

INNOVATIVE DESIGN. CLASSIC RESULTS.

FINAL DRAINAGE REPORT FOR FOREST LAKES FILING 7 EL PASO COUNTY, COLORADO

December 2021

Prepared for: **FOREST LAKES RESIDENTIAL DEVELOPMENT, LLC** 2138 Flying Horse Club Dr. COLORADO SPRINGS CO 80921 (719) 592-9333

Prepared by: CLASSIC CONSULTING ENGINEERS & SURVEYORS 619 N. CASCADE AVENUE, SUITE 200 COLORADO SPRINGS CO 80903 (719) 785-0790

> Job no. 1175.70 PCD File # SF-21-49

619 N. Cascade Ave, Suite 200 | Colorado Springs, CO 80903 | (719) 785-0790

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report. NEASSA

MI.	1.11.11111	
Im	W MAR	
Kyle R Camp	bell, Colorado P.E. #29794	

ONAL EN

3.31.22 Date

DEVELOPER'S STATEMENT:

Sal

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name:	Forest Lakes Residential Development, LLC				
Ву:	Jak Bouton				
Title:	MEMBER				
Address:	2138 Flying Horse Club Dr.				
	Colorado Springs, CO 80921				

EL PASO COUNTY ONLY:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Jennifer Irvine, P.E. County Engineer / ECM Administrator

APPROVED Engineering Department 05/04/2022 8:10:18 AM

dsdnijkamp EPC Planning & Community Development Department

FINAL DRAINAGE REPORT FOR FOREST LAKES FILING 7

TABLE OF CONTENTS:

PURPOSE	Page	4
PROJECT DESCRIPTION	Page	4
PREVIOUS REPORTS	Page	5
SOILS & GEOLOGY	Page	5
DRAINAGE CRITERIA	Page	5
FLOODPLAIN STATEMENT	Page	6
EXISTING DRAINAGE CONDITIONS	Page	6
PROPOSED DRAINAGE CONDITIONS	Page	7
STORMWATER QUALITY (FOUR STEP PROCESS)	Page	22
DRAINAGE AND BRIDGE FEES	Page	23
CONSTRUCTION COST OPINION	Page	24
SUMMARY	Page	25
REFERENCES	Page	26

APPENDICES

VICINITY MAP SOILS MAP (S.C.S. SURVEY) F.E.M.A. MAP EXISTING CONDITIONS CALCULATIONS DEVELOPED CONDITIONS CALCULATIONS DETENTION POND 'A' HYDRUALIC GRADE LINE (HGL) CALCULATIONS DRAINAGE MAPS

PURPOSE

This document is the Final Drainage Repot for Forest Lakes Filing 7. The purpose of this report is to identify onsite and offsite drainage patterns, define areas tributary to the proposed full spectrum detention and water quality facility the site, and to safely route developed storm water runoff via a proposed storm sewer system. The proposed Filings 5, 6, & 7 development shall be in adherence to the El Paso County approved Master Development Drainage Plan and Amendment/Preliminary Drainage Report for Forest Lakes as well as current County Drainage Criteria.

PROJECT DESCRIPTION

The Forest Lakes Filing 7 is 82.504 acres of a phased master planned community located in northern El Paso County, Colorado. The Filing 7 limits contain a large open space Tract A, 36.02 acres of an existing steep hill being encompassed by the proposed and existing Mesa Top Drive. Filing 7 also has a large open space Tract D, 13.20 acres of existing hill side separating the Rocky Mountain Open Space (US Government owned) and the proposed home lots of Filing 7. The property lies to the east of Pike National Forest, north of the United States Air Force Academy, west of Interstate 25 and south of the Town of Monument. The Forest Lakes Filing 7 property is located in Section 29 of Township 11 South, Range 67 West of the Sixth Principal Meridian. The proposed Filing 7 is within the far westerly area, east of Filing 6 and continuation of Mesa Top Drive. The Filing 7 boundary is north of Beaver Creek, a tributary to Monument Creek. The site is located within the Beaver Creek Drainage Basin.

A previous MDDP Amendment and Preliminary Drainage Report for Filings 5, 6, 7 has been approved by the County and defines existing and updated developed peak flow data for the 5-year and 100-year recurrence intervals within the Filings 5, 6, & 7 portions of the property. The previous report established the overall drainage design information and identified the required storm drainage and flood control facilities within the Filings 5, 6, & 7 properties. Final development of Filing 7 is consistent with this approved report with no changes to the overall drainage patterns, lot layout, and roadway design. The vicinity map for the Filings 7 area is presented in the Appendix of this report.

As the limits of Filing 7 are outside of the existing drainage corridors, there is no grading proposed within the existing wetlands, mouse habitat, and/or 100-year floodplain limits. The drainage maps in the Appendix of this report show the existing wetland limits, Preble's Jumping Mouse habitat limits, and effective FEMA floodplain.

PREVIOUS REPORTS

The latest and most applicable previously approved drainage study is the following:

- "Master Development Drainage Plan Amendment and Preliminary Drainage Report for Forest Lakes (Filing 5, 6, 7)," by Classic Consulting Engineers & Surveyors LLC, approved April 1, 2019.
- "Final Drainage Report for Forest Lakes Filing No. 5," by Classic Consulting Engineers & Surveyors, LLC, approved June 9, 2020.
- "Final Drainage Report for Forest Lakes Filing 6," by Classic Consulting Engineers & Surveyors, LLC, approved May 11, 2021.

SOILS AND GEOLOGY

The soils within the Forest Lakes Filing 7 and tributary area are Hydrologic Soil Group B, mostly Jarre-Tecolote complex and Peyton-Pring complex (See Appendix for Soil Map).

DRAINAGE CRITERIA

Hydrologic calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and October 1994. Full Spectrum Detention and Stormwater quality analysis, Extended Detention Basin (EDB) design, are per the Urban Drainage and Flood Control District Manual and UD-BMP Version 3.05 spreadsheet. The Rational Method was used to estimate stormwater runoff from the developed project and tributary to the proposed full spectrum detention/water quality pond. Developed Conditions Basins E, S-1 thru S-5, and off-site Basins within Pike National Forest calculate the overland flow length (time of concentration) using undeveloped criteria (300' max. length) and not 100' for developed/urban land use. This is due to the large amount

of un-developed steep sloped tributary area within each of these basins that do not and will not contain houses, driveways, or any other type of impervious developed surface. Using this overland flow more accurately defines the peak time for runoff to reach the downstream facilities. The UDFCD UD-Inlet excel workbook was used to verify street capacities, size sump inlets, and calculate interception and flow-by rates of at-grade inlets. The full spectrum detention/water quality pond outlet was designed using the UDFCD UD-Detention Version 4.04 excel workbook. The UD-Sewer computer program was used to calculate the hydraulic grade line (HGL) within the storm sewer system. An overall tributary area exhibit is included to show the various types of pervious and impervious areas established to determine the overall imperviousness of the 38.54 acres tributary to the proposed full spectrum detention/water quality facility (Pond A).

FLOODPLAIN STATEMENT

No portion of the Forest Lakes Filing 7 development is located within a floodplain as determined by the Flood Insurance Rate Maps (F.I.R.M.) Map Numbers 08041 CO266G & CO258G, effective date, December 7, 2018 (See Appendix for overlay exhibit). The entire parcel is outside of jurisdictional wetlands limits and Preble's Jumping Mouse Habitat limits.

EXISTING DRAINAGE CONDITIONS

As defined in the MDDP Amendment and Preliminary Drainage Report, there are multiple off-site basins and open space areas tributary to the Filings 5-7 area. Within this report is the Existing Conditions of the area directly tributary and that of Filing 7 of Forest Lakes. An Existing Conditions Drainage Map is in included in the Appendix. Please see previous Filing 5 & 6 Final Drainage Reports for discussion of existing conditions within Beaver Creek and east of the proposed development.

DESIGN POINT 1 (Q₅ = **5.6 cfs and Q**₁₀₀ = **15.2 cfs)** is the overall runoff from Filing 6 Mesa Top Drive construction and the Forest Lakes Metro District water tank and access road, Basin EX-A (3.98 acres). This runoff drains to the end of the temporary cul-de-sac and through a riprap rundown to existing grade where it continues thru Basin EX-B to the temporary sediment basin at Design Point 4.

DESIGN POINT 2 (Q₅ = **23.1 cfs and Q**₁₀₀ = **155.4 cfs)** is the existing conditions runoff from Basins OS-1, 66.39 acres of Pike National Forest Land (open space) that drains across the western boundary of Forest Lakes Filing 7 and to the existing temporary sediment basin at Design Point 4. This land consists of dense forest and steep grades with minimal concentration points along the boundary line.

DESIGN POINT 3 (Q₅ = **0.4 cfs and Q**₁₀₀ = **2.8 cfs)** is the existing conditions runoff from off-site Basin EX-D, 1.00 acres of land located at the southwest corner of the Filing 7 boundary and draining onto the proposed site. This runoff drain into Basin EX-B and also to the temporary sediment basin at DP-4.

DESIGN POINT 4 (Q₅ = **44.3 cfs and Q**₁₀₀ = **280.0 cfs)** is the existing runoff at the terminus of basin EX-B and the temporary sediment basins installed with the overlot grading of Filings 5-7. Specifically, this runoff consists of that from Design Points 1-3 and Basin EX-B, 60.79 acres of onsite Forest Lakes Filing 7 land, including a large portion of the existing large 'hill' located on the property. This area/runoff drains directly into the Beaver Creek Channel and Preble's Jumping Mouse limits being released from the temporary sediment basin in place from previous grading activities.

DESIGN POINT 5 (Q_5 = **13.8 cfs and** Q_{100} = **92.4 cfs)** is the existing conditions runoff from Basins EX-C, 44.59 acres of the existing large 'hill' located within Filing 7 boundaries and the adjacent and under construction Forest Lakes Filing No. 6 subdivision. This runoff drains into the existing Full Spectrum Detention/Water Quality Facility Pond B, constructed with Filing No. 6. From this pond, the runoff drains directly into the adjacent jurisdictional wetlands, Preble's Jumping Mouse, and Beaver Creek Channel limits. For more description on the drainage within Basin EX-C, please refer to the Developed Conditions of the "Final Drainage Report for Forest Lakes Filing No. 6," by Classic Consulting.

PROPOSED DRAINAGE CONDITIONS

Developed runoff from Filing 7 will be collected in a public storm system and piped into the Privately owned and maintained full spectrum detention/water quality facility that will detain and treat the developed runoff prior to releasing at or below historic rates to the downstream channel. As previously mentioned, the rational method was used to estimate developed runoff values. All storm sewer inlets and pipes collecting runoff within the County right-of-way will be 'Public'. All storm sewer outside of

right-of-way, including the pond outfall pipe, is 'Private' as is the proposed full spectrum detention facility. Private facilities will be owned and maintained by the Forest Lakes Metropolitan District.

Due to the extreme topography of the proposed development (84' of fall within the right-of-way), adherence to the maximum pipe velocity of 18 feet per second is not possible in numerous locations. As in previous Forest Lakes Filings and per the pipe manufacturer's specifications, the maximum allowable velocity was increased to 24 feet per second. The DCM also limits the use of drop manholes larger than 1 foot in typical situations. Again, due to the extreme topography of the site and the limitation of the allowable pipe velocities, the use of larger drop manholes had to be implemented throughout the incoming pipe system to Pond A and the bypass system along the back of the lots and open space interface. HGL grade line calculations are included in the Appendix in support of the construction drawings for the proposed Public and Private storm systems.

Street Type	Allowable – Initial Storm (5 yr)	Allowable–Major Storm (100	
		yr)	
Residential w/Ramp Curb	1.5% street slope = 10 cfs	1.5% street slope = 46 cfs	
	2% street slope = 12 cfs	2% street slope = 44 cfs	
	4% street slope = 16.5 cfs $4%$ street slope = 16.5 cfs		
	6% street slope = 19.5 cfs $6%$ street slope = 32		
	8% street slope = 17.8 cfs	8% street slope = 29 cfs	
	10% street slope = 16.5 cfs $10%$ street slope = 27.5		
	No curb overtopping. 12" maximum depth		
Residential w/Vertical Curb	1.5% street slope = 13 cfs	1.5% street slope = 45 cfs	
(6" Vertical Curb)	2% street slope = 15 cfs	2% street slope = 43 cfs	
	4% street slope = 20.5 cfs	4% street slope = 35 cfs	
	6% street slope = 18 cfs	6% street slope = 31 cfs	
	8% street slope = 16.8 cfs	8% street slope = 28 cfs	
	10% street slope = 15.7 cfs	10% street slope = 26.5 cfs	
	No curb overtopping.	12" maximum depth at flowline.	

Per the current El Paso County Drainage Criteria for stormwater capacity within street sections, the following summaries of Figures 7-7 applies: all proposed roads are Residential.

At-grade inlets and sump (low-points) were designed in a way that street capacity is not an issue anywhere within the proposed Filing or surrounding and future roadways. Street capacity has also been verified at each design point by using the UD-Inlet Excel workbook (located in Appendix) from Urban Drainage Flood Control District (UDFCD). Inlet sizing is also per the UD-Inlet Excel workbook. Drainage from individual lots are assumed to travel in side-lot swales to the street. One Site-Level Low Impact Development form (IRF form) is included in the Appendix of this report, for the basins that discharge to the proposed full spectrum detention and water quality Pond A. The area of Forest Lakes Filing 7 that is tributary to the downstream storm system and Pond B of Forest Lakes Filing No. 6 were constructed per the Filing 6 report and assumptions and therefore updated IRF and Pond calculations are not provided in this report. A detailed description of the developed flows for Forest Lakes Filing No. 7 is as follows:

DESIGN POINT 1A ($Q_5 = 9.3$ cfs and $Q_{100} = 23.1$ cfs) is the developed runoff from Design Point 8 and Basin A1, 5.15 acres of proposed Filing 7 home lots, open space (hill area), and local roadway (Mesa Top Drive). This Design Point was previously analyzed in the Filing 6 report with no proposed changes. A 15' CDOT Type R at-grade inlet is proposed at this location intercepting $Q_5 = 8.8$ cfs and $Q_{100} = 15.1$ cfs while the remaining runoff will continue south-east along the concrete pan at the Ute Mountain Court intersection to Design Point 1B. Pipe 4, proposed 24" RCP, conveys the intercepted runoff to an adjacent manhole along the proposed Mesa Top Drive storm main (See DP-11 for downstream pipe continuation).

DESIGN POINT 1B (Q₅ = **4.4 cfs and Q**₁₀₀ = **21.8 cfs)** is the developed runoff from Basin B1, 4.69 acres of proposed Filing 7 home lots along Mesa Top Drive, open space (hill area), and local roadway and the flow-by runoff from DP-1A. A 15' CDOT Type R at-grade inlet is proposed at this location intercepting Q₅ = 4.4 cfs and Q₁₀₀ = 14.6 cfs while the remaining runoff will continue south-east along the proposed Mesa Top Drive curb to Design Point 2. Pipe 15, proposed 24" RCP, conveys the intercepted runoff to an adjacent manhole along the proposed Mesa Top storm main (Pipe 16). Pipe 16 (42" RCP) contains a total runoff rate of Q₅ = 37.5 cfs and Q₁₀₀ = 86.7 cfs and continues southeast down Mesa Top Drive until a 90 degree turn at Foothills Flash Court after the connection of DP-2.

DESIGN POINT 2 (Q₅ = **3.6 cfs and Q**₁₀₀ = **17.6 cfs)** is the developed runoff from Basin B2, 3.16 acres of proposed Filing 7 home lots along Mesa Top Drive, open space (hill area), and local roadway and the flow-by runoff from DP-1B. A 15' CDOT Type R at-grade inlet is proposed at this location intercepting Q₅ = **3.6 cfs and Q**₁₀₀ = **13.1 cfs while the remaining runoff will continue east along the Mesa Top Drive curb to Design Point 3.** Pipe 17, proposed 24" RCP, conveys the intercepted runoff to an adjacent manhole with Pipe **16**/Mesa Top Drive main. Pipe **18** (42" RCP) is the outfall pipe to this junction manhole and contains a total runoff rate of Q₅ = 40.9 cfs and Q₁₀₀ = 99.2 cfs and drains south along Foothills Flash Court toward Design Points **15 & 16 and ultimately to the proposed Pond A at Design Point 19**.

DESIGN POINT 3 ($Q_5 = 5.6$ cfs and $Q_{100} = 22.4$ cfs) is the developed runoff from Basin C, 6.00 acres of proposed Filing 7 home lots along Mesa Top Drive, open space (hill area), and local roadway and the flow-by runoff from DP-2. A 15' CDOT Type R at-grade inlet is proposed at this location intercepting $Q_5 = 5.6$ cfs and $Q_{100} = 14.9$ cfs while the remaining runoff will continue east along the proposed curb to Design Point 4. Pipe 36, proposed 24" RCP, conveys the intercepted runoff to the east within Mesa Top Drive to a junction manhole, combining with runoff from Pipes 37 and 38 (DP-4 & DP-6A).

DESIGN POINT 4 (Q₅ = **3.5 cfs and Q**₁₀₀ = **17.7 cfs)** is the developed runoff from Basin D, 3.27 acres of proposed Filing 7 home lots along Mesa Top Drive, open space (hill area), and local roadway and the flow-by runoff from DP-3. A 15' CDOT Type R at-grade inlet is proposed at this location intercepting Q₅ = 3.5 cfs and Q₁₀₀ = 13.1 cfs while the remaining runoff will continue east along the proposed curb onto the existing Mesa Top Drive curb constructed with Filing 6 and to the sump inlet at Design Point 5 (Filing 6). A proposed 24" RCP lateral (Pipe 37) will convey the intercepted runoff to the adjacent storm manhole, combining with Pipe 36 and Pipe 38 (from Design Point 6A).

DESIGN POINT 5 ($Q_5 = 2.7$ cfs and $Q_{100} = 17.6$ cfs) is the developed runoff from Basin E, 5.09 acres of open space (hill area) and local roadway, and the flow-by runoff from DP-4. An existing 15' CDOT Type R sump inlet was installed at this location with Filing 6. The entirety of this runoff will be collected by this inlet and the runoff routed via an existing 24" RCP (Pipe 7) to an adjacent storm manhole, combining with Pipes 39 and 8. See previously approved Filing No. 6 report for more discussion. The flow rate with developed conditions Filing 7 is slightly lower than assumed in the Filing 6 report and therefore no

additional downstream analysis is warranted. The overflow path for this sump inlet (in case of inlet failure) is to overtop the crown of roadway and the high point at the existing intersection of Mesa Top Drive and Timber Trek Way, and to drain east then north, along Timber Trek Way to downstream facilities.

DESIGN POINT 6A (Q_5 = 4.5 cfs and Q_{100} = 8.9 cfs) is the developed runoff from Basin F1, 1.65 acres of proposed Filing 7 home lots and local roadway (Mesa Top Drive). This Design Point was analyzed in the previous Filing 6 report with no proposed changes. A 5' CDOT Type R at-grade inlet is proposed at this location intercepting Q_5 = 2.7 cfs and Q_{100} = 3.7 cfs while the remaining runoff will continue east along the proposed curb to the existing sump inlet at Design Point 6B. A proposed 18" RCP lateral (Pipe 38) conveys the intercepted runoff to the adjacent storm manhole, combining with Pipes 36 and Pipe 37 (from Design Point 4). Pipe 39 (30" RCP Q_5 = 11.3 cfs and Q_{100} = 30.9 cfs) conveys the combined runoff from this manhole to the east, where it connects with the 30" pipe stub installed with the existing Filing 6 subdivision. The flow rate with developed conditions Filing 7 is slightly lower than assumed in the Filing 6 report and therefore no additional downstream analysis is warranted.

DESIGN POINT 6B (Q₅ = **4.2 cfs and Q**₁₀₀ = **10.1 cfs)** is the developed runoff from Basin F2, 0.91 acres of proposed Filing 7 home lots and local roadway (Mesa Top Drive), and the flow-by runoff from DP-6A. A 10' CDOT Type R sump inlet was installed at this location with Filing 6. The entirety of this runoff is collected by this inlet and the runoff routed via an existing 18" RCP (Pipe 8) to an existing adjacent storm manhole, combining with Pipes 39 and 7. Pipe 9 (existing 36" RCP Q₅ = 17.6 cfs and Q₁₀₀ = 55.3 cfs) conveys the combined runoff from this manhole to the downstream Filing No. 6 facilities (Pond B). See previously approved report for more description of downstream flow patterns. The flow rate with developed conditions Filing 7 is slightly lower than assumed in the Filing 6 report and therefore no additional downstream analysis is warranted.

DESIGN POINT 7 (Q₅ = **3.3 cfs and Q**₁₀₀ = **9.6 cfs)** is the developed runoff from Basins Z1 & Z2 within Forest Lakes Filing No. 6 and tributary to the north-west corner of the Filing 7 development. Basin Z1 is 1.30 acres of the Forest Lakes Metro District Water tank and access road constructed with Filing 6 off of Mesa Top Drive. Basin Z2 is 1.40 acres of an existing large lot Filing 6 home and existing Mesa Top Drive

that drains south onto the Filing 7 property. There are no changes proposed in either of these existing basins and the runoff continues along proposed Mesa Top Drive to the at-grade inlet at Design Point 9.

DESIGN POINT 8 ($Q_5 = 1.7$ cfs and $Q_{100} = 4.0$ cfs) is the developed runoff from Basin A2 within Forest Lakes Filing No. 6 and tributary to the north-west corner of the Filing 7 development. Basin A2 is 1.01 acres of existing Filing 6 home lots and existing Mesa Top Drive that drains south onto the Filing 7 property. There are no changes to this existing basin and the runoff continues along proposed Mesa Top Drive to the at-grade inlet at Design Point 1A.

DESIGN POINT 9 (Q_5 = 7.6 cfs and Q_{100} = 19.6 cfs) is the developed runoff from Design Point 7 and Basin G, 2.50 acres of proposed Filing 7 home lots, open space (behind lots), and local roadway (Mesa Top Drive). A 15' CDOT Type R at-grade inlet is proposed at this location intercepting Q_5 = 7.5 cfs and Q_{100} = 13.8 cfs while the remaining runoff will continue south along the concrete pan at the Horse Trade Place intersection to Design Point 10. Pipe 1, proposed 24" RCP, conveys the intercepted runoff to the south to an adjacent manhole combining with Pipe 2 from Design Point 10.

DESIGN POINT 10 (Q_5 = 5.6 cfs and Q_{100} = 18.5 cfs) is the developed runoff from Basin H, 3.11 acres of proposed Filing 7 home lots, open space (behind lots), and local roadway (Horse Trader Place). A 15' CDOT Type R at-grade inlet is proposed at this location intercepting Q_5 = 5.6 cfs and Q_{100} = 13.4 cfs while the remaining runoff will continue south along the proposed Mesa Top Drive curb to Design Point 11. Pipe 2, proposed 24" RCP, conveys the intercepted runoff to an adjacent manhole combining with Pipe 1. Pipe 3 (30" RCP Q_5 = 13.1 cfs and Q_{100} = 27.2 cfs) conveys the combined runoff from this manhole south within Mesa Top Drive toward Design Point 11.

DESIGN POINT 11 (Q_5 = 2.0 cfs and Q_{100} = 9.2 cfs) is the developed runoff from Basin J1, 0.92 acres of proposed Filing 7 home lots and local roadway (Mesa Top Drive). A 10' CDOT Type R at-grade inlet is proposed at this location intercepting Q_5 = 2.0 cfs and Q_{100} = 6.9 cfs while the remaining runoff will continue south along the proposed Mesa Top Drive curb to Design Point 11. Pipe 5, proposed 18" RCP, conveys the intercepted runoff to an adjacent manhole combining with Pipes 3 & 4. Pipe 6 (36" RCP Q_5 = 23.4 cfs and Q_{100} = 48.3 cfs) conveys the combined runoff from this manhole southeast within Mesa

Top Drive to a junction manhole with the storm main in Mountain Ledge Lane. (See Design Point 14 for continuation of pipe discussion).

DESIGN POINT 12 (Q_5 = **4.3 cfs and** Q_{100} = **9.7 cfs)** is the developed runoff from Basin K, 2.30 acres of proposed Filing 7 home lots, open space (behind lots), and local roadway (Mountain Ledge Lane). A 10' CDOT Type R at-grade inlet is proposed at this location intercepting Q_5 = 4.2 cfs and Q_{100} = 7.1 cfs while the remaining runoff will drain east along the Mountain Ledge Lane curb to Design Point 13. Pipe 10, proposed 18" RCP, conveys the intercepted runoff to the east within Mountain Ledge Lane to junction manhole combining with Pipes 11 & 12.

DESIGN POINT 13 (Q₅ = **2.8 cfs and Q**₁₀₀ = **11.4 cfs)** is the developed runoff from Basin J2, 1.65 acres of proposed Filing 7 home lots, open space (between lots), and local roadway (Mountain Ledge Lane). The flow-by from the at-grade inlets at Design Points 11 & 12 also drains to this sump inlet. A 10' CDOT Type R sump inlet is proposed at this location intercepting the entirety of the runoff. Pipe 11, proposed 18" RCP, conveys the intercepted runoff to a junction manhole within Mountain Ledge Lane combining with Pipes 10 & 12. In the event of inlet failure, the emergency overflow path is to overtop the crown of the roadway and adjacent high point at the south curb return of Mesa Top Drive and Mountain Ledge Lane and drain to the southeast toward Design Points 15 & 16.

DESIGN POINT 14 (Q_5 = **3.3 cfs and** Q_{100} = **6.6 cfs)** is the developed runoff from Basin L, 1.20 acres of proposed Filing 7 home lots and local roadway (Mountain Ledge Lane). A 10' CDOT Type R sump inlet is proposed at this location intercepting the entirety of the runoff. Pipe 12, proposed 18" RCP, conveys the intercepted runoff to a junction manhole within Mountain Ledge Lane combining with Pipes 10 & 11. Pipe 13 (30" RCP Q₅ = 10.0 cfs and Q₁₀₀ = 24.4 cfs) conveys the combined runoff from this manhole northeast within Mountain Ledge Lane to a junction manhole with the storm main in Mesa Top Drive (Pipe 6). Pipe 14 (42" RCP Q₅ = 33.1 cfs and Q₁₀₀ = 72.1 cfs) conveys the combined runoff from the Mesa Top Drive/Mountain Ledge Lane intersection to the southeast within Mesa Top Drive. Downstream of this intersection, the Mesa Top Drive storm main combined with the lateral from Design Point 1B (see DP-1B for continuation of pipe discussion). In the event of inlet failure, the emergency overflow path is

to overtop the crown of the roadway and adjacent high point at the south curb return of Mesa Top Drive and Mountain Ledge Lane and drain to the southeast toward Design Points 15 & 16.

DESIGN POINT 15 (Q_5 = **3.2 cfs and** Q_{100} = **6.5 cfs)** is the developed runoff from Basin M, 1.19 acres of proposed Filing 7 home lots and local roadway (Foothills Flash Court and Mesa Top Drive), and from Basin M2, 0.18 acres of Mesa Top Drive that drains onto Foothills Flash Court and to this design point. A 5' CDOT Type R sump inlet is proposed at this location intercepting the entirety of the runoff. Pipe 21, proposed 18" RCP, conveys the intercepted runoff to a junction manhole within Foothills Flash Court combining with Pipe 20 (42" RCP). Pipe 22 (48" RCP Q₅ = 44.7 cfs and Q₁₀₀ = 106.9 cfs) conveys the combined runoff from this manhole southwest within Foothills Flash Court to a junction manhole with Pipe 24 from Design Point 18. In the event of inlet failure, the emergency overflow path is to overtop the high point to the south and continue southwest along Foothills Flash Court toward Design Points 17 & 18.

DESIGN POINT 16 (Q₅ = **1.2 cfs and Q**₁₀₀ = **2.4 cfs)** is the developed runoff from Basin Q, 0.42 acres of proposed Filing 7 home lots and local roadway (Foothills Flash Court). A 5' CDOT Type R sump inlet is proposed at this location intercepting the entirety of the runoff. Pipe 19, proposed 18" RCP, conveys the intercepted runoff to a junction manhole within Foothills Flash Court combining with Pipe 18 (42" RCP). Pipe 20 (42" RCP Q₅ = 41.7 cfs and Q₁₀₀ = 100.7 cfs) conveys the combined runoff from this manhole southwest within Foothills Flash Court to a junction manhole with Pipe 21 from Design Point 15. In the event of inlet failure, the emergency overflow path is to overtop the high point to the south and continue southwest along Foothills Flash Court toward Design Points 17 & 18.

DESIGN POINT 17 (Q₅ = 6.8 cfs and Q₁₀₀ = 15.1 cfs) is the developed runoff from Basin N, 3.65 acres of proposed Filing 7 home lots and local roadway (Foothills Flash Court). A 15' CDOT Type R sump inlet is proposed at this location intercepting the entirety of the runoff. Pipe 23, proposed 24" RCP, conveys the intercepted runoff to the sump inlet across the street at Design Point 18. In the event of inlet failure, the emergency overflow path is to overtop the crown of the roadway and the curb south of DP-18 into the open space/drainage tract and ultimately to Pond A/Design Point 19.

DESIGN POINT 18 (Q₅ = **4.1 cfs and Q**₁₀₀ = **8.2 cfs)** is the developed runoff from Basin P, 1.53 acres of proposed Filing 7 home lots and local roadway (Foothills Flash Court). A 10' CDOT Type R sump inlet is proposed at this location intercepting the entirety of the runoff. Pipe 24 (24" RCP, Q₅ = 10.5 cfs and Q₁₀₀ = 22.5 cfs) conveys the intercepted runoff and that from Pipe 23, to a junction manhole with the large main from Mesa Top Drive and Foothills Flash Court. Pipe 25 (48" RCP Q₅ = 53.8 cfs and Q₁₀₀ = 126.1 cfs) conveys the combined runoff from this manhole south within the open space/drainage tract and into the proposed full spectrum detention & storm water quality facility (Pond A/Design Point 19). A concrete impact structure and appropriately sized forebay will be installed at the terminus of Pipe 25 and entry point into the pond (See UD-BMP for forebay sizing). In the event of inlet failure, the emergency overflow path is to overtop the curb/walk to the south and drain into the open space/drainage tract and ultimately to Pond A/Design Point 19.

DESIGN POINT 19 – FULL SPECTRUM DETENTION AND STORM WATER QUALITY FACLITY 'A' (Q₅ = 59.1 cfs, Q₁₀₀= 137.8 cfs) is the overall developed runoff into the proposed Detention/Storm Water Quality Facility Pond 'A', including Basins U and R. Basin R is 1.64 acres of adjacent home lots that drain directly into Basin U (Pond 'A') due to the walk-out conditions of the lots. Basin U is 1.28 acres of the detention facility and surrounding slope area. This facility is a Private Full Spectrum Extended Detention Basin per the El Paso County & City of Colorado Springs and Mile High Flood District (MHFD), formally Urban Drainage Flood Control District, drainage criteria. The proposed facility was sized utilizing two excel workbooks from MHFD, UD-BMP version 3.05 and UD-Detention version 4.04. The composite impervious value was determined using Site-Level Low Impact Development (LID) Design Effective Impervious Calculator (IRF Form) located in the Appendix of this report. Also, an exhibit of the tributary area to the pond and the assumed impervious/pervious types is included in the Appendix.

A total of 38.29 acres of Forest Lakes land is tributary to this facility at a calculated imperviousness of 43.2%. The required EURV (Excess Urban Runoff Volume) is 1.753 acre-feet and the proposed top of outlet box at an elevation of 7114.40 (micropool w.s.e./start of SWQ = 7108.00) provides a EURV of 1.77 acre-feet. A concrete forebay structures (18" tall walls w/ 8.5" notch) will be installed at the pipe entry point into the proposed detention/water quality facility. A 7' wide low flow concrete trickle channel will be installed from the proposed forebay at Pipe 25 to the proposed pond outlet box at a 0.76% minimum

slope. The 48" Pipe 25 requires a minimum forebay volume of 0.018 acre-feet per the UD-BMP spreadsheet.

An 8' wide outlet box (4' deep opening) is proposed with a top of box at 7114.40 elevation. For a Full Spectrum facility, the outlet box orifice hole within the front plate is to drain the EURV in less than 72 hours. Per the UD-Detention version 3.07 spreadsheet from Mile High Flood District a total of (3) orifice holes are to be installed in the front plate of the outlet box with the bottom orifice hole of 2" wide x 1" high, and middle orifice of 3" wide x 2" high, and upper orifice of 3" wide x 2" high. A 2.5' deep concrete bottom micropool is to be installed within the wing walls of the outlet structure, with a surface area of 270 square feet. An initial surcharge depth of 4" will be provided within the micropool outlet structure. A removable trash screen of 12" in width will be placed in front of the orifice plate to help prevent the orifice holes from clogging. A 30" RCP outlet pipe (Pipe 26) will convey the detained release ($Q_5 = 4.4$ cfs, Q100= 48.5 cfs, 100-yr water surface elevation of 7116.94, MH-Detention) to the existing Beaver Creek corridor located directly south and east of Filing 7. Impact structure/energy dissipation will be installed at the end of this 30" outfall pipe and just outside of the Preble's Jumping Mouse/no disturbance limits. A Bentley Flowmaster analysis is included in the appendix showing a non-erosive velocity at or less than 5 ft/sec downstream of the concrete impact structure along the native ground and drainage pattern. For conservative purposes, n coefficients between 0.03 to 0.05 were used in the cross sections downstream of the pipe outfall (Pipe 26) and have a velocity in the section less than 5 ft/sec (non-erosive). Therefore, additional downstream protection is not needed. This facility restricts the release to pre-development (historic levels) per the UD-Detention spreadsheet and is a portion of the direct comparison to Existing Conditions Design Point 4 ($Q_5 = 44.3$ cfs and $Q_{100} = 280.0$ cfs).

A 36' length riprap emergency spillway located at elevation 7117.00 will pass the entire incoming 100year storm event at a flood depth of 0.98' in case of complete outlet box and pipe failure. Per the Drainage Criteria Manual (DCM), the top of the pond berm shall be minimum 2.0' higher than the flood depth water surface elevation. The proposed 12' wide top of berm elevation is at 7120.00. This emergency spillway will only be utilized in the case of a complete outlet box failure, and will drain directly into the wetlands, open space, and Beaver Creek corridor. A 15' wide maintenance access road at 12% max. grade will be installed to the bottom of the facility as per the DCM.

This facility adequately treats all 38.29 acres of Forest Lakes Filing 7 developed flows for storm water quality and detains the release to below historic rates. Per the Code of Colorado Regulations 4.2.5.1 a Jurisdictional Size Dam height is measured, either from the invert of the outlet pipe at the longitudinal centerline of the embankment (spillway elevation = 7117.00 & 30" invert at centerline of dam is 7107.37, 9.63') or the spillway elevation compared to the existing ground at the centerline (spillway elevation = 7117.00 & existing ground 7110.00, 7.0'). A dam height of 10' or below is <u>not</u> considered a 'Jurisdictional' facility with the State of Colorado. Therefore, this is a non-jurisdictional size dam and additional documentation/coordination with the State Engineer, beyond the typical non-jurisdictional form, is not required for the proposed facility. Maintenance and ownership of the Private detention/water quality facility and the entire proposed storm sewer is by the Forest Lakes Metropolitan District. An El Paso County Detention Pond Maintenance Agreement will be required indicating these Facilities to be ultimately owned and maintained by the Metro District.

DESIGN POINT 20 (Q₅ = 0.9 cfs and Q₁₀₀ = 42.9 cfs) is the pipe outfall location for Pond 'A' as previously described in DP-19. Two Flowmaster Cross Sections (26A & 26B) are included in the Appendix for this area to show non-erosive velocities at the end of the concrete impact structure and downstream within the native ground Preble's Jumping Mouse/no disturbance limits. The use of a concrete impact structure and 18' end width of the concrete bottom ensures non-erosive velocities and shear stresses at the outfall of the proposed Pond 'A'.

