

JULY, 2021

Prepared For:
T-BONE CONSTRUCTION, INC.
1310 Ford Street
Colorado Springs, CO 80915

Prepared By:
TERRA NOVA ENGINEERING, INC.
721 S. 23RD STREET
Colorado Springs, CO 80904
(719) 635-6422

Job No. 1895.00

Add text:
PCD Filing No.:
MS-21-008

FINAL DRAINAGE REPORT FOR TRACT IN NE4NW4 SEC 18-14-65
 2601 EAST PLATTE AVENUE
 COLORADO SPRINGS, COLORADO 80916

TABLE OF CONTENTS

Engineer's Statement Page 3
Purpose Page 4
General Description Page 4
Soils Condition. Page 4
Drainage Criteria Page 4
Existing Drainage Conditions Page 4
Developed Drainage Conditions Page 5
FSEDB Page 6
Floodplain Statement Page 7
Construction Cost Opinion Page 7
Drainage And Bridge Fees Page 8
Maintenance Page 8
Summary Page 8
References Page 8

APPENDICIES

Vicinity Map
Site Map
Soils Map
FEMA Floodplain Map
Hydrologic Calculations
Hydraulic Calculations
FSEDB Calculations
Drainage Maps

DRAINAGE REPORT STATEMENT

Design Engineer's Statement

This attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

L DUCETT, P.E. 32339 Seal

\qquad the developer have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name

By:

El Paso County Approval:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes $1 \& 2$, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Conditions:

Purpose

The purpose of this Final Drainage Report is to identify and analyze the existing and proposed drainage patterns, determine proposed runoff quantities, size drainage structures to safely convey the developed runoff, and present solutions to drainage impacts on-site and off-site resulting from this development.

General Description

This Final Drainage Report is an analysis of the development of TRACT IN NE4NW4 SEC 18-14-65 owned by HCD Properties, LLC. The site is located at 2601 East Platte Avenue, Colorado Springs, CO 80916 in Section 18, Township 14S, Range 65 West of the $6^{\text {th }}$ Principal Meridian in El Paso County. The site is bounded on the west by a landscaping supply business, on the north by E Platte Avenue Frontage Road, on the east by an RV and boat storage business, and on the south by a vacant lot owned by the City of Colorado Springs. The site is currently unplatted.

The site is currently used primarily for the parking and storage of vehicles and heavy equipment with some areas of soil excavation and storage at the southern end.
The proposed development is the addition of a 22,479 square foot building near the centroid of the lot but this project also makes preparations for a future building to be place near the front of the lot with all of the associated drives, utilities, grading, and stormwater features. The proposed building will be used to house a drilling company and includes a front office building with an asphalt parking lot and an attached industrial building with a surrounding gravel lot. The use of the future building will be established at a later time. The access will be from E Platte Avenue Frontage Road via two paved entrances.

The site lies within the Sand Creek Drainage Basin.

Soils Condition

The soil for this project is composed completely of Blakeland Loamy Sand per the "Soils Survey of El Paso County Area, which is in Hydrologic Soil Group A.

Drainage Criteria

Hydrologic and Hydraulic calculations were performed using the El Paso County Storm Drainage Design Criteria Manual Volumes $1 \& 2$, latest editions. The Rational Method was used to estimate storm water runoff and the design of the FSEDB was performed using UD-Detention v3.07.

Existing (Historic) Drainage Conditions

No previous drainage reports or studies could be found for this site. A drainage map for the existing conditions is included in the Appendix of this report. The site lies within the Sand Creek Basin. The existing topography has a relatively consistent 3% slope from the northeast to
the southwest but drops off more steeply at the western property line. The surface cover is composed of gravel lots and areas of disturbed ground with minimal vegetation.
Drainage ways for this site are poorly defined and runoff primarily sheet flows from the east/northeast to the west/southwest and leaves the site at three locations which are designated as Design Points (DP) for analysis. At the northwest property corner (DP X-1), runoff exits into the public drainage way along E Platte Avenue Frontage Road. At the west property line, about 250 feet south of the northwest property corner (DP X-2), runoff drains into a shallow swale and onto adjacent private property. Along the south side of the proposed development (DP X-3), runoff flows onto the same adjacent private property at a location approximately 500 feet south of DP X-2. At the southeast property line (DP X-4 \& DP X-5), very small areas of runoff sheet flow onto Basin EX-C.

Basin EX-A contributes to DP X-1 and has an area of 1.10 acres consisting of gravel lots and areas of disturbed soil, generating runoff amounts of $\mathrm{Q} 5=1.83 \mathrm{cfs}$ and $\mathrm{Q} 100=4.62 \mathrm{cfs}$.
Basin EX-B contributes to DP X-2 and has an area of 2.10 acres consisting of gravel lots and areas of disturbed soil, generating runoff amounts of Q5= 2.20 cfs and $\mathrm{Q} 100=7.14 \mathrm{cfs}$.
Basin EX-C contributes to DP X-3 and has an area of 0.30 acres consisting of areas of disturbed soil, generating runoff amounts of $\mathrm{Q} 5=0.16 \mathrm{cfs}$ and $\mathrm{Q} 100=0.88 \mathrm{cfs}$.

Basin OS-1 contributes to DP X-4 and has an area of 0.05 acres consisting of undeveloped land, generating runoff amounts of $\mathrm{Q} 5=0.02 \mathrm{cfs}$ and $\mathrm{Q} 100=0.14 \mathrm{cfs}$.
Basin OS-2 contributes to DP X-5 and has an area of 0.10 acres consisting of undeveloped land, generating runoff amounts of $\mathrm{Q} 5=0.03 \mathrm{cfs}$ and $\mathrm{Q} 100=0.25 \mathrm{cfs}$.

Developed Drainage Conditions

A drainage map for the proposed condition is included in the appendix of this report.
A Full Spectrum Extended Detention Basin (FSEDB) will be provided for the proposed and future development with a watershed area of 6.05 acres.

The proposed facility is comprised of asphalt parking lots, gravel lots, buildings, and landscaping. The drainage pattern for the site remains generally the same; however, the of the proposed developed/impervious areas are routed to the FSEDB.
Runoff continues to exit into the public drainage way along E Platte Avenue Frontage Road at the northwest corner (DP 11). The area draining to this location is significantly reduced as compared to existing conditions.
Runoff is no longer discharged at design point X 2 as it had been in the existing conditions. The outlet of the FSEDB (DP 9) is the location at which runoff from the proposed development is discharged after treatment.
Basin A contributes to DP 1 and has an area of 1.36 acres consisting primarily of proposed paved and future building area with a small portion of landscaped area, generating runoff amounts of Q5 $=5.26$ cfs and Q100 $=10.67$ cfs. Minor runoff is conveyed under the entrances at E Platte Avenue Frontage Road via 2 ft wide concrete trench drains just to the north of this basin. The
runoff is collected by a $8^{\prime} \mathrm{D}-10-\mathrm{R}$ inlet at design point 1 and conveyed to the FSEDB via storm pipe.

