  $Q_{100} = 81 \text{ cfs}$ ) represents the full build-out developed flows from the previously described basin CC-15 and CC-20. These basins represent future residential lots. At this location, a future detention facility will be installed to meet EURV requirements and release predevelopment flow quantities. This future facility will be constructed in a tract with ownership and maintenance by the Flying Horse North HOA.

Basins CC-21 ( $Q_2 = 0.1$  cfs  $Q_5 = 1$  cfs,  $Q_{100} = 9$  cfs) and CC-22 ( $Q_2 = 1$  cfs  $Q_5 = 5$  cfs,  $Q_{100} = 21$  cfs) represent future residential 5 ac. lots and park area that will continue to sheet flow off-site. Given the lot size, no water quality is required. However, a permanent sediment basin will be installed just prior to release off-site to provide sediment control. Developed flows released from this basin will not be significantly different than the pre-development flows.

Basins CC-23 ( $Q_2 = 0.4$  cfs  $Q_5 = 1$  cfs,  $Q_{100} = 8$  cfs) and CC-24 ( $Q_2 = 3$  cfs  $Q_5 = 13$  cfs,  $Q_{100} = 62$  cfs) represent future 5 ac. residential lots that will continue to sheet flow off-site. Given the lot size, no water quality is required. Given that the proposed lots are planned for 5 ac. residential, the developed flows released from this basin will not be significantly different than the pre-development flows. However, multiple permanent sediment basins may be installed just prior to release off-site to provide sediment control. This basin also contains a portion of the adjacent Franktown/Parker Reservoir emergency spillway crossing two proposed lots. This existing facility, which doesn't appear to be within any existing easement, will be further analyzed with a final drainage report for this area. Appropriate drainage easements may be provided at time of final plating.



**Basin CC-25 (Q₂ = 0.3 cfs Q₅ = 1 cfs, Q₁₀₀ = 6 cfs)** represents a small portion of two future residential 5 ac. lots that will continue to sheet flow off-site. Given that the proposed lots are planned for 5 ac. residential, the developed flows released from this basin will not be significantly different than the predevelopment flows.

**Design Point 34 (Q₂ = 6 cfs Q₅ = 24 cfs, Q₁₀₀ = 168 cfs)** represents the full build-out developed flows from Basins CC-26, CC-27, CC-28, release from CC-16 and release from DP-32. These basins represent future residential lots and park area. At this location, a future detention facility will be installed and likely replace the existing stock pond to meet EURV requirements and release pre-development flow quantities. The downstream existing culvert under Hodgen Road will be further analyzed with future final drainage reports. This future facility will be constructed in a tract with ownership and maintenance by the Flying Horse North HOA.

#### FACILITY MAINTENANCE

All proposed drainage structures within the platted County ROW will be owned and maintained by El Paso County. All proposed drainage structures within easements or tracts will be owned and maintained by the Flying Horse North HOA of Golf Course owner.

#### **DRAINAGE CRITERIA**

Hydrologic calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014. Detention storage and storm sewer conveyance to Black Squirrel Creek Drainage Basin was established with the Black Squirrel DBPS, previously referenced. The IDF curves from Figure 6-5 of the City of Colorado Springs/El Paso County DCM was used to estimate storm water runoff anticipated from design storms for the 2 year, 5 year and 100 year recurrence interval. (See Appendix)

The City of Colorado Springs/El Paso County DCM requires the Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV),



stabilizing drainage ways, and implementing long-term source controls. The Four Step Process pertains to management of smaller, frequently occurring storm events, as opposed to larger storms for which drainage and flood control infrastructure are sized. Implementation of these four steps helps to achieve storm water permit requirements. This site adheres to this **Four Step Process** as follows:

- 1. Employ Runoff Reduction Practices: Development of project site is proposed large lot single family residential (2.5 ac. min.) with homes and associated landscaping along with a private golf course. Proposed impervious areas (roof tops, patios) will sheet flow across landscaped ground, through open space areas and across the golf course to slow runoff and increase time of concentration prior to being conveyed to the proposed public streets. This will minimize directly connected impervious areas within the project site.
- 2. **Stabilize Drainageways:** This site will utilize roadside ditches with culvert crossings throughout the site and channel stabilization and grade control structures installed within some of the historic natural channels. These facilities will then direct the on-site development flows to the multiple detention/SWQ ponds mentioned above, designed to release at or below historic rates into Black Squirrel and East Cherry Creek. Based upon the proposed reduction in released flows compared to the pre-developed flows, no impact to downstream drainageways is anticipated.
- 3. **Provide Water Quality Capture Volume (WQCV):** Runoff from this development will be treated through capture and slow release of the WQCV in multiple permanent Extended Detention Basins designed per current El Paso County drainage criteria.
- 4. Consider need for Industrial and Commercial BMPs: No industrial or commercial uses are proposed within this development. However, a site specific storm water quality and erosion control plan and narrative was previously approved for this development in October 2016 (PUD-16-002). Details such as site specific source control construction BMP's as well as permanent BMP's were detailed in this plan and narrative to protect receiving waters. Much of these BMP's are currently constructed and being maintained as the majority of the development has been graded and erosion control methods employed.



BASIN	BASIN	GOLF COUF	RSE / WOODS (B)	2 AC. RE	SIDENTIAL (B)	COMPOSITE
(label)	AREA					CN
· · ·	(Ac)	CN	AREA	CN	AREA	
	. ,		(Ac.)		(Ac.)	
OS-1A	4.4	61	4.4	65	0.0	61.0
OS-1B	5.6	61	5.6	65	0.0	61.0
EX-DP-3 (Pre-Dev.)	36.0	60	36.0	65	0.0	60.0
OS-2	2.9	61	2.9	65	0.0	61.0
OS-3	10.2	61	0.0	65	10.2	65.0
OS-4	32.9	61	0.0	65	32.9	65.0
OS-5	29.7	61	0.0	65	29.7	65.0
OS-6	9.2	61	0.0	65	9.2	65.0
OS-7	5.0	61	0.0	65	5.0	65.0
OS-8	14.2	61	0.0	65	14.2	65.0
OS-9	9.8	60	9.8	65	0.0	60.0
OS-10	4.1	61	0.0	65	4.1	65.0
0S-11	28.0	61	0.0	65	28.0	65.0
OS-12	68.1	61	40.0	65	28.1	62.7
OS-13	36.9	61	18.0	65	18.9	63.0
OS-14	26.4	61	20.0	65	6.4	62.0
OS-15	70.8	61	20.0	65	50.8	63.9
OS-16	4.5	61	0.0	65	4.5	65.0
OS-17	15.8	61	0.0	65	15.8	65.0
OS-18	13.0	61	0.0	65	13.0	65.0

## **CN VALUES - DEVELOPED CONDITIONS**

## **CN VALUES - DEVELOPED CONDITIONS**

BASIN	BASIN	GOLF COUR	SE / WOODS (B)	2 AC. RE	SIDENTIAL (B)	COMPOSITE
(label)	AREA					CN
	(Ac)	CN	AREA	CN	AREA	
			(Ac.)		(Ac.)	
CC-1A	9.8	61	0.0	65	9.8	65.0
CC-1B	12.6	61	0.5	65	12.1	64.8
CC-2A	11.0	61	0.0	65	11.0	65.0
CC-2B	20.8	61	0.0	65	20.8	65.0
CC-2C	6.4	61	0.0	65	6.4	65.0
CC-3	52.5	61	25.0	65	27.5	63.1
CC-4A	108.7	61	65.0	65	43.7	62.6
CC-4B	8.1	85	4.5	65	3.6	76.1
CC-4C (Pre-Dev.)	7.4	61	7.4	65	0.0	61.0
CC-5	22.4	61	0.0	65	22.4	65.0
CC-6	27.8	61	0.0	65	27.8	65.0
CC-7	18.4	61	0.0	65	18.4	65.0
CC-8	7.7	61	0.0	65	7.7	65.0
CC-9	5.6	61	0.0	65	5.6	65.0
CC-10	85.6	61	51.0	65	34.6	62.6
CC-11	18.6	61	9.0	65	9.6	63.1
CC-12	12.2	61	0.0	65	12.2	65.0
CC-13A	19.3	61	0.0	65	19.3	65.0
CC-13B	25.5	61	0.0	65	25.5	65.0
CC-13C	9.9	61	0.0	65	9.9	65.0
CC-13D	18.8	61	0.0	65	18.8	65.0
CC-14	4.6	61	0.0	65	4.6	65.0
CC-15	12.8	61	0.0	65	12.8	65.0
CC-16	16.3	61	0.0	65	16.3	65.0
CC-17	25.0	61	0.0	65	25.0	65.0
CC-18	6.2	65	5.8	89	0.4	66.5
CC-19	3.7	61	0.0	65	3.7	65.0
CC-20	39.3	61	0.0	65	39.3	65.0
CC-21	6.2	61	6.2	65	0.0	61.0
CC-22	13.8	61	0.0	65	13.8	65.0
CC-23	5.7	61	0.4	65	5.3	64.7
CC-24	39.6	61	0.0	65	39.6	65.0
CC-25	3.5	61	0.0	65	3.5	65.0
CC-26	16.7	61	0.0	65	16.7	65.0
CC-27	18.9	61	3.0	65	15.9	64.4
CC-28	154.8	61	23.0	65	131.8	64.4

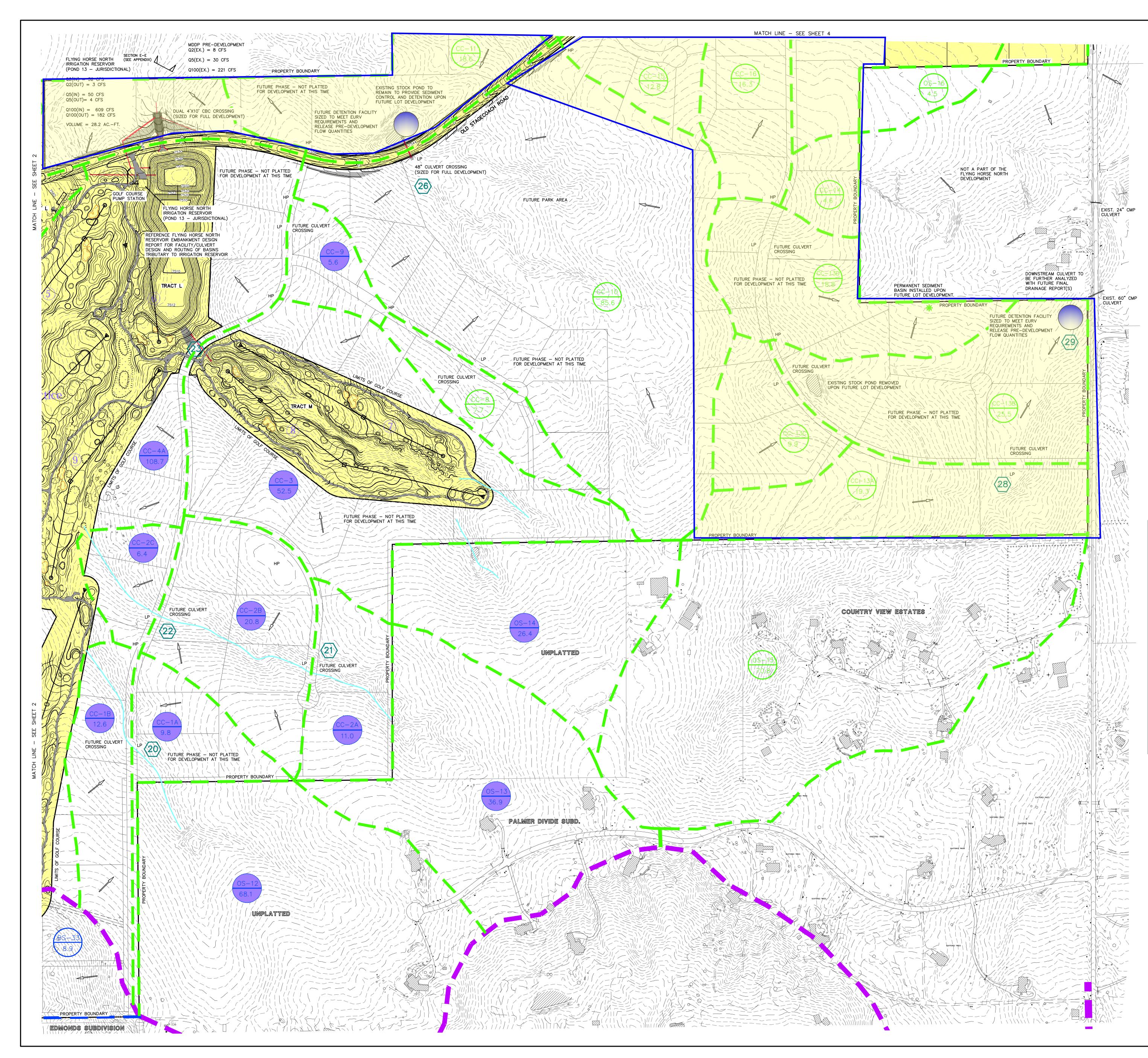
## TIME OF CONCENTRATION - DEVELOPED

	COMPOSITE			OVERLAND		STREET /	CHANNEL FL	OW (DCM Vol	. 1 Fig. 6-25)	Tc	Tc	Tc
BASIN	Cn	C(5)	Length	Height	Тс	Length	Slope	Velocity	Tc	TOTAL	LAG (0.6tc)	LAG (0.6tc)
		.,	(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(min)	(hr)
OS-1A	61.0	0.08	300	20	17.1	150	4.0%	1.0	2.5	19.6	11.7	0.20
OS-1B	61.0	0.08	300	20	17.1	300	8.0%	1.4	3.6	20.6	12.4	0.21
EX-DP-3 (Pre-Dev.)	60.0	0.08	300	20	17.1	900	5.0%	1.9	7.9	25.0	15.0	0.25
OS-2	61.0	0.08	300	20	17.1	300	6.0%	2.0	2.5	19.6	11.7	0.20
OS-3	65.0	0.08	300	22	16.5	275	6.2%	2.0	2.3	18.8	11.3	0.19
OS-4	65.0	0.08	300	18	17.7	420	4.3%	1.3	5.4	23.0	13.8	0.23
OS-5	65.0	0.08	300	12	20.2	1200	2.5%	1.1	19.0	39.2	23.5	0.39
OS-6	65.0	0.08	300	17	18.0	300	5.5%	1.9	2.6	20.6	12.4	0.21
OS-7	65.0	0.08	300	20	17.1	180	6.5%	2.1	1.4	18.5	11.1	0.18
OS-8	65.0	0.08	300	14	19.2	260	5.5%	0.6	7.5	26.7	16.0	0.27
OS-9	60.0	0.08	300	12	20.2	500	3.5%	0.5	16.7	36.9	22.1	0.37
OS-10	65.0	0.08	300	19	17.3					17.3	10.4	0.17
OS-11	65.0	0.08	300	14	19.2	600	6.5%	0.7	15.4	34.6	20.7	0.35
OS-12	62.7	0.08	300	10	21.4	1400	2.5%	1.5	15.6	37.0	22.2	0.37
OS-13	63.0	0.08	300	10	21.4	1000	3.0%	1.5	11.1	32.6	19.5	0.33
OS-14	62.0	0.08	300	8	23.1	1000	5.0%	2.1	7.9	31.0	18.6	0.31
OS-15	63.9	0.08	300	16	18.4	2200	4.0%	1.9	19.3	37.7	22.6	0.38
OS-16	65.0	0.08	300	7	24.1					24.1	14.5	0.24
OS-17	65.0	0.08	300	20	17.1	350	6.0%	2.5	2.3	19.4	11.6	0.19
OS-18	65.0	0.08	300	18	17.7	300	6.0%	2.5	2.0	19.7	11.8	0.20
BS-1A	65.0	0.08	300	19	17.3					17.3	10.4	0.17
BS-1B	65.0	0.08	300	18	17.7	200	2.5%	1.2	2.8	20.4	12.3	0.20
BS-2	89.0	0.08	300	16	18.4	630	7.0%	0.7	16.2	34.5	20.7	0.35
BS-2A	89.0	0.08	30	1.5	5.9	700	6.5%	1.7	6.9	12.8	7.7	0.13
BS-2B	89.0	0.08	30	1.5	5.9	800	6.5%	2.2	6.1	12.0	7.2	0.12
BS-3	65.0	0.08	300	18	17.7	300	5.3%	2.2	2.3	19.9	12.0	0.20
BS-4	67.0	0.08	300	22	16.5	960	7.0%	2.4	6.7	23.2	13.9	0.23
BS-5	65.0	0.08	300	20	17.1	150	7.0%	2.4	1.0	18.1	10.9	0.18
BS-6	89.0	0.08	10	0.2	4.6	700	7.0%	2.4	4.9	9.5	5.7	0.09

## TIME OF CONCENTRATION - DEVELOPED

	COMPOSITE			OVERLAND		STREET / (	CHANNEL FLO		1 Fig. 6-25)	Тс	Тс	Тс
BASIN	Cn	C(5)	Length	Height	Тс	Length	Slope	Velocity	Tc	TOTAL	LAG (0.6tc)	LAG (0.6tc)
Drient	0	0(0)	 (ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	( <i>min</i> )	( <i>min</i> )	(hr)
CC-1A	65.0	0.08	300	16	18.4	500	5.0%	1.7	4.9	23.3	14.0	0.23
CC-1B	64.8	0.08	300	14	19.2	700	4.0%	2.0	5.8	25.0	15.0	0.25
CC-2A	65.0	0.08	300	14	19.2	250	3.0%	1.5	2.8	22.0	13.2	0.22
CC-2B	65.0	0.08	300	14	19.2	280	3.0%	1.5	3.1	22.3	13.4	0.22
CC-2C	65.0	0.08	300	18	17.7					17.7	10.6	0.18
CC-3	63.1	0.08	300	18	17.7	2300	3.0%	1.5	25.6	43.2	25.9	0.43
CC-4A	62.6	0.08	300	14	19.2	2700	2.0%	1.8	25.0	44.2	26.5	0.44
CC-4B	76.1	0.08	300	12	20.2	600	3.0%	1.6	6.3	26.4	15.9	0.26
CC-4C (Pre-Dev.)	61.0	0.08	40	0.8	9.3	350	3.0%	1.5	3.9	13.2	7.9	0.13
CC-5	65.0	0.08	300	18	17.7	1000	4.0%	2.0	8.3	26.0	15.6	0.26
CC-6	65.0	0.08	300	14	19.2	550	2.5%	1.6	5.7	24.9	14.9	0.25
CC-7	65.0	0.08	300	16	18.4	1000	3.0%	1.6	10.4	28.8	17.3	0.29
CC-8	65.0	0.08	300	10	21.4	250	2.0%	1.2	3.5	24.9	14.9	0.25
CC-9	65.0	0.08	300	18	17.7	100	2.0%	1.2	1.4	19.0	11.4	0.19
CC-10	62.6	0.08	300	22	16.5	2400	3.0%	1.8	22.2	38.7	23.2	0.39
CC-11	63.1	0.08	300	18	17.7	450	5.0%	2.1	3.6	21.2	12.7	0.21
CC-12	65.0	0.08	300	11	20.8	650	4.0%	2.0	5.4	26.2	15.7	0.26
CC-13A	65.0	0.08	300	14	19.2	1400	4.0%	2.0	11.7	30.9	18.5	0.31
CC-13B	65.0	0.08	300	18	17.7	1300	3.0%	1.6	13.5	31.2	18.7	0.31
CC-13C	65.0	0.08	300	14	19.2	350	4.0%	2.0	2.9	22.1	13.3	0.22
CC-13D	65.0	0.08	300	20	17.1	900	4.0%	2.0	7.5	24.6	14.7	0.25
CC-14	65.0	0.08	300	10	21.4					21.4	12.9	0.21
CC-15	65.0	0.08	300	14	19.2	550	3.0%	1.8	5.1	24.3	14.6	0.24
CC-16	65.0	0.08	300	10	21.4	650	2.5%	1.3	8.3	29.8	17.9	0.30
CC-17	65.0	0.08	300	9	22.2	950	2.0%	1.2	13.2	35.4	21.2	0.35
CC-18	66.5	0.08	300	7	24.1	400	2.0%	1.2	5.6	29.7	17.8	0.30
CC-19	65.0	0.08	300	8	23.1	100	2.0%	1.0	1.7	24.7	14.8	0.25
CC-20	65.0	0.08	300	9	22.2	350	6.0%	2.2	2.7	24.8	14.9	0.25
CC-21	61.0	0.08	300	18	17.7	200	3.0%	1.8	1.9	19.5	11.7	0.20
CC-22	65.0	0.08	300	14	19.2	700	4.0%	2.0	5.8	25.0	15.0	0.25
CC-23	64.7	0.08	300	10	21.4	850	2.0%	1.2	11.8	33.2	19.9	0.33
CC-24	65.0	0.08	300	20	17.1	900	4.0%	1.9	7.9	25.0	15.0	0.25
CC-25	65.0	0.08	300	16	18.4	500	3.0%	1.8	4.6	23.0	13.8	0.23
CC-26	65.0	0.08	300	14	19.2	900	5.0%	2.1	7.1	26.3	15.8	0.26
CC-27	64.4	0.08	300	14	19.2	1300	3.0%	1.8	12.0	31.2	18.7	0.31
CC-28	64.4	0.08	300	14	19.2	4700	3.0%	1.8	43.5	62.7	37.6	0.63

## **BASIN SUMMARY - DEVELOPED CONDITIONS**

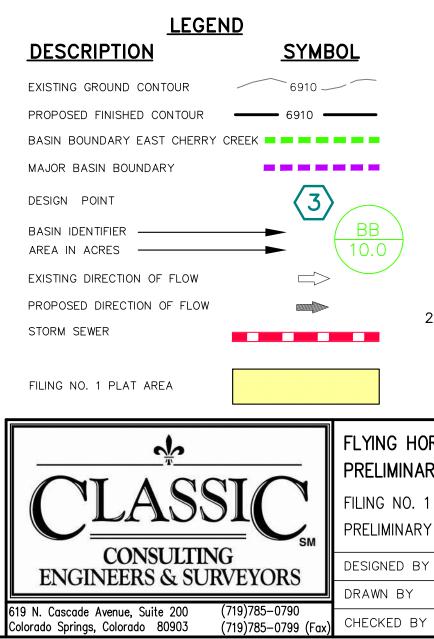

		COMPOSITE	TOTAL	Q	Q	Q
BASIN	AREA	CN	LAG TIME	2 Yr.	5 Yr.	100 Yr.
(label)	(acres)	•	(hours)	(cfs)	(cfs)	(cfs)
ÔS-1Á	4.40	61.0	0.20	0.4	1.6	7.7
OS-1B	5.60	61.0	0.21	0.5	1.9	9.4
EX-DP-3 (Pre-Dev.)	36.00	60.0	0.25	0.5	4.8	41.3
OS-2	2.90	61.0	0.20	0.1	0.6	4.0
OS-3	10.20	65.0	0.19	1.0	3.8	17.9
OS-4	32.90	65.0	0.23	2.8	11.2	53.6
OS-5	29.70	65.0	0.39	1.9	7.1	37.0
OS-6	9.20	65.0	0.21	0.9	3.2	15.5
OS-7	5.00	65.0	0.18	0.5	2.0	9.0
OS-8	14.20	65.0	0.27	2.1	6.2	24.7
OS-9	9.80	60.0	0.37	0.1	1.0	9.1
OS-10	4.10	65.0	0.17	0.7	2.1	8.2
OS-11	28.00	65.0	0.35	2.4	8.2	38.7
OS-12	68.10	62.7	0.37	2.2	11.9	75.8
OS-13	36.90	63.0	0.33	1.4	7.4	45.0
OS-14	26.40	62.0	0.31	0.7	4.6	31.0
OS-15	70.80	63.9	0.38	3.3	14.8	84.2
OS-16	4.50	65.0	0.24	0.4	1.5	7.2
OS-17	15.80	65.0	0.19	1.6	5.9	27.7
OS-18	13.00	65.0	0.20	1.3	4.7	22.6

## **BASIN SUMMARY - DEVELOPED CONDITIONS**

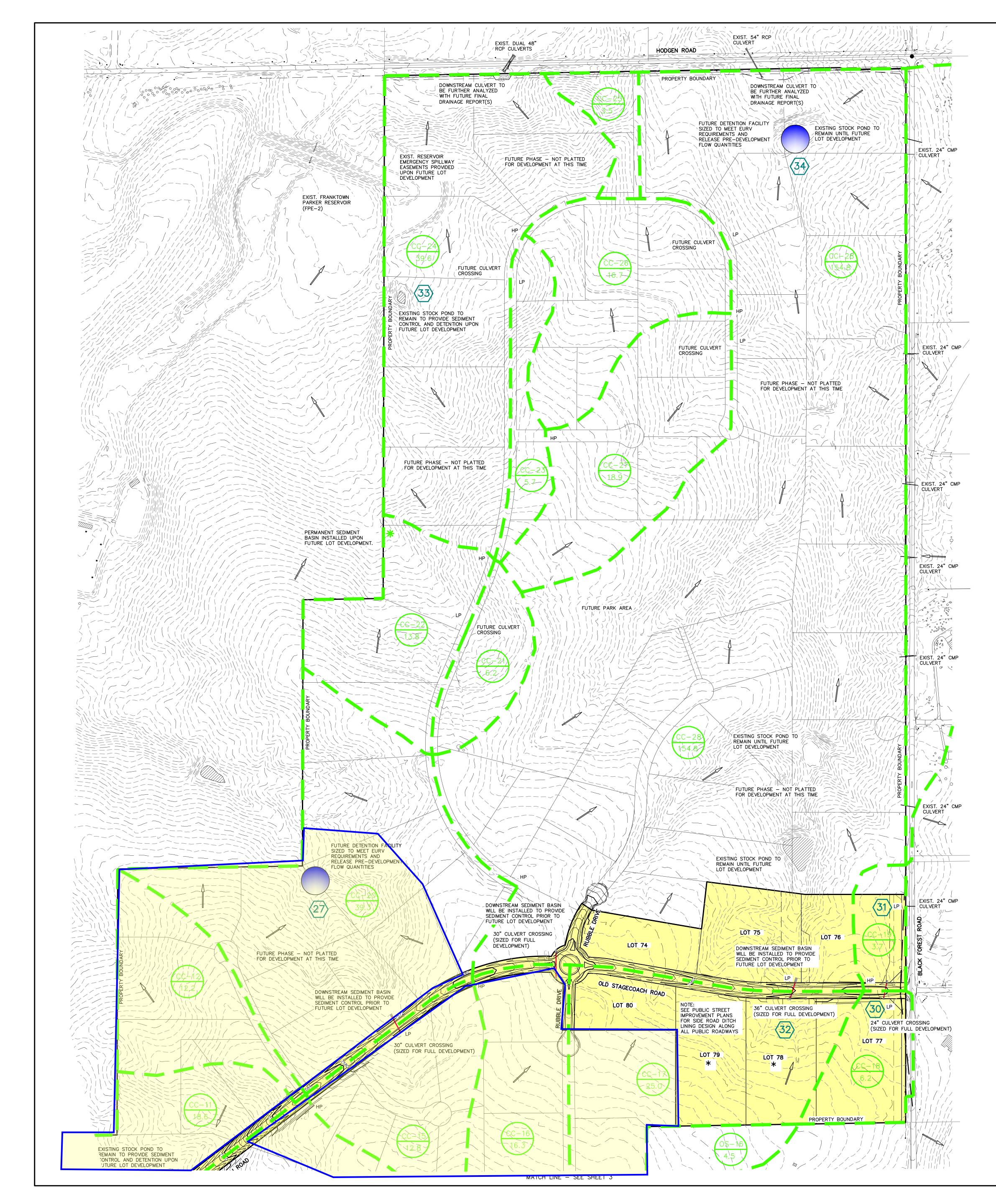
		COMPOSITE	TOTAL	Q	Q	Q
BASIN	AREA	CN	LAG TIME	2 Yr.	5 Yr.	100 Yr.
(label)	(acres)	•	(hours)	(cfs)	(cfs)	(cfs)
CC-1A	9.80	65.0	0.23	0.8	3.3	16.0
CC-1B	12.60	64.8	0.25	1.0	4.0	19.4
CC-2A	11.00	65.0	0.22	1.0	3.8	18.3
CC-2B	20.80	65.0	0.22	1.9	7.1	34.6
CC-2C	6.40	65.0	0.18	0.7	2.5	11.5
CC-3	52.50	63.1	0.43	1.8	8.8	54.5
CC-4A	108.70	62.6	0.44	15.4	39.0	156.0
CC-4B	8.10	76.1	0.26	4.0	7.3	20.6
CC-4C (Pre-Dev.)	7.40	61.0	0.13	0.2	1.8	11.2
CC-5	22.40	65.0	0.26	1.8	7.1	34.3
CC-6	27.80	65.0	0.25	2.3	9.1	43.2
CC-7	18.40	65.0	0.29	1.4	5.4	27.0
CC-8	7.70	65.0	0.25	0.6	2.5	12.0
CC-9	5.60	65.0	0.19	0.6	2.1	9.8
CC-10	85.60	62.6	0.39	2.6	14.1	91.9
CC-11	18.60	63.1	0.21	0.9	5.0	28.1
CC-12	12.20	65.0	0.26	1.0	3.9	18.7
CC-13A	19.30	65.0	0.31	1.4	5.4	27.3
CC-13B	25.50	65.0	0.31	1.8	7.2	36.1
CC-13C	9.90	65.0	0.22	0.9	3.4	16.5
CC-13D	18.80	65.0	0.25	1.5	6.2	29.2
CC-14	4.60	65.0	0.21	0.4	1.6	7.8
CC-15	12.80	65.0	0.24	1.1	4.3	20.4
CC-16	16.30	65.0	0.30	1.2	4.6	23.6
CC-17	25.00	65.0	0.35	1.7	6.5	32.8
CC-18	6.20	66.5	0.30	0.7	2.2	9.7
CC-19	3.70	65.0	0.25	0.3	1.2	5.8
CC-20	39.30	65.0	0.25	3.2	12.9	61.0
CC-21	6.20	61.0	0.20	0.1	1.2	8.5
CC-22	13.80	65.0	0.25	1.1	4.5	21.4
CC-23	5.70	64.7	0.33	0.4	1.5	7.7
CC-24	39.60	65.0	0.25	3.3	13.0	61.5
CC-25	3.50	65.0	0.23	0.3	1.2	5.7
CC-26	16.70	65.0	0.26	1.4	5.3	25.6
CC-27	18.90	64.4	0.31	1.2	4.9	25.8
CC-28	154.80	64.4	0.63	6.5	24.7	136.3

Design Point (label)	Contributing Basins	<b>Q</b> 2 Yr. Q (cfs)	<b>Q</b> 5 Yr. Q (cfs)	<b>Q</b> 100 Yr. Q (cfs)
DP-18 DEV	BS-28, BS-29, BS-30, OS-18	5.0	21.6	115
DP-19 DEV	BS-27, OS-17, Release from DP-18	3.8	16.8	126
DP-20 DEV	CC-1A, OS-12	3.2	14.3	88
DP-21 DEV	CC-2A, OS-13	2.1	10.5	62
DP-22 DEV	CC-2B, Release from DP-21	3.7	16.6	92
DP-23 DEV	CC-3, OS-14	2.5	13.0	84
DP-24 DEV	CC-4C (Pre-Dev.), CC-5	1.9	8.4	45
TOTAL INFLOW TO POND 12 (UD Detention hydrograph)	CC-4C, CC-5, CC-6	6	9	85
DP-25 DEV	Release from FHN Pond 12	0.2	0.3	45
DP-26 DEV	CC-8, CC-10	3.0	15.9	102
DP-27 DEV	CC-15, CC-20	4.3	17.2	81
DP-28 DEV	CC-13A, OS-15	4.6	19.8	110
DP-29 DEV	CC-13B, CC-13C, Release from DP-28	5.8	26.6	155
DP-30 DEV	CC-18	0.7	2.2	10
DP-31 DEV	CC-19, Release from DP-30	0.9	3.2	15
DP-32 DEV	CC-17, OS-16	2.0	7.8	40
DP-33 DEV	CC-23, CC-24	3.6	14.4	69
DP-34 DEV	CC-26, CC-27, CC-28 and Release from CC-16 & DP-32	6.0	23.5	168

## **DESIGN POINTS SURFACE ROUTING SUMMARY - DEVELOPED CONDITIONS**




**BASIN SUMMARY - DEVELOPED CONDITIONS** 


		COMPOSITE	TOTAL	Q	Q	Q
BASIN	AREA	CN	LAG TIME	2 Yr.	5 Yr.	100 Yr
(label)	(acres)		(hours)	(cfs)	(cfs)	(cfs)
OS-8	14.20	65.0	0.27	2.1	6.2	24.7
OS-9	9.80	60.0	0.37	0.1	1.0	9.1
OS-10	4.10	65.0	0.17	0.7	2.1	8.2
OS-11	28.00	65.0	0.35	2.4	8.2	38.7
OS-12	68.10	62.7	0.37	2.2	11.9	75.8
OS-13	36.90	63.0	0.33	1.4	7.4	45.0
OS-14	26.40	62.0	0.31	0.7	4.6	31.0
OS-15	70.80	63.9	0.38	3.3	14.8	84.2
OS-16	4.50	65.0	0.24	0.4	1.5	7.2
OS-17	15.80	65.0	0.19	1.6	5.9	27.7
OS-18	13.00	65.0	0.20	1.3	4.7	22.6
CC-1A	9.80	65.0	0.23	0.8	3.3	16.0
CC-1B	12.60	64.8	0.25	1.0	4.0	19.4
CC-2A	11.00	65.0	0.22	1.0	3.8	18.3
CC-2B	20.80	65.0	0.22	1.9	7.1	34.6
CC-2C	6.40	65.0	0.18	0.7	2.5	11.5
CC-3	52.50	63.1	0.43	1.8	8.8	54.5
CC-4A	108.70	62.6	0.44	15.4	39.0	156.0
CC-4B	8.10	76.1	0.26	4.0	7.3	20.6
CC-4C (Pre-Dev.)	7.40	61.0	0.13	0.2	1.8	11.2
CC-5	22.40	65.0	0.26	1.8	7.1	34.3
CC-6	27.80	65.0	0.25	2.3	9.1	43.2
CC-7	18.40	65.0	0.29	1.4	5.4	27.0
CC-8	7.70	65.0	0.25	0.6	2.5	12.0
CC-9	5.60	65.0	0.19	0.6	2.1	9.8
CC-10	85.60	62.6	0.39	2.6	14.1	91.9
CC-11	18.60	63.1	0.21	0.9	5.0	28.1
CC-12	12.20	65.0	0.26	1.0	3.9	18.7
CC-13A	19.30	65.0	0.31	1.4	5.4	27.3
CC-13B	25.50	65.0	0.31	1.8	7.2	36.1
CC-13C	9.90	65.0	0.22	0.9	3.4	16.5
CC-13D	18.80	65.0	0.25	1.5	6.2	29.2
CC-14	4.60	65.0	0.21	0.4	1.6	7.8
CC-15	12.80	65.0	0.24	1.1	4.3	20.4
CC-16	16.30	65.0	0.30	1.2	4.6	23.6
CC-17	25.00	65.0	0.35	1.7	6.5	32.8
CC-18	6.20	66.5	0.30	0.7	2.2	9.7
CC-19	3.70	65.0	0.25	0.3	1.2	5.8
CC-20	39.30	65.0	0.25	3.2	12.9	61.0
CC-21	6.20	61.0	0.20	0.1	1.2	8.5
CC-22	13.80	65.0	0.25	1.1	4.5	21.4
CC-23	5.70	64.7	0.33	0.4	1.5	7.7
CC-24	39.60	65.0	0.25	3.3	13.0	61.5
CC-25	3.50	65.0	0.23	0.3	1.2	5.7
CC-26	16.70	65.0	0.26	1.4	5.3	25.6
CC-27	18.90	64.4	0.31	1.2	4.9	25.8
CC-28	154.80	64.4	0.63	6.5	24.7	136.3

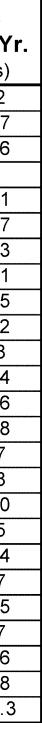
**DESIGN POINTS SURFACE ROUTING SUMMARY - DEVELOPED CONDITIONS** 

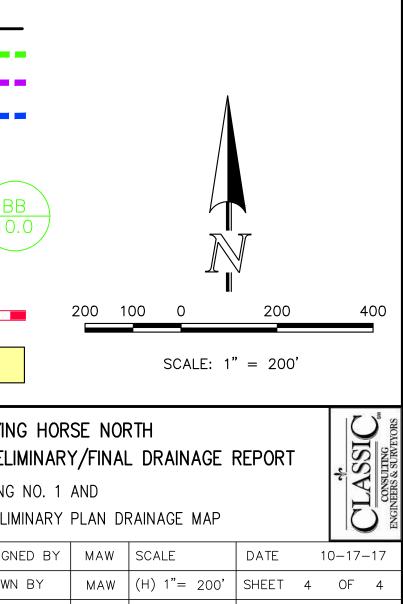
Design Point (label)	Contributing Basins	<b>Q</b> <b>2 Yr.</b> Q (cfs)	<b>Q</b> 5 Yr. Q (cfs)	<b>Q</b> 100 Yr. Q (cfs)
DP-20 DEV	CC-1A, OS-12	3.2	14.3	88
DP-21 DEV	CC-2A, OS-13	2.1	10.5	62
DP-22 DEV	CC-2B, Release from DP-21	3.7	16.6	92
DP-23 DEV	CC-3, OS-14	2.5	13.0	84
DP-24 DEV	CC-4C (Pre-Dev.), CC-5	1.9	8.4	45
TOTAL INFLOW TO POND 12 (UD Detention hydrograph)	CC-4C, CC-5, CC-6	6	9	85
DP-25 DEV	Release from FHN Pond 12	0.2	0.3	45
DP-26 DEV	CC-8, CC-10	3.0	15.9	102
DP-27 DEV	CC-15, CC-20	4.3	17.2	81
DP-28 DEV	CC-13A, OS-15	4.6	19.8	110
DP-29 DEV	CC-13B, CC-13C, Release from DP-28	5.8	26.6	155
DP-30 DEV	CC-18	0.7	2.2	10
DP-31 DEV	CC-19, Release from DP-30	0.9	3.2	15
DP-32 DEV	CC-17, OS-16	2.0	7.8	40
DP-33 DEV	CC-23, CC-24	3.6	14.4	69
DP-34 DEV	CC-26, CC-27, CC-28 and Release from CC-16 & DP-32	6.0	23.5	168



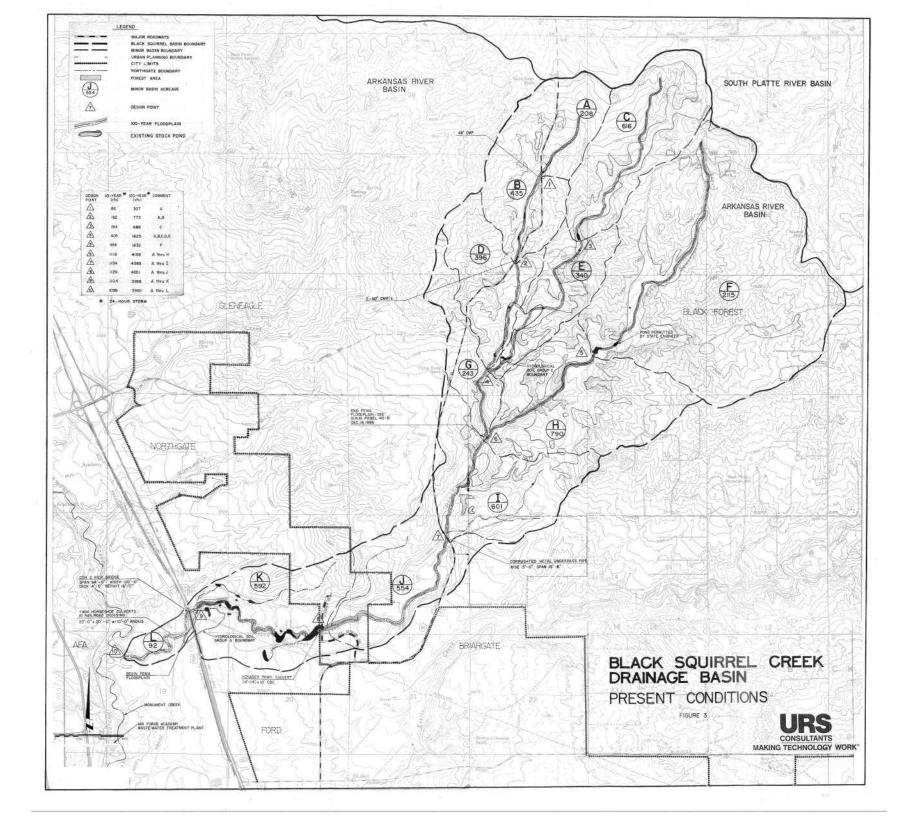
20	200 100 0 200 400							
Í	SCALE: 1" = 200'							
		SCALE: 1" =	- 200					
٩R	-	RTH _ DRAINAGE	REPORT	ASSIC Sulting Sulting				
	and Plan Df	RAINAGE MAP		CLA				
3Y	MAW	SCALE	DATE	10-25-17				
	MAW	(H) 1"= 200'	SHEET (	3 OF 4				
Y		(V) 1"= N/A	JOB NO.	1096.11				




BASIN	AREA	COMPOSITE CN	TOTAL	Q	Q	Q
					· ~	
<i></i>	(a a r a a)		LAG TIME	2 Yr.	5 Yr.	100 Y
(label)	(acres)		(hours)	(cfs)	(cfs)	(cfs)
OS-16	4.50	65.0	0.24	0.4	1.5	7.2
OS-17	15.80	65.0	0.19	1.6	5.9	27.7
OS-18	13.00	65.0	0.20	1.3	4.7	22.6
CC-11	18.60	63.1	0.21	0.9	5.0	28.1
CC-12	12.20	65.0	0.26	1.0	3.9	18.7
CC-13A	19.30	65.0	0.31	1.4	5.4	27.3
CC-13B	25.50	65.0	0.31	1.8	7.2	36.1
CC-13C	9.90	65.0	0.22	0.9	3.4	16.5
CC-13D	18.80	65.0	0.25	1.5	6.2	29.2
CC-14	4.60	65.0	0.21	0.4	1.6	7.8
CC-15	12.80	65.0	0.24	1.1	4.3	20.4
CC-16	16.30	65.0	0.30	1.2	4.6	23.6
CC-17	25.00	65.0	0.35	1.7	6.5	32.8
CC-18	6.20	66.5	0.30	0.7	2.2	9.7
CC-19	3.70	65.0	0.25	0.3	1.2	5.8
CC-20	39.30	65.0	0.25	3.2	12.9	61.0
CC-21	6.20	61.0	0.20	0.1	1.2	8.5
CC-22	13.80	65.0	0.25	1.1	4.5	21.4
CC-23	5.70	64.7	0.33	0.4	1.5	7.7
CC-24	39.60	65.0	0.25	3.3	13.0	61.5
CC-25	3.50	65.0	0.23	0.3	1.2	5.7
CC-26	16.70	65.0	0.26	1.4	5.3	25.6
CC-27	18.90	64.4	0.31	1.2	4.9	25.8
CC-28	154.80	64.4	0.63	6.5	24.7	136.3


# **BASIN SUMMARY - DEVELOPED CONDITIONS**

# **DESIGN POINTS SURFACE ROUTING SUMMARY - DEVELOPED CONDITIONS**


<b>Design Point</b> (label)	Contributing Basins	<b>Q</b> <b>2 Yr.</b> Q (cfs)	<b>Q</b> <b>5 Yr.</b> Q (cfs)	<b>Q</b> <b>100 Yr.</b> Q (cfs)
DP-27 DEV	CC-15, CC-20	4.3	17.2	81
DP-28 DEV	CC-13A, OS-15	4.6	19.8	110
DP-29 DEV	CC-13B, CC-13C, Release from DP-28	5.8	26.6	155
DP-30 DEV	CC-18	0.7	2.2	10
DP-31 DEV	CC-19, Release from DP-30	0.9	3.2	15
DP-32 DEV	CC-17, OS-16	2.0	7.8	40
DP-33 DEV	CC-23, CC-24	3.6	14.4	69
DP-34 DEV	CC-26, CC-27, CC-28 and Release from CC-16 & DP-32	6.0	23.5	168

<u>LEGEND</u>		
DESCRIPTION SYN	<u>IBOL</u>	
EXISTING GROUND CONTOUR 6910		
PROPOSED FINISHED CONTOUR 6910		
BASIN BOUNDARY EAST CHERRY CREEK 💻 💻 🗖		
MAJOR BASIN BOUNDARY		
BASIN BOUNDARY BLACK SQUIRREL 🗖 🗖 🗖		
DESIGN POINT	$\langle \rangle$	
LOTS WITH NON-STANDARD CULVERT SIZE	k	
BASIN IDENTIFIER	$\left(\begin{array}{c} BB \\ 10.0 \end{array}\right)$	
EXISTING DIRECTION OF FLOW	>	
PROPOSED DIRECTION OF FLOW	>	
STORM SEWER		2
FILING NO. 1 PLAT AREA		
T. A.	FLYING HOR	
	PRELIMINAR	•
I LASSII '	FILING NO. 1	AI
	PRELIMINARY	PI
CONSULTING ENGINEERS & SURVEYORS	DESIGNED BY	
	DRAWN BY	
9 N. Cascade Avenue, Suite 200 (719)785—0790 Iorado Springs, Colorado 80903 (719)785—0799 (Fax)	CHECKED BY	





(V) 1"= N/A JOB NO. 1096.11





# Flying Horse North Master Development Drainage Plan

> HRGREEN COM

March 09, 2022 Revised: July 28, 2022 Revised: September 9th, 2022 HR Green Project No: 211030.01

#### **Prepared For:**

Mr. Drew Balsick Vice President / Project Manager Flying Horse Development, LLC 2138 Flying Horse Club Drive Colorado Springs, CO 80921 (719) 785-3237

#### **Prepared By:**

HR Green Development, LLC Contact: Gregory Panza, PE gpanza@hrgreen.com 720-602-4956

PCD File No. SKP223



## g. Applicable Criteria and Standards

Per the DBPS and El Paso County Criteria Manual, flows from the proposed site will be limited to historic flows to maintain the stability of the existing channels within the drainage basins. The master plan follows the Drainage Criteria Manual for El Paso County which refers to the City of Colorado Springs Drainage Criteria Manuals as amended.

# **II. Project Characteristics**

## a. Location in Drainage Basin, Offsite Flows, Size

Flying Horse North is located within both the Black Squirrel Drainage Basin and East Cherry Creek Basin. Predominantly, the existing Filing No.1 and part of the proposed Filing No. 2 is located within the Black Squirrel Drainage Basin. This drainage basin encompasses 10.9 square miles of mostly forested area and generally slopes from east to west and outfalls into Monument Creek. Black Squirrel is a sub-basin of the Arkansas River. The remaining filings and part of Filing No. 2 is located within the East Cherry Creek Basin. There is not a current planning study of the drainage basin, but generally it slopes from southwest to northeast. The basin eventually flows into the South Platte River.

As the site generally lies at the top of each of the respective basins, minimal offsite flows are conveyed onto the site. The Black Squirrel Creek Drainage basin has no offsite flow come onto the site sans those flows generated as part of Filing 1 of Flying Horse North. The development which is within the Black Squirrel Creek Drainage Basin is unchanged from the FDR shown in Filing 1.

For the East Cherry Creek basin, 4 drainage basins are conveyed onto the site on the southwestern portion of the basin. These basins are labeled A, C, F and Q. The respective contributing flows from these basins is shown in the table below:

Basin Name	Acreage	5 Year Flow (cfs)	100 Year Flow (cfs)
A	18.99	20.84	43.83
С	36.39	33.36	71.27
F	25.25	24.27	51.63
Q	72.29	64.68	137.80

These four basins are generally conveyed through the development via natural drainage ways. The proposed ponds discussed later within this report have been sized to pass through the offsite flows.

## b. Compliance with DBPS

This MDDP is in general conformance with the guidelines outlined in the Black Squirrel DBPS and current drainage flows of the East Cherry Creek Basin. Flying Horse North will construct multiple full spectrum detention facilities to limit the effects of development and mimic natural flow patterns.

Existing downstream infrastructure is currently limited to the historic drainage channels and minimal downstream improvements exist. As such, the site follows the DBPS and restricts offsite flow rates to not exceed historic flow rates. The sites ultimate outfalls will generally be along the same historic tributaries. Although outfall rates will be at or below historic, the cumulative volume of runoff will increase and therefore downstream facilities may see an increase in the duration of flows. This may provide a net benefit to the downstream facilities by providing more water to assist with the sustenance of vegetation however it should be noted that increased volume may expedite potential erosion or channel movement.



## c. Site Characteristics

Per the NRCS web soil survey, the site is made up entirely of Type B soils. The ridge line between the Arkansas River and South Platte River Basins creates different soil environments for each. The portion of site that is within the Black Squirrel Drainage Basin, which includes Flying Horse Norse Filing No. 2 and No. 3, are predominately Elbeth sandy loam. The remaining filings are within the East Cherry Creek Basin which consists of Peyton sandy loam and Peyton-Pring complex. See Appendix A for the NRCS soil map.

Current ground cover varies between the two basins as well. Filings No. 2 and 3 are predominantly covered by Ponderosa Pine trees as a part of Black Forest and pasture. The remaining filings are short-to mid-grass prairie grasslands and former farmland which consists of non-native weeds and grasses. This portion of the site has very few, if any, trees and a minimal number of shrubs are found on the site.

## d. Major Drainage Ways and Structures

No major drainage ways exist within the development; however, small tertiary tributaries are within the site currently and function to convey flows to unnamed tributaries of the East Cherry Creek and Black Squirrel Creek. Additionally, as part of the Flying Horse North Filing 1 development, a large irrigation pond was built for water storage and flood control. This drains to the north and to the aforementioned unnamed tributary.

Existing minor drainage channels within the site are planned to be maintained to the maximum extent possible within parkways and greenways with the development. These will continue to be used for conveyance of storm drainage flows.

The Franktown Parker Dam (080130) is located near the northwest corner of site. The dam is designated as a jurisdictional dam and has a low hazard class. It is located along East Cherry Creek. See Appendix A for characteristics and location of dam.

## e. Existing and proposed land uses

The existing site is open rangeland on the eastern portion of the site and the western site is single family homes on large (~2.5 acre) home site within a heavily forested area. As part of Filing 1, a road was constructed along with facilities to support a golf course. Structures, outside of the homes are scattered throughout the overall development which will either be removed as part of the project or were built as part of Filing 1. The proposed development will consist of estate, low and medium lots, along with a future hotel site and multiple green spaces and small parks. The current land plan assumes approximately 897 dwelling units will be constructed on the site, not including an approximate 225 provided the proposed hotel.

Land Use	MAX DU/AC
Estate Lots (2.5 Acres)	0.32
Estate Lots (5 Acres)	0.2
Low	1.9
Medium	3.0



# III. Hydrologic Analysis

## a. Major Basins and subbasins

### **Major Basin Description**

- Previous basin study: Black Squirrel Drainage Basin Planning Study
- Per FEMA FIRM 08041C0305G and 08041C0315G (eff. 12/7/2018), Flying Horse North has the East Cherry Creek run through the northwest portion of the site. Currently, FEMA shows a LOMR effective April 4th, 2019 Base Flood Elevations and Zone A. Per the El Paso County Land Development Code Chapter 8 Section 8.4.2.B.1.e.i, the base flood elevations for Zone A will be determined once the platted lots are solidified and are confirmed within 300-ft of the current floodplain designation. Certification of the flood elevations will be via the FEMA CLOMR/LOMR process or Floodplain Certification Letter.
- There is a large irrigation pond that accounts for water storage and water control on the east side of the site.

The site has been divided into several major drainage basins per where each basin is tributary to a full spectrum detention pond facility. These basins and associated sub basins are described in more detail in the next section of this report.

## **Existing Subbasin Description**

The site's flows are split by the major ridgeline of the Arkansas River Basin and South Platte Basin. Within the South Platte Basin, flow is generally carried northeast throughout the site. On the other side of the ridgeline, the Arkansas River Basin flows in a southwest direction. Subbasin IDs with single letters are part of the South Platte Basin and Subbasin IDs with double letters are part of the Arkansas River Basin.

- Subbasin A is located off site and on the southeast corner. The basin drains towards the northwest and towards Subbasin B1. The basin is 18.99 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 20.84 cfs and 43.83 cfs respectively.
- Subbasin B is located north of Subbasin A. The basin drains towards the northwest into a natural drainageway that flows directly to an existing irrigation pond. The basin is 59.74 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 103.48 cfs and 221.28 cfs respectively.
- Subbasin C is located off site and on the southeast corner. The basin drains towards the northwest and towards Subbasin B2. The basin is 36.39 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 33.36 cfs and 71.27 cfs respectively.
- Subbasin D is located north of Subbasin B. The basin drains towards the northwest and towards the existing irrigation pond. The basin is 38.84 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 31.56 cfs and 67.84 cfs respectively.
- Subbasin E is in a central location of the site and includes the existing irrigation pond. The basin drains towards the north and towards existing irrigation pond. The basin is 106.53 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 223.69 cfs and 483.10 cfs respectively.





- Subbasin F is located off site and on the southeast corner. The basin drains towards the northwest and towards Subbasin G. The basin is 25.25 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 24.27 cfs and 51.63 cfs respectively.
- Subbasin G is directly north of Subbasin D and east of Subbasin E. The basin drains towards the northwest and towards Subbasin E with the irrigation pond. The basins consist of the existing golf course. The basin Is 52.19 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 79.17 cfs and 166.51 cfs respectively.
- Subbasin H is located directly downstream of Subbasin E and on the north side of Stagecoach Rd. The basin drains towards the north through a natural drainageway. There are existing lots on the west side of the basin. The basin is 20.63 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 18.59 cfs and 39.78 cfs respectively.
- Subbasin I is located west of Subbasin E and northeast of the major ridgeline between basins. The basin drains towards the northwest and towards an existing culvert. There are existing lots on the west side of the basin. The basin is 31.93 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 34.58 cfs and 72.63 cfs respectively
- Subbasin J is located downstream of Subbasin I. The basin drains towards the northeast to an unnamed tributary of the East Cherry Creek. The basin is 28.47 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 56.31 cfs and 120.46 cfs respectively.
- Subbasin K is located south of proposed section of Stagecoach Rd. The basin drains towards the northwest and into an existing 48" culvert. The basin is 93.15 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 92.05 cfs and 195.43 cfs respectively
- Subbasin L is downstream of Subbasin K and is located on the north side of the proposed section of Stagecoach Rd. The basin drains towards the northwest to a natural drainageway of East Cherry Creek. The basin is 16.39 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 107.58 cfs and 228.73 cfs respectively.
- Subbasin M is located on the east side of the site and between Subbasin N and V1. The basin drains towards the northwest and into an existing 30" culvert. The basin is 13.85 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 11.48 cfs and 24.61 cfs respectively.
- Subbasin N is located south of Subbasin O and north of proposed Stagecoach Rd. The basin drains towards the northwest to a nearby unnamed tributary and eventually East Cherry Creek. The basin is 49.00 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 64.68 cfs and 143.11 cfs respectively.
- Subbasin O is located south of Subbasin P. The basin drains towards the northwest and towards the north. The basin is 24.76 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 22.69 cfs and 48.54 cfs respectively.
- Subbasin P is in the northeast corner of the site and downstream of Subbasin O. The basin drains towards the northeast to an unnamed tributary of East Cherry Creek. The basin is 43.80 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 38.52 cfs and 82.17 cfs respectively.



