Revise to "HCD Drilling" so it's consistent with the subdivision plat

FINAL DRAINAGE REPORT FOR TRACT IN NE4NW4 SEC 18-14-65 2601 EAST PLATTE AVENUE COLORADO SPRINGS, COLORADO 80916

JULY, 2021

Prepared For:

T-BONE CONSTRUCTION, INC. 1310 Ford Street Colorado Springs, CO 80915

Prepared By:

TERRA NOVA ENGINEERING, INC. 721 S. 23RD STREET Colorado Springs, CO 80904 (719) 635-6422

Job No. 1895.00

Add text:

PCD Filing No.: MS-21-008

FINAL DRAINAGE REPORT FOR TRACT IN NE4NW4 SEC 18-14-65 2601 EAST PLATTE AVENUE COLORADO SPRINGS, COLORADO 80916

TABLE OF CONTENTS

Engineer's Statement	Page 3
Purpose	Page 4
General Description	Page 4
Soils Condition	Page 4
Drainage Criteria	Page 4
Existing Drainage Conditions	Page 4
Developed Drainage Conditions	Page 5
FSEDB	Page 6
Floodplain Statement	Page 7
Construction Cost Opinion	Page 7
Drainage And Bridge Fees	Page 8
Maintenance	Page 8
Summary	Page 8
References	Page 8

APPENDICIES

Vicinity Map Site Map Soils Map FEMA Floodplain Map Hydrologic Calculations Hydraulic Calculations FSEDB Calculations Drainage Maps

DRAINAGE REPORT STATEMENT

Design Engineer's Statement

This attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

L DUCETT, P.E.	32339	Seal	
	remove the blank.		
Developers Sta	atement		
,	the developer have read a trainage report and plan.	and will comply with all of the r	equirements

Business Name		
By:	Fill in the blanks in the Developers Statement and	
5	provide a signature line.	
Title:	provide a signature line.	
Address:		

El Paso County Approval:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 & 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Jennifer Irvine,	Update to "Jennifer Irvine, P.E."	

County Engineer / ECM Administrator

Conditions:

Purpose

The purpose of this Final Drainage Report is to identify and analyze the existing and proposed drainage patterns, determine proposed runoff quantities, size drainage structures to safely convey the developed runoff, and present solutions to drainage impacts on-site and off-site resulting from this development.

General Description

This Final Drainage Report is an analysis of the development of TRACT IN NE4NW4 SEC 18-14-65 owned by HCD Properties, LLC. The site is located at 2601 East Platte Avenue, Colorado Springs, CO 80916 in Section 18, Township 14S, Range 65 West of the 6th Principal Meridian in El Paso County. The site is bounded on the west by a landscaping supply business, on the north by E Platte Avenue Frontage Road, on the east by an RV and boat storage business, and on the south by a vacant lot owned by the City of Colorado Springs. The site is currently unplatted.

The site is currently used primarily for the parking and storage of vehicles and heavy equipment with some areas of soil excavation and storage at the southern end.

The proposed development is the addition of a 22,479 square foot building near the centroid of the lot but this project also makes preparations for a future building to be place near the front of the lot with all of the associated drives, utilities, grading, and stormwater features. The proposed building will be used to house a drilling company and includes a front office building with an asphalt parking lot and an attached industrial building with a surrounding gravel lot. The use of the future building will be established at a later time. The access will be from E Platte Avenue Frontage Road via two paved entrances.

The site lies within the Sand Creek Drainage Basin.

Soils Condition

The soil for this project is composed completely of Blakeland Loamy Sand per the "Soils Survey of El Paso County Area, which is in Hydrologic Soil Group A.

Drainage Criteria

Hydrologic and Hydraulic calculations were performed using the El Paso County Storm Drainage Design Criteria Manual Volumes 1 & 2, latest editions. The Rational Method was used to estimate storm water runoff and the design of the FSEDB was performed using UD-Detention v3.07.

Existing (Historic) Drainage Conditions

No previous drainage reports or studies could be found for this site. A drainage map for the existing conditions is included in the Appendix of this report. The site lies within the Sand Creek Basin. The existing topography has a relatively consistent 3% slope from the northeast to

Please also detail why no runoff is conveyed from the adjacent eastern property at EX-A and EX-B. Because it appears from the drainage map that there is runoff conveyed onto the those basins from the east.

the southwest but drops off more steeply at the western property line. The surface cover is composed of gravel lots and areas of disturbed ground with minimal vegetation.

Drainage ways for this site are poorly defined and runoff primarily sheet flows from the east/northeast to the west/southwest and leaves the site at three locations which are designated as Design Points (DP) for analysis. At the northwest property corner (DP X-1), runoff exits into the public drainage way along E Platte Avenue Frontage Road. At the west property line, about 250 feet south of the northwest property corner (DP X-2), runoff drains into a shallow swale and onto adjacent private property. Along the south side of the proposed development (DP X-3), runoff flows onto the same adjacent private property at a location approximately 500 feet south of DP X-2. At the southeast property line (DP X-4 & DP X-5), very small areas of runoff sheet flow onto Basin EX-C.

Basin EX-A contributes to DP X-1 and has an area of 1.10 acres consisting of gravel lots and areas of disturbed soil, generating runoff amounts of Q5=1.83 cfs and Q100=4.62 cfs.

Basin EX-B contributes to DP X-2 and has an area of 2.10 acres consisting of gravel lots and areas of disturbed soil, generating runoff amounts of Q5=2.20 cfs and Q100=7.14 cfs.

Basin EX-C contributes to DP X-3 and has an area of 0.30 acres consisting of areas of disturbed soil, generating runoff amounts of Q5=0.16 cfs and Q100=0.88 cfs.

Basin OS-1 contributes to DP X-4 and has an area of 0.05 acres consisting of undeveloped land, generating runoff amounts of Q5=0.02 cfs and Q100=0.14 cfs.

Basin OS-2 contributes to DP X-5 and has an area of 0.10 acres consisting of undeveloped land, generating runoff amounts of Q5=0.03 cfs and Q100=0.25 cfs.

Developed Drainage Conditions

A drainage map for the proposed condition is included in the appendix of this report.

A Full Spectrum Extended Detention Basin (FSEDB) will be provided for the proposed and future development with a watershed area of 6.05 acres.

The proposed facility is comprised of asphalt parking lots, gravel lots, buildings, and landscaping. The drainage pattern for the site remains generally the same; however, the of the proposed developed/impervious areas are routed to the FSEDB.

Runoff continues to exit into the public drainage way along E Platte Avenue Frontage Road at the northwest corner (DP 11). The area draining to this location is significantly reduced as compared to existing conditions.

Runoff is no longer discharged at design point X2 as it had been in the existing conditions.

The outlet of the FSEDB (DP 9) is the location at which runoff from the proposed development is discharged after treatment.

Basin A contributes to DP 1 and has an area of 1.36 acres consisting primarily of proposed paved and future building area with a small portion of landscaped area, generating runoff amounts of Q5=5.26 cfs and Q100=10.67 cfs. Minor runoff is conveyed under the entrances at E Platte Avenue Frontage Road via 2 ft wide concrete trench drains just to the north of this basin. The

5

runoff is collected by a 8' D-10-R inlet at design point 1 and conveyed to the FSEDB via storm pipe.

Basin B contributes to DP 2 and has an area of 0.71 acres consisting mostly of paved areas and much smaller areas of lawn/landscaping, generating runoff amounts of Q5=2.58 cfs and Q100=5.35 cfs. The runoff is collected by a type C inlet at design point 2 and conveyed to the FSEDB via storm pipe.

Basin C contributes to DP 3 and has an area of 0.54 acres consisting of paved area, building, gravel lot, and lawn/landscaping, generating runoff amounts of Q5=1.59 cfs and Q100=3.47 cfs. The runoff sheet flows and travels by a 2' concrete pan to a type C inlet at design point 3 and then conveyed to the FSEDB via storm pipe.