DESIGN POINT 21 (Q₅ = **7.7 cfs and Q**₁₀₀ = **51.9 cfs)** is the undeveloped runoff from Basins OS-1A & S-1 located north-west of the proposed Filing 7 limits. Basin OS-1A is 23.26 acres of the off-site, westerly adjacent US National Forest land that sheet flows to the east onto the overall Forest Lakes Boundary. Basin S-1 is 2.13 acres of Filing 6 & Filing 7 open space, undisturbed land that drains east and into the proposed interception swale and inlet system. As there are proposed lots backing into the native ground slope and natural drainage patterns of this large off-site basin (See OS-1 Existing Conditions), there is a need to intercept this runoff prior to draining through and into the home lots. A proposed riprap lined interception swale (2' bottom width, 1.5' depth, 4:1 side slope on downstream (east) side, 3:1 side slope on incoming slope (west) side, D50 = 12" rock) conveys the undeveloped runoff to the proposed CDOT

Type D (6' x 3', in-series and depressed) inlet at this design point. A Flowmaster cross section is included in the Appendix showing the drainage characteristics in the riprap interception swale. Figure 8-22 from the Urban Drainage and Flood Control District (MHFD) DCM Vol. 1 was used to verify stability of the Type M, 18" deep swale (See Appendix). In areas of longitudinal slope vs. flowrate that are not within the Type M, 18" depth range on Figure 8-22, 'partially grouted riprap' shall be installed. Partially grouted riprap has an advantage over ridge structures because it is flexible when under attached by water, it can remain functional even if some individual stones may be lost, and it can be repaired relatively easily. Partially grouted riprap consists of specifically sized rocks that are placed and grouted together, with the grout filling only 1/3 to 1/2 of the total void space. The voids of the riprap matrix are partially filled with a Portland cement based grout by hose or tremie, or by automated mechanical means. See Grading and Erosion Control Plans for areas of the riprap swale that are to be partially grouted riprap.

Pipe 27 (30" RCP) conveys the intercepted runoff to the south within the on-site open space and toward Design Point 22. A small portion of the 100-year event runoff (5.4 cfs) continues beyond this inlet within the riprap swale and to Design Point 22. The riprap lined interception swale, the CDOT area drain inlets, and storm pipe "bypass" system are all privately owned and maintained by the Forest Lakes Metropolitan District.

DESIGN POINT 22 ($Q_5 = 8.2 \text{ cfs}$ and $Q_{100} = 60.6 \text{ cfs}$) is the undeveloped runoff from Basin OS-1B, Basin S-2, and the flow-by from DP-21. Basin OS-1B is 24.79 acres of the off-site, westerly adjacent US National Forest land that sheet flows to the east onto the overall Forest Lakes Boundary. Basin S-2 is 2.23 acres of Filing 7 open space, undisturbed land that drains east and into the proposed interception swale and inlet system. This location represents the highest flow rates within the proposed interception swale and per the Flowmaster Section in the Appendix, the 100-yr flow rate travels in the swale at 6.34 ft/sec and a flow depth of 16.7" (held within the 18" deep riprap swale). The same proposed riprap lined interception swale (2' bottom width, 1.5' depth, 4:1 side slope on downstream (east) side, 3:1 side slope on incoming slope (west) side, D50 = 12" rock) conveys the undeveloped runoff to the proposed CDOT Type D (6'x 3', in-series and depressed) inlet at this design point. Pipe 28 (36" RCP) conveys the intercepted runoff to an adjacent manhole combining with Pipe 27 from DP-21. Pipe 29 (48" RCP Q₅ = 15.9 cfs and Q₁₀₀ = 112.4 cfs) is the outfall pipe from this manhole and conveys the combined runoff

south toward Design Point 23. A portion of the 100-year event runoff (14.0 cfs) continues beyond this inlet within the riprap swale and to Design Point 23. The riprap lined interception swale, the CDOT area drain inlets, and storm pipe "bypass" system are all privately owned and maintained by the Forest Lakes Metropolitan District. As this location represents the highest flow rate within the proposed interception swale, and the Flowmaster section shows it is being held within the swale, no other sections are needed at the downstream locations of the bypass system.

DESIGN POINT 23 (Q₅ = **3.4 cfs and Q**₁₀₀ = **36.5 cfs)** is the undeveloped runoff from Basin OS-1C, Basin S-3, and the flow-by from DP-22. Basin OS-1C is 9.91 acres of the off-site, westerly adjacent US National Forest land that sheet flows to the east onto the overall Forest Lakes Boundary. Basin S-3 is 1.14 acres of Filing 7 open space, undisturbed land that drains east and into the proposed interception swale and inlet system. The proposed riprap lined interception swale (2' bottom width, 1.5' depth, 4:1 side slope on downstream (east) side, 3:1 side slope on incoming slope (west) side, D50 = 12" rock) conveys the undeveloped runoff to the proposed CDOT Type D (6' x 3', in-series and depressed) inlet at this design point. Pipe 30 (30" RCP) conveys the intercepted runoff to an adjacent manhole combining with Pipe 29 from DP-22. Pipe 31 (48" RCP Q₅ = 19.2 cfs and Q₁₀₀ = 148.0 cfs) is the outfall pipe from this manhole and conveys the combined runoff south toward Design Point 24. A small portion of the 100-year event runoff (0.7 cfs) continues beyond this inlet within the riprap swale and to Design Point 24. The riprap lined interception swale, the CDOT area drain inlets, and storm pipe "bypass" system are all privately owned and maintained by the Forest Lakes Metropolitan District.

DESIGN POINT 24 (Q₅ = **2.3 cfs and Q**₁₀₀ = **16.6 cfs)** is the undeveloped runoff from Basin OS-1D, Basin S-4, and the flow-by from DP-23. Basin OS-1D is 5.52 acres of the off-site, westerly adjacent US National Forest land that sheet flows to the east onto the overall Forest Lakes Boundary. Basin S-4 is 1.63 acres of Filing 7 open space, undisturbed land that drains east and into the proposed interception swale and inlet system. The proposed riprap lined interception swale (2' bottom width, 1.5' depth, 4:1 side slope on downstream (east) side, 3:1 side slope on incoming slope (west) side, D50 = 12" rock) conveys the undeveloped runoff to the proposed CDOT Type C (depressed) inlet at this design point. Pipe 32 (24" RCP) conveys the entirety of this runoff to an adjacent manhole combining with Pipe 31 from DP-23.

Pipe 33 (42" RCP Q_5 = 21.2 cfs and Q_{100} = 162.3 cfs) is the outfall pipe from this manhole and conveys the combined runoff south toward Design Point 25.

DESIGN POINT 25 (Q₅ = 2.1 cfs and Q_{100} = 14.1 cfs) is the undeveloped runoff from Basin OS-1E and Basin S-5. Basin OS-1E is 2.76 acres of the off-site, westerly adjacent US National Forest land that sheet flows to the east onto the overall Forest Lakes Boundary. Basin S-5 is 2.92 acres of Filing 7 open space, undisturbed land that drains east and into the proposed interception swale and inlet system. The proposed riprap lined interception swale (2' bottom width, 1.5' depth, 4:1 side slope on downstream (east) side, 3:1 side slope on incoming slope (west) side, D50 = 12" rock) conveys the undeveloped runoff to the proposed CDOT Type C (depressed) inlet at this design point. Pipe 34 (24" RCP) conveys the entirety of this runoff to an adjacent manhole combining with Pipe 33 from DP-24. Pipe 35 (48" RCP Q₅ = 22.7 cfs and Q_{100} = 172.4 cfs) is the outfall pipe from this manhole and conveys the combined runoff south then east into Foothills Flash Court R.O.W. This 'Bypass Outfall' storm pipe continues east until a Tract C (between Lots 17 & 18) where it turns south and daylights at the southern edge of Filing 7, prior to the Preble's Jumping Mouse Limits. Impact structure/energy dissipation will be installed at the end of this 48" outfall pipe and just outside of the Preble's Jumping Mouse/no disturbance limits. A Bentley Flowmaster analysis is included in the appendix showing a non-erosive velocity at or less than 5 ft/sec downstream of the concrete impact structure along the native ground and drainage pattern. For conservative purposes, n coefficients between 0.03 to 0.05 were used in the cross sections downstream of the pipe outfall (Pipe 35) and have a velocity in the section less than 5 ft/sec (non-erosive). Therefore, additional downstream protection is not needed. This runoff is non-developed, historic stormwater and is therefore not required to be detained or treated for water quality. This represents a large portion of the comparison to the Existing Conditions Design Point 4 ($Q_5 = 44.3$ cfs and $Q_{100} = 280.0$ cfs).

DESIGN POINT 26 (Q₅ = **22.7 cfs and Q**₁₀₀ = **172.4 cfs)** is the pipe outfall location for the 'Bypass System' as previously described in DP-25. Two Flowmaster Cross Sections (35A & 35B) are included in the Appendix for this area to show non-erosive velocities at the end of the concrete impact structure and downstream within the native ground Preble's Jumping Mouse/no disturbance limits. The use of a concrete impact structure and 70' end width of the concrete bottom ensures non-erosive velocities and shear stresses at the outfall of the undeveloped bypass system (Pipe 35).

DESIGN POINT 27 (Q₅ = **3.0 cfs and Q**₁₀₀ = **11.7 cfs)** is the surface runoff into the native channel area and Preble's Jumping Mouse limits from Basins EX-D, OS-1F, and T. Basin OS-1F is 0.16 acres of the off-site, westerly adjacent US National Forest land that sheet flows to the east onto the overall Forest Lakes Boundary. Basin EX-D is 1.00 acres of undeveloped Beaver Creek adjacent land that drains northeast onto Basin T. Basin T is 2.69 acres of undeveloped open space area in the southwest corner of Filing 7, including rear yard drainage from Lots 18-22. This runoff will not concentrate and will 'sheet flow' into the native ground and non-erosion velocities along the southern boundary of Filing 7. Also, this Lot drainage in Basin T does not need to drain into Pond A as there is over 300' length of natural/open space prior to the floodplain limits of Beaver Creek. A PUD Modification was granted for such 'back yard' release and a copy is included in the Appendix of this report.

DESIGN POINT 28 (Q₅ = **3.2 cfs and Q**₁₀₀ = **7.5 cfs)** is the runoff from Basin V, 1.61 acres of the rear yards and portions of Filing 7 home lots that drain directly south into the existing Beaver Creek drainage corridor. The majority of this basin is slope area and landscaped back yards with minimal impervious surfaces within (concrete, roof tops). This runoff will not concentrate and will 'sheet flow' into the native ground and non-erosion velocities. Also, this flow does not need to drain into a detention/water quality Pond as there is over 300' length of natural/open space prior to the floodplain limits of Beaver Creek. A PUD Modification was granted for such 'back yard' release and a copy is included in the Appendix of this report.

There are 4 locations of runoff release from the proposed Filing 7 development into the natural drainage conditions and Beaver Creek Channel corridor (Design Points 20, 26, 27, & 28). The combination of these four flow rates ($Q_5 = 29.8$ cfs and $Q_{100} = 234.5$ cfs) is to be directly compared to that from Existing Conditions Design Point 4 ($Q_5 = 44.3$ cfs and $Q_{100} = 280.0$ cfs). From this comparison, development of Forest Lakes Filing 7 does not hinder downstream native drainage channels or property and is designed in accordance with all applicable criteria.

STORMWATER QUALITY (FOUR STEP PROCESS)

El Paso County requires the Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls. The Four Step Process pertains to management of smaller, frequently occurring storm events, as opposed to larger storms for which drainage and flood control infrastructure are sized. Implementation of these four steps to achieve stormwater permit requirements is required. The site adheres to this Four Step Process as follows:

- Individual home roof downspouts will be directed onto pervious landscape areas. The additional grass buffer BMP provides the following: 1) Minimize directly connected impervious areas. 2) Provides initial pollutant and sediment removal before entering the storm system. Rear yard flows of those proposed lots adjacent to public streets will be directed over a grass buffer area (both landscaped and native grasses) to provide treatment of these small rear year areas.
- The proposed Pond A and existing Pond B provides Detention and Stormwater Quality Treatment for the entirety of the proposed development. The facilities in conjunction with Step 1 implementation above will address all required Water Quality Capture Volume and Slow Release Requirements.
- 3. The recipient of the drainage flows from the site is Beaver Creek, with an estimated 100-year storm runoff rate of 15,480 cfs to 16,190 cfs. This portion of the creek also contains Preble's Jumping Mouse habitat limits, 100-year FEMA floodplain, and jurisdictional wetlands. As such the downstream corridor is very well established and as the detained developed release rate is far less than historic, theoretically no additional erosion will occur.
- 4. Does not apply to this Residential subdivision as this step is to 'consider the need for Industrial and Commercial BMPs'. Temporary construction BMPs will be installed per the approved grading and erosion control plans.

DRAINAGE AND BRIDGE FEES

Forest Lakes Filings 7 is within the Beaver Creek Drainage Basin and is a total of 82.504 acres. Per the year 2021 El Paso County Drainage Fees, the Beaver Creek drainage fee is \$11,808 per impervious acre of development. Filing 7 consists of 24.533 acres of typical home lots, 6.263 acres of public right-of-way (roads), and 51.708 acres of open space/undeveloped area. Using Table 6-6 of the DCM, specifically 65% imperviousness for typical home lots, 100% imperviousness for pavement/right-of-way, and 0% imperviousness for open space/undeveloped area; an overall Filing 7 impervious area is calculated at 22.209 acres. Bridge Fees are not required for miscellaneous drainage basins.

FILING 7 (22.209 Impervious acres)

DRAINAGE FEE:	
\$11 808/acre x 22 209 acres	\$ 262 243 87

Based upon a review of the prior and current drainage fee off-sets / credits as well as drainage fees paid, with the El Paso County Engineering Review Manager in associated with the Filing No. 6 Final Drainage Report, the following summary of platting activity for this community was:

The current available drainage fee credit is \$172,159.77 per the approved fil. No. 6 Final Drainage Report. Using this amount to off-set the Filing No. 7 drainage fees and the 50% pond cost for the detention facility being built with Filing No. 7 (50% of \$145,000.00 = \$72,500.00) for a total of \$244,659.77 to be used to offset Filing No. 7 fees. Drainage Fees in the amount of \$17,584.10 will be required to be paid prior to plat recordation.

	Forest Lakes Fees								
Project No. (plat no.)	Filing No.	on plat		fees due in FDR	date of FDR	•	Offset credit used	Paid in cash	credit remaining:
SF03036 (12407)	1 (no number)	zero	August 29, 2006	\$ 64,731.94	September 8, 2004	\$ 234,000.00	\$ 64,731.94	\$-	\$ 169,268.06
SF06029 (12747)	3	zero	january 25,2008	\$ 79,342.54	January 12, 2007		\$ 79,342.54	\$ -	\$ 89,925.52
SF1527 (13884)	2A	\$ 3,144.38	December 21, 2016	\$ 93,069.90	August 8, 2016		\$ 89,925.52	\$ 3,144.38	\$-
SF1528 (14065)	2B	\$73,582.44	December 5, 2017	\$ 73,582.44	August 8, 2016		\$-	\$ 73,582.44	\$-
SF1817 (14263)	4	\$50,387.18	December 18, 2018	\$ 50,387.18	July 19, 2018		\$-	\$ 50,387.18	\$-
SF1519	fil 1 amended	na			Octoer 20, 2015	\$ 271,388.50			\$ 271,388.50
SF1915	5	na	July 13, 2020	\$115,426.34	June 9, 2020	\$ 145,500.00	\$ 115,426.34		\$ 301,462.16
Sf2027	6	na	June 22, 2021	\$201,802.39	May 11, 2021	\$ 99,659.77	\$ 72,500.00	\$ -	\$ 172,159.77

CONSTRUCTION COST OPINION

The following is a construction cost opinion for the public facilities, located within the public right-ofway and accepting runoff from the public roadways, and the private facilities, intercepting the off-site runoff and routing to the downstream natural channel:

Public Drainage Facilities Non-reimbursable (FILING NO. 7)

ITEM	DESCRIPTION	QUANTITY	UNIT COST	COST
1.	5' Type-R Inlet	3 EACH	\$7,440/EA	\$ 22,320.00
2.	10' Type-R Inlet	5 EACH	\$8,136/EA	\$ 40,680.00
3.	15' D-10-R Inlet	8 EACH	\$11,005/EA	\$ 88,040.00
4.	18" RCP Storm Drain	318 LF	\$67/LF	\$ 21,306.00
5.	24" RCP Storm Drain	838 LF	\$81/LF	\$ 67 <i>,</i> 878.00
6.	30" RCP Storm Drain	413 LF	\$100/LF	\$ 41,300.00
7.	36" RCP Storm Drain	280 LF	\$124/LF	\$ 34,720.00
8.	42" RCP Storm Drain	122 LF	\$166/LF	\$ 20,252.00
9.	48" RCP Storm Drain	637 LF	\$202/LF	\$ 128,674.00
10.	Type II Storm MH	6 EACH	\$6,619/EA	\$ 39,714.00
11.	Type I Storm MH	10 EACH	\$12,034/EA	\$ 120,340.00
SUB-T	OTAL			\$ 625,224.00
10% E	NGINEERING			\$ 62,522.40
5% CC	NTINGENCIES			<u>\$ 31,261.20</u>
ΤΟΤΑΙ	<u>_</u>			<u>\$ 719,007.60</u>

Private Drainage Facilities Non-reimbursable (FILING NO. 7)

ITEM	DESCRIPTION	QUANTITY	UNIT COST	СОЅТ
1.	Geotextile (under riprap)	2,683 SY	\$6.20/SY	\$ 16,634.60
2.	Riprap (swale)	2,684 TONS	\$83/TON	\$ 222,772.00
3.	24" RCP Storm Drain	45 LF	\$81/LF	\$ 3,645.00
4.	30" RCP Storm Drain	510 LF	\$100/LF	\$ 51,000.00
5.	36" RCP Storm Drain	311 LF	\$124/LF	\$ 38,564.00
6.	42" RCP Storm Drain	742 LF	\$166/LF	\$ 123,172.00
7.	48" RCP Storm Drain	766 LF	\$202/LF	\$ 154,732.00
8.	CDOT Type C Inlets	2 EA	\$4,802/EA	\$ 9,604.00
9.	CDOT Type D Inlets	3 EA	\$5,932/EA	\$ 17,796.00
10.	Type II Storm MH	1 EA	\$6,619/EA	\$ 6,619.00
11.	Type I Storm MH	11 EA	\$12,034/EA	\$ 132,374.00
12.	Permanent Pond 'A'	5,350 CY	\$21/CY	\$ 112,350.00

SUB-TOTAL	\$ 889,262.60
10% ENGINEERING	\$ 88,926.26
5% CONTINGENCIES	<u>\$ 44,463.13</u>
TOTAL	<u>\$ 1,022,651.99</u>

SUMMARY

Developed runoff from the proposed Forest Lakes Filing 7 is proposed to outfall to one proposed private Full Spectrum Detention (EDB) and Storm Water Quality Facility (owned and maintained by the Forest Lakes Metropolitan District) prior to discharging to downstream facilities. The proposed Full Spectrum detention & water quality pond was sized using the current and applicable drainage criteria and provides release rates below existing allowable release rates. Therefore, the developed site runoff and proposed storm sewer facilities will not adversely affect the downstream facilities or surrounding developments.

PREPARED BY:

Matthew Larson Project Manager

mal/117570/FDR-FILING7.doc

REFERENCES

- 1. City of Colorado Springs and El Paso County Drainage Criteria Manual Volume 1, May 2014.
- Drainage Criteria Manual (Volume 3) latest revision April 2008, Urban Drainage and Flood Criteria District.
- 3. "Forest Lakes Master Development Drainage Plan," by Kiowa Engineering Corporation, revised April 11, 2002.
- 4. "Preliminary and Final Drainage Report Forest Lakes Subdivision Filing No. 1," by Kiowa Engineering Corporation, filed September 8, 2004.
- "Drainage Report Amendment for Preliminary and Final Drainage Report Forest Lakes Subdivision
 Filing No. 1," by Classic Consulting Engineers & Surveyors, LLC, dated August 2015.
- 6. "Debris Flow/Mudflow Analysis Forest Lakes Subdivision (Phase 2) Lindbergh Road and W. Baptist Road El Paso County, Colorado," by CTL Thompson Inc., dated August 6, 2018.
- "Master Development Drainage Plan Amendment and Preliminary Drainage Report for Forest Lakes (Filing 5, 6, 7)," by Classic Consulting Engineers & Surveyors LLC, approved April 1, 2019.
- 8. "Final Drainage Report for Forest Lakes Filing 5," by Classic Consulting Engineers & Surveyors, LLC, approved June 9, 2020.

APPENDIX

FOREST LAKES FILINGS 5, 6 and 7 JUSTIFICATION FOR PUD MODIFICATIONS: Back Yard Drainage – Direct Release

Chapter 4.2.6.F.2.g of the Land Development Code (LDC) allows for a PUD modification of a general development standard in the LDC or criteria of the Engineering Criteria Manual (ECM), provided at least one of the benefits identified in Chapter 4.2.6.F.2.h are met. Section 5.8 of the ECM establishes an additional mechanism whereby an engineering design standard can be modified provided the limits of consideration in ECM Section 5.8.6 are met and the modifications meets the criteria for approval in ECM Section 5.8.7.

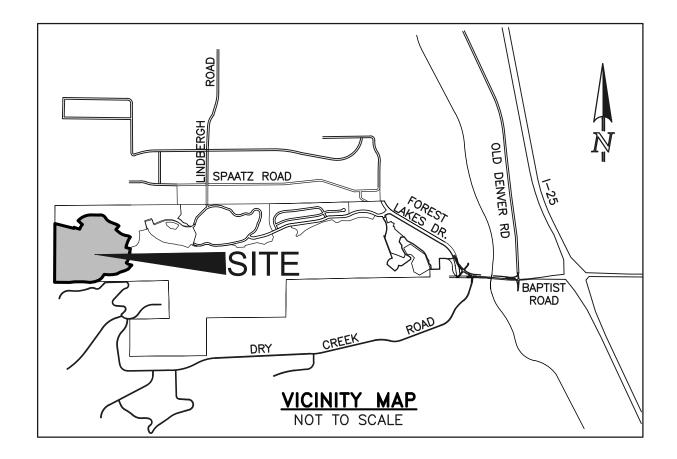
Nature of Request:

Section of LDC/ECM from which modification is sought: <u>ECM Section 1.7.2 (APPENDIX I)</u> Specific Criteria from which modification is sought: <u>Water Quality Capture Volume Requirements.</u> Proposed nature and extent of modification: <u>Allow for direct release across grass buffer (or equivalent) for back yards of proposed single-family</u> subdivision lots.

ECM Section 5.8.6: Limits of Consideration:

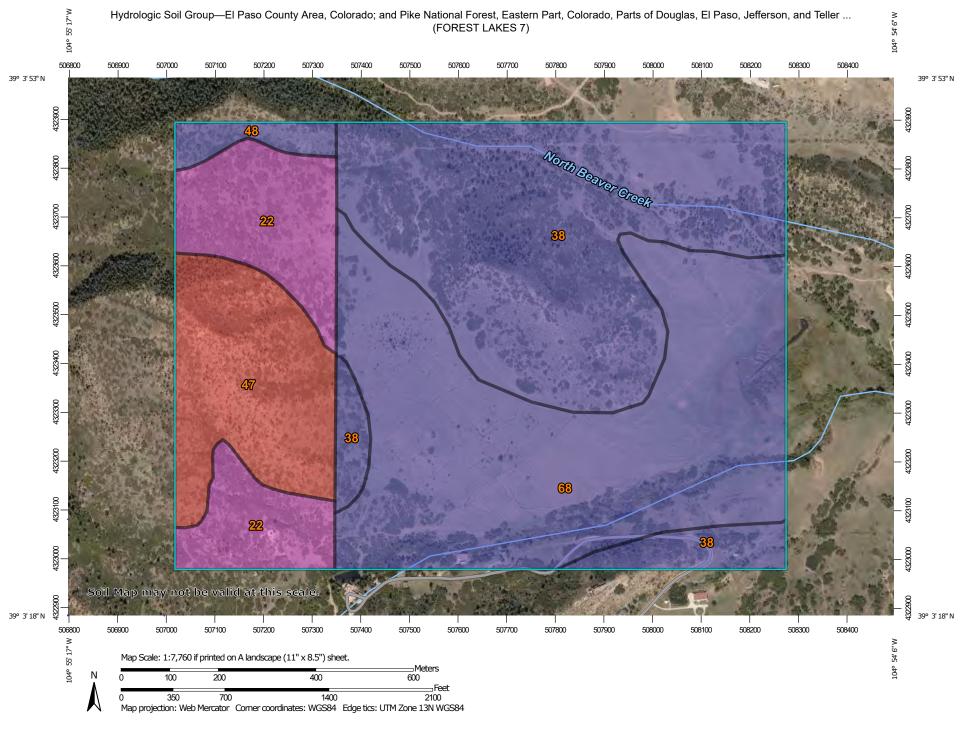
The ECM Administrator may only consider a project-specific modification to an existing standard when <u>one</u> of the following conditions is met:

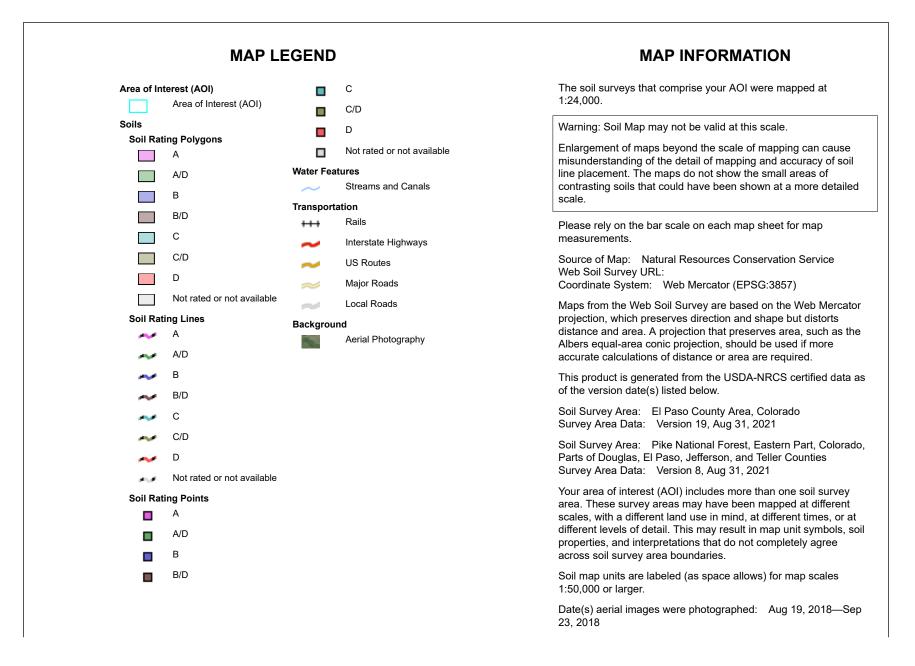
- The ECM standard is inapplicable to a particular situation. N/A
- Topography, right-of-way, or other geographical conditions or impediments impose an undue economic hardship on the applicant, and an equivalent alternative that can accomplish the same design objective is available and does not compromise public safety or accessibility. *There is significant topography on this site and the proposed home lots are 'walk-out' lot conditions along natural open space and drainage corridors that contain Preble's Jumping Mouse Habitat and FEMA 100-year floodplain limits. There is limited ability to capture the drainage from the back yards but all roof drains will be routed to front yard and the street eventually to a permanent downstream water quality facility. All major imperviousness (roads, driveways, and rooftops) are all treated by a downstream full spectrum detention and water quality facility. There is a 300'+ buffer between the property line (end of back yards) and the waters of the State of Colorado; and other than a small patio, no additional anticipated imperviousness within the direct release back yard drainage basins.*
- A change to a standard is required to address a specific design or construction problem, and if not modified, the standard will impose an undue hardship on the applicant with little or no material benefit to the public.


Additional permanent water quality facilities would be required to capture all drainage from all of the back yards. As there is limited imperviousness, this runoff should not need detention nor water quality. Therefore, additional facilities to install and maintain would impose unnecessary hardship on the developer and Forest Lakes Metropolitan District.

ECM Section 5.8.7: Criteria for Approval

No modification shall be approved unless it is demonstrated that:


VICINITY MAP



SOILS MAP (S.C.S. SURVEY)

USDA Natural Resources Conservation Service

Hydrologic Soil Group—El Paso County Area, Colorado; and Pike National Forest, Eastern Part, Colorado, Parts of Douglas, El Paso, Jefferson, and Teller Counties (FOREST LAKES 7)

MAP LEGEND

MAP INFORMATION

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
38	Jarre-Tecolote complex, 8 to 65 percent slopes	В	105.1	36.8%
68	Peyton-Pring complex, 3 to 8 percent slopes	В	105.4	36.9%
Subtotals for Soil Surve	ey Area	210.4	73.7%	
Totals for Area of Interest			285.7	100.0%

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
22	Kassler very gravelly coarse sandy loam, 5 to 35 percent slopes	A	35.1	12.3%
47	Sphinx, warm-Rock outcrop complex, 15 to 80 percent slopes	D	34.9	12.2%
48	Tecolote very gravelly sandy loam, 15 to 40 percent slopes, very stony	В	5.2	1.8%
Subtotals for Soil Surv	vey Area		75.2	26.3%
Totals for Area of Interest		285.7	100.0%	

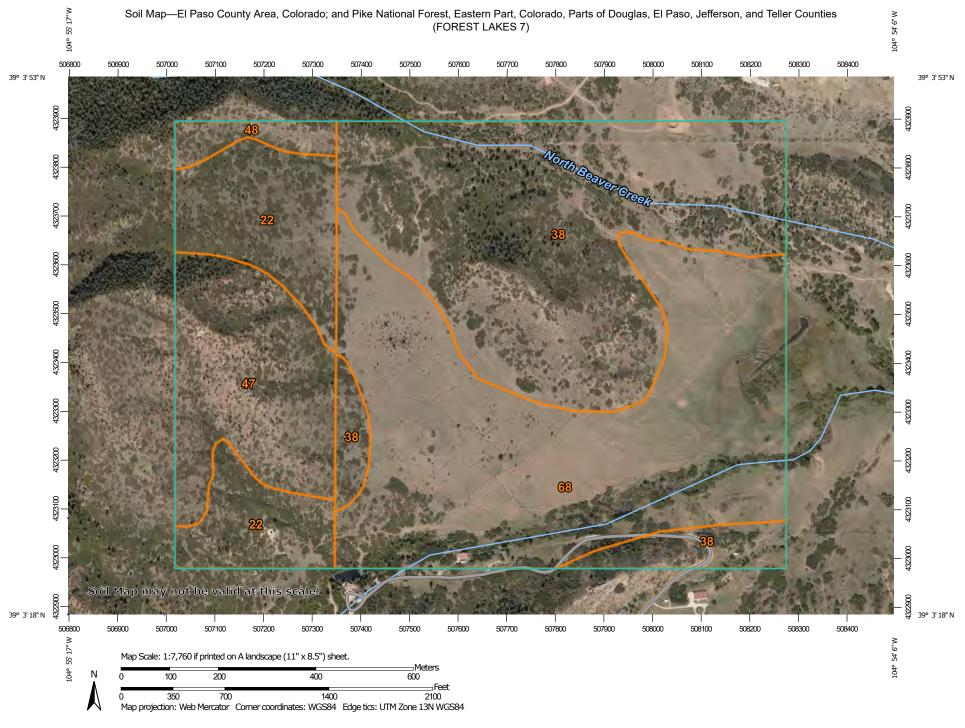
Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.


Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

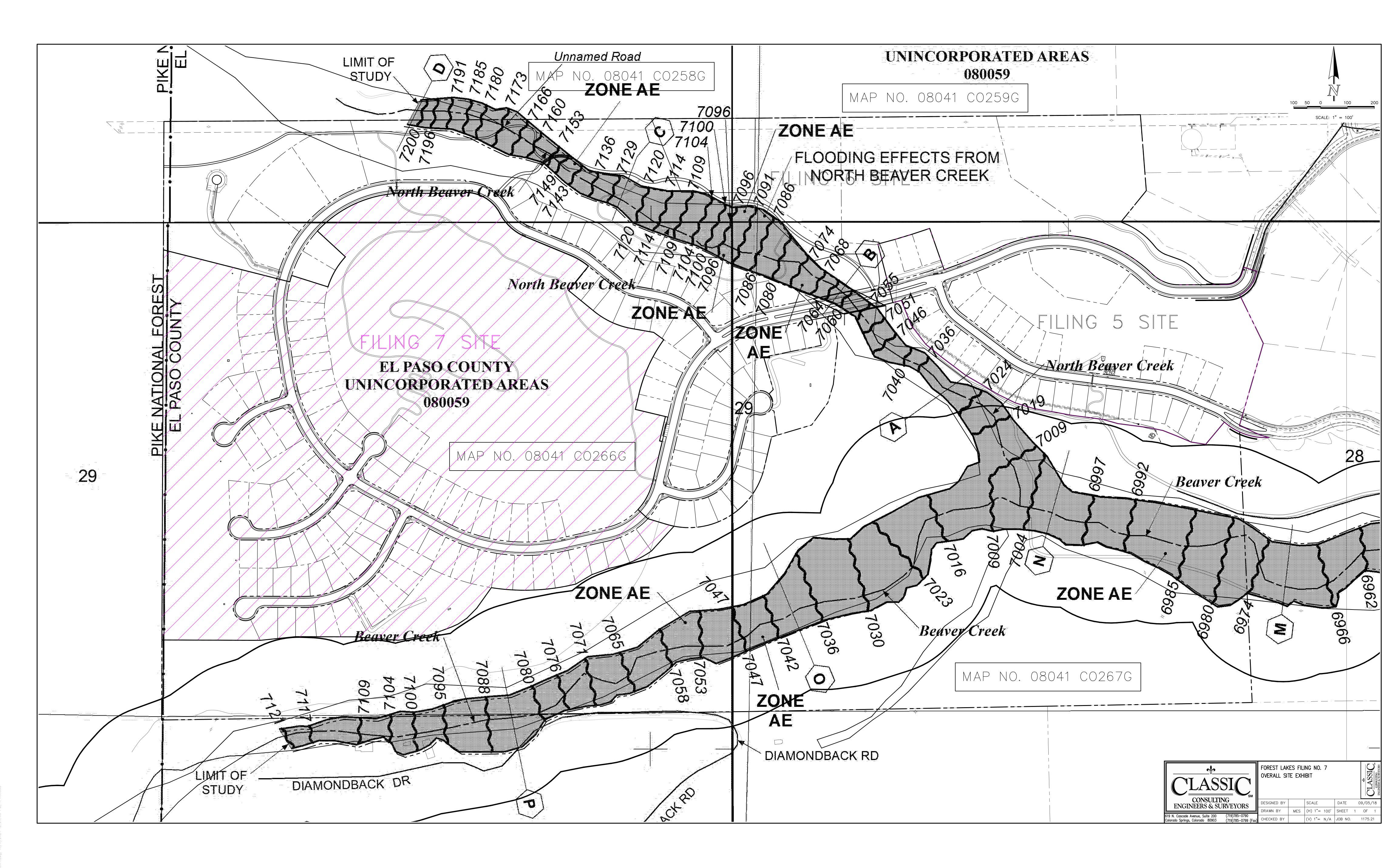
	MAP L	EGEND		MAP INFORMATION
Area of Int	erest (AOI)	100	Spoil Area	The soil surveys that comprise your AOI were mapped at
	Area of Interest (AOI)	۵	Stony Spot	1:24,000.
Soils	Soil Map Unit Polygons	å	Very Stony Spot	Warning: Soil Map may not be valid at this scale.
~	Soil Map Unit Lines	\$	Wet Spot	Enlargement of maps beyond the scale of mapping can on misunderstanding of the detail of mapping and accuracy
-	Soil Map Unit Points	\triangle	Other	line placement. The maps do not show the small areas o
_	Point Features	**	Special Line Features	contrasting soils that could have been shown at a more of scale.
Special (0)	Blowout	Water Fea	tures	
×	Borrow Pit	\sim	Streams and Canals	Please rely on the bar scale on each map sheet for map measurements.
	Clay Spot	Transporta	ation	
×		+++	Rails	Source of Map: Natural Resources Conservation Servic Web Soil Survey URL:
\diamond	Closed Depression	~	Interstate Highways	Coordinate System: Web Mercator (EPSG:3857)
X	Gravel Pit	~	US Routes	Maps from the Web Soil Survey are based on the Web M
0 0 0	Gravelly Spot	~	Major Roads	projection, which preserves direction and shape but disto
Ø	Landfill	~	Local Roads	distance and area. A projection that preserves area, such Albers equal-area conic projection, should be used if mo
A.	Lava Flow	Backgrou		accurate calculations of distance or area are required.
علا	Marsh or swamp	Dackgrou	Aerial Photography	This product is generated from the USDA-NRCS certified
爱	Mine or Quarry			of the version date(s) listed below.
Ô	Miscellaneous Water			Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 19, Aug 31, 2021
õ	Perennial Water			Soil Survey Area: Pike National Forest, Eastern Part, C
×	Rock Outcrop			Parts of Douglas, El Paso, Jefferson, and Teller Counties Survey Area Data: Version 8, Aug 31, 2021
+	Saline Spot			Your area of interest (AOI) includes more than one soil si
• • •	Sandy Spot			area. These survey areas may have been mapped at dif
-	Severely Eroded Spot			scales, with a different land use in mind, at different time: different levels of detail. This may result in map unit syml
0	Sinkhole			properties, and interpretations that do not completely agr
\$	Slide or Slip			across soil survey area boundaries.
ø	Sodic Spot			Soil map units are labeled (as space allows) for map sca 1:50,000 or larger.
				Date(s) aerial images were photographed: Aug 19, 207 23, 2018

Soil Map—El Paso County Area, Colorado; and Pike National Forest, Eastern Part, Colorado, Parts of Douglas, El Paso, Jefferson, and Teller Counties (FOREST LAKES 7)

MAP LEGEND

MAP INFORMATION

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.


Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
38	Jarre-Tecolote complex, 8 to 65 percent slopes	105.1	36.8%
68	Peyton-Pring complex, 3 to 8 percent slopes	105.4	36.9%
Subtotals for Soil Survey Area	l	210.4	73.7%
Totals for Area of Interest		285.7	100.0%

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
22	Kassler very gravelly coarse sandy loam, 5 to 35 percent slopes	35.1	12.3%
47	Sphinx, warm-Rock outcrop complex, 15 to 80 percent slopes	34.9	12.2%
48	Tecolote very gravelly sandy loam, 15 to 40 percent slopes, very stony	5.2	1.8%
Subtotals for Soil Surve	ey Area	75.2	26.3%
Totals for Area of Intere	est	285.7	100.0%

F.E.M.A. MAP

C DRAWINGS EVHIBITS FEMA MAD OVERIAS 400 10 / 8 / 2021 12:28:05 DM 1:1 08:

EXISTING CONDITIONS CALCULATIONS

JOB NAME:	FOREST LAKES FILING NO. 7
JOB NUMBER:	1175.70
DATE:	06/24/19
CALCULATED BY:	MAL

FINAL DRAINAGE REPORT ~ BASIN RUNOFF COEFFICIENT SUMMARY (EXISTING CONDITIONS)

		IMPERVIC) US AREA /	STREETS	LOTS/LANDS	CAPE/UNDEV PAVEMENT	•	WEIG	HTED	WEIGHTED CA	
BASIN	TOTAL AREA (AC)	AREA (AC)	C(5)	C(100)	AREA (AC)	C(5)	C(100)	C(5)	C(100)	CA(5)	CA(100)
0S-1	66.39	0.00	0.90	0.96	66.39	0.09	0.36	0.09	0.36	5.98	23.90
EX-A	3.98	0.70	0.90	0.96	3.28	0.20	0.43	0.32	0.52	1.29	2.08
EX-B	60.79	0.00	0.90	0.96	60.79	0.09	0.36	0.09	0.36	5.47	21.88
EX-C	44.59	0.00	0.90	0.96	44.59	0.09	0.36	0.09	0.36	4.01	16.05
EX-D	1.00	0.00	0.90	0.96	1.00	0.09	0.36	0.09	0.36	0.09	0.36

JOB NAMIFOREST LAKES FILING NO. 7 JOB NUMI **1175.70** DATE: **9/13/2020** CALC'D B'**MAL**

FINAL DRAINAGE REPORT ~ BASIN RUNOFF SUMMARY (EXISTING CONDITIONS)

	WEIG	HTED		OVER	LAND		STRE	STREET / CHANNEL FLOW				Tc INTENS		TOTAL	FLOWS
BASIN	CA(5)	CA(100)	C(5)	Length <i>(ft)</i>	Height <i>(ft)</i>	Tc (min)	Length (ft)	Slope <i>(%)</i>	Velocity (fps)	Tc <i>(min)</i>	TOTAL (min)	l(5) (in/hr)	l(100) (in/hr)	Q(5) (cfs)	Q(100) (cfs)
OS-1	5.98	23.90	0.09	300	100	9.9	1720	18.0%	14.8	1.9	11.9	3.87	6.50	23.1	155.4
EX-A	1.29	2.08	0.45	100	3	8.2	260	5.0%	7.8	0.6	8.7	4.33	7.28	5.6	15.2
EX-B	5.47	21.88	0.09	300	40	13.4	2200	7.7%	9.7	3.8	17.2	3.31	5.56	18.1	121.8
EX-C	4.01	16.05	0.09	300	60	11.8	2370	7.2%	9.4	4.2	16.0	3.43	5.75	13.8	92.4
EX-D	0.09	0.36	0.09	120	30	6.9	200	7.0%	9.3	0.4	7.3	4.61	7.74	0.4	2.8

Job NAME:	FOREST LAKES FILING NO. 7
JOB NUMBER:	1175.70
DATE:	09/13/20
CALCULATED BY:	MAL

BASIN OS-1

BASIN EX-D

BASIN EX-C

BASIN EX-B + DP-1 + DP-2 + DP-3

FINAL DRAINAGE REPORT ~ SURFACE ROUTING SUMMARY (EXISTING CONDITIONS) Design Point(s) Contributing Basins Equivalent CA(5) Maximum CA(100) I(100) Q(5) Q(100) Inlet Size												
•	Contributing Basins	•			I(5)	I(100)	Q(5)	Q(100)	Inlet Size			
1	BASIN EX-A	1.29	2.08	8.7	4.33	7.28	5.6	15.2	Temp. Cul-de-sac (Filing 6)			

23.90

0.36

48.23

16.05

11.9

7.3

15.6

16.0

3.87

4.61

3.46

3.43

6.50

7.74

5.81

5.75

23.1

0.4

44.3

13.8

5.98

0.09

12.82

4.01

2

3

4

5

Surface runoff to Beaver Creek

Filing 6 Pond - To Beaver Creek

Offsite surface runoff

Offsite surface runoff

155.4

2.8

280.0

92.4

DEVELOPED CONDITIONS CALCULATIONS

JOB NAME:	FOREST L	AKES FILI	NG NO. 7											
JOB NUMBER:	1175.70													
DATE:	09/13/20													
CALCULATED BY:	MAL													
FINIΔI	ΠΡΔΙΝΙΔ	GE REDO)RT ~ RΔ			FEICIEN					(2)			
	FINAL DRAINAGE REPORT ~ BASIN RUNOFF COEFFICIENT SUMMARY (DEVELOPED CONDITIONS)													
		IMPERVIC	DUS AREA /	STREETS	LOTS/LANDS	PAVEMENT)	•	WEIG	HTED	WEIGH	TED CA			
	TOTAL													
BASIN	AREA (AC)	AREA (AC)	C(5)	C(100)	AREA (AC)	C(5)	C(100)	C(5)	C(100)	CA(5)	CA(100)			
A1	5.15	0.64	0.90	0.96	4.51	0.30	0.5	0.37	0.56	1.93	2.87			
A2	1.01	0.13	0.90	0.96	0.88	0.32	0.5	0.39	0.56	0.40	0.56			
B1	4.69	0.41	0.90	0.96	4.28	0.14	0.39	0.21	0.44	0.97	2.06			
B2	3.16	0.17	0.90	0.96	2.99	0.25	0.46	0.28	0.49	0.90	1.54			
С	6.00	0.33	0.90	0.96	5.67	0.20	0.43	0.24	0.46	1.43	2.75			
D	3.27	0.36	0.90	0.96	2.91	0.20	0.43	0.28	0.49	0.91	1.60			
E	5.09	0.32	0.90	0.96	4.77	0.09	0.36	0.14	0.40	0.72	2.02			
F1	1.65	0.56	0.90	0.96	1.09	0.45	0.59	0.60	0.72	0.99	1.18			
F2	0.91	0.30	0.90	0.96	0.61	0.45	0.59	0.60	0.71	0.54	0.65			
G	2.50	0.35	0.90	0.96	2.15	0.35	0.53	0.43	0.59	1.07	1.48			
Н	3.11	0.62	0.90	0.96	2.49	0.31	0.5	0.43	0.59	1.33	1.84			
J1	0.92	0.24	0.90	0.96	0.68	0.38	0.54	0.52	0.65	0.47	0.60			
J2	1.65	0.14	0.90	0.96	1.51	0.35	0.53	0.40	0.57	0.65	0.93			
К	2.30	0.56	0.90	0.96	1.74	0.31	0.5	0.45	0.61	1.04	1.41			
L	1.20	0.42	0.90	0.96	0.78	0.45	0.59	0.61	0.72	0.73	0.86			
М	1.19	0.17	0.90	0.96	1.02	0.45	0.59	0.51	0.64	0.61	0.77			
M2	0.18	0.15	0.90	0.96	0.03	0.45	0.59	0.83	0.90	0.15	0.16			
N	3.65	0.44	0.90	0.96	3.21	0.40	0.56	0.46	0.61	1.68	2.22			
Р	1.53	0.49	0.90	0.96	1.04	0.45	0.59	0.59	0.71	0.91	1.08			

JOB NAME:	FOREST I	AKES FILL	NG NO. 7											
JOB NUMBER:	1175.70			•										
DATE:	09/13/20			-										
CALCULATED BY:	MAL													
FINIAI						FEICIEN					(2)			
	FINAL DRAINAGE REPORT ~ BASIN RUNOFF COEFFICIENT SUMMARY (DEVELOPED CONDITIONS)													
		IMPERVIC) US AREA /	STREETS	LUIJ/LAND	PAVEMENT)		WEIG	HTED	WEIGH	TED CA			
	TOTAL													
BASIN		AREA (AC)	C(5)	C(100)	AREA (AC)	C(5)	C(100)	C(5)	C(100)	CA(5)	CA(100)			
Q	0.42	0.16	0.90	0.96	0.26	0.45	0.59	0.62	0.73	0.26	0.31			
R	1.64	0.00	0.90	0.96	1.64	0.45	0.59	0.45	0.59	0.74	0.97			
S-1	2.13	0.00	0.90	0.96	2.13	0.09	0.36	0.09	0.36	0.19	0.77			
S-2	2.23	0.00	0.90	0.96	2.23	0.09	0.36	0.09	0.36	0.20	0.80			
S-3	1.14	0.00	0.90	0.96	1.14	0.09	0.36	0.09	0.36	0.10	0.41			
S-4	1.63	0.00	0.90	0.96	1.63	0.09	0.36	0.09	0.36	0.15	0.59			
S-5	2.92	0.00	0.90	0.96	2.92	0.09	0.36	0.09	0.36	0.26	1.05			
Т	2.69	0.00	0.90	0.96	2.69	0.21	0.43	0.21	0.43	0.56	1.16			
U	1.28	0.62	0.90	0.96	0.66	0.09	0.36	0.48	0.65	0.62	0.83			
V	1.61	0.00	0.90	0.96	1.61	0.41	0.57	0.41	0.57	0.66	0.92			
Z1	1.30	0.02	0.90	0.96	1.28	0.21	0.44	0.22	0.45	0.29	0.58			
Z2	1.40	0.23	0.90	0.96	1.17	0.25	0.48	0.36	0.56	0.50	0.78			
EX-D	1.00	0.00	0.90	0.96	1.00	0.09	0.36	0.09	0.36	0.09	0.36			
OS-1A	23.26	0.00	0.90	0.96	23.26	0.09	0.36	0.09	0.36	2.09	8.37			
OS-1B	24.79	0.00	0.90	0.96	24.79	0.09	0.36	0.09	0.36	2.23	8.92			
OS-1C	9.91	0.00	0.90	0.96	9.91	0.09	0.36	0.09	0.36	0.89	3.57			
OS-1D	5.52	0.00	0.90	0.96	5.52	0.09	0.36	0.09	0.36	0.50	1.99			
OS-1E	2.76	0.00	0.90	0.96	2.76	0.09	0.36	0.09	0.36	0.25	0.99			
OS-1F	0.16	0.00	0.90	0.96	0.16	0.09	0.36	0.09	0.36	0.01	0.06			

JOB NAMIFOREST LAKES FILING NO. 7 JOB NUM **1175.70** DATE: **9/13/2020** CALC'D B'**MAL**

FINAL DRAINAGE REPORT ~ BASIN RUNOFF SUMMARY (DEVELOPED CONDITIONS)

	WEIG	HTED		OVER	LAND		STRE	ET / CH	IANNEL	FLOW	Тс	TC INTENSITY			fotal flows	
BASIN	CA(5)	CA(100)	C(5)	Length <i>(ft)</i>	Height (ft)	Tc (min)	Length (ft)	Slope (%)	Velocity (fps)	Tc (min)	TOTAL <i>(min)</i>	l(5) (in/hr)	l(100) (in/hr)	Q(5) (cfs)	Q(100) (cfs)	
A1	1.93	2.87	0.45	100	2	9.3	870	7.1%	9.3	1.6	10.9	4.00	6.72	7.7	19.3	
A2	0.40	0.56	0.45	100	2	9.3	160	5.0%	7.8	0.3	9.7	4.18	7.02	1.7	4.0	
B1	0.97	2.06	0.45	100	2	9.3	220	3.2%	6.3	0.6	9.9	4.14	6.95	4.0	14.3	
B2	0.90	1.54	0.45	100	6	6.5	225	6.2%	8.7	0.4	6.9	4.68	7.86	4.2	12.1	
С	1.43	2.75	0.45	100	2	9.3	450	7.9%	9.8	0.8	10.1	4.11	6.91	5.9	19.0	
D	0.91	1.60	0.45	100	2	9.3	290	7.9%	9.8	0.5	9.8	4.16	6.98	3.8	11.1	
E	0.72	2.02	0.09	220	58	9.2	300	2.0%	4.9	1.0	10.2	4.10	6.88	2.9	13.9	
F1	0.99	1.18	0.45	50	1	6.6	700	8.0%	9.9	1.2	7.8	4.51	7.57	4.5	8.9	
F2	0.54	0.65	0.45	50	1	6.6	400	3.0%	6.1	1.1	7.7	4.52	7.59	2.5	4.9	
G	1.07	1.48	0.45	100	2	9.3	470	7.6%	9.6	0.8	10.1	4.11	6.90	4.4	10.2	
Н	1.33	1.84	0.45	100	2	9.3	315	5.4%	8.1	0.6	10.0	4.13	6.94	5.5	12.8	
J1	0.47	0.60	0.45	100	2	9.3	230	7.0%	9.3	0.4	9.8	4.17	7.00	2.0	4.2	

JOB NAMIFOREST LAKES FILING NO. 7 JOB NUM **1175.70** DATE: **9/13/2020** CALC'D B'**MAL**

FINAL DRAINAGE REPORT ~ BASIN RUNOFF SUMMARY (DEVELOPED CONDITIONS)

	WEIG	HTED		OVER	LAND		STRE	et / Ch	IANNEL	FLOW	Тс	Tc INTENSITY		T	, FLOWS
BASIN	CA(5)	CA(100)	C(5)	Length <i>(ft)</i>	Height <i>(ft)</i>	Tc <i>(min)</i>	Length <i>(ft)</i>	Slope <i>(%)</i>	Velocity <i>(fps)</i>	Tc <i>(min)</i>	TOTAL <i>(min)</i>	l(5) (in/hr)	l(100) (in/hr)	Q(5) <i>(cfs)</i>	Q(100) <i>(cfs)</i>
J2	0.65	0.93	0.45	100	2	9.3	90	2.0%	4.9	0.3	9.6	4.18	7.03	2.7	6.6
К	1.04	1.41	0.45	100	2	9.3	350	5.7%	8.4	0.7	10.0	4.12	6.92	4.3	9.7
L	0.73	0.86	0.45	50	1	6.6	460	5.0%	7.8	1.0	7.6	4.54	7.63	3.3	6.6
М	0.61	0.77	0.45	100	2	9.3	100	2.0%	4.9	0.3	9.7	4.18	7.02	2.6	5.4
M2	0.15	0.16	0.08	10	0.5	3.4	230	8.0%	9.9	0.4	5.0	5.17	8.68	0.8	1.4
Ν	1.68	2.22	0.45	100	2	9.3	450	3.3%	6.4	1.2	10.5	4.05	6.81	6.8	15.1
Р	0.91	1.08	0.45	50	1	6.6	450	3.3%	6.4	1.2	7.8	4.51	7.56	4.1	8.2
Q	0.26	0.31	0.45	50	1	6.6	100	2.0%	4.9	0.3	6.9	4.68	7.85	1.2	2.4
R	0.74	0.97	0.45	50	10	3.1	155	16.0%	14.0	0.2	5.0	5.17	8.68	3.8	8.4
S-1	0.19	0.77	0.09	140	18	9.3	350	6.9%	9.2	0.6	9.9	4.14	6.95	0.8	5.3
S-2	0.20	0.80	0.09	260	38	12.1	280	5.7%	8.4	0.6	12.7	3.77	6.33	0.8	5.1
S-3	0.10	0.41	0.09	230	38	11.0	230	5.2%	8.0	0.5	11.4	3.93	6.59	0.4	2.7
S-4	0.15	0.59	0.09	125	18	8.5	300	10.9%	11.6	0.4	8.9	4.31	7.23	0.6	4.2

JOB NAMIFOREST LAKES FILING NO. 7 JOB NUM **1175.70** DATE: **9/13/2020** CALC'D B'**MAL**

FINAL DRAINAGE REPORT ~ BASIN RUNOFF SUMMARY (DEVELOPED CONDITIONS)

	WEIG	ihted		OVER	LAND		STRE	et / CF	IANNEL	FLOW	Тс	INTE	NSITY	TOTAL	FLOWS
BASIN	CA(5)	CA(100)	C(5)	Length <i>(ft)</i>	Height <i>(ft)</i>	Tc (min)	Length (ft)	Slope <i>(%)</i>	Velocity <i>(fps)</i>	Tc (min)	TOTAL <i>(min)</i>	l(5) (in/hr)	l(100) (in/hr)	Q(5) (cfs)	Q(100) (cfs)
S-5	0.26	1.05	0.09	200	74	7.8	410	9.3%	10.7	0.6	8.5	4.38	7.35	1.2	7.7
Т	0.56	1.16	0.09	100	30	5.9	500	12.0%	12.1	0.7	6.6	4.75	7.97	2.7	9.2
U	0.62	0.83	0.09	35	9	3.7	200	0.5%	2.5	1.3	5.0	5.16	8.66	3.2	7.2
V	0.66	0.92	0.45	100	8	5.9	180	7.8%	9.8	0.3	6.2	4.84	8.13	3.2	7.5
Z1	0.29	0.58	0.09	25	4	3.7	450	11.0%	11.6	0.6	5.0	5.17	8.68	1.5	5.1
Z2	0.50	0.78	0.45	100	2	9.3	160	5.0%	7.8	0.3	9.7	4.18	7.02	2.1	5.5
EX-D	0.09	0.36	0.09	160	42	7.8	180	7.8%	9.8	0.3	8.2	4.44	7.45	0.4	2.7
OS-1A	2.09	8.37	0.09	300	40	13.4	2300	13.0%	12.6	3.0	16.5	3.38	5.67	7.1	47.5
OS-1B	2.23	8.92	0.09	300	40	13.4	2300	13.0%	12.6	3.0	16.5	3.38	5.67	7.5	50.6
OS-1C	0.89	3.57	0.09	300	40	13.4	730	13.0%	12.6	1.0	14.4	3.58	6.01	3.2	21.5
OS-1D	0.50	1.99	0.09	300	40	13.4	300	18.0%	14.8	0.3	13.8	3.65	6.13	1.8	12.2
OS-1E	0.25	0.99	0.09	300	100	9.9	160	29.0%	18.8	0.1	10.1	4.12	6.91	1.0	6.9
OS-1F	0.01	0.06	0.09	60	16	4.8	40	13.0%	12.6	0.1	5.0	5.17	8.68	0.1	0.5

Job NAME:	FOREST LAKES FILING NO. 7
JOB NUMBER:	1175.70
DATE:	09/13/20
CALCULATED BY:	MAL

FINAL DRAINAGE REPORT ~ SURFACE ROUTING SUMMARY (DEVELOPED CONDITIONS)
--

					Intensity		Flow		
Design Point(s)	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	I(5)	I(100)	Q(5)	Q(100)	Inlet Size
1A	DP-8 + BASIN A1	2.33	3.43	10.9	4.00	6.72	9.3	23.1	15' Type R At-Grade
1B	BASIN B1 + FLOW-BY DP-1A	1.10	3.25	10.9	4.00	6.72	4.4	21.8	15' Type R At-Grade
2	BASIN B2 + FLOW-BY DP-1B	0.90	2.61	10.9	4.00	6.72	3.6	17.6	15' Type R At-Grade
3	BASIN C + FLOW-BY DP-2	1.43	3.42	11.7	3.90	6.55	5.6	22.4	15' Type R At-Grade
4	BASIN D + FLOW-BY DP-3	0.91	2.74	12.1	3.84	6.44	3.5	17.7	15' Type R At-Grade
5	BASIN E + FLOW-BY DP-4	0.71	2.73	12.1	3.84	6.44	2.7	17.6	15' Type R SUMP
6A	BASIN F1	0.99	1.18	7.8	4.51	7.57	4.5	8.9	5' Type R At-Grade
6B	BASIN F2 + FLOW BY DP-6A	0.94	1.34	7.8	4.51	7.57	4.2	10.1	10' Type R SUMP
7	BASIN Z1 + BASIN Z2	0.79	1.36	9.7	4.18	7.02	3.3	9.6	SURFACE FROM FIL. 6
8	BASIN A2	0.40	0.56	9.7	4.18	7.02	1.7	4.0	SURFACE FROM FIL. 6
9	DP-7 + BASIN G	1.85	2.84	10.1	4.11	6.90	7.6	19.6	15' Type R At-Grade
10	BASIN H + FLOW-BY DP-9	1.36	2.68	10.1	4.11	6.90	5.6	18.5	15' Type R At-Grade
11	BASIN J1 + FLOW-BY DP-10	0.48	1.33	10.1	4.11	6.90	2.0	9.2	10' Type R At-Grade
12	BASIN K	1.04	1.41	10.0	4.12	6.92	4.3	9.7	10' Type R At-Grade
13	BASIN J2 + FLOW-BY DP11 + FLOW-BY DP-12	0.68	1.65	10.1	4.11	6.90	2.8	11.4	10' Type R SUMP

Job Name:	FOREST LAKES FILING NO. 7
JOB NUMBER:	1175.70
DATE:	09/13/20
CALCULATED BY:	MAL

FINAL DRAINAGE REPORT ~ SURFACE ROUTING SUMMARY (DEVELOPED CONDITIONS)

					Inter	isity	FI	ow	
Design Point(s)	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	I(5)	I(100)	Q(5)	Q(100)	Inlet Size
14	BASIN L	0.73	0.86	7.6	4.54	7.63	3.3	6.6	10' Type R SUMP
15	BASIN M + BASIN M2	0.76	0.93	9.7	4.18	7.02	3.2	6.5	5' Type R Sump
16	BASIN Q	0.26	0.31	6.9	4.68	7.85	1.2	2.4	5' Type R Sump
17	BASIN N	1.68	2.22	10.5	4.05	6.81	6.8	15.1	15' Type R SUMP
18	BASIN P	0.91	1.08	7.8	4.51	7.56	4.1	8.2	10' Type R SUMP
19	BASIN U + BASIN R + PIPE 25	15.25	21.19	11.9	3.87	6.50	59.0	137.8	FSD/SWQ POND 'A'
20	POND A OUTFALL (PIPE 26)	1.14	7.46	11.9	3.87	6.50	4.4	48.5	SURFACE TO S.BEAVER
21	BASIN OS-1A + BASIN S-1	2.29	9.14	16.5	3.38	5.67	7.7	51.9	Type D (In Series & Depressed)
22	BASIN OS-1B + BASIN S-2 + FLOW-BY DP-21	2.43	10.67	16.5	3.38	5.67	8.2	60.6	Type D (In Series & Depressed)
23	BASIN OS-1C + BASIN S-3 + FLOW-BY DP-22	0.99	6.44	16.5	3.38	5.67	3.4	36.5	Type D (In Series & Depressed)
24	BASIN OS-1D + BASIN S-4 + FLOW-BY DP-23	0.64	2.70	13.8	3.65	6.13	2.3	16.6	Type C (Depressed)
25	BASIN OS-1E + BASIN S-5	0.51	2.04	10.1	4.12	6.91	2.1	14.1	Type C (Depressed)
26	BYPASS OUTFALL (PIPE 35)	6.87	31.00	17.2	3.31	5.56	22.7	172.4	SURFACE TO S.BEAVER
27	BASIN EX-D + BASIN OS-1F + BASIN T	0.67	1.57	8.2	4.44	7.45	3.0	11.7	SURFACE TO S.BEAVER
28	BASIN V	0.66	0.92	6.2	4.84	8.13	3.2	7.5	SURFACE TO S.BEAVER

Job NAME:	FOREST LAKES FILING NO. 7
JOB NUMBER:	1175.70
DATE:	09/13/20
CALCULATED BY:	MAL

* PIPES ARE LISTED AT MAXIMUM SIZE REQUIRED TO ACCOMMODATE Q100 FLOWS AT MINIMUM GRADE. REFER TO INDIVIDUAL PIPE SHEETS FOR HYDRAULIC INFORMATION.

FINAL DRAINAGE REPORT ~ PIPE ROUTING SUMMARY (DEVELOPED CONDITIONS)

					Inten	Intensity		OW	
Pipe Run	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	I(5)	I(100)	Q(5)	Q(100)	Pipe Size*
1	DP-9 (Intercepted)	1.83	2.00	10.1	4.11	6.90	7.5	13.8	24"
2	DP-10 (Intercepted)	1.35	1.94	10.1	4.11	6.90	5.6	13.4	24"
3	PIPE 1 + PIPE 2	3.18	3.94	10.1	4.11	6.90	13.1	27.2	30"
4	DP-1A (Intercepted)	2.20	2.25	10.9	4.00	6.72	8.8	15.1	24"
5	DP-11 (Intercepted)	0.48	1.00	10.1	4.11	6.90	2.0	6.9	18"
6	PIPE 3 + PIPE 4 + PIPE 5	5.86	7.19	10.9	4.00	6.72	23.4	48.3	36"
7	DP-5	0.71	2.73	12.1	3.84	6.44	2.7	17.6	EX. 24"
8	DP-6B	0.94	1.34	7.8	4.51	7.57	4.2	10.1	EX. 18"
9	PIPE 39 + PIPE 7 + PIPE 8	4.60	8.87	12.6	3.78	6.35	17.4	56.3	EX. 30"
10	DP-12 (Intercepted)	1.02	1.03	10.0	4.12	6.92	4.2	7.1	18"
11	DP-13	0.68	1.65	10.1	4.11	6.90	2.8	11.4	18"
12	DP-14	0.73	0.86	7.6	4.54	7.63	3.3	6.6	18"
13	PIPE 10 + PIPE 11 + PIPE 12	2.43	3.54	10.1	4.11	6.90	10.0	24.4	30"

Job Name:	FOREST LAKES FILING NO. 7
JOB NUMBER:	1175.70
DATE:	09/13/20
CALCULATED BY:	MAL

* PIPES ARE LISTED AT MAXIMUM SIZE REQUIRED TO ACCOMMODATE Q100 FLOWS AT MINIMUM GRADE. REFER TO INDIVIDUAL PIPE SHEETS FOR HYDRAULIC INFORMATION.

FINAL DRAINAGE REPORT ~ PIPE ROUTING SUMMARY (DEVELOPED CONDITIONS)

					Intensity		Flow		
Pipe Run	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	I(5)	I(100)	Q(5)	Q(100)	Pipe Size*
14	PIPE 6 + PIPE 13	8.28	10.73	10.9	4.00	6.72	33.1	72.1	42"
15	DP-1B (Intercepted)	1.10	2.17	10.9	4.00	6.72	4.4	14.6	24"
16	PIPE 14 + PIPE 15	9.38	12.91	10.9	4.00	6.72	37.5	86.7	42"
17	DP-2 (Intercepted)	0.90	1.95	10.9	4.00	6.72	3.6	13.1	24"
18	PIPE 16 + PIPE 17	10.28	14.86	11.1	3.98	6.68	40.9	99.2	42"
19	DP-16	0.26	0.31	6.9	4.68	7.85	1.2	2.4	18"
20	PIPE 18 + PIPE 19	10.54	15.16	11.2	3.96	6.64	41.7	100.7	42"
21	DP-15	0.76	0.93	9.7	4.18	7.02	3.2	6.5	18"
22	PIPE 20 + PIPE 21	11.31	16.09	11.2	3.96	6.64	44.7	106.9	48"
23	DP-17	1.68	2.22	10.5	4.05	6.81	6.8	15.1	24"
24	PIPE 23 + DP-18	2.59	3.30	10.5	4.05	6.81	10.5	22.5	24"
25	PIPE 22 + PIPE 24	13.89	19.39	11.9	3.87	6.50	53.8	126.1	48"
26	POND 'A' OUTFALL	1.14	7.46	11.9	3.87	6.50	4.4	48.5	30"

Job Name:	FOREST LAKES FILING NO. 7
JOB NUMBER:	1175.70
DATE:	09/13/20
CALCULATED BY:	MAL

* PIPES ARE LISTED AT MAXIMUM SIZE REQUIRED TO ACCOMMODATE Q100 FLOWS AT MINIMUM GRADE. REFER TO INDIVIDUAL PIPE SHEETS FOR HYDRAULIC INFORMATION.

FINAL DRAINAGE REPORT ~ PIPE ROUTING SUMMARY (DEVELOPED CONDITIONS)

					Inten	sity	Flow		
Pipe Run	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	I(5)	I(100)	Q(5)	Q(100)	Pipe Size*
27	DP-21	2.29	9.14	16.5	3.38	5.67	7.7	51.9	30"
28	DP-22	2.43	10.67	16.5	3.38	5.67	8.2	60.6	36"
29	PIPE 27 + PIPE 28	4.72	19.81	16.5	3.38	5.67	15.9	112.4	48"
30	DP-23	0.99	6.44	16.5	3.38	5.67	3.4	36.5	30"
31	PIPE 29 + PIPE 30	5.71	26.25	16.7	3.36	5.64	19.2	148.0	48"
32	DP-24	0.64	2.70	13.8	3.65	6.13	2.3	16.6	24"
33	PIPE 31 + PIPE 32	6.35	28.96	16.9	3.34	5.60	21.2	162.3	42" 🗙
34	DP-25	0.51	2.04	10.1	4.12	6.91	2.1	14.1	24"
35	PIPE 33 + PIPE 34	6.87	31.00	17.2	3.31	5.56	22.7	172.4	48"
36	DP-3 (Intercepted)	1.44	2.28	11.7	3.90	6.55	5.6	14.9	24"
37	DP-4 (Intercepted)	0.91	2.03	12.1	3.84	6.44	3.5	13.1	24"
38	DP-6A (Intercepted)	0.60	0.49	7.8	4.51	7.57	2.7	3.7	18"
39	PIPE 36 + PIPE 37 + PIPE 38	2.95	4.80	12.1	3.84	6.44	11.3	30.9	30"

 JOB NAME:
 FORE

 JOB NUMBER:
 1175.7

 DATE:
 09/13/.