Subbasin Q is located off site and on the southeast corner. The basin drains towards the northeast and towards Subbasin R. The basin is 72.29 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 64.68 cfs and 137.80 cfs respectively.

Subbasin R is located on the east side of site adjacent to Black Forest Rd. The basin drains towards the northeast. The basin is 54.98 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 108.65 cfs and 232.13 cfs respectively.

Subbasin S is located north of Subbasin Q. The basin drains towards the southeast and overland towards Subbasin R. The basin is 24.36 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 25.99 cfs and 54.65 cfs respectively.

- Subbasin T is located off site and on the southeast corner. The basin drains towards the southeast and towards Black Forest Rd. The basin is 5.24 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 4.04 cfs and 8.68 cfs respectively.
- Subbasin U is located east of subbasin V and is composed of existing 2.5 acre lots. The basin drains offsite towards the southeast and follows historic drainage patterns. The basin is 5.86 acres, with a composite impervious value of 10.00% and runoff rates for the 5 and 100 year of 4.15 cfs and 8.95 cfs respectively.
- Subbasin V is located on the east side of the site in between Subbasin M and U. The basin drains towards the north and towards Subbasin X via culvert. The basin is 38.57 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 29.63 cfs and 63.92 cfs respectively.
- Subbasin W is located north of Subbasin U on the site. The basin drains offsite through an existing 24" CMP culvert. The basin is 3.96 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 3.45 cfs and 7.33 cfs respectively.
- Subbasin X is located on the northeastern corner of the site. The basin drains north towards an unnamed tributary of East Cherry Creek. The basin is 190.88 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 167.76 cfs and 361.56 cfs respectively.
- Subbasins AA and CC are located on the west side of the site along the major ridgeline. Both basins were developed in Filing No. 1 and are included in the analysis to provide a better understanding for the flows draining towards Black Squirrel Creek. The basins drain towards the southwest. The basins are 33.8 acres and 37.15 acres, with a composite impervious value of 10% and 10% and runoff rates for the 5 and 100 year of 38.76 cfs and 80.22 cfs and 6.53 cfs and 13.57 cfs respectively.
- Subbasin BB is located downstream of Subbasin AA. The basin drains towards the southwest and towards Subbasin GG. A section of the area of the basin was developed in Filing No. 1 and consists of 2.5-acre lots. The basin is 37.15 acres, with a composite impervious value of 10.00% and runoff rates for the 5 and 100 year of 40.62 cfs and 84.15 cfs respectively.
- Subbasin DD is located west and downstream of Subbasin EE. The basin drains towards the west. A portion developed in Filing No. 1 consists of the Flying Horse North Golf Course and 2.5-acre lots. The basin is 70.07 acres, with a composite impervious value of 10.00% and runoff rates for the 5 and 100 year of 58.42 cfs and 123.69 cfs respectively.



## **Proposed Subbasin Description**

- Subbasin A is located off site and on the southeast corner. The basin drains towards the northwest and towards Subbasin B1. The basin is 18.99 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 20.84 cfs and 43.83 cfs respectively.
- Subbasin B1 is located north of Subbasin A. The basin drains towards the northwest and towards proposed Detention Pond 11. Current planning documents call for low density dwelling units. The basin is 59.74 acres, with a composite impervious value of 29.83% and runoff rates for the 5 and 100 year of 66.93 cfs and 133.69 cfs respectively.
- Subbasin B2 is located northeast of Subbasin B1. The basin drains towards the northwest and towards the proposed Detention Pond 11. Current planning documents call for low density dwelling units. The basin is 19.99 acres, with a composite impervious value of 24.55% and runoff rates for the 5 and 100 year of 17.99 cfs and 37.14 cfs respectively.
- Subbasin C is located off site and on the southeast corner. The basin drains towards the northwest and towards Subbasin B2. The basin is 36.39 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 35.31 cfs and 75.28 cfs respectively.
- Subbasin D is located north of north of Subbasins B1 and B2. The basin drains towards the northwest and towards Detention Pond 15. Current planning documents call for low density dwelling units. The basin is 40.87 acres, with a composite impervious value of 37.20% and runoff rates for the 5 and 100 year of 61.12 cfs and 117.38 cfs respectively.
- Subbasin E is in a central location of the site and includes the existing irrigation pond. The basin drains towards the north and towards existing irrigation pond. Current planning documents call for two small parking lots. The basin is 106.53 acres, with a composite impervious value of 14.35% and runoff rates for the 5 and 100 year of 74.68 cfs and 157.91 cfs respectively.
- Subbasin F is located off site and on the southeast corner. The basin drains towards the northwest and towards Subbasin G. The basin is 25.25 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 24.27 cfs and 51.63 cfs respectively.
- Subbasin G is directly north of Subbasin D and east of Subbasin E. The basin drains towards the
  northwest and towards Subbasin E. Current planning documents call for a small amount of low
  density dwelling units, where most of the basin consist of the existing golf course. The basin is
  31.45 acres, with a composite impervious value of 12.48% and runoff rates for the 5 and 100 year
  of 27.18 cfs and 57.12 cfs respectively.
- Subbasin H is located located directly downstream of Subbasin E and on the north side of Stagecoach Rd. The basin drains towards the north and towards Detention Pond 10. Current planning documents call for medium density dwelling units. There are existing lots on the west side of the basin. The basin is 21.96 acres, with a composite impervious value of 10.00% and runoff rates for the 5 and 100 year of 17.86 cfs and 37.8 cfs respectively.
- Subbasin I is located west of Subbasin E and northeast of the major ridgeline between basins. The basin drains towards the northwest and towards proposed Detention Pond 16. There are existing lots on the west side of the basin. Current planning documents call for a commercial golf club. The basin is 28.99 acres, with a composite impervious value of 34.66% and runoff rates for the 5 and 100 year of 40.37 cfs and 78.06 cfs respectively





- Subbasin J is located downstream of Subbasin I. The basin drains towards the northeast to an unnamed tributary of the East Cherry Creek. Current planning documents do not call for any changes to this basin. The basin is 28.07 acres, with a composite impervious value of 10% and runoff rates for the 5 and 100 year of 24.25 cfs and 51.19 cfs respectively.
- Subbasin K is located south of proposed section of Stagecoach Rd. The basin drains towards the northwest and towards proposed Detention Pond 7. Current planning documents call for high, medium, and low density dwelling units and a few pocket parks. The basin is 114.73 acres, with a composite impervious value of 38.08% and runoff rates for the 5 and 100 year of 200.94 cfs and 382.3 cfs respectively
- Subbasin L is downstream of Subbasin K and is located on the north side of the proposed section of Stagecoach Rd. The basin drains towards the northwest into proposed Detention Pond 8. Current planning documents call for medium density dwelling units. The basin is 15.89 acres, with a composite impervious value of 24.82% and runoff rates for the 5 and 100 year of 15.97 cfs and 32.4 cfs respectively. The pond will discharge at predevelopment rates into an unnamed tributary of the East Cherry Creek via the ponds outlet structure.
- Subbasin M is located on the east side of the site and between Subbasin N and V1. The basin drains towards the northwest and towards proposed Detention Pond 6. Detention Pond 6 outlets into a culvert under proposed Stagecoach Rd. and eventually to Subbasin N. Current planning documents call for medium density dwelling units, potential fitness center, and a park. The basin is 26.83 acres, with a composite impervious value of 33.19% and runoff rates for the 5 and 100 year of 46.54 cfs and 89.08 cfs respectively.
- Subbasin N is located south of Subbasin O and North of proposed Stagecoach Rd. The basin drains towards the northwest towards proposed Detention Pond 5. Detention Pond 5 outlets to a nearby unnamed tributary and eventually East Cherry Creek. Current planning documents call for medium density dwelling units along with a pocket park. The basin is 41.57 acres, with a composite impervious value of 29.60% and runoff rates for the 5 and 100 year of 73.48 cfs and 141.24 cfs respectively.
- Subbasin O is located south of Subbasin P. The basin drains towards the northwest and towards Detention Pond 3. Current planning documents call for medium density dwelling units. The basin is 52.52 acres, with a composite impervious value of 30.10% and runoff rates for the 5 and 100 year of 63.86 cfs and 127.4 cfs respectively. The pond will discharge at predevelopment rates and into Pond 1 via a swale.
- Subbasin P is in the northeast corner of the site and downstream of Subbasin O. The basin drains towards the northeast to proposed Detention Pond 1. Current planning documents call for low density dwelling units. The basin is 43.71 acres, with a composite impervious value of 20.71% and runoff rates for the 5 and 100 year of 40 cfs and 82.83 cfs respectively. The pond will discharge at predevelopment rates into an unnamed tributary of the East Cherry Creek via the ponds outlet structure.
- Subbasin Q is located off site and on the southeast corner. The basin drains towards the northeast and towards Subbasin R. The basin is 72.29 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 64.68 cfs and 137.8 cfs respectively.



- Subbasin R is located on the east side of site adjacent to Black Forest Rd. The basin drains towards the northeast and towards Detention Pond 9. Current planning documents call for low density and 1-acre lots. The basin is 76.38 acres, with a composite impervious value of 21.81% and runoff rates for the 5 and 100 year of 56.59 cfs and 116.06 cfs respectively. The pond will discharge at predevelopment rates into an unnamed tributary of the East Cherry Creek via the ponds outlet structure.
- Subbasin S is located north of Subbasin Q. The basin drains towards the southeast and overland towards Subbasin R. Current planning documents call for low density dwelling units. The basin is 21.67 acres, with a composite impervious value of 40.88% and runoff rates for the 5 and 100 year of 30.83 cfs and 58.96 cfs respectively.
- Subbasin T is located off site and on the southeast corner. The basin drains towards the southeast and towards Black Forest Rd. The basin is 5.24 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 4.04 cfs and 8.68 cfs respectively.
- Subbasin U is located east of subbasin V2 and is composed of existing 2.5 acre lots. The basin drains offsite towards the southeast and follows historic drainage patterns. The basin is 5.86 acres, with a composite impervious value of 2% and runoff rates for the 5 and 100 year of 4.96 cfs and 10.51 cfs respectively.
- Subbasin V1 is located on the east side of the site in between Subbasin M and V2. The basin drains towards the north and towards Subbasin X3 via culvert. Current planning documents call for low density dwelling units. The basin is 11.57 acres, with a composite impervious value of 38.62% and runoff rates for the 5 and 100 year of 13.99 cfs and 27.67 cfs respectively.
- Subbasin V2 is located south of subbasin X3 and proposed Stagecoach Rd. The basin drains towards the north and towards subbasin X3. The flows are directed through a culvert and eventually to Detention Pond 4. There are no proposed dwelling unit for the area, as there are existing 2.5 acre lots that cover the basin. The basin is 15.34 acres, with a composite impervious value of 15.00% and runoff rates for the 5 and 100 year of 16.15 cfs and 33.25 cfs respectively.
- Subbasin W is located on the north side of subbasin U. The basin drains offsite to the southeast. The basin is 3.76 acres, with a composite impervious value of 10.00% and runoff rates for the 5 and 100 year of 3.58 cfs and 7.46 cfs respectively.
- Subbasin X1 is located on the northeastern corner of the site. The basin drains north towards proposed Detention Pond 2. Current planning documents call for low density dwelling units, potential fire station and a pocket park. The basin is 76.38 acres, with a composite impervious value of 29.50% and runoff rates for the 5 and 100 year of 80.91 cfs and 163.27 cfs respectively. The pond will discharge at predevelopment rates into an unnamed tributary of the East Cherry Creek via the ponds outlet structure.
- Subbasin X2 is located south of Subbasin X1 The basin drains towards the northeast towards proposed Detention Pond 4. Current planning documents call for low density dwelling units along with a pocket park. The basin is 36.33 acres, with a composite impervious value of 33.33% and runoff rates for the 5 and 100 year of 41.46 cfs and 82.46 cfs respectively.
- Subbasin X3 is located south of Subbasin X2. The basin drains towards the north and towards Detention Pond 4. Current planning documents call for low density dwelling units and a pocket



The above-mentioned basins are large planning area basins and as drainage reports are developed for the individual developed parcels additional drainage reports and calculations will be required. It is expected that storm drainage infrastructure consisting of inlets, storm sewer and open drainage channels will be constructed as the property develops.

• Although mentioned above, offsite basins include basins A, C, F, and Q. Flow contributing to the site from these basins will be routed through the proposed detention ponds. Flow rates are shown below.

	Offsite Flow Summary							
Basin Description	Ultimate Design Point	Basin Area (ac)						
А	А	18.99	Pond 11	20.84	43.83			
C	С	36.39	Pond 11	33.36	71.27			
F	F	25.25	Irr. Pond	24.27	51.63			
Q	Q	72.29	Pond 9	64.68	137.80			

## b. Methodology

Design rainfall was determined utilizing Table 6-2 from the City of Colorado Springs Drainage Criteria Manual to determine the 5-year and 100-year rainfall values for the 1-hour events. The 1-hour rainfall depths are 1.5 and 2.52 in/hr respectively.

Composite percent impervious calculations were completed for each subbasin based on the density of lots and can be found in Appendix B. The El Paso County Drainage Criteria Manual Table 5-1 was used for reference when correlating land use to percent impervious values and located in Appendix F. Impervious values for 5-Acre Lots, 2.5-Acre Lots, Medium Density, Low Density, and Commercial Lots had impervious values of 10%, 15%, 45%, 55% and 75% respectively. The rainfall and percent impervious values were then used as inputs into the Colorado Urban Hydrograph Procedure (CUHP) spreadsheets to determine runoff values for both pre-development and post-development site.

CUHP is an evolution of the Snyder unit hydrograph and is calibrated for use along the Colorado Front Range. 1 Hour rainfall amounts are input into the program to produce a storm hyetograph that is then uses to calculate a storm hydrograph for each basin depending on the subbasins properties including slope, length, shape, impervious area, pervious depression storage area, and various infiltration rates. Tabular hydrographs are then computed and can be used in EPA SWMM. The CUHP results are included within Appendix B.

EPA SWMM was used to determine flow routing via the kinematic wave method. Subbasins were routed to their respective design points and detention ponds for both the developed and predeveloped condition to determine peak runoff amounts for the 5-year and 100-year storm events. Information from these models along with information and calculations performed in the Mile High Flood District BMP spreadsheets was used to determine pond sizing calculations and release rates.



## c. Basin Hydrology

A summary of the flows for both the predeveloped and developed cases for each basin, subbasin and Pond are found on next page along with the full computation found in Appendix B.

	E	Existing SWMM Bas	sin Summary	
Basin Description	Basin Area (ac)	% Impervious	5 Year Peak Runoff (cfs)	100 Year Peak Runoff (cfs)
А	18.99	2.00	20.84	43.83
В	59.74	2.00	103.48	221.48
С	34.87	2.00	33.36	71.27
D	38.84	2.00	31.56	67.84
E	127.86	2.00	223.69	483.10
F	25.25	2.00	24.27	51.63
G	52.19	2.00	79.17	166.51
Н	20.63	2.00	18.59	39.78
I	31.93	2.00	34.58	72.63
J	28.47	2.00	56.31	120.46
К	93.14	2.00	92.05	195.43
L	16.39	2.00	107.58	228.73
М	13.87	2.00	11.48	24.61
Ν	49.00	2.00	68.16	143.11
0	24.76	2.00	22.69	48.54
Р	43.80	2.00	38.52	82.17
Q	72.29	2.00	64.68	137.80
R	54.98	2.00	108.65	232.13
S	24.36	2.00	25.99	48.54
Т	5.24	2.00	4.04	8.68
U	5.48	2.00	4.15	8.95
V	38.47	2.00	29.63	63.92
W	3.76	2.00	3.45	7.33
Х	190.88	2.00	167.76	361.56
AA	33.49	10.00	38.76	80.22
BB	37.15	10.00	40.62	84.15
СС	6.33	10.00	6.53	13.57
DD	70.06	10.00	58.42	123.69
EE	69.47	10.00	81.16	167.45
FF	17.62	2.00	162.77	340.42
GG	16.35	2.00	14.93	31.99
НН	12.61	2.00	13.01	27.42
11	97.53	2.00	81.77	175.59
]]	8.72	2.00	9.74	20.50
КК	8.12	2.00	7.51	15.99
LL	6.10	2.00	6.88	14.48





		Proposed SV	WMM Basin	and Pond Summ	nary	
Basin Description	Basin Area (ac)	% Impervious	5 Year Peak Runoff (cfs)	100 Year Peak Runoff (cfs)	5 Year Pond Volume (ac- ft)	100 Year Pond Volume (ac- ft)
P	43.71	20.71%	40.00	82.83	,	,
F	43.71	20.7178		ond 1	1.03	1.97
X1	76.38	29.50%	80.91	163.27	1.05	1.97
×1	70.58	29.3078		ond 2	6.56	8.80
0	5252	30.10%	63.86	127.40	0.50	0.00
0	52.52	50.10%		ond 3	3.79	6.37
VD	26.22	22.220/		1	3.79	0.37
X2	36.33	33.33%	41.46	82.46		
X3	61.99	13.53%	47.59	100.73		
V2	15.34	15.00% 38.62%	16.15	33.25		
V1	11.57	38.02%	13.99	27.67 ond 4	7.21	7.25
N	41 57	20.00%			7.21	7.35
Ν	41.57	29.60%	73.48	141.24	1.00	2.55
	26.02	22.40%		ond 5	1.86	2.55
Μ	26.83	33.19%	46.54	89.09	0.04	0.04
	444.70	22.222		ond 6	0.84	0.94
К	114.73	38.03%	200.94	382.30		
	1	I .		ond 7	8.38	12.59
L	15.89	24.82%	15.97	32.40		Г
	1	I .		ond 8	1.05	1.09
S	21.67	40.88%	30.83	58.96		
R	56.16	21.81%	56.59	116.06		
Q	72.29	2.00%	64.68	137.80		L
				ond 9	6.28	10.31
H	21.96	10.00%	17.86	37.80		
				ond 10	0.66	0.94
B2	19.99	24.55%	17.99	37.14		
B1	59.74	29.83%	66.93	133.69		
A	18.99	2.00%	20.84	43.83		
С	36.39	2.00%	35.31	75.28		
				ond 11	1.94	3.23
J	28.07	10.00%	24.25	51.19		
				ng Pond 12		
EE2	16.36	75.00%	35.71	63.62		
EE3	6.67	55.00%	10.38	19.93		
		1		ond 13	1.33	1.61
113	23.97	10.0%	28.32	58.65		
112	23.13	10.0%	28.04	116.62		
1	50.43	10.0%	34.94	74.39		
	1	1		ond 14	1.06	3.99
D	40.87	37.20%	61.12	117.38		1
	1	T		ond 15	1.94	3.23
E	106.53	14.35%	74.68	157.91		



	26.99	34.66%	40.37	78.06		
			Po	nd 16	1.40	1.79
IJ	8.9	20.70%	11.49	22.8		
КК	8.4	12.09%	8.14	16.95		
LL	6.2	10.00%	7.36	7.36 15.07		
			Po	nd 17	1.09	1.23
G	31.45	12.48%	37.69	107.75		
			Irrigat	ion Pond		
IJ	8.90	20.70%	11.06	28.04		
LL	6.2	12.09%	5.85	15.68		
КК	8.4	10.00%	5.9	16.72		-
			Natural D	rainage Way		
DD	69.5	10.0%	42.26	120.76		
EE1	50.87	10.0%	42.6	154.16		
			-	lying Horse		
			North Dete	ention Pond 6		
CC	6.33	10.0%	4.74	13.39		
FF	18.1	10.0%	100.02	325.29		
			-	lying Horse		
				ention Pond 7		
GG	16.35	10.0%	11.25	32.04		
AA	33.8	10.0%	28.57	80.08		
BB	37.15	10.0%	29.52	83.01		
			Existing Flyi	-		
	1	r	1	ntion Pond 8		
HH	12.7	10.0%	9.86	27.77		
		[		rainage Way		
Т	5.24	2.00%	2.92	8.56		
U	5.86	10.0%	3.63	10.37		
W	3.76	10.0%	2.6	7.36		
			Natural D	rainage Way		

# IV. Hydraulic Analysis

#### a. Major Drainageways

There are no major drainage ways exist within the development; however, small tertiary tributaries are within the site currently and function to convey flows to unnamed tributaries of the East Cherry Creek and Black Squirrel Creek.

## V. Environmental Evaluations

## a. Significant Existing or Potential Wetland and Riparian Areas Impacts

As part of this work, the developer has engaged Bristlecone Ecology, LLC to perform environmental studies of the site that will be submitted with the planning documents. Major information in the report concerning wetlands concludes that there is a wetland associated with Black Squirrel Creek. Black Squirrel Creek is known to be a jurisdictional stream.



At this time, there are no improvements proposed for Black Squirrel Creek. The minimal impact to the stream will keep the natural habitat intact and the natural function of the Creek as it is to maintain the wetland habitat.

#### b. Stormwater Quality Considerations and Proposed Practices

As part of the development, full spectrum detention facilities will be installed to provide water quality for the development. The facilities will be designed using El Paso County criteria and provide stormwater quality by slowing the release of stormwater captured by the ponds and allowing solids to settle out. Additionally, when possible, the existing natural drainage ways will be used to convey stormwater to more closely mimic the natural hydrologic and hydraulic cycle. Some of the drainage ways will be used to convey water to the ponds and others will receive water from the ponds and in both scenarios will provide additional water quality benefits.

On site practices for the homes, schools, churches, and other buildings should use means such that impervious areas drain across pervious area to allow for infiltration during the minor events. This would include discharge of the gutters onto landscape areas vs. directly connecting to storm sewer and as discussed above as well using natural ditches and swales where it is logical and makes sense to convey stormwater in lieu of storm sewer piping.

#### c. Permitting Requirements

When work infringes upon the wetlands or floodplain a 404 Permit will be required. If the work within the waterways is minimal, it will likely be covered under a nationwide 404 permit; it is however possible that an individual permits will be required.

The Colorado Department of Public Health and Environment will require permits for any disturbance that exceed 1 acre of land. Should groundwater be encountered, a dewatering permit will also be required.

El Paso County will require an Erosion and Stormwater Quality Control Permit and any other construction permits required to complete the construction of the site.

Should development occur which effects the floodplain, FEMA will require a permit for work withing the floodplain prior to the commencement of any construction or development within any special flood hazard area (SFHA). If the infrastructure is to be installed within the channel the designer shall route the design through the proper FEMA channels whether that be with a no rise certification or via the CLOMR/LOMR process should a more major improvement within the floodplain be proposed. At this time the project does not propose any direct development within the floodplain however storm infrastructure will discharge into the existing FEMA channel.

#### d. 4-Step Process

In accordance with the Engineering Criteria Manual I.7.2.A and DCM V2, this site has implemented the four-step process to minimize adverse impacts of urbanization. The four-step process includes reducing runoff volumes, stabilizing drainageways, treating the water quality capture volume, and considering the need for Industrial Commercial BMPs.

Step 1 – Reducing Runoff Volumes: The development of the project site includes a variety of land uses including open and vegetated areas interspersed to help disconnect imperious areas and reduce runoff volumes.



- Pond 2 is located to the east of Pond 1 and and discharges into another unnamed tributary of East Cherry Creek. The pond is planned to store a maximum of 8.8 ac-ft during the 100-year event and have a peak outflow of 74.6 cfs which is slightly below the predevelopment peak outflow of 81.0 cfs. The 5-year storage volume is 6.56 ac-ft with a peak outflow of 27.8 cfs.
- Pond 3 is located on the eastern portion of the site and south of Pond 1. The pond discharges into an unnamed tributary of East Cherry Creek. The pond is planned to store a maximum of 6.37 ac-ft during the 100-year event and have a peak outflow of 46.1 cfs which is slightly below the predevelopment peak outflow of 48.5 cfs. The 5-year storage volume is 3.79 ac-ft with a peak outflow of 22.7 cfs.
- Pond 4 is located near the eastern portion of the site adjacent to Black Forest Rd. The pond discharges into a natural drainage way, which outlets into an unnamed tributary of East Cherry Creek. The pond is planned to store a maximum of 7.35 ac-ft during the 100-year event and have a peak outflow of 198.8 cfs which is slightly below the predevelopment peak flow rate of 231.6 cfs. The 5-year storage volume is 7.12 ac-ft with a peak outflow of 70.6 cfs.
- Pond 5 is located in the northwest portion of the site. The pond discharges natural drainageway, which outlets into an unnamed tributary of East Cherry Creek. The pond is planned to store a maximum of 2.5 ac-ft during the 100-year event and have a peak outflow of 103.1 cfs which is greater than the predevelopment peak outflow of 116.9 cfs. The 5-year storage volume is 1.86 ac-ft with a peak outflow of 39.4 cfs.
- Pond 6 is located near the northwest corner of the site and upstream of Pond 5. The pond discharges into a natural drainageway which outlets into an unnamed tributary of East Cherry Creek. The pond is planned to store a maximum of 2.93 ac-ft during the 100-year event and have a peak outflow of 48.2 cfs which is greater than the predevelopment peak outflow of 47.5 cfs. The 5-year storage volume is 1.77 ac-ft with a peak outflow of 12.2 cfs.
- Pond 7 is located in the central portion of site. The pond discharges into a natural drainageway that eventually outlets to an unnamed tributary of East Cherry Creek. The pond is planned to store a maximum of 12.59 ac-ft during the 100-year event and have a peak outflow of 172.2 cfs which is slightly lower than the predevelopment peak outflow of 191.6 cfs. The 5-year storage volume is 8.38 ac-ft with a peak outflow of 65.4 cfs.
- Pond 8 is located near the central portion of the site and downstream of Pond 7. The pond discharges into an unnamed tributary of East Cherry Creek. The pond is planned to store a maximum of 0.94 ac-ft during the 100-year event and have a peak outflow of 28.9 cfs which lower than the predevelopment peak outflow of 32.7. The 5-year storage volume is 0.84 ac-ft with a peak outflow of 11.4 cfs.
- Pond 9 is located near the southeast corner of the site just and adjacent to Black Forest Road. The pond discharges into a natural drainageway and flows under Black Forest Rd. via culvert. The natural drainageway is southeast of the existing property and eventually drains northeast to East Cherry Creek. The pond is planned to store a maximum of 10.31 ac-ft during the 100-year



event and have a peak outflow of 220.7 cfs which is lower than the predevelopment peak outflow of 282.3 cfs. The 5-year storage volume is 6.28 ac-ft with a peak outflow of 94.8 cfs.

- Pond 10 is located on the north central portion of the site and north of Stagecoach Road. The pond discharges into an unnamed tributary of East Cherry Creek. The pond is planned to store a maximum of 0.94 ac-ft during the 100-year event and have a peak outflow of 33.9 cfs which is lower than the predevelopment peak outflow of 39.2 cfs. The 5-year storage volume is 0.68 ac-ft with a peak outflow of 13.6 cfs.
- Pond 11 is located near the central portion of the site. The pond discharges into a natural drainageway which eventually discharges into the Irrigation Pond. The pond is planned to store a maximum of 6.83 ac-ft during the 100-year event and have a peak outflow of 230.0 cfs which is above than the predevelopment peak outflow of 221.3 cfs. The 5-year storage volume is 3.66 ac-ft with a peak outflow of 98.4 cfs.
- Existing Pond 12 is designed in the Classic Homes Filing No. 1 FDR and located near the northwest corner of the site and north of Stagecoach Road. The pond discharges into an unnamed tributary of East Cherry Creek. The pond is planned to have a peak outflow of 45.0 cfs.
- Pond 13 is located central portion of the site and just west of the major ridgeline between the two basins. The pond discharges into a natural drainageway to an existing pond of Filing No. 1, which ultimately outlets to Black Squirrel Creek. The pond is planned to store a maximum of 1.8 ac-ft during the 100-year event and have a peak outflow of 54.2 cfs which lower than the predevelopment peak outflow of 55.0. The 5-year storage volume is 1.3 ac-ft with a peak outflow of 17.2 cfs.
- Pond 14 is located near the southwest corner of the site just east of the Black Squirrel Creek. The pond discharges into a natural drainageway of Black Squirrel Creek. The pond is planned to store a maximum of 3.99 ac-ft during the 100-year event and have a peak outflow of 152.3 cfs which is slightly lower than the predevelopment peak outflow of 173.0 cfs. The 5-year storage volume is 1.06 ac-ft with a peak outflow of 59.0 cfs.
- Pond 15 is near the central portion of the site. The pond discharges into a natural drainageway which eventually discharges into the existing Irrigation Pond. The pond is planned to store a maximum of 3.23 ac-ft during the 100- year event and have a peak outflow of 68.4 cfs which is slightly above the predevelopment peak of 67.8 cfs. The 5-year storage volume is 1.94 ac-ft with a peak outflow of 30.9 cfs.
- Pond 16 is near the central portion of the site. The pond discharges into a culvert and goes under Stagecoach Road, which eventually discharges into an existing drainageway of East Cherry Creek. The pond is planned to store a maximum of 5.40 ac-ft during the 100-year event and have a peak outflow of 63.8 cfs which is slightly below the predevelopment peak of 71.2 cfs. The 5 year storage volume is 4.66 ac-ft with a peak outflow of 24.3 cfs.



- Pond 17 is near near the central portion of the site. The pond discharges into a natural drainageway which eventually discharges into an existing drainageway of Black Squirrel Creek. The pond is planned to store a maximum of 1.23 ac-ft during the 100 year event and have a peak outflow of 49.6 cfs which is slightly below the predevelopment peak of 49.9 cfs. The 5 year storage volume is 1.09 ac-ft with a peak outflow of 16.8 cfs..
- The existing Irrigation Pond is in the central portion of site and just south of existing Stagecoach Road. The pond discharges towards an unnamed tributary of East Cherry Creek. The irrigation pond was design and subsequently built as part of the Filing 1 project. Storage Volumes for the pond assumed different upstream development conditions and therefore the pond will receive a higher volume of water during the storm events however the rate into the pond will be reduced. The irrigation pond will store 35.92 ac-ft during the 100-year event with a peak outflow of 274.73 cfs and the 5 year storage volume is 19.67 ac-ft with a peak outflow of 114.0 cfs.

The site plans propose the construction of 2 culverts in the southwest corner of site that navigates flow under roads to proposed Detention Pond 14. Analyses were completed by flow master and calculations can be found in Appendix E.

- Culvert 1 carries flow from Subbasin II3 to Subbasin II2 in the southwest corner of site. Each of the basins consist of the Flying Horse Golf Course and 2.5-acre estate lots. The culvert is 36" RCP at a 1% slope and designed for the 100-year event. The culvert will have a peak outflow of 58.65 cfs, where the pipe is 72% full.
- Culvert 2 carries flow from Subbasin II2 to Subbasin II1 in the southwest corner of site. Each of the basins consist of the Flying Horse Golf Course and 2.5-acre estate lots. The culvert is 42" RCP at a 2% slope and designed for the 100-year event. The culvert will have a peak outflow of 116.62 cfs, where the pipe is 68% full.

The culverts sizes should be refined in the PDR and FDR. Energy dissipation calcs can also be performed later within the design.

Overall runoff from the site will by and large match or be less than predevelopment peak flows sans those for outfall 5 which is slightly greater than predevelopment flows. The volume of water will increase however as the drainage channels are designs, continuous simulation models will be done to see the effects of prolonged runoff rates. Predevelopment and post development flows for the 5-year and 100-year events are summarized in the following table for the 5 site outfalls.

OUTFALL	Predev	elopment	Postdevelopment*		
OUTFALL	5 year	100 year	5 year	100 year	
1	320.31	725.59	183.76	705.93	
2	145.46	311.00	80.36	242.18	
3	167.76	361.56	70.06	271.49	
4	346.26	733.92	230.07	646.46	
5	24.12	50.88	16.85	45.91	

^{*}Values to be refined with Preliminary and Final Drainage Reports for each filing

Basin	Park/Open						Total	Total	Composite Percent	Predominant Soil	5 Year C	100 Year
Description	Space	5 Acre	2.5 Acre	Low Density	Med Density	Commercial	Impervious	Acreage	Impervious	Group	Factor	C Factor
mpervious Percentage	10%	10%	15%	45%	55%	75%						
Р	15.55	14.78	0.00	13.38	0.00	0.00	9.05	43.71	20.71%	В	0.15	0.4
						Pond 1		43.71	20.71%			
X1	38.32	3.30	0.00	25.66	0.00	9.10	22.53	76.38	29.50%	В	0.24	0.4
						Pond 2		76.38	29.50%			
0	13.17	0.00	10.72	28.63	0.00	0.00	15.81	52.52	30.10%	В	0.19	0.4
						Pond 3		52.52	30.10%			
X2	12.11	0.00	0.00	24.22	0.00	0.00	12.11	36.33	33.33%	В	0.19	0.4
X3	38.88	16.85	0.00	6.26	0.00	0.00	8.39	61.99	13.53%	В	0.13	0.4
V2	0.00	0.00	15.34	0.00	0.00	0.00	2.30	15.34	15.00%	В		
V1	2.11	0.00	0.00	9.46	0.00	0.00	4.47	11.57	38.62%	В	0.20	0.4
						Pond 4		125.23	20.85%			
Ν	10.44	11.52	0.00	6.77	12.84	0.00	12.30	41.57	29.60%	В	0.19	0.4
						Pond 5		41.57	29.60%			
Μ	14.55	0.00	0.00	1.24	6.94	4.10	8.91	26.83	33.19%	В	0.28	0.5
						Pond 6		26.83	33.19%			
K	26.45	2.93	0.00	61.89	23.46	0.00	43.69	114.73	38.08%	В	0.21	0.4
						Pond 7		114.73	38.08%			
L	6.93	5.54	0.00	0.00	2.72	0.00	2.74	15.19	18.06%	В	0.15	0.4
						Pond 8		15.19	18.06%			
S	2.31	0.24	0.00	19.12	0	0.00	8.86	21.67	40.88%	В	0.21	0.4
R	26.63	16.11	0.00	21.77	0.00	0.00	14.07	64.51	21.81%	В	0.15	0.4
					•	Pond 9		86.18	21.81%			
Н	17.65	4.31	0.00	0.00	0.00	0.00	2.20	21.96	10.00%	В	0.12	0.
					•	Pond 10		21.96	10.00%			
B2	7.20	4.48	0.00	8.31	0.00	0.00	4.91	19.99	24.55%	В	0.16	0.4
B1	12.86	13.03	0.00	33.85	0.00	0.00	17.82	59.74	29.83%	В	0.18	0.4
					•	Pond 11		79.73	28.51%			
J	28.07	0.00	0.00	0.00	0.00	0.00	2.81	28.07	10.00%	В	0.12	0.3
						Exisiting Pon	12					
I	17.99	0.00	0.00	0.00	0.00	11.00	10.05	28.99	34.66%	В	0.38	0.5
						Pond 16		57.06	22.53%			
EE2	0.00	0.00	0.00	0.00	0.00	16.36	12.27	16.36	75.00%	В	0.81	0.8
EE3	0.00	0.00	0.00	0.00	6.67	0.00	3.67	6.67	55.00%	В	0.30	0.5
						Pond 13		23.03	69.21%			
112	0.00	23.13	0.00	0.00	0.00	0.00	2.31	23.13	10.00%	В	0.12	0.3
113	0.00	23.97	0.00	0.00	0.00	0.00	2.40	23.97	10.00%	В	0.12	0.3
111	15.77	34.66	0.00	0.00	0.00	0.00	5.04	50.43	10.00%	В	0.12	0.3
						Pond 14		97.53	10.00%			
D	4.41	4.70	0.00	31.76	0.00	0.00	15.20	40.87	37.20%	В	0.20	0.4
						Pond 15		40.87	37.20%			
E	99.63	8.80	0.00	1.72	0.00	6.90	16.79	117.05	14.35%	В	0.16	0.4
G	25.81	3.41	0.00	2.23	0.00	0.00	3.93	31.45	12.48%	В	0.13	0.3
						Irrigation Por	nd	148.50	13.95%			
11	1.86	4.32	0.00	2.72	0.00	0.00	1.84	8.90	20.70%	В	0.15	0.4
LL	4.39	1.44	0.00	0.37	0.00	0.00	0.75	6.20	12.09%	В	0.13	0.3
						Pond 17		15.10	17.16%			
KK	5.98	2.42	0.00	0.00	0.00	0.00	0.84	8.40	10.00%	В	0.12	0.
AA	0.00	33.88	0.00	0.00	0.00	0.00	3.39	33.88	10.00%	В	0.12	0.
BB	0.00	37.15	0.00	0.00	0.00	0.00	3.72	37.15	10.00%	В	0.12	0.
CC	0.00	6.33	0.00	0.00	0.00	0.00	0.63	6.33	10.00%	В	0.12	0.
DD	0.00	69.5	0.00	0.00	0.00	0.00	6.95	69.50	10.00%	В	0.12	0.
FF	0.00	18.1	0.00	0.00	0.00	0.00	1.81	18.10	10.00%	В	0.12	0.
GG	0.00	16.35	0.00	0.00	0.00	0.00	1.64	16.35	10.00%	В	0.12	0.
HH	0.00	12.7	0.00	0.00	0.00	0.00	1.27	12.70	10.00%	В	0.12	0.

*2% imperviousness for all, and runoff coefficients are .09 and .36 for 5 and 100 yr respectively

## DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)									
	Flying Horse North	h							
Basin ID:	Pond 5			- ·· · ·	E				
ZONE 2 ZONE 1				Estimated	Estimated	Outlat Turns			
VOLUME EURY WOCY			7 1 (11/001)	Stage (ft)	Volume (ac-ft)	Outlet Type	1		
T			Zone 1 (WQCV)	2.36	0.520	Orifice Plate			
ZONE 1 AND 2	0RIFICE		Zone 2 (EURV)	3.72	0.741	Circular Orifice			
PERMANENT ORIFICES POOL Example Zono	Configuration (Re	tontion Bond)	Zone 3 (100-year)	5.96	1.477	Weir&Pipe (Restrict)			
	•			Total (all zones)	2.738				
User Input: Orifice at Underdrain Outlet (typicall			,					ters for Underdrain	
Underdrain Orifice Invert Depth =	N/A		the filtration media	surface)		Irain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdrain	Orifice Centroid =	N/A	feet	
User Input: Orifice Plate with one or more orific	es or Elliptical Slot	Weir (typically used	to drain WOCV and	d/or ELIRV in a sedi	imentation BMP)		Calculated Parame	tors for Plata	
Invert of Lowest Orifice =	0.00		bottom at Stage =			ce Area per Row =	1.229E-02	ft ²	
Depth at top of Zone using Orifice Plate =	2.36		bottom at Stage =	•	-	ptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	9.40	inches	5	,	Ellipti	cal Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	1.77	sq. inches (diamet	er = 1 - 1/2 inches)		E	lliptical Slot Area =	N/A	ft ²	
		-						-	
User Input: Stage and Total Area of Each Orifice		-	· ·						
_	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	0.79	1.57						
Orifice Area (sq. inches)	1.77	1.77	1.77						l
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)		Now to (optional)	Now II (opuonal)	NOW 12 (Optional)	Now 13 (optional)	(optional)	(optional)	(opuonal)	
Orifice Area (sq. inches)									
									I
User Input: Vertical Orifice (Circular or Rectange	ular <u>)</u>		_				Calculated Parame	ters for Vertical Ori	fice
	Zone 2 Circular	Not Selected					Zone 2 Circular	Not Selected	
Invert of Vertical Orifice =	2.38	N/A		bottom at Stage =	,	tical Orifice Area =	3.14	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	3.59	N/A		bottom at Stage =	= 0 ft) Vertica	Orifice Centroid =	1.00	N/A	feet
Vertical Orifice Diameter =	24.00	N/A	inches						
Lass Inputs Quarflow Wais (Draphov with Flat a	r Clanad Crata and	Outlat Dina OD Dag	tangular/Transaid	al Wain (and No Ou	tlat Dina)		Calculated Davama	tors for Overflow M	10:1
User Input: Overflow Weir (Dropbox with Flat o	Zone 3 Weir	Not Selected	langular/ rrapezolu		<u>lliel Pipe)</u>		Zone 3 Weir	ters for Overflow W	en
Overflow Weir Front Edge Height, Ho =	4.00	N/A	ft (rolativo to bacin b	oottom at Stage = 0 f	+) Height of Grate	Linner Edge H. –	4.00	Not Selected N/A	feet
Overflow Weir Front Edge Length =	6.00	N/A	feet	octorn at Stage - 01		eir Slope Length =	6.00	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V	Gr	ate Open Area / 10		2.41	N/A	
Horiz. Length of Weir Sides =	6.00	N/A	feet		verflow Grate Open	•	25.06	N/A	ft ²
Overflow Grate Type =	Type C Grate	N/A		C	verflow Grate Oper	n Area w/ Debris =	12.53	N/A	ft ²
Debris Clogging % =	50%	N/A	%					•	
			-						
User Input: Outlet Pipe w/ Flow Restriction Plate	(Circular Orifice, R		ectangular Orifice)		Ca	Iculated Parameters		Flow Restriction Pl	<u>ate</u>
	Zone 3 Restrictor	Not Selected					Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	1.00	N/A		asin bottom at Stage	,	utlet Orifice Area =	10.39	N/A	ft ²
Outlet Pipe Diameter =	48.00	N/A	inches			Orifice Centroid =	1.70	N/A	feet
Restrictor Plate Height Above Pipe Invert =	37.00	l	inches	Half-Cent	ral Angle of Restric	tor Plate on Pipe =	2.14	N/A	radians
User Input: Emergency Spillway (Rectangular or	Tranezoidal)						Calculated Parame	ters for Spillway	
Spillway Invert Stage=	7.00	ft (relative to basin	n bottom at Stage =	= 0 ft)	Spillway D	esign Flow Depth=	0.80	feet	
Spillway Crest Length =	60.00	feet		· · · · /		op of Freeboard =	8.80	feet	
Spillway End Slopes =	4.00	H:V			-	op of Freeboard =	0.94	acres	
Freeboard above Max Water Surface =	1.00	feet				op of Freeboard =	5.10	acre-ft	
								•	
Poutod Hydrograph Posulto	The user can aver	ride the default CU	HD hydrographs an	d runoff volumos b	contoring now value	ec in the Inflow U.	drographs table (C	olumne M/ through	15)
Routed Hydrograph Results Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	olumns W through A 100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
CUHP Runoff Volume (acre-ft) =	0.520	1.261	1.226	1.996	2.708	3.784	4.596	5.681	7.783
User Override Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	1.226	4.578	2.708	3.784	4.596	8.724	7.783
CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A N/A	N/A N/A	9.0	25.3 40.1	37.9	62.0	78.4	99.1 116.9	137.2
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A N/A	N/A N/A	0.22	0.96	0.91	1.49	1.89	2.81	3.30
Peak Inflow Q (cfs) =	N/A	N/A	28.6	69.6	61.5	85.5	103.2	135.8	169.5
Peak Outflow Q (cfs) =	0.2	7.1	3.2	39.4	19.6	45.9	62.2	103.1	114.7
Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =	N/A Plate	N/A Vertical Orifice 1	N/A Vertical Orifice 1	1.0 Overflow Weir 1	0.5 Overflow Weir 1	0.7 Overflow Weir 1	0.8 Overflow Weir 1	0.9 Overflow Weir 1	0.8 Outlet Plate 1
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.9	0.2	1.1	1.7	3.2	3.6
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	39	45	46	37	42	39	37	28	29
Time to Drain 99% of Inflow Volume (hours) =	<b>40</b> 2.36	48 3.72	49 3.19	46 4.68	48 4.27	47 4.80	46 5.06	42 5.70	43 5.95
Maximum Ponding Depth (ft) = Area at Maximum Ponding Depth (acres) =	0.51	0.59	0.55	4.68	4.27	4.80	0.67	0.71	0.73
Maximum Volume Stored (acre-ft) =	0.522	1.265	0.957	1.858	1.598	1.929	2.108	2.551	2.732

# DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename: ... [SWMM[Outflow hydrographs]Pond6_OutflowHydrograph.xlsx

	The user can o	verride the calcu	lated inflow hyd	lrographs from t	his workbook wi	th inflow hydrog	raphs developed	l in a separate pr	ogram.	
	SOURCE	CUHP	CUHP	CUHP	USER	CUHP	CUHP	CUHP	USER	CUHP
ime Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [c
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ſ	0:10:00	0.00	0.00	0.00	0.27	0.00	0.00	0.22	0.40	0.70
	0:15:00	0.00	0.00	1.84	7.09	3.80	2.57	3.17	6.01	4.42
	0:20:00	0.00	0.00	6.21	38.48	13.58	6.05	7.03	33.89	13.57
-	0:25:00	0.00	0.00	20.49	67.67	52.13	20.37	24.85	93.63	52.58
	0:30:00	0.00	0.00	28.59	69.63	61.49	78.91	97.73	133.95	154.89
-	0:35:00	0.00	0.00	24.76	62.10	50.77	85.48	103.19	135.78	169.46
ŀ	0:45:00	0.00	0.00	20.16	54.00 46.63	40.35 31.22	77.39 62.69	92.60 74.92	124.29 110.29	148.88 125.63
F	0:50:00	0.00	0.00	11.44	40.63	24.29	51.40	61.39	95.61	125.63
F	0:55:00	0.00	0.00	9.23	36.18	19.62	39.56	47.65	83.59	83.62
	1:00:00	0.00	0.00	7.39	32.69	15.61	30.99	37.59	75.22	69.81
	1:05:00	0.00	0.00	5.81	29.50	12.14	24.16	29.44	65.17	58.06
	1:10:00	0.00	0.00	4.00	26.06	10.35	16.01	19.65	53.50	38.75
-	1:15:00	0.00	0.00	3.01	22.56	9.76	11.60	14.65	42.49	27.91
	1:20:00	0.00	0.00	2.54	20.01	8.24	8.40	10.62	32.94	18.76
ŀ	1:25:00 1:30:00	0.00	0.00	2.28	18.54	6.59	6.53	8.22	26.39	12.92
ŀ	1:35:00	0.00	0.00	2.14	17.63 16.51	5.51 4.77	4.92 3.94	6.21 4.98	22.26 19.57	9.46 7.13
-	1:40:00	0.00	0.00	1.96	14.95	4.77	3.32	4.98	19.57	5.64
ŀ	1:45:00	0.00	0.00	1.92	13.73	3.97	2.92	3.68	16.45	4.78
	1:50:00	0.00	0.00	1.90	12.82	3.73	2.73	3.44	15.55	4.51
	1:55:00	0.00	0.00	1.59	12.02	3.37	2.61	3.29	14.99	4.39
-	2:00:00	0.00	0.00	1.38	1.90	2.81	2.56	3.23	13.30	4.39
-	2:05:00	0.00	0.00	0.92	1.25	1.86	1.68	2.12	9.94	2.89
-	2:10:00	0.00	0.00	0.60	0.80	1.20	1.10	1.38	7.23	1.87
-	2:15:00 2:20:00	0.00	0.00	0.39	0.49	0.76	0.70	0.88	5.23 3.73	1.18 0.71
F	2:25:00	0.00	0.00	0.24	0.30	0.46	0.43	0.33	2.62	0.71
ŀ	2:30:00	0.00	0.00	0.07	0.10	0.13	0.14	0.16	1.85	0.21
ſ	2:35:00	0.00	0.00	0.03	0.04	0.04	0.05	0.06	1.26	0.07
	2:40:00	0.00	0.00	0.01	0.01	0.01	0.01	0.00	0.81	0.00
	2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.49	0.00
Ļ	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.28	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.13	0.00
ŀ	3:00:00 3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.00
ŀ	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00
F	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00
-	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
-	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
ŀ	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	3:50:00 3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:20:00 4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:40:00 4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ľ	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:30:00 5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00 6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MHFD-Detention, Version 4.04 (February 2021)

#### Project: Flying Horse North Master Drainage Plan Basin ID: Pond 6

ZONE 2 -100-YEAR ORIFICE ZONE 1 AND 2 ORIFICE ORIFICES Example Zone Configuration (Retention Pond) PERMA

Depth Increment = 0.10 ft

Watershed Info	ormation

tersneu information		
Selected BMP Type =	EDB	
Watershed Area =	26.83	acres
Watershed Length =	1,140	ft
Watershed Length to Centroid =	570	ft
Watershed Slope =	0.039	ft/ft
Watershed Imperviousness =	33.19%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

# After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded colorado orban nyare	gruphi noccuc	iic.	Optional User	Override
Water Quality Capture Volume (WQCV) =	0.360	acre-feet		acre-fee
Excess Urban Runoff Volume (EURV) =	0.921	acre-feet		acre-fee
2-yr Runoff Volume (P1 = 1.19 in.) =	0.903	acre-feet	1.19	inches
5-yr Runoff Volume (P1 = 1.5 in.) =	1.424	acre-feet	1.50	inches
10-yr Runoff Volume (P1 = 1.75 in.) =	1.899	acre-feet	1.75	inches
25-yr Runoff Volume (P1 = 2 in.) =	2.602	acre-feet	2.00	inches
50-yr Runoff Volume (P1 = 2.25 in.) =	3.143	acre-feet	2.25	inches
100-yr Runoff Volume (P1 = 2.52 in.) =	3.855	acre-feet	2.52	inches
500-yr Runoff Volume (P1 = 3.14 in.) =	5.243	acre-feet		inches
Approximate 2-yr Detention Volume =	0.666	acre-feet		
Approximate 5-yr Detention Volume =	0.945	acre-feet		
Approximate 10-yr Detention Volume =	1.349	acre-feet		
Approximate 25-yr Detention Volume =	1.543	acre-feet		
Approximate 50-yr Detention Volume =	1.623	acre-feet		
Approximate 100-yr Detention Volume =	1.899	acre-feet		

#### Define Zones and Basin Geometry

Zone 1 Volume (WQCV) =	0.360	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.561	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.978	acre-feet
Total Detention Basin Volume =	1.899	acre-feet
Initial Surcharge Volume (ISV) =	47	ft ³
Initial Surcharge Depth (ISD) =	0.33	ft
Total Available Detention Depth $(H_{total}) =$	6.00	ft
Depth of Trickle Channel (H _{TC} ) =	0.50	ft
Slope of Trickle Channel (STC) =	0.004	ft/ft
Slopes of Main Basin Sides (S _{main} ) =	4	H:V
Basin Length-to-Width Ratio (R _{L/W} ) =	2	
		_
Initial Surcharge Area $(A_{ISV}) =$	143	ft ²
Curchange Velume Length (L.) -	11.0	•