Basin D contributes to DP 4 and has an area of 0.26 acres consisting of building, paved area, gravel lot, and lawn/landscaping, generating runoff amounts of Q5=0.82 cfs and Q100=1.74 cfs. The runoff is collected by an inlet at design point 4 and conveyed to the FSEDB via storm pipe.

Basin E contributes to DP 5 and has an area of 0.35 acres consisting of building, paved area, and gravel lot, generating runoff amounts of Q5=1.20 cfs and Q100=2.48 cfs. The runoff is collected by an inlet at design point 5 and conveyed to the FSEDB via storm pipe.

Basin F contributes to DP 6 and has an area of 0.29 acres consisting of building, paved area, and gravel lot, generating runoff amounts of Q5=1.03 cfs and Q100=2.10 cfs. The runoff is collected by an inlet at design point 6 and conveyed to the FSEDB via storm pipe.

Basin G contributes to DP 7 and has an area of 0.35 acres consisting of building, paved area, and gravel lot, generating runoff amounts of Q5=1.20 cfs and Q100=2.48 cfs. The runoff is collected by an inlet at design point 7 and conveyed to the FSEDB via storm pipe.

Basin H contributes to DP 8 and has an area of 0.20 acres consisting of building, paved area, and gravel lot, generating runoff amounts of Q5=0.71 cfs and Q100=1.46 cfs. The runoff is collected by an inlet at design point 8 and conveyed to the FSEDB via storm pipe.

Basin I contributes to DP 9 and has an area of 0.96 acres consisting of grading needed for the construction of the FSEDB and other landscaped area generating runoff amounts of Q5=0.26 cfs and Q100=1.95 cfs. No new impervious area is being added and the ground cover will be improved from gravel and disturbed soil to maintained landscaping; therefore, the area does not require treatment in the FSEDB. The runoff sheet flows to onto adjacent property at design point 9 as in existing conditions.

Basin J contributes to DP 10 and has an area of 1.82 acres consisting of the FSEDB, some paved area, gravel lot, and landscaped area, generating runoff amounts of Q5=1.81 cfs and Q100=5.37 cfs. The runoff sheet flows towards the FSEDB located at design point 10.

Basin K is the small area that continues to exit into the public drainage way along E Platte Avenue Frontage Road at the northwest corner (DP 11) as it had previously. The area and runoff of this basin is significantly reduced as compared to existing conditions. It generates runoff amounts of Q5=0.09 cfs and Q100=0.45.

Basin L contributes to DP 12 and has an area of 0.06 acres consisting of building, paved area, and gravel lot, generating runoff amounts of Q5=0.23 cfs and Q100=0.47 cfs. The runoff is collected by an inlet at design point 12 and conveyed to the FSEDB via storm pipe.

Basin M contributes to DP 13 and has an area of 0.06 acres consisting of building, paved area, and gravel lot, generating runoff amounts of Q5=0.19 cfs and Q100=0.41 cfs. The runoff is collected by an inlet at design point 13 and conveyed to the FSEDB via storm pipe.

Basins OS-1 & OS-2 remain as they had previously.

FSEDB

Revise headings of all steps of the "Four-Step Process" per what is shown in ECM Section I.7.2 BMP Selection and then revise subsequent text accordingly.

In an effort to protect receiving water and as part of the "four step process to minimize adverse impacts of urbanization" this site was analyzed in the following manner:

- 1. Reduce Runoff the nature of the development precludes reducing runoff as most of the site is used for buildings, asphalt lots, and gravel lots.
- 2. Treat Slowly Release WQCV the FSEDB is designed to capture and treat the runoff from the proposed development in the appropriate manner.
- 3. Stabilize Stream Channels there are no existing streams associate with this site.
- 4. Source Controls given that the site will be used to house a drilling company, the presence of fuel and other contaminants are likely; therefore, spill kits should be kept on site and any outdoor storage of industrial materials should include the appropriate safeguards.

The runoff from Basins A, B, C, D, E, F, G, H, J, L, M, & OS-1 of the proposed development are routed to the proposed 2.235 ac-ft private FSEDB located at the southern portion of the property at DP 10. The FSEDB treats runoff from a combined watershed area of 6.05 acres with an imperviousness of 65.3%. The elevation of the bottom of the pond is 6243.00 and the top of the berm is at 6252.00. The pond design has a WQCV storage volume of 0.129 ac-ft at a water surface elevation of 6245.20. The EURV storage volume is 0.362 ac-ft at a water surface elevation of 6246.82. The 100-year storage volume of 0.240 ac-ft corresponds to a water surface of 6247.71. The WQCV discharge is less than 0.1 cfs and will be fully released in 40 hours. The EURV discharge is 0.2 cfs and will fully released in 72 hours. The 100 year outflow is 3.5 cfs and is fully released in 73 hours.

The forebay exceeds the size requirement of 2% of the WQCV volume of 0.129 ac-ft. A Trickle channel 2 ft wide and 0.5 ft deep at 0.54% slope runs from the forebay to the micropool at the FSEDB outlet structure. The outlet structure is a 2.0 ft by 2.0 ft riser box with the inlet invert set at 6243.00 and the top of grate set at elevation 6246.82. A metal orifice plate on the front of the structure regulates the WQCV and EURV via three orifices with 0.7 square inches, 0.7 square inches, and 4 square inches spaced 1.27 ft apart. The invert of 18" outlet pipe is at elevation 6242.75 with a restrictor plate set 4.5 inches higher. The outlet pipe is 82 ft long at a slope of 1.12% with a metal end section at the outlet end with type L riprap protection (D50= 12 in).

An emergency spillway is set at elevation 6249.00. The spillway has a bottom width of 8 ft with 4:1 side slopes and is protected by type VL riprap (D50= 12 in). The 100 year HWL is 1.29 feet below the spillway. In an emergency overflow situation, the runoff will flow onto the property south of the site.

revise text as needed per comments on drainage map.

Floodplain Statement

According to FEMA's FIRM No. 08041CO754G (eff. 12/7/2018), the proposed development is within an area designated as Zone X, having minimal flood hazard.

Construction Cost Opinion

Private Drainage Facilities Improvements (Non-Reimbursable)

Description	Quantity	Unit Price	Cost
4 ft Concrete Drain Pan	735 LF	\$42	\$30,870
2 ft Conc. Trench Drain	56 LF	\$230	\$12,880
		Total	\$43,750

Private Permanent BMP (Non-Reimbursable) – 1 FSEDB

Description	Quantity	Unit Price	Cost
Earthwork	3607 Cu Yd	\$12	\$43284
Forebays	1 EA	\$1500	\$1500
Trickle Channel	92 LF	\$32	\$2944
Outlet Structure (box riser, micropool, pipe, headwall, and riprap)	1 EA	\$5000	\$5000
Emergency Spillway	1 EA	\$1500	\$1500
Maintenance Access Rd	1 EA	\$500	\$500
Stabilization	1 EA	\$5000	\$5000
		Subtotal	\$59,728
		10% Contingency	\$5973
		Total	\$65,701

Update Fees.

Drainage And Bridge Fe Drainage Fee = \$20,387 per imp ac This currently upplatted s Bridge Fee = \$8,339 per imp ac

This currently unplatted s $\frac{1}{2}$ billing \frac

Fee Type	% Imp.	Parcel Area	Imp. Area	Fee per Imp	Mod	Fee Cost
	_	(acre)	(acre)	Acre	%	
Drainage	65.3	7.13	4.66	\$18,940	100	\$88,260
Bridge	65.3	7.13	4.66	<mark>\$5,559</mark>	100	<mark>\$25,905</mark>
				Total		\$ <u>114,165</u>

identify who. (Lot

Maintena owner?)