 CALCULATED BY:
 MAL

FOREST LAKES FILING NO. 7 1175.70 09/13/20

At-Grade Inlet - Flow Routing Design Point TOTAL INTERCEPTED FLOW-BY														
Design Point			101	AL				INTERCE	PIED			FLOW	-ВХ	
	CA5	CA100	15	I100	Q5	Q100	Q5	Q100	CA5	CA100	Q5	Q100	CA5	CA100
1A	2.33	3.43	4.00	6.72	9.3	23.1	8.8	15.1	2.20	2.25	0.5	8.0	0.13	1.19
1B	1.10	3.25	4.00	6.72	4.4	21.8	4.4	14.6	1.10	2.17	0.0	7.2	0.00	1.08
2	0.90	2.61	4.00	6.72	3.6	17.6	3.6	13.1	0.90	1.95	0.0	4.5	0.00	0.66
3	1.43	3.42	3.90	6.55	5.6	22.4	5.6	14.9	1.44	2.28	0.0	7.5	0.00	1.14
4	0.91	2.74	3.84	6.44	3.5	17.7	3.5	13.1	0.91	2.03	0.0	4.6	0.00	0.71
6A	0.99	1.18	4.51	7.57	4.5	8.9	2.7	3.7	0.60	0.49	1.8	5.2	0.40	0.69
9	1.85	2.84	4.11	6.90	7.6	19.6	7.5	13.8	1.83	2.00	0.1	5.8	0.03	0.84
10	1.36	2.68	4.11	6.90	5.6	18.5	5.6	13.4	1.35	1.94	0.0	5.1	0.00	0.74
11	0.48	1.33	4.11	6.90	2.0	9.2	2.0	6.9	0.48	1.00	0.0	2.3	0.00	0.33
12	1.04	1.41	4.12	6.92	4.3	9.7	4.2	7.1	1.02	1.03	0.1	2.6	0.02	0.38
21	2.29	9.14	3.38	5.67	7.7	51.9	7.7	46.5	2.28	8.19	0.0	5.4	0.00	0.95
22	2.43	10.67	3.38	5.67	8.2	60.6	8.2	46.6	2.43	8.21	0.0	14.0	0.00	2.46
23	0.99	6.44	3.38	5.67	3.4	36.5	3.4	35.8	1.00	6.31	0.0	0.7	0.00	0.13

JOB NAME: JOB NUMBER: DATE: CALCULATED BY:

FOREST LAKES FILING NO. 7 1175.70

09/13/20

MAL

FINAL DRAINAGE REPORT ~ PIPE TRAVEL TIMES							
	STREET / CHANNEL FLOW						
PIPE RUN	Pipe Diameter	Length	Slope	Velocity	Тс		
	(ft)	(ft)	(%)	(fps)	(min)		
3	2.5	355	6.0%	20.5	0.3		
16	3.5	246	6.0%	25.7	0.2		
18	3.5	105	1.0%	10.5	0.2		
22	4.0	318	0.5%	8.1	0.7		
29	4.0	330	4.0%	22.9	0.2		
31	4.0	310	4.0%	22.9	0.2		
33	4.5	450	4.0%	24.8	0.3		
39	2.5	340	2.0%	11.8	0.5		

INLET MANAGEMENT

Worksheet Protected

INLET NAME	DP-1A INLET	DP-1B INLET	DP-2 INLET	DP-3 INLET	DP-4 INLET	DP-5 INLET
ite Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN	URBAN	URBAN
het Application (Street or Area)	STREET	STREET	STREET	STREET	STREET	STREET
ydraulic Condition	On Grade	On Grade	On Grade	On Grade	On Grade	In Sump
ilet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Openir
R-DEFINED INPUT						
Iser-Defined Design Flows						
/linor Q _{Known} (cfs)	9.3	3.9	3.6	5.6	3.5	2.7
Major Q _{Known} (cfs)	23.1	13.8	10.4	17.9	10.2	13.0
			•			
Bypass (Carry-Over) Flow from Upstream						
Receive Bypass Flow from:	No Bypass Flow Received	User-Defined	User-Defined	User-Defined	User-Defined	User-Defined
Ainor Bypass Flow Received, Q _b (cfs)	0.0	0.5	0.0	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cls)	0.0	8.0	7.2	4.5	7.5	4.6
vajor Bypass Flow Received, Qb (cls)	0.0	8.0	1.2	4.5	1.5	4.6
Vatershed Characteristics						
Subcatchment Area (acres)						
Percent Impervious						
NRCS Soil Type						
1100 001 i jpo						
Natarahad Brafila						
Vatershed Profile						
Overland Slope (ft/ft)						
Overland Length (ft)						
Channel Slope (ft/ft)						
Channel Length (ft)						
Ainor Storm Rainfall Input						
Design Storm Return Period, Tr (years)						
One-Hour Precipitation, P ₁ (inches)						
Major Storm Rainfall Input						
Design Storm Return Period, Tr (years)						
			-			
Dne-Hour Precipitation, P1 (inches)						
Dne-Hour Precipitation, P1 (inches)						
Dne-Hour Precipitation, P1 (inches)	9.3	4.4	3.6	5.6	3.5	2.7
Dne-Hour Precipitation, P ₁ (inches) LCULATED OUTPUT Vinor Total Design Peak Flow, Q (cfs)	9.3	4.4 21.8			3.5	2.7 17.6
Dne-Hour Precipitation, P ₁ (inches) LCULATED OUTPUT Vinor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs)	23.1	21.8	17.6	22.4	17.7	17.6
Design Storm Return Period, T, (years) Dne-Hour Precipitation, P ₁ (inches) LCULATED OUTPUT Winor Total Design Peak Flow, Q (cfs) Wajor Total Design Peak Flow, Q (cfs) Winor Flow Bypassed Downstream, O _v (cfs) Winor Flow Bypassed Downstream, O _v (cfs)	23.1 0.5	21.8 0.0	17.6 0.0	22.4 0.0	17.7 0.0	17.6 N/A
Ine-Hour Precipitation, P ₁ (inches) .CULATED OUTPUT linor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) linor Flow Bypassed Downstream, Q, (cfs)	23.1	21.8	17.6	22.4	17.7	17.6
Dne-Hour Precipitation, P ₁ (inches) _CULATED OUTPUT Anor Total Design Peak Flow, Q (cfs) Anor Flow Bypassed Downstream, O _b (cfs) Anor Flow Bypassed Downstream, O _b (cfs) Anor Flow Bypassed Downstream, O _b (cfs)	23.1 0.5 8.0	21.8 0.0	17.6 0.0	22.4 0.0	17.7 0.0	17.6 N/A
Ine-Hour Precipitation, P ₁ (inches) CULATED OUTPUT Inor Total Design Peak Flow, Q (cfs) Inor Flow Bypassed Downstream, Q_b (cfs) Inor Flow Bypassed Downstream, Q_b (cfs) Inor Flow Bypassed Downstream, Q_b (cfs)	23.1 0.5 8.0	21.8 0.0 7.2	17.6 0.0 4.5	22.4 0.0 7.5	17.7 0.0 4.6	17.6 N/A N/A
Ine-Hour Precipitation, P ₁ (inches) CULATED OUTPUT Linor Total Design Peak Flow, Q (cfs) Ligor Total Design Peak Flow, Q (cfs) Linor Flow Bypassed Downstream, Q_b (cfs) Liajor Flow Bypassed Downstream, Q_b (cfs)	23.1 0.5 8.0 ime N/A	21.8 0.0 7.2 N/A	17.6 0.0 4.5	22.4 0.0 7.5 N/A	17.7 0.0 4.6	17.6 N/A N/A N/A
Ine-Hour Precipitation, P ₁ (inches) CULATED OUTPUT linor Total Design Peak Flow, Q (cfs) linor Flow Bypassed Downstream, Q _b (cfs) lajor Flow Bypassed Downstream, Q _b (cfs) lajor Flow Bypassed Downstream, Q _b (cfs) lajor Storm (Calculated) Analysis of Flow T s	23.1 0.5 8.0 ime N/A N/A	21.8 0.0 7.2 N/A N/A	17.6 0.0 4.5 N/A N/A	22.4 0.0 7.5 N/A N/A	17.7 0.0 4.6 N/A N/A	17.6 N/A N/A N/A
Ine-Hour Precipitation, P ₁ (inches) .CULATED OUTPUT Itinor Total Design Peak Flow, Q (cfs) Iajor Total Design Peak Flow, Q (cfs) Iajor Flow Bypassed Downstream, Q ₆ (cfs) Iajor Flow Bypassed Downstream, Q ₆ (cfs) Itinor Storm (Calculated) Analysis of Flow T ¹⁶ Verland Flow Velocity, Vi	23.1 0.5 8.0 ime N/A N/A N/A	21.8 0.0 7.2 N/A N/A N/A	17.6 0.0 4.5 N/A N/A N/A	22.4 0.0 7.5 N/A N/A N/A	17.7 0.0 4.6 N/A N/A N/A	17.6 N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) inor Flow Bypassed Downstream, Q _b (cfs) ajor Flow Bypassed Downstream, Q _b (cfs) inor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, Vi hannel Flow Velocity, Vi	23.1 0.5 8.0 ime N/A N/A N/A	21.8 0.0 7.2 N/A N/A N/A N/A	17.6 0.0 4.5 N/A N/A N/A N/A	22.4 0.0 7.5 N/A N/A N/A N/A N/A	17.7 0.0 4.6 N/A N/A N/A N/A	17.6 N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT linor Total Design Peak Flow, Q (cfs) linor Flow Bypassed Downstream, Q_b (cfs) linor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, Vi hannel Flow Velocity, Vi	23.1 0.5 8.0 ime N/A N/A N/A	21.8 0.0 7.2 N/A N/A N/A	17.6 0.0 4.5 N/A N/A N/A	22.4 0.0 7.5 N/A N/A N/A	17.7 0.0 4.6 N/A N/A N/A	17.6 N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) inor Flow Bypassed Downstream, Q _b (cfs) inor Flow Bypassed Downstream, Q _b (cfs) inor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, Vi hannel Flow Velocity, Vi verland Flow Time, Ti	23.1 0.5 8.0 ime N/A N/A N/A	21.8 0.0 7.2 N/A N/A N/A N/A	17.6 0.0 4.5 N/A N/A N/A N/A	22.4 0.0 7.5 N/A N/A N/A N/A N/A	17.7 0.0 4.6 N/A N/A N/A N/A	17.6 N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT linor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) linor Flow Bypassed Downstream, Q_b (cfs) linor Storm (Calculated) Analysis of Flow T <u>s</u> werfand Flow Velocity, VI hannel Flow Velocity, VI hannel Flow Velocity, VI werfand Flow Time, Ti hannel Travel Time, Ti	23.1 0.5 8.0 ime N/A N/A N/A N/A N/A N/A	21.8 0.0 7.2 N/A N/A N/A N/A N/A N/A N/A	17.6 0.0 4.5 N/A N/A N/A N/A N/A N/A	22.4 0.0 7.5 N/A N/A N/A N/A N/A N/A N/A N/A	17.7 0.0 4.6 N/A N/A N/A N/A N/A N/A N/A	17.6 N/A N/A N/A N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) inor Flow Bypassed Downstream, Q ₆ (cfs) iajor Flow Bypassed Downstream, Q ₆ (cfs) iajor Flow Bypassed Downstream, Q ₈ (cfs) inor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, V1 hannel Flow Velocity, V1 hannel Flow Time, T1 hannel Fravel Time, T1 hannel Fravel Time, T1 hannel Fravel Time, T0 hannel Flow Time of Concentration, T ₆	23.1 0.5 8.0 ime N/A N/A N/A N/A N/A N/A N/A	21.8 0.0 7.2 N/A N/A N/A N/A N/A N/A N/A N/A	17.6 0.0 4.5 N/A N/A N/A N/A N/A N/A N/A	22.4 0.0 7.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.7 0.0 4.6 N/A N/A N/A N/A N/A N/A N/A N/A	17.6 N/A N/A N/A N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) inor Flow Bypassed Downstream, Q ₆ (cfs) iajor Flow Bypassed Downstream, Q ₆ (cfs) iajor Flow Bypassed Downstream, Q ₆ (cfs) inor Storm (Calculated) Analysis of Flow T § vertand Flow Velocity, VI vertand Flow Velocity, VI hannel Flow Velocity, VI bannel Travel Time, TI alculated Time of Concentration, T _c egional T _c	23.1 0.5 8.0 ime N/A N/A N/A N/A N/A N/A N/A N/A	21.8 0.0 7.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.6 0.0 4.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A	22.4 0.0 7.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.7 0.0 4.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT linor Total Design Peak Flow, Q (cfs) linor Flow Bypassed Downstream, Q _b (cfs) linor Flow Bypassed Downstream, Q _b (cfs) linor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, Vi hannel Flow Velocity, Vi hannel Flow Velocity, Vi everland Flow Time, Ti hannel Travel Time, Tt alculated Time of Concentration, T _c egional T _c ecommended T _c	23.1 0.5 8.0 ime N/A N/A N/A N/A N/A N/A N/A N/A	21.8 0.0 7.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.6 0.0 4.5 N/A	22.4 0.0 7.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.7 0.0 4.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Ine-Hour Precipitation, P ₁ (inches) CULATED OUTPUT finor Total Design Peak Flow, Q (cfs) finor Flow Bypassed Downstream, Q ₆ (cfs) finor Flow Bypassed Downstream, Q ₆ (cfs) finor Storm (Calculated) Analysis of Flow T is byerland Flow Velocity, Vi byerland Flow Velocity, Vi byerland Flow Time, Ti channel Flow Velocity, Vt byerland Flow Time, Ti channel Travel Time, Ti channel Trave	23.1 0.5 8.0 ime N/A N/A N/A N/A N/A N/A N/A N/A	21.8 0.0 7.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.6 0.0 4.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	22.4 0.0 7.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.7 0.0 4.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Ine-Hour Precipitation, P ₁ (inches) CULATED OUTPUT Inor Total Design Peak Flow, Q (cfs) Inor Flow Bypassed Downstream, Q ₆ (cfs) Inor Storm (Calculated) Analysis of Flow T is iverland Flow Velocity, Vi inannel Flow Velocity, Vi iverland Flow Velocity, Vi iverland Flow Time, Ti inannel Trave Time, Ti inannel Trave Time, Ti is iscommended T ₆ tecommended T ₆ s selected by User eseign Rainfall Intensity, I	23.1 0.5 8.0 ime N/A N/A N/A N/A N/A N/A N/A N/A	21.8 0.0 7.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.6 0.0 4.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	22.4 0.0 7.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.7 0.0 4.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT tinor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q (cfs) linor Flow Bypassed Downstream, Q₀ (cfs) linor Storm (Calculated) Analysis of Flow T s werland Flow Velocity, V1 hannel Flow Velocity, V1 hannel Flow Velocity, V1 werland Flow Time, T1 hannel Travel Time, T1 hannel Travel Time, T2 alculated Time of Concentration, T _c egional T _c esommended T _c s selected by User esign Rainfall Intensity, I	23.1 0.5 8.0 ime N/A N/A N/A N/A N/A N/A N/A N/A	21.8 0.0 7.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.6 0.0 4.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	22.4 0.0 7.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.7 0.0 4.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) inor Flow Bypassed Downstream, Q ₀ (cfs) inor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, V1 hannel Travel Time, T1 hannel Flow Velocity, V1 verland Flow Time, T1 hannel Travel Time, T1 alculated Time of Concentration, T _c egional T _c selected by User esign Rainfall Intensity, I	23.1 0.5 8.0 ime N/A N/A N/A N/A N/A N/A N/A N/A	21.8 0.0 7.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.6 0.0 4.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	22.4 0.0 7.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.7 0.0 4.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) ajor Flow Bypassed Downstream, Q _b (cfs) ajor Flow Bypassed Downstream, Q _b (cfs) ajor Storm (Calculated) Analysis of Flow T verland Flow Velocity, Vi hannel Flow Velocity, Vi hannel Flow Velocity, Vt verland Flow Velocity, Vt selocted Diversed T _c selocted by User asign Rainfall Intensity, I alculated Local Peak Flow, Q _p	23.1 0.5 8.0 ime N/A N/A N/A N/A N/A N/A N/A N/A	21.8 0.0 7.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.6 0.0 4.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	22.4 0.0 7.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.7 0.0 4.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) ajor Flow Bypassed Downstream, Q _b (cfs) signer Storm (Calculated) Analysis of Flow Time, TI bit the flow Velocity, VI bit the of Concentration, T _c bit the of Concentration, T _c bit the of Concentration, T _c bit the of Dyber bit the of Dyber bit the signer Bainfall Intensity, I bit the si	23.1 0.5 8.0 ime N/A N/A N/A N/A N/A N/A N/A N/A	21.8 0.0 7.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.6 0.0 4.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	22.4 0.0 7.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.7 0.0 4.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) ajor Flow Bypassed Downstream, Q _b (cfs) signer Storm (Calculated) Analysis of Flow Time, TI bit the flow Velocity, VI bit the of Concentration, T _c bit the of Concentration, T _c bit the of Concentration, T _c bit the of Dyber bit the of Dyber bit the signer Bainfall Intensity, I bit the si	23.1 0.5 8.0 ime N/A N/A N/A N/A N/A N/A N/A N/A	21.8 0.0 7.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.6 0.0 4.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	22.4 0.0 7.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.7 0.0 4.6 N/A N/A N/A N/A N/A N/A N/A N/A	17.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) inor Flow Bypassed Downstream, Q ₀ (cfs) inor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, Vi hannel Frave Velocity, Vi hannel Flow Velocity, Vi hannel Flow Velocity, Vi bannel Flow Velocity, Vi bann	23.1 0.5 8.0 ime N/A N/A N/A N/A N/A N/A N/A N/A	21.8 0.0 7.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.6 0.0 4.5 N/A	22.4 0.0 7.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.7 0.0 4.6 N/A	17.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) inor Flow Bypassed Downstream, Q _b (cfs) ajor Flow Bypassed Downstream, Q _b (cfs) inor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, Vi hannel Flow Velocity, Vi verland Flow Time, Ti hannel Travel Time, Ti alculated Time of Concentration, T _c gional T _c ecommended T _c s selected by User esign Rainfail Intensity, Ia alculated Local Peak Flow, Q _c ajor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, Vi	23.1 0.5 8.0 ime N/A N/A N/A N/A N/A N/A N/A N/A	21.8 0.0 7.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.6 0.0 4.5 N/A	22.4 0.0 7.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.7 0.0 4.6 N/A	17.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) inor Flow Bypassed Downstream, Q ₆ (cfs) lajor Total Design Peak Flow, Q (cfs) lajor Flow Bypassed Downstream, Q ₆ (cfs) lajor Storm (Calculated) Analysis of Flow T s s verland Flow Velocity, Vi haioral Intensity, I alculated Time of Concentration, T ₆ esign Rainfall Intensity, I alculated Local Peak Flow, Q ₆ lajor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, Vi hannel Flow Velocity, Vi	23.1 0.5 8.0 ime N/A N/A N/A N/A N/A N/A N/A N/A	21.8 0.0 7.2 N/A N/A N/A N/A N/A N/A N/A N/A	17.6 0.0 4.5 N/A	22.4 0.0 7.5 N/A N/A N/A N/A N/A N/A N/A N/A	17.7 0.0 4.6 N/A	17.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) inor Flow Bypassed Downstream, Q ₆ (cfs) inor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, VI verland Flow Velocity, VI verland Flow Velocity, VI solutient Time, TI alculated Time of Concentration, T _c egional T _c selected by User esion Rainfall Intensity, I alculated Local Peak Flow, Q _p lajor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, VI selected by User esion Rainfall Intensity, I alculated Local Peak Flow, Q _p lajor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, VI verland	23.1 0.5 8.0 ime N/A N/A N/A N/A N/A N/A N/A N/A	21.8 0.0 7.2 N/A N/A N/A N/A N/A N/A N/A N/A	17.6 0.0 4.5 N/A	22.4 0.0 7.5 N/A N/A N/A N/A N/A N/A N/A N/A	17.7 0.0 4.6 N/A	17.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT linor Total Design Peak Flow, Q (cfs) linor Flow Bypassed Downstream, Q ₆ (cfs) linor Flow Bypassed Downstream, Q ₆ (cfs) linor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, VI hannel Travel Time, TI alculated Time of Concentration, T _c egional T _c ecommended T _c selected by User esign Rainfall Intensity, I alculated Local Peak Flow, Q _p lajor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, VI verland Flow Velocity, VI verland Flow Velocity, VI s	23.1 0.5 8.0 ime N/A N/A N/A N/A N/A N/A N/A N/A	21.8 0.0 7.2 N/A N/A N/A N/A N/A N/A N/A N/A	17.6 0.0 4.5 N/A	22.4 0.0 7.5 N/A N/A N/A N/A N/A N/A N/A N/A	17.7 0.0 4.6 N/A	17.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) inor Flow Bypassed Downstream, Q _b (cfs) inor Flow Bypassed Downstream, Q _b (cfs) inor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, Vi hannel Flow Velocity, Vi verland Flow Time, Ti alculated Time of Concentration, T _c egional T _c ecommended T _c selected by User esign Rainfall Intensity, I alculated Local Peak Flow, Q _p lajor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, Vi hannel Flo	23.1 0.5 8.0 ime N/A N/A N/A N/A N/A N/A N/A N/A	21.8 0.0 7.2 N/A N/A N/A N/A N/A N/A N/A N/A	17.6 0.0 4.5 N/A	22.4 0.0 7.5 N/A N/A N/A N/A N/A N/A N/A N/A	17.7 0.0 4.6 N/A	17.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
De-Hour Precipitation, P ₁ (inches) CULATED OUTPUT Alinor Total Design Peak Flow, Q (cfs) Algor Total Design Peak Flow, Q (cfs) Alinor Flow Bypassed Downstream, Q _b (cfs) Alinor Flow Bypassed Downstream, Q _b (cfs) Alinor Storm (Calculated) Analysis of Flow T Channel Flow Velocity, Vi Channel Travel Time, Tt Channel Travel Time, Tt Calculated Local Peak Flow, Q _p Alior Storm (Calculated) Analysis of Flow T Calculated Local Peak Flow, Q _p Alior Storm (Calculated) Analysis of Flow T Calculated Local Peak Flow, Q _p Alior Storm (Calculated) Analysis of Flow T Calculated Local Peak Flow, Q _p Alior Storm (Calculated) Analysis of Flow T Calculated Local Peak Flow, Q _p Alior Storm (Calculated) Analysis of Flow T Calculated Local Peak Flow, Q _p Alior Storm (Calculated) Analysis of Flow T Calculated Local Peak Flow, Q _p Alior Storm (Calculated) Analysis of Flow T Calculated Flow Velocity, Vi Dverland Flow Velocity, Vi Dverland Flow Velocity, Vi Dverland Flow Time, Tt Channel Travel Time, Tt Calculated Irme of Concentration, T _c	23.1 0.5 8.0 ime N/A	21.8 0.0 7.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17.6 0.0 4.5 N/A	22.4 0.0 7.5 N/A N/A N/A N/A N/A N/A N/A N/A	17.7 0.0 4.6 N/A	17.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT Inor Total Design Peak Flow, Q (cfs) Inor Flow Bypassed Downstream, Q ₆ (cfs) Inor Flow Bypassed Downstream, Q ₆ (cfs) Inor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, VI hannel Travel Time, Tt alculated Time of Concentration, T _c gional T _c ecommended T _c s selected by User esign Rainfall Intensity, I alculated Flow Velocity, VI hannel Flow Velocity, VI hannel Flow Velocity, VI hannel Flow Velocity, I alculated Cocal Peak Flow, Q _p Hajor Storm (Calculated) Analysis of Flow T s verland Flow Velocity, VI hannel Travel Time, Tt hannel Flow Velocity, VI hannel Flow Flow, T hannel Flow, T hannel Flow Flow, T hannel Flow, T hannel Flow Flow, T hannel F	23.1 0.5 8.0 ime N/A N/A N/A N/A N/A N/A N/A N/A	21.8 0.0 7.2 N/A N/A N/A N/A N/A N/A N/A N/A	17.6 0.0 4.5 N/A	22.4 0.0 7.5 N/A N/A N/A N/A N/A N/A N/A N/A	17.7 0.0 4.6 N/A	17.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
he-Hour Precipitation, P ₁ (inches) CULATED OUTPUT Linor Total Design Peak Flow, Q (cfs) Linor Flow Bypassed Downstream, Q₀ (cfs) Linor Flow Bypassed Downstream, Q₀ (cfs) Linor Storm (Calculated) Analysis of Flow T Linor Flow Velocity, Vi Linor F	23.1 0.5 8.0 ime N/A N/A N/A N/A N/A N/A N/A N/A	21.8 0.0 7.2 N/A N/A N/A N/A N/A N/A N/A N/A	17.6 0.0 4.5 N/A N/A	22.4 0.0 7.5 N/A N/A N/A N/A N/A N/A N/A N/A	17.7 0.0 4.6 N/A N/A	17.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Ine-Hour Precipitation, P ₁ (inches) CULATED OUTPUT Inor Total Design Peak Flow, Q (cfs) Inor Flow Bypassed Downstream, Q ₆ (cfs) Inor Flow Bypassed Downstream, Q ₆ (cfs) Inor Storm (Calculated) Analysis of Flow T is breatman Flow Velocity, VI breatman Flow Velocity, VI breatman Flow Velocity, VI breatmanel Travel Time, TI calculated Time of Concentration, T _c tegional T _c c selected by User breatman Flow Velocity, VI breatman Flow Velocity, II breatmanel Tavel Time, TI calculated Local Peak Flow, Q ₀ breatman Flow Velocity, VI breatman Flow Velocity, VI breatman Flow Velocity, VI breatmanel Tavel Time, TI calculated Local Peak Flow, Q ₀ breatman Flow Velocity, VI breatman Flow	23.1 0.5 8.0 ime N/A N/A N/A N/A N/A N/A N/A N/A	21.8 0.0 7.2 N/A N/A N/A N/A N/A N/A N/A N/A	17.6 0.0 4.5 N/A N/A	22.4 0.0 7.5 N/A N/A N/A N/A N/A N/A N/A N/A	17.7 0.0 4.6 N/A	17.6 N/A N/A N/A N/A N/A N/A N/A N/A
Ine-Hour Precipitation, P ₁ (inches) CULATED OUTPUT Inor Total Design Peak Flow, Q (cfs) Inor Flow Bypassed Downstream, Q ₆ (cfs) Inor Flow Bypassed Downstream, Q ₆ (cfs) Inor Storm (Calculated) Analysis of Flow T is verland Flow Velocity, V1 Anannel Travel Time, Tt Iaculated Time of Concentration, T _c Isign Rainfall Intensity, I Ialculated Iccal Peak Flow, Q _p tajor Storm (Calculated) Analysis of Flow T is verland Flow Velocity, V1 Anannel Travel Time, Tt Iaculated Time of Concentration, T _c Isign Rainfall Intensity, I Ialculated Intensity, I Ialculated Flow Velocity, V1 Ananel Flow Velocity, V1 Ananel Travel Time, Tt Is Ananel Flow Velocity, V1 Ananel	23.1 0.5 8.0 ime N/A N/A N/A N/A N/A N/A N/A N/A	21.8 0.0 7.2 N/A N/A N/A N/A N/A N/A N/A N/A	17.6 0.0 4.5 N/A N/A	22.4 0.0 7.5 N/A N/A N/A N/A N/A N/A N/A N/A	17.7 0.0 4.6 N/A N/A	17.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

INLET MANAGEMENT

Worksheet Protected

NLET NAME	DP-6B INLET	DP-6A INLET	DP-9 INLET	DP-10 INLET	DP-11 INLET	DP-12 INLET
Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN	URBAN	URBAN
Application (Street or Area)	STREET	STREET	STREET	STREET	STREET	STREET
raulic Condition	In Sump	On Grade	On Grade	On Grade	On Grade	On Grade
Туре	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Openin
DEFINED INPUT						
r-Defined Design Flows						
or Q _{Known} (cfs)	2.4	4.5	7.6	5.5	2.0	4.3
or Q _{Known} (cfs)	4.9	8.9	19.6	12.7	4.1	9.7
pass (Carry-Over) Flow from Upstream						
ceive Bypass Flow from:	User-Defined	No Bypass Flow Received	No Bypass Flow Received	User-Defined	No Bypass Flow Received	No Bypass Flow Received
or Bypass Flow Received, Q _b (cfs)	1.8	0.0	No Bypass Flow Received	0.1	0.0	0.0
or Bypass Flow Received, Q _b (cfs)	5.2	0.0		5.8	5.1	0.0
	5.2	0.0		5.0	5.1	0.0
tershed Characteristics		-				
bcatchment Area (acres)						
rcent Impervious						
RCS Soil Type						l
atershed Profile						
erland Slope (ft/ft)						
verland Length (ft)						
nannel Slope (ft/ft)						
annel Length (ft)						
nor Storm Rainfall Input						
esign Storm Return Period, T _r (years)						
ne-Hour Precipitation, P1 (inches)						
ajor Storm Rainfall Input						
ajor Storm Rainfall Input esign Storm Return Period, Tr (years) ne-Hour Precipitation, P1 (inches)						
sign Storm Return Period, Tr (years) le-Hour Precipitation, P1 (inches)						
sign Storm Return Period, T, (years) e-Hour Precipitation, P, (inches) CULATED OUTPUT nor Total Design Peak Flow, Q (cfs)	42	4.5	7.6	5.6	2.0	4.3
sign Storm Return Period, T, (years) e-Hour Precipitation, P, (inches) CULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs)	10.1	8.9	19.6	18.5	9.2	9.7
sign Storm Return Period, T, (years) le-Hour Precipitation, P1 (inches) CULATED OUTPUT nor Total Design Peak Flow, Q (cfs) ijor Total Design Peak Flow, Q (cfs) nor Flow Bypassed Downstream, Q, (cfs)	10.1 N/A	8.9 1.8	19.6 0.1	18.5 0.0	9.2 0.0	9.7 0.1
sign Storm Return Period, T _r (years) e-Hour Precipitation, P ₁ (inches) CULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs)	10.1	8.9	19.6	18.5	9.2	9.7
sign Storm Return Period, T _r (years) e-Hour Precipitation, P ₁ (inches) CULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) nor Flow Bypassed Downstream, Q _b (cfs) jor Flow Bypassed Downstream, Q _b (cfs)	10.1 N/A N/A	8.9 1.8 5.2	19.6 0.1 5.8	18.5 0.0 5.1	9.2 0.0 2.3	9.7 0.1 2.6
sign Storm Return Period, T _r (years) e-Hour Precipitation, P ₁ (inches) ULATED OUTPUT nor Total Design Peak Flow, Q (cfs) for Total Design Peak Flow, Q (cfs) for Flow Bypassed Downstream, Q ₆ (cfs) for Flow Bypassed Downstream, Q ₆ (cfs)	10.1 N/A N/A	8.9 1.8 5.2 N/A	19.6 0.1 5.8 N/A	18.5 0.0 5.1 N/A	9.2 0.0 2.3 N/A	9.7 0.1 2.6 N/A
sign Storm Return Period, T _r (years) e-Hour Precipitation, P ₁ (inches) ULATED OUTPUT nor Total Design Peak Flow, Q (cfs) for Total Design Peak Flow, Q (cfs) for Flow Bypassed Downstream, Q ₀ (cfs) for Flow Bypassed Downstream, Q ₀ (cfs) for Storm (Calculated) Analysis of Flow T	10.1 N/A N/A	8.9 1.8 5.2 N/A N/A	19.6 0.1 5.8 N/A N/A	18.5 0.0 5.1 N/A N/A	9.2 0.0 2.3 N/A N/A	9.7 0.1 2.6 N/A N/A
sign Storm Return Period, T, (years) e-Hour Precipitation, P₁ (inches) ULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) jor Flow Bypassed Downstream, Q₀ (cfs) jor Flow Bypassed Downstream, Q₀ (cfs) jor Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi	10.1 N/A N/A	8.9 1.8 5.2 N/A N/A N/A	19.6 0.1 5.8 N/A N/A N/A	18.5 0.0 5.1 N/A N/A N/A	9.2 0.0 2.3 N/A N/A N/A N/A	9.7 0.1 2.6 N/A N/A N/A
sign Storm Return Period, T _r (years) e-Hour Precipitation, P ₁ (inches) CULATED OUTPUT nor Total Design Peak Flow, Q (cfs) ijor Total Design Peak Flow, Q (cfs) or Flow Bypassed Downstream, Q ₆ (cfs) jor Flow Bypassed Downstream, Q ₆ (cfs) nor Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Flow Velocity, Vi	10.1 N/A N/A N/A N/A N/A	8.9 1.8 5.2 N/A N/A N/A	19.6 0.1 5.8 NVA NVA NVA NVA NVA	18.5 0.0 5.1 N/A N/A N/A N/A	9.2 0.0 2.3 N/A N/A N/A N/A N/A	9.7 0.1 2.6 N/A N/A N/A N/A
sign Storm Return Period, T, (years) e-Hour Precipitation, P₁ (inches) ULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) jor Flow Bypassed Downstream, Q₀ (cfs) jor Flow Bypassed Downstream, Q₀ (cfs) nor Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Flow Velocity, Vi annel Flow Velocity, Vt	10.1 N/A N/A N/A N/A N/A N/A N/A	8.9 1.8 5.2 N/A N/A N/A N/A	19.6 0.1 5.8 N/A N/A N/A N/A N/A N/A	18.5 0.0 5.1 N/A N/A N/A N/A N/A N/A	9.2 0.0 2.3 N/A N/A N/A N/A N/A N/A	9.7 0.1 2.6 N/A N/A N/A N/A N/A
sign Storm Return Period, T, (years) -Hour Precipitation, P₁ (inches) ULATED OUTPUT Nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) or Flow Bypassed Downstream, Q _b (cfs) for Flow Bypassed Downstream, Q _b (cfs) nor Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Flow Velocity, Vi annel Flow Time, Ti annel Travel Time, Tt	10.1 N/A N/A N/A N/A N/A N/A N/A N/A	8.9 1.8 5.2 N/A N/A N/A N/A N/A N/A N/A	19.6 0.1 5.8 N/A N/A N/A N/A N/A N/A N/A	18.5 0.0 5.1 N/A N/A N/A N/A N/A N/A N/A	9.2 0.0 2.3 N/A N/A N/A N/A N/A N/A N/A N/A	9.7 0.1 2.6 N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T _r (years) a-Hour Precipitation, P ₁ (inches) ULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) or Flow Bypassed Downstream, Q ₆ (cfs) for Flow Bypassed Downstream, Q ₆ (cfs) nor Storm (Calculated) Analysis of Flow T erland Flow Velocity, VI annel Flow Velocity, VI annel Flow Velocity, VI annel Flow Time, Ti annel Travel Time, Tt culated Time of Concentration, T _c	10.1 N/A N/A N/A N/A N/A N/A N/A N/A	8.9 1.8 5.2 N/A N/A N/A N/A N/A N/A N/A N/A	19.6 0.1 5.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A	18.5 0.0 5.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.2 0.0 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.7 0.1 2.6 N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T, (years) e-Hour Precipitation, P₁ (inches) ULATED OUTPUT tor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) jor Flow Bypassed Downstream, Q₀ (cfs) jor Flow Bypassed Downstream, Q₀ (cfs) jor Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Flow Velocity, Vi annel Travel Time, Ti culated Time of Concentration, T₅ gional T₅	10.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	8.9 1.8 5.2 N/A N/A N/A N/A N/A N/A N/A N/A	19.6 0.1 5.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	18.5 0.0 5.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.2 0.0 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.7 0.1 2.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T _r (years) e-Hour Precipitation, P ₁ (inches) ULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) ior Flow Bypassed Downstream, Q₆ (cfs) ior Flow Bypassed Downstream, Q₆ (cfs) ior Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Flow Velocity, Vi annel Flow Velocity, Vt erland Flow Velocity, Vt erland Flow Velocity, Vt erland Flow Time, Tt culated Time of Concentration, T _c gional T _c sommended T _c	10.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	8.9 1.8 5.2 N/A	19.6 0.1 5.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	18.5 0.0 5.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.2 0.0 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.7 0.1 2.6 N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T, (years) e-Hour Precipitation, P₁ (inches) ULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) jor Flow Bypassed Downstream, Q₀ (cfs) jor Flow Bypassed Downstream, Q₀ (cfs) ior Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Flow Velocity, Vi annel Flow Velocity, Vi annel Flow Time, Ti culated Time of Concentration, T₀ gional T₀ commended T₀ selected by User	10.1 N/A N/A N/A N/A N/A N/A N/A N/A	8.9 1.8 5.2 N/A	19.6 0.1 5.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	18.5 0.0 5.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.2 0.0 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.7 0.1 2.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T, (years) a-Hour Precipitation, P₁ (inches) ULATED OUTPUT Nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) ior Flow Bypassed Downstream, Q₀ (cfs) ior Flow Bypassed Downstream, Q₀ (cfs) ior Storm (Calculated) Analysis of Flow T end Flow Velocity, Vi annel Flow Velocity, Vi annel Travel Time, Ti culated Time of Concentration, T₀ jonal T₀ commended T₀ selected by User sign Rainfall Intensity, I	10.1 N/A N/A N/A N/A N/A N/A N/A N/A	8.9 1.8 5.2 N/A	19.6 0.1 5.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	18.5 0.0 5.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.2 0.0 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.7 0.1 2.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T, (years) e-Hour Precipitation, P₁ (inches) ULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) ior Flow Bypassed Downstream, Q _b (cfs) ior Flow Bypassed Downstream, Q _b (cfs) ior Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Frow Velocity, Vi erland Flow Time, Ti annel Travel Time, Ti commended T _c sign Rainfall Intensity, I	10.1 N/A N/A N/A N/A N/A N/A N/A N/A	8.9 1.8 5.2 N/A	19.6 0.1 5.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	18.5 0.0 5.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.2 0.0 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.7 0.1 2.6 N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T, (years) e-Hour Precipitation, P₁ (inches) ULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) jor Flow Bypassed Downstream, Q₀ (cfs) jor Flow Bypassed Downstream, Q₀ (cfs) jor Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Flow Velocity, Vi annel Flow Velocity, Vi annel Flow Velocity, Vi annel Travel Time, Ti culated Time, Ti culated Time of Concentration, Tc selected by User sign Rainfall Intensity, I culated Local Peak Flow, Q₀	10.1 N/A N/A N/A N/A N/A N/A N/A N/A	8.9 1.8 5.2 N/A	19.6 0.1 5.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	18.5 0.0 5.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.2 0.0 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.7 0.1 2.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ign Storm Return Period, T, (years) e-Hour Precipitation, P₁ (inches) ULATED OUTPUT tor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) ior Flow Bypassed Downstream, Q₀ (cfs) ior Flow Bypassed Downstream, Q₀ (cfs) ior Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Travel Time, Ti culated Time of Concentration, Tc pielected by User sign Rainfall Intensity, I culated Local Peak Flow, Qp	10.1 N/A N/A N/A N/A N/A N/A N/A N/A	8.9 1.8 5.2 N/A	19.6 0.1 5.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	18.5 0.0 5.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.2 0.0 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.7 0.1 2.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ign Storm Return Period, T, (years) e-Hour Precipitation, P₁ (inches) ULATED OUTPUT tor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) ior Flow Bypassed Downstream, Q₀ (cfs) ior Flow Bypassed Downstream, Q₀ (cfs) ior Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Travel Time, Ti culated Time of Concentration, Tc pielected by User sign Rainfall Intensity, I culated Local Peak Flow, Qp	10.1 N/A N/A N/A N/A N/A N/A N/A N/A	8.9 1.8 5.2 N/A	19.6 0.1 5.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	18.5 0.0 5.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.2 0.0 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.7 0.1 2.6 N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T, (years) a-Hour Precipitation, P₁ (inches) ULATED OUTPUT Nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) ior Flow Bypassed Downstream, Q₀ (cfs) ior Flow Bypassed Downstream, Q₀ (cfs) ior Flow Bypassed Downstream, Q₀ (cfs) ior Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Travel Time, Ti annel Travel Time, Ti culated Time of Concentration, T₀ jor attraine flow Velocity, I annel Travel Time, Ti culated Time of Concentration, T₀ selected by User sign Rainfall Intensity, I culated Local Peak Flow, Q₀ jor Storm (Calculated) Analysis of Flow T	10.1 N/A N/A N/A N/A N/A N/A N/A N/A	8.9 1.8 5.2 N/A	19.6 0.1 5.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	18.5 0.0 5.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.2 0.0 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.7 0.1 2.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T _r (years) -Hour Precipitation, P ₁ (inches) ULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) or Flow Bypassed Downstream, Q ₆ (cfs) for Bow Bypassed Downstream, Q ₆ (cfs) for Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Travel Time, Tt culated Time of Concentration, T _c gional T _c sommended T _c selected by User sign Rainfall Intensity, I culated Local Peak Flow, Q _p ior Storm (Calculated) Analysis of Flow T culated Local Peak Flow, Q _p	10.1 N/A	8.9 1.8 5.2 N/A	19.6 0.1 5.8 N/A N/A N/A N/A N/A N/A N/A N/A	18.5 0.0 5.1 N/A	9.2 0.0 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.7 0.1 2.6 N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T, (years) e-Hour Precipitation, P₁ (inches) ULATED OUTPUT tor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) ior Flow Bypassed Downstream, Q₀ (cfs) ior Flow Bypassed Downstream, Q₀ (cfs) ior Storm (Calculated) Analysis of Flow T erland Flow Velocity, VI annel Flow Velocity, VI annel Travel Time, TI culated Time, TI culated Time, TI culated Time, TI culated Time, TI selected by User sign Rainfall Intensity, I culated Local Peak Flow, Q₀ for Storm (Calculated) Analysis of Flow T erland Flow Velocity, VI annel Flow Velocity, VI annel Flow Velocity, VI annel Flow Velocity, VI	10.1 N/A	8.9 1.8 5.2 N/A	19.6 0.1 5.8 N/A	18.5 0.0 5.1 N/A	9.2 0.0 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.7 0.1 2.6 N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T, (years) e-Hour Precipitation, P₁ (inches) ULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) ior Flow Bypassed Downstream, Q _b (cfs) ior Flow Bypassed Downstream, Q _b (cfs) ior Flow Bypassed Downstream, Q _b (cfs) ior Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Travel Time, TI annel Travel Time, TI commended T _c selected by User sign Rainfall Intensity, I culated Local Peak Flow, Q _c jor Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Flow Velocity, Vi	10.1 N/A	8.9 1.8 5.2 N/A	19.6 0.1 5.8 N/A N/A N/A N/A N/A N/A N/A N/A	18.5 0.0 5.1 N/A	9.2 0.0 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.7 0.1 2.6 N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T, (years) e-Hour Precipitation, P₁ (inches) ULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) ior Flow Bypassed Downstream, Q₀ (cfs) ior Flow Bypassed Downstream, Q₀ (cfs) ior Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Flow Velocity, Vi annel Flow Velocity, Vi annel Flow User glonal Tc commended Tc elected by User sign Rainfall Intensity, I culated Time of Concentration, Tc glonal Tc commended Tc elected by User sign Rainfall Intensity, I culated Local Peak Flow, Qp for Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Flow Velocity, Vi annel Flow Velocity, Vi annel Flow Time, Ti annel Travel Time, Ti	10.1 N/A	8.9 1.8 5.2 N/A	19.6 0.1 5.8 N/A	18.5 0.0 5.1 N/A	9.2 0.0 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.7 0.1 2.6 N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T, (years) e-Hour Precipitation, P ₁ (inches) ULATED OUTPUT Nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) ior Flow Syssed Downstream, Q ₀ (cfs) ior Flow Bypassed Downstream, Q ₀ (cfs) ior Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Flow Velocity, Vi annel Travel Time, Ti annel Travel Time, Ti culated Time of Concentration, T _c jorand T _c selected by User sign Rainfall Intensity, I culated Local Peak Flow, Q _p erland Flow Velocity, Vi annel Flow Velocity, Vi	10.1 N/A N/A N/A N/A N/A N/A N/A N/A	8.9 1.8 5.2 N/A	19.6 0.1 5.8 N/A N/A N/A N/A N/A N/A N/A N/A	18.5 0.0 5.1 N/A	9.2 0.0 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.7 0.1 2.6 N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T, (years) -Hour Precipitation, P ₁ (inches) ULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) or Flow Bypassed Downstream, Q ₆ (cfs) or Flow Bypassed Downstream, Q ₆ (cfs) for Storm (Calculated) Analysis of Flow T annel Travel Time, Tt culated Time of Concentration, T _c joinal T _c beinerded by User sign Rainfall Intensity, I culated Local Peak Flow, Q _p terland Flow Velocity, Vi annel Travel Time, Tt culated Local Peak Flow, Q _p beinerded by User sign Rainfall Intensity, I culated Local Peak Flow, Q _p terland Flow Velocity, Vi annel Travel Time, Tt annel Travel Time, Tt annel Travel Time, Tt culated Time of Concentration, T _c jor Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Travel Time, Tt culated Time of Concentration, T _c joinal T _c	10.1 N/A	8.9 1.8 5.2 N/A	19.6 0.1 5.8 N/A	18.5 0.0 5.1 N/A	9.2 0.0 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.7 0.1 2.6 N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T, (years) e-Hour Precipitation, P₁ (inches) ULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) jor Flow Bypassed Downstream, Q₀ (cfs) jor Flow Bypassed Downstream, Q₀ (cfs) jor Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Flow Velocity, Vi annel Travel Time, Ti culated Time of Concentration, T₀ glonal T₀ selected by User sign Rainfall Intensity, 1 culated Local Peak Flow, Q₀ jor Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Flow Velocity, Vi erland Flow Time, Ti annel Flow Velocity, Vi annel Flow Velocity, Vi erland Flow Time, Ti annel Flow Velocity, Vi erland Flow Time, Ti culated Time of Concentration, T₀ glonal T₀ commended T₀ by Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi erland Flow Time, Ti culated Time of Concentration, T₀ glonal T₀ commended T₀	10.1 N/A N/A	8.9 1.8 5.2 N/A N/A	19.6 0.1 5.8 N/A N/A	18.5 0.0 5.1 N/A N/A	9.2 0.0 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.7 0.1 2.6 N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T, (years) e-Hour Precipitation, P ₁ (inches) CULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) jor Flow Bypassed Downstream, Q ₆ (cfs) jor Flow Bypassed Downstream, Q ₆ (cfs) in Clow Bypassed Downstream , Q ₆ (cfs) in Clow Bypassed Downstream Ay (cfs) in Clow Bypa	10.1 N/A	8.9 1.8 5.2 N/A	19.6 0.1 5.8 N/A	18.5 0.0 5.1 N/A	9.2 0.0 2.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	9.7 0.1 2.6 N/A N/A N/A N/A N/A N/A N/A N/A