Surcharge Volume Length $(L_{ISV}) =$	11.9	ft
Surcharge Volume Width (W _{ISV} ) =	11.9	ft
Depth of Basin Floor (H _{FLOOR} ) =	0.56	ft
Length of Basin Floor (L _{FLOOR} ) =	154.2	ft
Width of Basin Floor ( $W_{FLOOR}$ ) =	81.9	ft
Area of Basin Floor $(A_{FLOOR})$ =	12,634	ft ²
Volume of Basin Floor (V _{FLOOR} ) =	2,636	ft ³
Depth of Main Basin (H _{MAIN} ) =	4.61	ft
Length of Main Basin $(L_{MAIN}) =$	191.1	ft
Width of Main Basin (W _{MAIN} ) =	118.8	ft
Area of Main Basin (A _{MAIN} ) =	22,702	ft ²
Volume of Main Basin (V _{MAIN} ) =	80,325	ft ³
Calculated Total Basin Volume ( $V_{total}$ ) =	1.907	acre-feet

nd)		Depth Increment =	0.10	ft	1	I		Ontingal			1
		Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
·		Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ² )	Area (ft ² )	(acre)	(ft 3)	(ac-ft)
		Top of Micropool	0.00		11.9	11.9	143		0.003		
		ISV	0.33		11.9	11.9	143		0.003	47	0.001
			0.40		11.9	11.9	143		0.003	57	0.001
		-	0.50		11.9	11.9	143		0.003	71	0.002
			0.60		11.9	11.9	143		0.003	86	0.002
			0.70		11.9	11.9	143 143		0.003	100	0.002
			0.80		11.9 29.7	11.9 20.7	615		0.003	114 143	0.003
			1.00		55.1	33.2	1,830		0.014	260	0.005
			1.10		80.5	45.7	3,679		0.084	530	0.012
			1.20		105.9	58.2	6,164		0.142	1,017	0.023
			1.30		131.3	70.7	9,283		0.213	1,784	0.041
		Floor	1.39		154.2	81.9	12,634		0.290	2,766	0.064
			1.40		154.3	82.0	12,653		0.290	2,893	0.066
nal User	r Overrides		1.50		155.1	82.8	12,842		0.295	4,168	0.096
	acre-feet		1.60		155.9	83.6	13,033		0.299	5,461	0.125
	acre-feet		1.70		156.7	84.4	13,226		0.304	6,774	0.156
.19	inches		1.80		157.5	85.2	13,419		0.308	8,107	0.186
.50	inches		1.90		158.3	86.0 86.8	13,614		0.313	9,458	0.217
.75	inches inches		2.00		159.1 159.9	87.6	13,810 14,007		0.317	10,829 12,220	0.249 0.281
.00	inches		2.10		159.9	88.4	14,007		0.322	12,220	0.281
.52	inches		2.30		161.5	89.2	14,406		0.331	15,062	0.346
	inches	Zone 1 (WQCV)	2.35		161.9	89.6	14,506		0.333	15,784	0.362
	-		2.40		162.3	90.0	14,607		0.335	16,512	0.379
			2.50		163.1	90.8	14,810		0.340	17,983	0.413
			2.60		163.9	91.6	15,013		0.345	19,474	0.447
			2.70		164.7	92.4	15,218		0.349	20,986	0.482
			2.80		165.5	93.2	15,425		0.354	22,518	0.517
			2.90		166.3	94.0	15,632		0.359	24,071	0.553
			3.00		167.1	94.8	15,841		0.364	25,644	0.589
			3.10		167.9	95.6	16,051		0.368	27,239	0.625
			3.20		168.7 169.5	96.4 97.2	16,263 16,475		0.373 0.378	28,855 30,492	0.662
			3.40		170.3	97.2	16,475		0.378	32,150	0.700
			3.50		170.5	98.8	16,905		0.388	33,829	0.777
			3.60		171.9	99.6	17,121		0.393	35,531	0.816
			3.70		172.7	100.4	17,339		0.398	37,254	0.855
			3.80		173.5	101.2	17,558		0.403	38,999	0.895
		Zone 2 (EURV)	3.87		174.0	101.8	17,712		0.407	40,233	0.924
			3.90		174.3	102.0	17,778		0.408	40,765	0.936
			4.00		175.1	102.8	18,000		0.413	42,554	0.977
			4.10		175.9	103.6	18,223		0.418	44,365	1.018
			4.20		176.7	104.4	18,447		0.423	46,199	1.061
			4.30 4.40		177.5	105.2	18,673		0.429 0.434	48,055	1.103
			4.40		178.3 179.1	106.0 106.8	18,900		0.434	49,934 51,835	1.146 1.190
			4.60		179.1	108.8	19,128 19,357		0.439	53,759	1.190
			4.70		180.7	107.0	19,588		0.450	55,706	1.279
			4.80		181.5	109.2	19,820		0.455	57,677	1.324
			4.90		182.3	110.0	20,053		0.460	59,670	1.370
			5.00		183.1	110.8	20,287		0.466	61,687	1.416
			5.10		183.9	111.6	20,523		0.471	63,728	1.463
			5.20		184.7	112.4	20,760		0.477	65,792	1.510
			5.30		185.5	113.2	20,998		0.482	67,880	1.558
			5.40		186.3	114.0	21,238		0.488	69,992	1.607
			5.50		187.1	114.8	21,479		0.493	72,127	1.656
			5.60 5.70		187.9 188.7	115.6 116.4	21,721 21,964		0.499 0.504	74,287 76,472	1.705
				1							
			5.80		189.5	117.2	22,209		0.510	78,680	1.756
		Zone 3 (100-vear)	5.80 5.90 5.98				22,209 22,455		0.510 0.515 0.520	78,680 80,914 82,718	
		Zone 3 (100-year)	5.90 5.98 6.00		189.5 190.3 190.9 191.1	117.2 118.0 118.7 118.8	22,209 22,455 22,653 22,702		0.510 0.515 0.520 0.521	78,680 80,914 82,718 83,171	1.806 1.858 1.899 1.909
		Zone 3 (100-year)	5.90 5.98		189.5 190.3 190.9	117.2 118.0 118.7	22,209 22,455 22,653 22,702 22,951 23,201		0.510 0.515 0.520	78,680 80,914 82,718	1.806 1.858 1.899
		Zone 3 (100-year)	5.90 5.98 6.00 6.10 6.20 6.30		189.5 190.3 190.9 191.1 191.9 192.7 193.5	117.2 118.0 118.7 118.8 119.6 120.4 121.2	22,209 22,455 22,653 22,702 22,951 23,201 23,452		0.510 0.515 0.520 0.521 0.527 0.533 0.538	78,680 80,914 82,718 83,171 85,454 87,762 90,094	1.806 1.858 1.899 1.909 1.962 2.015 2.068
		Zone 3 (100-year)	5.90 5.98 6.00 6.10 6.20		189.5 190.3 190.9 191.1 191.9 192.7 193.5 194.3 195.1	117.2 118.0 118.7 118.8 119.6 120.4 121.2 122.0 122.8	22,209 22,455 22,653 22,702 22,951 23,201		0.510 0.515 0.520 0.521 0.527 0.533 0.538 0.538 0.544 0.550	78,680 80,914 82,718 83,171 85,454 87,762 90,094 92,452 94,835	1.806 1.858 1.899 1.909 1.962 2.015 2.068 2.122 2.177
		Zone 3 (100-year)	5.90 5.98 6.00 6.10 6.20 6.30 6.40 6.50 6.60		189.5 190.3 190.9 191.1 191.9 192.7 193.5 194.3 195.1 195.9	117.2 118.0 118.7 118.8 119.6 120.4 121.2 122.0 122.8 123.6	22,209 22,455 22,653 22,702 22,951 23,201 23,452 23,704 23,958 24,213		0.510 0.515 0.520 0.521 0.527 0.533 0.538 0.544 0.550 0.556	78,680 80,914 82,718 83,171 85,454 87,762 90,094 92,452 94,835 97,244	1.806 1.858 1.899 1.909 1.962 2.015 2.068 2.122 2.177 2.232
		Zone 3 (100-year)	5.90 5.98 6.00 6.10 6.20 6.30 6.40 6.50 6.60 6.70 6.80		189.5 190.3 190.9 191.1 191.9 192.7 193.5 194.3 195.1 195.9 196.7 197.5	117.2 118.0 118.7 118.8 119.6 120.4 121.2 122.0 122.8 123.6 124.4 125.2	22,209 22,455 22,653 22,702 22,951 23,201 23,452 23,704 23,958 24,213 24,469 24,727		0.510 0.515 0.520 0.521 0.527 0.533 0.538 0.544 0.550 0.556 0.562 0.568	78,680 80,914 82,718 83,171 85,454 87,762 90,094 92,452 94,835 97,244 99,678 102,137	1.806 1.858 1.899 1.909 1.962 2.015 2.068 2.122 2.177 2.232 2.288 2.345
		Zone 3 (100-year)	5.90 5.98 6.00 6.10 6.20 6.30 6.40 6.50 6.60 6.70 6.80 6.90		189.5 190.3 190.9 191.1 191.9 192.7 193.5 194.3 195.1 195.9 196.7 197.5 198.3	117.2 118.0 118.7 118.8 119.6 120.4 121.2 122.0 122.8 123.6 124.4 125.2 126.0	22,209 22,455 22,653 22,702 23,201 23,201 23,452 23,704 23,958 24,213 24,469 24,727 24,985		0.510 0.515 0.520 0.521 0.527 0.533 0.538 0.544 0.550 0.556 0.562 0.568 0.574	78,680 80,914 82,718 83,171 85,454 87,762 90,094 92,452 94,835 97,244 99,678 102,137 104,623	1.806 1.858 1.899 1.909 2.015 2.068 2.122 2.177 2.232 2.288 2.345 2.402
		Zone 3 (100-year)	5.90 5.98 6.00 6.10 6.20 6.30 6.40 6.50 6.60 6.70 6.80 6.90 7.00 7.10		189.5 190.3 190.9 191.1 191.9 192.7 193.5 194.3 195.1 195.9 196.7 197.5 198.3 199.1 199.9	117.2 118.0 118.7 118.8 119.6 120.4 121.2 122.0 122.8 123.6 124.4 125.2 126.0 126.8 127.6	22,209 22,455 22,653 22,702 23,201 23,452 23,704 23,958 24,213 24,469 24,727 24,985 25,507		0.510 0.515 0.520 0.521 0.527 0.533 0.538 0.544 0.550 0.556 0.562 0.568 0.574 0.580 0.586	78,680 80,914 82,718 83,171 85,454 97,762 90,094 92,452 94,835 97,244 99,678 102,137 104,623 107,135	1.806 1.858 1.899 1.902 2.015 2.068 2.122 2.177 2.232 2.288 2.345 2.402 2.402 2.518
		Zone 3 (100-year)	5.90 5.98 6.00 6.10 6.20 6.30 6.40 6.50 6.60 6.70 6.80 6.90 7.00 7.10 7.20		189.5 190.3 190.9 191.1 191.9 192.7 193.5 194.3 195.1 195.9 196.7 197.5 198.3 199.1	117.2 118.0 118.7 118.8 119.6 120.4 121.2 122.0 122.8 123.6 124.4 125.2 126.0 126.8 127.6 128.4	22,209 22,455 22,653 22,702 23,702 23,452 23,704 23,958 24,213 24,469 24,213 24,469 24,213 24,469 24,727 24,985 25,245 25,507 25,769		0.510 0.515 0.520 0.521 0.527 0.533 0.538 0.544 0.550 0.556 0.556 0.562 0.568 0.574 0.580	78,680 80,914 82,718 83,171 85,454 90,094 92,452 94,835 97,244 99,678 102,137 104,623 107,135 109,672 112,236	1.806 1.858 1.899 1.909 1.962 2.015 2.068 2.122 2.177 2.232 2.288 2.345 2.402 2.459 2.518 2.577
		Zone 3 (100-year)	5.90 5.98 6.00 6.10 6.20 6.30 6.40 6.50 6.60 6.70 6.80 6.90 7.00 7.10 7.20 7.30 7.40		189.5 190.3 190.9 191.1 191.9 192.7 193.5 194.3 195.1 195.9 196.7 197.5 198.3 199.1 199.9 200.7 201.5 202.3	117.2 118.0 118.7 118.8 119.6 120.4 121.2 122.0 122.8 123.6 124.4 125.2 126.0 126.8 127.6 128.4 129.2 130.0	22,209 22,455 22,653 22,702 23,702 23,704 23,704 23,958 24,213 24,469 24,727 24,985 25,245 25,245 25,769 26,033 26,298		0.510 0.515 0.520 0.521 0.527 0.533 0.538 0.544 0.550 0.556 0.562 0.562 0.568 0.574 0.580 0.586 0.592 0.598 0.604	78,680 80,914 82,718 83,171 85,454 87,762 90,094 92,452 94,835 97,244 99,678 102,137 104,623 107,135 109,672 112,236 114,826 117,443	1.806 1.858 1.899 1.909 1.962 2.015 2.068 2.122 2.127 2.288 2.345 2.402 2.459 2.518 2.577 2.636 2.696
		Zone 3 (100-year)	5.90 5.98 6.00 6.10 6.20 6.30 6.40 6.50 6.60 6.70 6.80 6.70 7.00 7.10 7.20 7.30 7.40 7.50		189.5           190.3           190.9           190.1           191.9           192.7           193.5           194.3           195.1           195.7           197.5           198.3           199.1           199.7           201.5           202.3           203.1	117.2 118.0 118.7 118.8 119.6 120.4 121.2 122.0 122.8 123.6 124.4 125.2 126.0 126.8 127.6 126.8 127.6 126.8 127.6 128.4 129.2 130.0 130.8	22,209 22,455 22,653 22,702 23,201 23,201 23,452 23,704 23,958 24,213 24,469 24,727 24,727 24,729 25,507 25,507 26,033 26,298 26,565		0.510 0.515 0.520 0.521 0.527 0.533 0.538 0.544 0.550 0.556 0.562 0.568 0.574 0.580 0.586 0.574 0.580 0.586 0.592 0.598	78,680 80,914 82,718 83,171 85,454 90,094 92,452 94,835 97,244 99,678 102,137 104,623 107,135 109,672 112,236 114,826 117,443 120,086	1.806 1.858 1.899 1.909 1.909 2.015 2.068 2.122 2.058 2.402 2.459 2.517 2.537 2.636 2.577 2.636 2.577
		Zone 3 (100-year)	5.90 5.98 6.00 6.10 6.20 6.30 6.40 6.50 6.60 6.70 6.60 6.70 6.80 7.00 7.20 7.30 7.20 7.30 7.40 7.50 7.60		189.5           190.3           190.9           190.9           191.1           191.9           192.7           193.5           194.3           195.9           195.1           195.9           196.7           197.5           198.3           199.1           199.2           200.7           201.5           202.3           203.1           203.2           204.7	117.2 118.0 118.7 118.7 118.8 120.4 121.2 122.0 122.8 123.6 124.4 125.2 126.0 126.8 127.6 126.8 127.6 126.8 127.6 128.4 129.2 130.0 130.8 131.6 132.4	22,209 22,455 22,702 22,551 23,201 23,702 23,702 23,702 23,704 23,958 24,213 24,213 24,213 24,213 24,469 24,727 24,985 25,569 26,033 26,565 26,633 26,655 26,633 27,102		$\begin{array}{c} 0.510\\ 0.515\\ 0.520\\ 0.521\\ 0.527\\ 0.533\\ 0.538\\ 0.548\\ 0.556\\ 0.556\\ 0.556\\ 0.562\\ 0.568\\ 0.568\\ 0.580\\ 0.580\\ 0.592\\ 0.598\\ 0.598\\ 0.604\\ 0.610\\ 0.616\\ 0.622\end{array}$	78,680 80,914 82,718 83,171 85,454 87,762 90,094 92,452 94,435 97,244 99,678 104,623 107,135 104,623 107,135 114,826 114,826 114,826 112,756	1.806 1.858 1.859 1.909 1.902 2.015 2.068 2.122 2.205 2.205 2.2177 2.232 2.288 2.345 2.345 2.345 2.345 2.345 2.577 2.636 2.577 2.636 2.696 2.757 2.818 2.888
		Zone 3 (100-year)	5.90 5.98 6.00 6.10 6.20 6.30 6.40 6.50 6.60 6.70 6.80 6.70 7.00 7.10 7.20 7.30 7.40 7.50 7.60		189.5           190.3           190.9           191.9           191.9           192.7           193.5           194.3           195.1           195.5           196.7           197.5           198.3           199.1           199.2           190.7           197.5           198.3           199.9           200.7           201.5           202.3           203.1           203.9           204.7           205.5	117.2 118.0 118.7 118.7 118.8 119.6 120.4 121.2 122.0 122.0 122.8 123.6 123.6 124.4 125.2 126.0 126.8 127.6 128.4 129.2 120.4 129.2 120.4 129.2 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 120.4 130.6 131.6 133.2 120.4 133.2 120.4 130.4 133.2 120.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 130.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 140.4 14	22,209 22,455 22,455 22,553 22,951 23,201 23,452 23,704 23,958 24,213 24,213 24,429 24,727 24,985 25,507 25,769 25,507 25,769 26,033 26,585 26,833 27,102 27,372		$\begin{array}{c} 0.510\\ 0.515\\ 0.521\\ 0.521\\ 0.527\\ 0.533\\ 0.538\\ 0.554\\ 0.556\\ 0.556\\ 0.556\\ 0.556\\ 0.556\\ 0.568\\ 0.574\\ 0.580\\ 0.586\\ 0.592\\ 0.598\\ 0.598\\ 0.604\\ 0.616\\ 0.616\\ 0.628\\ \end{array}$	78,680 80,914 82,718 85,454 85,454 87,762 90,094 92,452 94,835 97,244 99,678 102,137 104,623 107,135 109,672 112,236 114,826 117,443 122,756 125,452 128,176	1.806 1.859 1.809 1.909 2.015 2.068 2.122 2.177 2.232 2.345 2.459 2.518 2.518 2.518 2.518 2.518 2.577 2.636 2.696 2.696 2.675 2.818 2.880 2.943
		Zone 3 (100-year)	5.90 5.98 6.00 6.10 6.20 6.30 6.40 6.50 6.60 6.60 6.60 7.00 7.10 7.20 7.30 7.40 7.50 7.60 7.70 7.80 7.90 8.00		189.5           190.3           190.9           191.1           191.9           192.7           193.5           194.3           195.1           195.3           194.3           195.1           195.2           194.3           195.1           195.9           196.7           197.5           198.3           199.1           199.9           200.5           203.1           203.2           204.7           205.5           206.3           207.1	$\begin{array}{c} 117.2 \\ 117.2 \\ 118.0 \\ 118.7 \\ 118.8 \\ 119.6 \\ 120.4 \\ 121.2 \\ 122.0 \\ 122.8 \\ 123.6 \\ 124.4 \\ 125.2 \\ 126.6 \\ 128.4 \\ 127.6 \\ 128.4 \\ 129.2 \\ 130.0 \\ 132.6 \\ 132.4 \\ 133.2 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\ 134.0 \\$	22,209 22,455 22,455 22,951 22,951 23,952 23,452 24,213 24,213 24,213 24,213 24,213 24,213 24,213 24,223 24,223 25,245 25,507 25,264 26,565 26,633 26,526 26,633 27,102 27,372 27,576 4		$\begin{array}{c} 0.510\\ 0.520\\ 0.521\\ 0.521\\ 0.521\\ 0.521\\ 0.533\\ 0.538\\ 0.538\\ 0.556\\ 0.556\\ 0.556\\ 0.556\\ 0.556\\ 0.556\\ 0.586\\ 0.598\\ 0.598\\ 0.598\\ 0.598\\ 0.604\\ 0.610\\ 0.612\\ 0.622\\ 0.628\\ 0.635\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.641\\ 0.622\\ 0.641\\ 0.641\\ 0.641\\ 0.641\\ 0.642\\ 0.635\\ 0.641\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.622\\ 0.635\\ 0.641\\ 0.622\\ 0.641\\ 0.622\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.651\\ 0.$	78,680 80,914 82,718 85,454 85,454 85,454 87,762 90,094 90,094 92,452 94,835 97,244 99,678 102,137 104,623 107,135 109,672 112,236 114,826 114,826 114,826 114,826 112,756 122,756 128,176 130,027 133,705	1.806 1.858 1.899 1.909 2.015 2.068 2.122 2.177 2.232 2.459 2.518 2.469 2.518 2.577 2.636 2.757 2.818 2.575 2.818 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.543 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545
		Zone 3 (100-year)	5.90 5.98 6.00 6.10 6.20 6.30 6.40 6.50 6.60 6.70 7.10 7.20 7.10 7.20 7.40 7.30 7.40 7.50 7.60 7.70 7.80 8.00 8.10		189.5           190.3           190.9           191.1           191.9           192.7           193.5           194.3           195.1           195.9           196.7           196.7           197.5           198.1           199.2           201.5           202.3           203.1           203.2           203.1           205.5           206.5           207.1           207.9	$\begin{array}{c} 117.2 \\ 118.0 \\ 118.7 \\ 118.8 \\ 119.6 \\ 120.4 \\ 121.2 \\ 122.0 \\ 122.8 \\ 123.6 \\ 124.4 \\ 125.2 \\ 126.8 \\ 127.6 \\ 126.8 \\ 127.6 \\ 128.4 \\ 129.2 \\ 130.0 \\ 130.8 \\ 131.6 \\ 132.4 \\ 133.2 \\ 134.0 \\ 134.8 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\$	22,209 22,455 22,653 22,951 22,951 23,452 23,452 23,704 23,958 24,213 24,469 24,727 24,985 25,245 25,245 25,269 26,033 26,285 26,685 26,685 26,685 26,685 26,685 26,685 26,685 27,102 27,742 27,742 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 24,985 26,745 26,744 27,744 27,744 27,744 26,745 26,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27		0.510 0.510 0.520 0.521 0.527 0.533 0.538 0.544 0.556 0.556 0.556 0.556 0.556 0.574 0.574 0.578 0.592 0.592 0.592 0.592 0.592 0.604 0.610 0.610 0.622 0.622 0.635 0.641 0.641 0.641	78,680 80,914 82,718 85,454 85,454 85,454 87,762 90,094 94,835 97,244 99,678 102,137 109,672 112,236 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 1	1.806 1.858 1.899 1.909 2.015 2.068 2.122 2.228 2.345 2.402 2.459 2.518 2.577 2.636 2.696 2.757 2.636 2.696 2.757 2.818 2.880 2.849 2.880 2.943 3.006 3.039
		Zone 3 (100-year)	5.90 5.98 6.00 6.10 6.20 6.30 6.40 6.50 6.60 6.70 6.80 6.60 7.00 7.10 7.20 7.30 7.40 7.50 7.40 7.50 7.40 7.50 7.90 8.00 8.10 8.20		189.5           190.3           190.9           191.1           191.9           192.7           193.5           194.3           195.1           195.9           196.7           197.5           198.1           199.2           200.7           201.5           202.3           203.1           203.2           204.7           206.5           207.9           207.9           207.9           207.9           208.5	$\begin{array}{c} 117.2 \\ 118.0 \\ 118.6 \\ 118.7 \\ 118.8 \\ 119.6 \\ 120.4 \\ 121.2 \\ 122.0 \\ 122.8 \\ 122.4 \\ 122.2 \\ 124.4 \\ 125.2 \\ 126.6 \\ 126.4 \\ 129.2 \\ 126.8 \\ 127.6 \\ 128.4 \\ 129.2 \\ 130.0 \\ 130.8 \\ 132.4 \\ 133.2 \\ 134.0 \\ 134.6 \\ 135.6 \\ 136.4 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\ 137.2 \\$	22,209 22,455 22,653 22,702 23,201 23,201 23,452 23,704 23,958 24,213 24,423 24,213 24,469 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 28,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27		$\begin{array}{c} 0.510\\ 0.515\\ 0.520\\ 0.521\\ 0.527\\ 0.527\\ 0.533\\ 0.554\\ 0.553\\ 0.556\\ 0.556\\ 0.556\\ 0.556\\ 0.568\\ 0.580\\ 0.580\\ 0.580\\ 0.580\\ 0.598\\ 0.598\\ 0.598\\ 0.604\\ 0.610\\ 0.616\\ 0.622\\ 0.628\\ 0.635\\ 0.647\\ 0.653\\ 0.663\\ \end{array}$	78,680 80,914 82,718 83,171 83,171 83,171 90,094 92,452 97,244 99,2452 97,244 107,135 109,672 112,236 114,826 114,826 112,245 128,176 128,176 139,972 133,705 136,510 139,343	1.806 1.858 1.859 1.909 2.015 2.068 2.122 2.177 2.232 2.288 2.402 2.459 2.518 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.545 2.5455 2.5455 2.5455 2.5455 2.54555 2.545555555555
		Zone 3 (100-year)	5.90 5.98 6.00 6.10 6.20 6.30 6.40 6.60 6.70 6.60 7.00 7.10 7.20 7.30 7.40 7.30 7.40 7.30 7.40 7.50 8.00 8.00 8.10 8.20 8.20 8.20 8.20 8.20 8.20 8.20 8.2		189.5           190.3           190.9           191.1           191.9           192.7           193.5           194.3           195.1           195.3           196.7           197.5           198.3           199.1           199.2           200.7           201.5           202.3           203.1           203.2           204.7           205.5           206.7           207.1           207.2           208.7           208.7           208.7           208.7           208.7           209.5	$\begin{array}{c} 117.2 \\ 117.2 \\ 118.0 \\ 118.7 \\ 118.8 \\ 119.6 \\ 120.4 \\ 121.2 \\ 122.8 \\ 122.8 \\ 122.8 \\ 122.8 \\ 122.4 \\ 125.2 \\ 124.4 \\ 125.2 \\ 126.0 \\ 126.4 \\ 126.0 \\ 126.4 \\ 129.2 \\ 130.0 \\ 132.4 \\ 132.4 \\ 133.2 \\ 134.0 \\ 134.8 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\ 135.6 \\$	22,209 22,455 22,653 22,702 23,201 23,201 23,304 23,358 24,213 24,469 24,213 24,469 24,213 24,469 25,507 25,769 26,633 26,585 26,633 27,102 27,5769 26,633 27,7102 27,5769 26,633 27,7102 27,7372 27,7372 27,7372 27,7416 27,916 28,466 28,473		$\begin{array}{c} 0.510\\ 0.515\\ 0.520\\ 0.521\\ 0.527\\ 0.527\\ 0.538\\ 0.538\\ 0.554\\ 0.556\\ 0.556\\ 0.556\\ 0.556\\ 0.568\\ 0.592\\ 0.574\\ 0.580\\ 0.592\\ 0.592\\ 0.604\\ 0.616\\ 0.628\\ 0.635\\ 0.664\\ 0.628\\ 0.635\\ 0.664\\ 0.647\\ 0.653\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.66\\ 0.6\\ 0.$	78,680 80,914 82,718 83,171 85,454 90,004 92,452 94,835 97,244 99,678 102,137 104,623 107,135 107,135 104,623 107,135 109,672 112,236 114,826 122,756 122,756 128,176 133,705 128,176 133,705 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,510 136,5100 136,5100 136,51000000000000000000000000000000000000	1.806 1.858 1.899 1.902 2.015 2.068 2.122 2.177 2.232 2.245 2.345 2.345 2.577 2.636 2.696 2.696 2.6757 2.818 2.577 2.818 2.577 2.818 2.5757 2.818 2.5943 3.006 3.059 3.134 3.199 3.265 3.331
		Zone 3 (100-year)	5.90 5.98 6.00 6.10 6.20 6.30 6.40 6.50 6.60 7.00 7.10 7.20 7.30 7.40 7.30 7.40 7.30 7.40 7.30 7.40 7.50 8.80 8.10 8.20 8.20 8.20 8.20 8.20 8.20 8.20 8.2		189.5           190.3           190.9           191.1           191.9           192.7           193.5           194.3           195.1           195.3           195.4           195.7           197.5           198.3           199.1           190.7           201.5           202.3           203.1           203.2           203.7           205.5           206.3           207.7           208.7           208.7           208.7           209.5           210.3           211.9	$\begin{array}{c} 117.2 \\ 117.2 \\ 118.0 \\ 118.7 \\ 118.8 \\ 119.6 \\ 120.4 \\ 121.2 \\ 122.8 \\ 122.8 \\ 122.8 \\ 122.8 \\ 122.4 \\ 122.2 \\ 122.4 \\ 122.4 \\ 122.2 \\ 124.4 \\ 125.2 \\ 126.0 \\ 126.4 \\ 129.2 \\ 130.0 \\ 131.4 \\ 132.4 \\ 133.2 \\ 134.6 \\ 133.4 \\ 135.4 \\ 136.4 \\ 137.2 \\ 138.0 \\ 138.8 \\ 138.8 \\ 139.6 \\ 138.8 \\ 139.6 \\ 138.8 \\ 139.6 \\ 138.8 \\ 139.6 \\ 138.8 \\ 139.6 \\ 138.8 \\ 139.6 \\ 138.8 \\ 139.6 \\ 138.8 \\ 139.6 \\ 138.8 \\ 139.6 \\ 138.8 \\ 139.6 \\ 138.8 \\ 139.6 \\ 138.8 \\ 139.6 \\ 138.8 \\ 139.6 \\ 138.8 \\ 139.6 \\ 138.8 \\ 139.6 \\ 138.8 \\ 139.6 \\ 138.8 \\ 139.6 \\ 138.8 \\ 139.6 \\ 138.8 \\ 139.6 \\ 138.8 \\ 139.6 \\ 138.8 \\ 139.6 \\ 138.8 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\ 139.6 \\$	22,209 22,455 22,653 22,702 23,201 23,201 23,304 23,358 24,213 24,469 24,213 24,469 24,213 24,469 25,576 25,5769 26,033 26,585 26,683 27,102 26,565 26,683 27,712 27,5769 26,683 27,712 27,5769 26,683 27,712 27,5769 26,683 27,712 27,5769 26,683 27,712 27,5769 26,683 27,712 27,5769 26,683 27,712 27,5769 26,683 27,712 27,5769 26,683 27,712 27,5769 26,683 27,712 27,5769 26,683 27,712 27,5769 26,683 27,712 27,712 27,5769 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,712 27,910 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,901 29,		$\begin{array}{c} 0.510\\ 0.515\\ 0.520\\ 0.521\\ 0.527\\ 0.527\\ 0.538\\ 0.554\\ 0.556\\ 0.556\\ 0.556\\ 0.556\\ 0.556\\ 0.568\\ 0.574\\ 0.580\\ 0.592\\ 0.592\\ 0.592\\ 0.604\\ 0.616\\ 0.622\\ 0.641\\ 0.641\\ 0.642\\ 0.628\\ 0.633\\ 0.660\\ 0.673\\ 0.667\end{array}$	78,680 80,914 82,718 83,171 85,454 90,094 92,452 97,244 99,678 102,137 104,623 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135 107,135	1.806 1.858 1.859 1.909 2.015 2.068 2.122 2.015 2.068 2.122 2.402 2.412 2.428 2.402 2.451 2.402 2.451 2.402 2.451 2.451 2.577 2.636 2.696 2.757 2.631 2.696 2.757 2.631 3.006 3.069 3.134 3.306 3.331 3.338
		Zone 3 (100-year)	5.90 5.98 6.00 6.10 6.20 6.30 6.40 6.50 6.60 6.70 6.80 6.70 6.80 7.00 7.10 7.20 7.30 7.40 7.50 7.40 7.50 7.40 7.50 8.10 8.10 8.10 8.30 8.40 8.30		189.5           190.3           190.9           191.1           191.1           191.2           193.5           195.9           195.1           195.2           197.5           197.5           197.5           197.5           200.7           200.5           201.5           203.1           203.2           203.1           203.2           204.7           205.5           207.9           208.7           209.5           210.3	$\begin{array}{c} 117.2 \\ 118.0 \\ 118.7 \\ 118.8 \\ 119.6 \\ 120.4 \\ 121.2 \\ 122.0 \\ 122.0 \\ 122.0 \\ 122.6 \\ 123.6 \\ 126.6 \\ 126.6 \\ 126.6 \\ 126.6 \\ 126.2 \\ 126.0 \\ 126.2 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\ 126.0 \\$	22,209 22,455 22,653 22,702 23,201 23,201 23,304 23,358 24,213 24,421 24,223 24,223 24,223 24,223 24,223 24,223 24,223 24,223 24,223 24,225 25,507 25,264 25,264 25,265 26,653 26,655 26,653 26,655 26,653 26,655 26,653 26,655 26,653 26,655 26,653 26,655 26,653 27,102 27,704 28,949 27,704 27,704 28,949 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 27,704 28,704 28,704 28,704 28,704 29,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20,704 20		$\begin{array}{c} 0.510\\ 0.515\\ 0.520\\ 0.521\\ 0.527\\ 0.533\\ 0.533\\ 0.553\\ 0.553\\ 0.556\\ 0.556\\ 0.556\\ 0.556\\ 0.556\\ 0.556\\ 0.568\\ 0.580\\ 0.580\\ 0.592\\ 0.598\\ 0.598\\ 0.598\\ 0.604\\ 0.610\\ 0.622\\ 0.604\\ 0.610\\ 0.622\\ 0.635\\ 0.641\\ 0.647\\ 0.653\\ 0.666\\ 0.666\\ 0.666\end{array}$	78,680 80,914 82,718 83,171 85,454 97,762 90,094 92,452 94,835 97,244 99,678 102,137 104,623 107,135 106,622 107,135 114,826 114,826 114,826 114,826 114,826 114,826 114,826 114,826 1130,927 133,705 136,510 139,343 142,003	1.806 1.858 1.859 1.909 1.902 2.015 2.068 2.122 2.015 2.068 2.122 2.288 2.345 2.402 2.459 2.402 2.459 2.577 2.636 2.577 2.636 2.577 2.636 2.577 2.636 2.577 2.636 2.577 2.636 3.069 3.069 3.0134 3.134 3.134 3.3381
		Zone 3 (100-year)	5.90 5.98 6.00 6.10 6.20 6.30 6.40 6.60 6.60 6.60 6.60 7.10 7.20 7.30 7.20 7.30 7.20 7.30 7.40 7.50 7.40 7.50 7.40 8.10 8.10 8.20 8.30 8.40 8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.5		189.5           190.3           190.9           191.1           191.1           191.2           193.5           195.9           195.1           197.5           197.5           198.3           199.1           197.5           201.6           202.3           203.1           204.7           204.7           204.7           204.7           205.5           207.9           208.7           208.7           201.1           201.2           201.3           201.4           201.5           202.5           203.1           204.7           204.7           205.5           207.9           208.7           208.7           201.1           211.2           212.7           213.5	$\begin{array}{c} 117.2 \\ 118.0 \\ 118.7 \\ 118.8 \\ 119.6 \\ 120.4 \\ 121.2 \\ 122.0 \\ 122.0 \\ 122.0 \\ 122.2 \\ 122.6 \\ 123.6 \\ 124.4 \\ 125.2 \\ 126.6 \\ 126.4 \\ 126.2 \\ 126.6 \\ 126.4 \\ 127.6 \\ 126.4 \\ 129.2 \\ 130.8 \\ 132.4 \\ 133.2 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 133.4 \\ 134.8 \\ 136.4 \\ 136.4 \\ 137.4 \\ 138.8 \\ 139.6 \\ 140.4 \\ 141.2 \\ 142.0 \\ 141.2 \\ 142.0 \\ 141.2 \\ 142.0 \\ 141.2 \\ 142.0 \\ 141.2 \\ 142.0 \\ 141.2 \\ 142.0 \\ 141.2 \\ 142.0 \\ 141.2 \\ 142.0 \\ 141.2 \\ 142.0 \\ 141.2 \\ 142.0 \\ 141.2 \\ 142.0 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\$	22,209 22,455 22,653 22,702 23,201 23,201 23,304 23,358 24,213 24,421 24,221 24,221 24,221 24,221 24,221 24,221 24,225 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 25,507 27,504 26,503 26,505 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 27,507 29,507 27,507 29,507 27,507 27,507 29,507 29,507 27,507 29,507 27,507 29,507 29,507 27,507 29,507 27,507 29,507 29,507 27,507 29,507 27,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 29,507 20,507 20,507 20,507 20,507 20,507 20,507 20,507 20,507 20,507 20,507 20,507 20,507 20,507 20,507 20,507 20,507 20,507 20,507 20		$\begin{array}{c} 0.510\\ 0.515\\ 0.520\\ 0.521\\ 0.521\\ 0.527\\ 0.527\\ 0.538\\ 0.553\\ 0.556\\ 0.556\\ 0.556\\ 0.556\\ 0.556\\ 0.556\\ 0.566\\ 0.586\\ 0.598\\ 0.598\\ 0.598\\ 0.598\\ 0.598\\ 0.610\\ 0.616\\ 0.661\\ 0.661\\ 0.662\\ 0.653\\ 0.641\\ 0.665\\ 0.666\\ 0.666\\ 0.666\\ 0.669\\ 0.689\\ 0.699\\ 0.689\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.699\\ 0.69\\ 0.699\\ 0.69\\ 0.69\\ 0.699\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0.69\\ 0$	$\begin{array}{r} 78,680\\ 80,914\\ 82,718\\ 83,171\\ 85,454\\ 83,171\\ 85,454\\ 99,034\\ 99,452\\ 92,452\\ 99,244\\ 99,678\\ 102,137\\ 104,623\\ 102,137\\ 104,623\\ 107,135\\ 109,672\\ 112,236\\ 117,443\\ 107,135\\ 109,672\\ 112,236\\ 117,443\\ 107,135\\ 109,672\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\ 112,236\\$	1.806 1.858 1.859 1.909 1.902 2.015 2.068 2.122 2.212 2.228 2.345 2.345 2.345 2.345 2.345 2.345 2.345 2.345 2.345 2.357 2.459 2.459 2.518 2.557 2.818 2.557 2.818 2.557 2.818 2.943 3.006 3.069 3.134 3.199 3.265 3.331 3.398 3.455 3.534 3.602 3.672
		Zone 3 (100-year)	5.90 5.98 6.00 6.10 6.20 6.30 6.40 6.50 6.60 6.60 6.70 7.10 7.20 7.30 7.20 7.30 7.20 7.30 7.40 7.20 7.40 7.20 7.40 7.20 7.40 7.20 8.00 8.10 8.20 8.30 8.40 8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.5		189.5           190.3           190.9           191.1           191.9           192.7           193.5           194.3           195.1           195.2           196.7           197.5           198.3           199.9           200.7           201.5           202.3           203.1           203.2           204.7           205.5           206.5           206.7           208.7           208.7           201.3           210.3           211.9           212.7           213.5	$\begin{array}{c} 117.2 \\ 117.2 \\ 118.0 \\ 118.7 \\ 118.7 \\ 118.8 \\ 119.6 \\ 120.4 \\ 121.2 \\ 122.8 \\ 122.8 \\ 122.8 \\ 122.8 \\ 122.8 \\ 122.4 \\ 122.2 \\ 122.4 \\ 122.2 \\ 124.4 \\ 125.2 \\ 124.4 \\ 125.2 \\ 126.0 \\ 126.4 \\ 129.2 \\ 130.0 \\ 132.4 \\ 133.2 \\ 134.6 \\ 133.4 \\ 135.4 \\ 135.4 \\ 136.4 \\ 137.4 \\ 137.2 \\ 138.0 \\ 138.8 \\ 138.6 \\ 138.8 \\ 138.6 \\ 138.8 \\ 139.6 \\ 140.4 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\ 141.2 \\$	22,209 22,455 22,653 22,702 23,201 23,201 23,3201 23,3452 23,704 24,213 24,469 24,227 24,469 24,227 24,469 24,227 24,469 24,227 24,469 24,227 25,507 26,585 26,633 26,585 26,633 26,585 26,633 27,102 27,544 27,759 26,633 26,565 26,633 27,7102 27,544 27,759 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 27,549 29,549 27,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549 29,549		$\begin{array}{c} 0.510\\ 0.515\\ 0.520\\ 0.521\\ 0.527\\ 0.527\\ 0.538\\ 0.538\\ 0.556\\ 0.556\\ 0.556\\ 0.556\\ 0.556\\ 0.556\\ 0.568\\ 0.574\\ 0.580\\ 0.592\\ 0.628\\ 0.692\\ 0.628\\ 0.641\\ 0.616\\ 0.622\\ 0.628\\ 0.635\\ 0.666\\ 0.673\\ 0.666\\ 0.673\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.666\\ 0.673\\ 0.666\\ 0.673\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.682\\ 0.$	78,680 80,914 82,718 83,171 85,454 90,094 97,245 99,678 99,678 99,678 99,678 104,623 107,135 104,623 107,135 104,623 107,135 104,623 107,135 104,623 107,135 104,623 107,135 104,623 107,135 109,677 112,236 114,826 122,756 122,756 123,756 123,095 133,095 135,924 135,924 135,924 135,924 135,924 135,924 135,924 135,924 135,925 135,924	1.806 1.858 1.859 1.909 2.015 2.068 2.122 2.015 2.068 2.127 2.232 2.462 2.402 2.459 2.402 2.459 2.402 2.459 2.452 2.459 2.518 2.577 2.818 2.577 2.818 2.696 2.757 2.818 2.696 2.757 2.818 2.696 3.069 3.069 3.199 3.331 3.398 3.334
		Zone 3 (100-year)	5.90 5.98 6.00 6.10 6.20 6.30 6.40 6.50 6.60 6.60 7.10 7.20 7.20 7.20 7.20 7.20 7.20 7.20 7.2		$\begin{array}{r} 189.5 \\ 190.3 \\ 190.9 \\ 191.1 \\ 191.9 \\ 192.7 \\ 192.7 \\ 193.5 \\ 194.3 \\ 195.1 \\ 195.1 \\ 195.7 \\ 195.7 \\ 196.7 \\ 197.5 \\ 196.7 \\ 197.5 \\ 198.3 \\ 199.9 \\ 199.1 \\ 199.9 \\ 200.7 \\ 201.5 \\ 202.3 \\ 203.1 \\ 203.1 \\ 203.1 \\ 203.1 \\ 203.1 \\ 203.1 \\ 205.5 \\ 202.3 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 205.5 \\ 207.1 \\ 207.2 \\ 207.1 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\ 207.2 \\$	$\begin{array}{c} 117.2 \\ 117.2 \\ 118.0 \\ 118.7 \\ 118.8 \\ 119.6 \\ 120.4 \\ 121.2 \\ 122.0 \\ 122.8 \\ 122.6 \\ 122.8 \\ 123.4 \\ 125.2 \\ 124.4 \\ 125.2 \\ 126.0 \\ 126.4 \\ 126.0 \\ 126.6 \\ 126.4 \\ 127.6 \\ 128.4 \\ 129.2 \\ 130.0 \\ 131.6 \\ 132.4 \\ 133.2 \\ 131.6 \\ 133.4 \\ 133.2 \\ 133.6 \\ 133.4 \\ 133.2 \\ 133.6 \\ 133.4 \\ 133.2 \\ 133.6 \\ 136.4 \\ 137.6 \\ 136.4 \\ 137.6 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 138.0 \\ 141.2 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\ 144.0 \\$	22,209 22,455 22,653 22,702 23,201 23,201 23,201 23,3704 23,205 24,421 23,204 24,213 24,469 24,212 24,469 24,223 24,469 24,227 24,469 24,227 24,469 24,227 25,507 26,585 26,633 26,585 26,633 26,585 26,633 27,102 27,544 27,7916 28,741 27,546 28,743 27,7916 28,743 29,201 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 29,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,561 20,565 20,561 20,565 20,561 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565 20,565		$\begin{array}{c} 0.510\\ 0.515\\ 0.520\\ 0.521\\ 0.527\\ 0.527\\ 0.527\\ 0.538\\ 0.538\\ 0.544\\ 0.556\\ 0.556\\ 0.556\\ 0.556\\ 0.556\\ 0.568\\ 0.556\\ 0.568\\ 0.592\\ 0.598\\ 0.604\\ 0.616\\ 0.616\\ 0.622\\ 0.628\\ 0.641\\ 0.641\\ 0.641\\ 0.653\\ 0.641\\ 0.653\\ 0.641\\ 0.665\\ 0.679\\ 0.635\\ 0.664\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.679\\ 0.686\\ 0.673\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.520\\ 0.520\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.712\\ 0.$	78,680 80,914 82,718 83,171 85,454 90,094 92,452 94,825 99,678 102,137 104,623 107,135 104,623 107,135 104,623 107,135 104,623 107,135 104,623 107,135 104,623 107,135 104,623 107,135 109,672 114,826 114,826 114,826 122,756 122,756 123,756 123,757 133,092 133,705 136,502 139,243 145,092 145,092 135,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,924 156,925	1.806 1.858 1.859 1.909 1.909 2.015 2.068 2.122 2.208 2.127 2.208 2.127 2.208 2.402 2.402 2.402 2.402 2.402 2.451 2.402 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445 2.445
		Zone 3 (100-year)	5.90 5.98 6.00 6.10 6.20 6.30 6.30 6.60 6.60 6.60 6.60 7.10 7.20 7.30 7.20 7.30 7.20 7.30 7.20 7.30 7.20 7.40 8.00 8.10 8.20 8.30 8.30 8.40 8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.5		189.5           190.3           190.9           191.1           191.1           191.2           193.5           195.9           196.7           197.5           197.5           197.5           197.5           197.5           197.5           197.5           197.5           201.5           202.3           203.1           203.2           204.7           204.7           205.5           207.9           208.7           208.7           209.7           208.7           201.8           201.7           202.3           202.3           204.7           205.3           207.9           208.7           208.9           201.1           211.2           212.7           213.5           214.3           215.9	$\begin{array}{c} 117.2 \\ 118.0 \\ 118.7 \\ 118.8 \\ 119.6 \\ 120.4 \\ 121.2 \\ 122.0 \\ 122.0 \\ 122.2 \\ 122.6 \\ 122.4 \\ 124.2 \\ 124.2 \\ 126.6 \\ 126.4 \\ 126.4 \\ 126.2 \\ 126.6 \\ 126.4 \\ 127.6 \\ 128.4 \\ 132.4 \\ 132.4 \\ 132.4 \\ 133.2 \\ 134.0 \\ 134.6 \\ 134.6 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\ 136.8 \\$	22,209 22,455 22,653 22,702 23,201 23,201 23,304 23,358 24,213 24,421 24,727 24,985 25,245 25,245 25,245 25,245 25,267 26,033 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 27,102 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 28,959 28,858 26,258 27,749 27,744 27,744 27,744 27,744 27,744 27,744 28,958 28,958 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 27,744 28,958 28,958 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 26,258 27,102 27,744 27,744 27,744 27,744 29,586 27,744 27,744 27,744 27,744 29,586 29,586 26,585 26,585 26,585 26,585 26,585 26,585 26,585 26,585 26,585 26,585 26,585 26,585 26,585 26,585 26,585 26,585 26,585 26,585 26,585 27,102 27,744 29,596 29,596 29,596 29,597 29,597 20,597 27,544 29,597 29,597 29,597 20,597 20,597 27,544 29,597 29,597 29,597 20,597 27,544 29,597 29,597 29,597 29,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20,597 20		$\begin{array}{c} 0.510\\ 0.515\\ 0.520\\ 0.521\\ 0.527\\ 0.527\\ 0.538\\ 0.553\\ 0.554\\ 0.556\\ 0.556\\ 0.556\\ 0.556\\ 0.556\\ 0.556\\ 0.556\\ 0.556\\ 0.586\\ 0.598\\ 0.598\\ 0.598\\ 0.598\\ 0.598\\ 0.692\\ 0.603\\ 0.647\\ 0.663\\ 0.664\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.666\\ 0.6692\\ 0.689\\ 0.692\\ 0.692\\ 0.692\\ 0.692\\ 0.692\\ 0.692\\ 0.692\\ 0.692\\ 0.692\\ 0.692\\ 0.692\\ 0.692\\ 0.692\\ 0.692\\ 0.692\\ 0.692\\ 0.692\\ 0.692\\ 0.675\\ 0.675\\ 0.675\\ 0.679\\ 0.686\\ 0.692\\ 0.692\\ 0.705\\ 0.712\\ 0.715\\ 0.715\\ 0.715\\ 0.715\\ 0.715\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0.520\\ 0$	78,680 80,914 82,718 83,171 85,454 90,034 92,452 92,452 92,452 92,452 92,452 102,137 104,623 102,137 104,623 107,135 109,672 112,236 117,443 107,135 109,672 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 112,236 113,256 112,236 113,256 113,256 113,256 112,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 113,256 1	1.806 1.858 1.859 1.909 2.015 2.065 2.015 2.027 2.212 2.228 2.2459 2.345 2.345 2.345 2.345 2.345 2.345 2.459 2.518 2.518 2.518 2.518 2.518 2.518 2.518 2.518 2.518 2.518 2.518 2.518 2.518 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.519 2.518 2.549 2.518 2.549 2.549 2.549 2.549 3.006 3.009 3.134 3.339 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.534 3.5342 3.5342 3.5342 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.53444 3.53444 3.53444 3.53444 3.53444 3.53444 3.534444 3.534444 3.534444444444

#### DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.04 (February 2021)

-		n Master Drainage	Plan		y 2021)				
Basin ID:	Pond 6								
ZONE 2 ZONE 2 ZONE 1	$\sim$			Estimated	Estimated				
100-YR				Stage (ft)	Volume (ac-ft)	Outlet Type	1		
VOLUME_EURV WOCV			Zone 1 (WQCV)	2.35	0.360	Orifice Plate			
ZONE 1 AND 2	100-YEAR ORIFICE		Zone 2 (EURV)	3.87	0.561	Circular Orifice			
PERMANENT ORIFICES	1. 18. N. 19. N.		Zone 3 (100-year)	5.98	0.978	Weir&Pipe (Restrict)			
Example Zone	Configuration (Re	tention Pond)		Total (all zones)	1.899		•		
User Input: Orifice at Underdrain Outlet (typical	y used to drain WQ	CV in a Filtration Bl	<u>MP)</u>			-	Calculated Parame	ters for Underdrain	
Underdrain Orifice Invert Depth =	N/A	ft (distance below	the filtration media	surface)	Underc	Irain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdrain	Orifice Centroid =	N/A	feet	
User Input: Orifice Plate with one or more orific							Calculated Parame		
Invert of Lowest Orifice =		•	bottom at Stage =			ce Area per Row =	8.819E-03	ft ²	
Depth at top of Zone using Orifice Plate =	2.35	•	bottom at Stage =	0 ft)		ptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	9.40	inches				ical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	1.27	sq. inches (diamet	er = 1 - 1/4 inches)		E	lliptical Slot Area =	N/A	ft ²	
User Input: Stage and Total Area of Each Orific					· · ·		· · ·		1
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	0.78	1.57						
Orifice Area (sq. inches)	1.27	1.27	1.27						I
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	1
Stage of Orifice Centroid (ft)	Row 9 (optional)	Row 10 (optional)	ROW II (Optional)	ROW 12 (Optional)	Row 13 (optional)	ROW 14 (Optional)	Row 15 (optional)	Row 16 (optional)	
Orifice Area (sq. inches)									
Office Area (sq. incres)									1
User Input: Vertical Orifice (Circular or Rectang	ular)						Calculated Parame	ters for Vertical Ori	fice
<u>k</u>	Zone 2 Circular	Not Selected					Zone 2 Circular	Not Selected	1
Invert of Vertical Orifice =	2.35	N/A	ft (relative to basin	bottom at Stage =	= 0 ft) Ver	tical Orifice Area =	0.79	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	3.87	N/A	ft (relative to basin	bottom at Stage =	= 0 ft) Vertical	Orifice Centroid =	0.50	N/A	feet
Vertical Orifice Diameter =	12.00	N/A	inches	-					1
User Input: Overflow Weir (Dropbox with Flat o	r Sloped Grate and	Outlet Pipe OR Rec	tangular/Trapezoid	al Weir (and No Ou	tlet Pipe)_		Calculated Parame	ters for Overflow W	/eir
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	4.20	N/A	ft (relative to basin b	ottom at Stage = 0 f	t) Height of Grate	e Upper Edge, $H_t$ =	4.20	N/A	feet
Overflow Weir Front Edge Length =	1.50	N/A	feet		Overflow W	eir Slope Length =	1.50	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V		ate Open Area / 10	•	0.39	N/A	
Horiz. Length of Weir Sides =	1.50	N/A	feet		erflow Grate Open		1.57	N/A	ft ²
Overflow Grate Type =	Type C Grate	N/A		C	Overflow Grate Oper	n Area w/ Debris =	0.78	N/A	ft ²
Debris Clogging % =	50%	N/A	%						
					-				
User Input: Outlet Pipe w/ Flow Restriction Plate	-		ectangular Orifice)		<u>Ca</u>	Iculated Parameters			ate
	Zone 3 Restrictor	Not Selected	o / n · · · · ·				Zone 3 Restrictor	Not Selected	a2
Depth to Invert of Outlet Pipe =	1.00	N/A		isin bottom at Stage	,	utlet Orifice Area =	4.04	N/A	ft ²
Outlet Pipe Diameter =	30.00	N/A	inches			t Orifice Centroid =	1.05	N/A	feet
Restrictor Plate Height Above Pipe Invert =	23.00		inches	Hair-Cent	ral Angle of Restric	tor Plate on Pipe =	2.13	N/A	radians
User Input: Emergency Spillway (Rectangular or	Transroidal)						Calculated Parame	tors for Spillwov	
Spillway Invert Stage=		ft (relative to basin	) bottom at Stage =	0 ft)	Spillway D	esign Flow Depth=	0.93	feet	
Spillway Crest Length =	29.00	feet	i bolloin al Slage -	01()		Top of Freeboard =	9.23	feet	
Spillway End Slopes =	4.00	H:V			-	Top of Freeboard =	0.72	acres	
Freeboard above Max Water Surface =	1.00	feet				Top of Freeboard =	3.91	acre-ft	
	1.00	1000					0.01		
Routed Hydrograph Results			HP hydrographs and	,	-				,
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) =	N/A 0.360	N/A 0.921	1.19 0.903	1.50 1.424	1.75 1.899	2.00 2.602	2.25 3.143	2.52 3.855	3.14 5.243
User Override Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.903	3.107	1.899	2.602	3.143	5.635	5.243
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	4.3	11.6	17.2	30.3	37.9	47.5	65.9
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A						4 ===	
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.16	0.43	0.64	1.13	1.41	1.77	2.46
Peak Inflow Q (cfs) = Peak Outflow Q (cfs) =	N/A 0.2	N/A 4.0	16.5 2.5	44.8 12.2	34.4 8.0	47.7 12.1	57.5 13.9	86.7 48.2	93.4 49.0
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	1.0	0.5	0.4	0.4	1.0	0.7
Structure Controlling Flow =	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1		Overflow Weir 1		Overflow Weir 1	Spillway	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	3.5	1.7	3.4	4.2 N/A	5.4	5.4
Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	N/A 39	N/A 44	N/A 46	N/A 38	N/A 43	N/A 40	N/A 38	N/A 30	N/A 31
Time to Drain 99% of Inflow Volume (hours) =	40	44 48	40	47	48	40	47	44	44
Maximum Ponding Depth (ft) =	2.35	3.87	3.27	5.74	4.66	5.68	6.36	7.79	7.79
Area at Maximum Ponding Depth (acres) =	0.33	0.41	0.38	0.51	0.45	0.50	0.54	0.63	0.63
Maximum Volume Stored (acre-ft) =	0.362	0.924	0.685	1.776	1.261	1.745	2.101	2.930	2.936

# DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename: ... [SWMM(Outflow hydrographs)Pond6_OutflowHydrograph.xlsx

	The user can o	verride the calcu	lated inflow hyd	lrographs from t	his workbook wi	th inflow hydrog	raphs developed	l in a separate pr	ogram.	
	SOURCE	CUHP	CUHP	CUHP	USER	CUHP	CUHP	CUHP	USER	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cf
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.09	0.00
	0:10:00	0.00	0.00	0.00	1.28	0.00	0.00	0.13	1.42	0.41
-	0:15:00	0.00	0.00	1.10	9.19	2.27	1.53	1.91	7.77	2.68
-	0:20:00	0.00	0.00	3.88	32.51	7.65	3.83	4.46	29.44	7.72
-	0:30:00	0.00	0.00	11.46 16.45	44.81 43.32	27.18 34.42	11.35 40.25	13.73 49.45	68.64 86.70	27.37 78.42
-	0:35:00	0.00	0.00	15.52	38.43	31.05	47.72	57.47	84.90	93.38
	0:40:00	0.00	0.00	13.51	33.50	26.49	46.00	54.93	77.48	88.14
_	0:45:00	0.00	0.00	11.12	29.15	22.63	40.10	47.88	68.88	79.41
-	0:50:00	0.00	0.00	9.18	25.51	18.68	35.67	42.56	59.79	70.00
-	0:55:00 1:00:00	0.00	0.00	7.60 6.52	22.86 20.78	15.52 13.55	29.20 24.05	34.93 28.95	52.73 47.77	59.52 51.66
-	1:05:00	0.00	0.00	5.79	18.84	12.11	20.68	25.05	40.76	46.51
-	1:10:00	0.00	0.00	4.81	16.55	10.75	16.99	20.66	33.68	37.61
	1:15:00	0.00	0.00	3.90	14.19	9.44	13.77	16.83	26.52	29.85
Ļ	1:20:00	0.00	0.00	3.08	12.64	7.58	10.57	12.86	20.51	21.91
ŀ	1:25:00	0.00	0.00	2.40	11.79	5.80	7.81	9.45	16.51	15.33
ŀ	1:30:00 1:35:00	0.00	0.00	2.00	11.26 10.33	4.76	5.55 4.22	6.78 5.21	14.04 12.41	10.88 8.22
F	1:40:00	0.00	0.00	1.82	9.38	3.70	3.41	4.23	12.41	6.50
F	1:45:00	0.00	0.00	1.68	8.67	3.39	2.88	3.58	10.51	5.31
L L	1:50:00	0.00	0.00	1.64	8.14	3.18	2.53	3.16	9.96	4.49
ŀ	1:55:00	0.00	0.00	1.43	7.59	2.90	2.31	2.88	9.61	3.90
-	2:00:00 2:05:00	0.00	0.00	1.25	6.09	2.51	2.16	2.68	7.83	3.53
-	2:10:00	0.00	0.00	0.94	4.45 3.20	1.84	1.59 1.15	<u>1.97</u> 1.42	5.73 4.16	2.57
	2:15:00	0.00	0.00	0.51	2.27	0.94	0.82	1.02	3.00	1.33
	2:20:00	0.00	0.00	0.37	1.57	0.68	0.59	0.73	2.12	0.96
_	2:25:00	0.00	0.00	0.26	1.08	0.48	0.41	0.51	1.48	0.67
-	2:30:00	0.00	0.00	0.18	0.73	0.33	0.29	0.36	1.02	0.47
	2:35:00 2:40:00	0.00	0.00	0.12	0.48	0.22	0.20	0.25	0.66	0.32
-	2:45:00	0.00	0.00	0.03	0.25	0.07	0.07	0.09	0.39	0.20
	2:50:00	0.00	0.00	0.02	0.07	0.03	0.03	0.04	0.09	0.04
	2:55:00	0.00	0.00	0.01	0.02	0.01	0.01	0.01	0.03	0.01
-	3:00:00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.00
-	3:05:00 3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	3:40:00 3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ļ	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:05:00 4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ľ	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:25:00 4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	4:45:00 4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ē	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	5:00:00 5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ļ	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:20:00 5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:40:00 5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00 6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00