The proposed FSEDB will be privately maintained and is accessible via a 12' wide aggregate base maintenance access road. The proposed entrance trench drains and proposed concrete drain pans will be privately maintained.

update

Summary

This Final Drainage Report analyzed the development of TRACT IN NE4NW4 SEC 18-14-65 owned by HCD Properties, LLC, located at 2601 East Platte Avenue, Colorado Springs, CO 80916. Runoff from the development will not adversely affect the surrounding or downstream developments. Proposed flows, as detailed in this report, will follow existing drainage patterns and will be safely routed downstream. Water quality and detention are provided on-site using a FSEDB. No public storm drainage modifications or design changes are necessary as a result of the development.

An Erosion Control Plan will be submitted separately.

References

- 1) City of Colorado Springs/County of El Paso Drainage Criteria Manual, dated May 2014.
- 2) Soil survey of El Paso County Area, Colorado, Prepared by United States Department of Agriculture Soil Conservation Service, dated June 1981.
- 3) Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map Number 08041C0754G.

APPENDICES

VICINITY MAP

SOILS MAP

FEMA FLOODPLAIN MAP

National Flood Hazard Layer FIRMette

Legend

HYDROLOGIC CALCULATIONS

1895.00 HCD DRILLING Area Runoff Coefficient (C) Summary

HSG - A

EXISTING

		GRAVEL LOT			DIST	URBED A	REA	LAWN	LANDSCA	APING	WEIG	HTED	WEIGH	TED CA
BASIN	TOTAL AREA	AREA C5 C100			AREA	C5	C100	AREA	C5	C100	C5	C100	CA5	CA100
	(Acres)	(Acres)			(Acres)			(Acres)						
EX-A	1.1	0.7	0.59	0.70	0.4	0.15	0.50	0.0	0.08	0.35	0.43	0.63	0.47	0.69
EX-B	2.1	0.7	0.59	0.70	1.4	0.15	0.50	0.0	0.08	0.35	0.30	0.57	0.62	1.19
EX-C	0.3	0.0	0.59	0.70	0.3	0.15	0.50	0.0	0.08	0.35	0.15	0.50	0.05	0.15
<i>OS-1</i>	0.1	0.0	0.59	0.70	0.0	0.15	0.50	0.1	0.08	0.35	0.08	0.35	0.00	0.02
<i>OS-2</i>	0.1	0.0	0.59	0.70	0.0	0.15	0.50	0.1	0.08	0.35	0.08	0.35	0.01	0.04

3.7

DEVELOPED

		G	RAVEL LO	DT	PAV	EMENT/R	OOF	LAWN	LANDSC.	APING	WEIG	HTED	WEIGH	TED CA
BASIN	TOTAL AREA	AREA	C5	C100	AREA	C5	C100	AREA	C5	C100	C5	C100	CA5	CA100
	(Acres)	(Acres)			(Acres)			(Acres)						
A	1.36	0.00	0.59	0.70	1.15	0.90	0.96	0.21	0.08	0.35	0.77	0.87	1.05	1.18
В	0.76	0.00	0.59	0.70	0.60	0.90	0.96	0.16	0.08	0.35	0.73	0.83	0.55	0.63
С	0.61	0.12	0.59	0.70	0.33	0.90	0.96	0.16	0.08	0.35	0.62	0.75	0.38	0.46
D	0.26	0.15	0.59	0.70	0.08	0.90	0.96	0.03	0.08	0.35	0.63	0.74	0.16	0.19
Ε	0.35	0.24	0.59	0.70	0.11	0.90	0.96	0.00	0.08	0.35	0.69	0.78	0.24	0.27
F	0.29	0.18	0.59	0.70	0.11	0.90	0.96	0.00	0.08	0.35	0.71	0.80	0.21	0.23
G	0.35	0.24	0.59	0.70	0.11	0.90	0.96	0.00	0.08	0.35	0.69	0.78	0.24	0.27
H	0.20	0.12	0.59	0.70	0.08	0.90	0.96	0.00	0.08	0.35	0.71	0.80	0.14	0.16
Ι	0.96	0.00	0.59	0.70	0.00	0.90	0.96	0.96	0.08	0.35	0.08	0.35	0.08	0.34
J	1.82	0.62	0.59	0.70	0.06	0.90	0.96	1.14	0.08	0.35	0.28	0.49	0.51	0.89
K	0.16	0.00	0.59	0.70	0.01	0.90	0.96	0.15	0.08	0.35	0.13	0.39	0.02	0.06
<i>OS-1</i>	0.05	0.00	0.59	0.70	0.00	0.90	0.96	0.05	0.08	0.35	0.08	0.35	0.00	0.02
<i>OS-2</i>	0.10	0.00	0.59	0.70	0.00	0.90	0.96	0.10	0.08	0.35	0.08	0.35	0.01	0.04
	7.27									C	Calculated by:	JF		

Date: 7/20/2021 Checked by:

1895.00 HCD DRILLING Runoff Summary

EXISTING

		WEIGHTED OVERLAND					SHALLO	OW CONC	ENTRATEL	FLOW	T _C	INTEN	SITY	TOTAL FLOWS		
BASIN	AREA TOTAL	C ₅	C ₁₀₀	C ₅	Length	Slope	T _t	Length	Slope	Velocity	T_t	TOTAL	I ₅	I ₁₀₀	Q5	Q ₁₀₀
	(Acres)	* For Calcs See	Runoff Summary		(<i>ft</i>)	(<i>ft/ft</i>)	(min)	(<i>ft</i>)	(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)
EX-A	1.10	0.43	0.63	0.43	150	0.029	10.4	180	4.4%	3.2	0.9	11.4	3.9	6.7	1.83	4.62
EX-B	2.10	0.30	0.57	0.30	150	0.027	12.8	276	3.6%	2.8	1.6	14.4	3.5	6.0	2.20	7.14
EX-C	0.30	0.15	0.50	0.15	150	0.033	14.2	176	3.5%	2.8	1.0	15.2	3.4	5.9	0.16	0.88
<i>OS-1</i>	0.05	0.08	0.35	0.08	35	0.029	7.7	0	3.5%	2.8	0.0	7.7	4.4	7.9	0.02	0.14
<i>OS-2</i>	0.10	0.08	0.35	0.08	75	0.040	10.1	0	3.5%	2.8	0.0	10.1	4.1	7.0	0.03	0.25

DEVELOPED

		WEIGI	HTED		OVER	RLAND		SHALLO	OW CONC	ENTRATEL	O FLOW	T _C	INTEN	VSITY	TOTAL	FLOWS
BASIN	AREA TOTAL	C ₅	C ₁₀₀	C ₅	Length	Slope	T _t	Length	Slope	Velocity	T_{t}	TOTAL	I_5	I ₁₀₀	Q5	Q ₁₀₀
	(Acres)	* For Calcs See	Runoff Summary		(<i>ft</i>)	(<i>ft/ft</i>)	(min)	(<i>ft</i>)	(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)
A	1.36	0.77	0.87	0.77	55	0.02	3.4	255	3.0%	3.5	1.2	5.0	5.0	9.1	5.26	10.67
В	0.76	0.73	0.83	0.73	0	0.04	0.0	260	1.3%	2.2	2.0	5.0	5.0	9.1	2.77	5.73
С	0.61	0.62	0.75	0.62	45	0.02	4.6	95	1.0%	2.0	0.8	5.4	4.9	8.9	1.87	4.05
D	0.26	0.63	0.74	0.63	0	0.04	0.0	160	2.5%	3.2	0.8	5.0	5.0	9.1	0.82	1.74
E	0.35	0.69	0.78	0.69	0	0.33	0.0	180	4.0%	2.0	1.5	5.0	5.0	9.1	1.20	2.48
F	0.29	0.71	0.80	0.71	0	0.10	0.0	160	4.0%	2.0	1.3	5.0	5.0	9.1	1.03	2.10
G	0.35	0.69	0.78	0.69	0	0.10	0.0	180	4.0%	2.0	1.5	5.0	5.0	9.1	1.20	2.48
Н	0.20	0.71	0.80	0.71	0	0.10	0.0	160	4.0%	2.0	1.3	5.0	5.0	9.1	0.71	1.46
Ι	0.96	0.08	0.35	0.08	100	0.03	12.8	310	4.0%	2.0	2.6	15.4	3.4	5.8	0.26	1.95
J	1.82	0.28	0.49	0.28	100	0.03	10.3	240	4.2%	1.0	4.0	14.3	3.5	6.0	1.81	5.37
K	0.16	0.13	0.39	0.13	100	0.07	9.4	0	1.0%	1.0	0.0	9.4	4.1	7.2	0.09	0.45
<i>OS-1</i>	0.05	0.08	0.35	0.08	40	0.03	8.6	0	1.0%	1.0	0.0	8.6	4.3	7.5	0.02	0.13
<i>OS-2</i>	0.10	0.08	0.35	0.08	70	0.04	9.6	0	1.0%	1.0	0.0	9.6	4.1	7.2	0.03	0.25