Basin B contributes to DP 2 and has an area of 0.71 acres consisting mostly of paved areas and much smaller areas of lawn/landscaping, generating runoff amounts of Q5 $=2.58 \mathrm{cfs}$ and $\mathrm{Q} 100=$ 5.35 cfs. The runoff is collected by a type C inlet at design point 2 and conveyed to the FSEDB via storm pipe.
Basin C contributes to DP 3 and has an area of 0.54 acres consisting of paved area, building, gravel lot, and lawn/landscaping, generating runoff amounts of Q5 $=1.59 \mathrm{cfs}$ and $\mathrm{Q} 100=3.47$ cfs. The runoff sheet flows and travels by a 2^{\prime} concrete pan to a type C inlet at design point 3 and then conveyed to the FSEDB via storm pipe.
Basin D contributes to DP 4 and has an area of 0.26 acres consisting of building, paved area, gravel lot, and lawn/landscaping, generating runoff amounts of $\mathrm{Q} 5=0.82 \mathrm{cfs}$ and $\mathrm{Q} 100=1.74$ cfs. The runoff is collected by an inlet at design point 4 and conveyed to the FSEDB via storm pipe.
Basin E contributes to DP 5 and has an area of 0.35 acres consisting of building, paved area, and gravel lot, generating runoff amounts of $\mathrm{Q} 5=1.20 \mathrm{cfs}$ and $\mathrm{Q} 100=2.48 \mathrm{cfs}$. The runoff is collected by an inlet at design point 5 and conveyed to the FSEDB via storm pipe.
Basin F contributes to DP 6 and has an area of 0.29 acres consisting of building, paved area, and gravel lot, generating runoff amounts of $\mathrm{Q} 5=1.03 \mathrm{cfs}$ and $\mathrm{Q} 100=2.10 \mathrm{cfs}$. The runoff is collected by an inlet at design point 6 and conveyed to the FSEDB via storm pipe.
Basin G contributes to DP 7 and has an area of 0.35 acres consisting of building, paved area, and gravel lot, generating runoff amounts of $\mathrm{Q} 5=1.20 \mathrm{cfs}$ and $\mathrm{Q} 100=2.48 \mathrm{cfs}$. The runoff is collected by an inlet at design point 7 and conveyed to the FSEDB via storm pipe.
Basin H contributes to DP 8 and has an area of 0.20 acres consisting of building, paved area, and gravel lot, generating runoff amounts of $\mathrm{Q} 5=0.71 \mathrm{cfs}$ and $\mathrm{Q} 100=1.46 \mathrm{cfs}$. The runoff is collected by an inlet at design point 8 and conveyed to the FSEDB via storm pipe.
Basin I contributes to DP 9 and has an area of 0.96 acres consisting of grading needed for the construction of the FSEDB and other landscaped area generating runoff amounts of Q5 = 0.26 cfs and Q100= 1.95 cfs. No new impervious area is being added and the ground cover will be improved from gravel and disturbed soil to maintained landscaping; therefore, the area does not require treatment in the FSEDB. The runoff sheet flows to onto adjacent property at design point 9 as in existing conditions.
Basin J contributes to DP 10 and has an area of 1.82 acres consisting of the FSEDB, some paved area, gravel lot, and landscaped area, generating runoff amounts of Q5 $=1.81 \mathrm{cfs}$ and $\mathrm{Q} 100=5.37$ cfs. The runoff sheet flows towards the FSEDB located at design point 10.

Basin K is the small area that continues to exit into the public drainage way along E Platte Avenue Frontage Road at the northwest corner (DP 11) as it had previously. The area and runoff of this basin is significantly reduced as compared to existing conditions. It generates runoff amounts of Q5 $=0.09 \mathrm{cfs}$ and $\mathrm{Q} 100=0.45$.
Basin L contributes to DP 12 and has an area of 0.06 acres consisting of building, paved area, and gravel lot, generating runoff amounts of $\mathrm{Q} 5=0.23 \mathrm{cfs}$ and $\mathrm{Q} 100=0.47 \mathrm{cfs}$. The runoff is collected by an inlet at design point 12 and conveyed to the FSEDB via storm pipe.

Basin M contributes to DP 13 and has an area of 0.06 acres consisting of building, paved area, and gravel lot, generating runoff amounts of $\mathrm{Q} 5=0.19 \mathrm{cfs}$ and $\mathrm{Q} 100=0.41 \mathrm{cfs}$. The runoff is collected by an inlet at design point 13 and conveyed to the FSEDB via storm pipe.

Basins OS-1 \& OS-2 remain as they had previously.

FSEDB what is shown in ECM Section I.7.2 BMP Selection and then
 revise subsequent text accordingly.

Revise headings of all steps of the "Four-Step Process" per

In an effort to protect receiving water and as part of the "four step process to minimize adverse impzets of urbanization" this site was analyzed in the following manner:

1. Reduce Runoff - the nature of the development precludes reducing runoff as most of the site is used for buildings, asphalt lots, and gravel lots.
2. Treat Slowly Release WQCV - the FSEDB is designed to capture and treat the runoff from the proposed development in the appropriate manner.
3. Stabilize Stream Channels - there are no existing streams associate with this site.
4. Source Controls - given that the site will be used to house a drilling company, the presence of fuel and other contaminants are likely; therefore, spill kits should be kept on site and any outdoor storage of industrial materials should include the appropriate safeguards.

The runoff from Basins A, B, C, D, E, F, G, H, J, L, M, \& OS-1 of the proposed development are routed to the proposed 2.235 ac-ft private FSEDB located at the southern portion of the property at DP 10. The FSEDB treats runoff from a combined watershed area of 6.05 acres with an imperviousness of 65.3%. The elevation of the bottom of the pond is 6243.00 and the top of the berm is at 6252.00 . The pond design has a WQCV storage volume of $0.129 \mathrm{ac}-\mathrm{ft}$ at a water surface elevation of 6245.20 . The EURV storage volume is $0.362 \mathrm{ac}-\mathrm{ft}$ at a water surface elevation of 6246.82 . The 100 -year storage volume of $0.240 \mathrm{ac}-\mathrm{ft}$ corresponds to a water surface of 6247.71 . The WQCV discharge is less than 0.1 cfs and will be fully released in 40 hours. The EURV discharge is 0.2 cfs and will fully released in 72 hours. The 100 year outflow is 3.5 cfs and is fully released in 73 hours.

