FINAL DRAINAGE REPORT FOR HCD DRILLING 2601 EAST PLATTE AVENUE COLORADO SPRINGS, COLORADO 80916

July, 2021 Revised April, 2022

Prepared For:

T-BONE CONSTRUCTION, INC. 1310 Ford Street Colorado Springs, CO 80915

Prepared By:

TERRA NOVA ENGINEERING, INC. 721 S. 23RD STREET Colorado Springs, CO 80904 (719) 635-6422

> Job No. 1895.00 PCD Filing No.: MS-21-008

FINAL DRAINAGE REPORT FOR HCD DRILLING 2601 EAST PLATTE AVENUE

COLORADO SPRINGS, COLORADO 80916

TABLE OF CONTENTS

Engineer's Statement	Page 3
Purpose	Page 4
General Description	Page 4
Soils Condition	Page 4
Drainage Criteria	Page 4
Existing Drainage Conditions	Page 4
Developed Drainage Conditions	Page 5
FSEDB	Page 6
Floodplain Statement	Page 7
Construction Cost Opinion	Page 7
Drainage And Bridge Fees	Page 8
Maintenance	Page 8
Summary	Page 8
References	Page 8

APPENDICIES

Vicinity Map

Site Map

Soils Map

FEMA Floodplain Map

Hydrologic Calculations

Hydraulic Calculations

FSEDB Calculations

Drainage Maps

DRAINAGE REPORT STATEMENT

Design Engineer's Statement

Conditions:

This attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

L DUCETT, P.E. 32339	Seal
OWNER/DEVELOPER'S STATE	MENT:
I, the owner/developer have read and will compreport and plan.	bly with all of the requirements specified in this drainage
Authorized Signature	Date
Printed Name, Title	Fill in the blanks in the Developers Statement and provide a signature line.
Business Name	Unresolved.
Address	Updated.
El Paso County Approval:	
Filed in accordance with the requirements of Paso County Engineering Criteria Manual a	of the Drainage Criteria Manual, Volumes 1 & 2, El and Land Development Code as amended.
Jennifer Irvine, P.E.	Date
County Engineer / ECM Administrator	—— Delete
	Removed.

Purpose

The purpose of this Final Drainage Report is to identify and analyze the existing and proposed drainage patterns, determine proposed runoff quantities, size drainage structures to safely convey the developed runoff, and present solutions to drainage impacts on-site and off-site resulting from this development.

General Description

This Final Drainage Report is an analysis of the development of "HCD DRILLING" (AKA "TRACT IN NE4NW4 SEC 18-14-65") owned by HCD Properties, LLC. The site is located at 2601 East Platte Avenue, Colorado Springs, CO 80916 in Section 18, Township 14S, Range 65 West of the 6th Principal Meridian in El Paso County. The site is bounded on the west by a landscaping supply business, on the north by E Platte Avenue Frontage Road, on the east by an RV and boat storage business, and on the south by a vacant lot owned by the City of Colorado Springs. The site is currently unplatted.

The site is currently used primarily for the parking and storage of vehicles and heavy equipment with some areas of soil excavation and storage at the southern end.

The proposed development is the addition of a 22,479 square foot building near the centroid of the lot but this project also makes preparations for a future building to be place near the front of the lot with all of the associated drives, utilities, grading, and stormwater features. The proposed building will be used to house a drilling company and includes a front office building with an asphalt parking lot and an attached industrial building with a surrounding gravel lot. The use of the future building will be established at a later time. The access will be from E Platte Avenue Frontage Road via two paved entrances.

The site lies within the Sand Creek Drainage Basin.

Soils Condition

The soil for this project is composed completely of Blakeland Loamy Sand per the "Soils Survey of El Paso County Area, which is in Hydrologic Soil Group A.

Drainage Criteria

Hydrologic and Hydraulic calculations were performed using the El Paso County Storm Drainage Design Criteria Manual Volumes 1 & 2, latest editions. The Rational Method was used to estimate storm water runoff and the design of the FSEDB was performed using UD-Detention v3.07.

Existing (Historic) Drainage Conditions

No previous drainage reports or studies could be found for this site. A drainage map for the existing conditions is included in the Appendix of this report. The site lies within the Sand Creek Basin. The existing topography has a relatively consistent 3% slope from the northeast to

the southwest but drops off more steeply at the western property line. The surface cover is composed of gravel lots and areas of disturbed ground with minimal vegetation.

Drainage ways for this site are poorly defined and runoff primarily sheet flows from the east/northeast to the west/southwest and leaves the site at three locations which are designated as Design Points (DP) for analysis. At the northwest property corner (DP X-1), runoff exits into the public drainage way along E Platte Avenue Frontage Road. At the west property line, about 250 feet south of the northwest property corner (DP X-2), runoff drains into a shallow swale and onto adjacent private property. Along the south side of the proposed development (DP X-3), runoff flows onto the same adjacent private property at a location approximately 500 feet south of DP X-2. Both DP X-2 and DP X-3 eventually release drainage into an existing pond on the west side of the adjacent property. At the southeast property line (DP X-4 & DP X-5), very small areas of runoff sheet flow onto Basin EX-C. There is a ridge that exists at the property line between Basins EX-A and EX-B and the adjacent eastern property which keeps drainage from flowing between sites. Therefore, there is no runoff from the adjacent property flowing onto Basins EX-A or EX-B.

Basin EX-A contributes to DP X-1 and has an area of 1.10 acres consisting of gravel lots and areas of disturbed soil, generating runoff amounts of Q5=1.83 cfs and Q100=4.62 cfs.

Basin EX-B contributes to DP X-2 and has an area of 2.10 acres consisting of gravel lots and areas of disturbed soil, generating runoff amounts of Q5=2.20 cfs and Q100=7.14 cfs.

Basin EX-C contributes to DP X-3 and has an area of 0.30 acres consisting of areas of disturbed soil, generating runoff amounts of Q5= 0.16 cfs and Q100= 0.88 cfs.

Basin OS-1 contributes to DP X-4 and has an area of 0.05 acres consisting of undeveloped land, generating runoff amounts of Q5= 0.02 cfs and Q100= 0.14 cfs.

Basin OS-2 contributes to DP X-5 and has an area of 0.10 acres consisting of undeveloped land, generating runoff amounts of Q5= 0.03 cfs and Q100= 0.25 cfs.

Developed Drainage Conditions

A drainage map for the proposed condition is included in the appendix of this report.

A Full Spectrum Extended Detention Basin (FSEDB) will be provided for the proposed and future development with a watershed area of 6.05 acres.

The proposed facility is comprised of asphalt parking lots, gravel lots, buildings, and landscaping. The drainage pattern for the site remains generally the same; however, the majority of the proposed developed/impervious areas are routed to the FSEDB. Only proposed Basins I & K will not be conveyed to the pond. Basins I & K total 1.12 acres. The only impervious portion is a 0.01 acre piece of the west access drive that is directed towards the drainage ditch along E Platte Avenue Frontage Road. This 0.01 acre area would qualify for an exclusion (Per ECM App I.7.1.C.1.)

Runoff continues to exit into the public drainage way along E Platte Avenue Frontage Road at the northwest corner (DP 11). The area draining to this location is significantly reduced as compared to existing conditions.

Runoff is no longer discharged at design point X2 as it had been in the existing conditions.

The outlet of the FSEDB (DP 9) is the location at which runoff from the proposed development is discharged after treatment.

Basin A contributes to DP 1 and has an area of 1.36 acres consisting primarily of proposed paved and future building area with a small portion of landscaped area, generating runoff amounts of Q5= 5.26 cfs and Q100= 10.67 cfs. Minor runoff is conveyed under the entrances at E Platte Avenue Frontage Road via 2 ft wide concrete trench drains just to the north of this basin. The runoff is collected by a 8' D-10-R inlet at design point 1 and conveyed to the FSEDB via storm pipe.

Basin B contributes to DP 2 and has an area of 0.71 acres consisting mostly of paved areas and much smaller areas of lawn/landscaping, generating runoff amounts of Q5= 2.58 cfs and Q100= 5.35 cfs. The runoff is collected by a type C inlet at design point 2 and conveyed to the FSEDB via storm pipe.

Basin C contributes to DP 3 and has an area of 0.54 acres consisting of paved area, building, gravel lot, and lawn/landscaping, generating runoff amounts of Q5= 1.59 cfs and Q100= 3.47 cfs. The runoff sheet flows and travels by a 2' concrete pan to a type C inlet at design point 3 and then conveyed to the FSEDB via storm pipe.

Basin D contributes to DP 4 and has an area of 0.26 acres consisting of building, paved area, gravel lot, and lawn/landscaping, generating runoff amounts of Q5= 0.82 cfs and Q100= 1.74 cfs. The runoff is collected by an inlet at design point 4 and conveyed to the FSEDB via storm pipe.

Basin E contributes to DP 5 and has an area of 0.35 acres consisting of building, paved area, and gravel lot, generating runoff amounts of Q5= 1.20 cfs and Q100= 2.48 cfs. The runoff is collected by an inlet at design point 5 and conveyed to the FSEDB via storm pipe.

Basin F contributes to DP 6 and has an area of 0.29 acres consisting of building, paved area, and gravel lot, generating runoff amounts of Q5= 1.03 cfs and Q100= 2.10 cfs. The runoff is collected by an inlet at design point 6 and conveyed to the FSEDB via storm pipe.

Basin G contributes to DP 7 and has an area of 0.35 acres consisting of building, paved area, and gravel lot, generating runoff amounts of Q5= 1.20 cfs and Q100= 2.48 cfs. The runoff is collected by an inlet at design point 7 and conveyed to the FSEDB via storm pipe.

Basin H contributes to DP 8 and has an area of 0.20 acres consisting of building, paved area, and gravel lot, generating runoff amounts of Q5= 0.71 cfs and Q100= 1.46 cfs. The runoff is collected by an inlet at design point 8 and conveyed to the FSEDB via storm pipe.

Basin I contributes to DP 9 and has an area of 0.96 acres consisting of grading needed for the construction of the FSEDB and other landscaped area generating runoff amounts of Q5= 0.26 cfs and Q100= 1.95 cfs. No new impervious area is being added and the ground cover will be improved from gravel and disturbed soil to maintained landscaping. Basin I is excluded from permanent WQ control measures per ECM Appendix I Section I.7.1.B.7 since this area consists of land disturbance to undeveloped land that will remain undeveloped after site construction is complete. Therefore, the area does not require treatment in the FSEDB. The runoff sheet flows onto adjacent property at design point 9 as in the existing conditions.

Basin J contributes to DP 10 and has an area of 1.82 acres consisting of the FSEDB, some paved area, gravel lot, and landscaped area, generating runoff amounts of Q5= 1.81 cfs and Q100= 5.37 cfs. The runoff sheet flows towards the FSEDB located at design point 10.

Basin K is the small area that continues to exit into the public drainage way along E Platte Avenue Frontage Road at the northwest corner (DP 11) as it had previously. The area and runoff of this basin is significantly reduced as compared to existing conditions. Basin K is excluded from permanent WQ control measures per ECM Appendix I Section I.7.1.B.7 since this area consists of land disturbance to undeveloped land that will remain undeveloped after site construction is complete. It generates runoff amounts of Q5= 0.09 cfs and Q100 = 0.45.

Basin L contributes to DP 12 and has an area of 0.06 acres consisting of building, paved area, and gravel lot, generating runoff amounts of Q5= 0.23 cfs and Q100= 0.47 cfs. The runoff is collected by an inlet at design point 12 and conveyed to the FSEDB via storm pipe.

Basin M contributes to DP 13 and has an area of 0.06 acres consisting of building, paved area, and gravel lot, generating runoff amounts of Q5= 0.19 cfs and Q100= 0.41 cfs. The runoff is collected by an inlet at design point 13 and conveyed to the FSEDB via storm pipe.

Basins OS-1 & OS-2 remain as they had previously.

FSEDB

In an effort to protect receiving water and as part of the "four step process to minimize adverse impacts of urbanization" this site was analyzed in the following manner:

- Step 1: Employ Runoff Reduction Practices The nature of the development precludes reducing runoff as most of the site is used for buildings, asphalt lots, and gravel lots.
- Step 2: Stabilize Drainageways There are no existing streams associated with this site.
- Step 3: Provide Water Quality Capture Volume The FSEDB is designed to capture and treat the runoff from the proposed development in the appropriate manner.
- Step 4: Consider Need for Industrial and Commercial BMPs given that the site will be used to house a drilling company, the presence of fuel and other contaminants are likely; therefore, spill kits should be kept on site and any outdoor storage of industrial materials should include the appropriate safeguards.