1895.00 HCD DRILLING Surface Routing

	EXISTING CONDITIONS													
	Maximum Intensity Flow													
Design Point(s)	Contributing Basins	Area (Acres)	Equivalent CA 5	Equivalent CA 100	T _C	Ι ₅	I 100	Q 5	Q 100					
X1	EX-A	1.10	0.47	0.69	11.4	3.9	6.7	1.83	4.62					
X2	EX-B	2.10	0.62	1.19	14.4	3.5	6.0	2.20	7.14					
X3	EX-C, OS-1, OS-2	4.07	0.05	0.15	15.2	3.4	5.9	0.21	1.27					
X4	OS-1	0.05	0.00	0.02	7.7	4.4	7.9	0.02	0.14					
X5	OS-2	0.10	0.01	0.04	10.1	4.1	7.0	0.03	0.25					

			PRC	OPOSED CO	NDITIONS	5			
					Maximum	Intensity		Flow	
Design Point(s)	Contributing Basins	Area (Acres)	Equivalent CA 5	Equivalent CA 100	T _C	Ι ₅	I 100	Q 5	Q 100
1	А	1.36	1.05	1.18	5.0	5.0	9.1	5.26	10.67
2	В	0.76	0.52	0.59	5.0	5.0	9.1	2.58	5.35
3	С	0.54	0.33	0.40	5.6	4.9	8.8	1.59	3.47
4	D	0.26	0.16	0.19	5.0	5.0	9.1	0.82	1.74
5	Е	0.35	0.24	0.27	5.0	5.0	9.1	1.20	2.48
6	F	0.29	0.21	0.23	5.0	5.0	9.1	1.03	2.10
7	G	0.35	0.24	0.27	5.0	5.0	9.1	1.20	2.48
8	Н	0.20	0.14	0.16	5.0	5.0	9.1	0.71	1.46
9	I, OS-2	1.06	0.08	0.37	27.2	2.6	4.3	0.22	1.59
10	J, OS-1	1.87	0.52	0.91	24.7	2.7	4.5	1.42	4.12
11	K	0.16	0.02	0.06	9.4	4.1	7.2	0.09	0.45
12	L	0.06	0.05	0.05	5.0	5.0	9.1	0.23	0.47
13	М	0.06	0.04	0.05	5.0	5.0	9.1	0.19	0.41
14	OS-1	0.05	0.00	0.02	10.4	4.0	7.0	0.02	0.12
15	OS-2	0.10	0.01	0.04	11.8	3.8	6.6	0.03	0.23

						Inte	nsity	Fl	ow
Pipe Run(s)	Contributing Design Points/Pipe Runs	Area (Acres)	Equivalent CA 5	Equivalent CA 100	Maximum T _C	I ₅	I 100	Q 5	Q 100
1	DP 1	1.36	1.05	1.18	5.0	5.0	9.1	5.3	10.7
2	DP 12	0.06	0.05	0.05	5.0	5.0	9.1	0.2	0.5
3	DP 13, PR 2	0.12	0.08	0.10	5.0	5.0	9.1	0.4	0.9
4	DP 3, PR 3, PR 1	2.02	1.46	1.67	5.0	5.0	9.1	7.3	15.1
5	DP 5, PR 4	2.37	1.70	1.94	5.0	5.0	9.1	8.5	17.6
6	DP 7, PR 5	2.72	1.94	2.22	5.0	5.0	9.1	9.7	20.1
7	DP 2	0.71	0.52	0.59	5.0	5.0	9.1	2.6	5.3
8	DP 4, PR 7	0.97	0.68	0.78	5.0	5.0	9.1	3.4	7.1
9	DP 6, PR 8	1.26	0.88	1.01	5.0	5.0	9.1	4.4	9.2
10	DP 8, PR 9	1.46	1.03	1.17	5.0	5.0	9.1	5.1	10.6
11	POND OUTLET							0.2	3.5

DEVELOPED CONDITIONS

Calculated by: JF

Date: 7/21/2021

Checked by:

HYDRAULIC CALCULATIONS

Check out our spreadsheet version of this calculator Download Spreadsheet Open Google Sheets version View All Spreadsheets

Pipe Run 1					
24" RCP					
			Results		
	Flow, Q (See notes)	20.6269	cfs 🗸		
Inputs			Velocity, v	2.4877	m/s 🗸
Pipe diameter, d ₀	24	in 🖌	Velocity head, h_v	0.3155	m H2O
<u>Manning roughness, n</u>	0.013]	Flow area	0.2348	m^2 🗸
			Wetted perimeter	1.2767	m 🖌
Pressure slope (possibly <u>?</u> equal to pipe slope), S ₀	0.01	rise/run 🗸	Hydraulic radius	0.1839	m 🗸
Percent of (or ratio to) full depth (100% or 1 if flowing full)	.75	fraction 🗸	Top width, T	0.5279	m 🗸
		5	Froude number, F	1.19	
			Shear stress (tractive force), tau	18.0341	N/m^2 🗸

Notes:

This is the flow and depth *inside* the pipe.

Check out our spreadsheet version of this calculator <u>Download Spreadsheet</u> <u>Open Google Sheets version</u> <u>View All Spreadsheets</u>

Pipe Run 2						
12" HDPE						
	Results					
	Flow, Q (See notes)	3.2485	cfs 🗸	•		
Inputs			Velocity, v	1.5671	m/s 🗸	
Pipe diameter, d ₀	12	in 🗸	Velocity head, h _v	0.1252	m H2O	~
<u>Manning roughness, n</u>	0.013]	Flow area	0.0587	m^2 🔹	•
			Wetted perimeter	0.6384	m 🗸	
Pressure slope (possibly <u>?</u> equal to pipe slope), S ₀	0.01	rise/run 🗸	Hydraulic radius	0.0920	m 🗸	
Percent of (or ratio to) full depth (100% or 1 if flowing full)	.75	fraction 🗸	Top width, T	0.2640	m 🗸	
	L		<u>Froude number, F</u>	1.06		
			Shear stress (tractive force), tau	9.0170	N/m^2 •	•

Notes:

This is the flow and depth *inside* the pipe.

Check out our spreadsheet version of this calculator <u>Download Spreadsheet</u> <u>Open Google Sheets version</u> <u>View All Spreadsheets</u>

Pipe Run 3						
12" HDPE						
			Results			
	Flow, Q (See notes)	3.2485	cfs	♥		
Inputs			Velocity, v	1.5671	m/s 丶	•
Pipe diameter, d ₀	12	in 🗸	Velocity head, h _v	0.1252	m H2C) 🗸
<u>Manning roughness, n</u>	0.013		Flow area	0.0587	m^2	~
Pressure clane (neasibly 2 equal to pine clane).			Wetted perimeter	0.6384	m 🖌	
Pressure slope (possibly <u>?</u> equal to pipe slope), S ₀	0.01	rise/run 🗸	Hydraulic radius	0.0920	m 🗸	
Percent of (or ratio to) full depth (100% or 1 if flowing full)	.75	fraction ~	Top width, T	0.2640	m 🗸	
	C.	J	<u>Froude number, F</u>	1.06		
			Shear stress (tractive force), tau	9.0170	N/m^2	•

Notes:

This is the flow and depth *inside* the pipe.