The forebay exceeds the size requirement of 2% of the WQCV volume of $0.129 \mathrm{ac}-\mathrm{ft}$. A Trickle channel 2 ft wide and 0.5 ft deep at 0.54% slope runs from the forebay to the micropool at the FSEDB outlet structure. The outlet structure is a 2.0 ft by 2.0 ft riser box with the inlet invert set at 6243.00 and the top of grate set at elevation 6246.82. A metal orifice plate on the front of the structure regulates the WQCV and EURV via three orifices with 0.7 square inches, 0.7 square inches, and 4 square inches spaced 1.27 ft apart. The invert of 18 " outlet pipe is at elevation 6242.75 with a restrictor plate set 4.5 inches higher. The outlet pipe is 82 ft long at a slope of 1.12% with a metal end section at the outlet end with type L riprap protection ($\mathrm{D} 50=12 \mathrm{in}$).
An emergency spillway is set at elevation 6249.00. The spillway has a bottom width of 8 ft with $4: 1$ side slopes and is protected by type VL riprap (D50= 12 in). The 100 year HWL is 1.29 feet below the spillway. In an emergency overflow situation, the runoff will flow onto the property south of the site.

Floodplain Statement

According to FEMA's FIRM No. 08041CO754G (eff. 12/7/2018), the proposed development is within an area designated as Zone X , having minimal flood hazard.

Construction Cost Opinion

Private Drainage Facilities Improvements (Non-Reimbursable)

Description	Quantity	Unit Price	Cost
4 ft Concrete Drain Pan	735 LF	\$42	\$30,870
2 ft Conc. Trench Drain	56 LF	\$230	\$12,880
Total			\$43,750

Private Permanent BMP (Non-Reimbursable) - 1 FSEDB

Description	Quantity	Unit Price	Cost		
Earthwork	3607 Cu Yd	$\$ 12$	$\$ 43284$		
Forebays	1 EA	$\$ 1500$	$\$ 1500$		
Trickle Channel	92 LF	$\$ 32$	$\$ 2944$		
Outlet Structure (box riser, micropool, pipe, headwall, and riprap)	1 EA	$\$ 5000$	$\$ 5000$		
Emergency Spillway	1 EA	$\$ 1500$	$\$ 1500$		
Maintenance Access Rd	1 EA	$\$ 500$	$\$ 500$		
Stabilization	1 EA	$\$ 5000$	$\$ 5000$		
Subtotal					$\$ 59,728$

Update Fees.
Drainage And Bridge Ft Drainage Fee $=\$ 20,387$ per imp ac This currently unplatted s Bridge Fee $=\$ 8,339$ per imp ac combined Drainage Fees (2021) are due prior to final plat recordation.

Fee Type	\% Imp.	Parcel Area (acre)	Imp. Area (acre)	Fee per Imp Acre	Mod $\%$	Fee Cost
Drainage	65.3	7.13	4.66	$\$ 8,940$	100	$\$ 88,260$
Bridge	65.3	7.13	4.66	$\$ 5,559$	100	$\$ 25,905$
				Total		$\$ 114,165$

identify who. (Lot
Maintena owner?)
The proposed FSEDB will be private/y maintained and is accessible via a 12 ' wide aggregate base maintenance access road. The proposed entrance trench drains and proposed concrete drain pans will be privately maintained.

update

Summary

This Final Drainage Report analyzed the development of TRACTIN NE4NW4 SEC 18-14-65 owned by HCD Properties, LLC, located at 2601 East Platte Avenue, Colorado Springs, CO 80916. Runoff from the development will not adversely affect the surrounding or downstream developments. Proposed flows, as detailed in this report, will follow existing drainage patterns and will be safely routed downstream. Water quality and detention are provided on-site using a FSEDB. No public storm drainage modifications or design changes are necessary as a result of the development.

An Erosion Control Plan will be submitted separately.

References

1) City of Colorado Springs/County of El Paso Drainage Criteria Manual, dated May 2014.
2) Soil survey of El Paso County Area, Colorado, Prepared by United States Department of Agriculture Soil Conservation Service, dated June 1981.
3) Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map Number 08041CO754G.

APPENDICES

VICINITY MAP

SOILS MAP

```
R2 6201 EPatte Wue-Googie Maps X
\(\leftarrow \rightarrow \mathrm{C}\) a hthp//websoilsurveysc.egovusdagow/dpp/Wetfoiturnmiatpr
```


Area of Interest (AOD) Soil Map Sol Data Explorer Download 5oils Data Shopping Cart (Free)

FEMA FLOODPLAIN MAP

National Flood Hazard Layer FIRMette

HYDROLOGIC CALCULATIONS

1895.00 HCD DRILLING

Area Runoff Coefficient (C) Summary
HSG - A
EXISTING

		GRAVEL LOT			DISTURBED AREA			LAWN/LANDSCAPING			WEIGHTED		WEIGHTED CA	
BASIN	TOTAL AREA	AREA	C5	C100	AREA	C5	C100	AREA	C5	C100	C5	C100	CA5	CA100
	(Acres)	(Acres)			(Acres)			(Acres)						
EX-A	1.1	0.7	0.59	0.70	0.4	0.15	0.50	0.0	0.08	0.35	0.43	0.63	0.47	0.69
EX-B	2.1	0.7	0.59	0.70	1.4	0.15	0.50	0.0	0.08	0.35	0.30	0.57	0.62	1.19
EX-C	0.3	0.0	0.59	0.70	0.3	0.15	0.50	0.0	0.08	0.35	0.15	0.50	0.05	0.15
OS-1	0.1	0.0	0.59	0.70	0.0	0.15	0.50	0.1	0.08	0.35	0.08	0.35	0.00	0.02
OS-2	0.1	0.0	0.59	0.70	0.0	0.15	0.50	0.1	0.08	0.35	0.08	0.35	0.01	0.04

DEVELOPED

		GRAVEL LOT			PAVEMENT/ROOF			LAWN/LANDSCAPING			WEIGHTED		WEIGHTED CA	
BASIN	TOTAL AREA	AREA	C5	C100	AREA	C5	C100	AREA	C5	C100	C5	C100	CA5	CA100
	(Acres)	(Acres)			(Acres)			(Acres)						
A	1.36	0.00	0.59	0.70	1.15	0.90	0.96	0.21	0.08	0.35	0.77	0.87	1.05	1.18
B	0.76	0.00	0.59	0.70	0.60	0.90	0.96	0.16	0.08	0.35	0.73	0.83	0.55	0.63
C	0.61	0.12	0.59	0.70	0.33	0.90	0.96	0.16	0.08	0.35	0.62	0.75	0.38	0.46
D	0.26	0.15	0.59	0.70	0.08	0.90	0.96	0.03	0.08	0.35	0.63	0.74	0.16	0.19
E	0.35	0.24	0.59	0.70	0.11	0.90	0.96	0.00	0.08	0.35	0.69	0.78	0.24	0.27
F	0.29	0.18	0.59	0.70	0.11	0.90	0.96	0.00	0.08	0.35	0.71	0.80	0.21	0.23
G	0.35	0.24	0.59	0.70	0.11	0.90	0.96	0.00	0.08	0.35	0.69	0.78	0.24	0.27
H	0.20	0.12	0.59	0.70	0.08	0.90	0.96	0.00	0.08	0.35	0.71	0.80	0.14	0.16
I	0.96	0.00	0.59	0.70	0.00	0.90	0.96	0.96	0.08	0.35	0.08	0.35	0.08	0.34
J	1.82	0.62	0.59	0.70	0.06	0.90	0.96	1.14	0.08	0.35	0.28	0.49	0.51	0.89
K	0.16	0.00	0.59	0.70	0.01	0.90	0.96	0.15	0.08	0.35	0.13	0.39	0.02	0.06
OS-1	0.05	0.00	0.59	0.70	0.00	0.90	0.96	0.05	0.08	0.35	0.08	0.35	0.00	0.02
OS-2	0.10	0.00	0.59	0.70	0.00	0.90	0.96	0.10	0.08	0.35	0.08	0.35	0.01	0.04
$7.27 \times$ Calculated by: \quad Date: $7 / 20 / 2021$														