MHFD-Detention, Version 4.04 (February 2021)

Basin ID:	Pond 7													
ZONE 3	NE 1		_											
DLUME EURY WOCY		L												
T CONT WOOV	-	B.			1		т							
ZONE	AND 2	0RIFIC	E		Depth Increment =	0.10	ft		-	1	Optional		1	<del></del>
PERMANENT ORIFIC	es Configurati	on (Retenti	on Pond)		Stage - Storage	Stage	Optional Override	Length	Width	Area	Override	Area	Volume	Volu
	•		,		Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ² )	Area (ft ² )	(acre)	(ft 3)	(ac
atershed Information		-			Top of Micropool	0.00		25.9	25.9	669		0.015		
Selected BMP Type =	EDB		Note: L / V	N Ratio < 1	ISV	0.33		25.9	25.9	669		0.015	221	0.0
Watershed Area =	114.73	acres	L / W Rati	o = 0.57		0.40		25.9	25.9	669		0.015	268	0.0
Watershed Length =	1,683	ft				0.50		25.9	25.9	669		0.015	334	0.0
Watershed Length to Centroid =	1,362	ft				0.60		25.9	25.9	669		0.015	401	0.0
Watershed Slope =	0.040	ft/ft				0.70		25.9	25.9	669		0.015	468	0.0
Watershed Imperviousness =	38.80%	percent				0.80		25.9	25.9	669		0.015	535	0.0
Percentage Hydrologic Soil Group A =	0.0%	percent				0.90		43.6	34.6	1,510		0.035	630	0.0
Percentage Hydrologic Soil Group B = Percentage Hydrologic Soil Groups C/D =	100.0%	percent percent				1.00		69.0 94.4	47.1 59.6	3,253 5,630		0.075	862 1,301	0.0
Target WQCV Drain Time =	40.0	hours				1.20		119.8	72.1	8,642		0.129	2,010	0.0
Location for 1-hr Rainfall Depths =		liburs				1.30		145.2	84.6	12,289		0.282	3,051	0.0
After providing required inputs above incl		rainfall				1.40		170.6	97.1	16,571		0.380	4,489	0.1
depths, click 'Run CUHP' to generate runo						1.50		196.0	109.6	21,488		0.493	6,386	0.1
the embedded Colorado Urban Hydrog			Optional Us	er Overrides		1.60		221.4	122.1	27,040		0.621	8,807	0.2
Water Quality Capture Volume (WQCV) =	1.689	acre-feet		acre-feet		1.70		246.8	134.6	33,228		0.763	11,815	0.2
Excess Urban Runoff Volume (EURV) =	4.663	acre-feet		acre-feet		1.80		272.2	147.1	40,050		0.919	15,474	0.3
2-yr Runoff Volume (P1 = 1.19 in.) =	4.575	acre-feet	1.19	inches		1.90		297.6	159.6	47,507		1.091	19,847	0.4
5-yr Runoff Volume (P1 = 1.5 in.) =	6.891	acre-feet	1.50	inches		2.00		323.0	172.1	55,599		1.276	24,997	0.5
10-yr Runoff Volume (P1 = 1.75 in.) =	8.978	acre-feet	1.75	inches		2.10		348.4	184.6	64,326		1.477	30,988	0.7
25-yr Runoff Volume (P1 = 2 in.) =	11.989	acre-feet	2.00	inches	L	2.20		373.8	197.1	73,688		1.692	37,883	8.0
50-yr Runoff Volume (P1 = 2.25 in.) =	14.328	acre-feet	2.25	inches		2.30		399.2	209.6	83,685		1.921	45,746	1.0
100-yr Runoff Volume (P1 = 2.52 in.) =	17.379	acre-feet	2.52	inches	Floor	2.31		401.8	210.9	84,720		1.945	46,588	1.0
500-yr Runoff Volume (P1 = 3.14 in.) =	23.422	acre-feet		inches		2.40		402.5 403.3	211.6 212.4	85,162		1.955	54,233	1.2
Approximate 2-yr Detention Volume = Approximate 5-yr Detention Volume =	3.427 4.799	acre-feet acre-feet				2.50		403.3	212.4	85,654 86,147		1.966 1.978	62,774 71,364	1.4
Approximate 5-yr Detention Volume = Approximate 10-yr Detention Volume =	6.641	acre-feet			Zone 1 (WQCV)	2.60		404.1 404.3	213.2	86,147 86,295		1.978	73,950	1.6
Approximate 10-yr Detention Volume = Approximate 25-yr Detention Volume =	7.450	acre-feet			LONG I (WQCV)	2.63		404.3	213.4	86,295		1.981	80,003	1.6
Approximate 50-yr Detention Volume =	7.822	acre-feet				2.70		404.9	214.0	87,137		2.000	88,692	2.0
Approximate 100-yr Detention Volume =	8.992	acre-feet				2.90		406.5	215.6	87,634		2.012	97,431	2.2
						3.00		407.3	216.4	88,132		2.023	106,219	2.4
fine Zones and Basin Geometry						3.10		408.1	217.2	88,632		2.035	115,057	2.6
Zone 1 Volume (WQCV) =	1.689	acre-feet				3.20		408.9	218.0	89,133		2.046	123,945	2.8
Zone 2 Volume (EURV - Zone 1) =	2.974	acre-feet				3.30		409.7	218.8	89,635		2.058	132,884	3.0
Zone 3 Volume (100-year - Zones 1 & 2) =	4.329	acre-feet				3.40		410.5	219.6	90,138		2.069	141,872	3.2
Total Detention Basin Volume =	8.992	acre-feet				3.50		411.3	220.4	90,643		2.081	150,911	3.4
Initial Surcharge Volume (ISV) =	221	ft ³				3.60		412.1	221.2	91,149		2.092	160,001	3.6
Initial Surcharge Depth (ISD) =	0.33	ft				3.70		412.9	222.0	91,656		2.104	169,141	3.8
Total Available Detention Depth $(H_{total}) =$	6.00	ft				3.80		413.7	222.8	92,165		2.116	178,332	4.0
Depth of Trickle Channel $(H_{TC}) =$	0.50	ft				3.90		414.5	223.6	92,675		2.128	187,574	4.3
Slope of Trickle Channel (S _{TC} ) =	0.004	ft/ft				4.00		415.3	224.4	93,186		2.139	196,867	4.5
Slopes of Main Basin Sides (S _{main} ) =	4	H:V			Zone 2 (EURV)	4.07		415.9	224.9	93,544		2.147	203,403	4.6
Basin Length-to-Width Ratio (R _{L/W} ) =	2					4.10 4.20		416.1 416.9	225.2 226.0	93,698		2.151 2.163	206,211 215,607	4.7
Initial Surcharge Area (A _{ISV} ) =	669	ft ²				4.20		410.9	226.0	94,212 94,727		2.105	215,607	4.9
Surcharge Volume Length (L _{ISV} ) =	25.9	ft				4.40		418.5	220.8	95,243		2.175	234,552	5.3
Surcharge Volume Width (W _{ISV} ) =	25.9	ft				4.50		419.3	228.4	95,760		2.198	244,103	5.6
Depth of Basin Floor (H _{FLOOR} ) =	1.48	ft				4.60		420.1	229.2	96,279		2.210	253,705	5.8
Length of Basin Floor $(L_{FLOOR}) =$	401.8	ft				4.70		420.9	230.0	96,799		2.222	263,358	6.0
Width of Basin Floor (W _{FLOOR} ) =	210.9	ft				4.80		421.7	230.8	97,321		2.234	273,064	6.2
Area of Basin Floor (A _{FLOOR} ) =	84,720	ft ²				4.90		422.5	231.6	97,843		2.246	282,823	6.4
Volume of Basin Floor (V _{FLOOR} ) =	45,839	ft ³				5.00		423.3	232.4	98,367		2.258	292,633	6.7
Depth of Main Basin (H _{MAIN} ) =	3.69	ft				5.10		424.1	233.2	98,892		2.270	302,496	6.9
Length of Main Basin ( $L_{MAIN}$ ) =	431.3	ft				5.20		424.9	234.0	99,419		2.282	312,412	7.1
Width of Main Basin ( $W_{MAIN}$ ) =	240.4	ft				5.30		425.7	234.8	99,947		2.294	322,380	7.4
Area of Main Basin $(A_{MAIN}) =$	103,677	ft ²				5.40		426.5	235.6	100,476		2.307	332,401	7.6
Volume of Main Basin ( $V_{MAIN}$ ) =	347,004	ft ³				5.50		427.3	236.4	101,006		2.319	342,475	7.8
Calculated Total Basin Volume ( $V_{total}$ ) =	9.031	acre-feet				5.60		428.1	237.2	101,538		2.331	352,602	8.0
						5.70 5.80		428.9 429.7	238.0 238.8	102,070 102,605		2.343	362,783 373,016	8.5
					Zone 3 (100-year)	5.90		430.5	239.6	103,140		2.368	383,304	8.7
					Lone 3 (100-year)	5.99 6.00		431.2 431.3	240.3 240.4	103,623 103,677		2.379 2.380	392,608 393,644	9.0
						6.10 6.20		432.1 432.9	241.2 242.0	104,215		2.392 2.405	404,039 414,487	9.2
						6.30		433.7	242.8	104,754 105,294		2.417	424,990	9.7
						6.40		434.5	243.6 244.4	105,836		2.430 2.442	435,546	9.9
						6.50 6.60		435.3 436.1	245.2	106,379 106,924		2.455	446,157 456,822	10.
						6.70		436.9	246.0	107,469		2.467 2.480	467,542	10.
						6.80 6.90		437.7 438.5	246.8 247.6	108,016 108,565		2.492	478,316 489,145	10.
						7.00		439.3 440.1	248.4	109,114		2.505	500,029	11.
						7.10		440.9	249.2 250.0	109,665 110,217		2.518 2.530	510,968 521,962	11.
						7.30		441.7	250.8	110,770		2.543	533,012	12.
						7.40 7.50		442.5 443.3	251.6 252.4	111,325 111,881		2.556 2.568	544,116 555,277	12.
						7.60		444.1	253.2	112,438		2.581	566,493	13.
						7.70 7.80		444.9 445.7	254.0 254.8	112,997 113,556		2.594 2.607	577,764 589,092	13. 13.
						7.90		446.5	255.6	114,117		2.620	600,476	13.
						8.00 8.10		447.3 448.1	256.4 257.2	114,680 115,243		2.633 2.646	611,915 623,411	14. 14.
						8.20		448.9	258.0	115,808		2.659	634,964	14.
						8.30		449.7	258.8	116,374		2.672	646,573	14.
						8.40 8.50		450.5 451.3	259.6 260.4	116,942 117,510		2.685	658,239 669,962	15.
						8.60		452.1	261.2	118,080		2.711	681,741	15.
						8.70 8.80		452.9 453.7	262.0 262.8	118,652 119,224		2.724 2.737	693,578 705,471	15.
						8.90		454.5	263.6	119,798		2.750	717,422	16.
						9.00 9.10		455.3 456.1	264.4 265.2	120,373 120,949		2.763	729,431 741,497	16. 17.
						9.20		456.9	266.0	121,527		2.790	753,621	17.
						9.30 9.40		457.7 458.5	266.8 267.6	122,106 122,686		2.803 2.816	765,803 778,042	
													765,803 778,042 790,340 802,696	17. 17. 18.

#### DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.04 (February 2021)

		n Master Drainage	Plan						
Basin ID:	Pond 7								
	$\sim$			Estimated	Estimated				
100-YR				Stage (ft)	Volume (ac-ft)	Outlet Type	1		
VOLUME EURY WOCV			Zone 1 (WQCV)	2.63	1.689	Orifice Plate			
ZONE 1 AND 2	100-YEAR ORIFICE		Zone 2 (EURV)	4.07	2.974	Weir&Pipe (Circular)			
PERMANENT ORIFICES	O (laurentie - /D -		Zone 3 (100-year)	5.99	4.329	Weir&Pipe (Restrict)			
Example Zone	Configuration (Re	tention Pond)		Total (all zones)	8.992				
User Input: Orifice at Underdrain Outlet (typical			,					ters for Underdrain	
Underdrain Orifice Invert Depth =	N/A		the filtration media	surface)		Irain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdrain	Orifice Centroid =	N/A	feet	
User Input: Orifice Plate with one or more crific	oc or Elliptical Clot	Wair (typically used	to drain WOCV and	d/or EUDV in a codi	montation RMD)		Coloridate d Dourses	taua fau Diata	
User Input: Orifice Plate with one or more orific Invert of Lowest Orifice =	0.00		n bottom at Stage =			ce Area per Row =	Calculated Parame 3.590E-02	ft ²	
Depth at top of Zone using Orifice Plate =	2.65		bottom at Stage = bottom at Stage =		-	ptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	10.60	inches	, bottom at otage	0.0)		cal Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	5.17		tangular openings)			lliptical Slot Area =	N/A	ft ²	
			5 , 5,					1	
User Input: Stage and Total Area of Each Orific	e Row (numbered f	rom lowest to highe	est)				-		
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	0.88	1.77						
Orifice Area (sq. inches)	5.17	5.17	5.17						
									1
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									
User Input: Vertical Orifice (Circular or Rectang	ular)						Calculated Parame	ters for Vertical Ori	fice
<u> </u>	Not Selected	Not Selected	1				Not Selected	Not Selected	1
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin	bottom at Stage =	0 ft) Ver	tical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin	bottom at Stage =	= 0 ft) Vertica	Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches					•	
			•						
User Input: Overflow Weir (Dropbox with Flat o	r Sloped Grate and	Outlet Pipe OR Rec	tangular/Trangaid	114/ 1 / 14/ 0					
			langular/ mapezolu	al weir (and No Ou	<u>tlet Pipe)</u>		Calculated Parame	ters for Overflow W	<u>/eir</u>
	Zone 2 Weir	Zone 3 Weir					Zone 2 Weir	Zone 3 Weir	
Overflow Weir Front Edge Height, Ho =	Zone 2 Weir 4.50	Zone 3 Weir 4.70	ft (relative to basin b		t) Height of Grate	e Upper Edge, H _t =	Zone 2 Weir 4.50	Zone 3 Weir 7.70	feet
Overflow Weir Front Edge Length =	Zone 2 Weir 4.50 6.00	Zone 3 Weir 4.70 10.00	ft (relative to basin b feet	ottom at Stage = 0 f	t) Height of Grate Overflow W	eir Slope Length =	Zone 2 Weir 4.50 6.00	Zone 3 Weir 7.70 12.37	
Overflow Weir Front Edge Length = Overflow Weir Grate Slope =	Zone 2 Weir 4.50 6.00 0.00	Zone 3 Weir 4.70 10.00 4.00	ft (relative to basin b feet H:V	oottom at Stage = 0 f Gr	t) Height of Grate Overflow W ate Open Area / 10	eir Slope Length = 0-yr Orifice Area =	Zone 2 Weir 4.50 6.00 3.54	Zone 3 Weir 7.70 12.37 3.42	feet feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	Zone 2 Weir 4.50 6.00 0.00 6.00	Zone 3 Weir 4.70 10.00 4.00 12.00	ft (relative to basin b feet	oottom at Stage = 0 f Gr Ov	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open	/eir Slope Length = 0-yr Orifice Area = Area w/o Debris =	Zone 2 Weir 4.50 6.00 3.54 25.06	Zone 3 Weir 7.70 12.37 3.42 86.09	feet feet ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type =	Zone 2 Weir 4.50 6.00 0.00 6.00 Type C Grate	Zone 3 Weir 4.70 10.00 4.00 12.00 Type C Grate	ft (relative to basin t feet H:V feet	oottom at Stage = 0 f Gr Ov	t) Height of Grate Overflow W ate Open Area / 10	/eir Slope Length = 0-yr Orifice Area = Area w/o Debris =	Zone 2 Weir 4.50 6.00 3.54	Zone 3 Weir 7.70 12.37 3.42	feet feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	Zone 2 Weir 4.50 6.00 0.00 6.00	Zone 3 Weir 4.70 10.00 4.00 12.00	ft (relative to basin b feet H:V	oottom at Stage = 0 f Gr Ov	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open	/eir Slope Length = 0-yr Orifice Area = Area w/o Debris =	Zone 2 Weir 4.50 6.00 3.54 25.06	Zone 3 Weir 7.70 12.37 3.42 86.09	feet feet ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type =	Zone 2 Weir 4.50 6.00 0.00 6.00 Type C Grate 50%	Zone 3 Weir 4.70 10.00 4.00 12.00 Type C Grate 50%	ft (relative to basin t feet H:V feet %	oottom at Stage = 0 f Gr Ov	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Iverflow Grate Open	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris =	Zone 2 Weir 4.50 6.00 3.54 25.06 12.53	Zone 3 Weir 7.70 12.37 3.42 86.09	feet feet ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % =	Zone 2 Weir 4.50 6.00 0.00 6.00 Type C Grate 50%	Zone 3 Weir 4.70 10.00 4.00 12.00 Type C Grate 50%	ft (relative to basin t feet H:V feet %	oottom at Stage = 0 f Gr Ov	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Iverflow Grate Open	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris =	Zone 2 Weir 4.50 6.00 3.54 25.06 12.53	Zone 3 Weir 7.70 12.37 3.42 86.09 43.05 Flow Restriction Pl	feet feet ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % =	Zone 2 Weir 4.50 6.00 0.00 6.00 Type C Grate 50% 2 (Circular Orifice, R	Zone 3 Weir 4.70 10.00 4.00 12.00 Type C Grate 50% estrictor Plate, or R	ft (relative to basin t feet H:V feet %	oottom at Stage = 0 f Gr Ov C	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Ope	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris =	Zone 2 Weir 4.50 6.00 3.54 25.06 12.53 s for Outlet Pipe w/	Zone 3 Weir 7.70 12.37 3.42 86.09 43.05 Flow Restriction Pl	feet feet ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Circular Orifice Diameter or Pipe Diameter =	Zone 2 Weir 4.50 6.00 0.00 6.00 Type C Grate 50% 2 (Circular Orifice, R Zone 2 Circular	Zone 3 Weir 4.70 10.00 4.00 12.00 Type C Grate 50% estrictor Plate, or R Zone 3 Restrictor 2.70 72.00	ft (relative to basin b feet H:V feet % ectangular Orifice)	oottom at Stage = 0 f Gr Ov C	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) O Outled	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>lculated Parameter</u> utlet Orifice Area = : Orifice Centroid =	Zone 2 Weir 4.50 6.00 3.54 25.06 12.53 s for Outlet Pipe w/ Zone 2 Circular 7.07 1.50	Zone 3 Weir 7.70 12.37 3.42 86.09 43.05 Flow Restriction Pl Zone 3 Restrictor 25.18 2.70	feet feet ft ² ft ² <u>ate</u>
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe =	Zone 2 Weir 4.50 6.00 0.00 6.00 Type C Grate 50% 2 (Circular Orifice, R Zone 2 Circular 2.50	Zone 3 Weir 4.70 10.00 4.00 12.00 Type C Grate 50% estrictor Plate, or R Zone 3 Restrictor 2.70	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba	oottom at Stage = 0 f Gr Ov C	t) Height of Grate Overflow W ate Open Area / 10 rerflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) O	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>lculated Parameter</u> utlet Orifice Area = : Orifice Centroid =	Zone 2 Weir 4.50 6.00 3.54 25.06 12.53 s for Outlet Pipe w/ Zone 2 Circular 7.07	Zone 3 Weir 7.70 12.37 3.42 86.09 43.05 Flow Restriction PI Zone 3 Restrictor 25.18	feet feet ft ² ft ² ate ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter or Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	Zone 2 Weir 4.50 6.00 0.00 Type C Grate 50% 2 (Circular Orifice, R Zone 2 Circular 2.50 36.00	Zone 3 Weir 4.70 10.00 4.00 12.00 Type C Grate 50% estrictor Plate, or R Zone 3 Restrictor 2.70 72.00	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches	oottom at Stage = 0 f Gr Ov C	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) O Outled	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>lculated Parameter</u> utlet Orifice Area = : Orifice Centroid =	Zone 2 Weir 4.50 6.00 3.54 25.06 12.53 s for Outlet Pipe w/ Zone 2 Circular 7.07 1.50 N/A	Zone 3 Weir 7.70 12.37 3.42 86.09 43.05 Flow Restriction PI Zone 3 Restrictor 25.18 2.70 2.30	feet feet ft ² ft ² ate ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter or Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or	Zone 2 Weir 4.50 6.00 0.00 6.00 Type C Grate 50% 2 (Circular Orifice, R Zone 2 Circular 2.50 36.00 Trapezoidal)	Zone 3 Weir 4.70 10.00 4.00 12.00 Type C Grate 50% estrictor Plate, or R Zone 3 Restrictor 2.70 72.00 60.00	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	oottom at Stage = 0 f Gr Ov c usin bottom at Stage Half-Cent	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Iverflow Grate Open ( <u>Ca</u> = 0 ft) O Outled ral Angle of Restric	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe =	Zone 2 Weir 4.50 6.00 3.54 25.06 12.53 s for Outlet Pipe w/ Zone 2 Circular 7.07 1.50 N/A <u>Calculated Parame</u>	Zone 3 Weir 7.70 12.37 3.42 86.09 43.05 Flow Restriction Pl Zone 3 Restrictor 25.18 2.70 2.30 tters for Spillway	feet feet ft ² ft ² ate ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter or Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage=	Zone 2 Weir 4.50 6.00 0.00 6.00 Type C Grate 50% 2 (Circular Orifice, R Zone 2 Circular 2.50 36.00 Trapezoidal) 7.80	Zone 3 Weir 4.70 10.00 4.00 12.00 Type C Grate 50% estrictor Plate, or R Zone 3 Restrictor 2.70 72.00 60.00 ft (relative to basir	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches	oottom at Stage = 0 f Gr Ov c usin bottom at Stage Half-Cent	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Iverflow Grate Open Overflow Grate Ope <u>Ca</u> = 0 ft) O Outlet ral Angle of Restric Spillway D	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth=	Zone 2 Weir 4.50 6.00 3.54 25.06 12.53 s for Outlet Pipe w/ Zone 2 Circular 7.07 1.50 N/A Calculated Parame 0.98	Zone 3 Weir 7.70 12.37 3.42 86.09 43.05 Flow Restriction Pl Zone 3 Restrictor 25.18 2.70 2.30 ters for Spillway feet	feet feet ft ² ft ² ate ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter or Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	Zone 2 Weir 4.50 6.00 0.00 6.00 Type C Grate 50% c (Circular Orifice, R Zone 2 Circular 2.50 36.00 Trapezoidal) 7.80 119.00	Zone 3 Weir 4.70 10.00 4.00 12.00 Type C Grate 50% estrictor Plate, or R Zone 3 Restrictor 2.70 72.00 60.00 ft (relative to basir feet	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	oottom at Stage = 0 f Gr Ov c usin bottom at Stage Half-Cent	t) Height of Grate Overflow W ate Open Area / IC verflow Grate Open Nverflow Grate Open Querflow Grate Ope (Ca Ca Spillvay D Stage at 1	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard =	Zone 2 Weir 4.50 6.00 3.54 25.06 12.53 s for Outlet Pipe w/ Zone 2 Circular 7.07 1.50 N/A Calculated Parame 0.98 9.78	Zone 3 Weir 7.70 12.37 3.42 86.09 43.05 Flow Restriction Pl Zone 3 Restrictor 25.18 2.70 2.30 ters for Spillway feet feet	feet feet ft ² ft ² ate ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter or Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	Zone 2 Weir 4.50 6.00 0.00 6.00 Type C Grate 50% 2 (Circular Orifice, R Zone 2 Circular 2.50 36.00 Trapezoidal) 7.80 119.00 4.00	Zone 3 Weir 4.70 10.00 4.00 12.00 Type C Grate 50% estrictor Plate, or R Zone 3 Restrictor 2.70 72.00 60.00 ft (relative to basir feet H:V	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	oottom at Stage = 0 f Gr Ov c usin bottom at Stage Half-Cent	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Nverflow Grate Open Car car car car car car car car car car c	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard =	Zone 2 Weir 4.50 6.00 3.54 25.06 12.53 s for Outlet Pipe w/ Zone 2 Circular 7.07 1.50 N/A <u>Calculated Parame</u> 0.98 9.78 2.87	Zone 3 Weir 7.70 12.37 3.42 86.09 43.05 Flow Restriction Pl Zone 3 Restrictor 25.18 2.70 2.30 tters for Spillway feet feet acres	feet feet ft ² ft ² ate ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter or Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	Zone 2 Weir 4.50 6.00 0.00 6.00 Type C Grate 50% c (Circular Orifice, R Zone 2 Circular 2.50 36.00 Trapezoidal) 7.80 119.00	Zone 3 Weir 4.70 10.00 4.00 12.00 Type C Grate 50% estrictor Plate, or R Zone 3 Restrictor 2.70 72.00 60.00 ft (relative to basir feet	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	oottom at Stage = 0 f Gr Ov c usin bottom at Stage Half-Cent	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Nverflow Grate Open Car car car car car car car car car car c	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard =	Zone 2 Weir 4.50 6.00 3.54 25.06 12.53 s for Outlet Pipe w/ Zone 2 Circular 7.07 1.50 N/A Calculated Parame 0.98 9.78	Zone 3 Weir 7.70 12.37 3.42 86.09 43.05 Flow Restriction Pl Zone 3 Restrictor 25.18 2.70 2.30 ters for Spillway feet feet	feet feet ft ² ft ² ate ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter or Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Zone 2 Weir 4.50 6.00 0.00 6.00 Type C Grate 50% (Circular Orifice, R Zone 2 Circular 2.50 36.00 Trapezoidal) 7.80 119.00 4.00 1.00	Zone 3 Weir 4.70 10.00 4.00 12.00 Type C Grate 50% estrictor Plate, or R Zone 3 Restrictor 2.70 72.00 60.00 ft (relative to basir feet H:V feet	ft (relative to basin t feet H:V feet % (distance below ba inches inches hottom at Stage =	oottom at Stage = 0 f Gr Ov c usin bottom at Stage Half-Cent 0 ft)	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Nverflow Grate Open Car e 0 ft) O Outlet ral Angle of Restric Spillway D Stage at T Basin Area at T Basin Volume at T	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = Iculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard =	Zone 2 Weir 4.50 6.00 3.54 25.06 12.53 s for Outlet Pipe w/ Zone 2 Circular 7.07 1.50 N/A Calculated Parame 0.98 9.78 2.87 18.94	Zone 3 Weir 7.70 12.37 3.42 86.09 43.05 Flow Restriction Pl Zone 3 Restrictor 25.18 2.70 2.30 ters for Spillway feet feet acres acre-ft	feet feet ft ² ft ² dte feet radians
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter or Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results	Zone 2 Weir           4.50           6.00           0.00           6.00           Type C Grate           50%           c(circular Orifice, R           Zone 2 Circular           2.50           36.00           Trapezoidal)           7.80           119.00           4.00           1.00	Zone 3 Weir           4.70           10.00           4.00           12.00           Type C Grate           50%           estrictor Plate, or R           Zone 3 Restrictor           2.70           72.00           60.00           ft (relative to basin feet           H:V           feet	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches h bottom at Stage =	oottom at Stage = 0 f Gr Ov c usin bottom at Stage Half-Cent 0 ft)	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Nverflow Grate Open Car e 0 ft) O Stage at T Basin Area at T Basin Volume at T Basin Volume at T	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard = "op of Freeboard =	Zone 2 Weir 4.50 6.00 3.54 25.06 12.53 s for Outlet Pipe w/ Zone 2 Circular 7.07 1.50 N/A Calculated Parame 0.98 9.78 2.87 18.94	Zone 3 Weir 7.70 12.37 3.42 86.09 43.05 Flow Restriction Pl Zone 3 Restrictor 25.18 2.70 2.30 ters for Spillway feet feet acres acre-ft	feet feet ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter or Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period =	Zone 2 Weir 4.50 6.00 0.00 6.00 Type C Grate 50% c (Circular Orifice, R Zone 2 Circular 2.50 36.00 Trapezoidal) 7.80 119.00 4.00 1.00 The user can over WQCV	Zone 3 Weir 4.70 10.00 4.00 12.00 Type C Grate 50% estrictor Plate, or R Zone 3 Restrictor 2.70 72.00 60.00 ft (relative to basin feet H:V feet H:V feet EURV	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches inches a bottom at Stage =	oottom at Stage = 0 f Gr Ov c usin bottom at Stage Half-Cent 0 ft) <u>1 runoff volumes by</u> 5 Year	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Nverflow Grate Open Dverflow Grate Open Ca Ca E o ft) O Outlet ral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T Pentering new value 10 Year	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard = "	Zone 2 Weir 4.50 6.00 3.54 25.06 12.53 s for Outlet Pipe w/ Zone 2 Circular 7.07 1.50 N/A Calculated Parame 0.98 9.78 2.87 18.94 drographs table (CC	Zone 3 Weir 7.70 12.37 3.42 86.09 43.05 Flow Restriction Pl Zone 3 Restrictor 25.18 2.70 2.30 ters for Spillway feet feet acres acre-ft	feet feet ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter or Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) =	Zone 2 Weir           4.50           6.00           0.00           6.00           Type C Grate           50%           Circular Orifice, R           Zone 2 Circular           2.50           36.00           Trapezoidal)           7.80           119.00           4.00           1.00           The user can over           WQCV           N/A	Zone 3 Weir 4.70 10.00 4.00 12.00 Type C Grate 50% <u>Some 3 Restrictor</u> 2.70 72.00 60.00 ft (relative to basin feet H:V feet <u>Filter default CUI</u> <u>EURV</u> N/A	ft (relative to basin to feet H:V feet % ecctangular Orifice) ft (distance below basinches inches inches to bottom at Stage = <u>HP hydrographs and</u> <u>2 Year</u> 1.19	oottom at Stage = 0 f Gr Ov c usin bottom at Stage Half-Cent 0 ft) <u>7 runoff volumes by</u> <u>5 Year</u> 1.50	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Neerflow Grate Open Deflow Grate Open Car = 0 ft) O Outlet ral Angle of Restric Spillway D Stage at T Basin Area at T Basin Volume at T Centering new valu 10 Year 1.75	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = Iculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard = "	Zone 2 Weir 4.50 6.00 3.54 25.06 12.53 s for Outlet Pipe w/ Zone 2 Circular 7.07 1.50 N/A Calculated Parame 0.98 9.78 2.87 18.94 drographs table (CC 50 Year 2.25	Zone 3 Weir 7.70 12.37 3.42 86.09 43.05 Flow Restriction Pl Zone 3 Restrictor 25.18 2.70 2.70 2.30 ters for Spillway feet feet acres acre-ft 100 Year 2.52	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter or Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period =	Zone 2 Weir 4.50 6.00 0.00 6.00 Type C Grate 50% c (Circular Orifice, R Zone 2 Circular 2.50 36.00 Trapezoidal) 7.80 119.00 4.00 1.00 The user can over WQCV	Zone 3 Weir 4.70 10.00 4.00 12.00 Type C Grate 50% estrictor Plate, or R Zone 3 Restrictor 2.70 72.00 60.00 ft (relative to basin feet H:V feet H:V feet EURV	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches inches a bottom at Stage =	oottom at Stage = 0 f Gr Ov c usin bottom at Stage Half-Cent 0 ft) <u>( runoff volumes by</u> <u>5 Year</u> <u>1.50</u> <u>6.891</u> <u>1.3698</u>	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Neerflow Grate Open Deflow Grate Open Car = 0 ft) O Uutlet ral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T Basin Volume at T Centering new valu 10 Year 1.75 8.978	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = iop of Freeboard = iop of Freeboard = 25 Year 2.00 11.989 11.989	Zone 2 Weir 4.50 6.00 3.54 25.06 12.53 s for Outlet Pipe w/ Zone 2 Circular 7.07 1.50 N/A Calculated Parame 0.98 9.78 2.87 18.94 drographs table (CC	Zone 3 Weir 7.70 12.37 3.42 86.09 43.05 Flow Restriction Pl Zone 3 Restrictor 25.18 2.70 2.30 ters for Spillway feet feet acres acre-ft	feet feet ft ² ft ² feet radians 4 <i>F</i> ). 500 Year 3.14 23.422 23.422
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter or Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = User Override Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	Zone 2 Weir 4.50 6.00 0.00 6.00 Type C Grate 50% 2 (Circular Orifice, R Zone 2 Circular 2.50 36.00 Trapezoidal) 7.80 119.00 4.00 1.00 The user can over WQCV N/A 1.689 N/A N/A	Zone 3 Weir 4.70 10.00 4.00 12.00 Type C Grate 50% estrictor Plate, or R Zone 3 Restrictor 2.70 72.00 60.00 ft (relative to basir feet H:V feet H:V feet EURV N/A 4.663 N/A N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below basin inches inches hobtom at Stage = <u>4P hydrographs and</u> <u>2 Year</u> 1.19 4.575	oottom at Stage = 0 f Gr Ov c usin bottom at Stage Half-Cent 0 ft) <u>1 runoff volumes by</u> 5 Year 1.50 6.891 13.698 53.5	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Nverflow Grate Open Dverflow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Stage at 1 Basin Volume at 1 Basin Volume at 1 Centering new value 10 Year 1.75 8.978	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard = "	Zone 2 Weir 4.50 6.00 3.54 25.06 12.53 s for Outlet Pipe w/ Zone 2 Circular 7.07 1.50 N/A Calculated Parame 0.98 9.78 2.87 18.94 drographs table (CC 50 Year 2.25 14.328	Zone 3 Weir 7.70 12.37 3.42 86.09 43.05 Flow Restriction Pl Zone 3 Restrictor 25.18 2.70 2.30 ters for Spillway feet feet acres acre-ft courses through / 100 Year 2.52 17.379 24.727 217.5	feet feet ft ² ft ² fee feet radians 4 <i>F</i> ). 500 Year 3.14 23.422
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter or Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert = CultP Runoff Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	Zone 2 Weir 4.50 6.00 0.00 Type C Grate 50% 2 (Circular Orifice, R Zone 2 Circular 2.50 36.00 Trapezoidal) 7.80 119.00 4.00 1.00 The user can over WQCV N/A 1.689 N/A N/A N/A	Zone 3 Weir 4.70 10.00 4.00 12.00 Type C Grate 50% Zone 3 Restrictor 2.70 72.00 60.00 ft (relative to basin feet H:V feet ride the default CUI EURV N/A 4.663 N/A N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below basin inches inches bottom at Stage = <u>HP hydrographs and 2 Year 1.19 4.575 4.575 19.1</u>	oottom at Stage = 0 f Gr Ov C usin bottom at Stage Half-Cent 0 ft) <u>1 runoff volumes by</u> 5 Year 1.50 6.891 <u>1.698</u> 53.5 65.3	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Neerflow Grate Open Diverflow Grate Open Ca = 0 ft) O Outled ral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T dentering new value 10 Year 1.75 8.978 8.978 8.978	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = Iculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard = "op of Freeboard = es in the Inflow Hyp 25 Year 2.00 11.989 11.989 138.4	Zone 2 Weir 4.50 6.00 3.54 25.06 12.53 s for Outlet Pipe w/ Zone 2 Circular 7.07 1.50 N/A Calculated Parame 0.98 9.78 2.87 18.94 drographs table (CC 50 Year 2.25 14.328 14.328 173.6	Zone 3 Weir 7.70 12.37 3.42 86.09 43.05 Flow Restriction Pl Zone 3 Restrictor 25.18 2.70 2.30 ters for Spillway feet feet acres acre-ft Dolumis W through / 100 Year 2.52 17.379 24.727 217.5 191.6	feet feet ft ² ft ² fee feet radians 500 Year 3.14 23.422 23.422 301.7
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter or Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = User Override Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	Zone 2 Weir 4.50 6.00 0.00 6.00 Type C Grate 50% 2 (Circular Orifice, R Zone 2 Circular 2.50 36.00 Trapezoidal) 7.80 119.00 4.00 1.00 The user can over WQCV N/A 1.689 N/A N/A	Zone 3 Weir 4.70 10.00 4.00 12.00 Type C Grate 50% estrictor Plate, or R Zone 3 Restrictor 2.70 72.00 60.00 ft (relative to basir feet H:V feet H:V feet EURV N/A 4.663 N/A N/A	ft (relative to basin b feet H:V feet % ectangular Orifice) ft (distance below ba inches inches inches a bottom at Stage = <u>HP hydrographs and 2 Year 1.19 4.575 4.575</u>	oottom at Stage = 0 f Gr Ov c usin bottom at Stage Half-Cent 0 ft) <u>1 runoff volumes by</u> 5 Year 1.50 6.891 13.698 53.5	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Neerflow Grate Open Deflow Grate Open Car = 0 ft) O Uutlet ral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T Basin Volume at T Centering new valu 10 Year 1.75 8.978	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = iop of Freeboard = iop of Freeboard = 25 Year 2.00 11.989 11.989	Zone 2 Weir 4.50 6.00 3.54 25.06 12.53 s for Outlet Pipe w/ Zone 2 Circular 7.07 1.50 N/A Calculated Parame 0.98 9.78 2.87 18.94 drographs table (CC 50 Year 2.25 14.328 14.328	Zone 3 Weir 7.70 12.37 3.42 86.09 43.05 Flow Restriction Pl Zone 3 Restrictor 25.18 2.70 2.30 ters for Spillway feet feet acres acre-ft courses through / 100 Year 2.52 17.379 24.727 217.5	feet feet ft ² ft ² feet radians 4 <i>F</i> ). 500 Year 3.14 23.422 23.422
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter or Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = NeeHour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = User Override Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) =	Zone 2 Weir           4.50           6.00           0.00           6.00           Type C Grate           50%           2 Circular Orifice, R           Zone 2 Circular           2.50           36.00           Trapezoidal)           7.80           119.00           4.00           1.00           The user can over           WOCV           N/A	Zone 3 Weir 4.70 10.00 4.00 12.00 Type C Grate 50% 20ne 3 Restrictor 2.70 72.00 60.00 ft (relative to basin feet H:V feet ride the default CU/ EURV N/A 4.663 N/A N/A N/A N/A N/A N/A 0.9	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below basinches inches to bottom at Stage = HP hydrographs and 2 Year 1.19 4.575 4.575 4.575 19.1 0.17 91.6 0.9	oottom at Stage = 0 f Gr Ov c ssin bottom at Stage Half-Cent 4 <i>runoff volumes by</i> 5 Year 1.50 6.891 13.698 53.5 65.3 0.57	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Neerflow Grate Open Diverflow Grate Open Car = 0 ft) O Stage at T Basin Area at T Basin Volume at T Basin Volume at T Centering new value 10 Year 1.75 8.978 8.978 8.978 7.9.8	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard = "1.989 11.989 11.989 13.8.4 1.21 244.9 69.6	Zone 2 Weir 4.50 6.00 3.54 25.06 12.53 s for Outlet Pipe w/ Zone 2 Circular 7.07 1.50 N/A Calculated Parame 0.98 9.78 2.87 18.94 drographs table (CC 50 Year 2.25 14.328 14.328 173.6 1.51 292.5 98.6	Zone 3 Weir 7.70 12.37 3.42 86.09 43.05 Flow Restriction Pl Zone 3 Restrictor 25.18 2.70 2.30 ters for Spillway feet feet acres acre-ft 00 Year 2.52 17.379 24.727 217.5 191.6 1.67	feet feet ft ² ft ² fee feet radians 500 Year 3.14 23.422 23.422 301.7 2.63
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter or Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = OUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Riow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Ratio Peak Outflow to Predevelopment Q = Ratio Peak Outflow to Predevelopment Q = Spillow Q (cfs) =	Zone 2 Weir 4.50 6.00 0.00 Type C Grate 50% 2 (Circular Orifice, R Zone 2 Circular 2.50 36.00 Trapezoidal) 7.80 119.00 4.00 1.00 The user can over WOCV N/A 1.689 N/A N/A N/A N/A N/A N/A N/A	Zone 3 Weir 4.70 10.00 4.00 12.00 Type C Grate 50% estrictor Plate, or R Zone 3 Restrictor 2.70 72.00 60.00 ft (relative to basin feet H:V feet Fide the default CUI EURV N/A 4.663 N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below basin inches inches to bottom at Stage = <u>HP hydrographs and 2 Year</u> 1.19 4.575 4.575 1.9.1 0.17 91.6 0.9 N/A	oottom at Stage = 0 f Gr Ov C ssin bottom at Stage Half-Cent 0 ft) 13.698 53.5 65.3 0.57 192.8 65.4 1.0	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Neerflow Grate Open Diverflow Grate Open Caral Angle of Restrice Spillway D Stage at T Basin Area at T Basin Volume at T Basin Volume at T Centering new value 10 Year 1.75 8.978 8.978 8.978 79.8 0.70 181.1 25.4 0.3	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard = 11.989 11.989 13.8.4 - 1.21 244.9 69.6 0.5	Zone 2 Weir 4.50 6.00 3.54 25.06 12.53 s for Outlet Pipe w/ Zone 2 Circular 7.07 1.50 N/A Calculated Parame 0.98 9.78 2.87 18.94 drographs table (CC 50 Year 2.25 14.328 14.328 14.328 1.51 292.5 98.6 0.6	Zone 3 Weir 7.70 12.37 3.42 86.09 43.05 Flow Restriction PI Zone 3 Restrictor 25.18 2.70 2.30 ters for Spillway feet feet acres acre-ft Dumns W through / 100 Year 2.52 17.379 24.727 217.5 191.6 1.67 370.7 172.2 0.9	feet feet ft ² ft ² feet radians 4 <i>F</i> ). 500 Year 3.14 23.422 23.422 301.7 2.63 466.9 186.6 0.6
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter or Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (acreft) = CUHP Runoff Volume (acreft) = CUHP Runoff Volume (acreft) = User Override Inflow Hydrograph Volume (acreft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Ratio Peak Outflow Q (cfs) = Ratio Peak Outflow Q (cfs) =	Zone 2 Weir           4.50           6.00           0.00           6.00           Type C Grate           50%           c(circular Orifice, R           Zone 2 Circular           2.50           36.00           Trapezoidal)           7.80           119.00           4.00           1.00           The user can over           WOCV           N/A	Zone 3 Weir 4.70 10.00 4.00 12.00 Type C Grate 50% estrictor Plate, or R Zone 3 Restrictor 2.70 72.00 60.00 ft (relative to basin feet H:V feet H:V feet EURV N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin the feet H:V feet % ectangular Orifice) ft (distance below basin inches inches inches hobtom at Stage = <u>HP hydrographs and 2 Year 1.19 4.575 4.575 1.575 1.575 1.9.1 0.17 91.6 0.9 N/A Plate</u>	oottom at Stage = 0 f Gr Ov c ssin bottom at Stage Half-Cent 0 ft) 1.50 6.891 1.50 6.891 1.3.698 5.3.5 6.5.3 0.57 1.92.8 65.4 1.0 Overflow Weir 2	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Neerflow Grate Open Deflow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Carlow Carlow Spillway D Stage at T Basin Area at T Basin Volume at T Basin Volume at T Contenting new value 10 Year 1.75 8.978 8.978 8.978 8.978 8.978 8.978 7.9.8 0.70 181.1 2.5.4 0.3 Overflow Weir 2	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = iop of Freeboard = iop of Freeboard = 25 Year 2.00 11.989 11.989 138.4 1.21 244.9 69.6 0.5 Overflow Weir 2	Zone 2 Weir 4.50 6.00 3.54 25.06 12.53 s for Outlet Pipe w/ Zone 2 Circular 7.07 1.50 N/A Calculated Parame 0.98 9.78 2.87 18.94 drographs table (CC 50 Year 2.25 14.328 14.328 14.328 14.328 14.328 17.6 0.6 Overflow Weir 2	Zone 3 Weir 7.70 12.37 3.42 86.09 43.05 Flow Restriction Pl Zone 3 Restrictor 25.18 2.70 2.30 ters for Spillway feet feet acres acre-ft 00 Year 2.52 17.379 24.727 217.5 191.6 1.67 370.7 172.2 0.9 Overflow Weir 2	feet feet ft ² ft ² feet radians 4 <i>F</i> ). 500 Year 3.14 23.422 23.422 301.7 2.63 466.9 186.6 0.6 0.6 0.4 0.6
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter or Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = OUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Riow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Ratio Peak Outflow to Predevelopment Q = Ratio Peak Outflow to Predevelopment Q = Spillow Q (cfs) =	Zone 2 Weir 4.50 6.00 0.00 Type C Grate 50% 2 (Circular Orifice, R Zone 2 Circular 2.50 36.00 Trapezoidal) 7.80 119.00 4.00 1.00 The user can over WOCV N/A 1.689 N/A N/A N/A N/A N/A N/A N/A	Zone 3 Weir 4.70 10.00 4.00 12.00 Type C Grate 50% estrictor Plate, or R Zone 3 Restrictor 2.70 72.00 60.00 ft (relative to basin feet H:V feet Fide the default CUI EURV N/A 4.663 N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below basin inches inches to bottom at Stage = <u>HP hydrographs and 2 Year</u> 1.19 4.575 4.575 1.9.1 0.17 91.6 0.9 N/A	oottom at Stage = 0 f Gr Ov C ssin bottom at Stage Half-Cent 0 ft) 13.698 53.5 65.3 0.57 192.8 65.4 1.0	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Neerflow Grate Open Diverflow Grate Open Caral Angle of Restrice Spillway D Stage at T Basin Area at T Basin Volume at T Basin Volume at T Centering new value 10 Year 1.75 8.978 8.978 8.978 79.8 0.70 181.1 25.4 0.3	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard = 11.989 11.989 13.8.4 - 1.21 244.9 69.6 0.5	Zone 2 Weir 4.50 6.00 3.54 25.06 12.53 s for Outlet Pipe w/ Zone 2 Circular 7.07 1.50 N/A Calculated Parame 0.98 9.78 2.87 18.94 drographs table (CC 50 Year 2.25 14.328 14.328 14.328 1.51 292.5 98.6 0.6	Zone 3 Weir 7.70 12.37 3.42 86.09 43.05 Flow Restriction PI Zone 3 Restrictor 25.18 2.70 2.30 ters for Spillway feet feet acres acre-ft Dumns W through / 100 Year 2.52 17.379 24.727 217.5 191.6 1.67 370.7 172.2 0.9	feet feet ft ² ft ² feet radians 4 <i>F</i> ). 500 Year 3.14 23.422 23.422 301.7 2.63 466.9 186.6 0.6
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter or Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = User Override Inflow Hydrograph Volume (acre-ft) = ULHP Predevelopment Peak Q (cfs) = Predevelopment Peak Q (cfs) = Predevelopment Peak Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	Zone 2 Weir 4.50 6.00 0.00 Type C Grate 50% (Circular Orifice, R Zone 2 Circular 2.50 36.00 Trapezoidal) 7.80 119.00 4.00 1.00 The user can over. WQCV N/A 1.689 N/A N/A N/A N/A N/A N/A N/A N/A	Zone 3 Weir 4.70 10.00 4.00 12.00 Type C Grate 50% estrictor Plate, or R Zone 3 Restrictor 2.70 72.00 60.00 ft (relative to basir feet H:V feet H:V feet <i>ide the default CUI</i> EURV N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin the feet H:V feet % ectangular Orifice) ft (distance below basin inches inches h bottom at Stage = HP hydrographs and 2 Year 1.19 4.575 4.575 19.1 0.17 91.6 0.9 N/A Plate N/A N/A 80	oottom at Stage = 0 f Gr Ov c ssin bottom at Stage Half-Cent 0 ft) 1.50 6.891 1.50 6.891 1.3.698 5.3.5 0.57 1.92.8 65.4 1.0 Overflow Weir 2 2.1 0.1 90	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Neerflow Grate Open Diverflow Grate Open Car = 0 ft) O Stage at T Basin Area at T Basin Area at T Basin Volume at T Centering new value 10 Year 1.75 8.978 8.978 8.978 8.978 7.9.8 0.70 181.1 25.4 0.3 0.0 94	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard = "	Zone 2 Weir 4.50 6.00 3.54 25.06 12.53 s for Outlet Pipe w/ Zone 2 Circular 7.07 1.50 N/A Calculated Parame 0.98 9.78 2.87 18.94 drographs table (CC 50 Year 2.25 14.328 14.328 14.328 14.328 14.328 151 292.5 98.6 0.6 Overflow Weir 2 3.0 0.2 89	Zone 3 Weir 7.70 12.37 3.42 86.09 43.05 Flow Restriction Pl Zone 3 Restrictor 25.18 2.70 2.30 ters for Spillway feet feet acres acre-ft <i>100 Year</i> 2.52 17.379 24.727 217.5 191.6 1.67 370.7 172.2 0.9 Overflow Weir 2 3.9 82	feet feet ft ² ft ² feet radians 4/7). 500 Year 3.14 23.422 23.422 23.422 301.7 2.63 466.9 186.6 0.6 Dverflow Weir 4.0 1.0 83
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter or Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (acreft) = CUHP Runoff Volume (acreft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Ratio Peak Outflow D redevelopment Q (cfs) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) =	Zone 2 Weir           4.50           6.00           0.00           6.00           Type C Grate           50%           c(circular Orifice, R           Zone 2 Circular           2.50           36.00           Trapezoidal)           7.80           119.00           4.00           1.00           The user can over           WQCV           N/A           N/A	Zone 3 Weir 4.70 10.00 4.00 12.00 Type C Grate 50% estrictor Plate, or R Zone 3 Restrictor 2.70 72.00 60.00 ft (relative to basin feet H:V feet H:V feet EURV N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin the feet H:V feet % % ecctangular Orifice) ft (distance below basinches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches inches	oottom at Stage = 0 f Gr Ov c sisin bottom at Stage Half-Cent t runoff volumes by 5 Year 1.50 6.891 13.698 53.5 65.3 0.57 192.8 65.4 1.0 Overflow Weir 2 2.1 0.1 0.1 90 99	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Neerflow Grate Open December of Comparison Spillway D Stage at T Basin Area at T Basin Volume at T Basin Volume at T Contering new value 10 Year 1.75 8.978 8.978 8.978 8.978 8.978 0.70 181.1 25.4 0.3 0.07 181.1 25.4 0.3 0.00 94 100	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = iop of Freeboard = 25 Year 2.00 11.989 11.989 11.989 11.989 138.4 1.21 244.9 69.6 0.5 Overflow Weir 2 2.2 0.1 91 99	Zone 2 Weir 4.50 6.00 3.54 25.06 12.53 s for Outlet Pipe w/ Zone 2 Circular 7.07 1.50 N/A Calculated Parame 0.98 9.78 2.87 18.94 drographs table (CC 50 Year 2.25 14.328 14.328 14.328 14.328 151 292.5 98.6 0.6 Overflow Weir 2 3.0 0.2 89 98	Zone 3 Weir 7.70 12.37 3.42 86.09 43.05 Flow Restriction Pl Zone 3 Restrictor 25.18 2.70 2.30 ters for Spillway feet feet acres acre-ft 100 Year 2.52 17.379 24.727 217.5 191.6 1.67 370.7 172.2 0.9 Overflow Weir 2 3.9 0.9 0.9 0.9 0.9	feet feet ft ² ft ² feet radians 4/F). 500 Year 3.14 23.422 301.7 2.63 466.9 186.6 0.6 0.6 0.6 0.7 24.0 1.0 83 95
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Circular Orifice Diameter or Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = User Override Inflow Hydrograph Volume (acre-ft) = ULHP Predevelopment Peak Q (cfs) = Predevelopment Peak Q (cfs) = Predevelopment Peak Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	Zone 2 Weir 4.50 6.00 0.00 Type C Grate 50% (Circular Orifice, R Zone 2 Circular 2.50 36.00 Trapezoidal) 7.80 119.00 4.00 1.00 The user can over. WQCV N/A 1.689 N/A N/A N/A N/A N/A N/A N/A N/A	Zone 3 Weir 4.70 10.00 4.00 12.00 Type C Grate 50% estrictor Plate, or R Zone 3 Restrictor 2.70 72.00 60.00 ft (relative to basir feet H:V feet ride the default CU/ EURV N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin the feet H:V feet % ectangular Orifice) ft (distance below basin inches inches h bottom at Stage = HP hydrographs and 2 Year 1.19 4.575 4.575 19.1 0.17 91.6 0.9 N/A Plate N/A N/A 80	oottom at Stage = 0 f Gr Ov c ssin bottom at Stage Half-Cent 0 ft) 1.50 6.891 1.50 6.891 1.3.698 5.3.5 0.57 1.92.8 65.4 1.0 Overflow Weir 2 2.1 0.1 90	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Neerflow Grate Open Diverflow Grate Open Car = 0 ft) O Stage at T Basin Area at T Basin Area at T Basin Volume at T Centering new value 10 Year 1.75 8.978 8.978 8.978 8.978 7.9.8 0.70 181.1 25.4 0.3 0.0 94	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard = "	Zone 2 Weir 4.50 6.00 3.54 25.06 12.53 s for Outlet Pipe w/ Zone 2 Circular 7.07 1.50 N/A Calculated Parame 0.98 9.78 2.87 18.94 drographs table (CC 50 Year 2.25 14.328 14.328 14.328 14.328 14.328 151 292.5 98.6 0.6 Overflow Weir 2 3.0 0.2 89	Zone 3 Weir 7.70 12.37 3.42 86.09 43.05 Flow Restriction Pl Zone 3 Restrictor 25.18 2.70 2.30 ters for Spillway feet feet acres acre-ft <i>100 Year</i> 2.52 17.379 24.727 217.5 191.6 1.67 370.7 172.2 0.9 Overflow Weir 2 3.9 82	feet feet ft ² ft ² feet radians 4/7). 500 Year 3.14 23.422 23.422 23.422 301.7 2.63 466.9 186.6 0.6 Dverflow Weir 4.0 1.0 83

# DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename: ... [SWMM[Outflow hydrographs]Pond6_OutflowHydrograph.xlsx

Inflow Hydrographs

	The user can o	verride the calcu	lated inflow hyd	rographs from t	his workbook wi	th inflow hydrog	raphs developed	l in a separate pr	ogram.	
	SOURCE	CUHP	CUHP	CUHP	USER	CUHP	CUHP	CUHP	USER	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.35	0.00	0.00	0.00	1.15	0.00
	0:10:00	0.00	0.00	0.00	8.35	0.00	0.00	0.87	8.80	2.79
	0:15:00	0.00	0.00	7.53	41.96	15.37	10.35	12.91	36.23	18.14
	0:20:00	0.00	0.00	26.66	135.18	45.76	26.13	30.39	122.53	46.04
·	0:25:00	0.00	0.00	66.84 91.59	192.81 189.89	145.94 181.09	65.52 208.88	78.49 253.77	282.20 370.69	146.25 396.24
	0:35:00	0.00	0.00	83.49	168.08	156.84	244.93	292.46	368.77	466.90
	0:40:00	0.00	0.00	69.51	147.36	128.13	226.22	267.84	337.06	424.31
	0:45:00	0.00	0.00	54.32	129.31	103.79	190.55	225.54	301.99	368.42
	0:50:00 0:55:00	0.00	0.00	42.53	112.57 100.65	82.17 68.10	160.69 126.75	189.97 150.57	264.23 231.91	309.75 255.54
	1:00:00	0.00	0.00	34.81 29.24	91.99	57.54	102.55	122.63	231.91	255.54
	1:05:00	0.00	0.00	24.37	84.30	48.10	84.65	101.75	182.04	189.95
	1:10:00	0.00	0.00	18.53	75.10	39.94	63.92	77.12	152.54	140.96
	1:15:00	0.00	0.00	14.20	64.91	35.46	46.28	56.24	122.62	100.15
	1:20:00	0.00	0.00	11.95 10.84	56.89 52.28	30.57 25.28	33.94 26.43	41.44 32.25	96.04 76.32	69.57 49.57
	1:30:00	0.00	0.00	10.84	49.65	25.28	20.43	25.24	63.82	37.19
	1:35:00	0.00	0.00	9.94	45.63	19.01	16.94	20.45	55.99	29.25
	1:40:00	0.00	0.00	9.68	41.44	17.27	14.62	17.52	50.64	23.93
	1:45:00	0.00	0.00	9.50	38.27	16.09	13.10	15.56	46.97	20.37
	1:50:00 1:55:00	0.00	0.00	9.40	35.96	15.24 13.98	12.09	14.28	44.36 42.55	18.18 17.39
	2:00:00	0.00	0.00	8.11 7.01	33.53 27.14	13.98	11.56 11.24	13.59 13.17	42.55	17.39
	2:05:00	0.00	0.00	5.02	19.98	8.67	8.06	9.43	25.68	12.26
	2:10:00	0.00	0.00	3.38	14.45	5.83	5.40	6.30	18.63	8.24
	2:15:00	0.00	0.00	2.27	10.39	3.91	3.64	4.25	13.59	5.54
	2:20:00 2:25:00	0.00	0.00	1.48 0.92	7.28	2.54	2.37	2.76	9.71 6.81	3.59
	2:30:00	0.00	0.00	0.53	3.43	0.95	0.94	1.09	4.77	1.39
	2:35:00	0.00	0.00	0.26	2.28	0.48	0.50	0.57	3.20	0.72
	2:40:00	0.00	0.00	0.10	1.39	0.18	0.20	0.22	1.96	0.26
	2:45:00	0.00	0.00	0.02	0.74	0.03	0.03	0.03	1.04	0.02
	2:50:00 2:55:00	0.00	0.00	0.00	0.32	0.00	0.00	0.00	0.45	0.00
	3:00:00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.03	0.00
	3:05:00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00 3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00 3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00 4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00 4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00 4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00 5:05:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00 5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00 6:00:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

#### DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.04 (February 2021) Project: Flying Horse North MDDP Basin ID: Pond 8 Estimated Estimated Stage (ft) Volume (ac-ft) Outlet Type URV WOCV Zone 1 (WQCV) 2.39 0.178 Orifice Plate Zone 2 (EURV) 0.221 Circular Orifice 00-YEAR 3.67 ZONE 1 AND Zone 3 (100-year) 5.97 0.543 Weir&Pipe (Restrict) Example Zone Configuration (Retention Pond) 0.942 Total (all zones User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain ft (distance below the filtration media surface) Underdrain Orifice Area $ft^2$ Underdrain Orifice Invert Depth : N/A N/A Underdrain Orifice Centroid : Underdrain Orifice Diameter = feet N/A inches N/A User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) WQ Orifice Area per Row 4.514E-03 ft² Depth at top of Zone using Orifice Plate ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width feet 2.39 N/A Orifice Plate: Orifice Vertical Spacing 9.60 inches Elliptical Slot Centroid N/A feet ft² Orifice Plate: Orifice Area per Row = 0.65 sq. inches (diameter = 7/8 inch) Elliptical Slot Area N/A User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft 0.00 0.80 1.59 Orifice Area (sq. inches) 0.65 0.65 0.65 Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Row 9 (optional) Stage of Orifice Centroid (ft Orifice Area (sg. inches User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orif Zone 2 Circular Not Selected Zone 2 Circular Not Selected Invert of Vertical Orifice Vertical Orifice Area 2.39 N/A ft (relative to basin bottom at Stage = 0 ft) 0.05 N/A Depth at top of Zone using Vertical Orifice ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid 3.67 N/A 0.12 N/A Vertical Orifice Diameter 2.88 N/A inches User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow W Zone 3 Weir Not Selected Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho 5.00 N/A Height of Grate Upper Edge, $H_t$ 5.00 N/A ft (relative to basin bottom at Stage = 0 ft) Overflow Weir Slope Length Overflow Weir Front Edge Length 4.00 N/A feet 5.00 N/A Overflow Weir Grate Slope 0.00 N/A H:V Grate Open Area / 100-yr Orifice Area 5.22 N/A Horiz. Length of Weir Sides 5.00 N/A feet Overflow Grate Open Area w/o Debris 13.92 N/A Overflow Grate Open Area w/ Debris = Overflow Grate Type Type C Grate N/A 6.96 N/A Debris Clogging % = 50% N/A % User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Pla Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe N/A 1.00 ft (distance below basin bottom at Stage = 0 ft) **Outlet Orifice Area** 2.67 N/A Outlet Orifice Centroid 0.87 N/A Outlet Pipe Diameter 24.00 N/A inches Restrictor Plate Height Above Pipe Invert = 19.00 inches Half-Central Angle of Restrictor Plate on Pipe = 2.19 N/A User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Design Flow Depth-Spillway Invert Stage= 6.30 ft (relative to basin bottom at Stage = 0 ft) 0.85 feet Spillway Crest Length Stage at Top of Freeboard 11.00 feet 8.15 feet H:V Basin Area at Top of Freeboard Spillway End Slopes 4.00 0.38 acres Freeboard above Max Water Surface : Basin Volume at Top of Freeboard : 1.00 feet 1.66 acre-ft Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hyd ographs table (Columns W through A Design Storm Return Period WOCV FURV 2 Year 5 Year 10 Year 25 Year 50 Year 100 Year One-Hour Rainfall Depth (in) 1.75 2.52 N/A N/A 1.19 1.50 2.00 2.2 0.399 0.416 0.713 0.991 1.426 1.746 CUHP Runoff Volume (acre-ft) 0.178 User Override Inflow Hydrograph Volume (acre-ft) N/A N/A 0.416 1.426 1.746 19.9 CUHP Predevelopment Peak O (cfs) N/A N/A 1.6 4.6 6.9 12.4 15.5 OPTIONAL Override Predevelopment Peak Q (cfs) N/A N/A Predevelopment Unit Peak Flow, q (cfs/acre) N/A N/A 0.10 0.70 0.44 0.78 0.98 2.06 Peak Inflow Q (cfs) N/A N/A 4.8 15.9 16.6 20.1 32.3 Peak Outflow Q (cfs) 0.1 0.3 0.3 11.4 3.5 9.4 13.5 28.9 Ratio Peak Outflow to Predevelopment O N/A N/A N/A 1.0 0.5 0.8 0.9 0.9 Structure Controlling Flow Plate Vertical Orifice erflow Weir 1 Overflow Weir rflow Wei erflow We tical Orifice Overflow Weir 1 Max Velocity through Grate 1 (fps) N/A N/A N/A 0.8 0.6 0.9 0.2 2.1 Max Velocity through Grate 2 (fps) N/A N/A N/A N/A N/A N/A N/A N/A 38 39 49 51 48 55 49

Time to Drain 99% of Inflow Volume (hours) Maximum Ponding Depth (ft) Area at Maximum Ponding Depth (acres)

40

2.39

0.15

0.179

52

3.67

0.19

0.399

54

3.51

0.19

0.369

59

5.52

0.26

62

5.22

0.2

0.74

Time to Drain 97% of Inflow Volume (hours)

54

5.99

0.28

51

60

5.46

0.26

0.802

59

5.58

0.27

0.837

## DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

	The user can o	verride the calcu	lated inflow hyd	rographs from th	nis workbook wit	h inflow hydrogr	aphs developed	in a separate pro	gram.	
	SOURCE	CUHP	CUHP	CUHP	USER	CUHP	CUHP	CUHP	USER	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	0:05:00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.06	0.00
	0:10:00	0.00	0.00	0.00	0.34	0.00	0.00	0.02	0.34	0.07
	0:15:00	0.00	0.00	0.18	2.78	0.37	0.25	0.31	2.31	0.44
	0:20:00	0.00	0.00	0.66	10.46	1.64	0.65	0.80	9.50	1.64
	0:25:00	0.00	0.00	2.63	14.81	7.18	2.58	3.15	22.52	7.13
	0:30:00	0.00	0.00	4.43	15.89	10.39	11.21	13.94	29.84	22.90
	0:35:00	0.00	0.00	4.81	15.66	10.85	15.07	18.39	32.21	30.64
	0:40:00	0.00	0.00	4.71	15.11	10.40	16.58	20.07	32.32	32.92
	0:45:00	0.00	0.00	4.31	14.56	9.75 8.98	16.12 15.64	19.49	31.57 30.25	32.76 31.70
	0:55:00	0.00	0.00	3.95 3.62	13.85 13.31	8.27	13.64	18.90 17.48	28.95	30.01
	1:00:00	0.00	0.00	3.35	12.85	7.71	13.24	16.11	27.97	28.37
	1:05:00	0.00	0.00	3.13	12.39	7.26	12.28	15.01	26.11	27.13
	1:10:00	0.00	0.00	2.85	11.75	6.83	11.17	13.71	24.14	24.72
	1:15:00	0.00	0.00	2.57	10.98	6.41	10.13	12.46	21.80	22.36
	1:20:00	0.00	0.00	2.30	10.25	5.80	9.02	11.10	19.55	19.70
	1:25:00	0.00	0.00	2.04	9.75	5.13	7.96	9.80	17.56	17.19
	1:30:00	0.00	0.00	1.82	9.39	4.59	6.91	8.50	16.06	14.90
	1:35:00	0.00	0.00	1.66	8.88	4.19	6.09	7.51	14.87	13.13
	1:40:00 1:45:00	0.00	0.00	1.55	8.36	3.86	5.46 4.94	6.74	13.83 12.89	11.76
	1:50:00	0.00	0.00	1.45 1.35	7.87 7.42	3.57 3.30	4.94	6.10 5.53	12.89	10.57 9.51
	1:55:00	0.00	0.00	1.33	6.93	3.01	4.05	5.01	11.18	8.53
	2:00:00	0.00	0.00	1.10	6.06	2.68	3.65	4.51	9.79	7.61
	2:05:00	0.00	0.00	0.95	5.17	2.31	3.17	3.91	8.39	6.58
	2:10:00	0.00	0.00	0.81	4.34	1.94	2.70	3.34	7.04	5.61
	2:15:00	0.00	0.00	0.67	3.57	1.60	2.25	2.78	5.79	4.67
	2:20:00	0.00	0.00	0.53	2.90	1.28	1.82	2.25	4.63	3.76
	2:25:00	0.00	0.00	0.41	2.39	0.98	1.40	1.73	3.63	2.89
	2:30:00	0.00	0.00	0.30	2.01	0.74	1.01	1.25	2.90	2.09
	2:35:00 2:40:00	0.00	0.00	0.22	1.68	0.59	0.70	0.88	2.34	1.50
	2:45:00	0.00	0.00	0.18	1.40 1.16	0.48	0.51	0.65	1.89 1.51	1.11 0.82
	2:50:00	0.00	0.00	0.13	0.96	0.39	0.38	0.49	1.31	0.60
	2:55:00	0.00	0.00	0.12	0.78	0.26	0.25	0.29	0.97	0.44
	3:00:00	0.00	0.00	0.08	0.64	0.21	0.17	0.22	0.78	0.32
	3:05:00	0.00	0.00	0.07	0.52	0.16	0.13	0.17	0.64	0.23
	3:10:00	0.00	0.00	0.05	0.42	0.13	0.10	0.13	0.52	0.17
	3:15:00	0.00	0.00	0.04	0.32	0.10	0.08	0.10	0.42	0.14
	3:20:00	0.00	0.00	0.03	0.25	0.08	0.06	0.08	0.32	0.11
	3:25:00	0.00	0.00	0.03	0.18	0.06	0.05	0.06	0.24	0.09
	3:30:00 3:35:00	0.00	0.00	0.02	0.13	0.04	0.04	0.05	0.18	0.06
	3:40:00	0.00	0.00	0.01	0.08	0.03	0.03	0.04	0.12	0.05
	3:45:00	0.00	0.00	0.01	0.05	0.02	0.02	0.02	0.07	0.03
	3:50:00	0.00	0.00	0.00	0.03	0.01	0.01	0.02	0.04	0.02
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00 4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00 5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00 5:25:00	0.00 0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00 5:50:00	0.00 0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Optional Override

Stage (ft)

Length

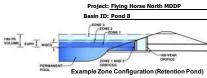
(ft)

Width

(ft)

Area (ft²)

Override


Area (ft²)

Area (acre)

Volume (ft³)

Volume (ac-ft)

Stage (ft)



Depth Increment = 0.10 ft Stage - Storage Description

n
---

atersned information		
Selected BMP Type =	EDB	
Watershed Area =	15.89	acres
Watershed Length =	1,507	ft
Watershed Length to Centroid =	741	ft
Watershed Slope =	0.040	ft/ft
Watershed Imperviousness =	24.82%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

## After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Urban Hydro	graph Procedu	re.
Water Quality Capture Volume (WQCV) =	0.178	acre-feet
Excess Urban Runoff Volume (EURV) =	0.399	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.416	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	0.713	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.991	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	1.426	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	1.746	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	2.181	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	3.010	acre-feet
Approximate 2-yr Detention Volume =	0.280	acre-feet
Approximate 5-yr Detention Volume =	0.407	acre-feet
Approximate 10-yr Detention Volume =	0.620	acre-feet
Approximate 25-yr Detention Volume =	0.740	acre-feet
Approximate 50-yr Detention Volume =	0.781	acre-feet
Approximate 100-yr Detention Volume =	0.942	acre-feet

-

#### Define Zones and Basin Geometry

Zone 1 Volume (WQCV) =	0.178	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.221	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.543	acre-feet
Total Detention Basin Volume =	0.942	acre-feet
Initial Surcharge Volume (ISV) =	23	ft ³
Initial Surcharge Depth (ISD) =	0.33	ft
Total Available Detention Depth (H _{total} ) =	6.00	ft
Depth of Trickle Channel (H _{TC} ) =	0.50	ft
Slope of Trickle Channel (STC) =	0.004	ft/ft
Slopes of Main Basin Sides (Smain) =	4	H:V
Basin Length-to-Width Ratio (R _{L/W} ) =	2	
Initial Surcharge Area (A _{ISV} ) =	70	ft ²

Surcharge Volume Length (L _{ISV} ) =	8.4	ft
Surcharge Volume Width (W _{ISV} ) =	8.4	ft
Depth of Basin Floor (H _{FLOOR} ) =	0.35	ft
Length of Basin Floor $(L_{FLOOR}) =$	97.3	ft
Width of Basin Floor $(W_{FLOOR}) =$	52.1	ft
Area of Basin Floor (A _{FLOOR} ) =	5,073	ft ²
Volume of Basin Floor (V _{FLOOR} ) =	670	ft ³
Depth of Main Basin $(H_{MAIN}) =$	4.82	ft
Length of Main Basin $(L_{MAIN}) =$	135.8	ft
Width of Main Basin (W _{MAIN} ) =	90.7	ft
Area of Main Basin (A _{MAIN} ) =	12,321	ft ²
Volume of Main Basin (V _{MAIN} ) =	40,648	ft ³
Calculated Total Basin Volume ( $V_{total}$ ) =	0.950	acre-feet

	Top of Micropool	0.00	Stage (ft)	(π) 8.4	(ft) 8.4	(ft) 70	Area (π )	(acre) 0.002	(π)	(ac-π)
									22	0.001
	ISV	0.33		8.4	8.4	70		0.002	23	0.001
		0.40		8.4	8.4	70		0.002	28	0.001
		0.50		8.4	8.4	70		0.002	35	0.001
		0.60		8.4	8.4	70		0.002	42	0.001
		0.70		8.4	8.4	70		0.002	49	0.001
		0.80		8.4	8.4	70		0.002	56	0.001
		0.90		26.2	17.1	449		0.010	75	0.002
		1.00		51.6	29.6	1,528		0.035	168	0.004
		1.10		77.0	42.1	3,243		0.074	402	0.009
	Floor	1.18		97.3	52.1	5,073		0.116	732	0.017
	11001	1.20		97.4	52.3	5,096		0.110	833	0.019
										0.015
		1.30		98.2 99.0	53.1	5,217		0.120	1,349	
		1.40			53.9	5,339		0.123	1,877	0.043
Optional User Overrides		1.50		99.8	54.7	5,462		0.125	2,417	0.055
acre-feet		1.60		100.6	55.5	5,586		0.128	2,969	0.068
acre-feet		1.70		101.4	56.3	5,711		0.131	3,534	0.081
1.19 inches		1.80		102.2	57.1	5,838		0.134	4,111	0.094
1.50 inches		1.90		103.0	57.9	5,966		0.137	4,702	0.108
1.75 inches		2.00		103.8	58.7	6,096		0.140	5,305	0.122
2.00 inches		2.10		104.6	59.5	6,226		0.143	5,921	0.136
2.25 inches		2.20		105.4	60.3	6,358		0.146	6,550	0.150
2.52 inches		2.30		106.2	61.1	6,492		0.149	7,192	0.165
inches	Zone 1 (WQCV)	2.39		107.0	61.8	6,613		0.152	7,782	0.179
	,	2.40		107.0	61.9	6,626		0.152	7,848	0.180
		2.50		107.8	62.7	6,762		0.155	8,518	0.196
		2.60		108.6	63.5	6,899		0.158	9,201	0.211
		2.70		109.4	64.3	7,037		0.162	9,898	0.227
		2.70		110.2	65.1	7,037		0.165	10,608	0.227
		2.90		111.0	65.9	7,318		0.168	11,333	0.260
		3.00		111.8	66.7	7,460		0.171	12,072	0.277
	├	3.10		112.6	67.5	7,604		0.175	12,825	0.294
		3.20		113.4	68.3	7,748		0.178	13,593	0.312
		3.30		114.2	69.1	7,894		0.181	14,375	0.330
		3.40		115.0	69.9	8,042		0.185	15,172	0.348
		3.50		115.8	70.7	8,190		0.188	15,983	0.367
		3.60		116.6	71.5	8,340		0.191	16,810	0.386
	Zone 2 (EURV)	3.67		117.2	72.1	8,446		0.194	17,397	0.399
		3.70		117.4	72.3	8,491		0.195	17,651	0.405
		3.80		118.2	73.1	8,644		0.198	18,508	0.425
		3.90		119.0	73.9	8,798		0.202	19,380	0.445
		4.00		119.8	74.7	8,953		0.206	20,268	0.465
		4.10		120.6	75.5	9,109		0.209	21,171	0.486
		4.20		121.4	76.3	9,266		0.213	22,089	0.507
		4.30		122.2	77.1	9,425		0.216	23,024	0.529
		4.40		123.0	77.9	9,585		0.220	23,975	0.550
		4.50		123.8	78.7	9,747		0.224	24,941	0.573
		4.60		124.6	79.5	9,909		0.227	25,924	0.595
		4.70		124.0	80.3	10,073		0.227	26,923	0.595
		4.80		126.2	81.1	10,239		0.235	27,939	0.641
		4.90		127.0	81.9	10,405		0.239	28,971	0.665
		5.00		127.8	82.7	10,573		0.243	30,020	0.689
		5.10		128.6	83.5	10,742		0.247	31,085	0.714
		5.20		129.4	84.3	10,912		0.251	32,168	0.738
		5.30		130.2	85.1	11,084		0.254	33,268	0.764
		5.40		131.0	85.9	11,257		0.258	34,385	0.789
		5.50		131.8	86.7	11,431		0.262	35,519	0.815
		5.60		132.6	87.5	11,607		0.266	36,671	0.842
		5.70		133.4	88.3	11,783		0.271	37,841	0.869
		5.80 5.90		134.2 135.0	89.1 89.9	11,961 12,141		0.275	39,028 40,233	0.896
	Zone 3 (100-year)	5.97		135.6	90.5	12,267		0.282	41,087	0.943
		6.00		135.8 136.6	90.7 91.5	12,321 12,503		0.283 0.287	41,456 42,697	0.952 0.980
		6.10 6.20		136.6	91.5	12,505		0.287	42,097 43,957	1.009
		6.30		138.2	93.1	12,871		0.295	45,235	1.038
	⊢	6.40 6.50		139.0 139.8	93.9 94.7	13,057 13,244		0.300	46,531 47,846	1.068 1.098
		6.60		139.8	94.7 95.5	13,244		0.304	47,846 49,180	1.098
		6.70		141.4	96.3	13,621		0.313	50,532	1.160
		6.80 6.90		142.2 143.0	97.1 97.9	13,812 14,004		0.317	51,904 53,295	1.192 1.223
		6.90 7.00		143.0 143.8	97.9 98.7	14,004 14,198		0.321	53,295	1.223
		7.10		144.6	99.5	14,392		0.330	56,135	1.289
		7.10			100.3	14,588		0.335	57,584	1.322
		7.20		145.4	101.1	14 700		0 220	E0.052	
		7.20 7.30 7.40		145.4 146.2 147.0	101.1 101.9	14,786		0.339 0.344	59,052 60,541	1.356 1.390
		7.20 7.30 7.40 7.50		146.2 147.0 147.8	101.9 102.7	14,786 14,984 15,184		0.344 0.349	60,541 62,049	1.390 1.424
		7.20 7.30 7.40 7.50 7.60		146.2 147.0 147.8 148.6	101.9 102.7 103.5	14,786 14,984 15,184 15,385		0.344 0.349 0.353	60,541 62,049 63,578	1.390 1.424 1.460
		7.20 7.30 7.40 7.50		146.2 147.0 147.8 148.6 149.4	101.9 102.7 103.5 104.3	14,786 14,984 15,184 15,385 15,587		0.344 0.349 0.353 0.358 0.363	60,541 62,049 63,578 65,126	1.390 1.424 1.460 1.495
		7.20 7.30 7.40 7.50 7.60 7.70 7.80 7.90		146.2 147.0 147.8 148.6 149.4 150.2 151.0	101.9 102.7 103.5 104.3 105.1 105.9	14,786 14,984 15,184 15,385 15,587 15,791 15,996		0.344 0.349 0.353 0.358 0.363 0.367	60,541 62,049 63,578 65,126 66,695 68,284	1.390 1.424 1.460 1.495 1.531 1.568
		7.20 7.30 7.40 7.50 7.60 7.70 7.80 7.90 8.00		146.2 147.0 147.8 148.6 149.4 150.2 151.0 151.8	101.9 102.7 103.5 104.3 105.1 105.9 106.7	14,786 14,984 15,184 15,385 15,587 15,791 15,996 16,202		0.344 0.349 0.353 0.358 0.363 0.367 0.372	60,541 62,049 63,578 65,126 66,695 68,284 69,894	1.390 1.424 1.460 1.495 1.531 1.568 1.605
		7.20 7.30 7.40 7.50 7.60 7.70 7.80 7.90 8.00 8.10		146.2 147.0 147.8 148.6 149.4 150.2 151.0 151.8 152.6	101.9 102.7 103.5 104.3 105.1 105.9 106.7 107.5	14,786 14,984 15,184 15,385 15,587 15,791 15,996 16,202 16,410		0.344 0.349 0.353 0.358 0.363 0.367 0.372 0.377	60,541 62,049 63,578 65,126 66,695 68,284	1.390 1.424 1.460 1.495 1.531 1.568 1.605 1.642
		7.20 7.30 7.40 7.50 7.60 7.70 7.80 7.90 8.00 8.10 8.10 8.20 8.30		146.2 147.0 147.8 148.6 149.4 150.2 151.0 151.8 152.6 153.4 154.2	101.9 102.7 103.5 104.3 105.1 105.9 106.7 107.5 108.3 109.1	14,786 14,984 15,184 15,385 15,587 15,791 15,791 15,996 16,202 16,410 16,618 16,828		0.344 0.349 0.353 0.358 0.363 0.367 0.372 0.377 0.382 0.386	60,541 62,049 63,578 65,126 66,695 68,284 69,894 71,525 73,176 74,849	1.390 1.424 1.460 1.495 1.531 1.568 1.605 1.642 1.680 1.718
		7.20 7.30 7.40 7.50 7.60 7.70 7.80 7.90 8.00 8.10 8.20 8.30 8.40		146.2 147.0 147.8 148.6 149.4 150.2 151.0 151.8 152.6 153.4 154.2 155.0	101.9 102.7 103.5 104.3 105.1 105.9 106.7 107.5 108.3 109.1 109.9	14,786 14,984 15,184 15,385 15,587 15,791 15,996 16,202 16,410 16,618 16,828 17,040		0.344 0.349 0.353 0.358 0.363 0.367 0.372 0.372 0.377 0.382 0.386 0.391	60,541 62,049 63,578 65,126 66,695 68,284 69,894 71,525 73,176 74,849 76,542	1.390 1.424 1.460 1.495 1.531 1.568 1.605 1.642 1.680 1.718 1.757
		7.20 7.30 7.40 7.50 7.60 7.70 7.80 7.90 8.00 8.10 8.20 8.30 8.30 8.40 8.50		146.2 147.0 147.8 148.6 149.4 150.2 151.0 151.8 152.6 153.4 152.6 153.4 155.0 155.8	101.9 102.7 103.5 104.3 105.1 105.9 106.7 107.5 108.3 109.1 109.9 110.7	14,786 14,984 15,184 15,385 15,587 15,791 15,796 16,202 16,410 16,618 16,828 17,040 17,252		0.344 0.349 0.353 0.358 0.363 0.367 0.372 0.377 0.382 0.386 0.391 0.396	60,541 62,049 63,578 65,126 66,695 68,284 69,894 71,525 73,176 74,849 76,542 78,257	1.390 1.424 1.460 1.495 1.531 1.568 1.605 1.642 1.680 1.718 1.757 1.797
		7.20 7.30 7.40 7.50 7.60 7.70 7.80 7.90 8.00 8.10 8.20 8.30 8.30 8.40 8.50 8.60 8.70		146.2 147.0 147.8 148.6 149.4 150.2 151.0 151.8 152.6 153.4 154.2 155.0 155.8 156.6 157.4	101.9 102.7 103.5 104.3 105.1 105.9 106.7 107.5 108.3 109.1 109.9 110.7 111.5 112.3	14,786 14,984 15,184 15,385 15,587 15,791 15,996 16,202 16,410 16,618 16,828 17,040 17,252 17,466 17,681		0.344 0.349 0.353 0.358 0.363 0.367 0.372 0.377 0.382 0.386 0.391 0.396 0.401 0.406	60,541 62,049 63,578 65,126 66,695 68,284 69,894 71,525 73,176 74,849 76,542 78,257 79,992 81,750	1.390 1.424 1.460 1.495 1.531 1.568 1.605 1.642 1.680 1.718 1.757 1.797 1.836 1.877
		7.20 7.30 7.40 7.50 7.60 7.80 7.90 8.00 8.10 8.20 8.30 8.30 8.30 8.40 8.50 8.60 8.70 8.80		146.2 147.0 147.8 148.6 149.4 150.2 151.0 151.8 152.6 153.4 155.0 155.8 156.6 157.4 158.2	101.9 102.7 103.5 104.3 105.1 105.9 106.7 107.5 108.3 109.1 109.1 109.9 110.7 111.5 112.3 113.1	14,786 14,984 15,184 15,185 15,587 15,791 15,996 16,202 16,410 16,618 16,628 17,040 17,252 17,466 17,681 17,898		0.344 0.349 0.353 0.358 0.363 0.367 0.372 0.377 0.382 0.386 0.391 0.396 0.391 0.396 0.401 0.406 0.411	60,541 62,049 63,578 65,126 66,695 68,284 71,525 73,176 74,849 76,542 78,257 79,992 81,750 83,529	1.390 1.424 1.460 1.495 1.531 1.568 1.605 1.642 1.680 1.718 1.757 1.797 1.836 1.877 1.918
		7.20 7.30 7.40 7.50 7.60 7.80 7.90 8.00 8.10 8.20 8.30 8.30 8.40 8.50 8.60 8.50 8.60 8.70 8.80 8.80		146.2 147.0 147.0 147.8 148.6 149.4 150.2 151.0 151.8 152.6 153.4 154.2 155.0 155.8 156.6 157.4 158.2 159.0	101.9 102.7 103.5 104.3 105.1 105.9 106.7 107.5 108.3 109.1 109.9 110.7 111.5 112.3 113.1 113.9	14,786 14,984 15,184 15,184 15,385 15,587 15,791 15,996 16,202 16,410 16,618 16,828 17,040 17,252 17,466 17,681 17,898 18,115		0.344 0.349 0.353 0.358 0.363 0.367 0.377 0.382 0.386 0.391 0.396 0.401 0.406 0.411 0.416	60,541 62,049 63,578 65,126 66,695 68,284 69,894 71,525 73,176 74,849 76,542 78,257 79,992 81,750 83,529 85,329	1.390 1.424 1.460 1.495 1.531 1.568 1.605 1.642 1.680 1.718 1.757 1.797 1.836 1.877 1.918 1.959
		7.20 7.30 7.40 7.50 7.50 7.70 8.00 8.10 8.20 8.30 8.40 8.30 8.40 8.50 8.60 8.50 8.60 8.89 8.90 9.10		146.2 147.0 147.8 148.6 149.4 150.0 151.0 151.8 152.6 153.4 154.2 155.8 156.6 157.4 158.2 159.0 159.0 159.0	101.9 102.7 103.5 104.3 105.1 105.9 106.7 107.5 108.3 109.1 109.9 110.7 111.5 112.3 113.1 113.9 114.7 115.5	14,786 14,984 15,184 15,184 15,385 15,587 15,596 16,202 16,410 16,410 16,618 16,628 17,640 17,640 17,640 17,7466 17,898 18,115 18,334 18,555		0.344 0.349 0.353 0.358 0.363 0.363 0.363 0.367 0.377 0.377 0.377 0.382 0.391 0.391 0.396 0.391 0.396 0.401 0.406 0.411 0.421 0.426	60,541 62,049 63,578 65,126 66,695 68,284 69,894 71,525 73,176 74,849 76,542 78,257 79,992 81,750 83,529 85,329 87,152	1.390 1.424 1.460 1.495 1.531 1.568 1.605 1.642 1.680 1.718 1.757 1.797 1.836 1.877 1.979 1.918 1.959 2.001 2.043
		7.20 7.30 7.40 7.50 7.50 7.70 7.80 8.00 8.10 8.10 8.10 8.30 8.40 8.30 8.40 8.50 8.50 8.70 8.80 8.80 9.00 9.00 9.20		146.2 147.0 147.8 148.6 149.4 150.2 151.0 151.0 151.0 152.6 153.4 154.2 155.0 155.8 155.8 155.8 155.6 157.4 158.2 159.8 159.8 159.8	101.9 102.7 103.5 104.3 105.1 105.9 106.7 107.5 108.3 109.1 109.9 110.9 110.9 110.9 111.5 112.3 113.9 114.7 115.3	14,786 14,984 15,184 15,385 15,887 15,897 15,996 16,202 16,410 16,618 16,628 17,040 17,252 17,040 17,252 17,681 17,681 17,681 17,681 17,681 18,115 18,334 18,555		0.344 0.349 0.353 0.358 0.367 0.372 0.377 0.377 0.382 0.386 0.391 0.396 0.391 0.396 0.401 0.401 0.411 0.416 0.421 0.423	60,541 62,049 63,578 65,126 66,695 68,284 69,894 71,525 73,176 74,849 76,542 74,849 76,542 78,257 83,529 81,750 83,529 85,329 87,152 88,996	1.390 1.424 1.460 1.495 1.531 1.568 1.605 1.642 1.680 1.718 1.757 1.797 1.836 1.877 1.918 1.959 2.001 2.043 2.086
		7.20 7.30 7.40 7.50 7.60 7.70 7.80 8.00 8.10 8.20 8.30 8.40 8.50 8.50 8.50 8.50 8.80 8.89 8.90 9.00 9.10 9.30		146.2 147.0 147.8 148.6 149.4 150.2 151.0 151.8 152.6 153.4 154.2 155.0 154.2 155.0 154.2 155.6 157.4 158.2 159.0 159.0 159.0 159.0 159.0 159.0	101.9 102.7 103.5 104.3 105.1 105.9 106.7 107.5 108.3 109.1 109.9 110.7 111.5 112.3 113.1 113.9 114.7 115.5	14,786 14,984 15,184 15,385 15,587 15,791 15,996 16,202 16,410 16,618 16,828 17,040 17,252 17,466 17,681 17,681 17,681 17,681 17,681 17,681 17,681 17,681 17,681 17,681 18,334 18,555 18,776		0.344 0.349 0.353 0.358 0.363 0.363 0.363 0.367 0.377 0.377 0.377 0.382 0.391 0.391 0.396 0.391 0.396 0.401 0.406 0.411 0.421 0.426	60,541 62,049 63,578 65,126 66,694 68,284 69,894 71,525 73,176 74,849 76,542 78,257 79,992 81,750 83,529 83,529 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85,329 85	1.390 1.424 1.460 1.455 1.558 1.605 1.642 1.680 1.718 1.680 1.718 1.680 1.718 1.797 1.837 1.979 1.837 1.918 1.958 2.001 2.001 2.003 2.004
		7.20 7.30 7.40 7.50 7.50 7.70 7.80 8.00 8.10 8.10 8.10 8.30 8.40 8.30 8.40 8.50 8.50 8.70 8.80 8.80 9.00 9.00 9.20		146.2 147.0 147.8 148.6 149.4 150.2 151.0 151.0 151.0 152.6 153.4 154.2 155.0 155.8 155.8 155.8 155.6 157.4 158.2 159.8 159.8 159.8	101.9 102.7 103.5 104.3 105.9 106.7 107.5 108.3 109.9 110.7 111.5 112.3 113.1 113.9 114.7 115.5 116.3	14,786 14,984 15,184 15,385 15,887 15,897 15,996 16,202 16,410 16,618 16,628 17,040 17,252 17,040 17,252 17,681 17,681 17,681 17,681 17,681 18,115 18,334 18,555		0.344 0.349 0.353 0.358 0.367 0.367 0.367 0.377 0.377 0.382 0.386 0.396 0.396 0.396 0.401 0.406 0.411 0.412 0.426 0.435	60,541 62,049 63,578 65,126 66,695 68,284 69,894 71,525 73,176 74,849 76,542 74,849 76,542 78,257 83,529 81,750 83,529 85,329 87,152 88,996	1.390 1.424 1.460 1.495 1.531 1.568 1.605 1.642 1.680 1.718 1.757 1.797 1.836 1.877 1.918 1.959 2.001 2.043 2.086

Project: Flying Horse North MDDP
Basin ID: Pond 9
2008 5 2018 2 2018 2 2018 1 2018 1 20

Depth Increment = 0.10 ft

PERMANENT ORIFIC		ORIFICE			Deptit Increment =	0.10	Optional			A	Optional		Valuma	
POOL Example Zone	Configuratio	on (Retentio	on Pond)		Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ² )	Override Area (ft ² )	Area (acre)	Volume (ft ³ )	Volume (ac-ft)
Watershed Information					Top of Micropool		0.00				510	0.012	(10)	(de le)
Selected BMP Type =	EDB	1					0.10				510	0.012	51	0.001
Watershed Area =	86.18	acres					0.20				510	0.012	102	0.001
Watershed Length =	2,354	ft					0.20				510	0.012	153	0.002
Watershed Length to Centroid =	1,434	ft.					0.30				510	0.012	204	0.004
Watershed Eerigun to Centrold = Watershed Slope =	0.039	ft/ft					0.40	-			510	0.012	255	0.005
Watershed Imperviousness =	21.81%	percent					0.60				510	0.012	306	0.007
Percentage Hydrologic Soil Group A =	0.0%	percent					0.70				1,331	0.031	398	0.009
Percentage Hydrologic Soil Group B =	100.0%	percent					0.80				3,124	0.072	620	0.014
Percentage Hydrologic Soil Groups C/D =	0.0%	percent					0.90				5,648	0.130	1,059	0.024
Target WQCV Drain Time =	40.0	hours					1.00				8,903	0.204	1,786	0.041
Location for 1-hr Rainfall Depths =							1.10				12,887	0.296	2,876	0.066
After providing required inputs above incl	luding 1-hour	rainfall					1.20				17,602	0.404	4,400	0.101
depths, click 'Run CUHP' to generate rund	off hydrograph	s using					1.30				23,047	0.529	6,433	0.148
the embedded Colorado Urban Hydro	graph Procedu	ire.	Optional Use	r Overrides			1.40	-			29,222	0.671	9,046	0.208
Water Quality Capture Volume (WQCV) =	0.883	acre-feet		acre-feet			1.50				36,128	0.829	12,314	0.283
Excess Urban Runoff Volume (EURV) =	1.880	acre-feet		acre-feet			1.60				43,764	1.005	16,308	0.374
2-yr Runoff Volume (P1 = 1.19 in.) =	2.026	acre-feet	1.19	inches			1.70				52,130	1.197	21,103	0.484
5-yr Runoff Volume (P1 = 1.5 in.) =	3.599	acre-feet	1.50	inches			1.80				57,500	1.320	26,584	0.610
10-yr Runoff Volume (P1 = 1.75 in.) =	5.087	acre-feet	1.75	inches			1.90				57,673	1.324	32,343	0.742
25-yr Runoff Volume (P1 = 2 in.) =	7.473	acre-feet	2.00	inches			2.00				58,107	1.334	38,132	0.875
50-yr Runoff Volume (P1 = 2.25 in.) =	9.201	acre-feet	2.25	inches			2.10				58,542	1.344	43,964	1.009
100-yr Runoff Volume (P1 = 2.52 in.) =	11.580	acre-feet	2.52	inches			2.20				58,979	1.354	49,840	1.144
500-yr Runoff Volume (P1 = 3.14 in.) =	16.065	acre-feet		inches			2.30				59,418	1.364	55,760	1.280
Approximate 2-yr Detention Volume =	1.301	acre-feet					2.40				59,858	1.374	61,724	1.417
Approximate 5-yr Detention Volume =	1.913	acre-feet					2.50				60,299	1.384	67,732	1.555
Approximate 10-yr Detention Volume =	3.018	acre-feet					2.60	-			60,742	1.394	73,784	1.694
Approximate 25-yr Detention Volume =	3.681	acre-feet					2.70				61,187	1.405	79,880	1.834
Approximate 50-yr Detention Volume =	3.888	acre-feet					2.80				61,632	1.415	86,021	1.975
Approximate 100-yr Detention Volume =	4.742	acre-feet					2.90 3.00				62,080	1.425	92,207	2.117
											62,529	1.435	98,437	2.260
Define Zones and Basin Geometry	0.000						3.10				62,979	1.446	104,713	2.404
Zone 1 Volume (WQCV) =	0.883	acre-feet					3.20 3.30				63,431	1.456	111,033	2.549
Zone 2 Volume (5-year - Zone 1) =	1.030 2.829	acre-feet acre-feet					3.30				63,884 64,338	1.467 1.477	117,399 123,810	2.695 2.842
Zone 3 Volume (100-year - Zones 1 & 2) = Total Detention Basin Volume =	4.742	acre-feet					3.40				64,795	1.477	125,810	2.042
Initial Surcharge Volume (ISV) =	user	ft ³					3.60	-		-	64,840	1.489	136,748	3.139
Initial Surcharge Depth (ISD) =	user	ft ft					3.70	-			65,252	1.498	143,253	3.289
Total Available Detention Depth (H _{total} ) =	user	ft					3.80				65,711	1.509	149,801	3.439
Depth of Trickle Channel $(H_{TC}) =$	user	ft					3.90				66,172	1.519	156,395	3.590
Slope of Trickle Channel $(S_{TC}) =$	user	ft/ft					4.00				66,634	1.515	163,036	3.743
Slopes of Main Basin Sides (S _{main} ) =	user	H:V					4.10				67,097	1.540	169,722	3.896
Basin Length-to-Width Ratio $(R_{L/W}) =$	user						4.20				67,562	1.551	176,455	4.051
basin congar to materiado (rigw) -		1					4.30				68,029	1.562	183,235	4.206
Initial Surcharge Area (A _{ISV} ) =	user	ft ²					4.40				68,497	1.572	190,061	4.363
Surcharge Volume Length (L _{ISV} ) =	user	ft					4.50				68,966	1.583	196,934	4.521
Surcharge Volume Width (W _{ISV} ) =	user	ft					4.60				69,437	1.594	203,854	4.680
Depth of Basin Floor (H _{FLOOR} ) =	user	ft					4.70				69,909	1.605	210,822	4.840
Length of Basin Floor (L _{FLOOR} ) =	user	ft					4.80				70,383	1.616	217,836	5.001
Width of Basin Floor (W _{FLOOR} ) =	user	ft					4.90				70,858	1.627	224,898	5.163
Area of Basin Floor (A _{FLOOR} ) =	user	ft ²					5.00	-			71,335	1.638	232,008	5.326
Volume of Basin Floor (V _{FLOOR} ) =	user	ft ³					5.10				71,813	1.649	239,165	5.490
Depth of Main Basin $(H_{MAIN}) =$	user	ft					5.20				72,293	1.660	246,371	5.656
Length of Main Basin $(L_{MAIN}) =$	user	ft					5.30				72,774	1.671	253,624	5.822
Width of Main Basin (W _{MAIN} ) =	user	ft					5.40				73,257	1.682	260,926	5.990
Area of Main Basin (A _{MAIN} ) =	user	ft ²					5.50				73,741	1.693	268,275	6.159
Volume of Main Basin (V _{MAIN} ) =	user	ft ³					5.60				74,227	1.704	275,674	6.329
Calculated Total Basin Volume ( $V_{total}$ ) =	user	acre-feet					5.70				74,714	1.715	283,121	6.500
							5.80 5.90				75,202 75,692	1.726 1.738	290,617 298,161	6.672 6.845
							6.00				76,184	1.749	305,755	7.019
							6.10 6.20				76,233 76,677	1.750 1.760	313,376 321,021	7.194 7.370
							6.30				77,171	1.772	328,714	7.546
					-		6.40 6.50				77,667 78,164	1.783 1.794	336,456 344,247	7.724 7.903
							6.60				78,663	1.806	352,089	8.083
							6.70 6.80				79,163 79,665	1.817 1.829	359,980 367,921	8.264 8.446
							6.90				80,168	1.829	375,913	8.630
							7.00				80,673	1.852	383,955	8.814
							7.10 7.20				81,179 81,687	1.864 1.875	392,048 400,191	9.000 9.187
							7.30				82,196	1.887	408,385	9.375
							7.50				82,707 83,219	1.899	416,630 424,927	9.565 9.755
							7.60				83,732	1.922	433,274	9.947
					-		7.70 7.80				84,247 84,764	1.934	441,673 450,124	10.139 10.333
							7.90				85,282	1.958	458,626	10.529
							8.00 8.10	1			85,801 86,322	1.970 1.982	467,180 475,786	10.725 10.923
							8.20			-	86,845	1.994	484,445	11.121
							8.30				87,368	2.006	493,155	11.321
							8.40 8.50				87,894 88,421	2.018 2.030	501,918 510,734	11.522 11.725
							8.60				88,949	2.042	519,603	11.928
							8.70 8.80				89,479 90,010	2.054 2.066	528,524 537,498	12.133 12.339
							8.90				90,543	2.079	546,526	12.547
							9.00 9.10				91,077 91,612	2.091 2.103	555,607 564,741	12.755 12.965
							9.20				92,149	2.115	573,930	13.176
							9.30 9.40				92,688 93,228	2.128 2.140	583,171 592,467	13.388 13.601
							9.50				93,770	2.153	601,817	13.816
							9.60 9.70				94,313 94,857	2.165 2.178	611,221 620,680	14.032 14.249
							9.70				94,857 95,403	2.178	630,193	14.249

## DETENTION BASIN OUTLET STRUCTURE DESIGN

			D-Detention, Ver	sion 4.04 (Februar	ry 2021)				
Project: Basin ID:	Flying Horse Nort	h MDDP							
ZONE 3	Folia 5			Estimated	Estimated				
-ZONE 1				Stage (ft)	Volume (ac-ft)	Outlet Type			
			Zone 1 (WQCV)	2.01	0.883	Orifice Plate	]		
	100-YEAR		Zone 2 (5-year)	2.76	1.030	Weir&Pipe (Restrict)			
PERMANENT ORIFICES	ORIFICE		Zone 3 (100-year)	4.64	2.829	Weir&Pipe (Restrict)			
	Configuration (Re	tention Pond)	20110 5 (100 year)	Total (all zones)	4.742	include per (nebulier)	I		
User Input: Orifice at Underdrain Outlet (typicall	v used to drain WC	CV in a Filtration Bl	MP)	rotal (all 201100)		1	Calculated Parame	eters for Underdrain	
Underdrain Orifice Invert Depth =	N/A	ft (distance below	,	surface)	Underd	drain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdrair	Orifice Centroid =	N/A	feet	
User Input: Orifice Plate with one or more orific							Calculated Parame		
Invert of Lowest Orifice =	0.00	ft (relative to basin	-	,		ice Area per Row =	2.396E-02	ft ²	
Depth at top of Zone using Orifice Plate = Orifice Plate: Orifice Vertical Spacing =	2.36 9.40	inches	bottom at Stage =	= 0 π)		ptical Half-Width = ical Slot Centroid =	N/A N/A	feet feet	
Orifice Plate: Orifice Area per Row =	3.45		tangular openings)			illiptical Slot Area =	N/A	ft ²	
	51.15	oqi meneo (use ree	angalar openinge)		-		,,,	Tic	
User Input: Stage and Total Area of Each Orific	e Row (numbered f	rom lowest to highe	<u>est)</u>						_
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	0.79	1.57						
Orifice Area (sq. inches)	3.45	3.45	3.45						J
	D. 0 (	D. 404	D. 44.6	D. 10(	D. 101	D. 444	D. 457 1. 1	D. 464	1
Change of Optimizer Combinid (P)	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									1
User Input: Vertical Orifice (Circular or Rectange	ular)						Calculated Parame	eters for Vertical Ori	fice
	Not Selected	Not Selected					Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basir	n bottom at Stage =	= 0 ft) Ver	rtical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A		bottom at Stage =	= 0 ft) Vertica	I Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches						
Liser Inputs Overflow Weir (Drephov with Flot e	r Clanad Crata and	Outlat Dina OD Dag	tongular/Transaid	al Wair (and No Ou	itlat Dina)		Calculated Davama	tors for Overflow M	10:1
User Input: Overflow Weir (Dropbox with Flat o	Zone 2 Weir	Zone 3 Weir	.tangular/Trapezolu		<u>itiet Pipe)</u>			eters for Overflow W	leir
Overflow Weir Front Edge Height, Ho =	3.10	4.10	ft (relative to basin h	oottom at Stage = 0 f	+) Height of Grate	e Upper Edge, H. =	Zone 2 Weir 3.10	Zone 3 Weir 7.10	feet
Overflow Weir Front Edge Length =	4.00	8.00	feet			/eir Slope Length =	6.00	12.37	feet
Overflow Weir Grate Slope =	0.00	4.00	H:V Grate Open Area / 100-yr Orifice Area = 1.82 2.92						
Horiz. Length of Weir Sides =	6.00	12.00	feet	0	verflow Grate Open	Area w/o Debris =	16.70	68.87	ft ²
Overflow Grate Type =	Type C Grate	Type C Grate		C	Overflow Grate Ope	n Area w/ Debris =	8.35	34.44	ft ²
Debris Clogging % =	50%	50%	%						
					6				
User Input: Outlet Pipe w/ Flow Restriction Plate			<u>ectangular Orifice)</u>		<u>La</u>	Iculated Parameter			ate
Depth to Invert of Outlet Pipe =	2.30	Zone 3 Restrictor 2.60	ft (dictance below b	asin bottom at Stage	- 0 ft) 0	utlet Orifice Area =	9.16	Zone 3 Restrictor 23.55	ft ²
Outlet Pipe Diameter =	42.00	66.00	inches	asin bollom at stage	,	t Orifice Centroid =	1.67	2.73	feet
Restrictor Plate Height Above Pipe Invert =	38.00		inches	Half-Cent		tor Plate on Pipe =	2.51	2.79	radians
					<b>j</b>				
User Input: Emergency Spillway (Rectangular or	Trapezoidal)	-					Calculated Parame	eters for Spillway	
Spillway Invert Stage=	7.80	ft (relative to basir	bottom at Stage =	= 0 ft)		esign Flow Depth=	0.98	feet	
Spillway Crest Length =	113.00	feet			-	Fop of Freeboard =	9.78	feet	
Spillway End Slopes =	4.00	H:V				Fop of Freeboard =	2.19	acres	
Freeboard above Max Water Surface =	1.00	feet			Basin Volume at	Fop of Freeboard =	14.42	acre-ft	
Routed Hydrograph Results				d runoff volumes by	v entering new valu	les in the Inflow Hy	drographs table (Co	olumns W through	,
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) =	N/A 0.883	N/A 1.880	1.19 2.026	1.50 3.599	1.75 5.087	2.00 7.473	2.25 9.201	2.52 11.580	3.14 16.065
User Override Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	2.026	17.291	5.087	7.473	9.201	31.926	16.065
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	11.0	30.3	46.1	81.0	101.4	129.3	179.9
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A	0.12	95.0	0.52	0.04	1 10	282.3	2.00
Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) =	N/A N/A	N/A N/A	0.13 28.4	1.10 148.4	0.53 67.1	0.94 103.1	1.18 125.4	3.28 309.0	2.09
Peak Outflow Q (cfs) =	0.4	0.5	0.5	94.8	21.0	46.0	61.0	220.7	118.9
Ratio Peak Outflow to Predevelopment $Q =$	N/A	N/A	N/A	1.0	0.5	0.6	0.6	0.8	0.7
Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	Plate N/A	Plate N/A	Plate N/A	Overflow Weir 2 4.5	Overflow Weir 1 1.2	Overflow Weir 2 2.7	Overflow Weir 2 3.4	Overflow Weir 2 6.1	Overflow Weir 4.9
Max Velocity through Grate 2 (fps) =	N/A	N/A N/A	N/A	0.3	N/A	0.0	0.1	1.7	0.5
Time to Drain 97% of Inflow Volume (hours) =	38	65	69	61	78	74	71	46	62
Time to Drain 99% of Inflow Volume (hours) =	<b>40</b>	68	72	78	84	83	82	70	78
Maximum Ponding Depth (ft) = Area at Maximum Ponding Depth (acres) =	2.01 1.33	2.74 1.41	2.77 1.41	5.58 1.70	3.84 1.51	4.37 1.57	4.71 1.61	7.79 1.94	6.13 1.75
Maximum Volume Stored (acre-ft) =	0.889	1.890	1.932	6.278	3.484	4.300	4.856	10.314	7.229

# DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename: ... [SWMM(Outflow hydrographs)Pond6_OutflowHydrograph.xlsx