Check out our spreadsheet version of this calculator Download Spreadsheet Open Google Sheets version View All Spreadsheets

Pipe Run 4						
24" RCP						
			Results			
	Flow, Q (See notes)	20.6269	cfs 🗸			
Inputs			Velocity, v	2.4877	m/s 🗸	
Pipe diameter, d ₀	24	in 🗸	Velocity head, h _v	0.3155	m H2O	~
<u>Manning roughness, n</u>	0.013		Flow area	0.2348	m^2 🗸	
			Wetted perimeter	1.2767	m 🖌	
Pressure slope (possibly <u>?</u> equal to pipe slope), S ₀	0.01	rise/run 🗸	Hydraulic radius	0.1839	m 🗸	
Percent of (or ratio to) full depth (100% or 1 if flowing full)	.75	fraction 🗸	Top width, T	0.5279	m 🗸	
		5	<u>Froude number, F</u>	1.19		
			Shear stress (tractive force), tau	18.0341	N/m^2 🗸	·

Notes:

This is the flow and depth *inside* the pipe.

Check out our spreadsheet version of this calculator Download Spreadsheet Open Google Sheets version View All Spreadsheets

Pipe Run 5						
24" RCP						
			Results			
	Flow, Q (See notes)	20.6269	cfs	~		
Inputs			Velocity, v	2.4877	m/s	~
Pipe diameter, d ₀	24	in 🖌	Velocity head, h _v	0.3155	m H2) v
<u>Manning roughness, n</u>	0.013]	Flow area	0.2348	m^2	•
Pressure along (negsibly 2 equal to ning along) S			Wetted perimeter	1.2767	m 🗸]
Pressure slope (possibly <u>?</u> equal to pipe slope), S ₀	0.01	rise/run 🗸	Hydraulic radius	0.1839	m 🗸	
Percent of (or ratio to) full depth (100% or 1 if flowing full)	.75	fraction 🗸	Top width, T	0.5279	m 🗸]
		5	Froude number, F	1.19		
			Shear stress (tractive force), tau	18.0341	N/m^2	2 🗸

Notes:

This is the flow and depth *inside* the pipe.

Check out our spreadsheet version of this calculator Download Spreadsheet Open Google Sheets version View All Spreadsheets

Pipe Run 6					
24" RCP					
	Results				
	Flow, Q (See notes)	20.6269	cfs 🗸		
Inputs			Velocity, v	2.4877	m/s 🗸
Pipe diameter, d ₀	24	in 🗸	Velocity head, h _v	0.3155	m H2O 🗸 🗸
<u>Manning roughness, n</u>	0.013		Flow area	0.2348	m^2 🗸
			Wetted perimeter	1.2767	m 🗸
Pressure slope (possibly <u>?</u> equal to pipe slope), S ₀	0.01	rise/run 🗸	Hydraulic radius	0.1839	m 🖌
Percent of (or ratio to) full depth (100% or 1 if flowing full)	.75	fraction ~	Top width, T	0.5279	m 🗸
	L.		<u>Froude number, F</u>	1.19	
			Shear stress (tractive force), tau	18.0341	N/m^2 🗸

Notes:

This is the flow and depth *inside* the pipe.

Check out our spreadsheet version of this calculator Download Spreadsheet Open Google Sheets version View All Spreadsheets

Pipe Run 7					
15" HDPE					
			Results		
	Flow, Q (See notes)	5.8900	cfs 🗸		
Inputs			Velocity, v	1.8185	m/s 🗸
Pipe diameter, d ₀	15	in 🗸	Velocity head, h _v	0.1686	m H2O 🗸
<u>Manning roughness, n</u>	0.013		Flow area	0.0917	m^2 🗸
			Wetted perimeter	0.7980	m 🖌
Pressure slope (possibly <u>?</u> equal to pipe slope), S ₀	0.01	rise/run 🗸	Hydraulic radius	0.1149	m 🗸
Percent of (or ratio to) full depth (100% or 1 if flowing full)	.75	fraction ~	Top width, T	0.3300	m 🗸
	L		<u>Froude number, F</u>	1.10	
			Shear stress (tractive force), tau	11.2713	N/m^2 🗸

Notes:

This is the flow and depth *inside* the pipe.

Check out our spreadsheet version of this calculator <u>Download Spreadsheet</u> <u>Open Google Sheets version</u> <u>View All Spreadsheets</u>

Pipe Run 8						
18" RCP						
			Results			
	Flow, Q (See notes)	9.5777	cfs 🗸	·		
Inputs			Velocity, v	2.0535	m/s 🗸]
Pipe diameter, d ₀	18	in 🖌	Velocity head, h _v	0.2150	m H2O	~
<u>Manning roughness, n</u>	0.013		Flow area	0.1321	m^2 🗸	•
Pressure along (neasibly 2 aqual to ning along) S]	Wetted perimeter	0.9576	m 🖌	
Pressure slope (possibly <u>?</u> equal to pipe slope), S ₀	0.01	rise/run 🗸	Hydraulic radius	0.1379	m 🗸	
Percent of (or ratio to) full depth (100% or 1 if flowing full)	.75	fraction 🗸	Top width, T	0.3959	m 🗸	
	(5	Froude number, F	1.14		
			Shear stress (tractive force), tau	13.5256	N/m^2 N	•

Notes:

This is the flow and depth *inside* the pipe.

Check out our spreadsheet version of this calculator <u>Download Spreadsheet</u> <u>Open Google Sheets version</u> <u>View All Spreadsheets</u>

Pipe Run 9						
18" RCP						
			Results			
	Flow, Q (See notes)	9.5777	cfs	~		
Inputs			Velocity, v	2.0535	m/s	~
Pipe diameter, d ₀	18	in 🗸	Velocity head, h _v	0.2150	m H2	0
<u>Manning roughness, n</u>	0.013		Flow area	0.1321	m^2	~
			Wetted perimeter	0.9576	m 丶	•
Pressure slope (possibly <u>?</u> equal to pipe slope), S ₀	0.01	rise/run 🗸	Hydraulic radius	0.1379	m 🔹	•
Percent of (or ratio to) full depth (100% or 1 if flowing full)	.75	fraction ~	Top width, T	0.3959	m 🔹	•
)	<u>Froude number, F</u>	1.14		
			Shear stress (tractive force), tau	13.5256	N/m^	2 🗸

Notes:

This is the flow and depth *inside* the pipe.

Check out our spreadsheet version of this calculator Download Spreadsheet Open Google Sheets version View All Spreadsheets

Pipe Run 10						
24" RCP						
	Results					
	Flow, Q (See notes)	20.6269	cfs	•		
Inputs			Velocity, v	2.4877	m/s 🔹	•
Pipe diameter, d ₀	24	in 🗸	Velocity head, h _v	0.3155	m H2C	~
<u>Manning roughness, n</u>	0.013		Flow area	0.2348	m^2	✓
Pressure slape (pessibly 2 equal to pipe slape).			Wetted perimeter	1.2767	m 🖌	
Pressure slope (possibly <u>?</u> equal to pipe slope), S ₀	0.01	rise/run 🗸	Hydraulic radius	0.1839	m 🗸	
Percent of (or ratio to) full depth (100% or 1 if flowing full)	.75	fraction 🗸	Top width, T	0.5279	m 🗸	
	(5	<u>Froude number, F</u>	1.19		
			Shear stress (tractive force), tau	18.0341	N/m^2	~

Notes:

This is the flow and depth *inside* the pipe.