1895.00 HCD DRILLING

Runoff Summary

EXISTING

		WEIGHTED		OVERLAND				SHALLOW CONCENTRATED FLOW				T_{C}	INTENSITY		TOTAL FLOWS	
BASIN	$\begin{gathered} \hline \text { AREA } \\ \text { TOTAL } \\ \text { (Acres) } \\ \hline \end{gathered}$		C_{100}	C_{5}	Length (ft)	$\begin{aligned} & \text { Slope } \\ & (f t / f t) \end{aligned}$	$\begin{gathered} \mathbf{T}_{\mathbf{t}} \\ (\min) \\ \hline \end{gathered}$	Length (ft)	Slope (\%)	Velocity (fps)	$\begin{gathered} T_{t} \\ (\min) \end{gathered}$	$\begin{gathered} \text { TOTAL } \\ (\text { min }) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{I}_{5} \\ (i n / h r) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{I}_{100} \\ (i n / h r) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{Q}_{5} \\ \text { (c.f.f. }) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{Q}_{100} \\ (c . f . f .) \end{gathered}$
EX-A	1.10	0.43	0.63	0.43	150	0.029	10.4	180	4.4\%	3.2	0.9	11.4	3.9	6.7	1.83	4.62
EX-B	2.10	0.30	0.57	0.30	150	0.027	12.8	276	3.6\%	2.8	1.6	14.4	3.5	6.0	2.20	7.14
EX-C	0.30	0.15	0.50	0.15	150	0.033	14.2	176	3.5\%	2.8	1.0	15.2	3.4	5.9	0.16	0.88
OS-1	0.05	0.08	0.35	0.08	35	0.029	7.7	0	3.5\%	2.8	0.0	7.7	4.4	7.9	0.02	0.14
OS-2	0.10	0.08	0.35	0.08	75	0.040	10.1	0	3.5\%	2.8	0.0	10.1	4.1	7.0	0.03	0.25

DEVELOPED

		WEIGHTED		OVERLAND				SHALLOW CONCENTRATED FLOW				T_{C}	INTENSITY		TOTAL FLOWS	
BASIN	AREA TOTAL (Acres)	${ }_{*}^{\text {* }}$	C_{100}	C_{5}	Length (ft)	Slope $(f t / f t)$	$\begin{gathered} \mathbf{T}_{\mathbf{t}} \\ (\min) \\ \hline \end{gathered}$	Length (ft)	Slope $(\%)$	Velocity (fps)	$\begin{gathered} T_{t} \\ (\min) \end{gathered}$	$\begin{gathered} \text { TOTAL } \\ (\text { min }) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{I}_{5} \\ (\mathrm{in} / \mathrm{hr}) \end{gathered}$	$\begin{gathered} \mathbf{I}_{100} \\ (i n / h r) \end{gathered}$	$\begin{gathered} \mathbf{Q}_{5} \\ (\text { c.f.s. }) \end{gathered}$	$\begin{gathered} \mathrm{Q}_{100} \\ \text { (c.f.f.s.) } \end{gathered}$
A	1.36	0.77	0.87	0.77	55	0.02	3.4	255	3.0\%	3.5	1.2	5.0	5.0	9.1	5.26	10.67
B	0.76	0.73	0.83	0.73	0	0.04	0.0	260	1.3\%	2.2	2.0	5.0	5.0	9.1	2.77	5.73
C	0.61	0.62	0.75	0.62	45	0.02	4.6	95	1.0\%	2.0	0.8	5.4	4.9	8.9	1.87	4.05
D	0.26	0.63	0.74	0.63	0	0.04	0.0	160	2.5\%	3.2	0.8	5.0	5.0	9.1	0.82	1.74
E	0.35	0.69	0.78	0.69	0	0.33	0.0	180	4.0\%	2.0	1.5	5.0	5.0	9.1	1.20	2.48
F	0.29	0.71	0.80	0.71	0	0.10	0.0	160	4.0\%	2.0	1.3	5.0	5.0	9.1	1.03	2.10
G	0.35	0.69	0.78	0.69	0	0.10	0.0	180	4.0\%	2.0	1.5	5.0	5.0	9.1	1.20	2.48
H	0.20	0.71	0.80	0.71	0	0.10	0.0	160	4.0\%	2.0	1.3	5.0	5.0	9.1	0.71	1.46
I	0.96	0.08	0.35	0.08	100	0.03	12.8	310	4.0\%	2.0	2.6	15.4	3.4	5.8	0.26	1.95
J	1.82	0.28	0.49	0.28	100	0.03	10.3	240	4.2\%	1.0	4.0	14.3	3.5	6.0	1.81	5.37
K	0.16	0.13	0.39	0.13	100	0.07	9.4	0	1.0\%	1.0	0.0	9.4	4.1	7.2	0.09	0.45
OS-1	0.05	0.08	0.35	0.08	40	0.03	8.6	0	1.0\%	1.0	0.0	8.6	4.3	7.5	0.02	0.13
OS-2	0.10	0.08	0.35	0.08	70	0.04	9.6	0	1.0\%	1.0	0.0	9.6	4.1	7.2	0.03	0.25

1895.00 HCD DRILLING

Surface Routing

EXISTING CONDITIONS									
Design Point(s)	Contributing Basins	$\begin{gathered} \text { Area } \\ \text { (Acres) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Equivalent } \\ C A . \end{gathered}$	$\begin{gathered} \text { Equivalent } \\ C_{100} \\ \hline \end{gathered}$	$\begin{gathered} \text { Maximum } \\ \boldsymbol{T}_{C} \end{gathered}$	Intensity		Flow	
						I_{5}	I_{100}	Q_{5}	Q_{100}
X1	EX-A	1.10	0.47	0.69	11.4	3.9	6.7	1.83	4.62
X2	EX-B	2.10	0.62	1.19	14.4	3.5	6.0	2.20	7.14
X3	EX-C, OS-1, OS-2	4.07	0.05	0.15	15.2	3.4	5.9	0.21	1.27
X4	OS-1	0.05	0.00	0.02	7.7	4.4	7.9	0.02	0.14
X5	OS-2	0.10	0.01	0.04	10.1	4.1	7.0	0.03	0.25