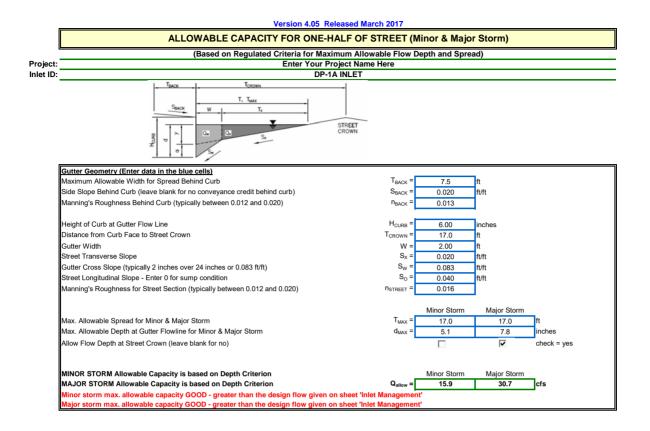
INLET MANAGEMENT

Worksheet Protected

NLET NAME	DP-13 INLET	DP-14 INLET	DP-15 INLET	DP-16 INLET	DP-17 INLET	DP-18 INLET
e Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN	URBAN	URBAN
t Application (Street or Area)	STREET	STREET	STREET	STREET	STREET	STREET
Iraulic Condition	In Sump	In Sump	In Sump	In Sump	In Sump	In Sump
Туре	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Openin
	obor Type It out opening	obor Type It out opening	obor Type it out opening	obor type to our opening	obor Type it out opening	obor type to dab openin
DEFINED INPUT						
r-Defined Design Flows or Q _{Known} (cfs)	2.7	3.3	3.2	1.2	6.8	4.1
	6.5	6.6	6.5	2.4	15.1	8.2
or Q _{Known} (cfs)	6.5	0.0	6.5	2.4	15.1	8.2
pass (Carry-Over) Flow from Upstream						
ceive Bypass Flow from:	User-Defined	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Receive
nor Bypass Flow Received, Qb (cfs)	0.1	0.0	0.0	0.0	0.0	0.0
jor Bypass Flow Received, Qb (cfs)	4.9	0.0	0.0	0.0	0.0	0.0
						•
tershed Characteristics						
bcatchment Area (acres)						
rcent Impervious						
CS Soil Type						
tershed Profile						
erland Slope (ft/ft)						
verland Length (ft)						
hannel Slope (ft/ft)						
anner olope (IVIL)						
nannel Length (ft)						
nor Storm Rainfall Input						
esign Storm Return Period, T _r (years)						
ne-Hour Precipitation, P ₁ (inches)						
esign Storm Return Period, T _r (years)						
esign Storm Return Period, T _r (years) ne-Hour Precipitation, P ₁ (inches)						
sign Storm Return Period, Tr (years) ne-Hour Precipitation, P1 (inches)						
asign Storm Return Period, T, (years) ne-Hour Precipitation, P, (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs)	2.8	3.3	3.2	1.2	6.8	4.1
sign Storm Return Period, Tr, (years) ne-Hour Precipitation, P1 (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs)	11.4	6.6	6.5	2.4	15.1	8.2
sign Storm Return Period, Tr, (years) ne-Hour Precipitation, P1 (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) nor Flow Bypassed Downstream, Q ₆ (cfs)	11.4 N/A	6.6 N/A	6.5 N/A	2.4 N/A	15.1 N/A	8.2 N/A
esign Storm Return Period, Tr, (years) ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) inor Flow Bypassed Downstream, Q ₆ (cfs)	11.4	6.6	6.5	2.4	15.1	8.2
sign Storm Return Period, T, (years) ne-Hour Precipitation, P ₁ (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) inor Flow Bypassed Downstream, Q ₆ (cfs) ajor Flow Bypassed Downstream, Q ₆ (cfs)	11.4 N/A N/A	6.6 N/A	6.5 N/A	2.4 N/A	15.1 N/A	8.2 N/A
sign Storm Return Period, Tr (years) ne-Hour Precipitation, P1 (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) nor Flow Bypassed Downstream, Q ₀ (cfs) ajor Flow Bypassed Downstream, Q ₀ (cfs)	11.4 N/A N/A	6.6 N/A N/A	6.5 N/A N/A	2.4 N/A N/A	15.1 N/A N/A	8.2 N/A N/A
sign Storm Return Period, T _r (years) le-Hour Precipitation, P ₁ (inches) CULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) nor Flow Bypassed Downstream, Q ₆ (cfs) jor Flow Bypassed Downstream, Q ₆ (cfs)	11.4 N/A N/A N/A	6.6 N/A N/A N/A	6.5 N/A N/A	2.4 N/A N/A	15.1 N/A N/A N/A	8.2 N/A N/A
sign Storm Return Period, Tr (years) te-Hour Precipitation, P1 (inches) CULATED OUTPUT inor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) nor Flow Bypassed Downstream, Q ₆ (cfs) ajor Flow Bypassed Downstream, Q ₆ (cfs) inor Storm (Calculated) Analysis of Flow T	11.4 N/A N/A N/A N/A	6.6 N/A N/A N/A N/A	6.5 N/A N/A N/A N/A	2.4 N/A N/A N/A N/A	15.1 N/A N/A N/A N/A	8.2 N/A N/A N/A N/A
sign Storm Return Period, T _r (years) e-Hour Precipitation, P₁ (inches) CULATED OUTPUT nor Total Design Peak Flow, Q (cfs) ijor Total Design Peak Flow, Q (cfs) nor Flow Bypassed Downstream, Q _b (cfs) ijor Flow Bypassed Downstream, Q _b (cfs) nor Storm (Calculated) Analysis of Flow T refland Flow Velocity, Vi	11.4 N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A	6.5 N/A N/A N/A N/A N/A N/A	2.4 N/A N/A N/A N/A N/A N/A	15.1 N/A N/A N/A N/A N/A N/A	8.2 N/A N/A N/A N/A N/A
sign Storm Return Period, Tr (years) le-Hour Precipitation, P1 (inches) CULATED OUTPUT nor Total Design Peak Flow, Q (cfs) ijor Total Design Peak Flow, Q (cfs) nor Flow Bypassed Downstream, Q ₆ (cfs) ijor Storm (Calculated) Analysis of Flow T refand Flow Velocity, Vi annel Flow Velocity, Vi	11.4 N/A N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A	6.5 N/A N/A N/A N/A N/A N/A N/A	2.4 N/A N/A N/A N/A N/A N/A N/A	15.1 N/A N/A N/A N/A N/A N/A N/A	8.2 N/A N/A N/A N/A N/A N/A
sign Storm Return Period, Τ, (years) e-Hour Precipitation, P₁ (inches) CULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) jor Flow Bypassed Downstream, Q ₆ (cfs) jor Flow Bypassed Downstream, Q ₆ (cfs) nor Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Flow Velocity, Vi annel Flow Velocity, Vt	11.4 N/A N/A N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.5 N/A N/A N/A N/A N/A N/A N/A N/A	2.4 N/A N/A N/A N/A N/A N/A N/A N/A	15.1 N/A N/A N/A N/A N/A N/A N/A N/A	8.2 N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T _r (years) e-Hour Precipitation, P ₁ (inches) CULATED OUTPUT nor Total Design Peak Flow, Q (cfs) ijor Total Design Peak Flow, Q (cfs) ijor Flow Bypassed Downstream, Q ₆ (cfs) ijor Flow Bypassed Downstream, Q ₆ (cfs) nor Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Flow Velocity, Vi annel Flow Velocity, Vi erland Flow Velocity, Vi erland Flow Time, Ti annel Travel Time, Ti	11.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A	2.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A	15.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A	8.2 N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T, (years) e-Hour Precipitation, P ₁ (inches) CULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) tor Flow Bypassed Downstream, Q ₆ (cfs) jor Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Flow Velocity, Vi annel Flow Velocity, Vi annel Flow Time, Ti annel Travel Time, Tt culated Time of Concentration, T _c	11.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	15.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	8.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T _r (years) iee-Hour Precipitation, P ₁ (inches) CULATED OUTPUT nor Total Design Peak Flow, Q (cfs) ijor Total Design Peak Flow, Q (cfs) ijor Flow Bypassed Downstream, Q ₀ (cfs) ijor Storm (Calculated) Analysis of Flow T refland Flow Velocity, Vi annel Flow Velocity, Vi annel Travel Time, Ti iunal Travel Time, Ti iuculated Time of Concentration, T _c gional T _c	11.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	15.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	8.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T ₁ (years) e-Hour Precipitation, P ₁ (inches) CULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) ior Flow Bypassed Downstream, Q ₆ (cfs) jor Flow Bypassed Downstream, Q ₆ (cfs) ior Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Travel Time, Tt annel Travel Time, Tt Iculated Time of Concentration, T _c gional T _c commended T _c	11.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	15.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	8.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, Tr (years) le-Hour Precipitation, P₁ (inches) CULATED OUTPUT nor Total Design Peak Flow, Q (cfs) ijor Total Design Peak Flow, Q (cfs) ijor Total Design Peak Flow, Q (cfs) ijor Flow Bypassed Downstream, Q _b (cfs) nor Storm (Calculated) Analysis of Flow T rerland Flow Velocity, Vi terland Flow Time, Ti terland Flow Velocity, Vi terland Flow Velocity, Vi te	11.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2.4 N/A N/A N/A N/A N/A N/A N/A N/A	15.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	8.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T, (years) =-Hour Precipitation, P ₁ (inches) ULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) tor Flow Bypassed Downstream, Q ₀ (cfs) ior Storm (Calculated) Analysis of Flow T entand Flow Velocity, Vi annel Flow Velocity, Vi annel Flow Velocity, Vi annel Flow Velocity, Vi annel Flow Time, Ti annel Travel Time, Tt culated Time of Concentration, T _c jonal T _c commended T _c selected by User	11.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	15.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	8.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T _r (years) te-Hour Precipitation, P ₁ (inches) CULATED OUTPUT nor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) ajor Flow Bypassed Downstream, Q ₆ (cfs) ajor Flow Bypassed Downstream, Q ₆ (cfs) ajor Flow Bypassed Downstream, Q ₆ (cfs) inor Storm (Calculated) Analysis of Flow T inor Storm (Calculated) Analysis	11.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2.4 N/A N/A N/A N/A N/A N/A N/A N/A	15.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	8.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T _r (years) iae-Hour Precipitation, P ₁ (inches) CULATED OUTPUT nor Total Design Peak Flow, Q (cfs) ajor Total Design Peak Flow, Q (cfs) nor Flow Spassed Downstream, Q ₀ (cfs) ajor Flow Bypassed Downstream, Q ₀ (cfs) nor Storm (Calculated) Analysis of Flow T rentand Flow Velocity, VI terland Flow Velocity, VI isculated Time, Ti isginal T _c commended T _c selected by User issign Rainfall Intensity, I iculated Local Peak Flow, Q _p	11.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2.4 N/A N/A N/A N/A N/A N/A N/A N/A	15.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	8.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T _r (years) e-Hour Precipitation, P₁ (inches) CULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) jor Flow Bypassed Downstream, Q ₀ (cfs) jor Flow Bypassed Downstream, Q ₀ (cfs) ior Storm (Calculated) Analysis of Flow T erland Flow Velocity, VI annel Flow Velocity, VI annel Flow Velocity, VI erland Flow Velocity, VI annel Travel Time, Ti liculated Time, Ti commended T _c selected by User sign Rainfall Intensity, I culated Local Peak Flow, Q _p	11.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2.4 N/A N/A N/A N/A N/A N/A N/A N/A	15.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	8.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T _r (years) e-Hour Precipitation, P ₁ (inches) :ULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) jor Flow Bypassed Downstream, Q ₀ (cfs) jor Flow Bypassed Downstream, Q ₀ (cfs) jor Storm (Calculated) Analysis of Flow T erland Flow Velocity, VI annel Flow Velocity, VI annel Flow Velocity, VI annel Travel Time, Ti iculated Time, Ti iculated Time of Concentration, T _c gional T _c commended T _c sign Rainfall Intensity, I iculated Local Peak Flow, Q _p	11.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A	6.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2.4 N/A N/A N/A N/A N/A N/A N/A N/A	15.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	8.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T ₁ (years) e-Hour Precipitation, P ₁ (inches) ULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) jor Flow Bypassed Downstream, Q₆ (cfs) jor Flow Bypassed Downstream, Q₆ (cfs) ior Storm (Calculated) Analysis of Flow T erland Flow Velocity, VI annel Travel Time, TI annel Travel Time, TI culated Time of Concentration, T ₆ gional T ₇ selected by User sign Rainfall Intensity, I culated Local Peak Flow, Q ₆ jor Storm (Calculated) Analysis of Flow T jor Storm (Calculated) Analysis of Flow T	11.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.5 N/A N/A N/A N/A N/A N/A N/A N/A	2.4 N/A N/A N/A N/A N/A N/A N/A N/A	15.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	8.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T ₁ (years) e-Hour Precipitation, P ₁ (inches) :ULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) ior Flow Bypassed Downstream, Q ₆ (cfs) nor Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Travel Time, Tt annel Travel Time, Tt Iculated Time of Concentration, T ₆ gional T ₆ commended T ₆ selected by User sign Rainfall Intensity, I Iculated Local Peak Flow, Q ₆ Ulated Local Peak Flow, Q ₇ iculated Local Peak Flow, C ₇ selected by User sign Rainfall Intensity, I Iculated Local Peak Flow, Q ₇	11.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A	6.5 N/A N/A N/A N/A N/A N/A N/A N/A	2.4 N/A N/A N/A N/A N/A N/A N/A N/A	15.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	8.2 N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T _r (years) e-Hour Precipitation, P ₁ (inches) :ULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) jor Flow Bypassed Downstream, Q ₀ (cfs) jor Flow Bypassed Downstream, Q ₀ (cfs) jor Storm (Calculated) Analysis of Flow T erland Flow Velocity, VI annel Flow Velocity, VI annel Flow Velocity, VI sign Rainfall Intensity, I culated Time, T iculated Local Peak Flow, Q _p for Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Flow Velocity, Vi	11.4 N/A N/A N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A	6.5 N/A N/A N/A N/A N/A N/A N/A N/A	2.4 N/A N/A N/A N/A N/A N/A N/A N/A	15.1 N/A N/A N/A N/A N/A N/A N/A N/A	8.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T _i (years) a-Hour Precipitation, P ₁ (inches) ULATED OUTPUT Nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) or Flow Bypassed Downstream, Q _b (cfs) for Flow Bypassed Downstream, Q _b (cfs) for Storm (Calculated) Analysis of Flow T annel Travel Time, Ti annel Travel Time, Ti culated Time of Concentration, T _c joinal T _c sommended T _c selected by User sign Rainfall Intensity, 1 culated Local Peak Flow, Q _p for Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Travel Time, Ti culated Local Peak Flow, Q _p for Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Flow Velocity, Vi	11.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A	6.5 N/A N/A N/A N/A N/A N/A N/A N/A	2.4 N/A N/A N/A N/A N/A N/A N/A N/A	15.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	8.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T ₁ (years) e-Hour Precipitation, P ₁ (inches) ULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) ior Flow Bypassed Downstream, Q _b (cfs) ior Flow Bypassed Downstream, Q _b (cfs) for Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Travel Time, Ti annel Travel Time, Ti culated Time of Concentration, T _c gional T _c commended T _c selected by User sign Rainfall Intensity, 1 culated Local Peak Flow, Q _p ior Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Travel Time, Ti annel Travel Time, Ti culated Local Peak Flow, Q _p erland Flow Velocity, Vi annel Flow Velocity, Vi	11.4 N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A	6.5 N/A N/A N/A N/A N/A N/A N/A N/A	2.4 N/A	15.1 N/A	8.2 N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T, (years) e-Hour Precipitation, P₁ (inches) CULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) jor Flow Bypassed Downstream, Q₀ (cfs) jor Flow Bypassed Downstream, Q₀ (cfs) ior Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Flow Velocity, Vi annel Flow Velocity, Vt erland Flom Time, Ti commended Tc selected by User sign Rainfall Intensity, I Iculated Local Peak Flow, Q₀ sign Rainfall Intensity, I Iculated Local Peak Flow, Q₀ erland Flow Velocity, Vi erland Flow Velocity, Vi erland Flow Velocity, Vi erland Flow Velocity, Vi annel Flow Velocity, Vi annel Flow Velocity, Vi annel Flow Velocity, Vi erland Flow Time, Ti annel Flow Velocity, Vi	11.4 N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A	6.5 N/A N/A N/A N/A N/A N/A N/A N/A	2.4 N/A	15.1 N/A N/A N/A N/A N/A N/A N/A N/A	8.2 N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T _c (years) e-Hour Precipitation, P ₁ (inches) ULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) jor Flow Bypassed Downstream, Q_b (cfs) jor Flow Bypassed Downstream, Q_b (cfs) ior Storm (Calculated) Analysis of Flow T erland Flow Velocity, VI annel Travel Time, TI annel Travel Time, TI culated Time of Concentration, T _c selected by User selected by U	11.4 N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A	6.5 N/A N/A N/A N/A N/A N/A N/A N/A	2.4 N/A	15.1 N/A	8.2 N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T _i (years) a-Hour Precipitation, P ₁ (inches) ULATED OUTPUT tor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) for Flow Bypassed Downstream, Q ₆ (cfs) for Flow Bypassed Downstream, Q ₆ (cfs) for Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Flow Velocity, Vi annel Flow Time, Ti culated Time, of Concentration, T _c gional T _c selected by User sign Rainfall Intensity, I culated Local Peak Flow, Q ₀ for Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Flow Velocity, Vi annel Travel Time, Ti annel Flow Velocity, Vi annel Travel Time, Ti culated Time of Concentration, T _c jonal T _c	11.4 N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A	6.5 N/A N/A N/A N/A N/A N/A N/A N/A	2.4 N/A	15.1 N/A	8.2 N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T, (years) e-Hour Precipitation, P ₁ (inches) ULATED OUTPUT tor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) jor Flow Bypassed Downstream, Q ₀ (cfs) jor Flow Bypassed Downstream, Q ₀ (cfs) jor Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Flow Velocity, Vi annel Flow Velocity, Vi annel Travel Time, Ti culated Time of Concentration, T _c sign Rainfall Intensity, I culated Local Peak Flow, Q _p for Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vi annel Travel Time, Ti culated Time of Concentration, T _c jional T _c commended T _c	11.4 N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A	6.5 N/A N/A N/A N/A N/A N/A N/A N/A	2.4 N/A	15.1 N/A N/A	8.2 N/A N/A N/A N/A N/A N/A N/A N/A
sign Storm Return Period, T _r (years) e-Hour Precipitation, P₁ (inches) CULATED OUTPUT nor Total Design Peak Flow, Q (cfs) jor Total Design Peak Flow, Q (cfs) nor Flow Bypassed Downstream, Q _b (cfs) ior Flow Bypassed Downstream, Q _b (cfs) ior Flow Bypassed Downstream, Q _b (cfs) nor Storm (Calculated) Analysis of Flow T erland Flow Velocity, Vt erland Flow Velocity, Vt erland Flow Velocity, Vt erland Flow Velocity, Vt erland Flow Velocity, Vt isgional T _c commended T _c selected by User sign Sainfall Intensity, I lculated Local Peak Flow, Q _p terland Flow Velocity, Vt erland Flow Ve	11.4 N/A N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A	6.5 N/A N/A N/A N/A N/A N/A N/A N/A	2.4 N/A N/A	15.1 N/A N/A	8.2 N/A N/A N/A N/A N/A N/A N/A N/A
lajor Storm Rainfall Input essign Storm Return Period, T, (years) ine-Hour Precipitation, P1 (inches) CULATED OUTPUT linor Total Design Peak Flow, Q (cfs) lajor Total Design Peak Flow, Q, (cfs) laior Storm (Calculated) Analysis of Flow T 's verland Flow Velocity, VI verland Flow Velocity, VI verland Flow Velocity, VI 'accommended T _c ceacent Peak Flow, Qp tajor Storm (Calculated) Analysis of Flow T 's 'verland Flow Velocity, VI 'verland Flow Velocity, VI <	11.4 N/A N/A	6.6 N/A N/A N/A N/A N/A N/A N/A N/A	6.5 N/A N/A N/A N/A N/A N/A N/A N/A	2.4 N/A	15.1 N/A N/A	8.2 N/A N/A N/A N/A N/A N/A N/A N/A

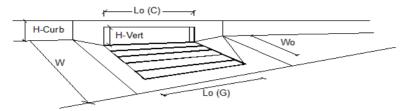
INLET MANAGEMENT

Worksheet Protected

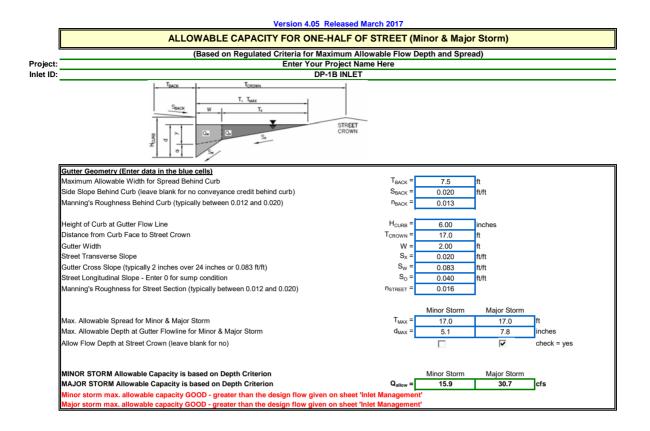

INLET NAME	DP-21 INLET	DP-22 INLET	DP-23 INLET	DP-24 INLET	DP-25 INLET
Site Type (Urban or Rural)	RURAL	RURAL	RURAL	RURAL	RURAL
Inlet Application (Street or Area)	AREA	AREA	AREA	AREA	AREA
Hydraulic Condition	Swale	Swale	Swale	Swale	Swale
Inlet Type	CDOT Type D (In Series & Depressed)	CDOT Type D (In Series & Depressed)	CDOT Type D (In Series)	CDOT Type C (Depressed)	CDOT Type C (Depressed)

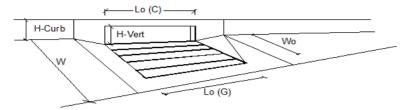
USER-DEFINED INPUT

Vinor Q _{Known} (cfs)	7.7	8.2	3.4	2.3	2.1
ajor Q _{Known} (cfs)	51.9	55.2	22.5	15.9	14.1
	•			•	
Bypass (Carry-Over) Flow from Upstream					
Receive Bypass Flow from:	No Bypass Flow Received				
linor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0
lajor Bypass Flow Received, Q _b (cfs)	0.0	5.4	14.0	0.7	0.0
Vatershed Characteristics					
Subcatchment Area (acres)					
Percent Impervious					
IRCS Soil Type					
Vatershed Profile					
Overland Slope (ft/ft)					
Overland Length (ft)					
Channel Slope (ft/ft)					
Channel Length (ft)					
linor Storm Rainfall Input					
Design Storm Return Period, T _r (years)					
Dne-Hour Precipitation, P1 (inches)					
lajor Storm Rainfall Input					
esign Storm Return Period, Tr (years)					

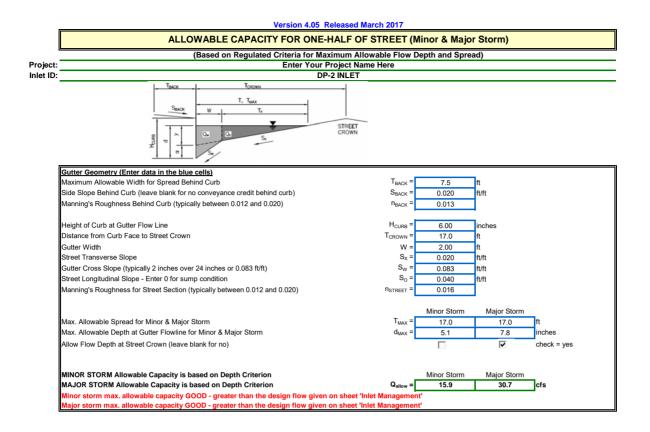

CALCULATED OUTPUT

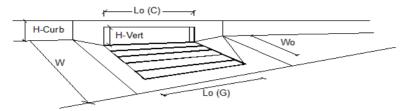
Nimes Tatal Desire Deals Flow O (ata)					
Minor Total Design Peak Flow, Q (cfs)	7.7	8.2	3.4	2.3	2.1
Major Total Design Peak Flow, Q (cfs)	51.9	60.6	36.5	16.6	14.1
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0
Major Flow Bypassed Downstream, Qb (cfs)	5.4	14.0	0.7	0.0	0.0
Minor Storm (Calculated) Analysis of Flow T					
C	N/A	N/A	N/A	N/A	N/A
C ₅	N/A	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A
Channel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A	N/A
T _c selected by User	N/A	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A
Calculated Local Peak Flow, Qn	N/A	N/A	N/A	N/A	N/A
			•	•	
Major Storm (Calculated) Analysis of Flow T					
C	N/A	N/A	N/A	N/A	N/A
C ₅	N/A	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A
Channel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T	N/A	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A	N/A
T _c selected by User	N/A	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I Calculated Local Peak Flow, Q _p	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A



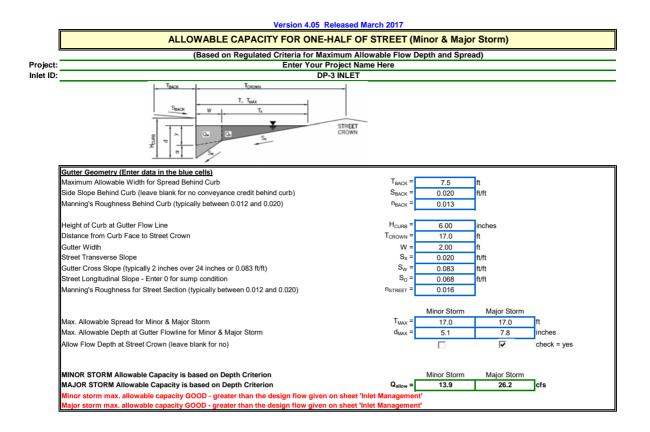


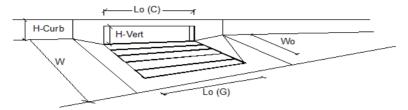
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.8	15.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.5	8.0	cfs
Capture Percentage = Q _a /Q _o =	C% =	95	65	%



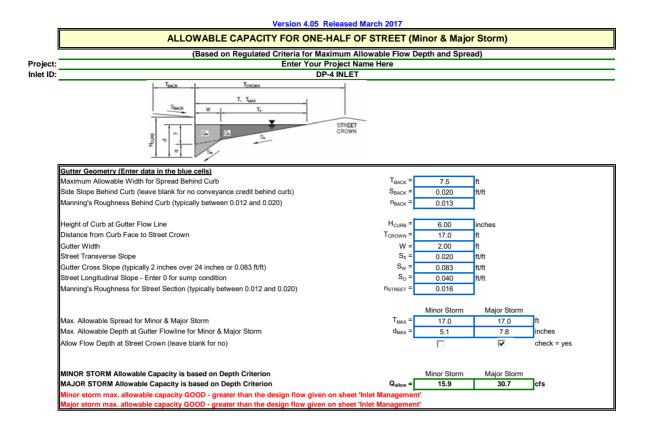


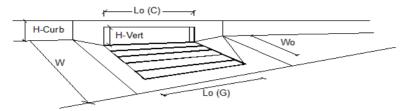
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	4.4	14.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	7.2	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	67	%



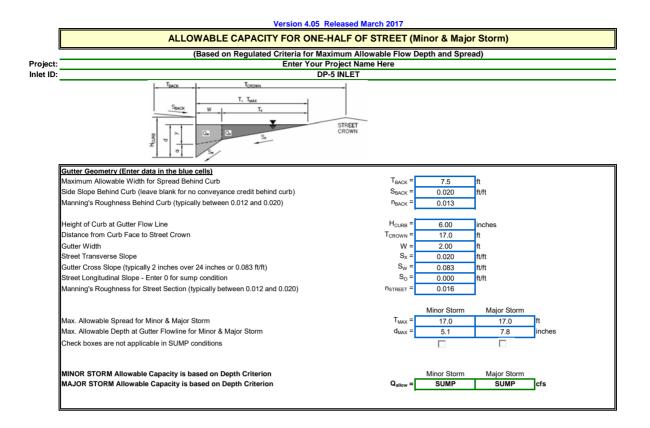


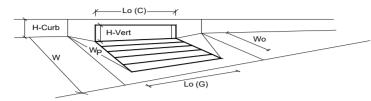
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.6	13.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	4.5	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	74	%