FSEDB CALCULATIONS

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

	Project:	
	Basin ID:	
	ZONE 2 ZONE 2 ZONE 1 ZONE 1 AND 2 ZONE 1 AND 2	100-YEAR ORIFICE
POOL	Example Zone Configurat	ion (Retention Pond)

Remove the optional User override for WOCV and EURV

Watershed I	nformation
-------------	------------

Selected BMP Type =	EDB			
Watershed Area =	6.05	acres		
Watershed Length =	800	ft		
Watershed Length to Centroid =	340	ft		
Watershed Slope =	0.022	ft/ft		
Watershed Imperviousness =	65.30%	percent		
Percentage Hydrologic Soil Group A =	100.0%	percent		
Percentage Hydrologic Soil Group B =	0.0%	percent		
Percentage Hydrologic Soil Groups C/D =	0.0%	percent		
Target WQCV Drain Time =	40.0	hours		
Location for 1-hr Rainfall Depths = User Input				

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

depuis, click Run corn to generate run				
the embedded Colorado Urban Hydro	graph Procedu	ire.	Optional User	Overrides
Water Quality Capture Volume (WQCV) =	0.129	acre-feet	0.129	acre-feet
Excess Urban Runoff Volume (EURV) =	0.491	acre-feet	0.491	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.346	acre-feet	1.19	inches
5-yr Runoff Volume (P1 = 1.5 in.) =	0.454	acre-feet	1.50	inches
10-yr Runoff Volume (P1 = 1.75 in.) =	0.540	acre-feet	1.75	inches
25-yr Runoff Volume (P1 = 2 in.) =	0.653	acre-feet	2.00	inches
50-yr Runoff Volume (P1 = 2.25 in.) =	0.763	acre-feet	2.25	inches
100-yr Runoff Volume (P1 = 2.52 in.) =	0.898	acre-feet	2.52	inches
500-yr Runoff Volume (P1 = 3 in.) =	1.123	acre-feet	3.00	inches
Approximate 2-yr Detention Volume =	0.319	acre-feet	-	
Approximate 5-yr Detention Volume =	0.418	acre-feet		
Approximate 10-yr Detention Volume =	0.503	acre-feet		
Approximate 25-yr Detention Volume =	0.605	acre-feet		
Approximate 50-yr Detention Volume =	0.667	acre-feet		
Approximate 100-yr Detention Volume =	0.731	acre-feet		
		-		

Define Zones and Basin Geometry

inte Eoneo ana baoin ocontea).		
Zone 1 Volume (WQCV) =	0.129	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.362	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.240	acre-feet
Total Detention Basin Volume =	0.731	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth $(H_{total}) =$	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (STC) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	
		-
Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-feet

6343 35							
6243.25	 0.25		 	210	0.005	53	0.001
6243.5	 0.50		 	210	0.005	105	0.002
6243.75	 0.75	-	 	894	0.021	243	0.006
6244	 1.00		 	1,578	0.036	552	0.013
	 1.25		 	2,687	0.062	1,085	0.025
	 1.50		 	3,796	0.087	1,895	0.044
	 1.75		 	4,905	0.113	2,983	0.068
6245	 2.00		 	6,014	0.138	4,348	0.100
	 2.25		 	7,123	0.164	5,990	0.138
	 2.50		 	8,232	0.189	7,909	0.182
	 2.75		 	9,341	0.214	10,106	0.232
6246	 3.00		 	10,450	0.240	12,580	0.289
0240	 3.25		 	10,705	0.246	15,224	0.350
	3.50						
			 	10,960	0.252	17,932	0.412
63.43	 3.75		 	11,215	0.257	20,704	0.475
6247	4.00			11,470	0.263	23,540	0.540
	 4.25		 	11,724	0.269	26,439	0.607
	 4.50		 	11,979	0.275	29,402	0.675
	 4.75		 	12,234	0.281	32,429	0.744
6248	 5.00	-	 	12,489	0.287	35,519	0.815
	 5.25		 	12,796	0.294	38,680	0.888
	 5.50		 	13,102	0.301	41,917	0.962
	 5.75		 	13,409	0.308	45,231	1.038
6249	 6.00		 	13,715	0.315	48,621	1.116
	 6.25		 	14,022	0.322	52,088	1.196
	 6.50		 	14,328	0.322		1.190
			 			55,632	
6350	 6.75		 	14,635	0.336	59,252	1.360
6250	7.00			14,941	0.343	62,949	1.445
	 7.25		 	15,509	0.356	66,755	1.532
	 7.50		 	16,078	0.369	70,704	1.623
	 7.75		 	16,646	0.382	74,794	1.717
6251	 8.00		 	17,215	0.395	79,027	1.814
	 8.25	-	 	17,783	0.408	83,401	1.915
	 8.50		 	18,351	0.421	87,918	2.018
	 8.75		 	18,920	0.434	92,577	2.125
6252	 9.00		 	19,488	0.447	97,378	2.235
			 				1
		-	 				
			 		1		+
		-	 				
			 		-		-
		-	 				
			 				<u> </u>
			 				L
			 				I
			 				<u> </u>
			 				<u> </u>
		-	 				
			 		-		-
			 				+
			 				-
			 				<u> </u>
			 				+
			 				<u> </u>
				1			