The runoff from Basins A, B, C, D, E, F, G, H, J, L, M, & OS-1 of the proposed development are routed to the proposed 2.235 ac-ft private FSEDB located at the southern portion of the property at DP 10. The FSEDB treats runoff from a combined watershed area of 6.05 acres with an imperviousness of 65.3%. The elevation of the bottom of the pond is 6243.00 and the top of the berm is at 6252.00. The pond design has a WQCV storage volume of 0.129 ac-ft at a water surface elevation of 6245.20. The EURV storage volume is 0.362 ac-ft at a water surface elevation of 6246.82. The 100-year storage volume of 0.240 ac-ft corresponds to a water surface of 6247.71. The WQCV discharge is less than 0.1 cfs and will be fully released in 40 hours. The EURV discharge is 0.2 cfs and will fully released in 72 hours. The 100 year outflow is 3.5 cfs and is fully released in 73 hours.

The forebay exceeds the size requirement of 2% of the WQCV volume of 0.129 ac-ft. A Trickle channel 2 ft wide and 0.5 ft deep at 0.54% slope runs from the forebay to the micropool at the

FSEDB outlet structure. The outlet structure is a 2.0 ft by 2.0 ft riser box with the inlet invert set at 6243.00 and the top of grate set at elevation 6246.82. A metal orifice plate on the front of the structure regulates the WQCV and EURV via three orifices with 0.7 square inches, 0.7 square inches, and 4 square inches spaced 1.27 ft apart. The invert of 18" outlet pipe is at elevation 6242.75 with a restrictor plate set 4.5 inches higher. The outlet pipe is 82 ft long at a slope of 1.12% with a metal end section at the outlet end with type L riprap protection (D50= 12 in).

An emergency spillway is set at elevation 6249.00. The spillway has a bottom width of 8 ft with 4:1 side slopes and is protected by type VL riprap (D50= 12 in). The 100 year HWL is 1.29 feet below the spillway. In an emergency overflow situation, the runoff will flow onto the property south of the site. Drainage from both the outlet pipe and emergency spillway will discharge from the southwest corner of the site to an existing depression in the land south of the site which is owned by the City of Colorado Springs. If this depression were to overtop, drainage would travel onto the adjacent commercial property to the west and travel over gravel and concrete channel to an existing pond on the western edge of that site in much the same way as in historical conditions.

Floodplain Statement

According to FEMA's FIRM No. 08041CO754G (eff. 12/7/2018), the proposed development is within an area designated as Zone X, having minimal flood hazard.

Construction Cost Opinion

Private Drainage Facilities Improvements (Non-Reimbursable)

Description	Quantity	Unit Price	Cost
4 ft Concrete Drain Pan	735 LF	\$42	\$30,870
2 ft Conc. Trench Drain	56 LF	\$230	\$12,880
		Total	\$43,750

Private Permanent BMP (Non-Reimbursable) – 1 FSEDB

Description	Quantity	Unit Price	Cost
Earthwork	3607 Cu Yd	\$12	\$43284
Forebays	1 EA	\$1500	\$1500
Trickle Channel	92 LF	\$32	\$2944
Outlet Structure (box riser, micropool, pipe, headwall, and riprap)	1 EA	\$5000	\$5000
Emergency Spillway	1 EA	\$1500	\$1500
Maintenance Access Rd	1 EA	\$500	\$500
Stabilization	1 EA	\$5000	\$5000
		Subtotal	\$59,728
		10% Contingency	<i>\$5973</i>
		Total	\$65,701

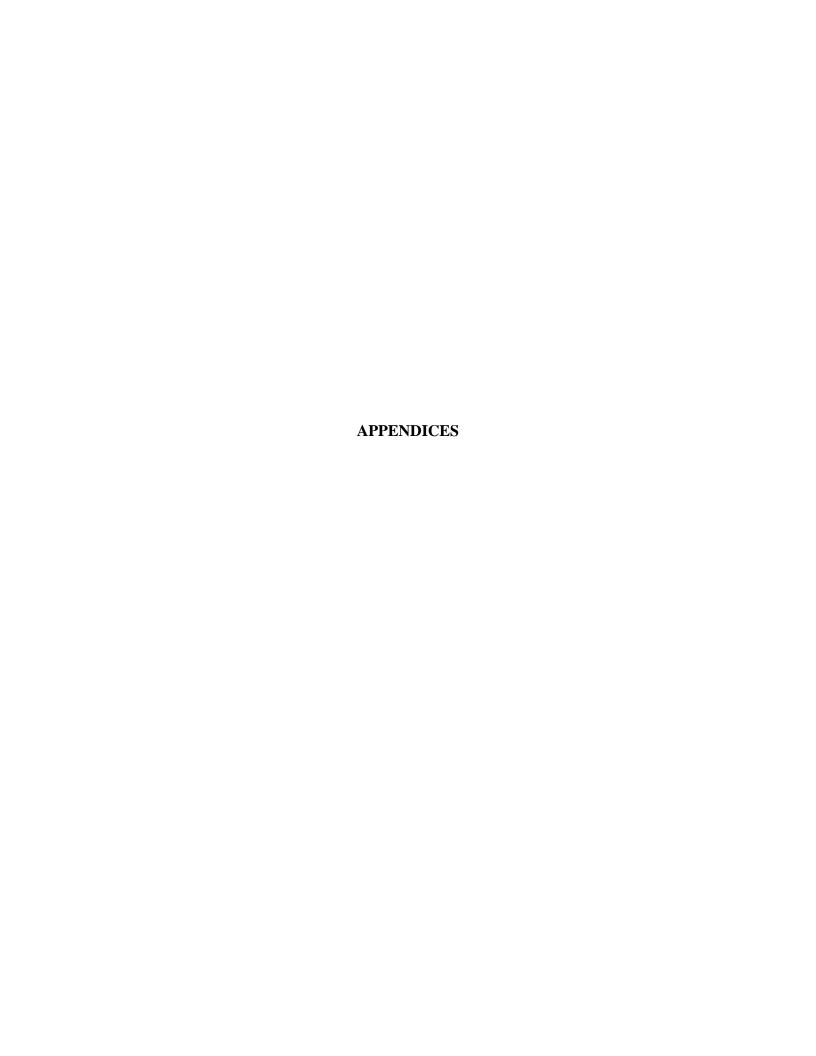
Drainage And Bridge Fees

This currently unplatted site is in the Sand Creek Drainage Basin. The site is 7.13 acres. The combined Drainage Fees (2021) are due prior to final plat recordation.

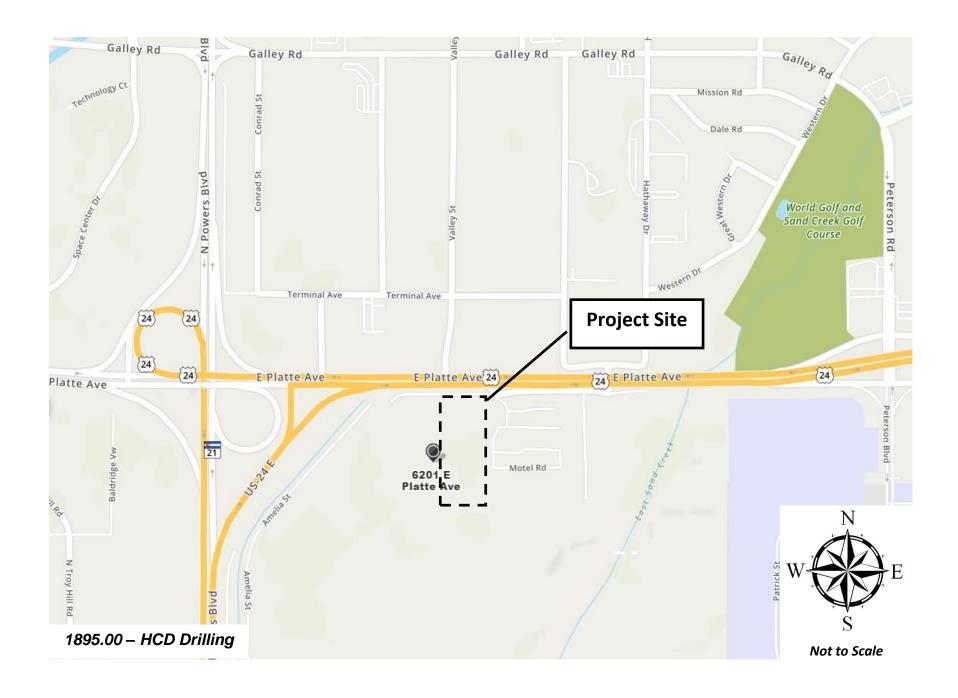
Fee Type	% Imp.	Parcel Area (acre)	Imp. Area (acre)	Fee per Imp Acre	Mod %	Fee Cost
Drainage	65.3	7.13	4.66	\$20,387	100	\$95,003.42
Bridge	65.3	7.13	4.66	\$8,339	100	\$38,859.74
				Total		\$133,863.16

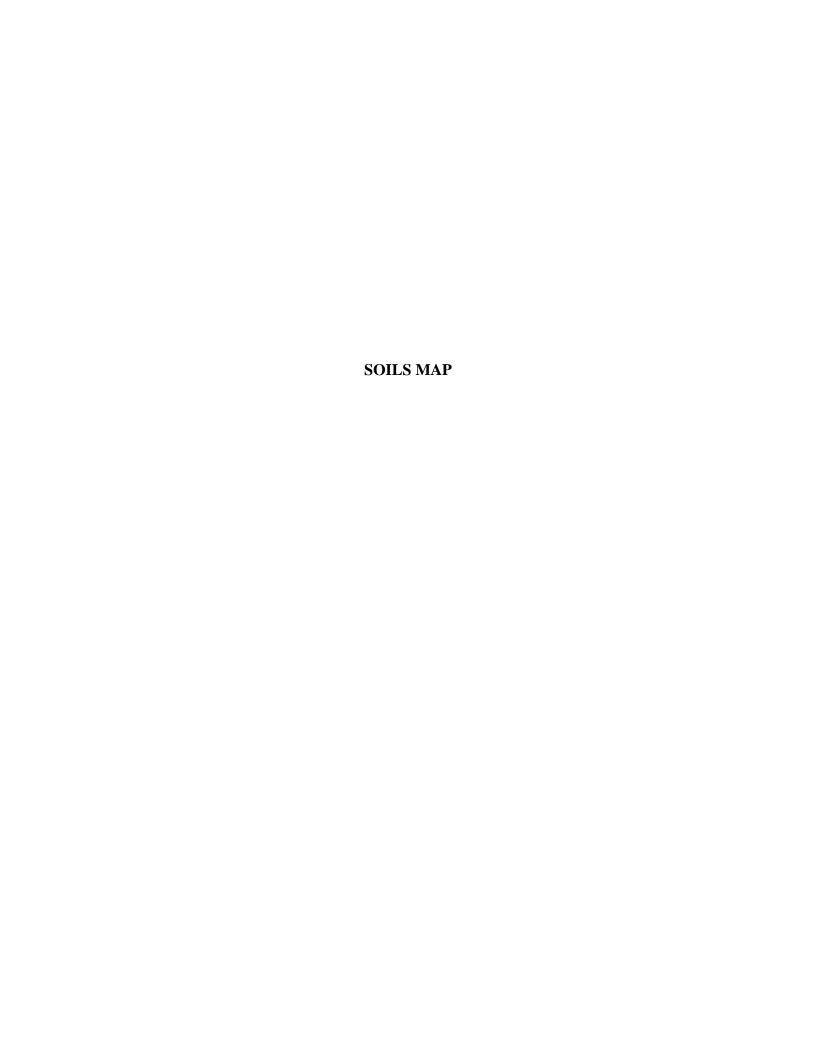
Maintenance

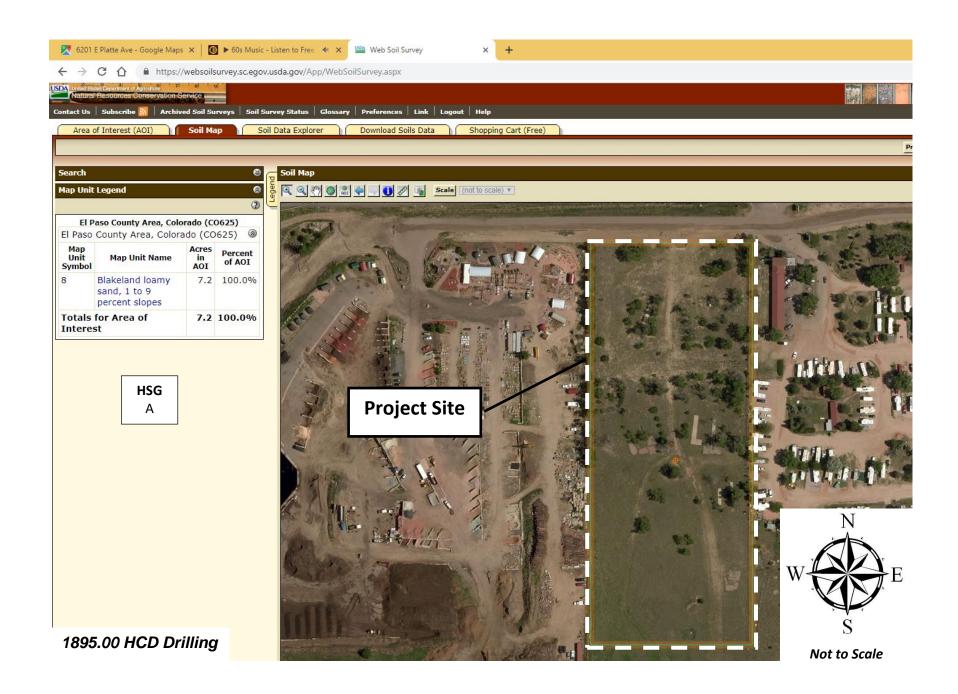
The proposed FSEDB will be privately maintained by the lot owner and is accessible via a 12' wide aggregate base maintenance access road. The proposed entrance trench drains and proposed concrete drain pans will be privately maintained by the lot owner.