PROPOSED CONDITIONS									
					Maximum	Intensi		Flow	
Design Point(s)	Contributing Basins	Area (Acres)	Equivalent CA	Equivalent مai	\boldsymbol{T}_{C}	I_{5}	I_{100}	Q_{5}	\boldsymbol{Q}_{100}
1	A	1.36	1.05	1.18	5.0	5.0	9.1	5.26	10.67
2	B	0.76	0.52	0.59	5.0	5.0	9.1	2.58	5.35
3	C	0.54	0.33	0.40	5.6	4.9	8.8	1.59	3.47
4	D	0.26	0.16	0.19	5.0	5.0	9.1	0.82	1.74
5	E	0.35	0.24	0.27	5.0	5.0	9.1	1.20	2.48
6	F	0.29	0.21	0.23	5.0	5.0	9.1	1.03	2.10
7	G	0.35	0.24	0.27	5.0	5.0	9.1	1.20	2.48
8	H	0.20	0.14	0.16	5.0	5.0	9.1	0.71	1.46
9	I, OS-2	1.06	0.08	0.37	27.2	2.6	4.3	0.22	1.59
10	J, OS-1	1.87	0.52	0.91	24.7	2.7	4.5	1.42	4.12
11	K	0.16	0.02	0.06	9.4	4.1	7.2	0.09	0.45
12	L	0.06	0.05	0.05	5.0	5.0	9.1	0.23	0.47
13	M	0.06	0.04	0.05	5.0	5.0	9.1	0.19	0.41
14	OS-1	0.05	0.00	0.02	10.4	4.0	7.0	0.02	0.12
15	OS-2	0.10	0.01	0.04	11.8	3.8	6.6	0.03	0.23

DEVELOPED CONDITIONS

$\begin{gathered} \text { Pipe } \\ \text { Run(s) } \end{gathered}$	Contributing Design Points/Pipe Runs	Area (Acres)	$\begin{gathered} \text { Equivalent } \\ C A_{5} \end{gathered}$	Equivalent$C A_{100}$	$\begin{gathered} \text { Maximum } \\ \boldsymbol{T}_{\boldsymbol{C}} \end{gathered}$	Intensity		Flow	
						I_{5}	I_{100}	Q_{5}	Q_{100}
1	DP 1	1.36	1.05	1.18	5.0	5.0	9.1	5.3	10.7
2	DP 12	0.06	0.05	0.05	5.0	5.0	9.1	0.2	0.5
3	DP 13, PR 2	0.12	0.08	0.10	5.0	5.0	9.1	0.4	0.9
4	DP 3, PR 3, PR 1	2.02	1.46	1.67	5.0	5.0	9.1	7.3	15.1
5	DP 5, PR 4	2.37	1.70	1.94	5.0	5.0	9.1	8.5	17.6
6	DP 7, PR 5	2.72	1.94	2.22	5.0	5.0	9.1	9.7	20.1
7	DP 2	0.71	0.52	0.59	5.0	5.0	9.1	2.6	5.3
8	DP 4, PR 7	0.97	0.68	0.78	5.0	5.0	9.1	3.4	7.1
9	DP 6, PR 8	1.26	0.88	1.01	5.0	5.0	9.1	4.4	9.2
10	DP 8, PR 9	1.46	1.03	1.17	5.0	5.0	9.1	5.1	10.6
11	POND OUTLET							0.2	3.5

Calculated by: JF
Date: $\underline{\underline{7 / 21 / 2021}}$
Checked by: \qquad

HYDRAULIC CALCULATIONS

Pipe Run 1

24" RCP

Inputs			Results		
			Flow, Q (See notes) Velocity, v	$\begin{array}{\|l\|} \hline 20.6269 \\ \hline 2.4877 \\ \hline \end{array}$	
Pipe diameter, d_{0}	24	in v	Velocity head, h_{v}	0.3155	$\mathrm{mH2O} \vee$
Manning roughness, n	0.013		Flow area	0.2348	$\mathrm{m}^{\wedge} 2 \vee$
Pressure slope (possibly ? equal to pipe slope), S_{0}	0.01	rise/run \checkmark	Wetted perimeter Hydraulic radius	$\begin{array}{\|l\|} \hline 1.2767 \\ \hline 0.1839 \\ \hline \end{array}$	$\mathrm{m} v$
					$m \vee$
Percent of (or ratio to) full depth (100\% or 1 if flowing full)	. 75	fraction \checkmark	Top width, T	0.5279	m マ
			Froude number, F	1.19	
			Shear stress (tractive force), tau	18.0341	$\mathrm{N} / \mathrm{m}^{\wedge} 2$

Notes:
This is the flow and depth inside the pipe.
Getting the flow into the pipe may require significantly higher headwater depth. Add at least 1.5 times the velocity head to get the headwater depth or see my 2-minute tutorial for standard culvert headwater calculations using HY-8.

Pipe Run 2

12" HDPE

Notes:
This is the flow and depth inside the pipe.
Getting the flow into the pipe may require significantly higher headwater depth. Add at least 1.5 times the velocity head to get the headwater depth or see my 2-minute tutorial for standard culvert headwater calculations using HY-8.

Pipe Run 3

12" HDPE

Notes:
This is the flow and depth inside the pipe.
Getting the flow into the pipe may require significantly higher headwater depth. Add at least 1.5 times the velocity head to get the headwater depth or see my 2-minute tutorial for standard culvert headwater calculations using HY-8

Pipe Run 4

24" RCP

Inputs			Results		
			Flow, Q (See notes) Velocity, v	$\begin{array}{\|l\|} \hline 20.6269 \\ \hline 2.4877 \\ \hline \end{array}$	$\begin{array}{lc} \hline \mathrm{cfs} & \vee \\ \hline \mathrm{~m} / \mathrm{s} & \vee \end{array}$
Pipe diameter, d_{0}	24	in v	Velocity head, h_{v}	0.3155	m H2O \checkmark
Manning roughness, n	0.013		Flow area	0.2348	$\mathrm{m}^{\wedge} 2 \vee$
Pressure slope (possibly ? equal to pipe slope), S_{0}	0.01	rise/run \checkmark	Wetted perimeter	1.2767	$\mathrm{m} v$
Pressure slope (possibly ? equal to pipe slope), ડo	0.01	rise/run \checkmark	Hydraulic radius	0.1839	$\mathrm{m} v$
Percent of (or ratio to) full depth (100% or 1 if flowing full)	. 75	fraction \checkmark	Top width, T	0.5279	m
			Froude number, F	1.19	
			Shear stress (tractive force), tau	18.0341	$\mathrm{N} / \mathrm{m}^{\wedge} 2$

Notes:
This is the flow and depth inside the pipe.
Getting the flow into the pipe may require significantly higher headwater depth. Add at least 1.5 times the velocity head to get the headwater depth or see my 2-minute tutorial for standard culvert headwater calculations using HY-8.