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

DETENTION BASIN OUTLET STRUCTURE DESIGN

Project:			D-Delention, Ver		y 2021)				
Basin ID: ZONE 3									
				Estimated	Estimated	Outlat Turna			
100-YR VOLUME EURV WQCV			Zana 1 (11/0C)/)	Stage (ft) 2.20	Volume (ac-ft) 0.129	Outlet Type Orifice Plate	1		
± ±	100-YEAR		Zone 1 (WQCV)	-	0.129	Orifice Plate			
ZONE 1 AND 2 PERMANENT ORIFICES	ORIFICE		Zone 2 (EURV)	-	0.362				
	Configuration (Re	tention Pond)	Zone 3 (100-year)	Total (all zones)	0.240	Weir&Pipe (Restrict)	J		
User Input: Orifice at Underdrain Outlet (typical	v used to drain WC	CV in a Filtration B	MP)		0.751	J	Calculated Parame	eters for Underdrain	n
Underdrain Orifice Invert Depth =	N/A	ft (distance below	,	a surface)	Under	drain Orifice Area =	N/A	ft ²	<u>.</u>
Underdrain Orifice Diameter =	N/A	inches			Underdrair	n Orifice Centroid =	N/A	feet	
User Input: Orifice Plate with one or more orific Invert of Lowest Orifice =		Weir (typically used ft (relative to basir				ice Area per Row =	Calculated Parame	ters for Plate ft ²	
Depth at top of Zone using Orifice Plate =	0.00 3.82	ft (relative to basir	5	,	-	iptical Half-Width =	N/A N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches	· solitoin at olage	0 10)		tical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	inches			E	Elliptical Slot Area =	N/A	ft ²	
	- D (+>						
User Input: Stage and Total Area of Each Orifice	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	1
Stage of Orifice Centroid (ft)	0.00	1.27	2.55	Kow + (optional)	Row 5 (optional)	Row o (optional)	Row 7 (optional)	Row 8 (optional)	
Orifice Area (sq. inches)	0.70	0.70	4.00						1
									-
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	1
Stage of Orifice Centroid (ft)									-
Orifice Area (sq. inches)									1
User Input: Vertical Orifice (Circular or Rectange	ular)						Calculated Parame	eters for Vertical Or	ifice
	Not Selected	Not Selected					Not Selected	Not Selected]
Invert of Vertical Orifice =	N/A	N/A	`	n bottom at Stage =	,	rtical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	`	n bottom at Stage =	= 0 ft) Vertica	al Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches						
User Input: Overflow Weir (Dropbox with Flat o	r Sloped Grate and	Outlet Pipe OR Rec	tangular/Trapezoid	dal Weir (and No Ou	itlet Pipe)		Calculated Parame	eters for Overflow V	Veir
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	3.82	N/A		bottom at Stage = 0 f	t) Height of Grat		3.82	N/A	feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope =	2.00	N/A N/A	feet H:V dou	uble check		ir Slope Length = -yr Orifice Area =	2.00 8.06	N/A	feet
Horiz. Length of Weir Sides =	2.00	N/A				Area w/o Debris =	2.78	N/A N/A	ft ²
Overflow Grate Type =	Type C Grate	N/A	dei	ail. CDO		Area w/ Debris =	1.39	N/A	ft ²
Debris Clogging % =	50%	N/A	% sho	ows 35" si	des.			•	-
User Input: Outlet Pipe w/ Flow Restriction Plate	Zone 3 Restrictor		<u>lectangular Orifice)</u>	<u>l</u>	<u>Ca</u>	alculated Parameter	Zone 3 Restrictor	Not Selected	late
Depth to Invert of Outlet Pipe =	0.25	N/A	ft (distance below b	asin bottom at Stage	= 0 ft) 0	outlet Orifice Area =	0.35	N/A	ft ²
Outlet Pipe Diameter =	18.00	N/A	inches	aoin bottoin at blage	,	t Orifice Centroid =	0.22	N/A	feet
Restrictor Plate Height Above Pipe Invert =	4.50		inches	Half-Cent	ral Angle of Restric	ctor Plate on Pipe =	1.05	N/A	radians
User Input: Emergency Spillway (Rectangular or		ft (rolativo to bacir	bottom at Stago	- 0 #)	Spillwov D	Design Flow Depth=	Calculated Parame	feet	
Spillway Invert Stage= Spillway Crest Length =	6.00 8.00	feet	n bottom at Stage	- 0 IL)	. ,	Top of Freeboard =	0.65	feet	
Spiilway End Slopes =	4.00	H:V			-	Top of Freeboard =	0.38	acres	
Freeboard above Max Water Surface =	1.00	feet			Basin Volume at	Top of Freeboard =	1.68	acre-ft	
Routed Hydrograph Results	The user can over	ride the default CU	HP hydrographs an	d runoff volumes by	v entering new valu	ues in the Inflow Hy	drographs table (Co	olumns W through	AF).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) =	N/A 0.129	N/A 0.491	1.19 0.346	1.50 0.454	1.75 0.540	2.00 0.653	2.25 0.763	2.52 0.898	3.00 1.123
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.346	0.454	0.540	0.653	0.763	0.898	1.123
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.0	0.1	0.1	1.1	2.3	3.7	6.0
OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, g (cfs/acre) =	N/A N/A	N/A N/A	0.01	0.02	0.02	0.19	0.38	0.62	0.99
Peak Inflow Q (cfs) =	N/A	N/A	5.8	76	8.8	11.3	134	16.2	20.4
Peak Outflow Q (cfs) =	0.1	0.2	0.2	0.2	0.3	1.4	2.8	3.5	3.7
Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =	N/A Plate	N/A Overflow Weir 1	N/A Plate	2.3 Plate	2.7 Overflow Weir 1	1.2 Overflow Weir 1	1.2 Overflow Weir 1	0.9	0.6 Outlet Plate 1
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A				1.2	1.2
Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	N/A 38	N/A 67	N/A 61	N/A 66	N/A 69	N/A 68	N/A 66	N/A 64	N/A 62
Time to Drain 97% of Inflow Volume (hours) =	40	72	65	71	75	75	74	73	73
Maximum Ponding Depth (ft) =	2.20	3.82	3.14	3.55	3.86	4.02	4.16	4.43	5.00
Area at Maximum Ponding Depth (acres) = Maximum Volume Stored (acre-ft) =	0.16 0.129	0.26 0.493	0.24 0.320	0.25 0.422	0.26 0.501	0.26	0.27 0.580	0.27 0.656	0.29 0.813
aximum volume stored (derent) –	0.127	0.155	0.520	0.122	0.501	<u> </u>	0.000	. 0.000	3.013
						\			

Update outlet structure design. For full spectrum design these must be equal to or less than predevelopment flows.

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	The user can o	verride the calcu	lated inflow hyd	rographs from t	his workbook wi	th inflow hydrog	raphs developed	l in a separate pr	ogram.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.01	0.22
	0:15:00	0.00	0.00	0.79	1.28	1.59	1.07	1.32	1.30	1.71
	0:20:00	0.00	0.00	2.69	3.50	4.10	2.58	2.99	3.22	3.95
	0:25:00	0.00	0.00	5.29	7.00	8.43	5.24	5.96	6.42	8.05
	0:30:00	0.00	0.00	5.80	7.56	8.84	10.65	12.75	14.46	18.31
	0:35:00	0.00	0.00	5.10	6.53	7.58	11.27	13.39	16.25	20.36
	0:40:00	0.00	0.00	4.40	5.51	6.38	10.25	12.18	14.68	18.41
	0:45:00 0:50:00	0.00	0.00	3.58	4.59	5.35	8.67	10.26	12.80	16.11
	0:55:00	0.00	0.00	2.97 2.57	3.90 3.35	4.46 3.89	7.44 6.05	8.76 7.08	10.81 8.93	13.64 11.23
	1:00:00	0.00	0.00	2.26	2.92	3.43	5.11	5.94	7.70	9.67
	1:05:00	0.00	0.00	1.96	2.52	2.99	4.37	5.06	6.75	8.49
	1:10:00	0.00	0.00	1.57	2.17	2.61	3.56	4.10	5.26	6.57
	1:15:00	0.00	0.00	1.28	1.84	2.34	2.88	3.30	4.05	5.02
	1:20:00	0.00	0.00	1.13	1.63	2.11	2.27	2.57	2.94	3.62
	1:25:00	0.00	0.00	1.06	1.52	1.86	1.92	2.17	2.27	2.78
	1:30:00	0.00	0.00	1.01	1.44	1.69	1.64	1.84	1.87	2.27
	1:35:00	0.00	0.00	0.98	1.39	1.57	1.45	1.63	1.62	1.95
	1:40:00	0.00	0.00	0.96	1.24	1.48	1.32	1.49	1.45	1.74
	1:45:00	0.00	0.00	0.95	1.13	1.42	1.24	1.40	1.33	1.59
	1:50:00 1:55:00	0.00	0.00	0.94	1.05	1.38	1.18	1.33	1.25	1.49
	2:00:00	0.00	0.00	0.80	0.99	1.31 1.18	1.15 1.12	1.29 1.26	1.21 1.19	1.44
	2:05:00	0.00	0.00	0.50	0.92	0.83	0.80	0.89	0.85	1.42
	2:10:00	0.00	0.00	0.35	0.46	0.58	0.56	0.63	0.60	0.71
	2:15:00	0.00	0.00	0.24	0.31	0.40	0.39	0.44	0.42	0.50
	2:20:00	0.00	0.00	0.16	0.21	0.27	0.26	0.29	0.28	0.33
	2:25:00	0.00	0.00	0.10	0.13	0.18	0.17	0.19	0.19	0.22
	2:30:00	0.00	0.00	0.06	0.09	0.11	0.11	0.13	0.12	0.14
	2:35:00	0.00	0.00	0.03	0.05	0.06	0.07	0.07	0.07	0.08
	2:40:00	0.00	0.00	0.01	0.02	0.03	0.03	0.04	0.03	0.04
	2:45:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
	2:50:00 2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00 4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00 4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00 4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00 5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

FORBAY VOLUMES

ELEV	AREA	AREA AVG.	DELTA ELEV.	VOLUME	VOLUME TOTAL		
6244.00	200	200	1.5	300			
6245.50	200				300		
			End A	rea Method:	300	C.F.	
					0.007	A.F.	