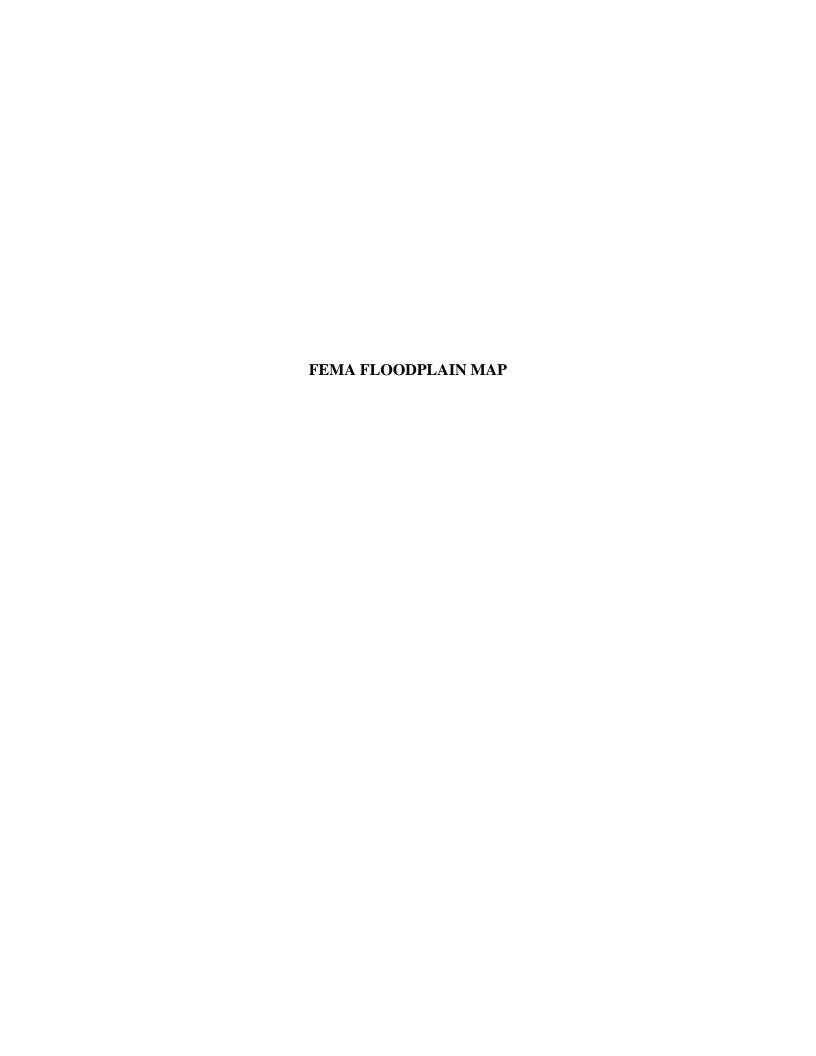

Summary

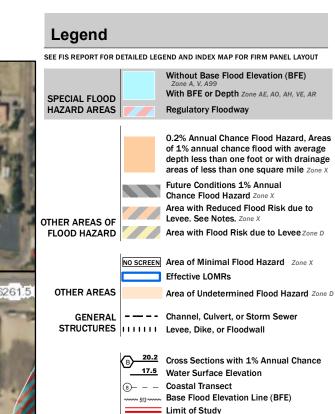
This Final Drainage Report analyzed the development of HCD Drilling owned by HCD Properties, LLC, located at 2601 East Platte Avenue, Colorado Springs, CO 80916. Runoff from the development will not adversely affect the surrounding or downstream developments. Proposed flows, as detailed in this report, will follow existing drainage patterns and will be safely routed downstream. Water quality and detention are provided on-site using a FSEDB. No public storm drainage modifications or design changes are necessary as a result of the development.


An Erosion Control Plan will be submitted separately.


References


- 1) City of Colorado Springs/County of El Paso Drainage Criteria Manual, dated May 2014.
- Soil survey of El Paso County Area, Colorado, Prepared by United States Department of Agriculture Soil Conservation Service, dated June 1981.
- 3) Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map Number 08041CO754G.





National Flood Hazard Layer FIRMette

Digital Data Available

No Digital Data Available

MAP PANELS

Unmapped

Jurisdiction Boundary
Coastal Transect Baseline

Hydrographic Feature

Profile Baseline

9

OTHER

FEATURES


The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 7/24/2019 at 5:22:04 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

1895.00 HCD DRILLING

Area Runoff Coefficient (C) Summary

HSG - A

EXISTING

		GRAVEL LOT			DISTURBED AREA			LAWN/LANDSCAPING			WEIGHTED		WEIGHTED CA	
BASIN	TOTAL AREA	AREA	C5	C100	AREA	C5	C100	AREA	C5	C100	C5	C100	CA5	CA100
	(Acres)	(Acres)			(Acres)			(Acres)						
EX-A	1.1	0.7	0.59	0.70	0.4	0.15	0.50	0.0	0.08	0.35	0.43	0.63	0.47	0.69
EX-B	2.1	0.7	0.59	0.70	1.4	0.15	0.50	0.0	0.08	0.35	0.30	0.57	0.62	1.19
EX-C	0.3	0.0	0.59	0.70	0.3	0.15	0.50	0.0	0.08	0.35	0.15	0.50	0.05	0.15
OS-1	0.1	0.0	0.59	0.70	0.0	0.15	0.50	0.1	0.08	0.35	0.08	0.35	0.00	0.02
OS-2	0.1	0.0	0.59	0.70	0.0	0.15	0.50	0.1	0.08	0.35	0.08	0.35	0.01	0.04

3.7

Fixed.

Updat EX-C. Area does not match the existing drainage map (3.92 ac)

ELOPED

		Gl	\mathbf{R}_{A} map (3.92 ac)			OF	LAWN/	LANDSC	APING	WEIGI	HTED	WEIGH:	TED CA
BASIN	TOTAL AREA (Acres)	AREA (Acres)	C5	C100	AREA (Acres)	C5	C100	AREA (Acres)	C5	C100	C5	C100	CA5	CA100
\boldsymbol{A}	1.36	0.00	0.59	0.70	1.15	0.90	0.96	0.21	0.08	0.35	0.77	0.87	1.05	1.18
В	0.71	0.00	0.59	0.70	0.56	0.90	0.96	0.15	0.08	0.35	0.73	0.83	0.52	0.59
C	0.54	0.12	0.59	0.70	0.27	0.90	0.96	0.15	0.08	0.35	0.60	0.73	0.33	0.40
D	0.26	0.15	0.59	0.70	0.08	0.90	0.96	0.03	0.08	0.35	0.63	0.74	0.16	0.19
E	0.35	0.24	0.59	0.70	0.11	0.90	0.96	0.00	0.08	0.35	0.69	0.78	0.24	0.27
$oldsymbol{F}$	0.29	0.18	0.59	0.70	0.11	0.90	0.96	0.00	0.08	0.35	0.71	0.80	0.21	0.23
\boldsymbol{G}	0.35	0.24	0.59	0.70	0.11	0.90	0.96	0.00	0.08	0.35	0.69	0.78	0.24	0.27
H	0.20	0.12	0.59	0.70	0.08	0.90	0.96	0.00	0.08	0.35	0.71	0.80	0.14	0.16
I	0.96	0.00	0.59	0.70	0.00	0.90	0.96	0.96	0.08	0.35	0.08	0.35	0.08	0.34
J	1.82	0.62	0.59	0.70	0.06	0.90	0.96	1.14	0.08	0.35	0.28	0.49	0.51	0.89
K	0.16	0.00	0.59	0.70	0.01	0.90	0.96	0.15	0.08	0.35	0.13	0.39	0.02	0.06
L	0.06	0.00	0.59	0.70	0.05	0.90	0.96	0.01	0.08	0.35	0.76	0.86	0.05	0.05
M	0.06	0.00	0.59	0.70	0.04	0.90	0.96	0.02	0.08	0.35	0.63	0.76	0.04	0.05
OS-1	0.05	0.00	0.59	0.70	0.00	0.90	0.96	0.05	0.08	0.35	0.08	0.35	0.00	0.02
OS-2	0.10	0.00	0.59	0.70	0.00	0.90	0.96	0.10	0.08	0.35	0.08	0.35	0.01	0.04

Date: 7/20/2021 Checked by:

1895.00 HCD DRILLING Runoff Summary

EXISTING

		WEIG	HTED	OVERLAND				SHALLOW CONCENTRATED FLOW				T_{C}	INTE	VSITY	TOTAL	FLOWS
BASIN	AREA TOTAL	C_5	C ₁₀₀	C ₅	Length	Slope	T_t	Length	Slope	Velocity	T_t	TOTAL	I_5	I_{100}	Q_5	Q_{100}
	(Acres)	* For Calcs See	Runoff Summary		(ft)	(ft/ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)
EX-A	1.10	0.43	0.63	0.43	150	0.029	10.4	180	4.4%	3.2	0.9	11.4	3.9	6.7	1.83	4.62
EX-B	2.10	0.30	0.57	0.30	150	0.027	12.8	276	3.6%	2.8	1.6	14.4	3.5	6.0	2.20	7.14
EX-C	0.30	0.15	0.50	0.15	150	0.033	14.2	176	3.5%	2.8	1.0	15.2	3.4	5.9	0.16	0.88
OS-1	0.05	0.08	0.35	0.08	35	0.029	7.7	0	3.5%	2.8	0.0	7.7	4.4	7.9	0.02	0.14
OS-2	0.10	0.08	0.35	0.08	75	0.040	10.1	0	3.5%	2.8	0.0	10.1	4.1	7.0	0.03	0.25