Pipe Run 5

24" RCP

Inputs			Results		
			Flow, Q (See notes) Velocity, v	$\begin{array}{\|l\|} \hline 20.6269 \\ \hline 2.4877 \\ \hline \end{array}$	$\begin{array}{lc} \hline \mathrm{cfs} & \vee \\ \hline \mathrm{~m} / \mathrm{s} & \vee \end{array}$
Pipe diameter, d_{0}	24	in v	Velocity head, h_{v}	0.3155	m H2O \checkmark
Manning roughness, n	0.013		Flow area	0.2348	$\mathrm{m}^{\wedge} 2 \vee$
Pressure slope (possibly ? equal to pipe slope), S_{0}	0.01	rise/run \checkmark	Wetted perimeter	1.2767	$\mathrm{m} v$
Pressure slope (possibly ? equal to pipe slope), ડo	0.01	rise/run \checkmark	Hydraulic radius	0.1839	$\mathrm{m} v$
Percent of (or ratio to) full depth (100% or 1 if flowing full)	. 75	fraction \checkmark	Top width, T	0.5279	m
			Froude number, F	1.19	
			Shear stress (tractive force), tau	18.0341	$\mathrm{N} / \mathrm{m}^{\wedge} 2$

Notes:
This is the flow and depth inside the pipe.
Getting the flow into the pipe may require significantly higher headwater depth. Add at least 1.5 times the velocity head to get the headwater depth or see my 2-minute tutorial for standard culvert headwater calculations using HY-8.

Pipe Run 6

24" RCP

Inputs			Results		
			Flow, Q (See notes) Velocity, v	$\begin{array}{\|l\|} \hline 20.6269 \\ \hline 2.4877 \\ \hline \end{array}$	$\begin{array}{lc} \hline \mathrm{cfs} & \vee \\ \hline \mathrm{~m} / \mathrm{s} & \vee \end{array}$
Pipe diameter, d_{0}	24	in v	Velocity head, h_{v}	0.3155	m H2O \checkmark
Manning roughness, n	0.013		Flow area	0.2348	$\mathrm{m}^{\wedge} 2 \vee$
Pressure slope (possibly ? equal to pipe slope), S_{0}	0.01	rise/run \checkmark	Wetted perimeter	1.2767	$\mathrm{m} v$
Pressure slope (possibly ? equal to pipe slope), ડo	0.01	rise/run \checkmark	Hydraulic radius	0.1839	$\mathrm{m} v$
Percent of (or ratio to) full depth (100% or 1 if flowing full)	. 75	fraction \checkmark	Top width, T	0.5279	m
			Froude number, F	1.19	
			Shear stress (tractive force), tau	18.0341	$\mathrm{N} / \mathrm{m}^{\wedge} 2$

Notes:
This is the flow and depth inside the pipe.
Getting the flow into the pipe may require significantly higher headwater depth. Add at least 1.5 times the velocity head to get the headwater depth or see my 2-minute tutorial for standard culvert headwater calculations using HY-8.

Pipe Run 7

15" HDPE

Inputs			Results		
			Flow, Q (See notes)	5.8900	cfs V
			Velocity, v	1.8185	$\mathrm{m} / \mathrm{s} v$
Pipe diameter, d_{0}	15	in V	Velocity head, h_{v}	0.1686	$\mathrm{mH2O} \vee$
Manning roughness, $\underline{\text { n }}$	0.013		Flow area	0.0917	$\mathrm{m}^{\wedge} 2$ V
	0.01	rise/run \checkmark	Wetted perimeter	0.7980	$\mathrm{m} v$
Pressure slope (possibly ? equal to pipe slope), S_{0}			Hydraulic radius	0.1149	$m \vee$
Percent of (or ratio to) full depth (100\% or 1 if flowing full)	. 75	fraction \vee	Top width, T	0.3300	$m \vee$
			Froude number, F	1.10	
			Shear stress (tractive force), tau	11.2713	$\mathrm{N} / \mathrm{m}^{\wedge} 2$ V

Notes:
This is the flow and depth inside the pipe.
Getting the flow into the pipe may require significantly higher headwater depth. Add at least 1.5 times the velocity head to get the headwater depth or see my 2-minute tutorial for standard culvert headwater calculations using HY-8.

Pipe Run 8

18" RCP

Inputs			Results		
			Flow, Q (See notes)	$\begin{array}{\|l\|} \hline 9.5777 \\ \hline 2.0535 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{cfs} \\ \hline \mathrm{~m} / \mathrm{s} \\ \hline \end{array}$
			Velocity, v		
Pipe diameter, d_{0}	18	in \checkmark	Velocity head, h_{v}	0.2150	$\mathrm{mH2O} \vee$
Manning roughness, n	0.013		Flow area	0.1321	$\mathrm{m}^{\wedge} 2 \vee$
Pressure slope (possibly ? equal to pipe slope), S_{0}		rise/run \checkmark	Wetted perimeter	0.9576	$m \vee$
		rise/run V	Hydraulic radius	0.1379	$m \vee$
Percent of (or ratio to) full depth (100% or 1 if flowing full)	. 75	fraction \checkmark	Top width, T	0.3959	m
			Froude number, F	1.14	
			Shear stress (tractive force), tau	13.5256	$\mathrm{N} / \mathrm{m}^{\wedge} 2$

Notes:
This is the flow and depth inside the pipe.
Getting the flow into the pipe may require significantly higher headwater depth. Add at least 1.5 times the velocity head to get the headwater depth or see my 2-minute tutorial for standard culvert headwater calculations using HY-8.

Pipe Run 9

18" RCP

Inputs			Results		
			Flow, Q (See notes)	$\begin{array}{\|l\|} \hline 9.5777 \\ \hline 2.0535 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{cfs} \\ \hline \mathrm{~m} / \mathrm{s} \\ \hline \end{array}$
			Velocity, v		
Pipe diameter, d_{0}	18	in \checkmark	Velocity head, h_{v}	0.2150	$\mathrm{mH2O} \vee$
Manning roughness, n	0.013		Flow area	0.1321	$\mathrm{m}^{\wedge} 2 \vee$
Pressure slope (possibly ? equal to pipe slope), S_{0}		rise/run \checkmark	Wetted perimeter	0.9576	$m \vee$
		rise/run V	Hydraulic radius	0.1379	$m \vee$
Percent of (or ratio to) full depth (100% or 1 if flowing full)	. 75	fraction \checkmark	Top width, T	0.3959	m
			Froude number, F	1.14	
			Shear stress (tractive force), tau	13.5256	$\mathrm{N} / \mathrm{m}^{\wedge} 2$

Notes:
This is the flow and depth inside the pipe.
Getting the flow into the pipe may require significantly higher headwater depth. Add at least 1.5 times the velocity head to get the headwater depth or see my 2-minute tutorial for standard culvert headwater calculations using HY-8.