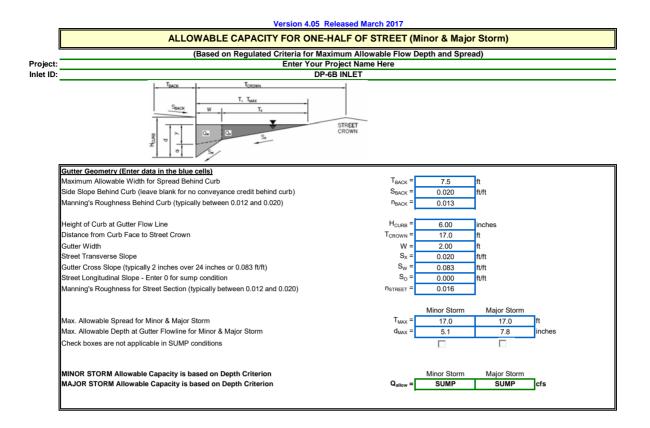


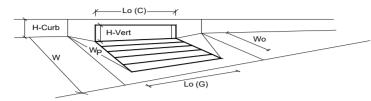


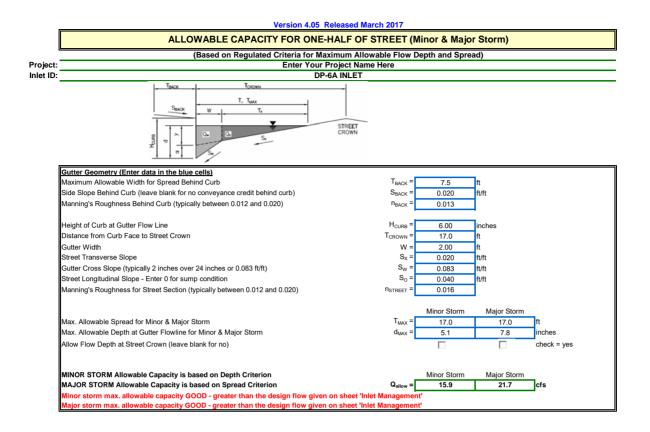
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	5.6	14.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	7.5	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	67	%



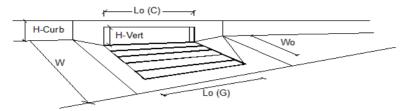




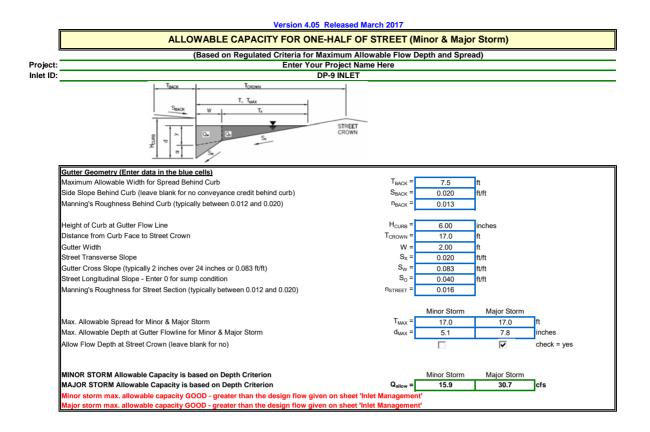

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.5	13.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	4.6	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	74	%

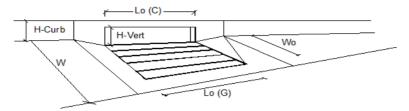


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.1	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	7
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	7
Curb Opening Information	-	MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	-
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.26	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.48	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.73	0.88	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.1	19.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.7	17.6	cfs

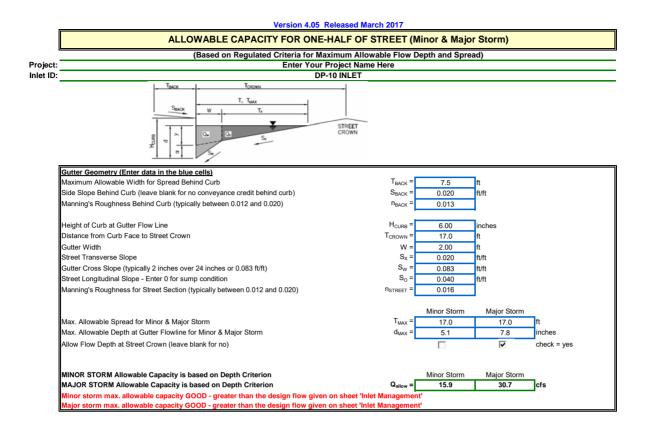


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.1	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	7
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	7
Curb Opening Information	-	MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	7
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.26	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.48	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.73	0.88	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.1	19.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	4.2	10.1	cfs

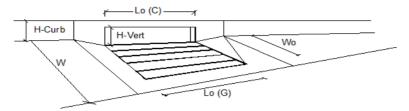




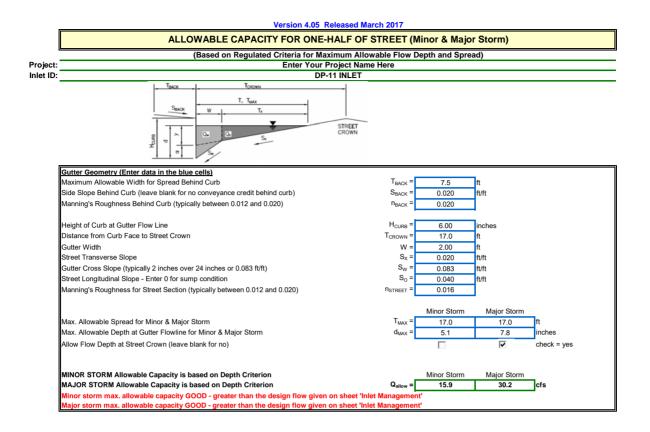
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type I	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.7	3.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	1.8	5.2	cfs
Capture Percentage = Q _a /Q _o =	C% =	61	42	%



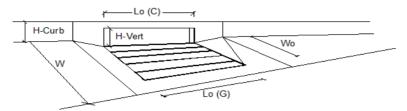
Version 4.05 Released March 2017



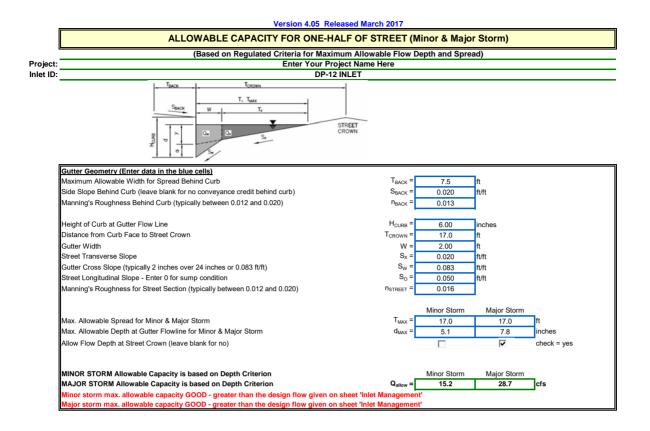
Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.5	13.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.1	5.8	cfs
Capture Percentage = Q _a /Q _o =	C% =	99	71	%



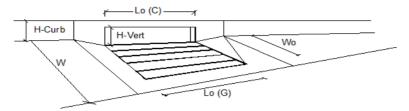
Version 4.05 Released March 2017



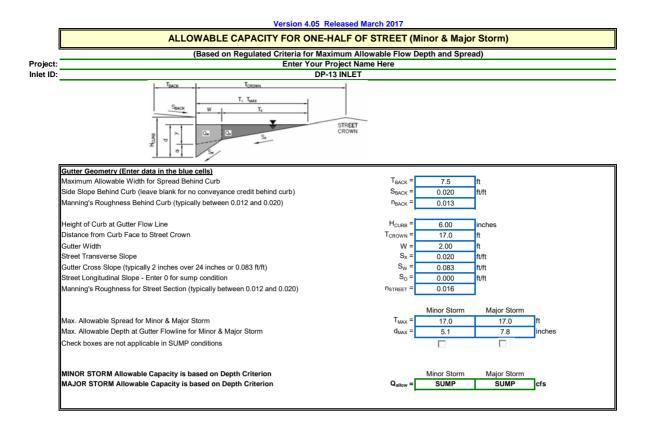
Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	5.6	13.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	5.1	cfs
Capture Percentage = Q₂/Q₀ =	C% =	100	73	%

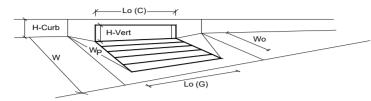


Version 4.05 Released March 2017

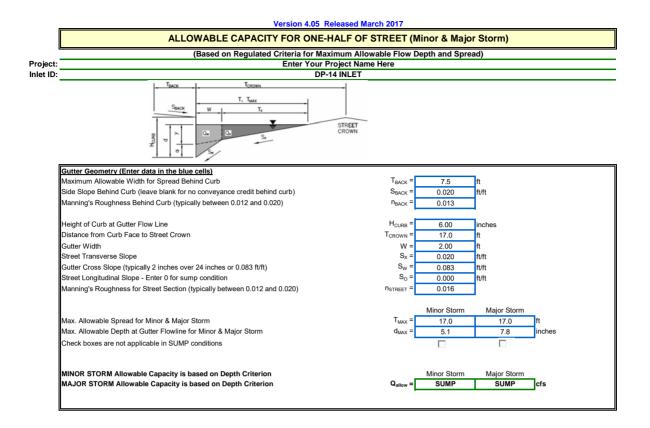


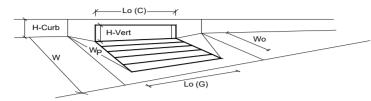
Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.0	6.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	2.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	75	%

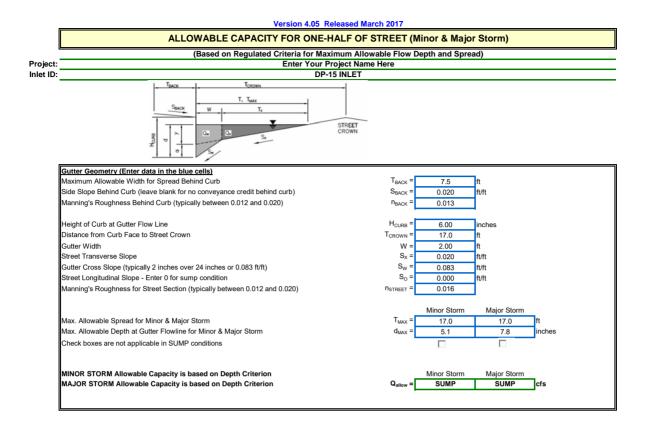


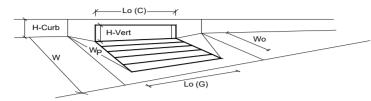


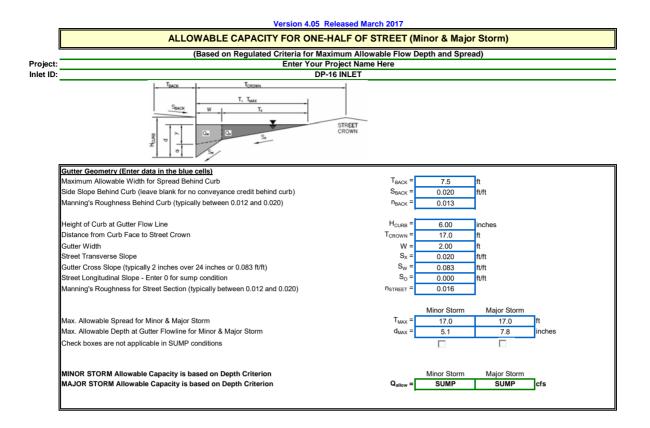
Version 4.05 Released March 2017

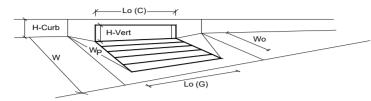


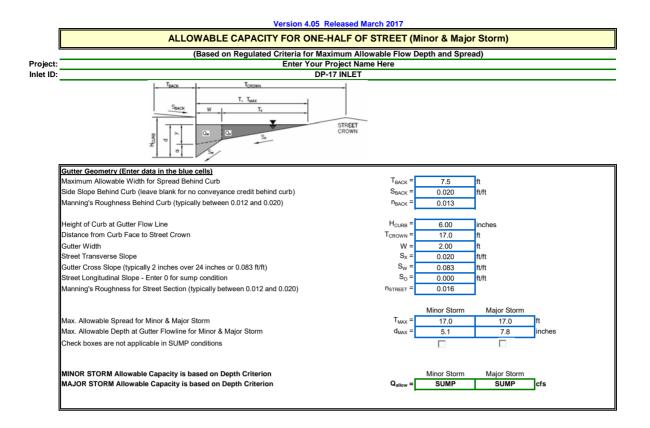

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	4.2	7.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.1	2.6	cfs
Capture Percentage = Q _a /Q _o =	C% =	98	73	%

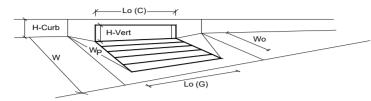


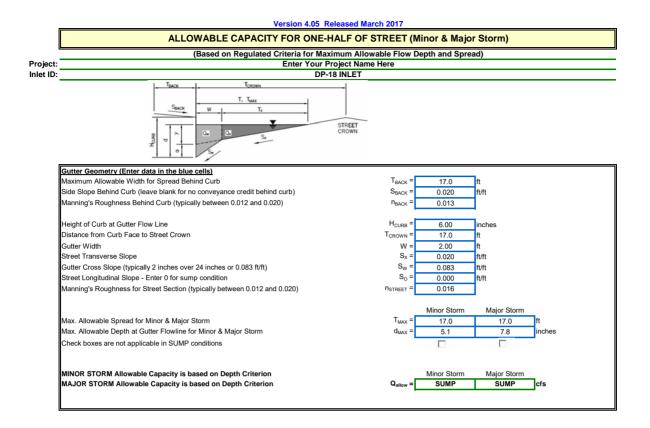

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.1	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	7
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	-
Curb Opening Information	-	MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	-
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.26	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.48	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.88	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.3	15.5	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.8	11.4	cfs

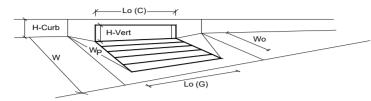


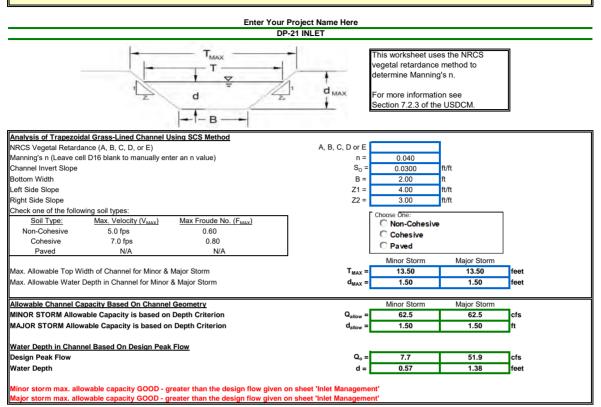

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.1	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	-
Curb Opening Information	-	MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	-
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.26	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.48	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.88	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.3	15.5	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.3	6.6	cfs



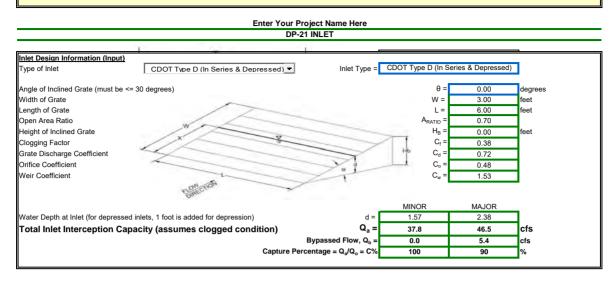

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.1	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	1
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	-
Curb Opening Information	-	MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	-
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.26	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.65	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.7	9.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.2	6.5	cfs

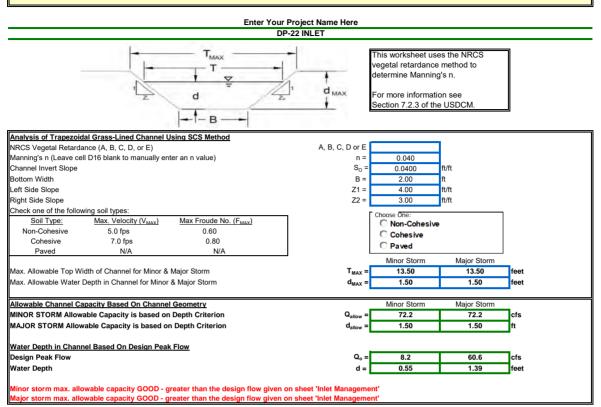


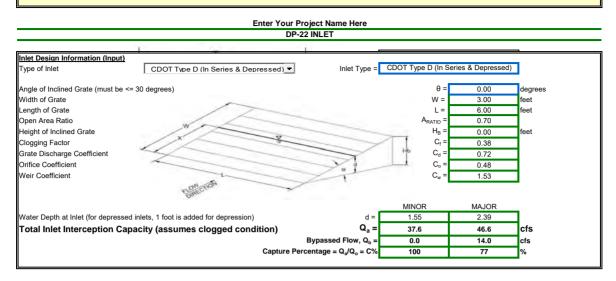

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.1	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	7
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	-
Curb Opening Information	-	MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	-
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	1
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.26	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.65	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.7	9.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.2	2.4	cfs

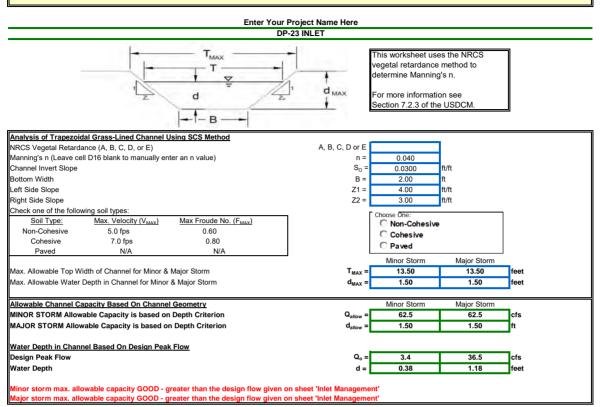


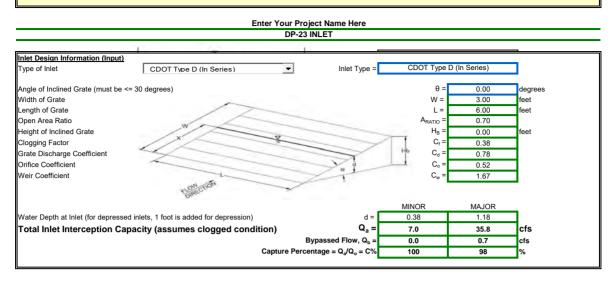
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R Curb Opening		7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.3	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L ₀ (C) =	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	1
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.28	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.50	0.74]
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.74	0.88	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	1
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.9	19.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	6.8	15.1	cfs

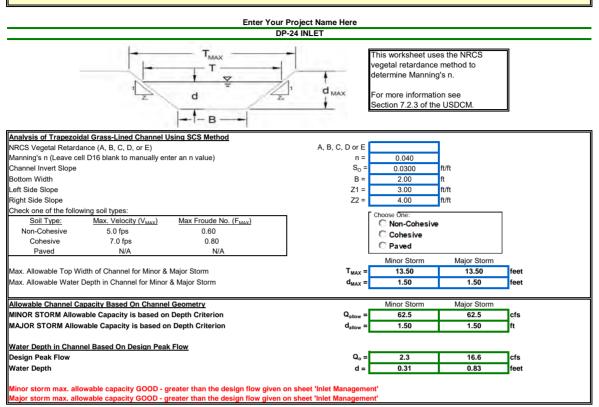


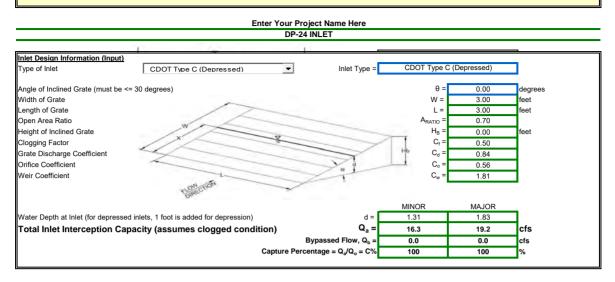

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R Curb Opening		7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.1	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	7
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	-
Curb Opening Information	-	MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	-
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	1
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.26	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.48	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.88	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.3	15.5	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	4.1	8.2	cfs

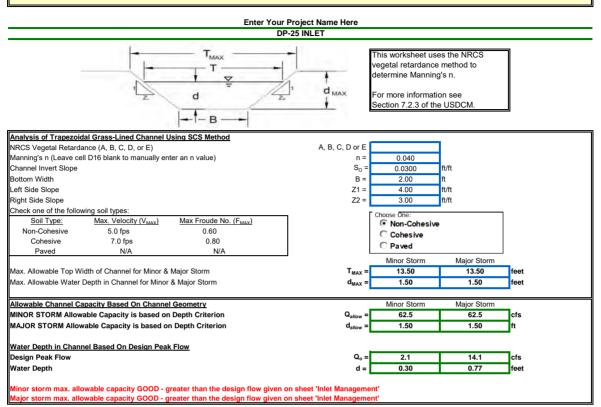

AREA INLET IN A SWALE


Warning 03: Velocity exceeds USDCM Volume I recommendation. Warning 04: Froude No. exceeds USDCM Volume I recommendation.

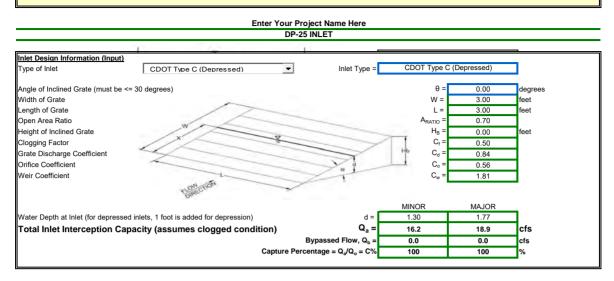

AREA INLET IN A SWALE


Warning 03: Velocity exceeds USDCM Volume I recommendation. Warning 04: Froude No. exceeds USDCM Volume I recommendation.


AREA INLET IN A SWALE


Warning 04: Froude No. exceeds USDCM Volume I recommendation.

AREA INLET IN A SWALE



Warning 04: Froude No. exceeds USDCM Volume I recommendation.

Version 4.05 Released March 2017

AREA INLET IN A SWALE

Warning 04: Froude No. exceeds USDCM Volume I recommendation.

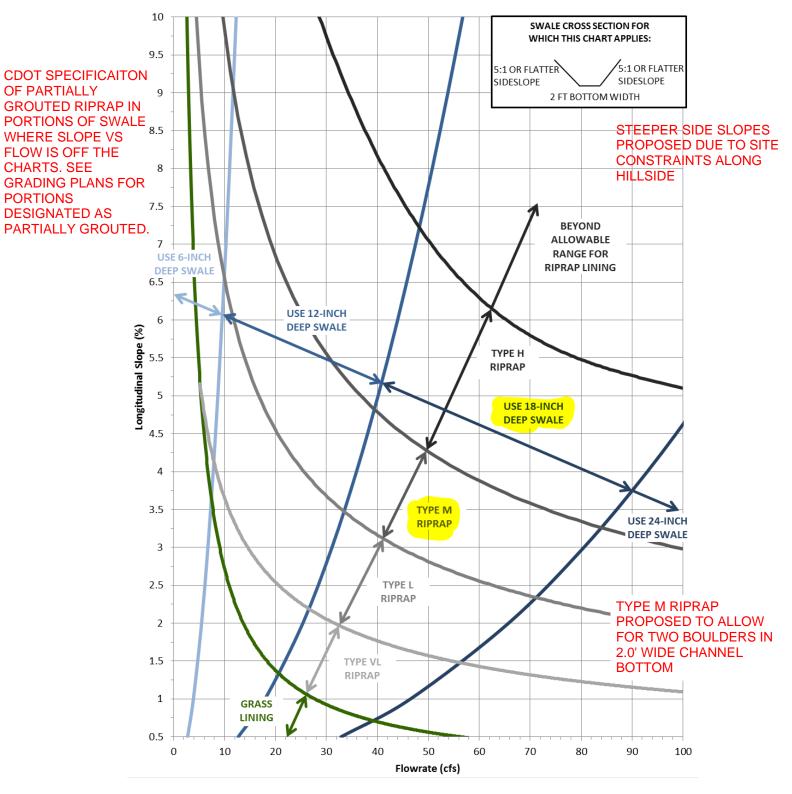


Figure 8-22. Swale stability chart; 2- to 4-foot bottom width and side slopes between 5:1 and 10:1 (Note: Riprap classifications refer to gradation for riprap used in soil riprap or void-filled riprap. See Figure 8-34 for gradations.) (Source: Muller Engineering Company)

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.040	
Channel Slope	0.120 ft/ft	
Left Side Slope	4.000 H:V	
Right Side Slope	3.000 H:V	
Bottom Width	2.00 ft	
Discharge	51.90 cfs	
Results		
Normal Depth	12.2 in	
Flow Area	5.7 ft²	
Wetted Perimeter	9.4 ft	
Hydraulic Radius	7.2 in	
Top Width	9.12 ft	
Critical Depth	17.2 in	
Critical Slope	0.026 ft/ft	
Velocity	9.17 ft/s	
Velocity Head	1.31 ft	
Specific Energy	2.32 ft	
Froude Number	2.052	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	12.2 in	
Critical Depth	17.2 in	
Channel Slope	0.120 ft/ft	
Critical Slope	0.026 ft/ft	

Worksheet for DP-21 RockSwale

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.040	
Channel Slope	0.040 ft/ft	
Left Side Slope	4.000 H:V	
Right Side Slope	3.000 H:V	
Bottom Width	2.00 ft	
Discharge	60.60 cfs	
Results		
Normal Depth	16.7 in	
Flow Area	9.6 ft ²	
Wetted Perimeter	12.1 ft	
Hydraulic Radius	9.5 in	
Top Width	11.74 ft	
Critical Depth	18.4 in	
Critical Slope	0.025 ft/ft	
Velocity	6.34 ft/s	
Velocity Head	0.62 ft	
Specific Energy	2.02 ft	
Froude Number	1.238	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	16.7 in	
Critical Depth	18.4 in	
Channel Slope	0.040 ft/ft	
Critical Slope	0.025 ft/ft	

Worksheet for DP-22 RockSwale

Worksheet for POND OUTFALL-SEC26A

Project Description		
Friction Method	Manning	
Solve For	Formula Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.005 ft/ft	
Bottom Width	18.00 ft	
Discharge	42.90 cfs	
Results		
Normal Depth	5.9 in	
Flow Area	8.8 ft ²	
Wetted Perimeter	19.0 ft	
Hydraulic Radius	5.6 in	
, Top Width	18.00 ft	
Critical Depth	6.7 in	
Critical Slope	0.003 ft/ft	
Velocity	4.86 ft/s	
Velocity Head	0.37 ft	
Specific Energy	0.86 ft	
Froude Number	1.222	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	5.9 in	
Critical Depth	6.7 in	
Channel Slope	0.005 ft/ft	
Critical Slope	0.003 ft/ft	

Worksheet for EX. CH-SEC26B

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.075 ft/ft	

Section Definitions

Station (ft)	Elevation (ft)
1+00	7,102.74
1+40	7,102.79
1+80	7,102.48
2+20	7,102.31
2+60	7,101.48
3+00	7,101.41

Roughness Segment Definitions

Start Station		Ending Station	Roughness Coefficient	
(1+00, 7,102.74)		(3+00, 7,101.41)		0.035
Options				
Current Roughness Weighted Method	Pavlovskii's Method			
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				
Normal Depth	3.3 in			
Elevation Range	7,101.4 to 7,102.8 ft			
Flow Area	10.5 ft ²			
Wetted Perimeter	50.0 ft			
Hydraulic Radius	2.5 in			
Top Width	49.74 ft			
Normal Depth	3.3 in			
Critical Depth	4.2 in			
Critical Slope	0.028 ft/ft			
Velocity	4.10 ft/s			
Velocity Head	0.26 ft			
Specific Energy	0.53 ft			
Froude Number	1.576			
Flow Type	Supercritical			

PIPES-CHANNELS.fm8 10/2/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.02.00.01] Page 1 of 2

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	3.3 in	
Critical Depth	4.2 in	
Channel Slope	0.075 ft/ft	
Critical Slope	0.028 ft/ft	

Worksheet for EX. CH-SEC26B

Worksheet for BYPASS OUTFALL-SEC35A

Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.005 ft/ft	
Bottom Width	70.00 ft	
Discharge	172.40 cfs	
Results		
Normal Depth	5.9 in	
Flow Area	34.5 ft ²	
Wetted Perimeter	71.0 ft	
Hydraulic Radius	5.8 in	
Top Width	70.00 ft	
Critical Depth	6.9 in	
Critical Slope	0.003 ft/ft	
Velocity	5.00 ft/s	
Velocity Head	0.39 ft	
Specific Energy	0.88 ft	
Froude Number	1.255	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	5.9 in	
Critical Depth	6.9 in	
Channel Slope	0.005 ft/ft	
Critical Slope	0.003 ft/ft	

Worksheet for EX. CH-SEC35B

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Channel Slope	0.050 ft/ft	
Discharge	172.40 cfs	

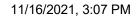
Section Definitions

Elevation (ft)
7,116.59
7,116.29
7,115.33
7,114.37
7,114.21
7,114.19
7,114.29
7,114.47
7,115.13
7,116.00
7,118.00

Roughness Segment Definitions

Start Station		Ending Station	Roughness Coefficient	
(1+00, 7,116.59)		(3+14, 7,118.00)		0.035
Options				
Current Roughness Weighted Method	Pavlovskii's Method			
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				
Normal Depth	6.2 in			
Elevation Range	7,114.2 to 7,118.0 ft			
Flow Area	35.4 ft ²			
Wetted Perimeter	96.5 ft			
Hydraulic Radius	4.4 in			
Top Width	96.45 ft			
Normal Depth	6.2 in			
Critical Depth	7.4 in			
Critical Slope	0.023 ft/ft			
Velocity	4.87 ft/s			
PIPES-CHANNELS.fm8 11/16/2021	27 Siemo	ns, Inc. Haestad Methods Solution Center n Company Drive Suite 200 W CT 06795 USA +1-203-755-1666	[1]	FlowMaster 0.02.00.01] Page 1 of 2

Results		
Velocity Head	0.37 ft	
Specific Energy	0.88 ft	
Froude Number	1.416	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	6.2 in	
Critical Depth	7.4 in	
Channel Slope	0.050 ft/ft	
Critical Slope	0.023 ft/ft	


Worksheet for EX. CH-SEC35B

DETENTION & STORMWATER QUALITY POND 'A'

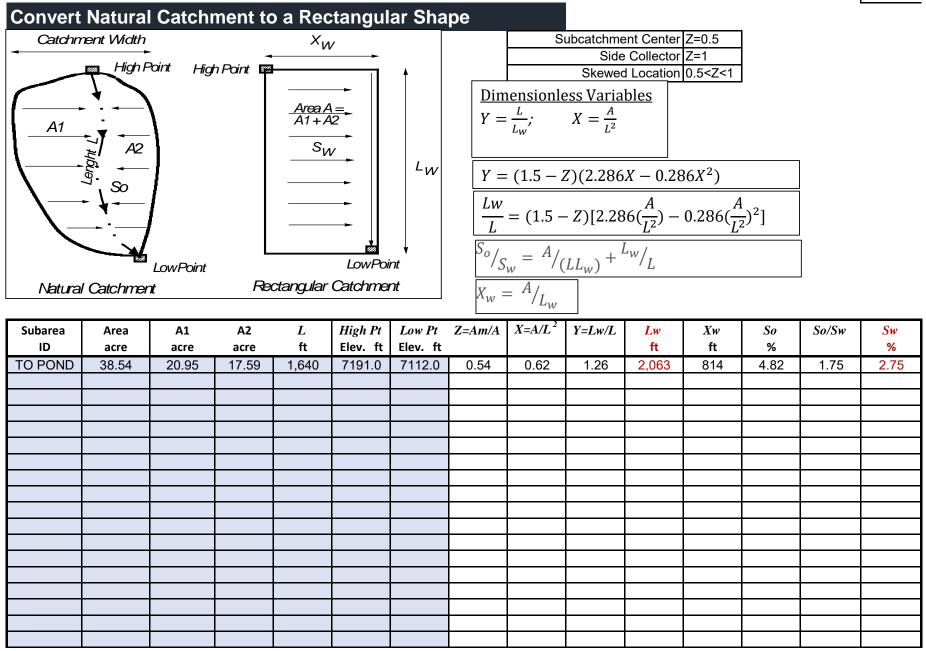
													Works	sheet Protected
Site-Level L	-		_	_		-		-	ious Ca	alculate	or			
	L	ID Credit	t by Impo	ervious R	eductio	n Factor	(IRF) M	ethod						
User Input														
Calculated cells				Designer:	Matt	Larson								
		1		Company:				rs & Surve	yors, LLC					
***Design Storm: 1-Hour Rain Depth WQCV Event ***Minor Storm: 1-Hour Rain Depth 10-Year Event	0.53 1.75	inches inches		Date: _ Project:		mber 16, 2 ST LAKES -								
***Major Storm: 1-Hour Rain Depth 100-Year Event	2.52	inches		Location:	PON									
Optional User Defined Storm CUHP				-										
(CUHP) NOAA 1 Hour Rainfall Depth and Frequency for User Defined Storm														
Max Intensity for Optional User Defined Storm 0														
SITE INFORMATION (USER-INPUT)														
Sub-basin Identifier	PIPE 25	BASIN R	BASIN U											
Receiving Pervious Area Soil Type	Sandy Loam	Sandy Loam	Sandy Loam											
Total Area (ac., Sum of DCIA, UIA, RPA, & SPA) Directly Connected Impervious Area (DCIA, acres)	35.370 6.487	1.640 0.012	1.280 0.000											
Unconnected Impervious Area (UIA, acres)	9.149	0.902	0.000											
Receiving Pervious Area (RPA, acres)	7.396	0.726	0.620											
Separate Pervious Area (SPA, acres)	12.338	0.000	0.660											
RPA Treatment Type: Conveyance (C), Volume (V), or Permeable Pavement (PP)	С	С	С											
	<u> </u>					1	I			I				·
CALCULATED RESULTS (OUTPUT) Total Calculated Area (ac, check against input)	35.370	1.640	1.280											
Directly Connected Impervious Area (DCIA, %)	18.3%	0.7%	0.0%											
Unconnected Impervious Area (UIA, %)	25.9%	55.0%	0.0%											
Receiving Pervious Area (RPA, %)	20.9%	44.3%	48.4%											
Separate Pervious Area (SPA, %) A _R (RPA / UIA)	34.9% 0.808	0.0% 0.805	51.6% 0.000											
I _a Check	0.550	0.550	1.000											
f / I for WQCV Event:	2.0	2.0	2.0											
f / I for 10-Year Event:	0.5	0.5	0.5											
f / I for 100-Year Event: f / I for Optional User Defined Storm CUHP:	0.3	0.3	0.3											+
IRF for WQCV Event:	0.64	0.64	1.00											
IRF for 10-Year Event:	0.90	0.90	1.00											
IRF for 100-Year Event:	0.94	0.94	1.00											
IRF for Optional User Defined Storm CUHP:	44.20/		0.0%											
Total Site Imperviousness: I _{total} Effective Imperviousness for WQCV Event:	44.2% 34.9%	55.7% 36.0%	0.0%			+								+
Effective Imperviousness for 10-Year Event:	41.7%	50.4%	0.0%											
Effective Imperviousness for 100-Year Event:	42.6%	52.4%	0.0%											
Effective Imperviousness for Optional User Defined Storm CUHP:														
LID / EFFECTIVE IMPERVIOUSNESS CREDITS WQCV Event CREDIT: Reduce Detention By:	13.0%	24.1%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
10-Year Event CREDIT**: Reduce Detention By:	5.9% 3.6%	9.9% 5.9%	N/A N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A	N/A	N/A	N/A	N/A	N/A N/A
100-Year Event CREDIT**: Reduce Detention By: User Defined CUHP CREDIT: Reduce Detention By:	5.0%	5.3%	N/A	N/A	N/A	N/A	N/A	IN/A	N/A	N/A	N/A	N/A	N/A	
	Total Site Imp	perviousness:	43.2%]	Notes:									
Total Site Effective Imper	viousness for	WQCV Event:	33.8%	-	[*] Use Greei	n-Ampt avera	ge infiltratio	n rate values	from Table	3-3.				
Total Site Effective Impervi				· ·	* Flood cor	ntrol detentio	on volume cre	edits based o	n empirical e	equations fro				
Total Site Effective Impervio Total Site Effective Imperviousness for Optional				-	*** Metho	d assumes th	at 1-hour rai	nfall depth is	equivalent	o 1-hour int	ensity for cal	culation purp	osed	
				_										