DEVELOPED

		WEIGH	HTED		OVER	RLAND		SHALLO	OW CONC	ENTRATEL	FLOW	$T_{\rm C}$	INTE	VSITY	TOTAL	FLOWS
BASIN	AREA TOTAL	C_5	C ₁₀₀	C_5	Length	Slope	$\mathbf{T_t}$	Length	Slope	Velocity	\boldsymbol{T}_t	TOTAL	I_5	I ₁₀₀	Q_5	Q_{100}
	(Acres)	* For Calcs See	Runoff Summary		(ft)	(ft/ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)
A	1.36	0.77	0.87	0.77	55	0.02	3.4	255	3.0%	3.5	1.2	5.0	5.0	9.1	5.26	10.67
\boldsymbol{B}	0.71	0.73	0.83	0.73	0	0.04	0.0	260	1.3%	2.2	2.0	5.0	5.0	9.1	2.58	5.35
С	0.54	0.60	0.73	0.60	45	0.02	4.8	95	1.0%	2.0	0.8	5.6	4.9	8.8	1.59	3.47
D	0.26	0.63	0.74	0.63	0	0.04	0.0	160	2.5%	3.2	0.8	5.0	5.0	9.1	0.82	1.74
$\boldsymbol{\mathit{E}}$	0.35	0.69	0.78	0.69	0	0.33	0.0	180	4.0%	2.0	1.5	5.0	5.0	9.1	1.20	2.48
$\boldsymbol{\mathit{F}}$	0.29	0.71	0.80	0.71	0	0.10	0.0	160	4.0%	2.0	1.3	5.0	5.0	9.1	1.03	2.10
G	0.35	0.69	0.78	0.69	0	0.10	0.0	180	4.0%	2.0	1.5	5.0	5.0	9.1	1.20	2.48
Н	0.20	0.71	0.80	0.71	0	0.10	0.0	160	4.0%	2.0	1.3	5.0	5.0	9.1	0.71	1.46
I	0.96	0.08	0.35	0.08	100	0.03	12.8	310	4.0%	2.0	2.6	15.4	3.4	5.8	0.26	1.95
J	1.82	0.28	0.49	0.28	100	0.03	10.3	240	4.2%	1.0	4.0	14.3	3.5	6.0	1.81	5.37
K	0.16	0.13	0.39	0.13	100	0.07	9.4	0	1.0%	1.0	0.0	9.4	4.1	7.2	0.09	0.45
\boldsymbol{L}	0.06	0.76	0.86	0.76	0	0.07	0.0	65	3.0%	1.5	0.7	5.0	5.0	9.1	0.23	0.47
M	0.06	0.63	0.76	0.63	0	0.07	0.0	90	3.0%	1.5	1.0	5.0	5.0	9.1	0.19	0.41
OS-1	0.05	0.08	0.35	0.08	50	0.02	10.4	0	1.0%	1.0	0.0	10.4	4.0	7.0	0.02	0.12
OS-2	0.10	0.08	0.35	0.08	90	0.03	11.8	0	1.0%	1.0	0.0	11.8	3.8	6.6	0.03	0.23

1895.00 HCD DRILLING Surface Routing

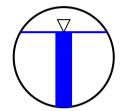
	EXISTING CONDITIONS												
					Maximum	Intensity		Flow					
Design Point(s)	Contributing Basins	Area (Acres)	Equivalent CA ₅	Equivalent CA ₁₀₀	T_{C}	I_5	I_{100}	Q_{5}	Q_{100}				
X1	EX-A	1.10	0.47	0.69	11.4	3.9	6.7	1.83	4.62				
X2	EX-B	2.10	0.62	1.19	14.4	3.5	6.0	2.20	7.14				
X3	EX-C, OS-1, OS-2	4.07	0.05	0.15	15.2	3.4	5.9	0.21	1.27				
X4	OS-1	0.05	0.00	0.02	7.7	4.4	7.9	0.02	0.14				
X5	OS-2	0.10	0.01	0.04	10.1	4.1	7.0	0.03	0.25				

			PRO	POSED CO	NDITIONS	5			
					Maximum	Intensity		Flow	
Design Point(s)	Contributing Basins	Area (Acres)	Equivalent CA 5	Equivalent CA 100	T_{C}	I_5	I 100	Q 5	Q_{100}
1	A	1.36	1.05	1.18	5.0	5.0	9.1	5.26	10.67
2	В	0.71	0.52	0.59	5.0	5.0	9.1	2.58	5.35
3	С	0.54	0.33	0.40	5.6	4.9	8.8	1.59	3.47
4	D	0.26	0.16	0.19	5.0	5.0	9.1	0.82	1.74
5	Е	0.35	0.24	0.27	5.0	5.0	9.1	1.20	2.48
6	F	0.29	0.21	0.23	5.0	5.0	9.1	1.03	2.10
7	G	0.35	0.24	0.27	5.0	5.0	9.1	1.20	2.48
8	Н	0.20	0.14	0.16	5.0	5.0	9.1	0.71	1.46
9	I, OS-2, Pond	7.11	0.08	0.37	27.2	2.6	4.3	0.42	5.09
10	J, OS-1	1.87	0.52	0.91	24.7	2.7	4.5	1.42	4.12
11	K	0.16	0.02	0.06	9.4	4.1	7.2	0.09	0.45
12	L	0.06	0.05	0.05	5.0	5.0	9.1	0.23	0.47
13	M	0.06	0.04	0.05	5.0	5.0	9.1	0.19	0.41
14	OS-1	0.05	0.00	0.02	10.4	4.0	7.0	0.02	0.12
15	OS-2	0.10	0.01	0.04	11.8	3.8	6.6	0.03	0.23

DEVELOPED CONDITIONS

						Inter	nsity	Fle	ow
Pipe Run(s)	Contributing Design Points/Pipe Runs	Area (Acres)	Equivalent CA 5	Equivalent CA ₁₀₀	Maximum T _C	I_5	I 100	Q 5	Q 100
1	DP 1	1.36	1.05	1.18	5.0	5.0	9.1	5.3	10.7
2	DP 12	0.06	0.05	0.05	5.0	5.0	9.1	0.2	0.5
3	DP 13, PR 2	0.12	0.08	0.10	5.0	5.0	9.1	0.4	0.9
4	DP 3, PR 3, PR 1	2.02	1.46	1.67	5.0	5.0	9.1	7.3	15.1
5	DP 5, PR 4	2.37	1.70	1.94	5.0	5.0	9.1	8.5	17.6
6	DP 7, PR 5	2.72	1.94	2.22	5.0	5.0	9.1	9.7	20.1
7	DP 2	0.71	0.52	0.59	5.0	5.0	9.1	2.6	5.3
8	DP 4, PR 7	0.97	0.68	0.78	5.0	5.0	9.1	3.4	7.1
9	DP 6, PR 8	1.26	0.88	1.01	5.0	5.0	9.1	4.4	9.2
10	DP 8, PR 9	1.46	1.03	1.17	5.0	5.0	9.1	5.1	10.6
11	POND OUTLET							0.2	3.5

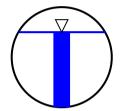
O-1	11	السغما	1	TE	
(a)	ıcu.	lated	by:	JF	


Date: 7/21/2021

Checked by:

Check out our spreadsheet version of this calculator
Download Spreadsheet
Open Google Sheets version
View All Spreadsheets

Pipe Run 1					
24" RCP					
			Results		
			Flow, Q (See notes)	20.6269	cfs 🕶
Inputs			Velocity, v	2.4877	m/s 🕶
Pipe diameter, d ₀	24	in 🗸	Velocity head, h _v	0.3155	m H2O ✓
<u>Manning roughness, n</u>	0.013		Flow area	0.2348	m^2 🕶
			Wetted perimeter	1.2767	m 🕶
Pressure slope (possibly $\underline{?}$ equal to pipe slope), S_0	0.01	rise/run 🕶	Hydraulic radius	0.1839	m 🕶
Percent of (or ratio to) full depth (100% or 1 if flowing full)	.75	fraction >	Top width, T	0.5279	m 🕶
I.		J	Froude number, F	1.19	
			Shear stress (tractive force), tau	18.0341	N/m^2 ~

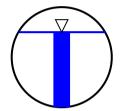


Notes:

This is the flow and depth inside the pipe.

Check out our spreadsheet version of this calculator
Download Spreadsheet
Open Google Sheets version
View All Spreadsheets

Pipe Run 2					
12" HDPE					
			Results		
			Flow, Q (See notes)	3.2485	cfs 🕶
Inputs			Velocity, v	1.5671	m/s 🕶
Pipe diameter, d ₀	12	in 🕶	Velocity head, h _v	0.1252	m H2O ∨
<u>Manning roughness, n</u>	0.013		Flow area	0.0587	m^2 🕶
			Wetted perimeter	0.6384	m 🕶
Pressure slope (possibly ? equal to pipe slope), S ₀	0.01	rise/run 🕶	Hydraulic radius	0.0920	m 🕶
Percent of (or ratio to) full depth (100% or 1 if flowing full)	.75	fraction 🗸	Top width, T	0.2640	m 🕶
		J	Froude number, F	1.06	
			Shear stress (tractive force), tau	9.0170	N/m^2 •

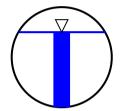


Notes:

This is the flow and depth inside the pipe.

Check out our spreadsheet version of this calculator
Download Spreadsheet
Open Google Sheets version
View All Spreadsheets

Pipe Run 3					
12" HDPE					
			Results		
			Flow, Q (See notes)	3.2485	cfs 🕶
Inputs			Velocity, v	1.5671	m/s 🕶
Pipe diameter, d ₀	12	in 🕶	Velocity head, h _v	0.1252	m H2O ∨
<u>Manning roughness, n</u>	0.013		Flow area	0.0587	m^2 🕶
			Wetted perimeter	0.6384	m 🕶
Pressure slope (possibly $\underline{?}$ equal to pipe slope), S_0	0.01	rise/run 🗸	Hydraulic radius	0.0920	m 🕶
Percent of (or ratio to) full depth (100% or 1 if flowing full)	.75	fraction 🗸	Top width, T	0.2640	m 🕶
	C	J	Froude number, F	1.06	
			Shear stress (tractive force), tau	9.0170	N/m^2 🕶

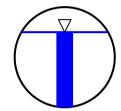


Notes:

This is the flow and depth inside the pipe.

Check out our spreadsheet version of this calculator
Download Spreadsheet
Open Google Sheets version
View All Spreadsheets

Pipe Run 4						
24" RCP						
			Results			
			Flow, Q (See notes)	20.6269	cfs 🕶	
Inputs			Velocity, v	2.4877	m/s 🕶	
Pipe diameter, d ₀	24	in 🕶	Velocity head, h _v	0.3155	m H2O	~
<u>Manning roughness, n</u>	0.013		Flow area	0.2348	m^2 🕶	
			Wetted perimeter	1.2767	m 🕶	
Pressure slope (possibly ? equal to pipe slope), S ₀	0.01	rise/run 🕶	Hydraulic radius	0.1839	m 🕶	
Percent of (or ratio to) full depth (100% or 1 if flowing full)	.75	fraction 🗸	Top width, T	0.5279	m 🕶	
		J	Froude number, F	1.19		
			Shear stress (tractive force), tau	18.0341	N/m^2 🕶	

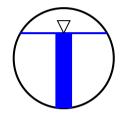


Notes:

This is the flow and depth inside the pipe.

Check out our spreadsheet version of this calculator
Download Spreadsheet
Open Google Sheets version
View All Spreadsheets

Pipe Run 5					
24" RCP					
			Results		
			Flow, Q (See notes)	20.6269	cfs 🕶
Inputs			Velocity, v	2.4877	m/s 🕶
Pipe diameter, d ₀	24	in 🗸	Velocity head, h _v	0.3155	m H2O →
<u>Manning roughness, n</u>	0.013		Flow area	0.2348	m^2 🕶
			Wetted perimeter	1.2767	m 🕶
Pressure slope (possibly $\underline{?}$ equal to pipe slope), S_0	0.01	rise/run 🕶	Hydraulic radius	0.1839	m 🕶
Percent of (or ratio to) full depth (100% or 1 if flowing full)	.75	fraction >	Top width, T	0.5279	m 🕶
			Froude number, F	1.19	
			Shear stress (tractive force), tau	18.0341	N/m^2 ×

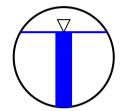


Notes:

This is the flow and depth inside the pipe.

Check out our spreadsheet version of this calculator
Download Spreadsheet
Open Google Sheets version
View All Spreadsheets

Pipe Run 6						
24" RCP						
			Results			
			Flow, Q (See notes)	20.6269	cfs	~
Inputs			Velocity, v	2.4877	m/s	~
Pipe diameter, d ₀	24	in 🕶	Velocity head, h _v	0.3155	m H2	о,
<u>Manning roughness, n</u>	0.013		Flow area	0.2348	m^2	~
			Wetted perimeter	1.2767	m 🗸	
Pressure slope (possibly ? equal to pipe slope), S ₀	0.01	rise/run 🕶	Hydraulic radius	0.1839	m 🗸	
Percent of (or ratio to) full depth (100% or 1 if flowing full)	.75	fraction >	Top width, T	0.5279	m 🗸	
		J	Froude number, F	1.19		
			Shear stress (tractive force), tau	18.0341	N/m^2	2 🗸

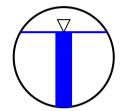


Notes:

This is the flow and depth inside the pipe.