	The user can o	verride the calcu	lated inflow hyd	lrographs from t	his workbook wi	th inflow hydrog	raphs developed	l in a separate pr	ogram.	
ſ	SOURCE	CUHP	CUHP	CUHP	USER	CUHP	CUHP	CUHP	USER	CUHP
me Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [c
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.19	0.00	0.00	0.00	0.48	0.00
	0:10:00	0.00	0.00	0.00	2.62	0.00	0.00	0.09	2.67	0.28
	0:15:00	0.00	0.00	0.76	19.04	1.55	1.04	1.33	15.51	1.92
-	0:20:00	0.00	0.00	2.95	79.68	8.04	2.99	3.82	71.52	8.06
F	0:25:00 0:30:00	0.00	0.00	13.17 24.71	128.64 146.60	38.75 62.28	12.89 61.82	15.88 77.38	184.41 267.93	38.44 131.08
ŀ	0:35:00	0.00	0.00	24.71	148.36	67.13	92.57	113.75	302.41	190.37
F	0:40:00	0.00	0.00	27.34	143.02	62.88	103.09	125.40	309.03	207.06
	0:45:00	0.00	0.00	24.41	137.31	57.36	98.90	119.90	302.18	202.23
	0:50:00	0.00	0.00	21.63	130.82	51.33	93.57	113.46	289.65	191.70
-	0:55:00	0.00	0.00	19.31	124.44	46.31	84.26	102.47	276.21	177.33
-	1:00:00	0.00	0.00	17.53	119.29	42.27	75.99	92.91	264.30	165.28
-	1:05:00	0.00	0.00	15.91	115.25	38.56	68.79	84.53	247.33	155.08
F	1:10:00 1:15:00	0.00	0.00	13.92 11.89	110.41 104.32	34.92 31.47	60.71 52.43	74.92 65.01	229.27 209.03	137.88 119.21
F	1:20:00	0.00	0.00	10.24	97.99	28.23	44.33	55.03	188.58	100.29
Ī	1:25:00	0.00	0.00	9.11	92.36	25.24	38.41	47.78	169.75	85.97
	1:30:00	0.00	0.00	8.22	87.52	22.52	33.51	41.71	153.19	74.48
	1:35:00	0.00	0.00	7.43	82.28	20.08	29.37	36.58	139.26	64.85
-	1:40:00	0.00	0.00	6.68	77.25	17.85	25.63	31.93	128.04	56.24
-	1:45:00	0.00	0.00	5.94	72.85	15.74	22.26	27.74	118.85	48.37
ŀ	1:50:00 1:55:00	0.00	0.00	5.22	68.94	13.70	19.04	23.75	111.03	40.97
F	2:00:00	0.00	0.00	4.38 3.55	64.94 58.11	11.58 9.29	15.95 13.00	19.92 16.27	104.07 93.16	34.02 27.58
F	2:05:00	0.00	0.00	2.64	50.37	6.91	9.71	12.19	80.96	20.65
Ī	2:10:00	0.00	0.00	1.92	43.04	5.27	6.60	8.35	69.34	14.54
	2:15:00	0.00	0.00	1.47	36.34	4.21	4.68	6.04	58.65	10.55
	2:20:00	0.00	0.00	1.17	30.41	3.40	3.43	4.48	48.94	7.79
-	2:25:00	0.00	0.00	0.94	25.39	2.74	2.56	3.37	40.27	5.71
-	2:30:00	0.00	0.00	0.75	21.07	2.19	1.91	2.52	32.86	4.14
ŀ	2:35:00 2:40:00	0.00	0.00	0.60	17.30	1.72	1.45	1.92	26.42	2.94
F	2:45:00	0.00	0.00	0.47	14.29 11.86	1.33	1.08	1.43	20.94	2.04
F	2:50:00	0.00	0.00	0.30	9.83	0.77	0.62	0.81	13.31	1.43
Ē	2:55:00	0.00	0.00	0.24	8.11	0.59	0.48	0.63	10.64	0.85
	3:00:00	0.00	0.00	0.19	6.68	0.45	0.37	0.49	8.52	0.68
	3:05:00	0.00	0.00	0.14	5.47	0.34	0.29	0.37	6.87	0.53
-	3:10:00	0.00	0.00	0.11	4.47	0.25	0.21	0.28	5.54	0.39
-	3:15:00	0.00	0.00	0.07	3.61	0.17	0.15	0.20	4.47	0.28
ŀ	3:20:00	0.00	0.00	0.05	2.87	0.11	0.10	0.13	3.60	0.18
-	3:25:00 3:30:00	0.00	0.00	0.03	2.23	0.06	0.06	0.08	2.85 2.21	0.11
F	3:35:00	0.00	0.00	0.00	1.09	0.03	0.03	0.04	1.67	0.03
F	3:40:00	0.00	0.00	0.00	0.88	0.00	0.00	0.00	1.20	0.02
Γ	3:45:00	0.00	0.00	0.00	0.58	0.00	0.00	0.00	0.82	0.00
	3:50:00	0.00	0.00	0.00	0.36	0.00	0.00	0.00	0.52	0.00
ļ	3:55:00	0.00	0.00	0.00	0.21	0.00	0.00	0.00	0.29	0.00
ŀ	4:00:00	0.00	0.00	0.00	0.11	0.00	0.00	0.00	0.16	0.00
ŀ	4:05:00 4:10:00	0.00	0.00	0.00	0.04 0.01	0.00	0.00	0.00	0.06	0.00
ŀ	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ī	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:30:00 4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:50:00 4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ľ	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:10:00 5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:30:00 5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	5:55:00 6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MHFD-Detention, Version 4.04 (February 2021)

#### Project: Flying Horse North Master Drainage Plan Basin ID: Pond 10 ZONE 2

-100-YEAR ORIFICE ZONE 1 AND 2 ORIFICE ORIFICES Example Zone Configuration (Retention Pond) PERMA

Depth Increment = 0.10 ft

Watershed	Information

ceroned information		
Selected BMP Type =	EDB	
Watershed Area =	21.96	acres
Watershed Length =	1,715	ft
Watershed Length to Centroid =	1,346	ft
Watershed Slope =	0.056	ft/ft
Watershed Imperviousness =	10.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

# After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded colorado orban nyare	gruphi noccuc	iic.	Optional User	· Override
Water Quality Capture Volume (WQCV) =	0.123	acre-feet		acre-feet
Excess Urban Runoff Volume (EURV) =	0.206	acre-feet		acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.293	acre-feet	1.19	inches
5-yr Runoff Volume (P1 = 1.5 in.) =	0.647	acre-feet	1.50	inches
10-yr Runoff Volume (P1 = 1.75 in.) =	1.000	acre-feet	1.75	inches
25-yr Runoff Volume (P1 = 2 in.) =	1.630	acre-feet	2.00	inches
50-yr Runoff Volume (P1 = 2.25 in.) =	2.059	acre-feet	2.25	inches
100-yr Runoff Volume (P1 = 2.52 in.) =	2.677	acre-feet	2.52	inches
500-yr Runoff Volume (P1 = 3.14 in.) =	3.804	acre-feet		inches
Approximate 2-yr Detention Volume =	0.132	acre-feet		
Approximate 5-yr Detention Volume =	0.207	acre-feet		
Approximate 10-yr Detention Volume =	0.429	acre-feet		
Approximate 25-yr Detention Volume =	0.599	acre-feet		
Approximate 50-yr Detention Volume =	0.627	acre-feet		
Approximate 100-yr Detention Volume =	0.810	acre-feet		

#### Define Zones and Basin Geometry

Zone 1 Volume (WQCV) =	0.123	acre-feet
Zone 2 Volume (5-year - Zone 1) =	0.084	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.603	acre-feet
Total Detention Basin Volume =	0.810	acre-feet
Initial Surcharge Volume (ISV) =	16	ft ³
Initial Surcharge Depth (ISD) =	0.33	ft
Total Available Detention Depth $(H_{total}) =$	6.00	ft
Depth of Trickle Channel (H _{TC} ) =	0.50	ft
Slope of Trickle Channel (STC) =	0.004	ft/ft
Slopes of Main Basin Sides (S _{main} ) =	4	H:V
Basin Length-to-Width Ratio (R _{L/W} ) =	2	
Initial Surcharge Area $(A_{ISV}) =$	49	ft ²
Surcharge Volume Length $(L_{ISV}) =$	7.0	ft
Surcharge Volume Width $(W_{ISV}) =$	7.0	ft
Death of Deals Floor (1)	0.07	<u>م</u>

( ₁₃ v)		
Depth of Basin Floor (H _{FLOOR} ) =	0.37	ft
Length of Basin Floor $(L_{FLOOR}) =$	100.9	ft
Width of Basin Floor (W _{FLOOR} ) =	53.2	ft
Area of Basin Floor (A _{FLOOR} ) =	5,372	ft ²
Volume of Basin Floor (V _{FLOOR} ) =	732	ft ³
Depth of Main Basin $(H_{MAIN}) =$	4.80	ft
Length of Main Basin $(L_{MAIN}) =$	139.3	ft
Width of Main Basin (W _{MAIN} ) =	91.6	ft
Area of Main Basin (A _{MAIN} ) =	12,767	ft ²
Volume of Main Basin (V _{MAIN} ) =	42,274	ft ³
Calculated Total Basin Volume (V _{total} ) =	0.988	acre-feet

		Depth Increment =	0.10	ft			1	Ontional		1	
nd)		Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
		Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ² )	Area (ft ² )	(acre)	(ft 3)	(ac-ft)
		Top of Micropool	0.00		7.0	7.0	49		0.001		
		ISV	0.33		7.0	7.0	49		0.001	16	0.000
			0.40		7.0	7.0	49		0.001	19	0.000
			0.50		7.0	7.0	49		0.001	24	0.001
			0.60		7.0	7.0	49		0.001	29	0.001
			0.70		7.0	7.0	49		0.001	34	0.001
			0.80		7.0	7.0	49		0.001	39	0.001
			0.90		24.7	15.7	389		0.009	54	0.001
			1.00		50.1	28.2	1,415		0.032	139	0.003
		Floor	1.10		75.5	40.7	3,076		0.071	358	0.008
		Floor	1.20		100.9 101.7	53.2 54.0	5,372 5,496		0.123 0.126	775 1,319	0.018
			1.40		101.7	54.8	5,622		0.120	1,874	0.043
			1.50		103.3	55.6	5,748		0.132	2,443	0.056
nal Use	er Overrides		1.60		104.1	56.4	5,876		0.135	3,024	0.069
	acre-feet		1.70		104.9	57.2	6,005		0.138	3,618	0.083
	acre-feet		1.80		105.7	58.0	6,135		0.141	4,225	0.097
1.19	inches		1.90		106.5	58.8	6,267		0.144	4,845	0.111
1.50	inches		2.00		107.3	59.6	6,400		0.147	5,479	0.126
1.75	inches		2.10		108.1	60.4	6,534		0.150	6,125	0.141
2.00	inches		2.20		108.9	61.2	6,670		0.153	6,785	0.156
2.25	inches	-	2.30		109.7	62.0	6,806		0.156	7,459	0.171
2.52	inches	Zone 1 (WQCV)	2.32		109.9	62.2	6,834		0.157	7,596	0.174
	inches		2.40		110.5	62.8	6,945		0.159	8,147	0.187
			2.50		111.3	63.6 64.4	7,084		0.163	8,848 9,564	0.203
			2.60		112.1 112.9	64.4 65.2	7,224 7,366		0.166 0.169	9,564	0.220 0.236
			2.70		112.9	66.0	7,510		0.189	11,037	0.258
		Zone 2 (5-year)	2.90		114.5	66.8	7,654		0.172	11,795	0.233
		(, ,)	3.00		115.3	67.6	7,800		0.179	12,568	0.289
			3.10		116.1	68.4	7,947		0.182	13,355	0.307
			3.20		116.9	69.2	8,095		0.186	14,157	0.325
			3.30		117.7	70.0	8,245		0.189	14,974	0.344
			3.40		118.5	70.8	8,395		0.193	15,806	0.363
			3.50		119.3	71.6	8,548		0.196	16,653	0.382
			3.60		120.1	72.4	8,701		0.200	17,516	0.402
			3.70		120.9	73.2	8,856		0.203	18,393	0.422
			3.80		121.7	74.0	9,012		0.207	19,287	0.443
			3.90		122.5	74.8	9,169		0.210	20,196	0.464
			4.00 4.10		123.3 124.1	75.6 76.4	9,327 9,487		0.214 0.218	21,121 22,061	0.485
			4.20		124.9	77.2	9,648		0.221	23,018	0.528
			4.30		125.7	78.0	9,811		0.225	23,991	0.551
			4.40		126.5	78.8	9,974		0.229	24,980	0.573
			4.50		127.3	79.6	10,139		0.233	25,986	0.597
			4.60		128.1	80.4	10,306		0.237	27,008	0.620
			4.70		128.9	81.2	10,473		0.240	28,047	0.644
			4.80		129.7	82.0	10,642		0.244	29,103	0.668
			4.90		130.5	82.8	10,812		0.248	30,176	0.693
			5.00		131.3	83.6	10,983		0.252	31,265	0.718
			5.10		132.1	84.4	11,156		0.256	32,372	0.743
			5.20		132.9	85.2	11,330		0.260	33,497	0.769
			5.30		133.7	86.0	11,505		0.264	34,638	0.795
			5.40 5.50		134.5 135.3	86.8 87.6	11,681 11,859		0.268	35,798 36,975	0.822 0.849
			5.60		135.5	88.4	12,038		0.272	38,169	0.876
			5.70		136.9	89.2	12,030		0.280	39,382	0.904
			5.80		137.7	90.0	12,400		0.285	40,613	0.932
		7	5.90		138.5	90.8	12,583		0.289	41,862	0.961
		Zone 3 (100-year)	5.98 6.00		139.2 139.3	91.5 91.6	12,730 12,767		0.292	42,875 43,130	0.984 0.990
			6.10		140.1	92.4	12,952		0.297	44,416	1.020
			6.20 6.30		140.9 141.7	93.2 94.0	13,139 13,327		0.302	45,720 47,043	1.050 1.080
			6.40 6.50		142.5 143.3	94.8 95.6	13,516 13,707		0.310	48,386 49,747	1.111
			6.60		144.1	96.4	13,899		0.319	51,127	1.142 1.174
			6.70		144.9	97.2	14,092		0.324 0.328	52,527	1.206
			6.80 6.90		145.7 146.5	98.0 98.8	14,286 14,482		0.332	53,945 55,384	1.238
			7.00 7.10		147.3 148.1	99.6 100.4	14,679 14,877		0.337 0.342	56,842 58,320	1.305 1.339
			7.20		148.9	101.2	15,076		0.346	59,817	1.373
			7.30 7.40		149.7 150.5	102.0 102.8	15,277 15,479		0.351 0.355	61,335 62,873	1.408 1.443
			7.50		151.3	103.6	15,683		0.360	64,431	1.479
			7.60		152.1 152.9	104.4 105.2	15,887 16,093		0.365 0.369	66,009 67,608	1.515 1.552
			7.80		153.7	106.0	16,300		0.374	69,228	1.589
			7.90 8.00		154.5 155.3	106.8 107.6	16,509 16,718		0.379 0.384	70,868 72,530	1.627 1.665
			8.10		156.1	108.4	16,929		0.389	74,212	1.704
			8.20 8.30		156.9 157.7	109.2 110.0	17,142 17,355		0.394	75,916 77,640	1.743 1.782
			8.40		158.5	110.8	17,570		0.403	79,387	1.822
			8.50 8.60		159.3 160.1	111.6 112.4	17,786 18,004		0.408	81,154 82,944	1.863 1.904
			8.70		160.9	113.2	18,222		0.418	84,755	1.946
		1	8.80		161.7 162.5	114.0 114.8	18,442 18,664		0.423	86,588 88,444	1.988 2.030
				1		115.6	18,886		0.434	90,321	2.073
			9.00		163.3						
			9.00 9.10		164.1	116.4	19,110		0.439	92,221	2.117
			9.00 9.10 9.20 9.30		164.1 164.9 165.7	116.4 117.2 118.0	19,110 19,335 19,561		0.444 0.449	92,221 94,143 96,088	2.161 2.206
			9.00 9.10 9.20 9.30 9.40		164.1 164.9 165.7 166.5	116.4 117.2 118.0 118.8	19,110 19,335 19,561 19,789		0.444 0.449 0.454	92,221 94,143 96,088 98,056	2.161 2.206 2.251
			9.00 9.10 9.20 9.30		164.1 164.9 165.7	116.4 117.2 118.0	19,110 19,335 19,561		0.444 0.449	92,221 94,143 96,088	2.161 2.206

#### DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.04 (February 2021)

Project: Basin ID:			D-Detention, Vers		, ====,				
Basin ID:		h Master Drainage	Plan						
	Pond 10								
ZONE 2				Estimated	Estimated				
				Stage (ft)	Volume (ac-ft)	Outlet Type			
			Zone 1 (WQCV)	1.98	0.123	Orifice Plate			
	100-YEAR		Zone 2 (5-year)	2.53	0.084	Circular Orifice			
PERMANENT ORIFICES	ORIFICE								
	Configuration (Re	tention Pond)	Zone 3 (100-year)	5.36	0.603	Weir&Pipe (Restrict)			
	• •			Total (all zones)	0.810				
User Input: Orifice at Underdrain Outlet (typical						1		ters for Underdrain	
Underdrain Orifice Invert Depth =	N/A	ft (distance below	the filtration media	surface)	Under	Irain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdrair	Orifice Centroid =	N/A	feet	
User Input: Orifice Plate with one or more orific	es or Elliptical Slot	Weir (typically used	to drain WQCV and	d/or EURV in a sedi	mentation BMP)		Calculated Parame	eters for Plate	
Invert of Lowest Orifice =	0.00	ft (relative to basin	bottom at Stage =	= 0 ft)	WQ Orif	ce Area per Row =	3.125E-03	ft ²	
Depth at top of Zone using Orifice Plate =	1.98	ft (relative to basin	bottom at Stage =	= 0 ft)	Elli	ptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	8.80	inches			Ellipt	ical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	0.45	sq. inches (diamete	er = 3/4 inch)		E	lliptical Slot Area =	N/A	ft ²	
			. ,					•	
User Input: Stage and Total Area of Each Orific	e Row (numbered f	rom lowest to high	est)						
input ougo and rotarnica of Each offic	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Chann of Ovilian Contract (A)	0.00		1.32						
Stage of Orifice Centroid (ft)		0.66							
Orifice Area (sq. inches)	0.45	0.45	0.45						
		<b>B</b> 464 11							1
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									
User Input: Vertical Orifice (Circular or Rectang	ular)						Calculated Parame	eters for Vertical Ori	fice
	Zone 2 Circular	Not Selected					Zone 2 Circular	Not Selected	
Invert of Vertical Orifice =	1.98	N/A	ft (relative to basir	bottom at Stage =	= 0 ft) Ve	tical Orifice Area =	1.77	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	2.53	N/A	ft (relative to basir	bottom at Stage =	= 0 ft) Vertica	I Orifice Centroid =	0.75	N/A	feet
Vertical Orifice Diameter =	18.00	N/A	inches	-		,			
User Input: Overflow Weir (Dropbox with Flat o	r Sloped Grate and	Outlet Pine OP Per	tangular/Trangzoid	al Weir (and No Ou	tlet Dine)		Calculated Parame	eters for Overflow W	loir
Oser Input. Overnow weil (Diopbox with hat c					<u>tiet ripe)</u>	1			
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected	c .
Overflow Weir Front Edge Height, Ho =	4.70	N/A		oottom at Stage = 0 f			4.70	,	feet
Overflow Weir Front Edge Length =	3.00	N/A	feet			eir Slope Length =	3.00	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V	Gr					
Horiz. Length of Weir Sides =	3.00					0-yr Orifice Area =	1.55	N/A	
Overflow Grate Type =	5.00	N/A	feet		verflow Grate Open		1.55 6.26		ft ²
Granow Grate Type -	Type C Grate	N/A N/A	feet	Ov	verflow Grate Open			N/A	ft² ft²
Debris Clogging % =		N/A	feet %	Ov	verflow Grate Open	Area w/o Debris =	6.26	N/A	
	Type C Grate	N/A		Ov	verflow Grate Open	Area w/o Debris =	6.26	N/A	
	Type C Grate 50%	N/A N/A	%	Ov	verflow Grate Open Overflow Grate Ope	Area w/o Debris = n Area w/ Debris =	6.26 3.13	N/A	ft²
Debris Clogging % =	Type C Grate 50% e (Circular Orifice, R	N/A N/A estrictor Plate, or R	%	Ov	verflow Grate Open Overflow Grate Ope	Area w/o Debris = n Area w/ Debris =	6.26 3.13 s for Outlet Pipe w/	N/A N/A	ft²
Debris Clogging % =	Type C Grate 50% (Circular Orifice, R Zone 3 Restrictor	N/A N/A estrictor Plate, or R Not Selected	% ectangular Orifice)	O. C	verflow Grate Open Overflow Grate Ope	Area w/o Debris = n Area w/ Debris = Iculated Parameters	6.26 3.13 s for Outlet Pipe w/ Zone 3 Restrictor	N/A N/A / Flow Restriction Pli Not Selected	ft ²
Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe =	Type C Grate 50% (Circular Orifice, R Zone 3 Restrictor 1.00	N/A N/A estrictor Plate, or R Not Selected N/A	% <u>ectangular Orifice)</u> ft (distance below ba	Ov	verflow Grate Open overflow Grate Ope <u>Ca</u> = 0 ft) O	Area w/o Debris = n Area w/ Debris = nlculated Parameters utlet Orifice Area =	6.26 3.13 s for Outlet Pipe w/ Zone 3 Restrictor 4.03	N/A N/A / Flow Restriction Pla Not Selected N/A	ft ² ate ft ²
Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Type C Grate 50% (Circular Orifice, R Zone 3 Restrictor 1.00 36.00	N/A N/A estrictor Plate, or R Not Selected	% ectangular Orifice) ft (distance below ba inches	Ov C	verflow Grate Open Overflow Grate Ope <u>Ca</u> = 0 ft) O Outle	Area w/o Debris = n Area w/ Debris = alculated Parameters utlet Orifice Area = t Orifice Centroid =	6.26 3.13 s for Outlet Pipe w/ Zone 3 Restrictor 4.03 0.95	N/A N/A / Flow Restriction Pla Not Selected N/A N/A	ft ² ate ft ² feet
Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe =	Type C Grate 50% (Circular Orifice, R Zone 3 Restrictor 1.00	N/A N/A estrictor Plate, or R Not Selected N/A	% <u>ectangular Orifice)</u> ft (distance below ba	Ov C	verflow Grate Open Overflow Grate Ope <u>Ca</u> = 0 ft) O Outle	Area w/o Debris = n Area w/ Debris = nculated Parameters utlet Orifice Area =	6.26 3.13 s for Outlet Pipe w/ Zone 3 Restrictor 4.03	N/A N/A / Flow Restriction Pla Not Selected N/A N/A	ft ² ate ft ²
Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	Type C Grate 50% 2 (Circular Orifice, R Zone 3 Restrictor 1.00 36.00 20.00	N/A N/A estrictor Plate, or R Not Selected N/A	% ectangular Orifice) ft (distance below ba inches	Ov C	verflow Grate Open Overflow Grate Ope <u>Ca</u> = 0 ft) O Outle	Area w/o Debris = n Area w/ Debris = alculated Parameters utlet Orifice Area = t Orifice Centroid =	6.26 3.13 5 for Outlet Pipe w/ Zone 3 Restrictor 4.03 0.95 1.68	N/A N/A / Flow Restriction Pli Not Selected N/A N/A N/A	ft ² ate ft ² feet
Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = <u>User Input: Emergency Spillway (Rectangular or</u>	Type C Grate 50% (Circular Orifice, R Zone 3 Restrictor 1.00 36.00 20.00 Trapezoidal)	N/A N/A estrictor Plate, or R Not Selected N/A N/A	% ectangular Orifice) ft (distance below ba inches inches	OV C asin bottom at Stage Half-Cent	rerflow Grate Open Iverflow Grate Ope <u>Ca</u> = 0 ft) O Outle ral Angle of Restric	Area w/o Debris = n Area w/ Debris = <u>llculated Parameters</u> utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe =	6.26 3.13 2 for Outlet Pipe w/ Zone 3 Restrictor 4.03 0.95 1.68 <u>Calculated Parame</u>	N/A N/A / Flow Restriction Pi- Not Selected N/A N/A N/A N/A eters for Spillway	ft ² ate ft ² feet
Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = <u>User Input: Emergency Spillway (Rectangular or</u> Spillway Invert Stage=	Type C Grate           50%           : (Circular Orifice, R           Zone 3 Restrictor           1.00           36.00           20.00           Trapezoidal)           6.70	N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin	% ectangular Orifice) ft (distance below ba inches inches	OV C asin bottom at Stage Half-Cent	rerflow Grate Open Iverflow Grate Ope (Ca = 0 ft) O Outle ral Angle of Restric Spillway D	Area w/o Debris = n Area w/ Debris = <u>lculated Parameters</u> utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth=	6.26 3.13 Zone 3 Restrictor 4.03 0.95 1.68 <u>Calculated Parame</u> 0.94	N/A N/A / Flow Restriction Pli Not Selected N/A N/A N/A ters for Spillway feet	ft ² ate ft ² feet
Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = <u>User Input: Emergency Spillway (Rectangular or</u> Spillway Invert Stage= Spillway Crest Length =	Type C Grate           50%           :(Circular Orifice, R           Zone 3 Restrictor           1.00           36.00           20.00           Trapezoidal)           6.70           26.00	N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet	% ectangular Orifice) ft (distance below ba inches inches	OV C asin bottom at Stage Half-Cent	rerflow Grate Open Iverflow Grate Ope (Ca e 0 ft) O Outle ral Angle of Restric Spillway D Stage at	Area w/o Debris = n Area w/ Debris = <u>Iculated Parameters</u> utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard =	6.26 3.13 <u>s for Outlet Pipe w/</u> Zone 3 Restrictor 4.03 0.95 1.68 <u>Calculated Parame</u> 0.94 8.64	N/A N/A VFlow Restriction Pli Not Selected N/A N/A N/A ters for Spillway feet feet	ft ² ate ft ² feet
Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = <u>User Input: Emergency Spillway (Rectangular or</u> Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	Type C Grate           50%           : (Circular Orifice, R           Zone 3 Restrictor           1.00           36.00           20.00           Trapezoidal)           6.70           26.00           4.00	N/A N/A <u>Not Selected</u> N/A N/A t (relative to basin feet H:V	% ectangular Orifice) ft (distance below ba inches inches	OV C asin bottom at Stage Half-Cent	verflow Grate Open Overflow Grate Open (Car = 0 ft) O Outle ral Angle of Restric Spillway D Stage at Basin Area at	Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth = Fop of Freeboard = Fop of Freeboard =	6.26 3.13 5 for Outlet Pipe w/ Zone 3 Restrictor 4.03 0.95 1.68 <u>Calculated Parame</u> 0.94 8.64 0.42	N/A N/A / Flow Restriction Pli Not Selected N/A N/A N/A eters for Spillway feet feet acres	ft ² ate ft ² feet
Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = <u>User Input: Emergency Spillway (Rectangular or</u> Spillway Invert Stage= Spillway Crest Length =	Type C Grate           50%           :(Circular Orifice, R           Zone 3 Restrictor           1.00           36.00           20.00           Trapezoidal)           6.70           26.00	N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet	% ectangular Orifice) ft (distance below ba inches inches	OV C asin bottom at Stage Half-Cent	verflow Grate Open Overflow Grate Open (Car = 0 ft) O Outle ral Angle of Restric Spillway D Stage at Basin Area at	Area w/o Debris = n Area w/ Debris = <u>Iculated Parameters</u> utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard =	6.26 3.13 <u>s for Outlet Pipe w/</u> Zone 3 Restrictor 4.03 0.95 1.68 <u>Calculated Parame</u> 0.94 8.64	N/A N/A VFlow Restriction Pli Not Selected N/A N/A N/A ters for Spillway feet feet	ft ² ate ft ² feet
Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = <u>User Input: Emergency Spillway (Rectangular or</u> Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	Type C Grate           50%           : (Circular Orifice, R           Zone 3 Restrictor           1.00           36.00           20.00           Trapezoidal)           6.70           26.00           4.00	N/A N/A <u>Not Selected</u> N/A N/A t (relative to basin feet H:V	% ectangular Orifice) ft (distance below ba inches inches	OV C asin bottom at Stage Half-Cent	verflow Grate Open Overflow Grate Open (Car = 0 ft) O Outle ral Angle of Restric Spillway D Stage at Basin Area at	Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth = Fop of Freeboard = Fop of Freeboard =	6.26 3.13 5 for Outlet Pipe w/ Zone 3 Restrictor 4.03 0.95 1.68 <u>Calculated Parame</u> 0.94 8.64 0.42	N/A N/A / Flow Restriction Pli Not Selected N/A N/A N/A eters for Spillway feet feet acres	ft ² ate ft ² feet
Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = <u>User Input: Emergency Spillway (Rectangular or</u> Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Type C Grate           50%           Zone 3 Restrictor           1.00           36.00           20.00           Trapezoidal)           6.70           26.00           4.00           1.00	N/A N/A estrictor Plate, or R Not Selected N/A N/A t (relative to basin feet H:V feet	% ectangular Orifice) ft (distance below ba inches inches bottom at Stage =	Ov C asin bottom at Stage Half-Cent = 0 ft)	rerflow Grate Open Iverflow Grate Ope (Car = 0 ft) O Outle ral Angle of Restric Spillway D Stage at Basin Area at Basin Volume at	Area w/o Debris = n Area w/ Debris = <u>lculated Parameters</u> utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth = Fop of Freeboard = Fop of Freeboard = Fop of Freeboard =	6.26 3.13 5 for Outlet Pipe w/ Zone 3 Restrictor 4.03 0.95 1.68 Calculated Parame 0.94 8.64 0.42 1.92	N/A N/A V Flow Restriction Pi- Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft	ft ² ft ² feet radians
Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = <u>User Input: Emergency Spillway (Rectangular or</u> Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u>	Type C Grate           50%           (Circular Orifice, R           Zone 3 Restrictor           1.00           36.00           20.00           Trapezoidal)           6.70           26.00           4.00           1.00	N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A ft (relative to basin feet H:V feet	% ectangular Orifice) ft (distance below ba inches inches bottom at Stage =	Ov C asin bottom at Stage Half-Cent = 0 ft)	verflow Grate Open Iverflow Grate Open (Ca = 0 ft) O Outle ral Angle of Restric Spillway D Stage at Basin Area at Basin Volume at (Centering new value)	Area w/o Debris = n Area w/ Debris = <u>Iculated Parameters</u> utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Esign Flow Hyperboard = Top of Freeboard = Top of Freeboar	6.26 3.13 20ne 3 Restrictor 4.03 0.95 1.68 Calculated Parame 0.94 8.64 0.42 1.92 Chographs table (Col	N/A N/A V Flow Restriction Pli Not Selected N/A N/A N/A ters for Spillway feet feet acres acre-ft	ft ² ft ² feet radians
Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = <u>User Input: Emergency Spillway (Rectangular or</u> Spillway Invert Stage= Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period =	Type C Grate           50%           20ne 3 Restrictor           1.00           36.00           20.00           Trapezoidal)           6.70           26.00           4.00           1.00	N/A N/A N/A <u>Not Selected</u> N/A N/A t (relative to basin feet H:V feet H:V feet EURV	% ectangular Orifice) ft (distance below ba inches inches bottom at Stage = hottom at Stage = <u>HP hydrographs and</u> 2 Year	Ov C asin bottom at Stage Half-Cent : 0 ft) <u>f runoff volumes by</u> 5 Year	rerflow Grate Open verflow Grate Open verflow Grate Open <u>Ca</u> = 0 ft) O Outle ral Angle of Restric Spillway D Stage at ⁻ Basin Area at ⁻ Basin Volume at ⁻ <u>rentering new valu</u> 10 Year	Area w/o Debris = n Area w/ Debris = <u>alculated Parameters</u> utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Top of Freeboard =	6.26 3.13 s for Outlet Pipe w/ Zone 3 Restrictor 4.03 0.95 1.68 <u>Calculated Parame</u> 0.94 8.64 0.42 1.92 <i>trographs table (Citologian)</i>	N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 2000 Year	ft ² ft ² feet radians 4 <i>F</i> ). 500 Year
Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	Type C Grate           50%           Zone 3 Restrictor           1.00           36.00           20.00           Trapezoidal)           6.70           26.00           4.00           1.00	N/A N/A estrictor Plate, or R N/A N/A N/A ft (relative to basin feet H:V feet ride the default CU/I EURV N/A	% ectangular Orifice) ft (distance below ba inches inches bottom at Stage = <u>HP hydrographs and</u> <u>2 Year</u> 1.19	Ov C asin bottom at Stage Half-Cent = 0 ft) <u>6 runoff volumes by</u> <u>5 Year</u> 1.50	rerflow Grate Open verflow Grate Open verflow Grate Open Ca = 0 ft) O Outle ral Angle of Restric Spillway D Stage at Basin Area at Basin Area at Basin Area at Centering new valu 10 Year 1.75	Area w/o Debris = n Area w/ Debris = ilculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth = Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = tor of Freeboard = es in the Inflow Hype 25 Year 2.00	6.26 3.13 20ne 3 Restrictor 4.03 0.95 1.68 <u>Calculated Parame</u> 0.94 8.64 0.42 1.92 <u>drographs table (CC</u> 50 Year 2.25	N/A N/A N/A Not Selected N/A N/A N/A ters for Spillway feet feet acres acre-ft 0lumns W through A 100 Year 2.52	ft ² ft ² feet radians 4/7). 500 Year 3.14
Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = <u>User Input: Emergency Spillway (Rectangular or</u> Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) =	Type C Grate           50%           Zone 3 Restrictor           1.00           36.00           20.00           Trapezoidal)           6.70           26.00           4.00           1.00	N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet EURV N/A 0.206	% ectangular Orifice) ft (distance below ba inches inches bottom at Stage = <u>P hydrographs and</u> <u>2 Year</u> 1.19 0.293	Ov c asin bottom at Stage Half-Cent = 0 ft) <u>1 runoff volumes by</u> <u>5 Year 1.50</u> 0.647	rerflow Grate Open verflow Grate Open verflow Grate Open Ca = 0 ft) O Outle ral Angle of Restric Spillway D Stage at Basin Area at Basin Volume at <u>rentering new valu</u> <u>1.75</u> <u>1.000</u>	Area w/o Debris = n Area w/ Debris = ilculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth = Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = in the Inflow Hyy 2 Year 2.00 1.630	6.26 3.13 20ne 3 Restrictor 4.03 0.95 1.68 Calculated Parame 0.94 8.64 0.42 1.92 Correst table (Correst) Correst table (Correst) Corr	N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft Dolumns W through / 100 Year 2.52 2.677	ft ² feet radians <u>500 Year</u> <u>3.14</u> <u>3.804</u>
Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acreft) = User Override Inflow Hydrograph Volume (acreft) =	Type C Grate           50%           20ne 3 Restrictor           1.00           36.00           20.00           Trapezoidal)           6.70           26.00           4.00           1.00           7he user can over           WQCV           N/A	N/A N/A N/A Not Selected N/A N/A N/A ft (relative to basin feet H:V feet ride the default CUI EURV N/A 0.206 N/A	% ectangular Orifice) ft (distance below ba inches inches bottom at Stage = HP hydrographs and 2 Year 1.19 0.293 0.293	Ov C asin bottom at Stage Half-Cent = 0 ft) <u>5 Year 1.50</u> 0.647 2.509	rerflow Grate Open verflow Grate Open verflow Grate Open (2) (2) (2) (2) (2) (2) (2) (2)	Area w/o Debris = n Area w/ Debris = liculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = log of Freeboard = Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = log of Freeboard =	6.26 3.13 5 for Outlet Pipe w/ Zone 3 Restrictor 4.03 0.95 1.68 Calculated Parame 0.94 8.64 0.42 1.92 Clographs table (CC 50 Year 2.25 2.059 2.059	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft ² feet radians <u>4F</u> <i>j</i> . <u>500 Year</u> <u>3.14</u> <u>3.804</u> <u>3.804</u>
Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = <u>User Input: Emergency Spillway (Rectangular or</u> Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) =	Type C Grate           50%           Zone 3 Restrictor           1.00           36.00           20.00           Trapezoidal)           6.70           26.00           4.00           1.00	N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet EURV N/A 0.206	% ectangular Orifice) ft (distance below ba inches inches bottom at Stage = <u>P hydrographs and</u> <u>2 Year</u> 1.19 0.293	Ov c asin bottom at Stage Half-Cent = 0 ft) <u>1 runoff volumes by</u> <u>5 Year 1.50</u> 0.647	rerflow Grate Open Iverflow Grate Open Iverflow Grate Open Ca = 0 ft) O Outle ral Angle of Restric Spillway D Stage at Basin Area at Basin Volume at <u>rentering new valu</u> <u>1.75</u> 1.000	Area w/o Debris = n Area w/ Debris = ilculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth = Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = in the Inflow Hyy 2 Year 2.00 1.630	6.26 3.13 20ne 3 Restrictor 4.03 0.95 1.68 Calculated Parame 0.94 8.64 0.42 1.92 Correst table (Correst) Correst table (Correst) Corr	N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft Dolumns W through / 100 Year 2.52 2.677	ft ² feet radians <u>500 Year</u> <u>3.14</u> <u>3.804</u>
Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = <u>User Input: Emergency Spillway (Rectangular or</u> Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = User Override Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	Type C Grate           50%           Zone 3 Restrictor           1.00           36.00           20.00           Trapezoidal)           6.70           26.00           4.00           1.00           7he user can over           WQCV           N/A           N/A           N/A	N/A N/A Not Selected N/A N/A N/A ft (relative to basin feet H:V feet H:V feet CURV N/A 0.206 N/A N/A	% ectangular Orifice) ft (distance below ba inches inches bottom at Stage = HP hydrographs and 2 Year 1.19 0.293 0.293	Ov C asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50 0.647 2.509 5.7	rerflow Grate Open verflow Grate Open verflow Grate Open (2) (2) (2) (2) (2) (2) (2) (2)	Area w/o Debris = n Area w/ Debris = liculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = log of Freeboard = Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = log of Freeboard =	6.26 3.13 5 for Outlet Pipe w/ Zone 3 Restrictor 4.03 0.95 1.68 Calculated Parame 0.94 8.64 0.42 1.92 Clographs table (CC 50 Year 2.25 2.059 2.059	N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 0/umns W through / 100 Year 2.52 2.677 4.656 25.0	ft ² feet radians <u>4F</u> <i>)</i> . <u>500 Year</u> <u>3.14</u> <u>3.804</u> <u>3.804</u>
Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) =	Type C Grate           50%           (Circular Orifice, R           Zone 3 Restrictor           1.00           36.00           20.00           Trapezoidal)           6.70           26.00           4.00           1.00           7he user can over           WQCV           N/A           N/A           N/A           N/A           N/A           N/A	N/A N/A N/A estrictor Plate, or R N/A N/A N/A ft (relative to basin feet H:V feet H:V feet EURV N/A 0.206 N/A N/A N/A N/A N/A N/A	% ectangular Orifice) ft (distance below ba inches inches bottom at Stage = HP hydrographs and 2 Year 1.19 0.293 0.293 0.293 2.0 0.09 3.3	Ov C asin bottom at Stage Half-Cent = 0 ft)	rerflow Grate Open verflow Grate Open verflow Grate Open (Ca (Ca (Ca (Ca (Ca (Ca (Ca (Ca	Area w/o Debris = n Area w/ Debris = liculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = log of Freeboard =	6.26 3.13 5 for Outlet Pipe w/ Zone 3 Restrictor 4.03 0.95 1.68 Calculated Parame 0.94 8.64 0.42 1.92 drographs table (CC 50 Year 2.25 2.059 19.6 0.89 21.0	N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 2.52 2.677 4.656 25.0 39.2 1.79 37.7	ft ² ft ² feet radians 500 Year 3.14 3.804 35.0 1.60 36.7
Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Renoff Volume (acre-ft) = User Override Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Riow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Unflow Q (cfs) = Peak Outflow Q (cfs) =	Type C Grate           50%           Zone 3 Restrictor           1.00           36.00           20.00           Trapezoidal)           6.70           26.00           4.00           1.00	N/A N/A N/A estrictor Plate, or R N/A N/A N/A ft (relative to basin feet H:V feet ride the default CU// EURV N/A 0.206 N/A N/A N/A N/A N/A N/A 1.1	% ectangular Orifice) ft (distance below ba inches inches bottom at Stage = HP hydrographs and 2 Year 1.19 0.293 0.293 2.0 0.09 3.3 1.0	Ov C asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50 0.647 2.509 5.7 13.3 0.60 17.8 13.6	rerflow Grate Open verflow Grate Open verflow Grate Open (2) (2) (2) (2) (2) (2) (2) (2)	Area w/o Debris = n Area w/ Debris = ilculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = tor Plate on Pipe = rop of Freeboard = rop of Freeboard = rop of Freeboard = rop of Freeboard = 1.630 1.630 1.630 1.630 1.5.6 0.71 1.7.0 10.7	6.26 3.13 Zone 3 Restrictor 4.03 0.95 1.68 <u>Calculated Parame</u> 0.94 8.64 0.42 1.92 <i>drographs table (CC</i> 50 Year 2.25 2.059 2.059 19.6 0.89 2.1.0 13.6	N/A N/A N/A Not Selected N/A N/A N/A ters for Spillway feet feet acres acre-ft 0/umns W through / 2.52 2.677 4.656 25.0 39.2 1.79 37.7 33.9	ft ² fet radians 500 Year 3.14 3.804 3.804 3.804 3.804 3.804 3.804 3.804 3.804 3.160 3.60 3.1.4
Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = <u>User Input: Emergency Spillway (Rectangular or</u> Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Riow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Untflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q =	Type C Grate           50%           Zone 3 Restrictor           1.00           36.00           20.00           Trapezoidal)           6.70           26.00           4.00           1.00           7he user can over           WQCV           N/A	N/A N/A N/A estrictor Plate, or R N/A N/A N/A ft (relative to basin feet H:V feet H:V feet H:V feet N/A 0.206 N/A 0.206 N/A N/A N/A N/A N/A N/A N/A	% ectangular Orifice) ft (distance below ba inches inches bottom at Stage = <u>4P hydrographs and</u> <u>2 Year 1.19 0.293 2.0 0.09 3.3 1.0 N/A</u>	Ov C asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50 0.647 2.509 5.7 1.3.3 0.60 1.7.8 1.3.6 1.0	rerflow Grate Open Verflow Grate Open Verflow Grate Open Ce = 0 ft) O Outle ral Angle of Restrice Spillway D Stage at Basin Area at Basin Volume at Centering new value 10 Year 1.75 1.000 1.000 8.7 0.40 10.1 6.5 0.8	Area w/o Debris = n Area w/ Debris = ilculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = rop of Freeboard = 1630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.70 1.07 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.7 1.0.	6.26 3.13 20ne 3 Restrictor 4.03 0.95 1.68 <u>Calculated Parame</u> 0.94 8.64 0.42 1.92 2.059 2.059 2.059 19.6 0.89 21.0 13.6 0.7	N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft Dolumns W through A 100 Year 2.52 2.677 4.656 25.0 39.2 1.79 3.7.7 3.3.9 0.9	ft ² feet radians 500 Year 3.14 3.804 3.804 3.804 3.804 3.804 3.804 3.804 3.1.60 3.1.4 0.9
Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = <u>User Input: Emergency Spillway (Rectangular or</u> Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Peak Outflow to Predevelopment Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =	Type C Grate           50%           Zone 3 Restrictor           1.00           36.00           20.00           Trapezoidal)           6.70           26.00           4.00           1.00           3700           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000           7000	N/A N/A N/A estrictor Plate, or R N/A N/A N/A N/A ft (relative to basin feet H:V feet <i>ride the default CUI</i> EURV N/A 0.206 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	% ectangular Orifice) ft (distance below ba inches inches bottom at Stage = http://www.stage.org/stage bottom at Stage = http://www.stage.org/stage 2 Year 1.19 0.293 0.293 2.0 0.09 3.3 1.0 N/A Vertical Orifice 1	Ov c asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.50 0.647 2.509 5.7 13.3 0.60 17.8 13.6 1.0 Overflow Weir 1	rerflow Grate Open verflow Grate Open verflow Grate Open (2) = 0 ft) O Outle ral Angle of Restrice Spillway D Stage at Basin Area at Basin Volume at (2) Contenting new value 10 Year 1.75 1.000 8.7 0.40 10.1 6.5 0.8 Vertical Orifice 1	Area w/o Debris = n Area w/ Debris = ilculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = log of Freeboard =	6.26 3.13 5 for Outlet Pipe w/ Zone 3 Restrictor 4.03 0.95 1.68 Calculated Parame 0.94 8.64 0.42 1.92 Crographs table (CC 50 Year 2.25 2.059 1.96 0.89 2.1.0 1.3.6 0.7 Overflow Weir 1	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft ² feet radians 500 Year 3.14 3.804 3.804 3.804 3.804 3.804 3.804 3.804 3.14 0.9 0.9 0.9 0.9
Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	Type C Grate           50%           Zone 3 Restrictor           1.00           36.00           20.00           Trapezoidal)           6.70           26.00           4.00           1.00           7he user can over           N/A	N/A N/A N/A estrictor Plate, or R N/A N/A N/A N/A t (relative to basin feet H:V feet H:V feet EURV N/A 0.206 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	% ectangular Orifice) ft (distance below ba inches inches bottom at Stage = dP hydrographs and 2 Year 1.19 0.293 0.293 0.293 2.0 0.09 3.3 1.0 N/A Vertical Orifice 1 N/A	Ov Casin bottom at Stage Half-Cent 0 ft) 5 Year 1.50 0.647 2.509 5.7 13.3 0.60 17.8 13.6 1.0 Overflow Weir 1 0.2	rerflow Grate Open verflow Grate Open verflow Grate Open verflow Grate Open Ca = 0 ft) O Outle ral Angle of Restrice Spillway D Stage at ⁻ Basin Area at ⁻ Basin Volume at ⁻ Basin Volume at ⁻ entering new value 1.000 1.000 8.7  0.40 10.1 6.5 0.8 Vertical Orifice 1 N/A	Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = log of Freeboard = l	6.26 3.13 Zone 3 Restrictor 4.03 0.95 1.68 <u>Calculated Parame</u> 0.94 8.64 0.42 1.92 <del>Calculated Parame</del> 0.94 8.64 0.42 1.92 <del>Calculated Parame</del> 0.94 1.92 <del>Calculated Parame</del> 0.94 0.42 1.92 <del>Calculated Parame</del> 0.94 0.42 1.92 <del>Colos</del> 0.89 21.0 1.3.6 0.7 <u>Overflow Weir 1</u> 0.2	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 0/umns W through A 100 Year 2.52 2.677 4.656 25.0 39.2 1.79 37.7 33.9 0.9 0verflow Weir 1 3.0	ft ² ft ² feet radians 500 Year 3.14 3.804 3.804 3.804 3.804 3.5.0 
Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = <u>User Input: Emergency Spillway (Rectangular or</u> Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = User Override Inflow Hydrograph Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = CUHP Redevelopment Peak Q (cfs) = Predevelopment Unit Peak Row, q (cfs) are = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	Type C Grate           50%           Zone 3 Restrictor           1.00           36.00           20.00           Trapezoidal)           6.70           26.00           4.00           1.00	N/A N/A N/A estrictor Plate, or R N/A N/A N/A ft (relative to basin feet H:V feet ride the default CU/ EURV N/A 0.206 N/A 0.206 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	% ectangular Orifice) ft (distance below ba inches inches bottom at Stage = bottom at Stage = 2 Year 1.19 0.293 0.293 0.293 0.293 0.293 1.0 N/A Vertical Orifice 1 N/A N/A	Ov C asin bottom at Stage Half-Cent = 0 ft) = 0 ft) = 1.50 0.647 2.509 5.7 13.3 0.60 17.8 13.6 1.0 Overflow Weir 1 0.2 N/A	rerflow Grate Open Verflow Grate Open Verflow Grate Open Ca = 0 ft) O Outle ral Angle of Restrice Spillway D Stage at Basin Area at Basin Area at Basin Area at Basin Area at Centering new value 10 Year 1.000 1.000 8.7 0.40 10.1 6.5 0.8 Vertical Orifice 1 N/A N/A	Area w/o Debris = n Area w/ Debris = ilculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth = rop of Freeboard = rop of Freeboard = rop of Freeboard = rop of Freeboard = tor p of Freeboard = es in the Inflow Hyy 2.5 year 2.5 year 0.71 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.7.0 1.7.0 1.7.0 1.7.0 N/A	6.26 3.13 Zone 3 Restrictor 4.03 0.95 1.68 <u>Calculated Parame</u> 0.94 8.64 0.42 1.92 drographs table (CC 50 Year 2.059 2.059 2.059 19.6 0.89 21.0 13.6 0.7 Overflow Weir 1 0.2 N/A	N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 0lumns W through A 100 Year 2.52 2.677 4.656 25.0 39.2 1.79 37.7 33.9 0.9 Overflow Weir 1 3.0 N/A	ft ² ft ² feet radians 500 Year 3.14 3.804 3.804 3.804 3.804 3.804 3.804 3.804 3.804 3.804 3.804 3.804 3.14 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = <u>User Input: Emergency Spillway (Rectangular or</u> Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = CUHP Redevelopment Peak Q (cfs) = Predevelopment Unit Peak Now, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	Type C Grate           50%           Zone 3 Restrictor           1.00           36.00           20.00           Trapezoidal)           6.70           26.00           4.00           1.00           7he user can over           WOCV           N/A           0.123           N/A           N/A      >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	N/A N/A N/A estrictor Plate, or R N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A 0.206 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	% ectangular Orifice) ft (distance below ba inches inches bottom at Stage = <i>P hydrographs and</i> 2 Year 1.19 0.293 0.293 2.0  0.09 3.3 1.0 N/A Vertical Orifice 1 N/A V/A 44	Ov Casin bottom at Stage Half-Cent = 0 ft) = 0 ft) = 0 ft) = 1.50 0.647 2.509 5.7 13.3 0.60 1.7.8 13.6 1.0 Overflow Weir 1 0.2 N/A 21	rerflow Grate Open Verflow Grate Open Verflow Grate Open Ca = 0 ft) O Outle ral Angle of Restric Spillway D Stage at Basin Area at Basin Volume at Centering new value 10.75 1.000 1.000 8.7 0.40 10.1 0.5 0.8 Vertical Orifice 1 N/A N/A 35	Area w/o Debris = n Area w/ Debris = ilculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = rop of Freeboard = 1630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72	6.26 3.13 Zone 3 Restrictor 4.03 0.95 1.68 Calculated Parame 0.94 8.64 0.42 1.92 Corgraphs table (CC 50 Year 2.25 2.059 2.059 1.9.6 0.89 21.0 1.3.6 0.7 Overflow Weir 1 0.2 N/A 25	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft Dolumns W through A feet feet acres acre-ft 25.0 25.0 25.0 25.0 39.2 1.79 37.7 33.9 0.9 Overflow Weir 1 3.0 N/A 6	ft ² feet radians 4 <i>F</i> ). 500 Year 3.14 3.804 3.804 3.804 3.804 3.804 3.804 3.804 3.804 3.1.4 0.9 Dverflow Wei 2.7 N/A 11
Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = UHP Rudevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 99% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	Type C Grate           50%           Zone 3 Restrictor           1.00           36.00           20.00           Trapezoidal)           6.70           26.00           4.00           1.00           370           26.00           4.00           1.00	N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A H:V feet H:V feet EURV N/A 0.206 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	% ectangular Orifice) ft (distance below ba inches inches bottom at Stage = hP hydrographs and 2 Year 1.19 0.293 0.293 2.0 0.09 3.3 1.0 N/A Vertical Orifice 1 N/A VA4 44 47	Ov Casin bottom at Stage Half-Cent = 0 ft) = 0 ft) = 0 ft) = 1.50 0.647 2.509 5.7 1.3.3 0.60 1.7.8 1.3.6 1.0 Overflow Weir 1 0.2 N/A 2.1 3.8	rerflow Grate Open verflow Grate Open verflow Grate Open verflow Grate Open (2) (2) (2) (2) (2) (2) (2) (2)	Area w/o Debris = n Area w/ Debris = ilculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = log of Freeboard =	6.26 3.13 20ne 3 Restrictor 4.03 0.95 1.68 <u>Calculated Parame</u> 0.94 8.64 0.42 1.92 <u>drographs table (CC</u> 50 Year 2.25 2.059 19.6 0.89 21.0 13.6 0.7 <u>Overflow Weir 1</u> 0.2 N/A 25 40	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft ² fet radians 500 Year 3.14 3.804 35.0 1.60 36.7 31.4 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = <u>User Input: Emergency Spillway (Rectangular or</u> Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = CUHP Redevelopment Peak Q (cfs) = Predevelopment Unit Peak Now, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	Type C Grate           50%           Zone 3 Restrictor           1.00           36.00           20.00           Trapezoidal)           6.70           26.00           4.00           1.00           7he user can over           WOCV           N/A           0.123           N/A           N/A      >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	N/A N/A N/A estrictor Plate, or R N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A 0.206 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	% ectangular Orifice) ft (distance below ba inches inches bottom at Stage = <i>P hydrographs and</i> 2 Year 1.19 0.293 0.293 2.0  0.09 3.3 1.0 N/A Vertical Orifice 1 N/A V/A 44	Ov Casin bottom at Stage Half-Cent = 0 ft) = 0 ft) = 0 ft) = 1.50 0.647 2.509 5.7 13.3 0.60 1.7.8 13.6 1.0 Overflow Weir 1 0.2 N/A 21	rerflow Grate Open Verflow Grate Open Verflow Grate Open Ca = 0 ft) O Outle ral Angle of Restric Spillway D Stage at Basin Area at Basin Volume at Centering new value 10.75 1.000 1.000 8.7 0.40 10.1 0.5 0.8 Vertical Orifice 1 N/A N/A 35	Area w/o Debris = n Area w/ Debris = ilculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = rop of Freeboard = 1630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.630 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72	6.26 3.13 Zone 3 Restrictor 4.03 0.95 1.68 Calculated Parame 0.94 8.64 0.42 1.92 Corgraphs table (CC 50 Year 2.25 2.059 2.059 1.9.6 0.89 21.0 1.3.6 0.7 Overflow Weir 1 0.2 N/A 25	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft Dolumns W through A feet feet acres acre-ft 25.0 25.0 25.0 25.0 39.2 1.79 37.7 33.9 0.9 Overflow Weir 1 3.0 N/A 6	ft ² feet radians 500 Year 3.14 3.804 3.804 3.804 3.804 3.804 3.804 3.804 3.804 3.804 3.804 3.804 3.1.4 0.9 Dverflow Weir 2.7 N/A 11
Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = User Override Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (dfs/acre) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Maximum Ponding Depth (ft) =	Type C Grate           50%           Zone 3 Restrictor           1.00           36.00           20.00           Trapezoidal)           6.70           26.00           4.00           1.00           7/he user can over           WOCV           N/A           N/A </td <td>N/A N/A N/A estrictor Plate, or R N/A N/A N/A t (relative to basin feet H:V feet et EURV N/A 0.206 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A</td> <td>% ectangular Orifice) ft (distance below ba inches inches bottom at Stage = HP hydrographs and 2 Year 1.19 0.293 0.293 2.0 0.09 3.3 1.0 N/A Vertical Orifice 1 N/A N/A 44 47 2.46</td> <td>Ov Casin bottom at Stage Half-Cent - 0 ft) - 0 ft) - 5 Year - 1.50 - 0.647 - 2.509 - 5.7 - 13.3 - 0.60 - 17.8 - 13.6 - 1.0 - Overflow Weir 1 - 0.2 - N/A - 21 - 38 - 4.85</td> <td>rerflow Grate Open verflow Grate Open verflow Grate Open verflow Grate Open (2) (2) (2) (2) (2) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4</td> <td>Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = log of Freeboard = l</td> <td>6.26 3.13 Zone 3 Restrictor 4.03 0.95 1.68 <u>Calculated Parame</u> 0.94 8.64 0.42 1.92 <del>Calculated Parame</del> 0.94 8.64 0.42 1.92 <del>Calculated Parame</del> 0.94 <del>Calculated Parame</del> 0.94 <del>Calculated Parame</del> <del>Calculated Parame <del>Calculated Parame</del> <del>Calculated Parame</del> <del>Calculated Parame <del>Calculated Parame <u>Calculated Parame</u> <del>Calculated Parame <u>Calculated Parame</u> <u>Calculated Parame</u> <u>Calcula</u></del></del></del></del></td> <td>N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A</td> <td>ft² fet fet radians 500 Year 3.14 3.804 35.0 1.60 36.7 31.4 0.9 0verflow Weit 2.7 N/A 11 33 5.71</td>	N/A N/A N/A estrictor Plate, or R N/A N/A N/A t (relative to basin feet H:V feet et EURV N/A 0.206 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	% ectangular Orifice) ft (distance below ba inches inches bottom at Stage = HP hydrographs and 2 Year 1.19 0.293 0.293 2.0 0.09 3.3 1.0 N/A Vertical Orifice 1 N/A N/A 44 47 2.46	Ov Casin bottom at Stage Half-Cent - 0 ft) - 0 ft) - 5 Year - 1.50 - 0.647 - 2.509 - 5.7 - 13.3 - 0.60 - 17.8 - 13.6 - 1.0 - Overflow Weir 1 - 0.2 - N/A - 21 - 38 - 4.85	rerflow Grate Open verflow Grate Open verflow Grate Open verflow Grate Open (2) (2) (2) (2) (2) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4	Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = log of Freeboard = l	6.26 3.13 Zone 3 Restrictor 4.03 0.95 1.68 <u>Calculated Parame</u> 0.94 8.64 0.42 1.92 <del>Calculated Parame</del> 0.94 8.64 0.42 1.92 <del>Calculated Parame</del> 0.94 <del>Calculated Parame</del> 0.94 <del>Calculated Parame</del> <del>Calculated Parame <del>Calculated Parame</del> <del>Calculated Parame</del> <del>Calculated Parame <del>Calculated Parame <u>Calculated Parame</u> <del>Calculated Parame <u>Calculated Parame</u> <u>Calculated Parame</u> <u>Calcula</u></del></del></del></del>	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft ² fet fet radians 500 Year 3.14 3.804 35.0 1.60 36.7 31.4 0.9 0verflow Weit 2.7 N/A 11 33 5.71

# DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename: ... [SWMM[Outflow hydrographs]Pond6_OutflowHydrograph.xlsx

-	The user can o	verride the calcu	lated inflow hyd	lrographs from t	his workbook wi	th inflow hydrog	raphs developed	l in a separate pr	ogram.	
[	SOURCE	CUHP	CUHP	CUHP	USER	CUHP	CUHP	CUHP	USER	CUHP
me Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [d
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
ĺ	0:10:00	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.05	0.01
	0:15:00	0.00	0.00	0.03	1.83	0.06	0.04	0.05	1.39	0.07
	0:20:00	0.00	0.00	0.11	9.48	0.47	0.11	0.13	8.51	0.45
	0:25:00	0.00	0.00	0.97	14.91	5.06	0.92	1.21	22.24	4.95
	0:30:00	0.00	0.00	2.57	17.12	8.84	9.02	11.66	31.63	20.83
	0:35:00	0.00	0.00	3.18	17.81	9.99	14.05	17.64	36.02	30.90
	0:45:00	0.00	0.00	3.29 3.11	17.64 17.35	10.09 9.65	16.51 17.00	20.48	37.66 37.68	35.22 36.71
	0:50:00	0.00	0.00	2.84	16.96	8.96	16.79	20.76	36.95	36.31
ľ	0:55:00	0.00	0.00	2.61	16.50	8.35	15.81	19.62	36.11	35.07
	1:00:00	0.00	0.00	2.41	16.04	7.79	14.79	18.46	35.23	33.85
	1:05:00	0.00	0.00	2.22	15.74	7.25	13.82	17.33	33.48	32.63
	1:10:00	0.00	0.00	2.01	15.37	6.84	12.57	15.85	31.77	30.15
	1:15:00	0.00	0.00	1.85	14.87	6.52	11.51	14.62	29.79	27.86
-	1:20:00	0.00	0.00	1.70	14.33	6.07	10.54	13.40	27.78	25.45
ļ	1:25:00	0.00	0.00	1.55	13.77	5.55	9.62	12.24	25.86	23.11
ŀ	1:30:00	0.00	0.00	1.41	13.20	5.03	8.72	11.10	23.99	20.91
ŀ	1:35:00 1:40:00	0.00	0.00	1.26	12.43 11.70	4.51 4.01	7.84 6.98	9.99 8.91	22.18 20.48	18.81 16.77
ł	1:45:00	0.00	0.00	0.99	11.70	3.55	6.14	7.85	19.08	14.83
ŀ	1:50:00	0.00	0.00	0.99	10.69	3.23	5.39	6.92	17.99	14.65
	1:55:00	0.00	0.00	0.81	10.23	2.98	4.85	6.25	17.09	11.89
	2:00:00	0.00	0.00	0.75	9.42	2.74	4.42	5.71	15.71	10.84
	2:05:00	0.00	0.00	0.69	8.54	2.50	4.03	5.21	14.26	9.85
	2:10:00	0.00	0.00	0.63	7.69	2.27	3.68	4.74	12.87	8.95
	2:15:00	0.00	0.00	0.57	6.90	2.05	3.35	4.31	11.57	8.10
	2:20:00	0.00	0.00	0.52	6.17	1.84	3.03	3.90	10.38	7.31
	2:25:00	0.00	0.00	0.46	5.49	1.64	2.73	3.51	9.28	6.57
-	2:30:00	0.00	0.00	0.41	4.85	1.44	2.44	3.13	8.23	5.87
-	2:35:00 2:40:00	0.00	0.00	0.35	4.25 3.68	1.25	2.15	2.76	7.22 6.26	5.19 4.51
ŀ	2:45:00	0.00	0.00	0.30	3.14	0.89	1.58	2.03	5.32	3.84
	2:50:00	0.00	0.00	0.20	2.62	0.72	1.30	1.67	4.39	3.17
	2:55:00	0.00	0.00	0.15	2.14	0.54	1.01	1.31	3.51	2.50
	3:00:00	0.00	0.00	0.10	1.79	0.37	0.73	0.95	2.76	1.84
	3:05:00	0.00	0.00	0.06	1.52	0.25	0.45	0.61	2.21	1.24
	3:10:00	0.00	0.00	0.04	1.29	0.19	0.28	0.40	1.80	0.85
	3:15:00	0.00	0.00	0.03	1.10	0.15	0.18	0.27	1.47	0.60
	3:20:00	0.00	0.00	0.02	0.94	0.12	0.12	0.19	1.22	0.42
-	3:25:00	0.00	0.00	0.02	0.79	0.10	0.08	0.13	1.00	0.28
ŀ	3:30:00 3:35:00	0.00	0.00	0.01	0.66	0.07	0.05	0.09	0.81	0.19
ŀ	3:40:00	0.00	0.00	0.01	0.54	0.06	0.04	0.06	0.66	0.12
ł	3:45:00	0.00	0.00	0.01	0.44	0.04	0.02	0.04	0.54	0.07
ŀ	3:50:00	0.00	0.00	0.01	0.33	0.02	0.02	0.02	0.35	0.03
	3:55:00	0.00	0.00	0.00	0.21	0.02	0.01	0.02	0.27	0.03
	4:00:00	0.00	0.00	0.00	0.15	0.01	0.01	0.01	0.21	0.02
ļ	4:05:00	0.00	0.00	0.00	0.11	0.01	0.00	0.01	0.15	0.02
ļ	4:10:00 4:15:00	0.00	0.00	0.00	0.07 0.04	0.01 0.00	0.00	0.01 0.00	0.10 0.06	0.01
-	4:15:00	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.06	0.01
ŀ	4:25:00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.03	0.00
ļ	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	4:35:00 4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ł	5:00:00 5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:25:00 5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:50:00 5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MHFD-Detention, Version 4.04 (February 2021)

#### Project: Flying Horse North Master Drainage Plan Basin ID: Pond 11

-	ZONE 3	
PERMANENT	ZONE 1 AND 2 ORIFICES Example Zone Configura	tion (Retention Pond)

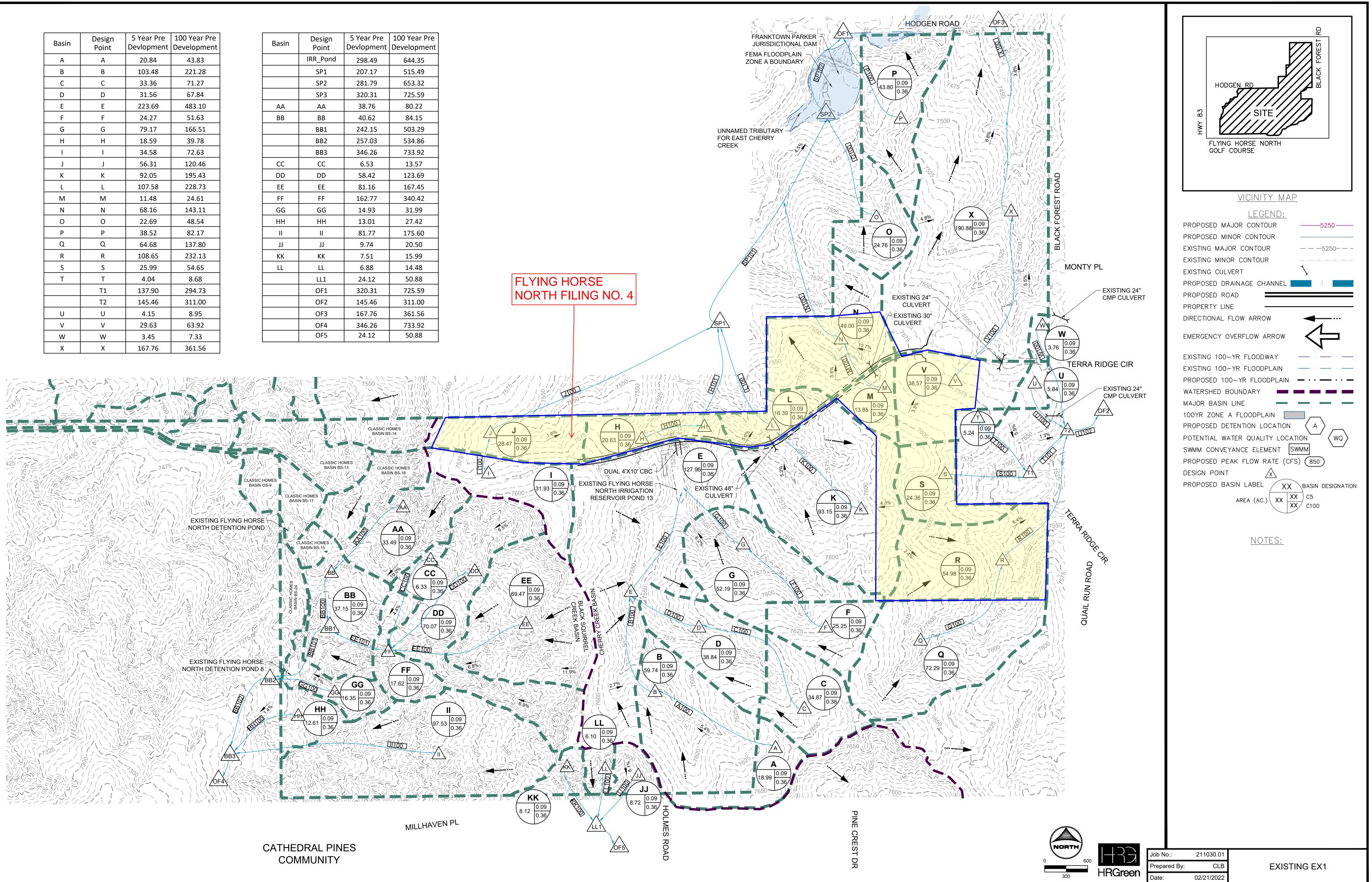
Watershed Information

tersneu miormauon		
Selected BMP Type =	EDB	
Watershed Area =	79.73	acres
Watershed Length =	2,715	ft
Watershed Length to Centroid =	1,530	ft
Watershed Slope =	0.037	ft/ft
Watershed Imperviousness =	28.50%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

# After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

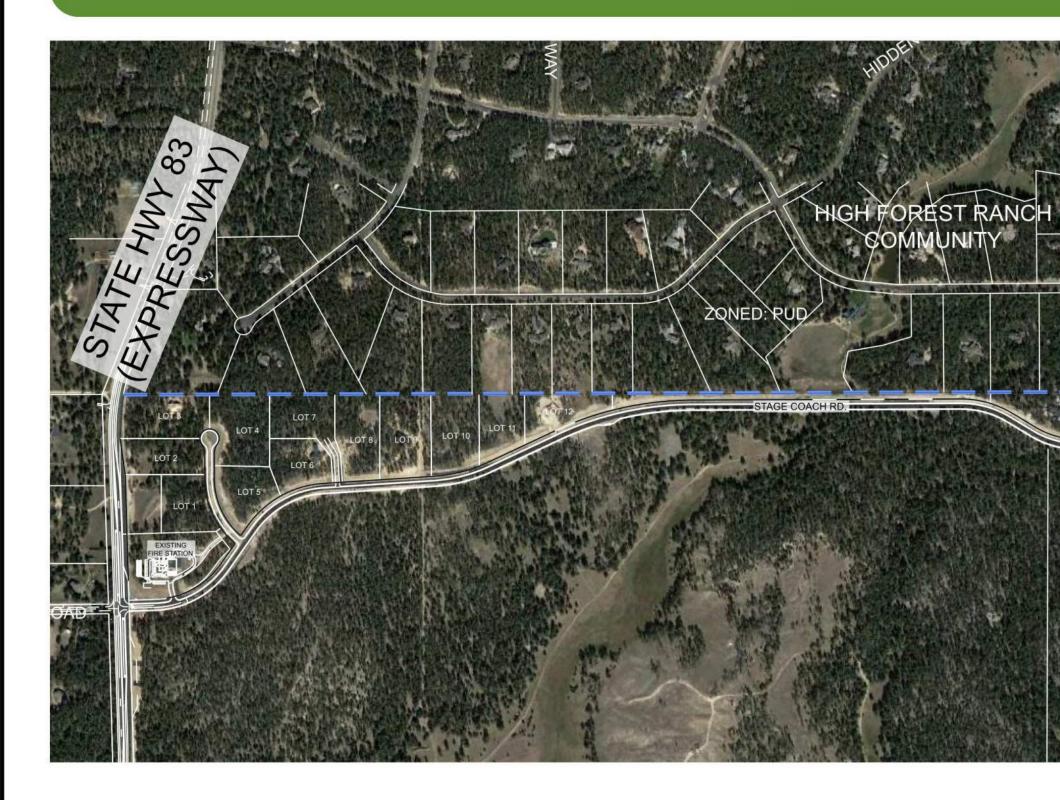
depuis, click Ran corn to generate ran				
the embedded Colorado Urban Hydro	ograph Procedu	ire.	Optional User	Overrides
Water Quality Capture Volume (WQCV) =	0.975	acre-feet		acre-feet
Excess Urban Runoff Volume (EURV) =	2.322	acre-feet		acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	2.370	acre-feet	1.19	inches
5-yr Runoff Volume (P1 = 1.5 in.) =	3.903	acre-feet	1.50	inches
10-yr Runoff Volume (P1 = 1.75 in.) =	5.321	acre-feet	1.75	inches
25-yr Runoff Volume (P1 = 2 in.) =	7.486	acre-feet	2.00	inches
50-yr Runoff Volume (P1 = 2.25 in.) =	9.112	acre-feet	2.25	inches
100-yr Runoff Volume (P1 = 2.52 in.) =	11.293	acre-feet	2.52	inches
500-yr Runoff Volume (P1 = 3.39 in.) =	17.208	acre-feet	3.39	inches
Approximate 2-yr Detention Volume =	1.653	acre-feet		
Approximate 5-yr Detention Volume =	2.375	acre-feet		
Approximate 10-yr Detention Volume =	3.504	acre-feet		
Approximate 25-yr Detention Volume =	4.095	acre-feet		
Approximate 50-yr Detention Volume =	4.317	acre-feet		
Approximate 100-yr Detention Volume =	5.132	acre-feet		

#### Define Zones and Basin Geometry


Zone 1 Volume (WQCV) =	0.975	acre-feet
Zone 2 Volume (5-year - Zone 1) =	1.400	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	2.757	acre-feet
Total Detention Basin Volume =	5.132	acre-feet
Initial Surcharge Volume (ISV) =	127	ft ³
Initial Surcharge Depth (ISD) =	0.33	ft
Total Available Detention Depth $(H_{total}) =$	6.00	ft
Depth of Trickle Channel (H _{TC} ) =	0.50	ft
Slope of Trickle Channel (STC) =	0.004	ft/ft
Slopes of Main Basin Sides (Smain) =	4	H:V
Basin Length-to-Width Ratio (R _{L/W} ) =	2	
Initial Surcharge Area $(A_{ISV}) =$	386	ft ²
Surcharge Volume Length (Lucy) =	19.6	ft f

Surcharge Volume Length $(L_{ISV}) =$	19.6	ft
Surcharge Volume Width (W _{ISV} ) =	19.6	ft
Depth of Basin Floor (H _{FLOOR} ) =	0.99	ft
Length of Basin Floor $(L_{FLOOR}) =$	271.1	ft
Width of Basin Floor $(W_{FLOOR})$ =	143.4	ft
Area of Basin Floor (A _{FLOOR} ) =	38,876	ft ²
Volume of Basin Floor (V _{FLOOR} ) =	14,235	ft ³
Depth of Main Basin $(H_{MAIN}) =$	4.18	ft
Length of Main Basin $(L_{MAIN}) =$	304.5	ft
Width of Main Basin (W _{MAIN} ) =	176.8	ft
Area of Main Basin (A _{MAIN} ) =	53,855	ft ²
Volume of Main Basin (V _{MAIN} ) =	192,959	ft ³
Calculated Total Basin Volume ( $V_{total}$ ) =	4.764	acre-feet

Depth Increment =	0.10 ft	t							
		Optional				Optional			
Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volur
Description		Stage (ft)	(ft)	(ft)	(ft ² )	Area (ft ² )	(acre)	(ft 3)	(ac-f
Top of Micropool	0.00		19.6	19.6	386		0.009		
ISV	0.33		19.6	19.6	386		0.009	127	0.00
	0.40		19.6	19.6	386		0.009	154	0.00
	0.50		19.6	19.6	386		0.009	193	0.00
	0.60		19.6	19.6	386		0.009	232	0.00
	0.70		19.6	19.6	386		0.009	270	0.00
	0.80		19.6	19.6	386		0.009	309	0.00
	0.90		37.4	28.4	1,063		0.024	369	0.00
	1.00		62.8	40.9	2,569		0.024	546	0.00
	1.10		88.2	53.4	4,711		0.108	904	0.02
	1.20		113.6	65.9	7,488		0.172	1,509	0.03
	1.30		139.0	78.4	10,899		0.250	2,423	0.05
	1.40		164.4	90.9	14,946		0.343	3,710	0.08
1	1.50		189.8	103.4	19,628		0.451	5,433	0.12
	1.60		215.2	115.9	24,944		0.573	7,657	0.17
	1.70		240.6	128.4	30,896		0.709	10,443	0.24
	1.80		266.0	140.9	37,482		0.860	13,857	0.31
Floor	1.82		271.1	143.4	38,876		0.892	14,621	0.33
	1.90		271.7	144.0	39,142		0.899	17,741	0.40
	2.00		272.5	144.8	39,475		0.906	21,672	0.49
	2.10		273.3	145.6	39,809		0.914	25,636	0.58
	2.10		273.3	146.4	40,145		0.922	29,634	0.68
	2.20		274.1	147.2	40,482		0.922	33,665	0.00
7 4 (**** ****	2.40		275.7	148.0	40,821		0.937	37,730	0.86
Zone 1 (WQCV)	2.45		276.1	148.4	40,990		0.941	39,776	0.91
	2.50		276.5	148.8	41,160		0.945	41,830	0.96
	2.60		277.3	149.6	41,501		0.953	45,963	1.05
	2.70		278.1	150.4	41,844		0.961	50,130	1.15
	2.80		278.9	151.2	42,187		0.968	54,331	1.24
	2.90		279.7	152.0	42,532		0.976	58,567	1.34
	3.00		280.5	152.8	42,878		0.984	62,838	1.44
	3.10		281.3	153.6	43,225		0.992	67,143	1.54
	3.20		282.1	154.4	43,574		1.000	71,483	1.64
Zono 2 (E-woor)	3.23		282.4	154.7			1.000	72,792	-
Zone 2 (5-year)	3.30		282.9	154.7	43,679		1.003		1.67
					43,924			75,858	
	3.40		283.7	156.0	44,275		1.016	80,268	1.84
	3.50		284.5	156.8	44,627		1.025	84,713	1.94
	3.60		285.3	157.6	44,981		1.033	89,193	2.04
1	3.70		286.1	158.4	45,336		1.041	93,709	2.15
	3.80		286.9	159.2	45,693		1.049	98,260	2.25
	3.90		287.7	160.0	46,050		1.057	102,848	2.36
	4.00		288.5	160.8	46,409		1.065	107,471	2.46
	4.10		289.3	161.6	46,769		1.074	112,129	2.57
	4.20		290.1	162.4	47,131		1.082	116,824	2.68
	4.30		290.9	163.2	47,493		1.090	121,556	2.79
	4.40		291.7	164.0	47,857		1.099	126,323	2.90
	4.50		292.5	164.8	48,223		1.107	131,127	3.01
			292.3	165.6					3.12
	4.60				48,589		1.115	135,968	
	4.70		294.1	166.4	48,957		1.124	140,845	3.23
	4.80		294.9	167.2	49,326		1.132	145,759	3.34
	4.90		295.7	168.0	49,696		1.141	150,710	3.46
	5.00		296.5	168.8	50,068		1.149	155,698	3.57
	5.10		297.3	169.6	50,441		1.158	160,724	3.69
	5.20		298.1	170.4	50,815		1.167	165,787	3.80
	5.30		298.9	171.2	51,191		1.175	170,887	3.92
	5.40		299.7	172.0	51,568		1.184	176,025	4.04
	5.50		300.5	172.8	51,946		1.193	181,201	4.16
	5.60		301.3	172.6	52,325		1.201	186,414	4 27
	5.60		301.3	173.6	52,325		1.201	186,414	4.2/
	5.80		302.9	175.2	53,087		1.219	196,955	4.52
Zono 2 /100	5.90		303.7 304.4	176.0	53,471		1.228	202,283	4.64
Zone 3 (100-year)	5.98 6.00		304.4	176.7 176.8	53,778 53,855		1.235	206,573 207,649	4.74
	6.10		305.3	177.6	54,241		1.245	213,054	4.89
I	6.20		306.1	178.4	54,628		1.254	218,498	5.01
	6.30 6.40		306.9 307.7	179.2 180.0	55,016 55,406		1.263	223,980 229,501	5.14
	6.50		308.5	180.8	55,797		1.281	235,061	5.39
	6.60		309.3	181.6	56,189		1.290	240,660	5.52
	6.70 6.80		310.1 310.9	182.4 183.2	56,582 56,977		1.299	246,299 251,977	5.65 5.78
	6.90		311.7	184.0	57,373		1.317	257,694	5.91
	7.00		312.5	184.8	57,770		1.326	263,451	6.04
	7.10 7.20		313.3 314.1	185.6 186.4	58,169 58,569		1.335	269,248 275,085	6.18
	7.30		314.1 314.9	186.4	58,569		1.345	275,085 280,962	6.45
	7.40		315.7	188.0	59,372		1.363	286,879	6.58
	7.50 7.60		316.5 317.3	188.8 189.6	59,776		1.372	292,837	6.72 6.86
	7.60		317.3 318.1	189.6	60,181 60,587		1.382	298,834 304,873	6.8
	7.80		318.9	190.4	60,994		1.391	310,952	7.13
	7.90		319.7	192.0	61,403		1.410	317,072	7.27
	8.00 8.10		320.5 321.3	192.8 193.6	61,813		1.419 1.428	323,232 329,434	7.42
	8.10		321.3	193.6	62,225 62,637		1.428	329,434 335,677	7.50
	8.30		322.9	195.2	63,051		1.447	341,962	7.85
	8.40		323.7	196.0	63,466		1.457	348,288	7.99
	8.50 8.60		324.5 325.3	196.8 197.6	63,883 64,301		1.467 1.476	354,655 361,064	8.14
	8.70		326.1	198.4	64,720		1.486	367,515	8.43
			326.9	199.2	65,140		1.495	374,008	8.58
	8.80				65,561		1.505	380,543	8.73
	8.80 8.90		327.7	200.0				207 121	
	8.80 8.90 9.00 9.10		327.7 328.5 329.3	200.8	65,984		1.515	387,121	8.88
	8.80 8.90 9.00 9.10 9.20		328.5 329.3 330.1	200.8 201.6 202.4	65,984 66,409 66,834		1.515 1.525 1.534	387,121 393,740 400,402	8.88 9.03 9.19
	8.80 9.00 9.10 9.20 9.30		328.5 329.3 330.1 330.9	200.8 201.6 202.4 203.2	65,984 66,409 66,834 67,261		1.515 1.525 1.534 1.544	387,121 393,740 400,402 407,107	8.88 9.03 9.19 9.34
	8.80 8.90 9.00 9.10 9.20		328.5 329.3 330.1	200.8 201.6 202.4	65,984 66,409 66,834		1.515 1.525 1.534	387,121 393,740 400,402	8.88 9.03 9.19


Basin	Design Point	5 Year Pre Devlopment	100 Year Pre Development
А	А	20.84	43.83
В	В	103.48	221.28
С	С	33.36	71.27
D	D	31.56	67.84
Е	E	223.69	483.10
F	F	24.27	51.63
G	G	79.17	166.51
Н	Н	18.59	39.78
Ι	I	34.58	72.63
J	J	56.31	120.46
К	К	92.05	195.43
L	L	107.58	228.73
Μ	М	11.48	24.61
N	Ν	68.16	143.11
0	0	22.69	48.54
Р	Р	38.52	82.17
Q	Q	64.68	137.80
R	R	108.65	232.13
S	S	25.99	54.65
Т	Т	4.04	8.68
	T1	137.90	294.73
	T2	145.46	311.00
U	U	4.15	8.95
V	V	29.63	63.92
W	W	3.45	7.33
Х	Х	167.76	361.56

	Design	5 Year Pre	100 Year Pre
Basin	Point	Devlopment	Development
	IRR_Pond	298.49	644.35
	SP1	207.17	515.49
	SP2	281.79	653.32
	SP3	320.31	725.59
AA	AA	38.76	80.22
BB	BB	40.62	84.15
	BB1	242.15	503.29
	BB2	257.03	534.86
	BB3	346.26	733.92
CC	СС	6.53	13.57
DD	DD	58.42	123.69
EE	EE	81.16	167.45
FF	FF	162.77	340.42
GG	GG	14.93	31.99
HH	HH	13.01	27.42
Π	I	81.77	175.60
JJ	JJ	9.74	20.50
КК	КК	7.51	15.99
LL	LL	6.88	14.48
	LL1	24.12	50.88
	OF1	320.31	725.59
	OF2	145.46	311.00
	OF3	167.76	361.56
	OF4	346.26	733.92
	OF5	24.12	50.88



# LEGEND

ESTATE LOTS (5 AC)		HOTEL
ESTATE LOTS (2.5 AC)		SCHOC
LOW DENSITY		FHN TR
MEDIUM DENSITY		PUBLIC
COMMERCIAL		EXISTI
GOLF CLUB, FITNESS CENTER,		
RESTAURANT/BAR (HOTEL)	53	PARK/F
HOTEL COMPLEX		
CLUBHOUSE	23	FITNES
ROADWAY		
DETENTION	25	POTEN
SITE BOUNDARY		
	24	DETEN



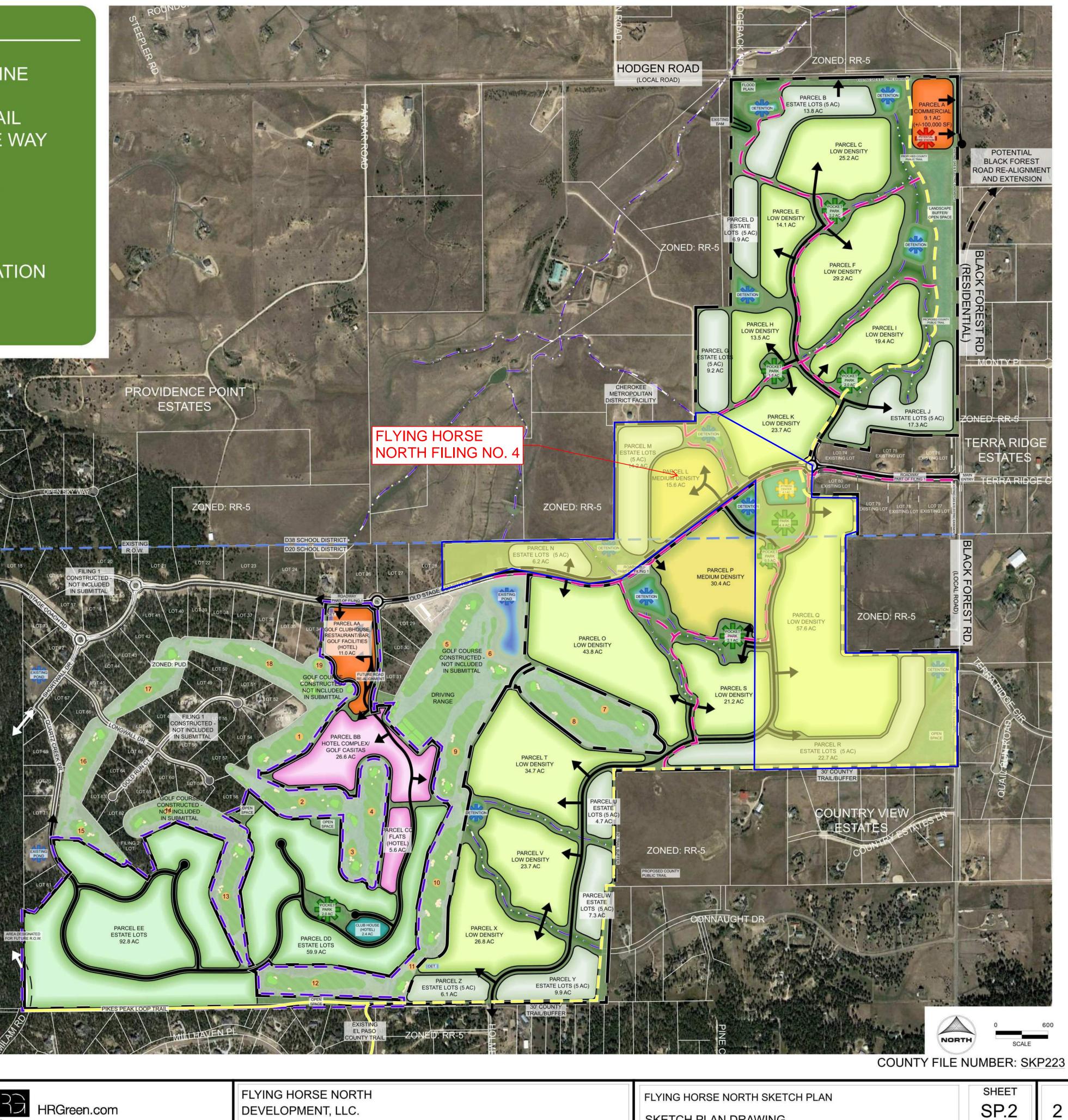
LAND USE CATEGORY	ACREAGE	ACREAGE PERCENTAGE	DU/AC	UNITS
GROSS	RESIDENTIA	LACREAGE (+/-)		1
ESTATE LOTS (5 ACRES)	118.3 AC.	13.0%	0.225	27
ESTATE LOTS (2.5 ACRES)	152.7 AC.	16.7%	0.32	49
LOW DENSITY RESIDENTIAL	332.9 AC.	36.5%	1.9	632
MEDIUM DENSITY RESIDENTIAL	46.0 AC.	5.0%	3.0	138
ESTIMATED OPEN SPACE	203.9 AC.	22.3%		
<b>GROSS RESIDENTIAL SUB-TOTAL</b>	853.8 AC.			846
HOTEL/C	COMMERCIA	LACREAGE (+/-)		
HOTEL ROOMS/CASITAS/FLATS	32.2 AC.	3.5%		27
GOLF CLUB, RESTAURANT/BAR, GOLF AMENITIES (HOTEL)	11.0 AC.	1.2%		
ESTATE CLUBHOUSE (HOTEL)	2.4 AC.	0.3%		
COMMERCIAL	9.1 AC.	1.0%		
FITNESS CENTER	4.1 AC.	0.4%		
TOTAL	912.6 AC	100.0%		

DRAWN BY:	JAG	JOB DATE:	05/21/2023	BAR IS ONE INCH ON OFFICIAL DRAWINGS.	NO.	DATE	BY	REVISION DES
APPROVED:	PLS	JOB NUMBER:	211030	0 <b>1</b> "				
CAD DATE:	07/01/2022			IF NOT ONE INCH, ADJUST SCALE ACCORDINGLY.	-			
CAD FILE:	J:\2021\211030\CAD\Dwgs\C\Sketch-Plan\BUBBLE-PLAN			ABIOUT BOALE ACCORDINCE.				

# **FLYING HORSE NORTH SKETCH PLAN**

PARCELS OL DISTRICT LINE RAIL C COUNTY TRAIL NG DRAINAGE WAY

POCKET PARK


SS CENTER

**NTIAL FIRE STATION** 

DETENTION

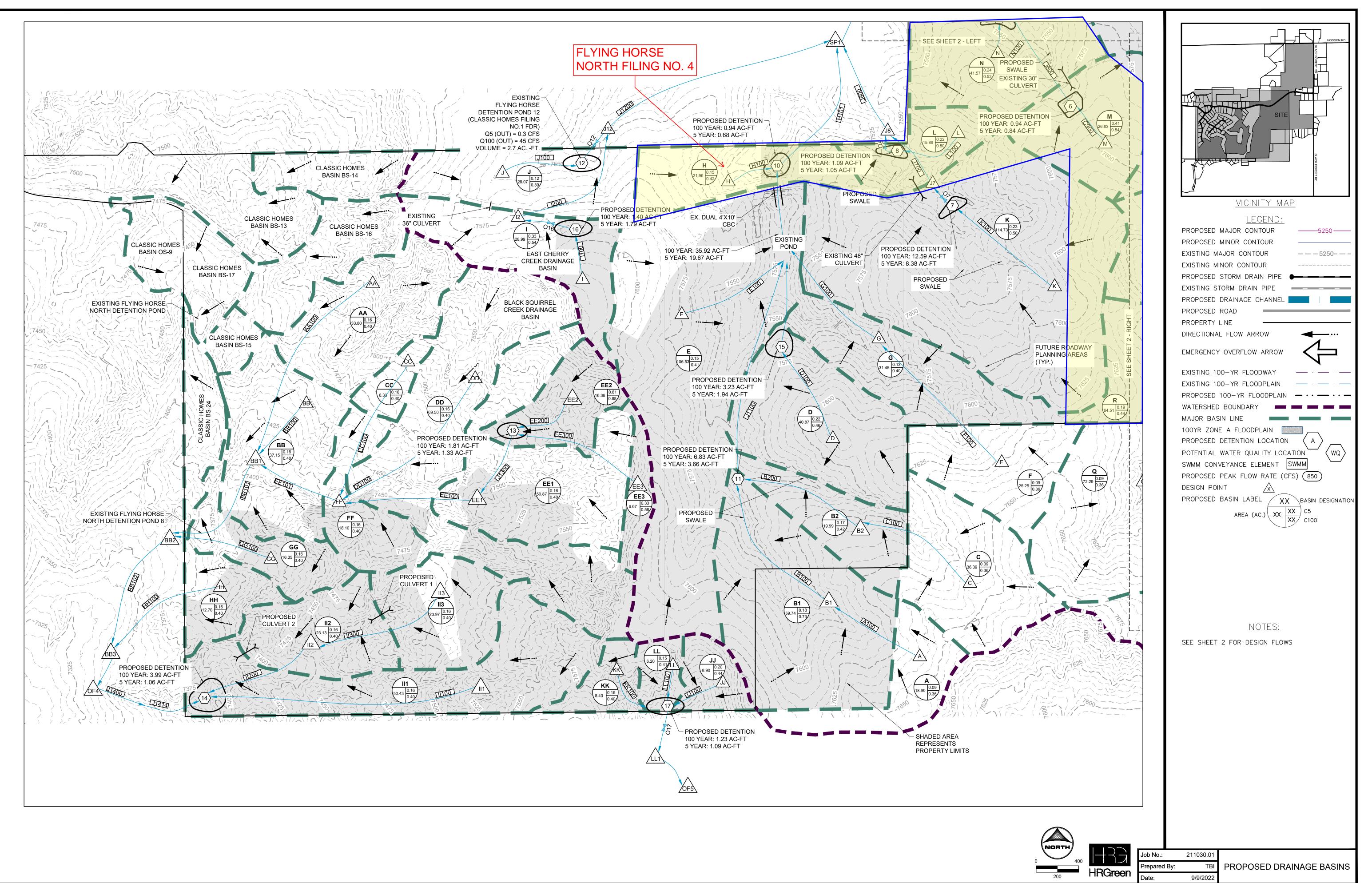


ESTATES

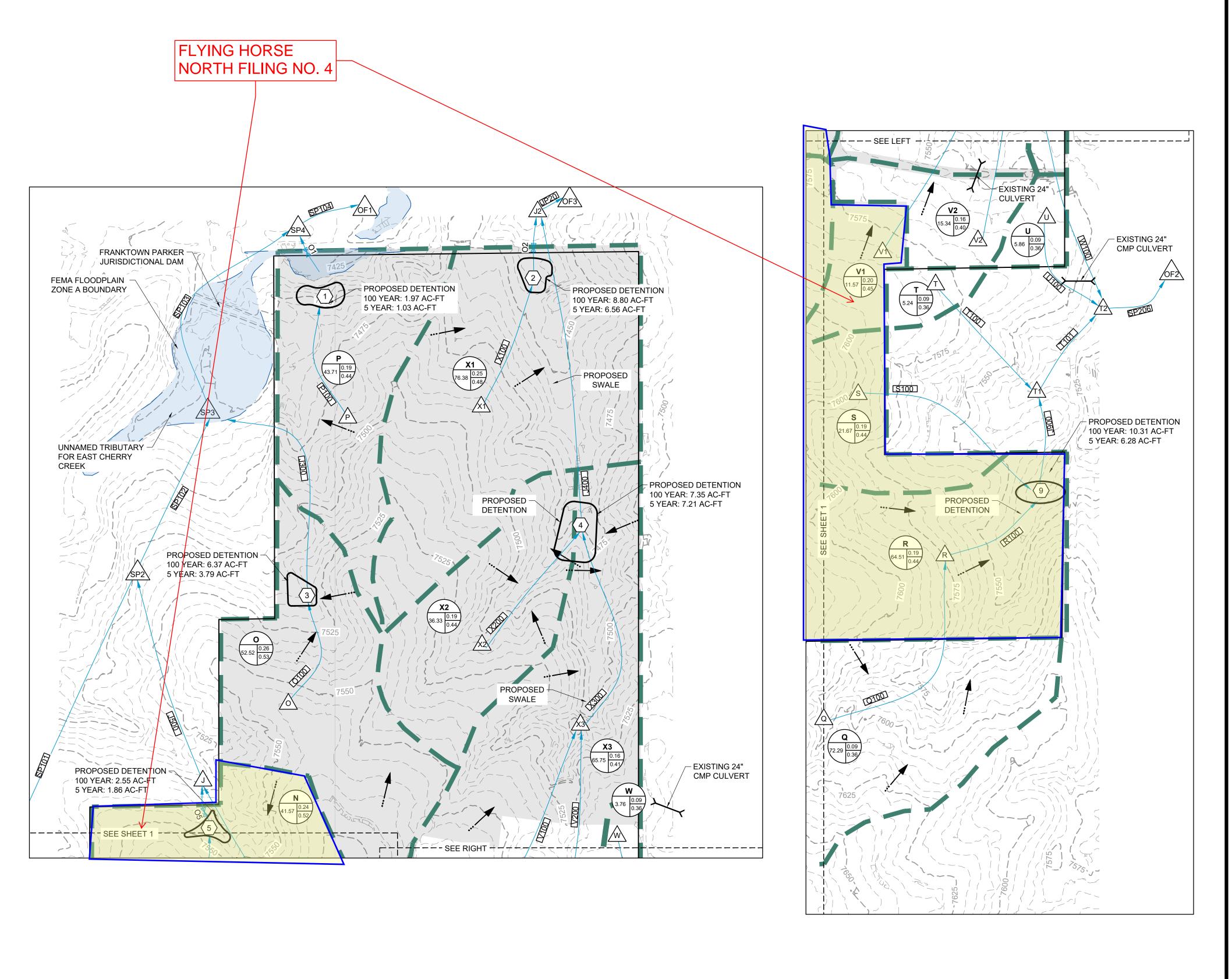


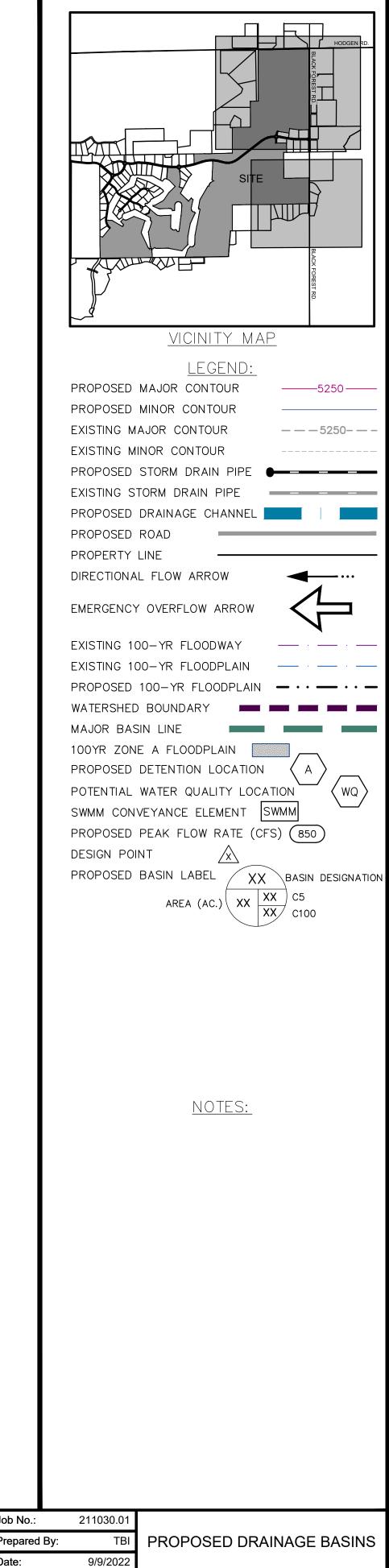
SKETCH PLAN DRAWING

SCRIPTION




DEVELOPMENT, LLC. EL PASO COUNTY, COLORADO


2








BASIN	DESIGN POINT	5 YEAR POST DEVELOPMENT	100 YEAR POS DEVELOPMEN
A	A	20.84	43.83
AA	AA	39.23	81.18
B1	B1	66.93	133.69
B2	B2	17.99	37.14
BB	BB	40.62	84.15
00	BB1	214.28	483.72
	BB2	229.61	515.49
	BB3	307.27	646.46
С	C	35.31	75.28
CC	СС	6.53	13.57
D	D	61.12	117.38
DD	DD	57.78	122.41
Е	E	74.68	157.91
EE1	EE1	53.25	156.68
EE2	EE2	35.71	63.62
EE3	EE3	10.38	19.33
F	F	24.27	51.63
FF	FF	20.78	330.28
G	G	27.18	108.76
GG	GG	15.49	32.48
H	Н	17.86	37.80
HH	НН	13.56	28.16
I	I	40.37	78.06
111	1	34.94	74.39
112	112	28.04	116.26
113	113	28.32	58.65
	IRR_J	114.18	274.80
	IRR_POND	243.77	550.27
J	J	24.45	51.19
]]	IJ	11.49	22.80
К	к	200.94	382.30
КК	КК	8.14	16.95
L	L	15.97	32.40
		7.36	15.07
	-		
<b>N</b> 4	LL1	0	49.55
M	M	46.54	89.08
N	N	73.48	141.24
0	0	63.86	127.40
	OF1	240.43	705.93
	OF2	104.34	242.18
	OF3	95.68	271.49
	OF4	307.27	646.46
	OF5	16.85	49.55
Р	Р	40	82.83
Q	Q	64.68	137.80
R	R	56.59	253.86
S	S	30.83	58.96
	SP1	189.85	511.89
	SP1	223.43	618.35
	SP3	212.45	641.31
	SP4	240.49	706.05
Т	T	4.04	8.68
	T1	98.27	228.33
	T2	104.34	242.18
U	U	4.81	10.51
V1	V1	13.99	27.67
V2	V2	16.15	33.25
W	W	3.45	7.46
X1	X1	80.91	163.27
X1 X2	X1 X2	41.46	82.46
~/		41.40	07.40





NORTH

Job No.:

Date:

HRGreen



Publication No. FHWA-NHI-05-114 September 2005

U.S. Department of Transportation

Federal Highway Administration

# Hydraulic Engineering Circular No. 15, Third Edition

# Design of Roadside Channels with Flexible Linings



		Manning's n ¹			
Lining Category	Lining Type	Maximum	Typical	Minimum	
	Concrete	0.015	0.013	0.011	
	Grouted Riprap	0.040	0.030	0.028	
Rigid	Stone Masonry	0.042	0.032	0.030	
	Soil Cement	0.025	0.022	0.020	
	Asphalt	0.018	0.016	0.016	
Unlined	Bare Soil ²	0.025	0.020	0.016	
Unimed	Rock Cut (smooth, uniform)	0.045	0.035	0.025	
	Open-weave textile	0.028	0.025	0.022	
RECP	Erosion control blankets	0.045	0.035	0.028	
	Turf reinforcement mat	0.036	0.030	0.024	

# Table 2.1. Typical Roughness Coefficients for Selected Linings

¹Based on data from Kouwen, et al. (1980), Cox, et al. (1970), McWhorter, et al. (1968) and Thibodeaux (1968).

²Minimum value accounts for grain roughness. Typical and maximum values incorporate varying degrees of form roughness.

### Table 2.2. Typical Roughness Coefficients for Riprap, Cobble, and Gravel Linings

			Manning's n for Selected Flow Depths ¹			
Lining Category	Lining Type	0.15 m (0.5 ft)	0.50 m (1.6 ft)	1.0 m (3.3 ft)		
Gravel Mulch	D ₅₀ = 25 mm (1 in.)	0.040	0.033	0.031		
Graver Mulch	D ₅₀ = 50 mm (2 in.)	0.056	0.042	0.038		
Cobbles	D ₅₀ = 0.10 m (0.33 ft)	<b></b> ²	0.055	0.047		
Rock Riprap	D ₅₀ = 0.15 m (0.5 ft)	<b></b> ²	0.069	0.056		
RUCKRIPIAP	D ₅₀ = 0.30 m (1.0 ft)	²	²	0.080		

¹Based on Equation 6.1 (Blodgett and McConaughy, 1985). Manning's n estimated assuming a trapezoidal channel with 1:3 side slopes and 0.6 m (2 ft) bottom width.

²Shallow relative depth (average depth to  $D_{50}$  ratio less than 1.5) requires use of Equation 6.2 (Bathurst, et al., 1981) and is slope-dependent. See Section 6.1.

# 2.2 SHEAR STRESS

### 2.2.1 Equilibrium Concepts

Most highway drainage channels cannot tolerate bank instability and possible lateral migration. Stable channel design concepts focus on evaluating and defining a channel configuration that will perform within acceptable limits of stability. Methods for evaluation and definition of a stable configuration depend on whether the channel boundaries can be viewed as:

- essentially rigid (static)
- movable (dynamic).

In the first case, stability is achieved when the material forming the channel boundary effectively resists the erosive forces of the flow. Under such conditions the channel bed and banks are in

protected. Therefore permissible shear stress is not significantly affected by the erodibility of the underlying soil. However, if the lining moves, the underlying soil will be exposed to the erosive force of the flow.

Table 2.3 provides typical examples of permissible shear stress for selected lining types. Representative values for different soil types are based on the methods found in Chapter 4 while those for gravel mulch and riprap are based on methods found in Chapter 7. Vegetative and RECP lining performance relates to how well they protect the underlying soil from shear stresses so these linings do not have permissible shear stresses independent of soil types. Chapters 4 (vegetation) and 5 (RECPs) describe the methods for analyzing these linings. Permissible shear stress for gabion mattresses depends on rock size and mattress thickness as is described in Section 7.2.

		Permissible	Shear Stress
Lining Category	Lining Type	N/m ²	lb/ft ²
Bare Soil ¹	Clayey sands	1.8-4.5	0.037-0.095
Cohesive (PI = 10)	Inorganic silts	1.1-4.0	0.027-0.11
Collesive (FI = 10)	Silty sands	1.1-3.4	0.024-0.072
	Clayey sands	4.5	0.094
Bare Soil ¹	Inorganic silts	4.0	0.083
Cohesive (PI <u>&gt;</u> 20)	Silty sands	3.5	0.072
	Inorganic clays	6.6	0.14
	Finer than coarse sand	1.0	0.02
	D ₇₅ <1.3 mm (0.05 in)		
Bare Soil ²	Fine gravel	5.6	0.12
Non-cohesive (PI < 10)	D ₇₅ =7.5 mm (0.3 in)		
	Gravel	11	0.24
	D ₇₅ =15 mm (0.6 in)		
	Coarse gravel	19	0.4
Gravel Mulch ³	D ₅₀ = 25 mm (1 in)		
	Very coarse gravel	38	0.8
	D ₅₀ = 50 mm (2 in)		
Rock Riprap ³	D ₅₀ = 0.15 m (0.5 ft)	113	2.4
	D ₅₀ = 0.30 m (1.0 ft)	227	4.8

Table 2.3. Tv	pical Permissible	Shear Stresses for	r Bare Soil and Stone Linir	nas

¹Based on Equation 4.6 assuming a soil void ratio of 0.5 (USDA, 1987).

²Based on Equation 4.5 derived from USDA (1987)

³Based on Equation 6.7 with Shield's parameter equal to 0.047.

### 2.3 DESIGN PARAMETERS

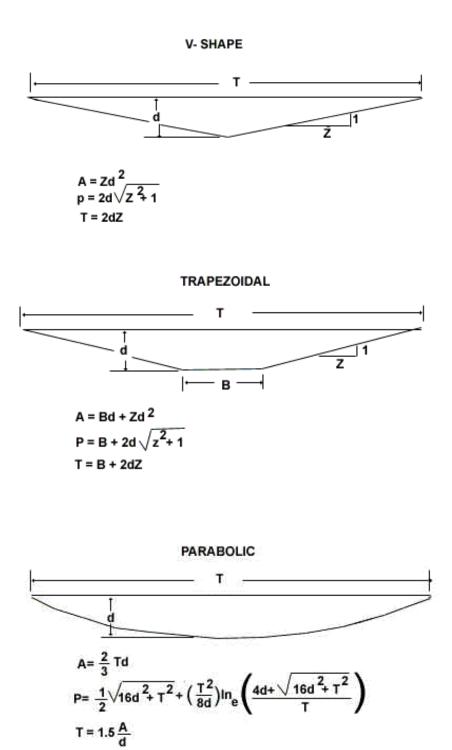
### 2.3.1 Design Discharge Frequency

Design flow rates for permanent roadside and median drainage channel linings usually have a 5 or 10-year return period. A lower return period flow is allowable if a transitional lining is to be used, typically the mean annual storm (approximately a 2-year return period, i.e., 50 percent probability of occurrence in a year). Transitional channel linings are often used during the establishment of vegetation. The probability of damage during this relatively short time is low,

#### TABLE 10-1

### COMPOSITE ROUGHNESS COEFFICIENTS FOR UNLINED OPEN CHANNELS (Reference: Chow, Ven Te, 1959; <u>Open-Channel Hydraulics)</u>

$n = (n_0 + n_1 + n_2 + n_3)$	+ n ₄ )m	(10-2)
	Channel Conditions	Value
Material Type	Earth Fine Gravel	0.020 0.024
no	Coarse Gravel	0.028
Degree of Irregularity	Smooth Minor	0.000 0.005
<b>m</b>	Moderate	0.010
nı	Severe	0.020
Variation of Channel	Gradual	0.000
Cross Section ⁿ 2	Alternating Occasionally Alternating	0.005
	Frequently	0.010 - 0.015
Relative Effect	Negligible	0.000
of Obstructions	Minor	0.010 - 0.015
n ₃	Appreciable	0.020 - 0.030
3	Severe	0.040 - 0.060
Vegetation	Low	0.005 - 0.010
-	Medium	0.010 - 0.025
n ₄	High	0.025 - 0.050
*	Very High	0.050 - 0.100
Degree of Meandering	Minor	1.000 - 1.200
	Appreciable	1.200 - 1.500
m	Severe	1.500


- significant uncertainty regarding the design discharge
- consequences of failure are high

The basic procedure for flexible lining design consists of the following steps and is summarized in Figure 3.1. (An alternative process for determining an allowable discharge given slope and shape is presented in Section 3.6.)

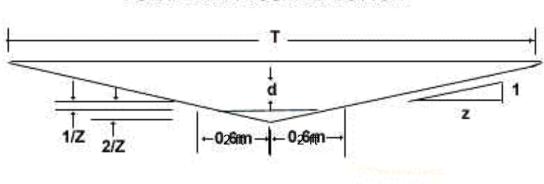



Figure 3.1. Flexible Channel Lining Design Flow Chart

### APPENDIX B: CHANNEL GEOMETRY EQUATIONS



B -1



### V-SHAPE WITH ROUNDED BOTTOM

### 2 CASES

No. 1 If  $d \le 1/Z$ , then:

$$\begin{split} &\mathsf{A} = \frac{8}{3}d\sqrt{dZ} \\ &\mathsf{P} = 2Z \ln_{e} \left(\sqrt{\frac{d}{Z}} + \sqrt{1 + \frac{d}{Z}}\right) + 2\sqrt{d^{2} + dZ} \\ &\mathsf{T} = 4\sqrt{dZ} \\ &\mathsf{No.\ 2} \\ &\mathsf{If\ d} > 1/Z, \ then: \\ &\mathsf{A} = \frac{8}{3}d + 4 \bigg(d - \frac{1}{Z}\bigg) + Z \bigg(d - \frac{1}{Z}\bigg)^{2} \\ &\mathsf{P} = 2Z \ln_{e} \bigg(\frac{1 + \sqrt{Z^{2} + 1}}{Z}\bigg) + 2\frac{\sqrt{Z^{2} + 1}}{Z} + 2 \bigg(d - \frac{1}{Z}\bigg)\sqrt{1 + Z^{2}} \\ &\mathsf{T} = 4 + 2Z \bigg(d - \frac{1}{Z}\bigg) \end{split}$$

Note: The equations for V-shape with rounded bottom only apply in customary units for a channel with a 4 ft wide rounded bottom.