	Design Procedure Form	Extended Detention Basin (EDB)	
Designer: Company: Date: Project: Location:	Matt Larson Classic Consulting Engineers & Surveyors, LLC November 16, 2021 FOREST LAKES - FILING 7 POND A - FINAL DESIGN		Sheet 1 of 4
1. Basin Storage V	Volume		
A) Effective Imp	perviousness of Tributary Area, I _a	l _a = %	
B) Tributary Are	ea's Imperviousness Ratio (i = I _a / 100)	i =0.432	
C) Contributing	y Watershed Area	Area = <u>38.290</u> ac	
	heds Outside of the Denver Region, Depth of Average ducing Storm	d ₆ = in	
E) Design Con	-	Choose One Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)	
	ume (WQCV) Based on 40-hour Drain Time (1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = 0.601 ac-ft	
Water Qual	heds Outside of the Denver Region, ity Capture Volume (WQCV) Design Volume _{ER} = (d ₆ *(V _{DESIGN} /0.43))	V _{DESIGN OTHER} = 0.587 ac-ft	
	of Water Quality Capture Volume (WQCV) Design Volume fferent WQCV Design Volume is desired)	V _{DESIGN USER} = ac-ft	
	Watershed NRCS Soil Group	Choose One \bigcirc A \bigcirc B \bigcirc C / D	
For HSG A For HSG B	an Runoff Volume (EURV) Design Volume x: EURV _A = 1.68 * i ^{1.28} B: EURV _B = 1.36 * i ^{1.08} C/D: EURV _{C/D} = 1.20 * i ^{1.08}	EURV = <u>1.753</u> ac-f t	
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W = <u>2.0</u> : 1	
3. Basin Side Slop	bes		
-	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = ft / ft	
4. Inlet			
	eans of providing energy dissipation at concentrated	Impact Structures	
inflow locati	ions:		

Design Procedure Form: Extended Detention Basin (EDB) Sheet 2 of 4 Matt Larson **Designer:** Company: **Classic Consulting Engineers & Surveyors, LLC** November 16, 2021 Date: Project: FOREST LAKES - FILING 7 **POND A - FINAL DESIGN** Location: 5. Forebay V_{FMIN} = 0.018 ac-ft A) Minimum Forebay Volume $(V_{FMIN} = 3\%)$ of the WQCV) V_F = 0.022 ac-ft B) Actual Forebay Volume C) Forebay Depth 18____ inch maximum) D_F = <u>18.0</u> in (D_F = D) Forebay Discharge i) Undetained 100-year Peak Discharge Q₁₀₀ = <u>126.10</u> cfs Q_F = 2.52 cfs ii) Forebay Discharge Design Flow $(Q_F = 0.02 * Q_{100})$ E) Forebay Discharge Design Choose One (flow too small for berm w/ pipe) O Berm With Pipe • Wall with Rect. Notch O Wall with V-Notch Weir Calculated D_P = _____ in F) Discharge Pipe Size (minimum 8-inches) Calculated $W_N = 8.5$ in G) Rectangular Notch Width Choose One -6. Trickle Channel Concrete A) Type of Trickle Channel O Soft Bottom S = <u>0.0080</u> ft / ft F) Slope of Trickle Channel 7. Micropool and Outlet Structure D_M = _____ ft A) Depth of Micropool (2.5-feet minimum) A_M = _____ 274 ____ sq ft B) Surface Area of Micropool (10 ft² minimum) C) Outlet Type Choose One -Orifice Plate O Other (Describe): D) Smallest Dimension of Orifice Opening Based on Hydrograph Routing D_{orifice} = 2.50 (Use UD-Detention) inches A_{ot} = E) Total Outlet Area 14.00 square inches

Design Procedure Form: Extended Detention Basin (EDB)

Designer:Matt LarsonCompany:Classic Consulting Engineers & Surveyors, LLCDate:November 16, 2021Project:FOREST LAKES - FILING 7Location:POND A - FINAL DESIGN	Sheet 3 of 4
8. Initial Surcharge Volume	
A) Depth of Initial Surcharge Volume (Minimum recommended depth is 4 inches)	D _{IS} = in
B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV)	$V_{IS} = $ 76.7 cu ft
C) Initial Surcharge Provided Above Micropool	V _s = 91.3 cu ft
9. Trash Rack	
A) Water Quality Screen Open Area: $A_t = A_{ot} * 38.5*(e^{-0.095D})$	A _t = <u>425</u> square inches
B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.)	Aluminum Amico-Klemp SR Series with Cross Rods 2" O.C.
Other (Y/N): N	
C) Ratio of Total Open Area to Total Area (only for type 'Other')	User Ratio =
D) Total Water Quality Screen Area (based on screen type)	A _{total} = <u>599</u> sq. in.
E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E)	H=feet
F) Height of Water Quality Screen (H _{TR})	H _{TR} = <u>104.8</u> inches
G) Width of Water Quality Screen Opening (W _{opening}) (Minimum of 12 inches is recommended)	W _{opening} = <u>12.0</u> inches

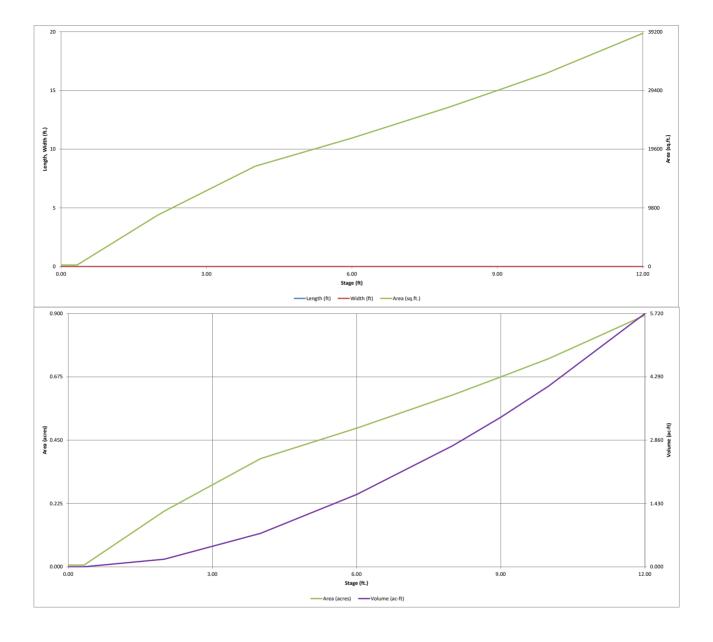

	Design Procedure Forn	n: Extended Detention Basin (EDB)
		Sheet 4 of 4
Designer:	Matt Larson	
Company:	Classic Consulting Engineers & Surveyors, LLC	
Date:	November 16, 2021	
Project:	FOREST LAKES - FILING 7	
Location:	POND A - FINAL DESIGN	
10. Overflow Embai A) Describe em	nkment nbankment protection for 100-year and greater overtopping:	36' WIDE CONCRETE SPILLWAY AT ELEV. 7117.00
	erflow Embankment distance per unit vertical, 4:1 or flatter preferred)	4.00
11. Vegetation		Choose One Irrigated Not Irrigated
12. Access		
A) Describe Se	ediment Removal Procedures	15' WIDE ACCESS ROAD W/ MIN. 30' CL RADIUS TO POND BOTTOM
Notes:		

		FOREST LAK	ES FILIN	IG 7		_			
	JOB NUMBER:					_			
		09/22/21				_			
CA	LCULATED BY:	MAL							
	POND A - TOP	OF BERM							
		WITH PONDPA		JATION:					
INSERT F	POND DESIGN S	SIZE INFO: (REI))						
		-							
	D ELEVATION :				AREA (BTM	to TOP):			
(from lo	owest to highest)					-	acres		
		7108.00			274	0.01	-		
		7108.25			274	0.01	-		
		7110.00			8,633	0.20	•		
		7112.00			16,740	0.38	acres		
		7114.00			21,450	0.49	acres		
		7116.00			26,602	0.61	acres		
		7117.00			29,391	0.67	-		
		7118.00			32,227 38,927	0.74	-		
		7120.00	-		30,927		acres		
						-	acres acres		
			1			_	20103		
PRFI	IMINARY SIZE:	T							
		⊿ 1/3{(EL2-EL1)	*(Δ1+Δ2-	+((Δ1*Δ2)^ 5))}			CU	MMULATIVE
	VOLONIE		(/////2	. (()	, .o,,,				VOLUME:
		-	AC-FT	from	7,108	to		7,108	
		0.00	AC-FT	from	7,108			7,108	0.00
			AC-FT		7,108			7,110	0.14
			AC-FT		7,110	-		7,112	0.71
		0.87	AC-FT	from	7,112	to		7,114	1.57
		1.09	AC-FT	from	7,114	to		7,116	2.66
		0.64	AC-FT	from	7,116	to		7,117	3.30
			AC-FT		7,117	to		7,118	4.00
		1.61	AC-FT		7,118			7,120	5.61
			AC-FT		7,120	-		-	5.61
			AC-FT	from	-	to		-	5.61
	^SIZING IS FO	R PRELIMINAR	Y PURPO	JSES ON	NLY.				
		F 64							
	VOLUME =	5.01	AC-FT						
				-					
	INVALE SURFAC	E AREA REQU	KEWEN	1					
APPROX									
APPROX						7			
APPROX	POND DEPTH		ND VOLU						
APPROX	POND DEPTH (FT)	AC-FT		CF	(SF)				
APPROX	POND DEPTH (FT) 4	AC-FT 5.61	=	CF #######	(SF) 61,126				
APPROX	POND DEPTH (FT) 4 6	AC-FT 5.61 5.61	= =	CF ####### ########	(SF) 61,126 40,751				
APPROX	POND DEPTH (FT) 4	AC-FT 5.61	=	CF #######	(SF) 61,126				

	FOREST LAKES FILIN	IG 7				
JOB NUMBER:						
	09/22/21					
CALCULATED BY:	MAL					
POND A - SPI	_LWAY					
		JATION:				
INSERT POND DESIGN	SIZE INFO: (RED)					
POND ELEVATION :	7		AREA (BTM to			-
				10F).		=
(from lowest to highest)			074	-	acres	
	7108.00 7108.25		274 274		acres	
	7108.25		8,633		acres acres	
	7112.00		16,740		acres	
	7112.00		21,450		acres	
	7116.00		26,602	0.43	acres	
	7117.00		29,391		acres	
				-	acres	
				-	acres	
				-	acres	
				-	acres	
PRELIMINARY SIZE:						
VOLUME =	1/3{(EL2-EL1)*(A1+A2	+((A1*A2)^.5))}			CUMMULATIVE
						VOLUME:
	AC-FT		7,108	to _	7,10	
	0.00 AC-FT		7,108	to _	7,10	
	0.14 AC-FT		7,108	to _	7,11	
	0.57 AC-FT		7,110	to -	7,11	
	0.87 AC-FT		7,112 7,114	to _	7,11	
	0.64 AC-FT		7,114	to _ to	7,11	
	- AC-FT		7,117	to _	-	3.30
	- AC-FT		-	to _		3.30
	- AC-FT			to -	-	3.30
	- AC-FT		-	to -	-	3.30
				-		
*SIZING IS FC	R PRELIMINARY PURP	<u>OSES ON</u>	ILY.			
VOLUME =	3.30 AC-FT					
		- 				
APPROXIMATE SURFAC	E AREA REQUIREMEN	Т				
			-			
POND DEPTH			SURFACE AREA			
	AC-FT	CF	(SF)			
(FT)			25.040			
4	3.30 =	######	35,919			
4 6	3.30 = 3.30 =	######	23,946			
4 6 8	3.30 = 3.30 = 3.30 =	###### #######	23,946 17,960			
4 6	3.30 = 3.30 =	######	23,946 17,960			
4 6 8	3.30 = 3.30 = 3.30 =	###### #######	23,946 17,960			

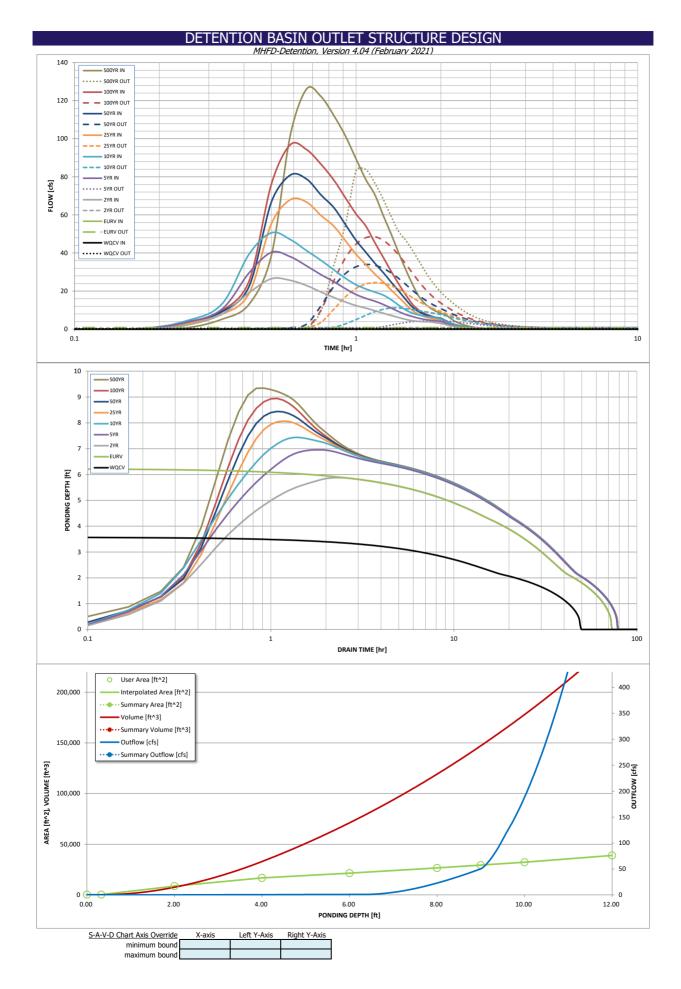
			0 -				
	FOREST LAKES	5 FILIN	G 7				
JOB NUMBER:							
	09/22/21						
CALCULATED BY:	MAL						
POND A - TOP	OF BOX/EURV						
POND SIZING	WITH PONDPAC	K EQU	IATION:				
POND ELEVATION :	_			AREA (BTM to	TOP):		7
(from lowest to highest)					- /	acres	
(7108.00			274	0.01	acres	
	7108.25			274	0.01	acres	
	7110.00			8,633	0.20	acres	
	7112.00			16,740	0.20	acres	
	7112.00			21,450	0.49	acres	
	7114.40			22,688	0.43	acres	
				22,000	-	acres	
					-	acres	
					-	acres	
					-	acres	
					-	acres	
PRELIMINARY SIZE: VOLUME =	1/3{(EL2-EL1)*(A	\1+A2+	-((A1*A2)	^.5)) }		(
	- 4	AC-FT	from	7,108	to	7,108	
		AC-FT	from	7,108	to	7,108	
	0.14 A	AC-FT	from	7,108	to	7,110	
	0.57 A	AC-FT	from	7,110	to	7,112	2 0.7
	0.87 A		from	7,112	to	7,114	
	0.20 A		from	7,114	to	7,114	
		AC-FT	from	7,114	to	-	1.77
		AC-FT	from	-	to	-	1.7
			from	-	to	-	1.7
		AC-FT AC-FT	from from	-	to to	-	1.77
	<i>F</i>	ч С- г I	ITOTT		to	-	1.77
*SIZING IS FO	R PRELIMINARY F	PURPC	DSES ON	ILY.			
VOLUME =	1.77	AC-FT					
APPROXIMATE SURFAC	E AREA REQUIRI	EMENT	Г				
POND DEPTH	BOND	VOLU	ME	SURFACE AREA			
	AC-FT		CF	(SF)			
		=	сг 77,230	(3F)			
(FT)	1 77			19.300			
4	1.77		-				
4	1.77	=	77,230	12,872			
4			-				

Password:


DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

Brojosti	FOREST LAI		7	MHFD	Detention, Version	4.04 (Febri	uary 2021)							
Project: Basin ID:		KES FILING	/											
ZONE 3	2													
		T												
Leony Wack		100-YEA	NB		I		1							
PERMANENT ORIFIC		ORIFICI	E		Depth Increment =		ft Optional				Optional		,	
POOL Example Zone	Configurati	on (Retenti	on Pond)		Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Override Area (ft ²)	Area (acre)	Volume (ft ³)	Volume (ac-ft)
Watershed Information		_			Top of Micropool		0.00	-			274	0.006		(22.15)
Selected BMP Type =	EDB						0.33	-			274	0.006	90	0.002
Watershed Area =	38.29	acres					2.00				8,633	0.198	7,528	0.173
Watershed Length = Watershed Length to Centroid =	2,063 800	ft ft					4.00 6.00	-	-		16,740 21,450	0.384 0.492	32,901 71,091	0.755
Watershed Slope =	0.028	ft/ft					8.00				26,602	0.611	119,143	2.735
Watershed Imperviousness =	43.20%	percent					9.00	-			29,397	0.675	147,142	3.378
Percentage Hydrologic Soil Group A = Percentage Hydrologic Soil Group B =	0.0%	percent percent					10.00 12.00	-	-		32,227 38,927	0.740	177,954 249,108	4.085 5.719
Percentage Hydrologic Soil Groups C/D =	0.0%	percent					12.00				50,527	0.051	215,100	5.715
Target WQCV Drain Time =	40.0	hours												
Location for 1-hr Rainfall Depths =														
After providing required inputs above inc depths, click 'Run CUHP' to generate run	off hydrograph	ns using						-						
the embedded Colorado Urban Hydro	graph Proced	ure.	Optional Use	er Overrides				-	-					
Water Quality Capture Volume (WQCV) =	0.601	acre-feet acre-feet		acre-feet									-	
Excess Urban Runoff Volume (EURV) = 2-yr Runoff Volume (P1 = 1.19 in.) =	1.748	acre-feet	1.19	acre-feet inches				-					<u> </u>	
5-yr Runoff Volume (P1 = 1.5 in.) =	2.495	acre-feet	1.50	inches				-						
10-yr Runoff Volume (P1 = 1.75 in.) =	3.208	acre-feet	1.75	inches										
25-yr Runoff Volume (P1 = 2 in.) = 50-yr Runoff Volume (P1 = 2.25 in.) =	4.210 5.000	acre-feet acre-feet	2.00	inches inches				-						
100-yr Runoff Volume (P1 = 2.52 in.) =	6.021	acre-feet	2.52	inches				-						
500-yr Runoff Volume (P1 = 3.1 in.) =	7.930	acre-feet	3.10	inches				-						
Approximate 2-yr Detention Volume = Approximate 5-yr Detention Volume =	1.299	acre-feet acre-feet						-	-					
Approximate 10-yr Detention Volume =	2.446	acre-feet												
Approximate 25-yr Detention Volume =	2.713	acre-feet						-						
Approximate 50-yr Detention Volume = Approximate 100-yr Detention Volume =	2.843 3.229	acre-feet acre-feet											-	
Approximate 100-yr Detendori Volume -	3.229	acre-reec						-						
Define Zones and Basin Geometry		_						-						
Zone 1 Volume (WQCV) =	0.601	acre-feet						-						
Zone 2 Volume (EURV - Zone 1) = Zone 3 Volume (100-year - Zones 1 & 2) =	1.147 1.481	acre-feet acre-feet						-	-				-	
Total Detention Basin Volume =	3.229	acre-feet												
Initial Surcharge Volume (ISV) =	user	ft ³						-						
Initial Surcharge Depth (ISD) = Total Available Detention Depth (H _{total}) =	user	ft ft												
Depth of Trickle Channel (H_{TC}) =	user	ft												
Slope of Trickle Channel (S_{TC}) =	user	ft/ft						-						
Slopes of Main Basin Sides (S_{main}) = Basin Length-to-Width Ratio (R_{LW}) =	user	H:V												
Basin Lengur-to-Widur Kato (KL/W) -	usei	_						-						
Initial Surcharge Area $(A_{ISV}) =$	user	ft ²						-						
Surcharge Volume Length $(L_{ISV}) =$ Surcharge Volume Width $(W_{ISV}) =$	user	ft ft											-	
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft						-						
Length of Basin Floor $(L_{FLOOR}) =$	user	ft						-						
Width of Basin Floor (W_{FLOOR}) =	user	ft						-	-					
Area of Basin Floor (A_{FLOOR}) = Volume of Basin Floor (V_{FLOOR}) =	user	ft ² ft ³												
Depth of Main Basin $(H_{MAIN}) =$	user	ft						-						
Length of Main Basin $(L_{MAIN}) =$	user	ft						-						
Width of Main Basin (W _{MAIN}) = Area of Main Basin (A _{MAIN}) =	user	ft ft ²						-	-					
Volume of Main Basin (V _{MAIN}) =	user	ft ³						-						
Calculated Total Basin Volume (V_{total}) =	user	acre-feet												
								-						
								1 1						
								1 1						
									-					
								-						
								1 1	1 1					
												-		
								-						
								-						
									-					
								1 1	1 1					
								1 1	1 1				\vdash	


DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

DETENTION BASIN OUTLET STRUCTURE DESIGN

Project:	FOREST LAKES FI		-D-Detention, Vers	sion 4.04 (Februar	'Y 2021)				
Basin ID:									
ZONE 3	_			Estimated	Estimated				_
100.VP	Stage and Total Area of Each Orifice Rave Available of the result of								
			Zone 1 (WQCV)	3.58	0.601	Orifice Plate			
	100-YEAR ORIFICE		Zone 2 (EURV)	6.24	1.147	Orifice Plate			
PERMANENT ORIFICES			Zone 3 (100-year)	8.78	1.481	Weir&Pipe (Circular)			
POOL Example Zone	Configuration (Re	tention Pond)		Total (all zones)	3.229		1		
User Input: Orifice at Underdrain Outlet (typicall	<u>y used to drain WQ</u>	CV in a Filtration B	<u>MP)</u>					-	<u>l</u>
		· ·	the filtration media	surface)			-	-	
Underdrain Orifice Diameter =	N/A	inches			Underdrain	1 Orifice Centroid =	N/A	feet	
User Tanut. Orifice Plate with one or more orific	or Elliptical Slot		ta duain WOOV an	diar EUDV in a cod			C L Lata d Davama	· · · Di-to	
						ice Δrea ner Row =			
						•	-	+	
Orifice Plate: Orifice Vertical Spacing =				· · · ·				+	
Orifice Plate: Orifice Area per Row =					•			-	
								•	
Define the problem of the probl									
Channel of Orifice Controld (#)				Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row / (optional)	Row 8 (optional)	ł
									1
onnee Area (og. manes)	2.00	0.00	0.00						1
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	1
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									
	· .						· · · · · · · · · · · · · · · · · · ·		-
User Input: Vertical Orifice (Circular or Rectange		Not Colocted	1						fice 1
Invert of Vertical Orifice =			ft (relative to basir	n bottom at Stage -	_0ft) Ver	rtical Orifice Area =			₽ ²
				-					
				1 Doctorn at Stage	- 010) - 10.011	Tormee centrola	· · · · ·		
			1						
User Input: Overflow Weir (Dropbox with Flat or			ctangular/Trapezoid	lal Weir (and No Ou	utlet Pipe)	—			<u>/eir</u>
					U-i-bt of Crote	Lanar Edge H -			
				oottom at Stage = u r					
				Gr					Teel
					•			-	ft ²
-									
			%						1
User Input: Outlet Pipe w/ Flow Restriction Plate			<u>ectangular Orifice)</u>		<u>Ca</u>	Iculated Parameters			<u>ate</u>
Death to Javant of Outlot Ding -			a current halam hi	the second second		11 C Store Area -			
		,		asin bottom at Stage	,				-
	50.00	N/A	inches	Half-Cent					
							,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	radiano
User Input: Emergency Spillway (Rectangular or	Trapezoidal)						Calculated Parame	eters for Spillway	
Spillway Invert Stage=		ft (relative to basin	1 bottom at Stage =	= 0 ft)	Spillway D	esign Flow Depth=		feet	
					-	•		+	
						•			
Freeboard above Max Water Surface =	1.00	feet			Basin Volume at I	op of Freeboard =	4.//	acre-ft	
Routed Hydrograph Results		ride the default CUI	HP hydrographs and	d runoff volumes by	y entering new valu	ies in the Inflow Hy	drographs table (Co		
5									
			4.4	12.3	18.6	32.9	41.3	52.8	72.2
			0.12	0.32	0.49	0.86	1.08	1.38	1.88
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.2	0.4	1.0	1.4	2.1	2.6
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	45 48	62 69	63 69	64 73	61 72	57 70	54 69	50 67	45 64
Maximum Ponding Depth (ft) =	3.58	6.24	5.88	6.96	7.44	8.07	8.44	8.94	9.34
Area at Maximum Ponding Depth (acres) =	0.35	0.51	0.49	0.55	0.58	0.62	0.64	0.67	0.70
Maximum Volume Stored (acre-ft) =	0.602	1.752	1.568	2.127	2.397	2.778	3.010	3.338	3.611

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate progra

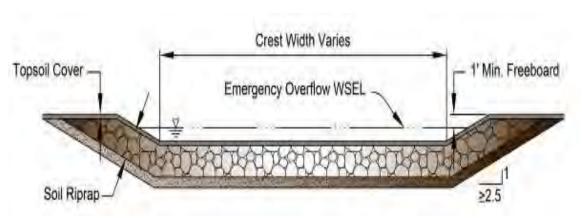
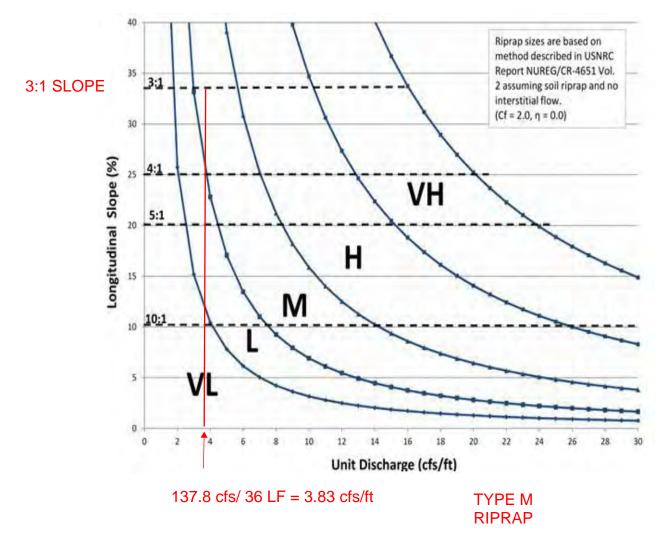
	The user can o	verride the calcu	lated inflow hyd	rographs from t	his workbook wi	th inflow hydrog	raphs developed	l in a separate pr	ogram.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.25	0.02	0.75
	0:15:00	0.00	0.00	2.17	3.56	4.42	2.97	3.73	3.63	5.17
	0:20:00	0.00	0.00	7.87	10.44	13.12	7.78	9.08	9.72	13.07
	0:25:00	0.00	0.00	19.13	29.54	39.38	18.81	22.41	25.25	38.59
	0:30:00	0.00	0.00	26.48	40.33	50.59	55.34	66.71	76.07	101.60
	0:35:00	0.00	0.00	25.65	38.07	47.11	67.97	80.89	96.81	126.12
	0:40:00	0.00	0.00	22.91	33.25	41.24	66.73	78.86	94.31	122.21
	0:45:00	0.00	0.00	19.53	28.64	36.19	59.75	70.53	86.65	112.19
	0:50:00 0:55:00	0.00	0.00	16.66 14.27	24.93 21.23	31.18 26.72	54.08 46.40	63.85 54.91	78.30 68.95	101.41 89.33
	1:00:00	0.00	0.00	12.36	18.18	23.29	39.28	46.60	60.47	78.50
	1:05:00	0.00	0.00	11.05	16.16	21.11	33.87	40.35	54.07	70.30
	1:10:00	0.00	0.00	9.65	14.68	19.44	28.90	34.55	45.30	59.50
	1:15:00	0.00	0.00	8.37	12.94	17.86	24.72	29.64	37.60	49.80
	1:20:00	0.00	0.00	7.20	11.02	15.43	20.54	24.60	30.22	40.00
	1:25:00	0.00	0.00	6.10	9.23	12.57	16.78	20.04	23.75	31.34
	1:30:00	0.00	0.00	5.13	7.70	10.08	13.11	15.57	18.05	23.75
	1:35:00	0.00	0.00	4.44	6.66	8.45	9.88	11.67	13.19	17.47
	1:40:00	0.00	0.00	4.09	5.76	7.50	7.81	9.23	10.11	13.55
	1:45:00	0.00	0.00	3.93	5.13	6.89	6.58 E 80	7.75	8.27	11.15
	1:50:00 1:55:00	0.00	0.00	3.84	4.70	6.45	5.80	6.80	7.01	9.49
	2:00:00	0.00	0.00	3.41 3.02	4.38 4.03	6.00 5.40	5.26 4.92	6.14 5.71	6.13 5.50	8.33 7.49
	2:05:00	0.00	0.00	2.36	3.15	4.19	3.82	4.41	4.12	5.61
	2:10:00	0.00	0.00	1.80	2.37	3.13	2.83	3.25	2.96	4.03
	2:15:00	0.00	0.00	1.36	1.78	2.33	2.11	2.42	2.20	2.98
	2:20:00	0.00	0.00	1.03	1.33	1.72	1.57	1.80	1.64	2.22
	2:25:00	0.00	0.00	0.77	0.98	1.26	1.16	1.32	1.22	1.65
	2:30:00	0.00	0.00	0.56	0.70	0.92	0.84	0.95	0.89	1.20
	2:35:00	0.00	0.00	0.41	0.50	0.67	0.61	0.69	0.65	0.88
	2:40:00	0.00	0.00	0.29	0.35	0.48	0.44	0.50	0.47	0.63
	2:45:00	0.00	0.00	0.19	0.24	0.32	0.30	0.34	0.32	0.43
	2:50:00 2:55:00	0.00	0.00	0.11	0.15	0.19	0.19	0.21	0.20	0.26
	3:00:00	0.00	0.00	0.05	0.08	0.10	0.10	0.11 0.04	0.10	0.14 0.05
	3:05:00	0.00	0.00	0.02	0.03	0.04	0.04	0.04	0.04	0.03
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00 3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00 4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00 4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00 4:50:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00 5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00 6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021) Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope
							changes (e.g. ISV and Floor
							from the S-A-V table on
							Sheet 'Basin'.
							Also include the inverts of a
			-				outlets (e.g. vertical orifice,
							overflow grate, and spillwa
							where applicable).
	-						
	-						
							-
							-
							-
]
]
			İ				1
							1
			1				1
							1
			<u> </u>			1	1
			-				
							-
	-						
							-
							-
							-
			-				
	1		ł				
							-
	-						
			-				
							4
							4
							-
							-
			1				
							-
]
							4
			<u> </u>				4
							-
							-
	1						1
							1
		1	t	İ	İ		1
	1		1	1	1		1

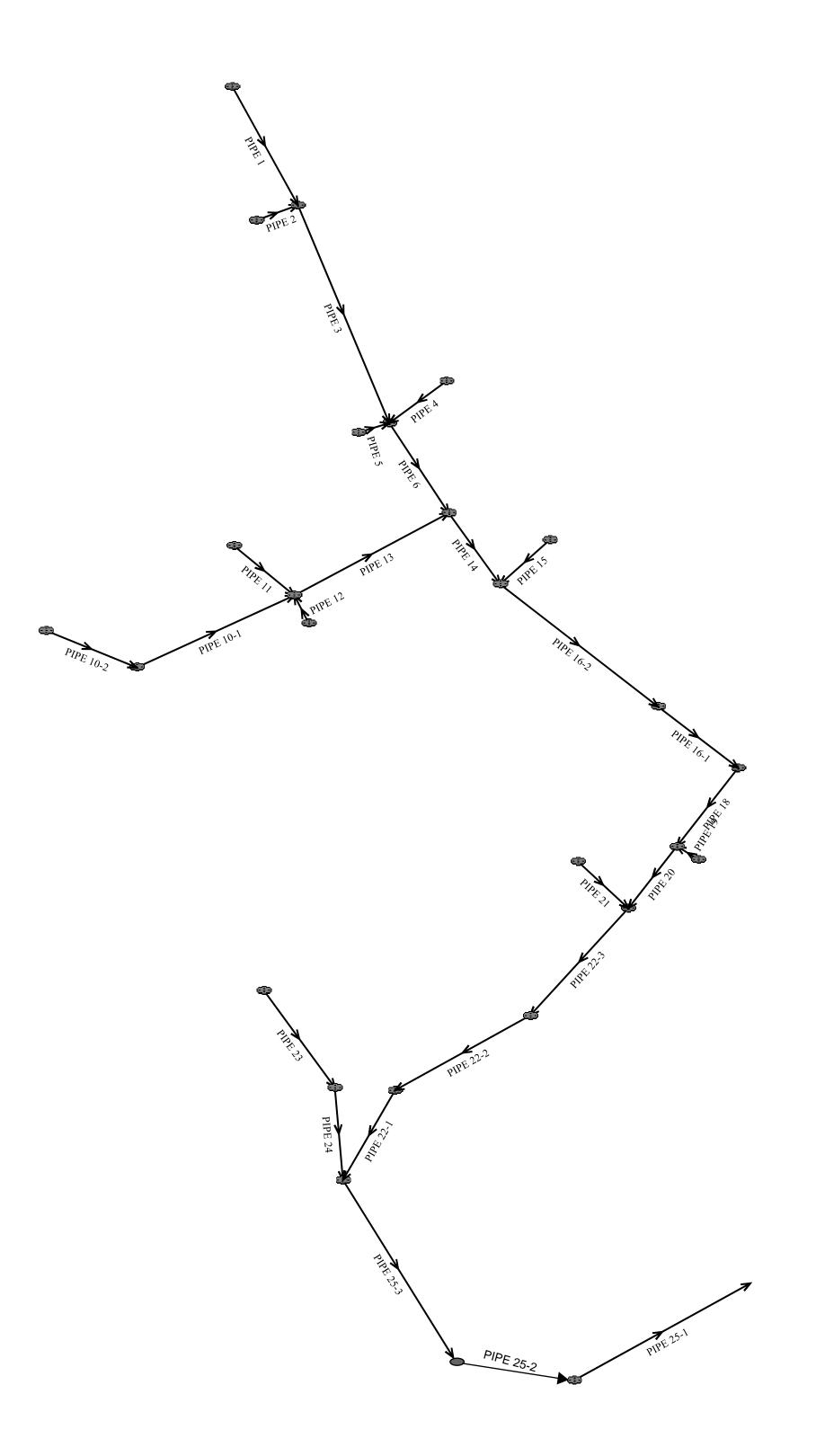

Figure 13-12c. Emergency Spillway Protection

Figure 13-12d. Riprap Types for Emergency Spillway Protection

HYDRAULIC GRADE LINE (HGL) CALCULATIONS

System Input Summary

FIL. 7 TO POND A – 100-YR HGL CALCS

Rainfall Parameters

Rainfall Return Period: 100 **Rainfall Calculation Method:** Formula

One Hour Depth (in): Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300 Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 0.00