Check out our spreadsheet version of this calculator
Download Spreadsheet
Open Google Sheets version
View All Spreadsheets

Pipe Run 7					
15" HDPE					
			Results		
			Flow, Q (See notes)	5.8900	cfs 🕶
Inputs			Velocity, v	1.8185	m/s 🕶
Pipe diameter, d ₀	15	in 🗸	Velocity head, h _v	0.1686	m H2O ∨
<u>Manning roughness, n</u>	0.013		Flow area	0.0917	m^2 🕶
			Wetted perimeter	0.7980	m 🕶
Pressure slope (possibly $\underline{?}$ equal to pipe slope), S_0	0.01	rise/run 🕶	Hydraulic radius	0.1149	m 🕶
Percent of (or ratio to) full depth (100% or 1 if flowing full)	.75	fraction 🗸	Top width, T	0.3300	m 🕶
		J	Froude number, F	1.10	
			Shear stress (tractive force), tau	11.2713	N/m^2 ~

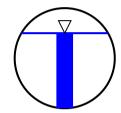


Notes:

This is the flow and depth inside the pipe.

Check out our spreadsheet version of this calculator
Download Spreadsheet
Open Google Sheets version
View All Spreadsheets

Pipe Run 8					
18" RCP					
			Results		
			Flow, Q (See notes)	9.5777	cfs 🕶
Inputs			Velocity, v	2.0535	m/s 🕶
Pipe diameter, d ₀	18	in 🗸	Velocity head, h _v	0.2150	m H2O 🕶
<u>Manning roughness, n</u>	0.013		Flow area	0.1321	m^2 🕶
			Wetted perimeter	0.9576	m 🕶
Pressure slope (possibly $\underline{?}$ equal to pipe slope), S_0	0.01	rise/run 🕶	Hydraulic radius	0.1379	m 🕶
Percent of (or ratio to) full depth (100% or 1 if flowing full)	.75	fraction ~	Top width, T	0.3959	m 🕶
ı			Froude number, F	1.14	
			Shear stress (tractive force), tau	13.5256	N/m^2 ~

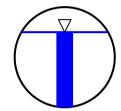


Notes:

This is the flow and depth inside the pipe.

Check out our spreadsheet version of this calculator
Download Spreadsheet
Open Google Sheets version
View All Spreadsheets

Pipe Run 9					
18" RCP					
			Results		
			Flow, Q (See notes)	9.5777	cfs 🕶
Inputs			Velocity, v	2.0535	m/s 🕶
Pipe diameter, d ₀	18	in 🗸	Velocity head, h _v	0.2150	m H2O 🕶
<u>Manning roughness, n</u>	0.013		Flow area	0.1321	m^2 🕶
			Wetted perimeter	0.9576	m 🕶
Pressure slope (possibly $\underline{?}$ equal to pipe slope), S_0	0.01	rise/run 🕶	Hydraulic radius	0.1379	m 🕶
Percent of (or ratio to) full depth (100% or 1 if flowing full)	.75	fraction >	Top width, T	0.3959	m 🕶
		J	Froude number, F	1.14	
			Shear stress (tractive force), tau	13.5256	N/m^2 ~

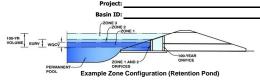


Notes:

This is the flow and depth inside the pipe.

Check out our spreadsheet version of this calculator
Download Spreadsheet
Open Google Sheets version
View All Spreadsheets

Pipe Run 10					
24" RCP					
			Results		
			Flow, Q (See notes)	20.6269	cfs 🕶
Inputs			Velocity, v	2.4877	m/s 🕶
Pipe diameter, d ₀	24	in 🗸	Velocity head, h _v	0.3155	m H2O ✓
<u>Manning roughness, n</u>	0.013		Flow area	0.2348	m^2 🕶
			Wetted perimeter	1.2767	m 🕶
Pressure slope (possibly $\underline{?}$ equal to pipe slope), S_0	0.01	rise/run 🕶	Hydraulic radius	0.1839	m 🕶
Percent of (or ratio to) full depth (100% or 1 if flowing full)	.75	fraction >	Top width, T	0.5279	m 🕶
		J	Froude number, F	1.19	
			Shear stress (tractive force), tau	18.0341	N/m^2 ~


Notes:

This is the flow and depth inside the pipe.

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

Watershed Information

Selected BMP Type =	EDB				
Watershed Area =	6.05	acres			
Watershed Length =	800	ft			
Watershed Length to Centroid =	340	ft			
Watershed Slope =	0.022	ft/ft			
Watershed Imperviousness =	65.30%	percent			
Percentage Hydrologic Soil Group A =	100.0%	percent			
Percentage Hydrologic Soil Group B =	0.0%	percent			
Percentage Hydrologic Soil Groups C/D =	0.0%	percent			
Target WQCV Drain Time =	40.0	hours			
Location for 1-hr Rainfall Depths = User Input					

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

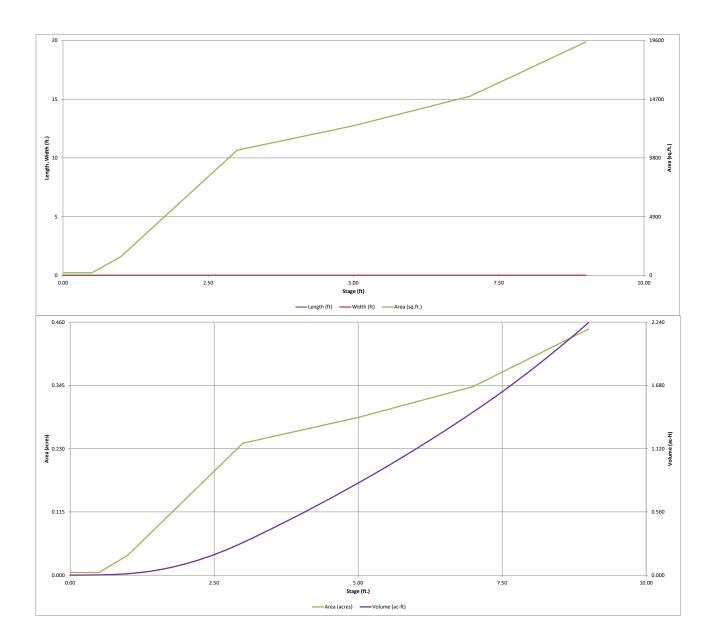
Optional Ser Overrides

0.129 acre-feet
0.491 acre-feet
1.19 inches
1.50 inches

1.75 inches 2.00 inches 2.25 inches 2.52 inches 3.00 inches

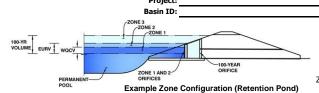
•		
Water Quality Capture Volume (WQCV) =	0.129	acre-feet
Excess Urban Runoff Volume (EURV) =	0.491	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.346	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	0.454	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.540	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	0.653	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	0.763	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	0.898	acre-feet
500-yr Runoff Volume (P1 = 3 in.) =	1.123	acre-feet
Approximate 2-yr Detention Volume =	0.319	acre-feet
Approximate 5-yr Detention Volume =	0.418	acre-feet
Approximate 10-yr Detention Volume =	0.503	acre-feet
Approximate 25-yr Detention Volume =	0.605	acre-feet
Approximate 50-yr Detention Volume =	0.667	acre-feet
Approximate 100-yr Detention Volume =	0.731	acre-feet

Define Zones and Basin Geometry


Zone 1 Volume (WQCV) =	0.129	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.362	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.240	acre-feet
Total Detention Basin Volume =	0.731	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel $(H_{TC}) =$	user	ft
Slope of Trickle Channel (S_{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor (H_{FLOOR}) =	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor (A_{FLOOR}) =		ft²
Volume of Basin Floor $(V_{FLOOR}) =$	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume $(V_{total}) =$	user	acre-t
·		

No override used.


Depth Increment =		ft							
						orrid	_	Volume	Volume
t Kelli					er ov	ema.	е	(ft ³)	(ac-ft)
for V	VQC\	/ and	I EUF	₹V.				53	0.001
								105	0.002
Unre	sooly (. .						243	0.006
Office	SUIVE	a.						552 1,085	0.013 0.025
		1.50				3,796	0.087	1,895	0.044
	-	1.75		-	-	4,905	0.113	2,983	0.068
6245		2.00				6,014 7,123	0.138 0.164	4,348 5,990	0.100 0.138
		2.50			-	8,232	0.189	7,909	0.138
	-	2.75	-	-	-	9,341	0.214	10,106	0.232
6246	-	3.00			-	10,450	0.240	12,580	0.289
		3.25 3.50				10,705 10,960	0.246 0.252	15,224 17,932	0.350 0.412
		3.75				11,215	0.257	20,704	0.475
6247		4.00			-	11,470	0.263	23,540	0.540
		4.25 4.50				11,724 11,979	0.269	26,439 29,402	0.607 0.675
	-	4.75				12,234	0.273	32,429	0.673
6248	-	5.00	-	-	-	12,489	0.287	35,519	0.815
	-	5.25				12,796	0.294	38,680	0.888
		5.50 5.75				13,102 13,409	0.301	41,917 45,231	0.962 1.038
6249	-	6.00	-	-	-	13,715	0.315	48,621	1.116
		6.25				14,022	0.322	52,088	1.196
	-	6.50				14,328	0.329	55,632	1.277
6250		6.75 7.00				14,635 14,941	0.336 0.343	59,252 62,949	1.360 1.445
		7.25				15,509	0.356	66,755	1.532
		7.50				16,078	0.369	70,704	1.623
6251		7.75 8.00				16,646 17,215	0.382	74,794 79,027	1.717 1.814
6251	-	8.25				17,783	0.393	83,401	1.915
	-	8.50		ł	1	18,351	0.421	87,918	2.018
	-	8.75			-	18,920	0.434	92,577	2.125
6252		9.00				19,488	0.447	97,378	2.235
	-								
					-				
					-				
	-								
	-			1	1				
	-								
	-			-	-				
	-		-		-				
	-				-				
				-	-				
	-								
				1	1 1				
	=			1 3			-		
					-				
	-				-				
	-								
	-			-	-				
	-								
				-	-				
				1 1	1 1				
	-			1 1					
	-								
	-				-				
	-								
	-				-				
	-				-				
				-					
	-				-		L		

189500 MHFD-Detention_v4 04, Basin

189500 MHFD-Detention_v4 04, Basin 5/3/2022, 8:32 AM

DETENTION BASIN OUTLET STRUCTURE DESIGN

	Estimated	Estimated	
_	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.20	0.129	Orifice Plate
Zone 2 (EURV)	3.82	0.362	Orifice Plate
one 3 (100-year)	4.71	0.240	Weir&Pipe (Restrict)
-	Total (all zones)	0.731	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = ft (distance below the filtration media surface) N/A Underdrain Orifice Diameter = N/A inches

	Calculated Parame	ters for Underdrain
Underdrain Orifice Area =	N/A	ft ²
Inderdrain Orifice Centroid -	N/A	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation

Invert of Lowest Orifice = ft (relative to basin bottom at Stage = 0 ft) 0.00 Depth at top of Zone using Orifice Plate = 3.82 ft (relative to basin bottom at Stage = 0 ft) Orifice Plate: Orifice Vertical Spacing = N/A inches Orifice Plate: Orifice Area per Row = N/A inches

n BMP)	Calculated Parame	ters for Plate
WQ Orifice Area per Row =	N/A	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

and rotal filed of Each Office	a Total Filed of Eden Office Now (Hambered from lowest to highest)							
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.27	2.55					
Orifice Area (sq. inches)	0.70	0.70	4.00					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular

Invert of Vertical Orifice : N/A N/A Depth at top of Zone using Vertical Orifice = N/A N/A Vertical Orifice Diameter = N/A N/A

Not Selected Not Selected ft (relative to basin bottom at Stage = 0 ft) ft (relative to basin bottom at Stage = 0 ft)

	Not Sel
Vertical Orifice Area =	N/A
Vertical Orifice Centroid =	N/A

	Calculated Parameters for Vertical Orifice						
	Not Selected Not Selected						
=	N/A	N/A	ft ²				
l =	N/A	N/A	feet				

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

Zone 3 Weir	Not Selected	
3.82	N/A	ft (relative t
2.00	N/A	feet
0.00	N/A	H:V
2.00	N/A	feet
Close Mesh Grate	N/A	
50%	N/A	%
	3.82 2.00 0.00 2.00 Close Mesh Grate	3.82 N/A 2.00 N/A 0.00 N/A 2.00 N/A Close Mesh Grate N/A

to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t = Overflow Weir Slope Length = Grate Open Area / 100-yr Orifice Area = Overflow Grate Open Area w/o Debris = Overflow Grate Open Area w/ Debris =