Pipe Run 10

24" RCP

Inputs			Results		
			Flow, Q (See notes) Velocity, v	$\begin{array}{\|l\|} \hline 20.6269 \\ \hline 2.4877 \\ \hline \end{array}$	$\begin{array}{lc} \hline \mathrm{cfs} & \vee \\ \hline \mathrm{~m} / \mathrm{s} & \vee \end{array}$
Pipe diameter, d_{0}	24	in v	Velocity head, h_{v}	0.3155	m H2O \checkmark
Manning roughness, n	0.013		Flow area	0.2348	$\mathrm{m}^{\wedge} 2 \vee$
Pressure slope (possibly ? equal to pipe slope), S_{0}	0.01	rise/run \checkmark	Wetted perimeter	1.2767	$\mathrm{m} v$
Pressure slope (possibly ? equal to pipe slope), ડo	0.01	rise/run \checkmark	Hydraulic radius	0.1839	$\mathrm{m} v$
Percent of (or ratio to) full depth (100% or 1 if flowing full)	. 75	fraction \checkmark	Top width, T	0.5279	m
			Froude number, F	1.19	
			Shear stress (tractive force), tau	18.0341	$\mathrm{N} / \mathrm{m}^{\wedge} 2$

Notes:
This is the flow and depth inside the pipe.
Getting the flow into the pipe may require significantly higher headwater depth. Add at least 1.5 times the velocity head to get the headwater depth or see my 2-minute tutorial for standard culvert headwater calculations using HY-8.

FSEDB CALCULATIONS

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)				Calculated Parameters for Under	
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =	N/A	ft (distance below the filtration media surface) inches	Underdrain Orifice Area = Underdrain Orifice Centroid =	N/A	$\begin{aligned} & \mathrm{ft}^{2} \\ & \text { feet } \end{aligned}$
	N/A			N/A	
User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)				Calculated Parameters for Plate	
Invert of Lowest Orifice $=$	0.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	WQ Orifice Area per Row $=$	N/A	ft^{2}
Depth at top of Zone using Orifice Plate $=$	3.82	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	Elliptical Half-Width $=$	N/A	feet
Orifice Plate: Orifice Vertical Spacing =	N/A	inches	Elliptical Slot Centroid $=$	N/A	feet
Orifice Plate: Orifice Area per Row $=$	N/A	inches	Elliptical Slot Area $=$	N/A	ft^{2}

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)				Calculated Parameters for Under	
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =	N/A	ft (distance below the filtration media surface) inches	Underdrain Orifice Area = Underdrain Orifice Centroid =	N/A	$\begin{aligned} & 7 \mathrm{ft}^{2} \\ & \text { feet } \end{aligned}$
	N/A			N/A	
User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)				Calculated Parameters for Plate	
Invert of Lowest Orifice $=$	0.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	WQ Orifice Area per Row =	N/A	ft^{2}
Depth at top of Zone using Orifice Plate $=$	3.82	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	Elliptical Half-Width =	N/A	feet
Orifice Plate: Orifice Vertical Spacing $=$	N/A	inches	Elliptical Slot Centroid =	N/A	feet
Orifice Plate: Orifice Area per Row =	N/A	inches	Elliptical Slot Area $=$	N/A	ft^{2}

sed to drain WQCV in a Filtration BMP)

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
	0.00	1.27	2.55					
	0.70	0.70	4.00					
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)

Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
	0.00	1.27	2.55					
	0.70	0.70	4.00					
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)

Invert of Vertical Orifice $=$ Depth at top of Zone using Vertical Orifice $=$ Vertical Orifice Diameter $=$	Not Selected	Not Selected	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches
	N/A	N/A	
	N/A	N/A	
	N/A	N/A	

	Calculated Parameters for Vertical Orifice		
	Not Selected	Not Selected	
Vertical Orifice Area $=$	N/A	N/A	ft^{2}
Vertical Orifice Centroid $=$	N/A	N/A	eet

User Input: Vertical Orifice (Circular or Rectangular)

User Input: Vertical Orifice (Circular or Rectangular) $\begin{aligned} \text { Invert of Vertical Orifice } & = \\ \text { Depth at top of Zone using Vertical Orifice } & = \\ \text { Vertical Orifice Diameter } & =\end{aligned}$

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)
\qquad Zone 3 Weir

> double check Type C detail. CDOT type C shows 35 " sides.

Calculated Parameters for Overflow Weir ir Slope Length = -yr Orifice Area = trea w/o Debris = Area w/ Debris =

Zone 3 Weir	Not Selected
3.82	feet
2.00	N/A
8.06	feet
2.78	$\mathrm{~N} / \mathrm{A}$

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

Depth to Invert of Outlet Pipe = Outlet Pipe Diameter $=$	Zone 3 Restrictor	Not Selected	
	0.25	N/A	ft (distance below basin bottom at Stage $=0 \mathrm{ft}$)
	18.00	N/A	inches
strictor Plate Height Above Pipe Invert	4.50		inches Half-Central

Half-Central Ang
Calculated Parameters
Outlet Orifice Area $=$
Outlet Orifice Centroid $=$ Outlet Orifice Centroid inches

Zone 3 Restrictor	Not Selected
	${ }^{2}$
0.35	$\mathrm{~N} / \mathrm{A}$
ft^{2}	
0.22	$\mathrm{~N} / \mathrm{A}$
feet	
1.05	$\mathrm{~N} / \mathrm{A}$
radian	

User Input: Emergency Spillway (Rectanqular or Trapezoidal)

Spillway Invert Stage=	6.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Spillway Crest Length $=$	8.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface $=$	1.00	feet

	Calculated Parameters for Spillway		
Spillway Design Flow Depth	$=0.65$	feet	
Stage at Top of Freeboard	$=$	7.65	feet
Basin Area at Top of Freeboard	$=$	0.38	acres
Basin Volume at Top of Freeboard	$=1.68$	acre-ft	

WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.00
0.129	0.491	0.346	0.454	0.540	0.653	0.763	0.898	1.123
N/A	N/A	0.346	0.454	0.540	0.653	0.763	0.898	1.123
N/A	N/A	0.0	0.1	0.1	1.1	2.3	3.7	6.0
N/A	N/A							
N/A	N/A	0.01	0.02	0.02	0.19	0.38	0.62	0.99
N/A	N/A	5.8	2.6	8.8	113	134	16.2	20.4
0.1	0.2	0.2	0.2	0.3	1.4	2.8	$\square^{3.5}$	3.7
N/A	N/A	N/A	2.3	2.7	1.2	1.2	0.9	0.6
Plate	Overflow Weir 1	Plate	Plate,	Oyerflow We	Overflow Wei	rflow We	Outlet Plate 1	Outlet Plate 1
N/A	N/A	N/A	NAA	0	O.4	O.9	1.2	1.2
N/A								
38	67	61	66	69	68	66	64	62
40	72	65	71	75	75	74	73	73
2.20	3.82	3.14	3.55	3.86	4.02	4.16	4.43	5.00
0.16	0.26	0.24	0.25	0.26	0.26	0.27	0.27	0.29
0.129	0.493	0.320	0.422	0.501	2.543	0.580	0.656	0.813

Update outlet structure design. For full spectrum design these must be equal to or less than

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.01	0.22
	0:15:00	0.00	0.00	0.79	1.28	1.59	1.07	1.32	1.30	1.71
	0:20:00	0.00	0.00	2.69	3.50	4.10	2.58	2.99	3.22	3.95
	0:25:00	0.00	0.00	5.29	7.00	8.43	5.24	5.96	6.42	8.05
	0:30:00	0.00	0.00	5.80	7.56	8.84	10.65	12.75	14.46	18.31
	0:35:00	0.00	0.00	5.10	6.53	7.58	11.27	13.39	16.25	20.36
	0:40:00	0.00	0.00	4.40	5.51	6.38	10.25	12.18	14.68	18.41
	0:45:00	0.00	0.00	3.58	4.59	5.35	8.67	10.26	12.80	16.11
	0:50:00	0.00	0.00	2.97	3.90	4.46	7.44	8.76	10.81	13.64
	0:55:00	0.00	0.00	2.57	3.35	3.89	6.05	7.08	8.93	11.23
	1:00:00	0.00	0.00	2.26	2.92	3.43	5.11	5.94	7.70	9.67
	1:05:00	0.00	0.00	1.96	2.52	2.99	4.37	5.06	6.75	8.49
	1:10:00	0.00	0.00	1.57	2.17	2.61	3.56	4.10	5.26	6.57
	1:15:00	0.00	0.00	1.28	1.84	2.34	2.88	3.30	4.05	5.02
	1:20:00	0.00	0.00	1.13	1.63	2.11	2.27	2.57	2.94	3.62
	1:25:00	0.00	0.00	1.06	1.52	1.86	1.92	2.17	2.27	2.78
	1:30:00	0.00	0.00	1.01	1.44	1.69	1.64	1.84	1.87	2.27
	1:35:00	0.00	0.00	0.98	1.39	1.57	1.45	1.63	1.62	1.95
	1:40:00	0.00	0.00	0.96	1.24	1.48	1.32	1.49	1.45	1.74
	1:45:00	0.00	0.00	0.95	1.13	1.42	1.24	1.40	1.33	1.59
	1:50:00	0.00	0.00	0.94	1.05	1.38	1.18	1.33	1.25	1.49
	1:55:00	0.00	0.00	0.80	0.99	1.31	1.15	1.29	1.21	1.44
	2:00:00	0.00	0.00	0.70	0.92	1.18	1.12	1.26	1.19	1.42
	2:05:00	0.00	0.00	0.50	0.65	0.83	0.80	0.89	0.85	1.01
	2:10:00	0.00	0.00	0.35	0.46	0.58	0.56	0.63	0.60	0.71
	2:15:00	0.00	0.00	0.24	0.31	0.40	0.39	0.44	0.42	0.50
	2:20:00	0.00	0.00	0.16	0.21	0.27	0.26	0.29	0.28	0.33
	2:25:00	0.00	0.00	0.10	0.13	0.18	0.17	0.19	0.19	0.22
	2:30:00	0.00	0.00	0.06	0.09	0.11	0.11	0.13	0.12	0.14
	2:35:00	0.00	0.00	0.03	0.05	0.06	0.07	0.07	0.07	0.08
	2:40:00	0.00	0.00	0.01	0.02	0.03	0.03	0.04	0.03	0.04
	2:45:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	. 00	0.00	0.00

FORBAY VOLUME

ELEV	AREA	AREA AVG.	DELTA ELEV.	VOLUME	VOLUME TOTAL
6244.00	200	200	1.5	300	
6245.50	200				300

Required Forbay Volume $=3 \%$ of WQCV
WQCV $=\quad 0.129 \mathrm{ac}-\mathrm{ft}$
WQCV $=\quad 5,619 \mathrm{cu}-\mathrm{ft}$
3% of WQCV $=\quad 168.58 \mathrm{cu}-\mathrm{ft}$

	On-Site EDBs for Watersheds up to 1 Impervious Acre ${ }^{1}$	EDBs with Watersheds between 1 and 2 Impervious Acres ${ }^{1}$	EDBs with Watersheds up to 5 Impervious Acres	EDBs with Watersheds over 5 Impervious Acres	EDBs with Watersheds over 20 Impervious Acres
Forebay Release and Configuration		Release 2\% of the undetained 100-year peak discharge by way of a wall/notch configuration	Release 2\% of the undetained 100-year peak discharge by way of a wall/notch configuration	Release 2\% of the undetained 100 -year peak discharge by way of a wall/notch configuration	Release 2% of the undetained 100-year peak discharge by way of a wall/notch or berm/pipe ${ }^{2}$ configuration

Created by: Mike O'Shea

1895.00 HCD Drilling

Riprap Protection for FSEDB Outlet Pipe ${ }^{1}$

Q100 $=$	3.5	cfs	$\mathrm{Q} / \mathrm{D}^{2.5}=$	1.27
$\mathrm{D}=$	1.5	ft	$\mathrm{Q} / \mathrm{D}^{1.5}=$	1.91
$\mathrm{Yt}=$	0.25	ft	$\mathrm{Yt} / \mathrm{D}=$	0.4

Minimum Riprap d_{50} Required $=d_{50}=9$ in $==>$ use $d_{50}=12$ in

Use D_{a} instead of D whenever flow is supercritical in the barrel. ** Use Type L for a distance of 3D downstream.

Figure 9-38. Riprap erosion protection at circular conduit outlet (valid for $Q / D 2.5 \leq 6.0$)

[^0]Figure 13-12c. Emergency Spillway Protection

Figure 13-12d. Riprap Types for Emergency Spillway Protection

DRAINAGE MAPS

HCD PROPERTIES MINOR SUBDIVISION
6201 EAST PLATTE AVE
EXISTING DRAINAGE MAP

[^0]: ${ }^{1}$ see USDCM Chapter 9 Section Section 3.2.3