FORBAY VOLUME

 $\begin{array}{rll} \mbox{Required Forbay Volume} &= 3\% \mbox{ of WQCV} \\ \mbox{WQCV} &= & 0.129 \mbox{ ac-ft} \\ \mbox{WQCV} &= & 5,619 \mbox{ cu-ft} \\ \mbox{3\% of WQCV} &= & 168.58 \mbox{ cu-ft} \end{array}$

for Watersheds up to 1 Impervious Acre ¹	between 1 and 2 Impervious	EDBs with Watersheds up to 5 Impervious Acres	EDBs with Watersheds over 5 Impervious Acres	EDBs with Watersheds over 20 Im <mark>pervious</mark> Acres
Forebay elease and offiguration	Release 2% of the undetained 100-year peak discharge by way of a wall/notch configuration	Release 2% of the undetained 100-year peak discharge by way of a wall/notch configuration	Release 2% of the undetained 100-year peak discharge by way of a wall/notch configuration	Release 2% of the undetained 100-year peak discharge by way of a wall/notch or berm/pipe ² configuration

тави воо-ч. воо сопроиси стисна

1895.00 HCD Drilling

Riprap Protection for FSEDB Outlet Pipe¹

Q100=	3.5	cfs	$Q/D^{2.5} =$	1.27
D=	1.5	ft	$Q/D^{1.5} =$	1.91
Yt=	0.25	ft	Yt/D =	0.4

Minimum Riprap d_{50} Required = $d_{50} = 9$ in => use $d_{50} = 12$ in

¹ see USDCM Chapter 9 Section Section 3.2.3

Storage

Figure 13-12c. Emergency Spillway Protection

Figure 13-12d. Riprap Types for Emergency Spillway Protection

DRAINAGE MAPS

HCD PROPERTIES MINOR SUBDIVISION 6201 EAST PLATTE AVE **EXISTING DRAINAGE MAP**

DRAINAGE	SUMMARY

DAGINI		FLOW				
BASIN NAME			100 YR (cfs)			
EX-A	1.10	1.83	4.62			
EX-B	2.10	2.20	7.14			
EX-C	3.92	0.16	0.88			
0S-1	0.05	0.02	0.14			
0S-2	0.10	0.03	0.25			
TOTAL	7.27					

DESIGN POINT SUMMARY

DP	CONTRIBUTING BASINS	AREA AC.	Q5 CFS	Q100 CFS
X1	EX-A	1.10	1.83	4.62
X2	EX-B	2.10	2.20	7.14
X3	EX-C, OS-1, OS-2	4.07	0.21	1.27
X4	OS-1	0.05	0.02	0.14
X5	0S-2	0.10	0.03	0.25

	LEGEND
EX-B 12.22	BASIN DESIGNATION AREA IN BASIN (AC)
	PIPE RUN
2	DESIGN POINT
	BASIN BOUNDARY
6132	EXISTING MINOR CONTOUR
6130	EXISTING MAJOR CONTOUR
◄	GROUND SURFACE FLOW DIRECTION

E NO. DESCRIPTION DATE	
UNTIL SUCH TIME AS THESE DRAMNGS ARE APPROVED BY THE APPROPRIATE	REVIEWING AGENCIES, TERRA NOVA ENGINEERING, INC. APPROVES THEIR USE ONLY FOR THE ONLY FOR THE PURPOSES DESIGNATED BY WRITTEN AUTHORIZATION.
PREPARED FOR: T-BONE CONSTRUCTION	ATTN: 1310 FORD STREET COLORADO SPRINGS, CO 80915 (719) 570-1456
	co 80904 Terra Nova 22 Dealise Engineering, Inc. 4 22 Contine Civil Engineering Solutions
	721 S. 23RD ST COLORADO SPRINGS, CO 80904 OFFICE: 719–635–6422 FAX: 719–635–6426 www.tnesinc.com
HCD PROPERTIES MINOR SUBDIVISION 6201 E PLATTE AVE.	EXISTING DRAINAGE MAP
JOB NO. Date is:	

DRAINAGE SUMMARY

		FLOW			
BASIN NAME	AREA (ACRES)	5 YR (cfs)	100 YR (cfs)		
A	1.36	5.26	10.67		
В	0.71	2.58	5.35		
С	0.54	1.59	3.47		
D	0.26	0.82	1.74		
E	0.35	1.20	2.48		
F	0.29	1.03	2.10		
G	0.35	1.20	2.48		
н	0.20	0.71	1.46		
I	0.96	0.26	1.95		
J	1.82	1.81	5.37		
К	0.16	0.09	0.45		
L	0.06	0.23	0.47		
М	0.06	0.19	0.41		
0S-1	0.05	0.02	0.12		
0S-2	0.10	0.03	0.23		

1895.00 HCD DRILLING **Surface Routing**

EXISTING CONDITIONS								
			Maximum	Intensity		Flow		
Area (Acres)	Equivalent CA 5	Equivalent CA 100	T _C	I_5	I 100	Q 5	Q 100	
1.10	0.47	0.69	11.4	3.9	6.7	1.83	4.62	
2.10	0.62	1.19	14.4	3.5	6.0	2.20	7.14	
4.07	0.05	0.15	15.2	3.4	5.9	0.21	1.27	
0.05	0.00	0.02	7.7	4.4	7.9	0.02	0.14	
0.10	0.01	0.04	10.1	4.1	7.0	0.03	0.25	

PROPOSED CONDITIONS								
			Maximum	Intensity		Flow		
Area (Acres)	Equivalent CA 5	Equivalent CA 100	T _C	Ι ₅	I 100	Q 5	Q 100	
1.36	1.05	1.18	5.0	5.0	9.1	5.26	10.67	
0.76	0.52	0.59	5.0	5.0	9.1	2.58	5.35	
0.54	0.33	0.40	5.6	4.9	8.8	1.59	3.47	
0.26	0.16	0.19	5.0	5.0	9.1	0.82	1.74	
0.35	0.24	0.27	5.0	5.0	9.1	1.20	2.48	
0.29	0.21	0.23	5.0	5.0	9.1	1.03	2.10	
0.35	0.24	0.27	5.0	5.0	9.1	1.20	2.48	
0.20	0.14	0.16	5.0	5.0	9.1	0.71	1.46	
1.06	0.08	0.37	27.2	2.6	4.3	0.22	1.59	
1.87	0.52	0.91	24.7	2.7	4.5	1.42	4.12	
0.16	0.02	0.06	9.4	4.1	7.2	0.09	0.45	
0.06	0.05	0.05	5.0	5.0	9.1	0.23	0.47	
0.06	0.04	0.05	5.0	5.0	9.1	0.19	0.41	
0.05	0.00	0.02	10.4	4.0	7.0	0.02	0.12	
0.10	0.01	0.04	11.8	3.8	6.6	0.03	0.23	

DEVELOPED CONDITIONS

					Intensity		Flow			
ns	Area (Acres)	Equivalent CA 5	Equivalent CA 100	Maximum T _C	I 5	I 100	Q 5	Q 100		
	1.36	1.05	1.18	5.0	5.0	9.1	5.3	10.7	24" RCP	PRIVATE
	0.06	0.05	0.05	5.0	5.0	9.1	0.2	0.5	12" HDPE	PRIVATE
	0.12	0.08	0.10	5.0	5.0	9.1	0.4	0.9	12" HDPE	PRIVATE
	2.02	1.46	1.67	5.0	5.0	9.1	7.3	15.1	24" RCP	PRIVATE
	2.37	1.70	1.94	5.0	5.0	9.1	8.5	17.6	24" RCP	PRIVATE
	2.72	1.94	2.22	5.0	5.0	9.1	9.7	20.1	24" RCP	PRIVATE
	0.71	0.52	0.59	5.0	5.0	9.1	2.6	5.3	15" HDPE	PRIVATE
	0.97	0.68	0.78	5.0	5.0	9.1	3.4	7.1	18" RCP	PRIVATE
	1.26	0.88	1.01	5.0	5.0	9.1	4.4	9.2	18" RCP	PRIVATE
	1.46	1.03	1.17	5.0	5.0	9.1	5.1	10.6	24" RCP	PRIVATE
							0.2	3.5	18" RCP	PRIVATE