	Calculated Parameters for Overflow Weir						
	Zone 3 Weir	Not Selected					
=	3.82	N/A	feet				
=	2.00	N/A	feet				
=	9.16	N/A					
=	3.16	N/A	ft ²				
=	1.58	N/A	ft ²				
	•		-				

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

	Zone 3 Restrictor	Not Selected
Depth to Invert of Outlet Pipe =	0.25	N/A
Outlet Pipe Diameter =	18.00	N/A
Restrictor Plate Height Above Pipe Invert =	4.50	

ft (distance below basin bottom at Stage = 0 ft) inches inches

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Zone 3 Restrictor Not Selected Outlet Orifice Area = 0.35 N/A Outlet Orifice Centroid 0.22 N/A feet Half-Central Angle of Restrictor Plate on Pipe : N/A radians

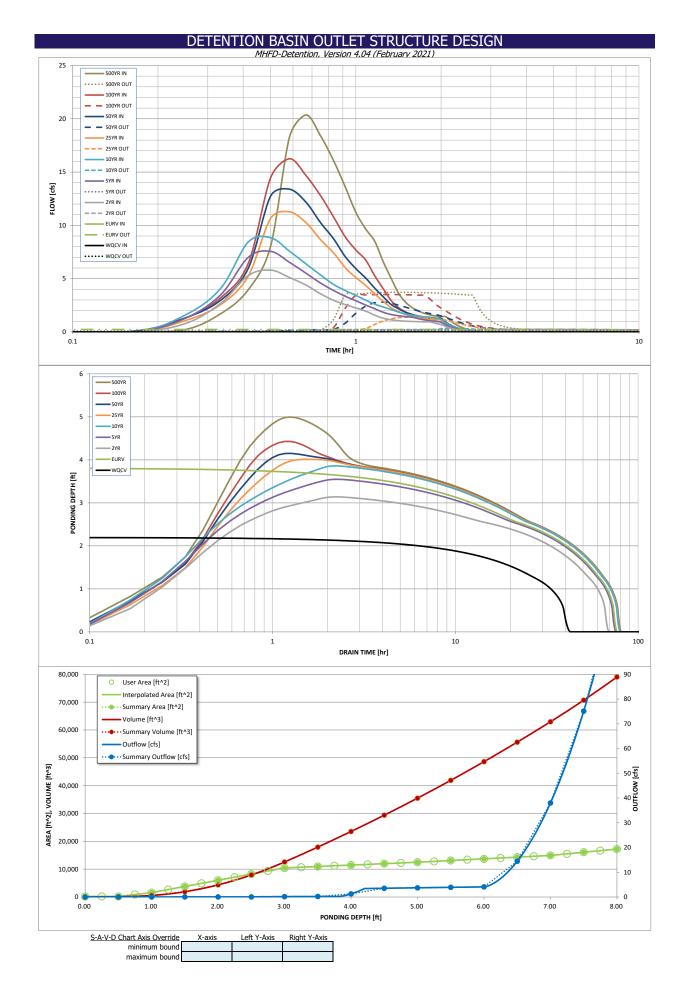
User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage= 6.00 ft (relative to basin bottom at Stage = 0 ft) Spillway Crest Length = 8.00 feet Spillway End Slopes = H:V 4.00 Freeboard above Max Water Surface = 1.00 feet

Spillway Design Flow Depth: Stage at Top of Freeboard Basin Area at Top of Freeboard Basin Volume at Top of Freeboard

	Calculated Parameters for Spillway						
=	0.65	feet					
=	7.65	feet					
=	0.38	acres					
_	1 68	acre-ft					

Routed Hydrograph Results


Design Storm Return Pe One-Hour Rainfall Depth CUHP Runoff Volume (acre Inflow Hydrograph Volume (acr CUHP Predevelopment Peak Q OPTIONAL Override Predevelopment Peak Q Predevelopment Unit Peak Flow, q (cfs/a Peak Inflow Q Peak Outflow Q Ratio Peak Outflow to Predevelopme Structure Controlling Max Velocity through Grate 1 (Max Velocity through Grate 2 (Time to Drain 97% of Inflow Volume (ho Time to Drain 99% of Inflow Volume (ho Maximum Ponding Depth

Area at Maximum Ponding Depth (a

rograph Results	The user can overi	ride the default CUF	HP hydrographs and	d runoff volumes by	entering new value	es in the Inflow Hyd	drographs table (Co	olumns W through	4 <i>F).</i>
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.00
CUHP Runoff Volume (acre-ft) =	0.129	0.491	0.346	0.454	0.540	0.653	0.763	0.898	1.123
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.346	0.454	0.540	0.653	0.763	0.898	1.123
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.0	0.1	0.1	1.1	2.3	3.7	6.0
verride Predevelopment Peak Q (cfs) =	N/A	N/A							
elopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.02	0.02	0.19	0.38	0.62	0.99
Peak Inflow Q (cfs) =	N/A	N/A	5.8	7.6	~%%~~	11.3	13.4	16.2	20.4
Peak Outflow Q (cfs) =	0.1	0.2	0.2	0.2	0.3	1.4	2.8	3.5	3.7
o Peak Outflow to Predevelopment Q =	N/A	N/A	N/A 🗡	2.3	2.7	1.2	1.2	0.9	0.6
Structure Controlling Flow =	Plate	Overflow Weir 1	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.0	0.3	0.8	1.0	1.1
Max Velocity through Grate 2 (fps) =		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Drain 97% of Inflow Volume (hours) =	38	67	61	66	69	\ 68	66	64	62
Drain 99% of Inflow Volume (hours) =	40	72	65	71	75	74	74	73	72
Maximum Ponding Depth (ft) =	2.20	3.82	3.14	3.55	3.86	4.01	4.15	4.43	5.00
a at Maximum Ponding Depth (acres) =	0.16	0.26	0.24	0.25	0.26	0.26	0.27	0.27	0.29
Maximum Volume Stored (acre-ft) =	0.129	0.493	0.320	0.422	0.501	0.543	0.580	0.653	0.813

Update outlet structure design. For full spectrum design these must be equal to or less than predevelopment flows. Unresolved

We keep to the standards for the 100-year flow, but the only way I was able to get these numbers below 1.0 was to violate the 97% drain times.

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]		25 Year [cfs]			500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.00 111111	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.01	0.22
	0:15:00	0.00	0.00	0.79	1.28	1.59	1.07	1.32	1.30	1.71
	0:20:00	0.00	0.00	2.69	3.50	4.10	2.58	2.99	3.22	3.95
	0:25:00	0.00	0.00	5.29	7.00	8.43	5.24	5.96	6.42	8.05
	0:30:00 0:35:00	0.00	0.00	5.80	7.56	8.84	10.65	12.75	14.46	18.31
	0:40:00	0.00	0.00	5.10 4.40	6.53 5.51	7.58 6.38	11.27 10.25	13.39 12.18	16.25 14.68	20.36 18.41
	0:45:00	0.00	0.00	3.58	4.59	5.35	8.67	10.26	12.80	16.11
	0:50:00	0.00	0.00	2.97	3.90	4.46	7.44	8.76	10.81	13.64
	0:55:00	0.00	0.00	2.57	3.35	3.89	6.05	7.08	8.93	11.23
	1:00:00	0.00	0.00	2.26	2.92	3.43	5.11	5.94	7.70	9.67
	1:05:00 1:10:00	0.00	0.00	1.96 1.57	2.52 2.17	2.99 2.61	4.37 3.56	5.06 4.10	6.75 5.26	8.49 6.57
	1:15:00	0.00	0.00	1.28	1.84	2.34	2.88	3.30	4.05	5.02
	1:20:00	0.00	0.00	1.13	1.63	2.11	2.27	2.57	2.94	3.62
	1:25:00	0.00	0.00	1.06	1.52	1.86	1.92	2.17	2.27	2.78
	1:30:00	0.00	0.00	1.01	1.44	1.69	1.64	1.84	1.87	2.27
	1:35:00 1:40:00	0.00	0.00	0.98	1.39	1.57	1.45	1.63	1.62	1.95
	1:45:00	0.00	0.00	0.96 0.95	1.24 1.13	1.48 1.42	1.32 1.24	1.49 1.40	1.45	1.74 1.59
	1:50:00	0.00	0.00	0.93	1.05	1.38	1.18	1.33	1.25	1.49
	1:55:00	0.00	0.00	0.80	0.99	1.31	1.15	1.29	1.21	1.44
	2:00:00	0.00	0.00	0.70	0.92	1.18	1.12	1.26	1.19	1.42
	2:05:00	0.00	0.00	0.50	0.65	0.83	0.80	0.89	0.85	1.01
	2:10:00 2:15:00	0.00	0.00	0.35	0.46	0.58	0.56	0.63	0.60	0.71
	2:20:00	0.00	0.00	0.24 0.16	0.31 0.21	0.40 0.27	0.39 0.26	0.44	0.42	0.50
	2:25:00	0.00	0.00	0.10	0.13	0.18	0.17	0.19	0.19	0.22
	2:30:00	0.00	0.00	0.06	0.09	0.11	0.11	0.13	0.12	0.14
	2:35:00	0.00	0.00	0.03	0.05	0.06	0.07	0.07	0.07	0.08
	2:40:00	0.00	0.00	0.01	0.02	0.03	0.03	0.04	0.03	0.04
	2:45:00 2:50:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00 3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00 3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00 4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00 4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00 4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00 5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00 5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

The user should graphically con						Total
Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow
Description	[ft]	[ft²]	[acres]	[ft ³]	[ac-ft]	[cfs]
	0.00	210	0.005	0	0.000	0.00
	0.50	210	0.005	105	0.002	0.02
	1.00	1,578	0.036	552	0.013	0.02
		3,796	0.087	1,895	0.044	0.04
	1.50					
	2.00	6,014	0.138	4,348	0.100	0.05
	2.50	8,232	0.189	7,909	0.182	0.06
	3.00	10,450	0.240	12,580	0.289	0.16
	3.50	10,960	0.252	17,932	0.412	0.21
	4.00	11,470	0.263	23,540	0.540	1.26
		11,979	0.275	29,402	0.675	3.54
	4.50					
	5.00	12,489	0.287	35,519	0.815	3.73
	5.50	13,102	0.301	41,917	0.962	3.91
	6.00	13,715	0.315	48,621	1.116	4.08
	6.50	14,328	0.329	55,632	1.277	14.43
	7.00	14,941	0.343	62,949	1.445	38.01
	7.50	16,078	0.369	70,704	1.623	75.11
	8.00	17,215	0.395	79,027	1.814	126.90
	8.50	18,351	0.421	87,918	2.018	194.59
	9.00	19,488	0.447	97,378	2.235	279.36
				-		
				 		1
				1		1
				<u> </u>		
				<u> </u>		<u> </u>
				ļ		ļ
				ļ		ļ
				 		
				 		
				-		
				 		
				-		
				1		1
				-		
				 		

For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'.

Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).

FORBAY VOLUMES

FORBAY VOLUME

ELEV	AREA	AREA AVG.	DELTA ELEV.	VOLUME	VOLUME TOTAL
6244.00	200				
		200	1.5	300	
6245.50	200				300

End Area Method:

300

C.F.