# ROADSIDE DITCH CALCUALTIONS

# Limits of specific Ditch Lining relative to max. slope

	Erosion Control Blanket (ECB) (North American Green - SC150)	Turf Reinforcement Mat (TRM) (North American Green - P300)	Revegetation - Grass line (Native Seed Mix)
Given:	(Temporary - 24 months)	(Permanent)	
Max. Design Flow (cfs)	7.4	70.0	4.3
Permissible Shear (lbs/ft. ² )	2.0	8.0	2.0
Permissible Velocity (ft./sec.)	8.0	16.0	3.0
Safety Factor	1	1	1
Max. Ditch Slope	5%	10%	2%
Ditch Section (24 in. depth)	V-Ditch	V-Ditch	V-Ditch
Flow Area (ft. ² )	1.69	6.25	1.44
Wetted Perimeter (ft.)	5.37	10.33	4.96
Hydraulic Radius	0.31	0.61	0.29
Mannings n	0.035	0.030	0.030
Depth of Flow (max.)	0.65	1.25	0.60
Calculations:			
Shear Stress (Ibs/ft. ² )	2.0	7.8	0.7
Velocity (ft./sec.)	4.4	11.2	3.0
Allowed Flow (cfs)	7.4	70.2	4.4

# ROADSIDE DITCH CALCUALTIONS

# Limits of specific Ditch Lining relative to max. flow

	Erosion Control Blanket (ECB) (North American Green - SC150)	Turf Reinforcement Mat (TRM)         (North American Green - P300)	Revegetation - Grass line (Native Seed Mix)
Given:	(Temporary - 24 months)	(Permanent)	
Max. Design Flow (cfs)	43.8	70.0	4.3
Permissible Shear (lbs/ft. ² )	2.0	8.0	2.0
Permissible Velocity (ft./sec.)	8.0	16.0	3.0
Safety Factor	1	1	1
Max. Ditch Slope	2%	10%	2%
Ditch Section (24 in. depth)	V-Ditch	V-Ditch	V-Ditch
Flow Area (ft. ² )	9.00	6.25	1.44
Wetted Perimeter (ft.)	12.39	10.33	4.96
Hydraulic Radius	0.73	0.61	0.29
Mannings n	0.035	0.030	0.030
Depth of Flow (max.)	1.50	1.25	0.60
Calculations:			
Shear Stress (lbs/ft. ² )	1.9	7.8	0.7
Velocity (ft./sec.)	4.9	11.2	3.0
Allowed Flow (cfs)	43.8	70.2	4.4



# **ROLLED** EROSION CONTROL

SYSTEMS BROCHURE





# Temporary RollMax[™] Solutions

Erosion control has never been so simple yet effective. North American Green RollMax[™] temporary Erosion Control Blankets (ECBs) provide immediate erosion protection and vegetation establishment assistance, then degrade once the vegetation's root and stem systems are mature enough to stabilize the soil.

Our high-quality temporary solutions are available in varying functional longevities and materials:

- Short-term photodegradable blankets with a functional longevity of 45 days up to 12 months
- Extended-term and long-term photodegradable blankets for protection up to 36 months
- Short-term biodegradable blankets for protection up to 12 months
- Extended-term and long-term biodegradable products for protection and mulching from 18 to 24 months

#### **ERONET[™] EROSION CONTROL BLANKETS**

North American Green EroNet[™] ECBs incorporate photodegradable nettings, which means they are broken down by the ultraviolet rays in sunlight. These temporary products can be used in a variety of scenarios, including moderate to steep slopes, medium-to high-flow channels, shorelines and other areas needing protection until permanent vegetation establishment.

#### EroNet[™] C125[®] Long-Term Photodegradable Double-Net Coconut Blanket

The C125° ECB is made of 100% coconut fiber stitched between heavyweight UV-stabilized polypropylene nets. It offers excellent durability, erosion control and longevity for severe slopes, steep embankments, high-flow channels and other areas where vegetation may take up to 36 months to grow in.





The EroNet temporary ECBs are designed to provide immediate erosion protection and vegetation establishment assistance, and then degrade after the vegetation is mature enough to permanently stabilize the underlying soil. Both short-term and extended-term ECBs are available.



#### EroNet[™] SC150[®] Extended-Term Photodegradable Double-Net Straw/Coconut Blanket

With a layer of 70% straw and 30% coconut fiber stitched between a heavyweight UV-stabilized polypropylene top net and a lightweight photodegradable polypropylene bottom net, the SC150® ECB has increased durability, erosion control capabilities and longevity. It is suitable for steeper slopes, medium-flow channels and other areas where it may take vegetation up to 24 months to grow in.

#### EroNet[™] S150[®] Short-Term Photodegradable Double-Net Straw Blanket

The S150 ECB is made with a 100% straw fiber matrix stitched between lightweight photodegradable polypropylene top and bottom nets. The S150 ECB's double-net construction has greater structural integrity than single net blankets for use on steeper slopes and in channels with moderate water flow. It provides erosion protection and mulching for up to 12 months.

#### EroNet[™] DS150[™] Ultra Short-Term Photodegradable Double-Net Straw Blanket

The DS150[™] ECB is suitable for high maintenance areas where close mowing will occur soon after installation. Special additives in the thread and top and bottom net ensure it degrades in adequate sunlight within 60 days.

#### EroNet[™] S75[®] Short-Term Photodegradable Single-Net Straw Blanket

The S75° ECB protects and mulches moderate slopes and low-flow channels in low maintenance areas for up to 12 months. It is constructed of 100% straw fiber stitched with degradable thread to a lightweight photodegradable polypropylene top net.

#### EroNet[™] DS75[™] Ultra Short-Term Photodegradable Single-Net Straw Blanket

Designed for high maintenance areas where close mowing will occur soon after installation, the DS75[™] ECB degrades within 45 days because of special additives in the thread and top net that facilitate rapid breakdown in adequate sunlight.



Every site has its own unique characteristics and challenges. EroNet Erosion Control Blankets are available in varying longevities to suit a variety of scenarios and conditions.



With our Erosion Control Materials Design Software (ECMDS), you can select either short-term, extended-term or long-term EroNet blankets based on your specific design needs.



# Permanent RollMax[®] Solutions

Back in the day, rock riprap, articulated concrete blocks and poured concrete were the only way to deal with erosion in high-flow channels, on shorelines and other areas where water and/or wind exceed the shear limits of unreinforced vegetation.

Not anymore. North American Green permanent Turf Reinforcement Mats (TRMs) use 100% synthetic components or a composite of synthetic and natural materials for long-term erosion protection and vegetation establishment. Whether com-pared to rock riprap or concrete, the RollMax[™] Systems' permanent TRMs offer a number of significant advantages:

- Prevent loss of precious topsoil to wind and water erosion
- Permanently reinforce vegetation root and stem structures
- Provide excellent conditions for quick, healthy vegetation growth
- Stabilize slopes from erosion to keep roadways safe and clean
- Protect water quality in lakes, rivers and streams
- Protect dormant seeding during winter months
- Easily conform to landscape features
- Lightweight for easy handling and transportation



The TRMs easily conform to various landscape features to prevent the loss of precious topsoil.

#### **VMAX® COMPOSITE TURF REINFORCEMENT MATS**

VMax[®] C-TRMs combine three-dimensional matting with fiber matrix material for permanent erosion control on severe slopes, spillways, stream banks, shorelines and in high- to extreme-flow channels. These extensively tested products provide maximum performance through all three phases of reinforced vegetative lining development: unvegetated, establishment, and maturity. Incorporating the best performance features of temporary and permanent North American Green erosion control products, VMax C-TRMs deliver these tangible benefits:

- Surface-applied for the highest level of immediate soil protection
- Less than one third of the installed cost of rock or concrete
- No heavy equipment needed to install
- More attractive and effective "Green" alternative than rock riprap or concrete

#### VMax[®] High-Performance TRMs (HPTRMs)

VMax[®] HPTRMs utilize patent-pending woven 3-D structures that are soil-filled for use in areas experiencing high stress and strain. The VMax HPTRMs are designed to provide appropriate thickness and open area for effective erosion and vegetation reinforcement against high flow induced shear forces. Our HPTRMs are excellent for increased bearing capacity of vegetated soils subjected to heavy loads from maintenance equipment and other vehicular traffic.



The RollMax TRMs are installed in a one-step operation directly over the prepared seedbed saving time and money and ensuring the highest level of erosion control and vegetation reinforcement.

4



#### VMAx[®] TMaxTM Permanent HPTRM

The TMax HPTRM woven polypropylene technology is designed to provide appropriate thickness and open area for effective erosion and vegetation reinforcement against high flow induced shear forces up to 15 pfs (kN/m2), and with the highest tensile strength on the market up to 5,000 lbs/ft (73 kN/m). TMax maybe used as an alternative to hard armor system in extreme erosion control applications.

#### VMax[®] P550[®] Permanent TRM

P550° TRM has a polypropylene fiber matrix augmenting the permanent netting structure with permanent mulching and erosion control performance. Unvegetated, the P550 TRM reduces soil loss to less than 0.5 in. (12.7 mm) under shear stress up to 4.0 lbs/ft² (191 Pa). The ultra-strong structure drives the vegetated shear resistance up to 14 lbs/ft² (672 Pa). The P550 TRM may be used as an alternative for poured concrete or articulated concrete blocks in extreme erosion control projects.

#### VMax[®] C350[®] Permanent TRM

A 100% coconut fiber matrix supplements the C350's permanent three-dimensional netting structure with initial mulching and erosion control performance for up to 36 months. Unvegetated, the C350° TRM reduces soil loss to less than 0.5 in. (12.7 mm) under shear stress up to 3.2 lbs/ft² (153 Pa) and boosts permanent vegetation performance up to 12 lbs/ft² (576 Pa). This environmentally friendly alternative to 30 in. (76 cm) or larger rock riprap is ideal for severe erosion control projects.

#### VMax[®] SC250[®] Permanent TRM

The SC250° permanent TRM has a 70% straw/30% coconut fiber matrix to enhance initial mulching and erosion control performance for up to 24 months. Unvegetated, SC250 TRMs reduce soil loss to less than 0.5 in. (12.7 mm) under shear stress up to 3.0 lbs/ft², and increases permanent vegetation performance up to 10 lbs/ft² (480 Pa) for a green alternative to rock riprap.

#### **ERONET[™] PERMANENT EROSION CONTROL BLANKETS**

The EroNet[™] Permanent ECB provides immediate erosion protection and vegetation establishment assistance until vegetation roots and stems mature.

#### EroNet[™] P300[®] Permanent Erosion Control Blankets

The P300° permanent erosion control blanket consists of UV-stabilized polypropylene fiber stitched between heavyweight UV-stabilized polypropylene top and bottom nets. These mats reduce soil loss and protect vegetation from being washed away or uprooted, even under high stress. Unvegetated, they reduce soil loss to less than 0.5 in. (12.7 mm) under shear stress up to 3.0 lbs/ft² (144 Pa), and protect vegetation from being washed away or uprooted when exposed to shear stresses up to 8 lbs/ft² (383 Pa).



To boost performance of the VMax turf reinforcement mats in critical applications, combine with our ShoreMax[®] flexible transition mat to create a system that can dramatically elevate the permissible shear stress and velocity protection beyond many hard armor solutions.



VMax Mats are perfect for pipe outlets, channel bottoms, shoreline transition zones, and other areas subjected to highly turbulent water flows.



# **Design and Installation Tools**

#### SHIFT, CONTROL, ENTER

Professional guidance on RECP selection, design and project planning is at your fingertips with Tensar's proprietary Erosion Control Materials Design Software (ECMDS®). This web-based program incorporates design methodologies from the Federal Highway Administration and United States Department of Agriculture to analyze your specific site conditions, and make quantified recommendations based on data from controlled laboratory and field research. ECMDS is a must-have if you face tough erosion and sediment control regulations. Best of all, it's free of charge, compliments of North American Green. To learn more and access the software directly, go to **www.ECMDS.com**.

#### **INSTRUCTIONS INCLUDED**

Proper anchoring patterns and rates must be used to achieve optimal results in RECP installation. View our installation guides for stapling patterns. Site specific staple pattern recommendations based on soil type and severity of application may be acquired through our ECMDS.



#### **HOLD ON TIGHT**

When under the pressure of severe conditions, even the best erosion control products can't function to their full potential without proper installation and anchoring. North American Green supplies a wide variety of fastener options for nearly every application and soil type.

For use in cohesive soils, wire staples are a cost-effective means to fasten RECPs. Available in 6 in., 8 in., 10 in. and 12 in. lengths, our U-shaped staples can reach to various depths to ensure adequate pull-out resistance. For installation using our handy Pin Pounder installation tool, 6 in. V-top staples or 6 in. circle top pins are available.

Our biodegradable BioStakes[®] are available in 4 in. and 6 in. lengths and provide an environmentally friendly alternative to metal staples. For an even more durable, deeper reaching yet all-natural anchoring option, our wood EcoStakes[®] are available in 6 in., 12 in., 18 in. and 24 in. lengths.

For severe applications needing the ultimate, long-lasting hold, try our 12 and 18 in. rebar staples, our 12 in. plastic ShoreMax[®] stakes, or our complete line of percussion earth anchors. The Tensar earth anchors reach deep into the soil strata to offer enhanced anchoring in the worst conditions. Our variety of earth anchors are designed for durability and holding power under extreme hydraulic stresses and adverse soil conditions (*Table 1*).

For more information on the RollMax Systems or other systems within the North American Green Erosion Control Solutions, call **800-772-2040** or visit **nagreen.com**.

	Earth Anchor Options							
	EA 400 EA 680					680		
	Tendon Type (¾ in. x 36 in.)	Assembly Description	Fast Install	Economic Anchor	Stainless	Galvanized	Stainless	Galvanized
<b>Options</b> Face Plate	Copper Stop Sleeve with Stainless Steel Washer	Manually crimped to the stainless steel cable to secure the face plate.		х	х		х	
	Grip End Piece with Stainless Steel Washer	Three-dimensional, self-securing metal end piece that does not require manual crimping for tendon tensioning.	х	х	x	x	х	х
<b>End Piece</b> with a PVC	Wedge Grip Piece	Self-securing end piece that installs flush to the face plate. Does not require manual crimping for tendon tensioning.	х		х	х	х	x
	Aluminum Stop Sleeve with Stainless Steel Washer	Manually crimped to the galvanized cable to secure the face plate.		х		x		х

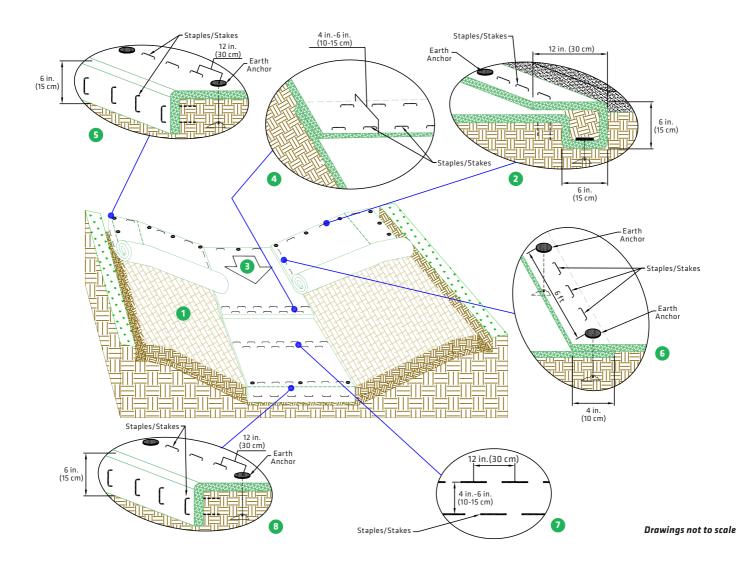
TABLE 1

The complete line of RollMax[®] products offers a variety of options for both short-term and permanent erosion control needs. Reference the RollMax Products Chart below to find the right solution for your next project.



×

# **RollMax Product Selection Chart**

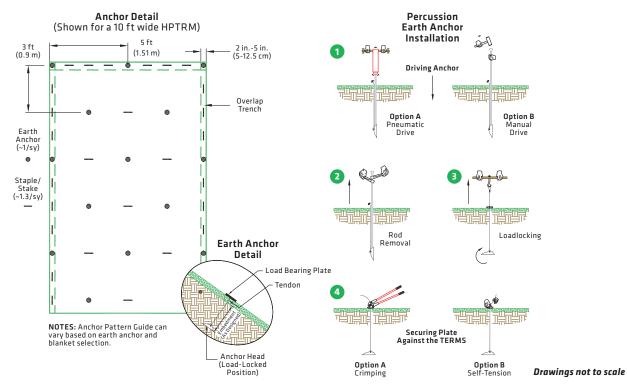

TEMPORARY							
Product Description	Longevity	Applications	Design Permissible Shear Stress lbs/ft² (Pa)	Design Permissibl Velocity ft/s (m/s			
1.5 lb., accelerated photodegradable, polypropylene top net, 100% straw fiber matrix	45 days	Low Flow Channels 4:1 - 3:1 Slopes	Unvegetated 1.55 (74)	Unvegetated 5.0 (1.52)			
1.5 lb., photodegradable, polypropylene top & bottom net, 100% straw fiber matrix	60 days	Moderate Flow Channels 3:1 - 2:1 Slopes	Unvegetated 1.75 (84)	Unvegetated 6.0 (1.83)			
1.5 lb., photodegradable, polypropylene top net, 100% straw fiber matrix	12 months	Low Flow Channels 4:1 - 3:1 Slopes	Unvegetated 1.55 (74)	Unvegetated 5.0 (1.52)			
1.5 lb., photodegradable, polypropylene top & bottom net, 100% straw fiber matrix	12 months	Moderate Flow Channels 3:1 - 2:1 Slopes	Unvegetated 1.75 (84)	Unvegetated 6.0 (1.83)			
2.9 lb., UV-stable polypropylene top net, 70% straw/30% coconut fiber matrix, 1.5 lb., photodegradable polypropylene bottom net	24 months	Medium Flow Channels 2:1 - 1:1 Slopes	Unvegetated 2.0 (96)	Unvegetated 8.0 (2.44)			
2.9 lb., UV stable polypropylene top & bottom nets, 100% coconut fiber matrix	36 months	High Flow Channels 1:1 and Greater Slopes	Unvegetated 2.25 (108)	Unvegetated 10.0 (3.05			
9.3 lb., leno woven biodegradable jute top net, 100% straw fiber matrix	12 months	Low Flow Channels 4:1 - 3:1 Slopes	Unvegetated 1.60 (76)	Unvegetated 5.0 (1.52)			
9.3 lb., leno woven biodegradable jute top net, 100% straw fiber matrix, 7.7 lb., woven biodegradable jute bottom net	12 months	Moderate Flow Channels 3:1 - 2:1 Slopes	Unvegetated 1.85 (88)	Unvegetated 6.0 (1.83)			
9.3 lb., leno woven biodegradable jute top net, 70% straw/30% coconut fiber matrix, 7.7 lb., woven biodegradable jute bottom net	18 months	Medium Flow Channels 2:1 - 1:1 Slopes	Unvegetated 2.10 (100)	Unvegetated 8.0 (2.44)			
	1.5 lb., accelerated photodegradable, polypropylene top net, 100% straw fiber matrix         1.5 lb., photodegradable, polypropylene top & bottom net, 100% straw fiber matrix         1.5 lb., photodegradable, polypropylene top net, 100% straw fiber matrix         1.5 lb., photodegradable, polypropylene top net, 100% straw fiber matrix         1.5 lb., photodegradable, polypropylene top net, 100% straw fiber matrix         2.9 lb., UV-stable polypropylene top net, 70% straw/30% coconut fiber matrix, 1.5 lb., photodegradable polypropylene bottom net         2.9 lb., UV-stable polypropylene top net, 70% straw/30% coconut fiber matrix, 1.5 lb., photodegradable polypropylene bottom net         9.3 lb., leno woven biodegradable jute top net, 100% straw fiber matrix         9.3 lb., leno woven biodegradable jute top net, 100% straw fiber matrix, 7.7 lb., woven biodegradable jute top net, 100% straw fiber matrix, 7.7 lb., woven	1.5 lb., accelerated photodegradable, polypropylene       45 days         1.5 lb., photodegradable, polypropylene top 6 bottom net, 100% straw fiber matrix       60 days         1.5 lb., photodegradable, polypropylene top net, 100% straw fiber matrix       12 months         1.5 lb., photodegradable, polypropylene top net, 100% straw fiber matrix       12 months         1.5 lb., photodegradable, polypropylene top net, 100% straw fiber matrix       12 months         1.5 lb., photodegradable, polypropylene top 6 bottom net, 100% straw fiber matrix       12 months         2.9 lb., UV-stable polypropylene top net, 70% straw/30% coconut fiber matrix, 15 lb., photodegradable polypropylene bottom net.       24 months         2.9 lb., UV-stable polypropylene top 6 bottom nets, 100% coconut fiber matrix       36 months         9.3 lb., leno woven biodegradable jute top net, 100% straw fiber matrix       12 months         9.3 lb., leno woven biodegradable jute top net, 100% straw fiber matrix, 77 lb., woven biodegradable jute top net, 100% straw fiber matrix, 77 lb., woven biodegradable jute top net, 100%       12 months	1.5 Jb., accelerated photodegradable, polypropylene       45 days       Low Flow Channels         1.5 Jb., photodegradable, polypropylene top 6       60 days       Mederate Flow Channels         1.5 Jb., photodegradable, polypropylene top net,       12 months       Low Flow Channels         1.5 Jb., photodegradable, polypropylene top net,       12 months       Low Flow Channels         1.5 Jb., photodegradable, polypropylene top net,       12 months       Mederate Flow Channels         1.5 Jb., photodegradable, polypropylene top net,       12 months       Mederate Flow Channels         1.5 Jb., photodegradable, polypropylene top net,       12 months       Mederate Flow Channels         2.9 Jb., UV-stable polypropylene top net,       12 months       Medium Flow Channels         2.9 Jb., UV-stable polypropylene top net,       24 months       Medium Flow Channels         2.9 Jb., UV-stable polypropylene top fe bottom nets.       36 months       High Flow Channels         100% occonut fiber matrix       12 months       Low Flow Channels         2.9 Jb., UV stable polypropylene top fe bottom net.       12 months       Low Flow Channels         100% occonut fiber matrix       12 months       Low Flow Channels         3.1 b., leno woven biodegradable jute top net, 100%       12 months       Low Flow Channels         3.1 b., leno woven biodegradable jute top net, 100%       1	Product Description         Longevity         Applications         Permissible Shear Stress Ibs/ft* (Pa)           15.1bproduct Description         45 days         Low Flow Channels 41 - 31 Slopes         Unvegetated 1.55 (74)           15.1bphotodegradable, polypropylene top 6 bottom net, 100% straw fiber matrix         60 days         Moderate Flow Channels 31 - 21 Slopes         Unvegetated 1.75 (84)           15.1bphotodegradable, polypropylene top 6 bottom net, 100% straw fiber matrix         12 months         Low Flow Channels 41 - 31 Slopes         Unvegetated 1.75 (84)           15.1bphotodegradable, polypropylene top net, 100% straw fiber matrix         12 months         Low Flow Channels 41 - 31 Slopes         Unvegetated 1.75 (84)           15.1bphotodegradable, polypropylene top net, 100% straw fiber matrix         12 months         Moderate Flow Channels 31 - 21 Slopes         Unvegetated 1.75 (84)           2.9 lbUV-stable polypropylene top net, 100% scoonut fiber matrix         24 months         Medium Flow Channels 21 - 13 Slopes         Unvegetated 2.0 (96)           2.9 lbUV-stable polypropylene bottom net         36 months         High Flow Channels 11 and Creater Slopes         Unvegetated 2.0 (96)           2.9 lbUV-stable polypropylene top is bottom net         12 months         Low Flow Channels 11 and Creater Slopes         Unvegetated 1.60 (76)           3.3 lb. leno woven biodegradable jute top net, 100% scoconut fiber matrix, 72 lb, woven biodegradable jute bottom net			

10



		TEMPO	DRARY		
	Product Description	Longevity	Applications	Design Permissible Shear Stress Ibs/ft² (Pa)	Design Permissible Velocity ft/s (m/s)
BIONET CONT'D					
C125BN	9.3 lb., leno woven biodegradable jute top net, 100% coconut fiber matrix, 7.7 lb., woven biodegradable jute bottom net	24 mo.	High Flow Channels 1:1 and Greater Slopes	Unvegetated 2.35 (112)	Unvegetated 10.0 (3.05)
C700BN	143 lb., (700 g) woven biodegradable coir top net, 100% coconut fiber matrix, 7.7 lb., woven biodegrdable jute bottom net	36 mo.	High Flow Channels 1:1 and Greater Slopes	Unvegetated 2.35 (112)	Unvegetated 10.0 (3.05)
		PERM	ANENT		
ERONET					
	5.0 lb., UV-stable polypropylene top net, 100% polypropylene fiber matrix, 3.0 lb., UV-stable polypropylene bottom net	Permanent	High Flow Channels 1:1 Slopes	Unvegetated 3.0 (144) Vegetated 8.0 (383)	Unvegetated 9.0 (2.7) Vegetated 16.0 (4.9)
P300					
	5.0 lb., UV-stable polypropylene top & bottom nets, 24.0 lb., UV-stable polypropylene corrugated center net, 70% straw/30% coconut fiber matrix	Permanent	High Flow Channels 1:1 and Greater Slopes	Unvegetated 3.0 (144) Vegetated 10.0 (480)	Unvegetated 9.5 (2.9) Vegetated 15.0 (4.6)
SC250					
C350	8.0 lb., UV-stable polypropylene top & bottom nets, 24.0 lb., UV-stable polypropylene corrugated center net, 100% coconut fiber matrix	Permanent	High Flow Channels 1:1 and Greater Slopes	Unvegetated 3.2 (153) Vegetated 12.0 (576)	Unvegetated 10.5 (3.2) Vegetated 20.0 (6.0)
P550	24.0 lb., UV-stable polypropylene top & bottom nets, 24.0 lb., UV-stable polypropylene corrugated center net, 100% polypropylene fiber matrix	Permanent	Extreme High Flow Channels 1:1 and Greater Slopes	Unvegetated 4.0 (191) Vegetated 14.0 (672)	Unvegetated 12.5 (3.8) Vegetated 25.0 (7.6)
TMax	100% UV-stable polypropylene monofilament yarns, woven into a 3-D structure	Permanent	Extreme High Flow Channels 1:1 and Greater Slopes	Vegetated 15.0 (718)	Vegetated 25.0 (7.6)
	100% UV-stable polypropylene monofilament yarns, woven into a 3-D structure	Permanent	Extreme High Flow Channels 1:1 and Greater Slopes	Vegetated 16.0 (766)	Vegetated 25.0 (7.6)

# **Channel Installation Detail**




#### **GENERAL INSTALLATION**

- Prepare soil before installing the HPTRM, including any necessary application of soil amendments such as lime or fertilizer. See seeding and vegetating section for details regarding preseeding, overseeding or use with sod.
- 2. Begin at the top of the channel by anchoring the HPTRM in a 6 in. (15 cm) deep x 6 in. (15 cm) wide trench with approximately 12 in. (30 cm) of HPTRM extended beyond the upslope portion of the trench. Anchor the HPTRM with a row of anchors/staples/ stakes spaced approximately 12 in. (30 cm) apart in the bottom of the trench. Backfill and compact the trench after stapling. Compact soil and fold remaining 12 in.(30 cm) portion of HPTRM back over compacted soil. Secure HPTRM over soil with a row of anchors/staples/stakes spaced approximately 12 in. (30 cm) across the width of the HPTRM.
- Roll center HPTRM in direction of water flow in bottom of channel. HPTRMs will unroll with appropriate side against the soil surface. All HPTRMs must be securely fastened to soil surface by placing anchors/staples/stakes in appropriate locations as shown in the anchoring detail.

- Place consecutive HPTRMs end over end (shingle style) with a 4 in. x 6 in. (10 cm-15 cm) overlap. Use a double row of staples/ stakes staggered 12 in. (30 cm) apart and 12 in. (30 cm) on center to secure HPTRMs.
- Full length edge of HPTRMs at top of side slopes must be anchored with a row of staples/stakes approximately 12 in. (30 cm) apart in a 6 in. (15 cm) deep x 6 in. (15 cm) wide trench. Backfill and compact the trench after stapling.
- Adjacent HPTRMs must be overlapped approximately 4 in. (10 cm) and fastened.
- In high flow channel applications, a staple/stake check slot is recommended at 30 ft to 40 ft (9 m-12 m) intervals. Use a double row of staples/stakes staggered 4 in. (10 cm) apart and 12 in. (30 cm) on center over entire width of the channel.
- The terminal end of the HPTRMs must be anchored with a row of staples/stakes approximately 12 in. (30 cm) apart in a 6 in. (15 cm) deep x 6 in. (15 cm) wide trench. Backfill and compact the trench after stapling.

# **Anchoring Detail**



#### **ANCHORING DETAIL**

The performance of ground anchoring devices is highly dependent on numerous site/project specific variables. It is the sole responsibility of the project engineer and/or contractor to select the appropriate anchor type and length. Anchoring shall be selected to hold the mat in intimate contact with the soil subgrade and resist pullout in accordance with the project's design intent.

- Staples and/or stakes should be at least 6 in. (15 cm) in length and with sufficient ground penetration to resist pullout. Longer staples and/or stakes may be needed in looser soils.
- The percussion earth anchor assembly consists of an anchor head, a tendon, a faceplate, and an end-piece device. See North American Green[®] Earth Anchor specification for detailed information on assembly components and associated pull-out strength.

#### **PERCUSSION EARTH ANCHOR INSTALLATION**

- Insert the drive rod into the assembly's anchor head then use either a sledge hammer or vibratory hammer to drive the anchor to their desired depth.
- 2. After the desired anchor depth is achieved, retract the drive rod.
- Lock the anchor assembly by swiftly pulling the cable upwards until the anchor head rotates as signaled by sudden resistance to pulling. A hooked setting tool may be used to aid in this step.

**NOTE:** Larger anchors may require more force to set the anchor. This can be achieved through using simple mechanical equipment for greater leverage, such as a fulcrum, manual or hydraulic jack, winch, or post puller.

 Secure the faceplate to the High-performance Turf Reinforcement Mat (HPTRM) surface by locking the end-piece. If using a copper or aluminum stop, crimp the ferrule to secure. If using a self-tensioning end-piece (grip or wedge grip) set by simply tightening the end-piece against the faceplate. If desired, cut the remaining cable assembly, above end-piece, to desired length.

#### SEEDING AND VEGETATING

# When using a Composite Turf Reinforcement Mat (C-TRM) with fiber components:

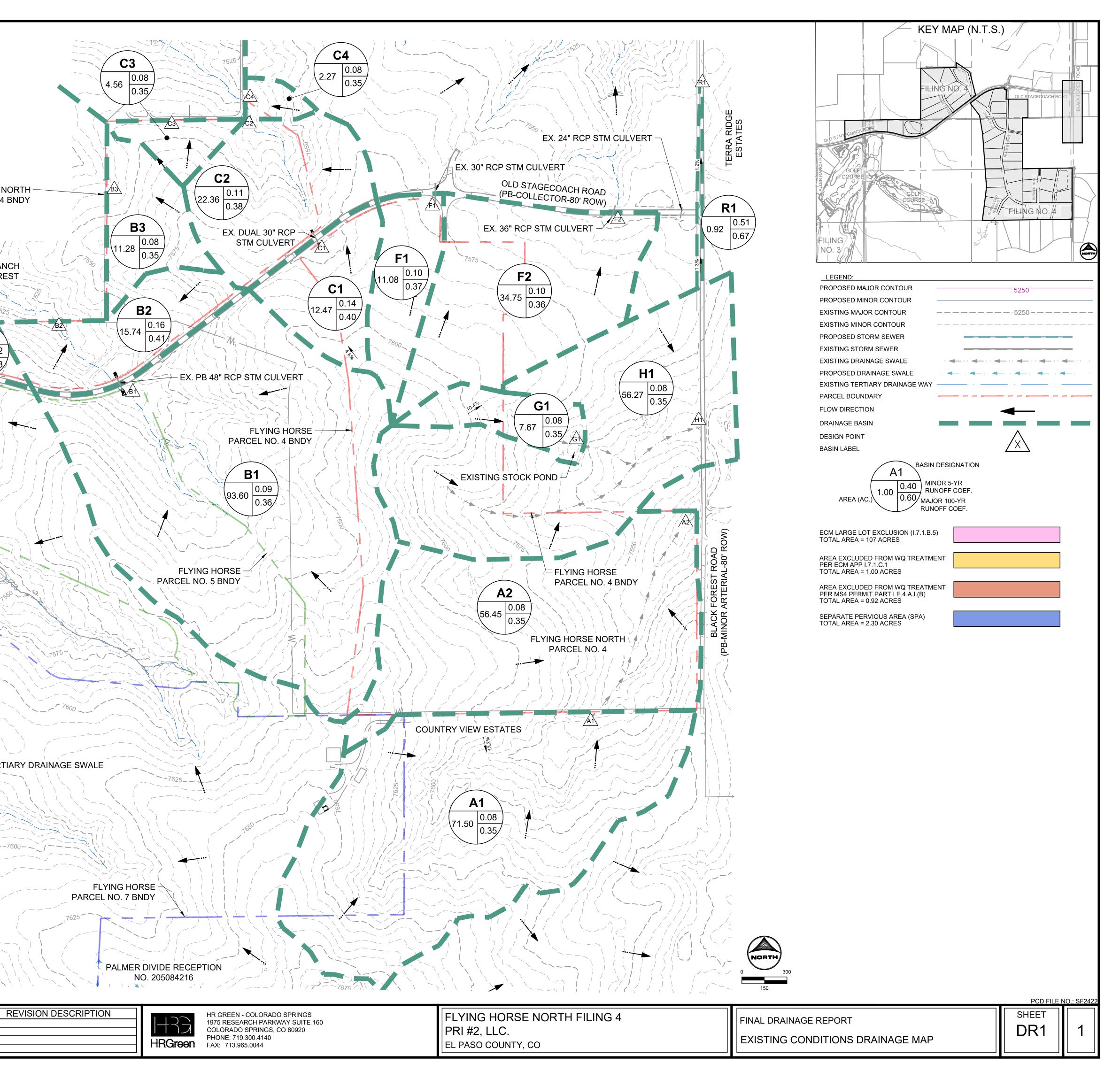
- Pre-seed prepared soils prior to the installation of the C-TRM. Install matting as directed. C-TRM does not require soil infill or a top dressing of seed. Overseeding may be done as a secondary form of seeding.
- Sod may be installed in place of seeding on top of the C-TRM. Additional staking of sod is recommended in high-flow conditions. Sodded areas should be irrigated until rooting through the mat and into subgrade occurs.

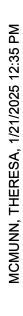
#### When using a woven HPTRM:

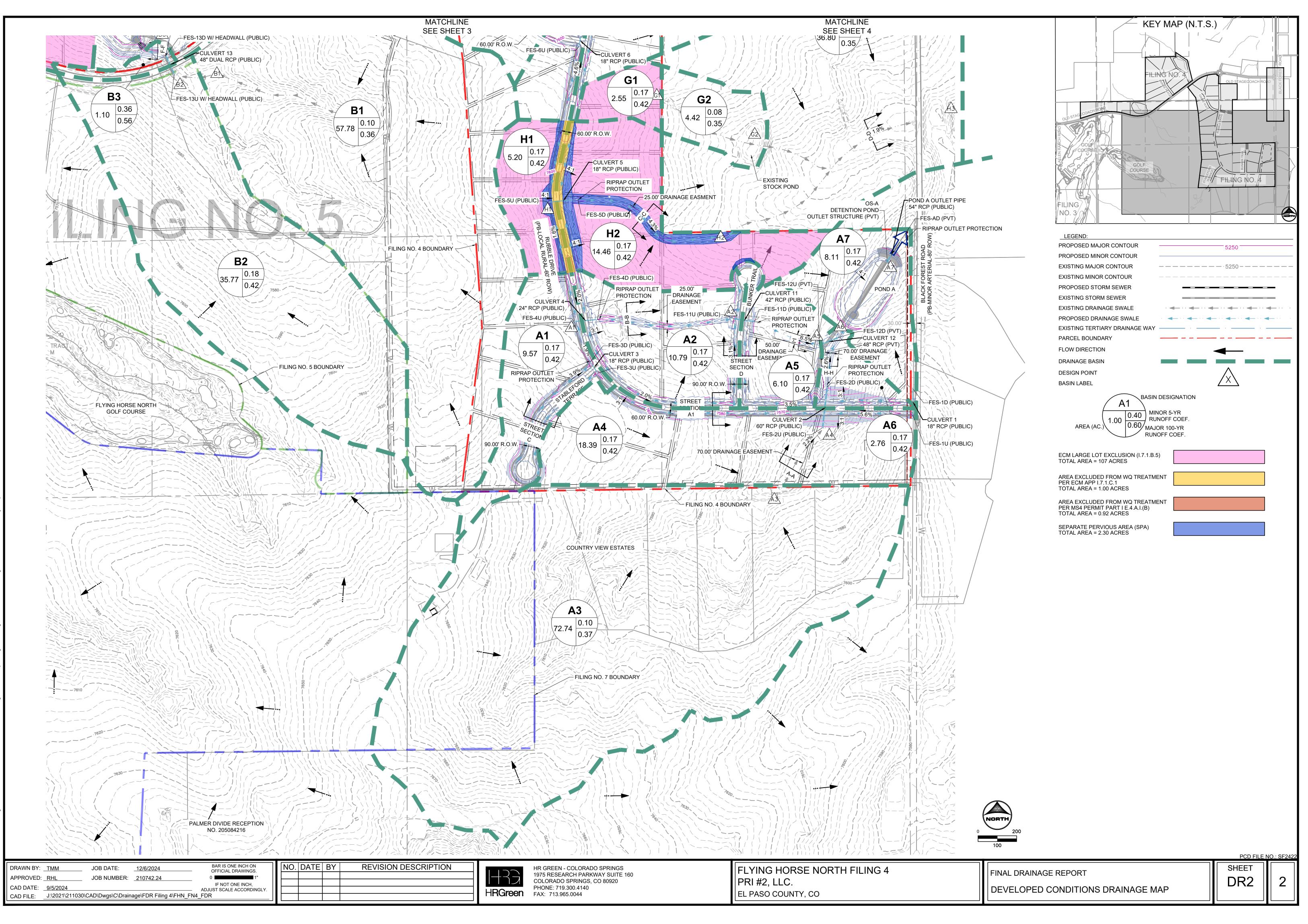
- 1. Install the HPTRM as directed prior to seed and soil filling.
- Place seed into the installed HPTRM. After seeding, spread a layer of fine soil into the mat. Using the flat side of a rake, broom or other tool, completely fill the voids. Smooth soil-fill in order to just expose the top of the HPTRM matrix. Do not place excessive soil above the mat.
- Additional seed, hydraulic mulching of the use of a temporary Erosion Control Blanket (ECB) can be applied over the soil-filled mat for increased protection.
- 4. Sod may be installed in place of seeding. Install HPTRM, and soil-fill as outlined above. Place sod directly onto the soil-filled HPTRM. Additional staking of sod is recommended in high-flow conditions. Sodded areas should be irrigated until rooting through the mat and into subgrade occurs.
- Consult with a manufacturer's technical representative for installation assistance if unique conditions apply.

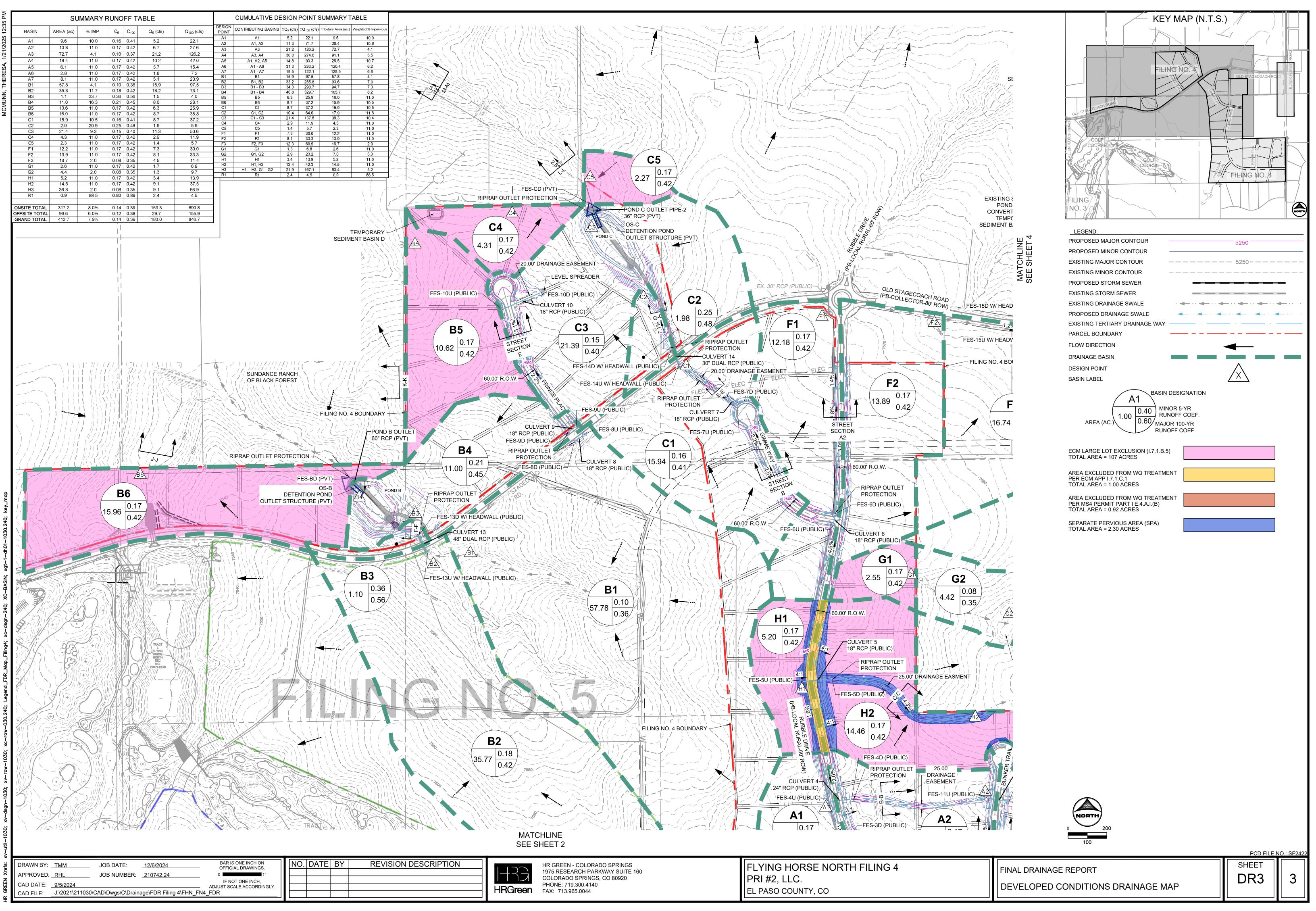


Flying Horse North Filing No. 4 Final Drainage Report Project No.: 211030

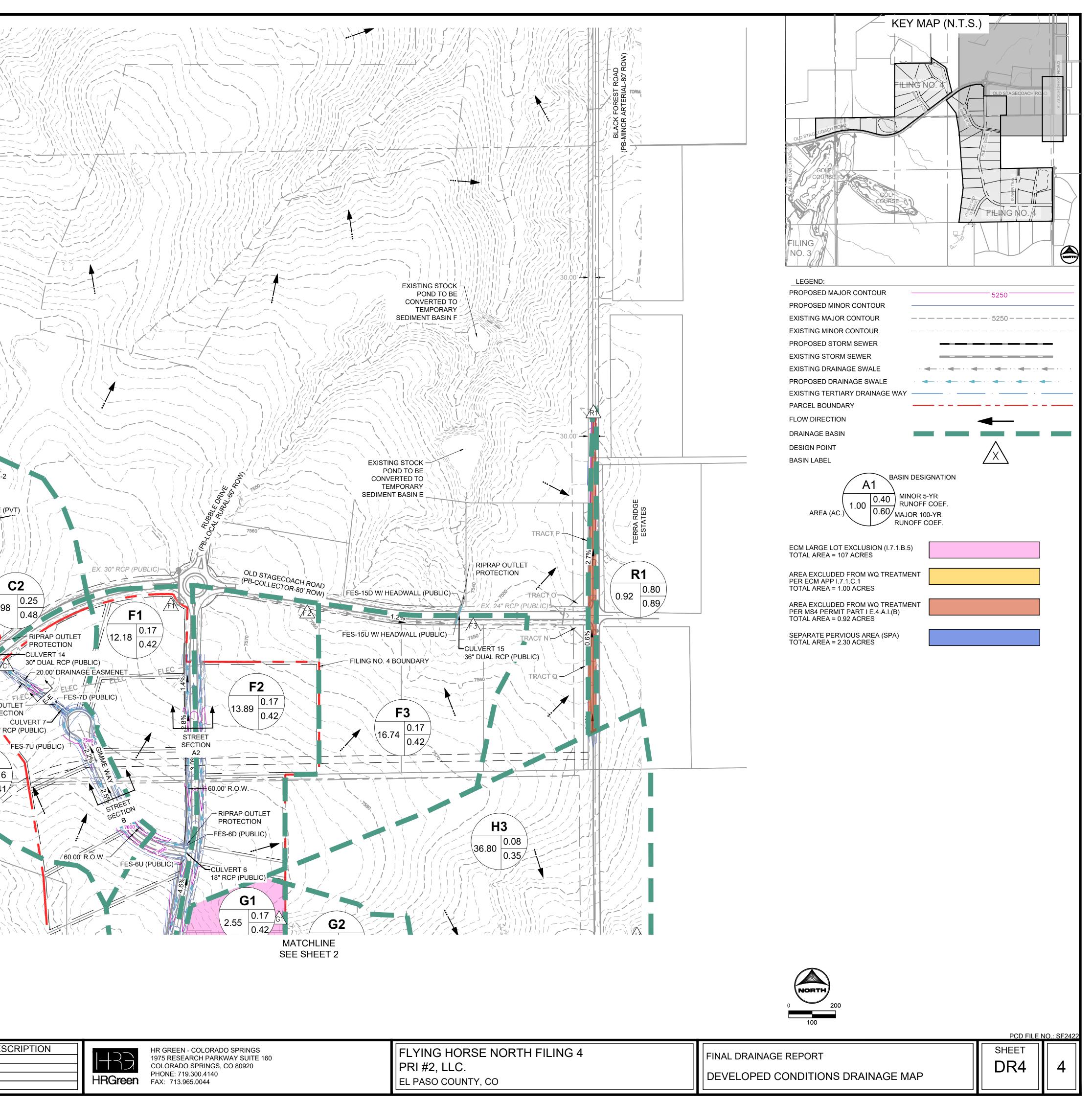

El Paso County, Colorado


# **APPENDIX F**

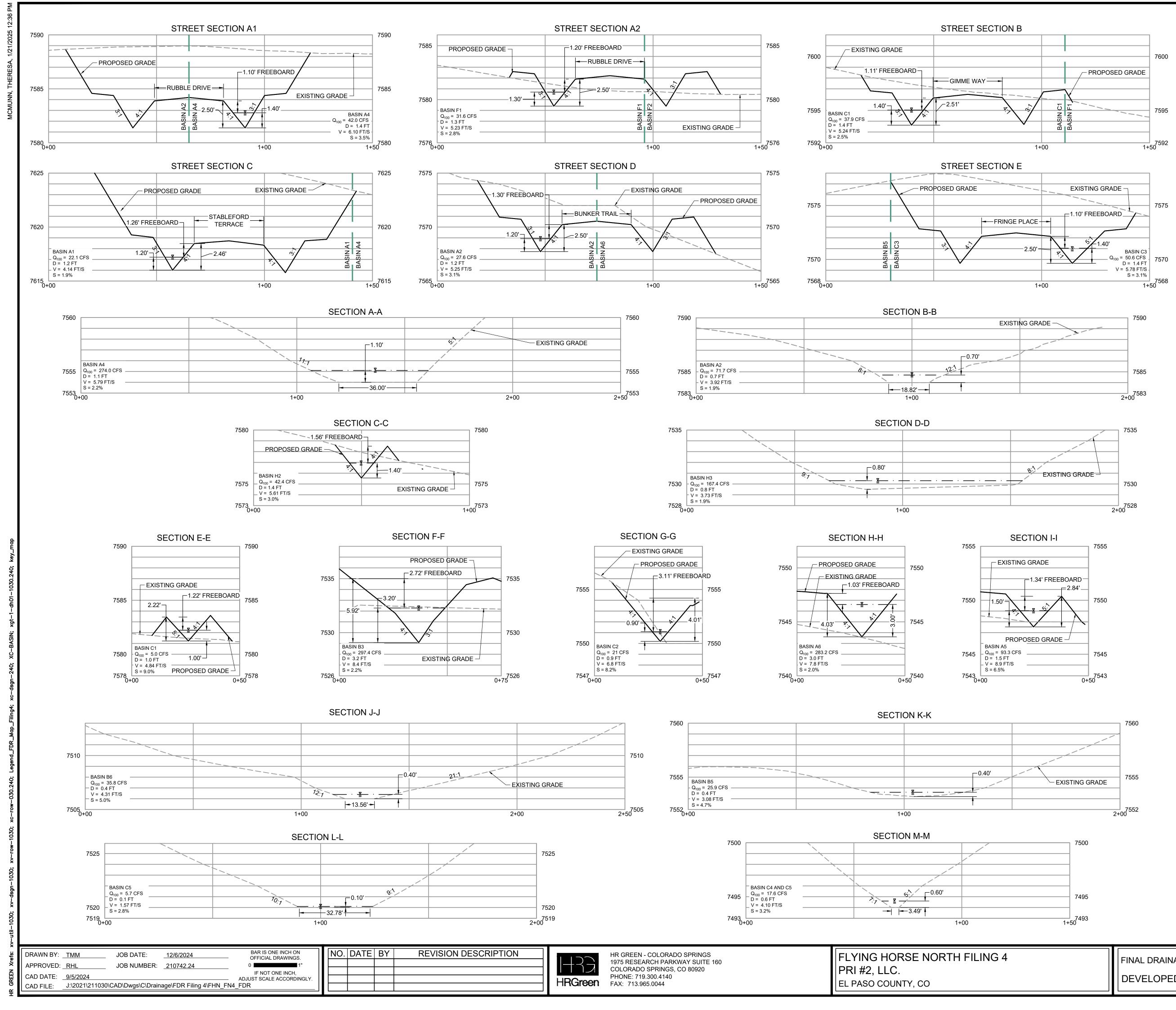

# **DRAINAGE MAPS**

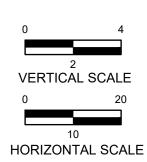

FLYING HORSE NORTH PARCEL NO. 4 BNDY SUNDANCE RANCH OF BLACK FOREST **B4** 0.12 0.38/ OLD STAGECOACH ROAD (PB-COLLECTOR-80' ROW) ~~~~~ ~~~~~ EX. IRRIGATION RESERVOIR ROAD ROW) W/ SMALL JD EMBANKMENT ALLEN RANCH F (PB-LOCAL-60' F 17 JELYING HORSE GOLF COURSE SUMMARY RUNOFF TABLE BASIN AREA (ac) % IMP.  $Q_5$  (cfs) Q₁₀₀ (cfs)  $C_5 | C_{100}$ 19.2 2.0 0.08 0.35 141.1 71.5 A1 2.0 0.08 0.35 A2 56.5 16.5 121.2 3.6 0.09 0.36 93.6 24.1 155.8 11.30.160.412.00.080.35 15.7 7.2 31.1 11.3 3.1 23.1 7.0 0.12 0.38 12.4 4.8 25.3 EX. TERTIARY DRAINAGE SWALE 12.5 9.4 0.14 0.40 6.0 28.1 C1 6.1 0.11 0.38 8.9 49.3 22.4 2.0 0.08 0.35 1.4 10.4 4.6 2.0 0.08 0.35 0.7 C4 2.3 4.8 11.1 4.5 0.10 0.37 3.9 23.9 3.9 0.10 0.36 34.8 72.3 11.4 F2 7.7 2.0 0.08 0.35 2.4 17.3 G1 56.3 2.0 0.08 0.35 17.1 125.8 H1 <u>0.9</u> <u>53.7</u> <u>0.51</u> <u>0.67</u> R1 1.6 3.4 
 GRAND TOTAL
 413.3
 3.65%
 0.12
 0.46
 126.7
 829.5
 CUMULATIVE DESIGN POINT SUMMARY TABLE DESIGN CONTRIBUTING BASINS 2Q5 (cfs) 2Q100 (cfs) Tributary Area (ac.) Weighted % Impervious POINT A1 19.2 141.1 71.5 2.0 A1 A2 34.4 381.1 128.0 A1, A2 2.0 B1 24.1 155.8 93.6 3.6 B1 30.9 317.1 B2 B1, B2 15.7 11.3 3.1 23.1 11.3 B3 B3 2.0 B4 4.8 25.3 12.4 7.0 B4 
 6.0
 28.1

 14.7
 114.0
 C1 12.5 C1 9.4 C2 C3 34.8 C1, C2 7.3 1.4 10.4 4.6 2.0 C3 C4 0.7 4.8 C4 2.3 2.0 F1 3.9 23.9 11.1 4.5 F2 11.4 72.3 34.8 3.9 G1 2.4 17.3 7.7 2.0 G1 19.5 200.5 H1 G1, H1 56.3 2.0 1.6 3.4 R1 G1, H2 0.9 53.7 BAR IS ONE INCH ON NO. DATE BY DRAWN BY: <u>TMM</u> JOB DATE: 12/6/2024 OFFICIAL DRAWINGS. JOB NUMBER: <u>210742.24</u> APPROVED: <u>RHL</u> IF NOT ONE INCH, ADJUST SCALE ACCORDINGLY. CAD DATE: <u>9/5/2024</u> CAD FILE: J:\2021\211030\CAD\Dwgs\C\Drainage\FDR Filing 4\FHN_FH4_EX






					25 0.17 0.42
					UTLET PIPE-2 VT) N POND STRUCTURE (PVT)
					<b>C2</b>
					G-C 1.98 0.20 RIPRAP OU PROTECTIO CULVERT 14 30" DUAL RC -20.00' DR
					RIPRAP OUTLET PROTECTION CULVERT 7- 18" RCP (PUBLIC) FES-7U (PUBLIC)
					C1 5.94 0.16 0.41
RAWN BY: <u>TMM</u> JOB DATE: PPROVED: <u>RHL</u> JOB NUMBER:	OFFICIAL	NE INCH ON DRAWINGS. 1"	DATE	BY	REVISION DESCRIPTION
AD DATE:	IF NOT ( ADJUST SCALE				



FLYING HORSE NORTH FILING 4
PRI #2, LLC.
EL PASO COUNTY, CO





	PCD FILE N	NO.: SF242
FINAL DRAINAGE REPORT DEVELOPED CONDITIONS DRAINAGE MAP	SHEET DR4	5