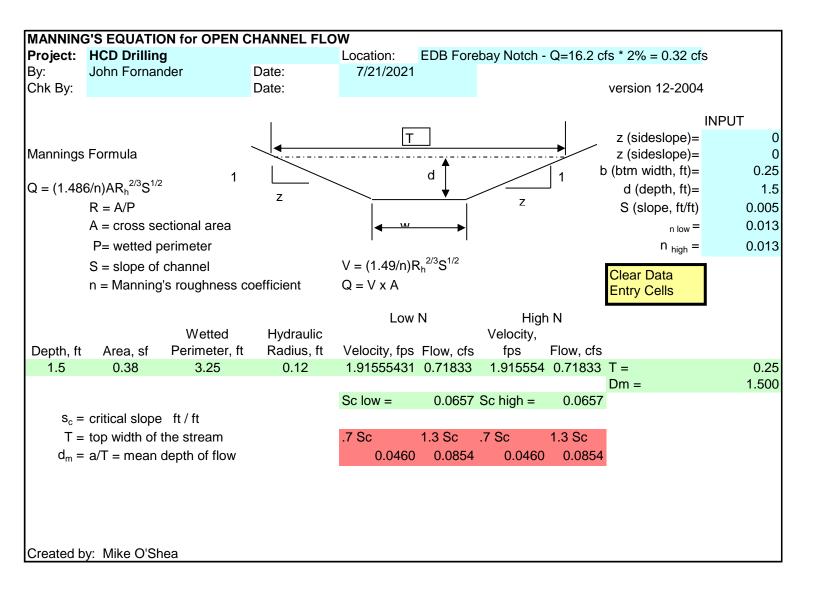
0.007

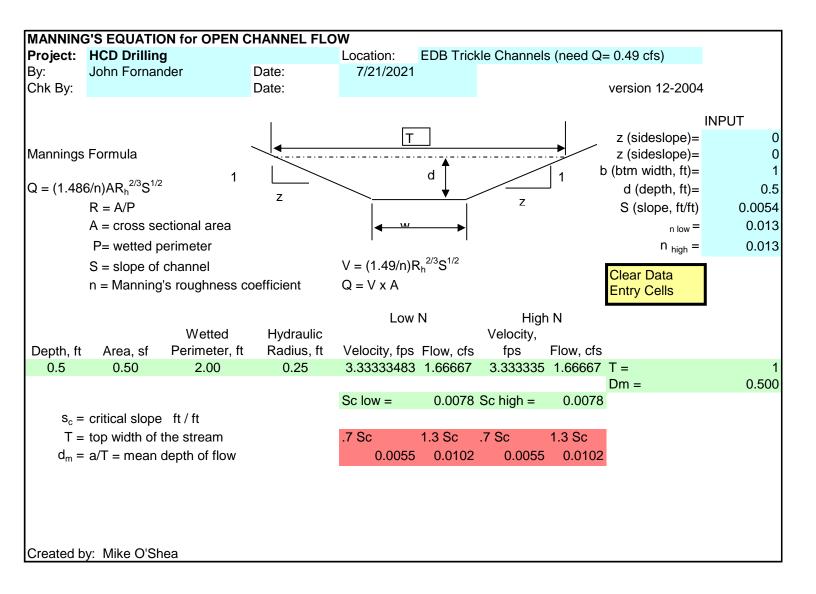
A.F.

Required Forbay Volume = 3% of WQCV

WQCV = 0.129 ac-ft WQCV = 5,619 cu-ft 3% of WQCV = 168.58 cu-ft

PROPOSED MICROPOOL VOLUME

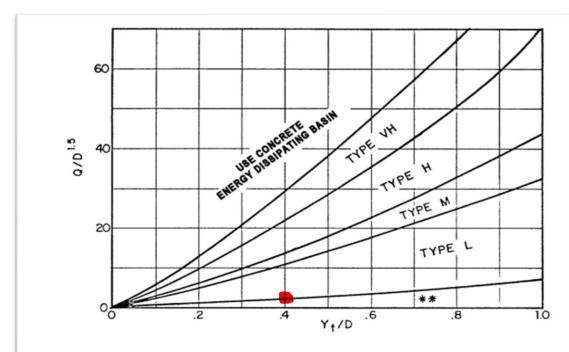

ELEV	AREA	AREA AVG.	DELTA ELEV.	VOLUME	VOLUME TOTAL
6240.50	12				
		111	3	333	
6243.50	210				333


End Area Method:

333

C.F.

800.0 A.F.



1895.00 HCD Drilling

Riprap Protection for FSEDB Outlet Pipe¹

Q100=	3.5	cfs	$Q/D^{2.5} =$	1.27
D=	1.5	ft	$Q/D^{1.5} =$	1.91
Yt=	0.25	ft	Yt/D =	0.4

Minimum Riprap d_{50} Required = $d_{50} = 9$ in ==> use $d_{50} = 12$ in

Use $\,D_{\alpha}$ instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream .

Figure 9-38. Riprap erosion protection at circular conduit outlet (valid for Q/D2.5 \leq 6.0)

9-74 Urban Drainage and Flood Control District September 2017
Urban Storm Drainage Criteria Manual Volume 2

¹ see USDCM Chapter 9 Section Section 3.2.3

Figure 13-12c. Emergency Spillway Protection

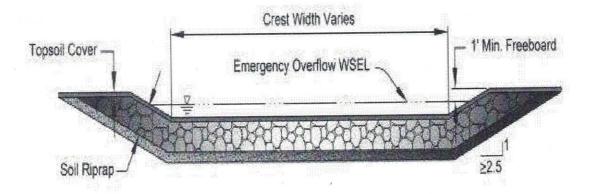
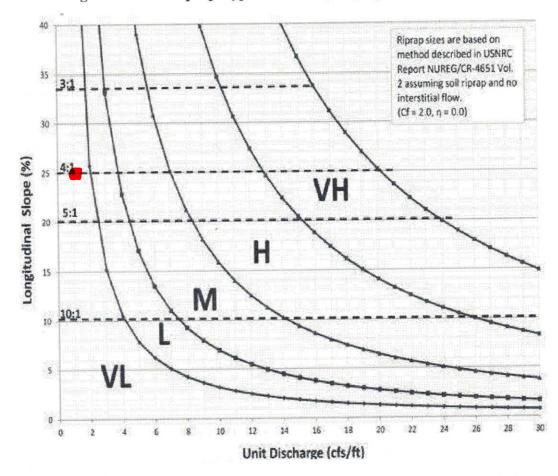
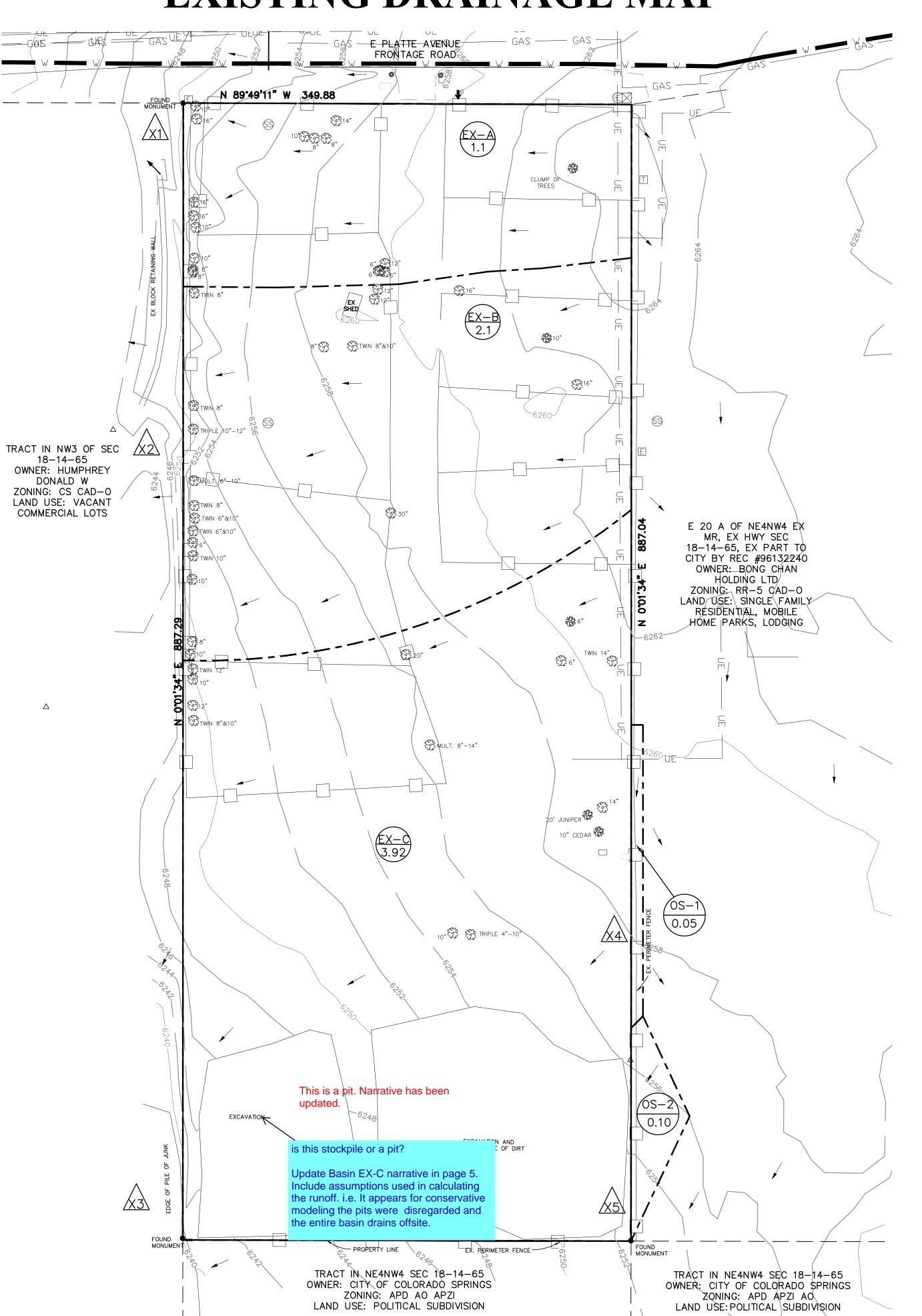
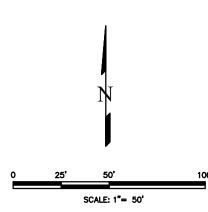




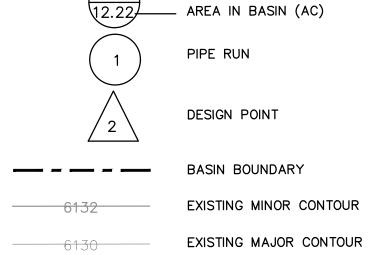
Figure 13-12d. Riprap Types for Emergency Spillway Protection

HCD DRILLING MINOR SUBDIVISION 6201 EAST PLATTE AVE EXISTING DRAINAGE MAP



DRAINAGE SUMMARY

DIVAINAGE SOMMANT							
5 4 6 1 1		FLOW					
BASIN NAME	AREA (ACRES)	5 YR (cfs)	100 YR (cfs)				
EX-A	1.10	1.83	4.62				
EX-B	2.10	2.20	7.14				
EX-C	3.92	0.16	0.88				
0S-1	0.05	0.02	0.14				
0S-2	0.10	0.03	0.25				
TOTAL	7.27						

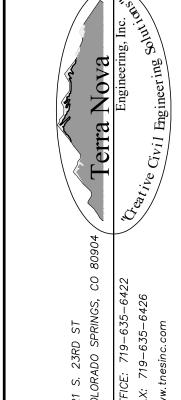

DESIGN POINT SUMMARY

DESIGN POINT SUMMARY								
DP	CONTRIBUTING BASINS	AREA AC.	Q5 CFS	Q100 CFS				
X1	EX-A	1.10	1.83	4.62				
X2	EX-B	2.10	2.20	7.14				
X3	EX-C, OS-1, OS-2	4.07	0.21	1.27				
X4	OS-1	0.05	0.02	0.14				
X5	0S-2	0.10	0.03	0.25				

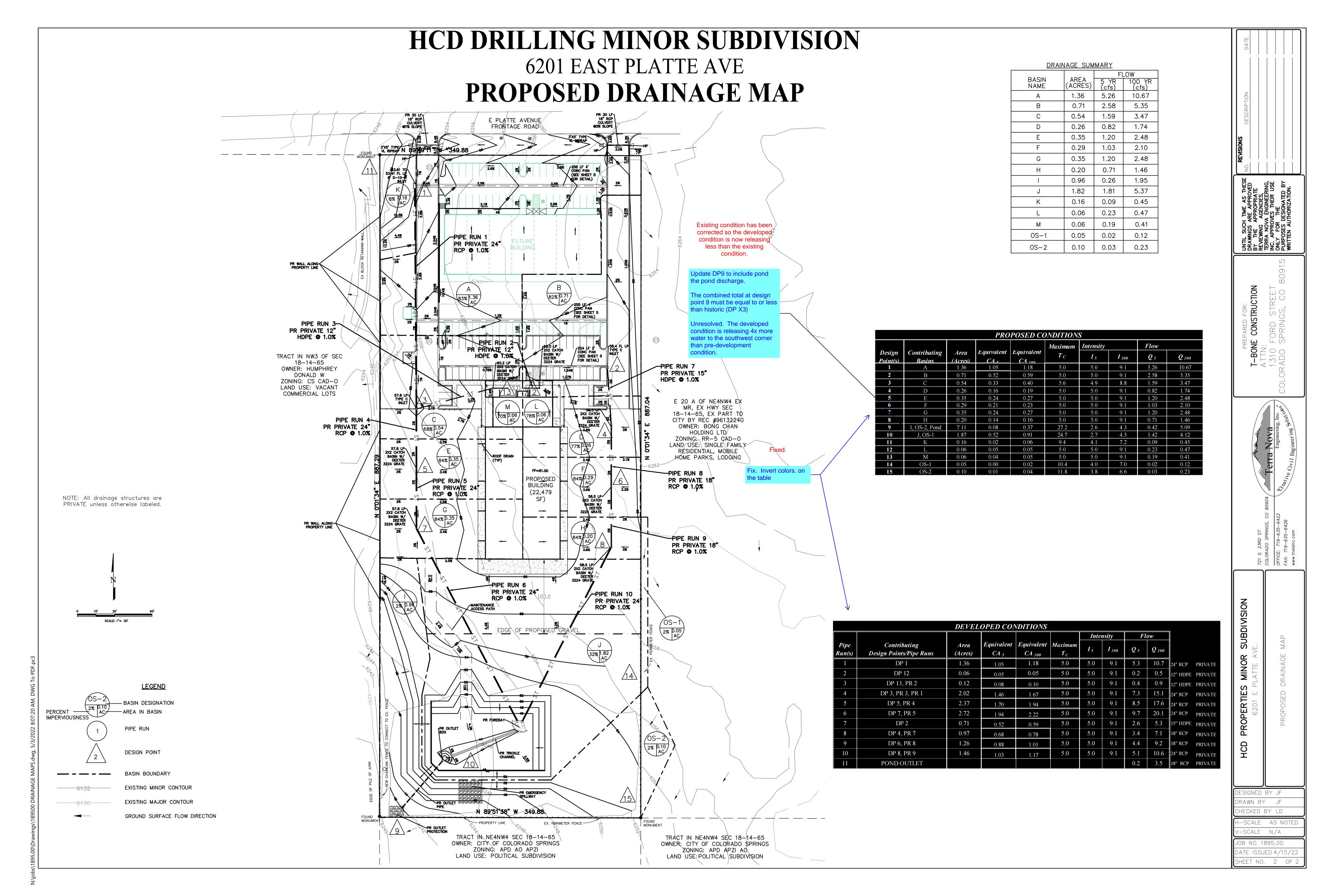
<u>LEGEND</u>

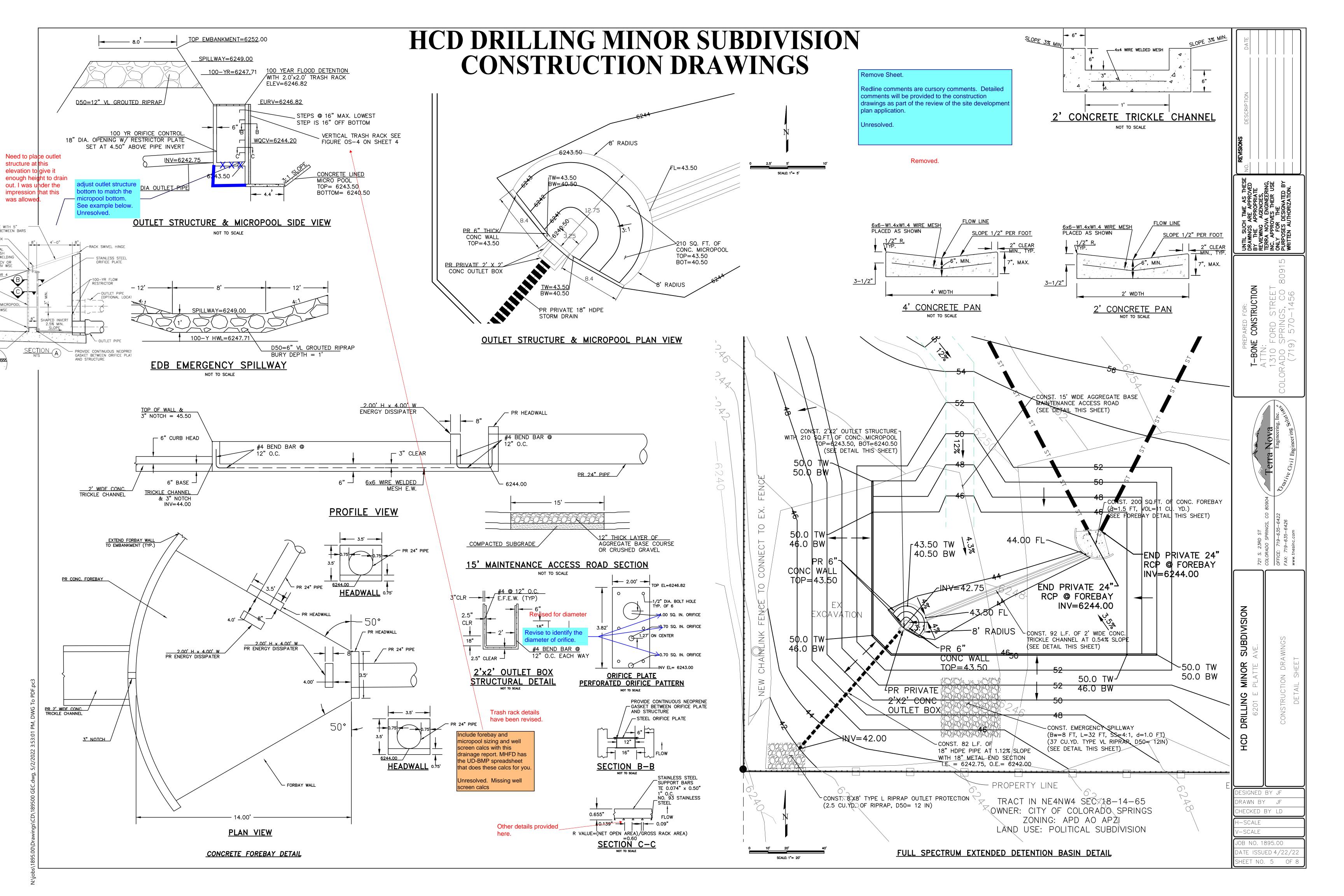
BASIN DESIGNATION

GROUND SURFACE FLOW DIRECTION

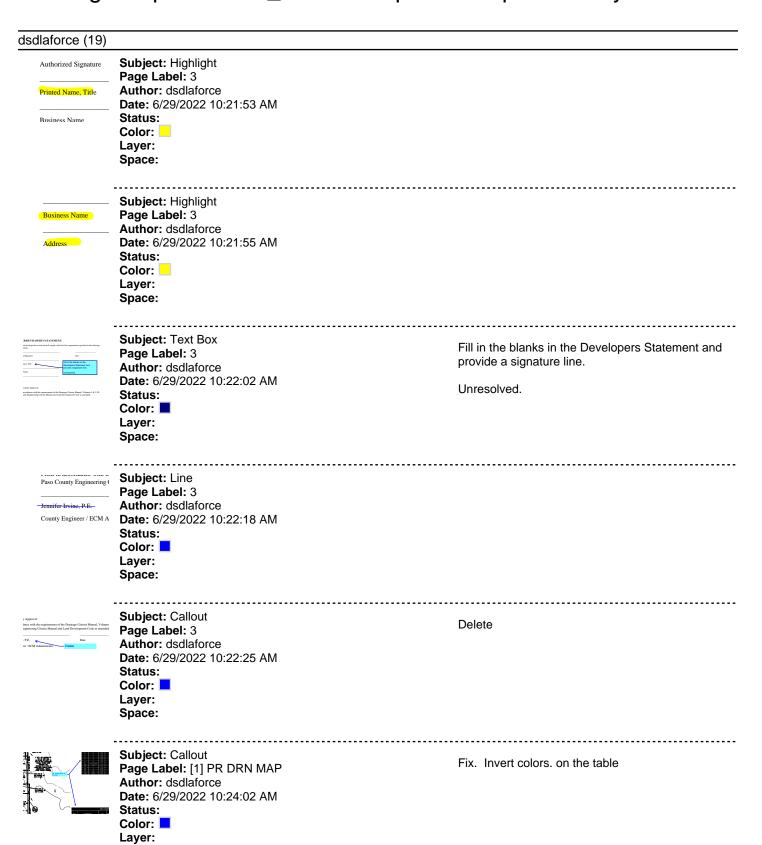

CHECKED B	BY LD)	
H-SCALE	AS N	NOTE	D
V-SCALE	N/A		
JOB NO. 18			
DATE ISSUE	ED 4/	15/2	2
SHEET NO.	1	OF	2

ESIGNED BY JF


RAWN BY JF


DRAWINGS ARE APPROVED BY THE APPROPRIATE REVIEWING AGENCIES, TERRA NOVA ENGINEERING, INC. APPROVES THEIR USE ONLY FOR THE PURPOSES DESIGNATED BY WRITTEN AUTHORIZATION.

T-BONE CONSTRUCTION
ATTN:
1310 FORD STREET
CLORADO SPRINGS, CO 80915
(719) 570-1456



6201 E PLATTE AVE.

Drainage Report - Final_V2 redline.pdf Markup Summary

Space:

Subject: Callout Page Label: 34 Author: dsdlaforce

Date: 6/29/2022 10:37:49 AM

Status: Color: Layer: Space:

Remove the optional User override for WQCV and EURV.

Unresolved.

Subject: Cloud Page Label: 36 Author: dsdlaforce

Date: 6/29/2022 10:40:12 AM

Status: Color: Layer: Space:

Subject: Callout Page Label: 36 Author: dsdlaforce

Date: 6/29/2022 10:40:19 AM

Status: Color: Layer: Space:

Update outlet structure design. For full spectrum design these must be equal to or less than predevelopment flows.

Unresolved

Subject: Callout

Page Label: [1] EX DRN MAP

Author: dsdlaforce

Date: 6/29/2022 11:02:35 AM

Status: Color: Layer: Space:

is this stockpile or a pit?

Update Basin EX-C narrative in page 5. Include assumptions used in calculating the runoff. i.e. It appears for conservative modeling the pits were disregarded and the entire basin drains offsite.

Subject: Callout Page Label: 18 Author: dsdlaforce

Date: 6/29/2022 11:11:41 AM

Status: Color: Layer: Space:

Updat EX-C. Area does not match the existing drainage map (3.92 ac)

Subject: Callout

Page Label: [1] PR DRN MAP

Author: dsdlaforce

Date: 6/29/2022 11:20:19 AM

Status: Color: Layer: Space:

Update DP9 to include pond the pond discharge.

The combined total at design point 9 must be equal to or less than historic (DP X3)

Unresolved. The developed condition is releasing 4x more water to the southwest corner than

pre-development condition.

Subject: Image

Page Label: [1] DETAIL SHEET

Author: dsdlaforce

Date: 6/29/2022 11:22:35 AM

Status: Color: ■ Layer: Space:

Subject: Callout

Page Label: [1] DETAIL SHEET

Author: dsdlaforce

Date: 6/29/2022 11:22:44 AM

Status:
Color: Layer:
Space:

adjust outlet structure bottom to match the micropool bottom. See example below.

Unresolved.

Subject: PolyLine

Page Label: [1] DETAIL SHEET

Author: dsdlaforce

Date: 6/29/2022 11:23:13 AM

Status: Color: Layer: Space:

Subject: Text Box

Page Label: [1] DETAIL SHEET

Author: dsdlaforce

Date: 6/29/2022 11:24:20 AM

Status: Color: Layer: Space:

Subject: Callout

Page Label: [1] DETAIL SHEET

Author: dsdlaforce

Date: 6/29/2022 11:31:14 AM

Status: Color: Layer: Space: Revise to identify the diameter of orifice.

Subject: Contractor

Page Label: [1] DETAIL SHEET

Author: dsdlaforce

Date: 6/29/2022 11:39:01 AM

Status: Color: ■ Layer: Space: Include forebay and micropool sizing and well screen calcs with this drainage report. MHFD has the UD-BMP spreadsheet that does these calcs for

you.

Unresolved. Missing well screen calcs

Subject: Text Box

Page Label: [1] DETAIL SHEET Author: dsdlaforce

Date: 6/29/2022 11:39:12 AM

Status: Color: Layer: Space:

Remove Sheet.

Redline comments are cursory comments.

Detailed comments will be provided to the construction drawings as part of the review of the site development plan application.

Unresolved.