		Give	en Flow			Sub Basi	Basin Information						
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution (cfs)	Drainage Area (Ac.)	Runoff Coefficient	5yr Coefficient	Overland Length (ft)	Overland Slope (%)	Gutter Length (ft)	Gutter Velocity (fps)			
OUTFALL 1	7110.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 25-1	7124.39	126.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 25-2	7127.90	126.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 25-3	7141.67	126.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 24	7141.30	22.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 23	7141.30	15.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 22-1	7141.89	106.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 22-2	7143.41	106.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 22-3	7142.26	106.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 21	7142.17	6.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 20	7142.20	100.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 18	7143.30	99.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 17	7143.67	13.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 16-1	7145.69	86.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 16-2	7158.15	86.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 15	7158.20	14.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 14	7159.80	72.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 13	7158.67	24.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			

Manhole Input Summary:

PIPE 11	7158.95	11.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 10-1	7160.60	7.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 10-2	7161.70	7.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 12	7158.42	6.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 6	7162.00	48.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 3	7186.95	27.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 1	7189.88	13.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 2	7186.75	13.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 5	7161.70	6.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 4	7162.00	15.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 19	7141.97	2.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Manhole Output Summary:

	Local Contribution Total Design Flow									
Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak Flow (cfs)	Comment
OUTFALL 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
PIPE 25-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	126.10	Surface Water Present (Downstream)
PIPE 25-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	126.10	
PIPE 25-3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	126.10	
PIPE 24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	22.50	

0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	15.10	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	106.90	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	106.90	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	106.90	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.50	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.70	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99.20	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	13.10	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	86.70	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	86.70	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	14.60	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	72.10	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	24.40	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	11.40	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	7.10	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	7.10	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.60	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	48.30	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	27.20	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	13.80	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	13.40	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.90	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	15.10	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.40	
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00	0.00	0.00	0.00 </td <td>0.000.0</td> <td>0.00</td> <td>0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td> <td>0.00 0.00 0.00 0.00 0.00 0.00 0.00 106.90 0.00 0.00 0.00 0.00 0.00 0.00 106.90 0.00 0.00 0.00 0.00 0.00 0.00 106.90 0.00 0.00 0.00 0.00 0.00 0.00 106.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 106.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 106.90 0.00 0.00 0.00 0.00 0.00 0.00 100.70 0.00 0.00 0.00 0.00 0.00 0.00 100.70 0.00 0.00 0.00 0.00 0.00 0.00 100.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.10 0.00 0.00 0.00 0.00 0.00 0.00 14.60 0.00</td>	0.000.0	0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 106.90 0.00 0.00 0.00 0.00 0.00 0.00 106.90 0.00 0.00 0.00 0.00 0.00 0.00 106.90 0.00 0.00 0.00 0.00 0.00 0.00 106.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 106.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 106.90 0.00 0.00 0.00 0.00 0.00 0.00 100.70 0.00 0.00 0.00 0.00 0.00 0.00 100.70 0.00 0.00 0.00 0.00 0.00 0.00 100.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.10 0.00 0.00 0.00 0.00 0.00 0.00 14.60 0.00

Sewer Input Summary:

		El	evation		Loss (Coefficie	ents	Giver	18	
Element Name	Sewer Length (ft)	Downstream Invert (ft)	Slope (%)	Upstream Invert (ft)	Mannings n	Bend Loss	Lateral Loss	Cross Section	Rise (ft or in)	Span (ft or in)
PIPE 25-1	144.95	7111.15	2.0	7114.05	0.013	0.03	1.00	CIRCULAR	48.00 in	48.00 in
PIPE 25-2	45.42	7114.05	2.0	7114.96	0.013	0.29	0.44	CIRCULAR	48.00 in	48.00 in
PIPE 25-3	128.05	7118.48	4.5	7124.24	0.013	0.38	0.44	CIRCULAR	48.00 in	48.00 in
PIPE 24	14.63	7131.50	1.0	7131.65	0.013	0.09	0.72	CIRCULAR	24.00 in	24.00 in
PIPE 23	35.34	7131.95	0.5	7132.13	0.013	0.10	0.72	CIRCULAR	24.00 in	24.00 in
PIPE 22-1	26.97	7129.50	0.5	7129.64	0.013	0.38	0.00	CIRCULAR	48.00 in	48.00 in
PIPE 22-2	148.48	7129.64	0.5	7130.38	0.013	0.16	0.58	CIRCULAR	48.00 in	48.00 in
PIPE 22-3	142.91	7130.38	0.5	7131.09	0.013	0.08	0.73	CIRCULAR	48.00 in	48.00 in
PIPE 21	27.05	7133.60	1.0	7133.87	0.013	1.32	0.00	CIRCULAR	18.00 in	18.00 in
PIPE 20	14.64	7131.60	0.5	7131.67	0.013	0.05	1.00	CIRCULAR	42.00 in	42.00 in
PIPE 18	107.76	7131.97	0.5	7132.51	0.013	0.05	1.00	CIRCULAR	42.00 in	42.00 in
PIPE 17	31.29	7134.51	0.5	7134.66	0.013	0.19	0.00	CIRCULAR	18.00 in	18.00 in
PIPE 16-1	57.50	7133.02	1.8	7134.05	0.013	1.32	0.25	CIRCULAR	36.00 in	36.00 in
PIPE 16-2	187.98	7134.35	6.0	7145.63	0.013	0.05	1.00	CIRCULAR	36.00 in	36.00 in
PIPE 15	29.39	7146.93	6.2	7148.75	0.013	1.32	0.00	CIRCULAR	24.00 in	24.00 in
PIPE 14	35.14	7145.93	6.0	7148.04	0.013	0.05	0.86	CIRCULAR	36.00 in	36.00 in
PIPE 13	107.03	7148.53	0.5	7149.07	0.013	1.32	0.00	CIRCULAR	30.00 in	30.00 in
PIPE 11	27.58	7150.07	0.5	7150.21	0.013	1.06	0.00	CIRCULAR	18.00 in	18.00 in
PIPE 10-1	97.56	7150.07	0.5	7150.56	0.013	0.05	1.00	CIRCULAR	18.00 in	18.00 in
PIPE 10-2	38.09	7150.84	5.9	7153.09	0.013	0.38	0.44	CIRCULAR	18.00 in	18.00 in

PIPE 12	3.45	7150.07	5.8	7150.27	0.013	1.32	0.00	CIRCULAR	18.00 in	18.00 in
PIPE 6	47.89	7148.56	3.7	7150.33	0.013	0.05	1.00	CIRCULAR	30.00 in	30.00 in
PIPE 3	357.40	7151.33	7.0	7176.49	0.013	0.05	1.00	CIRCULAR	24.00 in	24.00 in
PIPE 1	78.51	7177.50	3.9	7180.56	0.013	0.05	0.86	CIRCULAR	18.00 in	18.00 in
PIPE 2	3.63	7177.49	6.3	7177.72	0.013	1.32	0.00	CIRCULAR	18.00 in	18.00 in
PIPE 5	3.63	7151.83	10.2	7152.20	0.013	1.32	0.00	CIRCULAR	18.00 in	18.00 in
PIPE 4	27.51	7151.34	4.0	7152.44	0.013	0.99	0.00	CIRCULAR	24.00 in	24.00 in
PIPE 19	3.04	7133.97	1.0	7134.00	0.013	1.32	0.00	CIRCULAR	18.00 in	18.00 in

Sewer Flow Summary:

	Full Flow	w Capacity	Critic	al Flow	Normal Flow						
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	Velocity (fps)	Depth (in)	•	Froude Number	Flow Condition	Flow (cfs)	Surcharged Length (ft)	Comment
PIPE 25-1	203.69	16.21	40.42	11.17	27.33	17.07	2.20	Supercritical	126.10	0.00	
PIPE 25-2	203.69	16.21	40.42	11.17	27.33	17.07	2.20	Pressurized	126.10	45.42	
PIPE 25-3	305.53	24.31	40.42	11.17	21.49	23.15	3.49	Supercritical	126.10	0.00	Velocity is Too High
PIPE 24	22.68	7.22	20.29	7.94	19.50	8.23	1.10	Supercritical	22.50	0.00	
PIPE 23	16.04	5.11	16.81	6.43	18.52	5.81	0.82	Pressurized	15.10	35.34	
PIPE 22-1	103.82	8.26	48.00	8.51	48.00	8.51	0.00	Pressurized	106.90	26.97	
PIPE 22-2	101.84	8.10	48.00	8.51	48.00	8.51	0.00	Pressurized	106.90	148.48	
PIPE 22-3	101.84	8.10	48.00	8.51	48.00	8.51	0.00	Pressurized	106.90	142.91	
PIPE 21	10.53	5.96	11.83	5.28	10.23	6.27	1.32	Pressurized	6.50	27.05	
PIPE 20	71.33	7.41	42.00	10.47	42.00	10.47	0.00	Pressurized	100.70	14.64	

DIDE 10	71.00	7.41	10.00	10.01	10.00	10.01	0.00	D · 1	00.00	107.7(
PIPE 18	71.33	7.41	42.00	10.31	42.00	10.31	0.00	Pressurized	99.20	107.76	
PIPE 17	7.30	4.13	18.00	7.41	18.00	7.41	0.00	Pressurized	13.10	31.29	
PIPE 16-1	89.73	12.69	33.89	12.56	28.47	14.46	1.63	Pressurized	86.70	57.50	
PIPE 16-2	163.82	23.18	33.89	12.56	18.62	23.50	3.73	Supercritical Jump	86.70	130.51	Velocity is Too High
PIPE 15	56.48	17.98	16.52	6.33	8.32	15.08	3.73	Pressurized	14.60	29.39	
PIPE 14	163.82	23.18	32.22	10.81	16.72	22.44	3.82	Supercritical Jump	72.10	28.63	Velocity is Too High
PIPE 13	29.08	5.92	20.19	6.94	21.03	6.64	0.92	Pressurized	24.40	107.03	
PIPE 11	7.45	4.21	18.00	6.45	18.00	6.45	0.00	Pressurized	11.40	27.58	
PIPE 10-1	7.45	4.21	12.38	5.48	14.05	4.80	0.77	Pressurized	7.10	97.56	
PIPE 10-2	25.58	14.48	12.38	5.48	6.48	12.39	3.46	Supercritical Jump	7.10	30.33	
PIPE 12	25.37	14.35	11.93	5.31	6.27	12.07	3.44	Pressurized	6.60	3.45	
PIPE 6	79.11	16.12	27.32	10.29	16.93	16.91	2.78	Supercritical	48.30	0.00	
PIPE 3	60.18	19.16	21.75	9.09	11.31	18.67	3.85	Supercritical	27.20	0.00	Velocity is Too High
PIPE 1	20.80	11.77	16.51	8.13	10.71	12.59	2.57	Supercritical	13.80	0.00	
PIPE 2	26.44	14.96	16.37	7.94	9.07	15.01	3.43	Pressurized	13.40	3.63	
PIPE 5	33.64	19.04	12.20	5.41	5.53	14.97	4.57	Supercritical	6.90	0.00	
PIPE 4	45.37	14.44	16.81	6.43	9.54	12.98	2.97	Pressurized	15.10	27.51	
PIPE 19	10.53	5.96	7.03	3.75	5.84	4.83	1.43	Pressurized	2.40	3.04	

• A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).

• If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.

• If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Exis	sting	Calcı	lated		Used		
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
PIPE 25-1	126.10	CIRCULAR	48.00 in	48.00 in	42.00 in	42.00 in	48.00 in	48.00 in	12.57	
PIPE 25-2	126.10	CIRCULAR	48.00 in	48.00 in	42.00 in	42.00 in	48.00 in	48.00 in	12.57	
PIPE 25-3	126.10	CIRCULAR	48.00 in	48.00 in	36.00 in	36.00 in	48.00 in	48.00 in	12.57	
PIPE 24	22.50	CIRCULAR	24.00 in	24.00 in	24.00 in	24.00 in	24.00 in	24.00 in	3.14	
PIPE 23	15.10	CIRCULAR	24.00 in	24.00 in	24.00 in	24.00 in	24.00 in	24.00 in	3.14	
PIPE 22-1	106.90	CIRCULAR	48.00 in	48.00 in	54.00 in	54.00 in	48.00 in	48.00 in	12.57	Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise
PIPE 22-2	106.90	CIRCULAR	48.00 in	48.00 in	54.00 in	54.00 in	48.00 in	48.00 in	12.57	Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise
PIPE 22-3	106.90	CIRCULAR	48.00 in	48.00 in	54.00 in	54.00 in	48.00 in	48.00 in	12.57	Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise
PIPE 21	6.50	CIRCULAR	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	1.77	
PIPE 20	100.70	CIRCULAR	42.00 in	42.00 in	48.00 in	48.00 in	42.00 in	42.00 in	9.62	Existing height is smaller than the suggested height.

										Existing width is smaller than the suggested width. Exceeds max. Depth/Rise
PIPE 18	99.20	CIRCULAR	42.00 in	42.00 in	48.00 in	48.00 in	42.00 in	42.00 in	9.62	Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise
PIPE 17	13.10	CIRCULAR	18.00 in	18.00 in	24.00 in	24.00 in	18.00 in	18.00 in	1.77	Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise
PIPE 16-1	86.70	CIRCULAR	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	7.07	
PIPE 16-2	86.70	CIRCULAR	36.00 in	36.00 in	30.00 in	30.00 in	36.00 in	36.00 in	7.07	
PIPE 15	14.60	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	
PIPE 14	72.10	CIRCULAR	36.00 in	36.00 in	27.00 in	27.00 in	36.00 in	36.00 in	7.07	
PIPE 13	24.40	CIRCULAR	30.00 in	30.00 in	30.00 in	30.00 in	30.00 in	30.00 in	4.91	
PIPE 11	11.40	CIRCULAR	18.00 in	18.00 in	24.00 in	24.00 in	18.00 in	18.00 in	1.77	Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise
PIPE 10-1	7.10	CIRCULAR	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	1.77	
PIPE 10-2	7.10	CIRCULAR	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	1.77	
PIPE 12	6.60	CIRCULAR	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	1.77	
PIPE 6	48.30	CIRCULAR	30.00 in	30.00 in	27.00 in	27.00 in	30.00 in	30.00 in	4.91	
PIPE 3	27.20	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	

PIPE 1	13.80	CIRCULAR	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	1.77	
PIPE 2	13.40	CIRCULAR	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	1.77	
PIPE 5	6.90	CIRCULAR	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	1.77	
PIPE 4	15.10	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	
PIPE 19	2.40	CIRCULAR	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	1.77	

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater Elevation (ft): 0.00

	Invert Elev.			am Manhole osses	HG	L	EGL			
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)	
PIPE 25-1	7111.15	7114.05	0.00	0.00	7113.43	7117.42	7117.95	1.40	7119.35	
PIPE 25-2	7114.05	7114.96	0.45	0.88	7119.12	7119.47	7120.68	0.35	7121.03	
PIPE 25-3	7118.48	7124.24	0.59	0.88	7120.94	7127.61	7128.59	0.96	7129.54	
PIPE 24	7131.50	7131.65	0.07	0.99	7133.13	7133.34	7134.18	0.14	7134.32	
PIPE 23	7131.95	7132.13	0.04	0.54	7134.54	7134.69	7134.89	0.16	7135.05	
PIPE 22-1	7129.50	7129.64	0.43	0.00	7133.50	7133.65	7134.62	0.15	7134.77	

PIPE 22-2	7129.64	7130.38	0.18	0.47	7134.30	7135.12	7135.42	0.82	7136.24
PIPE 22-3	7130.38	7131.09	0.09	0.30	7135.51	7136.30	7136.64	0.79	7137.42
PIPE 21	7133.60	7133.87	0.28	0.00	7137.49	7137.59	7137.70	0.10	7137.80
PIPE 20	7131.60	7131.67	0.09	0.00	7136.38	7136.53	7138.08	0.15	7138.23
PIPE 18	7131.97	7132.51	0.08	0.05	7136.71	7137.75	7138.36	1.04	7139.41
PIPE 17	7134.51	7134.66	0.16	0.00	7138.71	7139.20	7139.57	0.48	7140.05
PIPE 16-1	7133.02	7134.05	3.08	1.07	7141.91	7142.87	7144.24	0.97	7145.21
PIPE 16-2	7134.35	7145.63	0.12	0.00	7142.99	7148.45	7145.32	5.58	7150.90
PIPE 15	7146.93	7148.75	0.44	0.00	7151.01	7151.13	7151.35	0.12	7151.47
PIPE 14	7145.93	7148.04	0.08	0.95	7150.32	7150.72	7151.93	0.61	7152.54
PIPE 13	7148.53	7149.07	0.51	0.00	7152.66	7153.04	7153.04	0.38	7153.42
PIPE 11	7150.07	7150.21	0.68	0.00	7153.72	7154.05	7154.37	0.32	7154.69
PIPE 10-1	7150.07	7150.56	0.01	0.13	7153.32	7153.76	7153.57	0.44	7154.01
PIPE 10-2	7150.84	7153.09	0.10	0.14	7153.99	7154.12	7154.25	0.34	7154.59
PIPE 12	7150.07	7150.27	0.29	0.00	7153.49	7153.50	7153.71	0.01	7153.72
PIPE 6	7148.56	7150.33	0.08	0.11	7150.91	7152.91	7154.41	0.00	7154.41
PIPE 3	7151.33	7176.49	0.06	0.34	7153.31	7178.30	7157.69	21.90	7179.59
PIPE 1	7177.50	7180.56	0.05	0.35	7178.70	7181.94	7180.85	2.11	7182.96
PIPE 2	7177.49	7177.72	1.18	0.00	7179.87	7179.93	7180.76	0.06	7180.82
PIPE 5	7151.83	7152.20	0.31	0.00	7153.22	7155.53	7155.77	0.00	7155.77
PIPE 4	7151.34	7152.44	0.36	0.00	7154.41	7154.53	7154.77	0.12	7154.89
PIPE 19	7133.97	7134.00	0.04	0.00	7138.24	7138.24	7138.27	0.00	7138.27

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.
- Bend loss = Bend K * $V_{fi} ^ 2/(2*g)$

- Lateral loss = V_fo $^2/(2*g)$ Junction Loss K * V_fi $^2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.

Excavation Estimate:

The trench side slope is 1.0 ft/ft The minimum trench width is 2.00 ft

					D	Downstream Upstream			l			
Element Name	Length (ft)	Wall (in)	Bedding (in)	Bottom Width (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Volume (cu. yd)	Comment
PIPE 25-1	144.95	5.00	6.00	7.83	0.00	0.00	0.00	17.68	11.26	5.92	301.75	Sewer Too Shallow
PIPE 25-2	45.42	5.00	6.00	7.83	17.68	11.26	5.92	22.88	13.86	8.52	233.44	
PIPE 25-3	128.05	5.00	6.00	7.83	15.84	10.34	5.01	31.86	18.35	13.01	913.11	
PIPE 24	14.63	3.00	4.00	5.50	19.33	10.75	7.92	18.30	10.23	7.40	55.32	
PIPE 23	35.34	3.00	4.00	5.50	17.69	9.93	7.10	17.34	9.75	6.92	118.11	
PIPE 22-1	26.97	5.00	6.00	7.83	21.34	13.09	7.75	21.50	13.17	7.83	148.81	
PIPE 22-2	148.48	5.00	6.00	7.83	21.50	13.17	7.84	23.06	13.95	8.61	871.90	
PIPE 22-3	142.91	5.00	6.00	7.83	23.07	13.95	8.62	19.34	12.09	6.75	780.97	
PIPE 21	27.05	2.50	4.00	4.92	16.82	9.20	6.95	16.10	8.84	6.59	77.85	
PIPE 20	14.64	4.50	6.00	7.25	18.83	11.54	6.79	18.56	11.41	6.66	62.85	
PIPE 18	107.76	4.50	6.00	7.25	17.96	11.10	6.35	19.08	11.67	6.92	456.43	
PIPE 17	31.29	2.50	4.00	4.92	17.08	9.33	7.08	17.52	9.55	7.30	98.24	
PIPE 16-1	57.50	4.00	6.00	6.67	18.57	11.12	6.95	21.28	12.47	8.31	262.04	

PIPE 16-2	187.98	4.00	6.00	6.67	20.68	12.17	8.01	23.04	13.35	9.19	996.53	
				0.07								
PIPE 15	29.39	3.00	4.00	5.50	21.44	11.81	8.97	17.90	10.03	7.20	120.89	
PIPE 14	35.14	4.00	6.00	6.67	22.44	13.05	8.89	21.52	12.59	8.43	187.61	
PIPE 13	107.03	3.50	6.00	6.08	21.03	12.06	8.47	17.70	10.39	6.81	448.24	
PIPE 11	27.58	2.50	4.00	4.92	16.70	9.14	6.89	16.98	9.28	7.03	82.56	
PIPE 10-1	97.56	2.50	4.00	4.92	16.70	9.14	6.89	19.58	10.58	8.33	334.96	
PIPE 10-2	38.09	2.50	4.00	4.92	19.01	10.30	8.05	16.72	9.15	6.90	127.07	
PIPE 12	3.45	2.50	4.00	4.92	16.70	9.14	6.89	15.80	8.69	6.44	9.71	
PIPE 6	47.89	3.50	6.00	6.08	20.98	12.03	8.45	21.84	12.46	8.88	236.42	
PIPE 3	357.40	3.00	4.00	5.50	20.34	11.25	8.42	19.92	11.04	8.21	1520.11	
PIPE 1	78.51	2.50	4.00	4.92	18.40	9.99	7.74	18.14	9.86	7.61	271.60	
PIPE 2	3.63	2.50	4.00	4.92	18.42	10.00	7.75	17.56	9.57	7.32	12.22	
PIPE 5	3.63	2.50	4.00	4.92	19.84	10.71	8.46	18.50	10.04	7.79	13.70	
PIPE 4	27.51	3.00	4.00	5.50	20.32	11.24	8.41	18.12	10.14	7.31	108.19	
PIPE 19	3.04	2.50	4.00	4.92	15.96	8.77	6.52	15.44	8.51	6.26	8.06	

Total earth volume for sewer trenches = 8859 cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
 - Four inches for pipes less than 33 inches.
 - \circ Six inches for pipes less than 60 inches.
 - Eight inches for all larger sizes.

System Input Summary- SOUTH SYSTEM INTO FILING 6 STORM SYSTEM

Rainfall Parameters

Rainfall Return Period: 100 **Rainfall Calculation Method:** Formula

PIPES WITHIN FILING 7 LIMITS

One Hour Depth (in): Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300 Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 0.00

		Give	en Flow	Sub Basin Information									
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution (cfs)	Drainage Area (Ac.)	Runoff Coefficient	5yr Coefficient	Overland Length (ft)	Overland Slope (%)	Gutter Length (ft)	Gutter Velocity (fps)			
OUTFALL 1	7055.59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 14	7065.75	77.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 13	7065.45	13.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 12-1	7067.54	65.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 12-2	7068.68	65.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 10	7069.02	6.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 11	7069.02	5.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 9-1	7071.38	56.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 9-2	7072.25	56.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 9-3	7073.01	56.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 9-4	7073.79	56.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 9-5	7074.61	56.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 9-6	7075.26	56.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 9-7	7076.61	56.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 9-8	7076.04	56.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 7	7076.34	18.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 6B-1	7076.27	30.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
PIPE 6B-2	7076.88	30.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			

Manhole Input Summary:

PIPE 39-1	7078.21	<mark>30.90</mark>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 39-2	7079.46	<mark>30.90</mark>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 39-3	7082.92	<mark>30.90</mark>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 37	7083.10	13.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 38	7083.10	3.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 36-1	7087.92	14.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 36-2	7105.33	14.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 36-3	7108.00	14.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 8	7076.34	8.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Manhole Output Summary:

		l Contril	oution			Total De	esign Flow			
Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak Flow (cfs)	Comment
OUTFALL 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
PIPE 14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	77.60	Surface Water Present (Downstream)
PIPE 13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	13.80	
PIPE 12-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.70	
PIPE 12-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.70	
PIPE 10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.90	
PIPE 11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.40	

PIPE 9-1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 56.90 PIPE 9-2 0.00 0.00 0.00 0.00 0.00 0.00 56.90 PIPE 9-3 0.00 0.00 0.00 0.00 0.00 0.00 56.90 PIPE 9-3 0.00 0.00 0.00 0.00 0.00 0.00 56.90 PIPE 9-4 0.00 0.00 0.00 0.00 0.00 0.00 56.90 PIPE 9-5 0.00 0.00 0.00 0.00 0.00 0.00 56.90 PIPE 9-6 0.00 0.00 0.00 0.00 0.00 56.90	
PIPE 9-3 0.00 0.00 0.00 0.00 0.00 0.00 56.90 PIPE 9-4 0.00 0.00 0.00 0.00 0.00 0.00 56.90 PIPE 9-4 0.00 0.00 0.00 0.00 0.00 56.90 PIPE 9-5 0.00 0.00 0.00 0.00 0.00 56.90	
PIPE 9-4 0.00 0.00 0.00 0.00 0.00 0.00 56.90 PIPE 9-5 0.00 0.00 0.00 0.00 0.00 0.00 56.90	
PIPE 9-5 0.00 0.00 0.00 0.00 0.00 0.00 56.90	
PIPE 9-6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	
PIPE 9-7 0.00 0.00 0.00 0.00 0.00 0.00 56.90	
PIPE 9-8 0.00 0.00 0.00 0.00 0.00 0.00 56.90	
PIPE 7 0.00 0.00 0.00 0.00 0.00 0.00 18.90	
PIPE 6B-1 0.00 0.00 0.00 0.00 0.00 0.00 30.90	
PIPE 6B-2 0.00 0.00 0.00 0.00 0.00 0.00 30.90	
PIPE 39-1 0.00 0.00 0.00 0.00 0.00 0.00 30.90 90	
PIPE 39-2 0.00 0.00 0.00 0.00 0.00 0.00 30.90 90	
PIPE 39-3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 30.90 90	
PIPE 37 0.00 0.00 0.00 0.00 0.00 0.00 13.10	
PIPE 38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.70	
PIPE 36-1 0.00 0.00 0.00 0.00 0.00 0.00 14.90	
PIPE 36-2 0.00 0.00 0.00 0.00 0.00 0.00 14.90	
PIPE 36-3 0.00 0.00 0.00 0.00 0.00 0.00 14.90	
PIPE 8 0.00 0.00 0.00 0.00 0.00 0.00 8.30	

Sewer Input Summary:

Elevation	Loss Coefficients	Given Dimensions
-----------	-------------------	------------------

Element Name	Sewer Length (ft)	Downstream Invert (ft)	Slope (%)	Upstream Invert (ft)	Mannings n	Bend Loss	Lateral Loss	Cross Section	Rise (ft or in)	Span (ft or in)
PIPE 14	72.62	7055.59	0.5	7055.95	0.013	0.03	1.00	CIRCULAR	42.00 in	42.00 in
PIPE 13	17.38	7057.45	10.0	7059.19	0.013	1.32	0.00	CIRCULAR	24.00 in	24.00 in
PIPE 12-1	125.04	7056.15	0.5	7056.78	0.013	0.05	1.00	CIRCULAR	42.00 in	42.00 in
PIPE 12-2	63.60	7056.77	0.5	7057.09	0.013	0.54	0.36	CIRCULAR	42.00 in	42.00 in
PIPE 10	29.31	7059.10	1.0	7059.39	0.013	0.83	0.00	CIRCULAR	18.00 in	18.00 in
PIPE 11	5.96	7059.09	10.1	7059.69	0.013	0.38	0.00	CIRCULAR	18.00 in	18.00 in
PIPE 9-1	178.52	7057.59	1.4	7060.09	0.013	0.05	1.00	CIRCULAR	36.00 in	36.00 in
PIPE 9-2	61.53	7060.29	1.1	7060.97	0.013	0.10	0.73	CIRCULAR	36.00 in	36.00 in
PIPE 9-3	55.87	7060.97	1.1	7061.58	0.013	0.08	0.77	CIRCULAR	36.00 in	36.00 in
PIPE 9-4	49.39	7061.59	1.1	7062.13	0.013	0.08	0.77	CIRCULAR	36.00 in	36.00 in
PIPE 9-5	59.96	7062.33	1.0	7062.93	0.013	0.08	0.77	CIRCULAR	36.00 in	36.00 in
PIPE 9-6	46.32	7062.93	1.0	7063.39	0.013	0.08	0.77	CIRCULAR	36.00 in	36.00 in
PIPE 9-7	92.93	7063.39	1.0	7064.32	0.013	0.08	0.77	CIRCULAR	36.00 in	36.00 in
PIPE 9-8	75.46	7064.52	0.5	7064.90	0.013	0.90	0.28	CIRCULAR	36.00 in	36.00 in
PIPE 7	27.37	7065.90	1.0	7066.17	0.013	1.32	0.00	CIRCULAR	24.00 in	24.00 in
PIPE 6B-1	39.51	7065.39	0.5	7065.59	0.013	0.05	1.00	CIRCULAR	30.00 in	30.00 in
PIPE 6B-2	45.39	7065.59	0.5	7065.82	0.013	0.05	0.84	CIRCULAR	30.00 in	30.00 in
PIPE 39-1	53.80	7066.12	2.3	7067.36	0.013	0.05	0.84	CIRCULAR	30.00 in	30.00 in
PIPE 39-2	<mark>64.14</mark>	7067.35	2.3	7068.83	0.013	0.05	0.81	CIRCULAR	30.00 in	30.00 in
PIPE 39-3	139.94	7068.83	2.3	7072.05	0.013	0.05	0.84	CIRCULAR	30.00 in	30.00 in
PIPE 37	26.71	7072.55	1.0	7072.82	0.013	1.32	0.00	CIRCULAR	24.00 in	24.00 in
PIPE 38	3.63	7073.05	10.2	7073.42	0.013	1.32	0.00	CIRCULAR	18.00 in	<mark>18.00 in</mark>

PIPE 36-1	<mark>89.40</mark>	7072.56	6.0	7077.92	0.013	0.05	1.00	CIRCULAR	24.00 in	24.00 in
PIPE 36-2	219.12	7078.22	7.7	7095.09	0.013	0.05	1.00	CIRCULAR	24.00 in	24.00 in
PIPE 36-3	38.56	7095.40	6.5	<mark>7097.90</mark>	0.013	0.38	0.44	CIRCULAR	24.00 in	24.00 in
PIPE 8	2.97	7066.40	9.8	7066.69	0.013	1.32	0.00	CIRCULAR	18.00 in	18.00 in

Sewer Flow Summary:

	Full Flo	w Capacity	Critic	cal Flow		No	rmal Flow				
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	Velocity (fps)	Depth (in)	Velocity (fps)	Froude Number	Flow Condition	Flow (cfs)	Surcharged Length (ft)	Comment
PIPE 14	71.33	7.41	42.00	8.07	42.00	8.07	0.00	Pressurized	77.60	72.62	
PIPE 13	71.73	22.83	16.05	6.18	7.13	17.63	4.75	Supercritical Jump	13.80	12.16	
PIPE 12-1	71.33	7.41	30.49	8.78	31.77	8.41	0.92	Pressurized	65.70	125.04	
PIPE 12-2	71.33	7.41	30.49	8.78	31.77	8.41	0.92	Pressurized	65.70	63.60	
PIPE 10	10.53	5.96	12.20	5.41	10.62	6.36	1.31	Pressurized	6.90	29.31	
PIPE 11	33.47	18.94	10.75	4.91	4.89	13.91	4.55	Pressurized	5.40	5.96	
PIPE 9-1	79.13	11.19	29.33	9.23	22.60	12.18	1.69	Pressurized	56.90	178.52	
PIPE 9-2	70.14	9.92	29.33	9.23	24.61	11.05	1.43	Supercritical Jump	56.90	53.51	
PIPE 9-3	70.14	9.92	29.33	9.23	24.61	11.05	1.43	Pressurized	56.90	55.87	
PIPE 9-4	70.14	9.92	29.33	9.23	24.61	11.05	1.43	Pressurized	56.90	49.39	
PIPE 9-5	66.88	9.46	29.33	9.23	25.51	10.62	1.34	Pressurized	56.90	59.96	
PIPE 9-6	66.88	9.46	29.33	9.23	25.51	10.62	1.34	Pressurized	56.90	46.32	

PIPE 9-7	66.88	9.46	29.33	9.23	25.51	10.62	1.34	Pressurized	56.90	92.93	
PIPE 9-8	47.29	6.69	36.00	8.05	36.00	8.05	0.00	Pressurized	56.90	75.46	
PIPE 7	22.68	7.22	18.77	7.17	16.74	8.08	1.26	Pressurized	18.90	27.37	
PIPE 6B-1	29.08	5.92	30.00	6.29	30.00	6.29	0.00	Pressurized	30.90	39.51	
PIPE 6B-2	29.08	5.92	30.00	6.29	30.00	6.29	0.00	Pressurized	30.90	45.39	
PIPE 39-1	62.37	12.71	22.73	7.74	14.92	12.68	2.26	Pressurized	30.90	<mark>53.80</mark>	
PIPE 39-2	62.37	12.71	22.73	7.74	14.92	12.68	2.26	Pressurized	30.90	<mark>64.14</mark>	
PIPE 39-3	62.37	12.71	22.73	7.74	14.92	12.68	2.26	Supercritical Jump	<mark>30.90</mark>	56.65	
PIPE 37	22.68	7.22	15.63	<mark>6.05</mark>	13.09	7.48	1.41	Pressurized	13.10	<mark>26.71</mark>	
PIPE 38	33.64	<mark>19.04</mark>	8.82	4.30	4.03	12.52	4.54	Supercritical	3.70	0.00	
PIPE 36-1	55.56	<mark>17.69</mark>	16.69	<mark>6.39</mark>	<mark>8.49</mark>	14.99	3.66	Supercritical	14.90	0.00	
PIPE 36-2	62.94	20.04	16.69	<mark>6.39</mark>	7.95	<mark>16.40</mark>	4.16	Supercritical	14.90	0.00	
PIPE 36-3	<mark>57.76</mark>	18.38	16.69	<mark>6.39</mark>	8.32	15.42	3.81	Supercritical	14.90	<mark>0.0</mark> 0	
PIPE 8	32.97	18.66	13.39	5.89	6.16	15.54	4.47	Pressurized	8.30	2.97	

• A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).

- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

	Existing	Calculated	Used	
--	----------	------------	------	--

Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
PIPE 14	77.60	CIRCULAR	42.00 in	42.00 in	48.00 in	48.00 in	42.00 in	42.00 in	9.62	Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise
PIPE 13	13.80	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	
PIPE 12-1	65.70	CIRCULAR	42.00 in	42.00 in	42.00 in	42.00 in	42.00 in	42.00 in	9.62	
PIPE 12-2	65.70	CIRCULAR	42.00 in	42.00 in	42.00 in	42.00 in	42.00 in	42.00 in	9.62	
PIPE 10	6.90	CIRCULAR	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	1.77	
PIPE 11	5.40	CIRCULAR	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	1.77	
PIPE 9-1	56.90	CIRCULAR	36.00 in	36.00 in	33.00 in	33.00 in	36.00 in	36.00 in	7.07	
PIPE 9-2	56.90	CIRCULAR	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	7.07	
PIPE 9-3	56.90	CIRCULAR	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	7.07	
PIPE 9-4	56.90	CIRCULAR	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	7.07	
PIPE 9-5	56.90	CIRCULAR	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	7.07	
PIPE 9-6	56.90	CIRCULAR	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	7.07	
PIPE 9-7	56.90	CIRCULAR	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	7.07	
PIPE 9-8	56.90	CIRCULAR	36.00 in	36.00 in	42.00 in	42.00 in	36.00 in	36.00 in	7.07	Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise
PIPE 7	18.90	CIRCULAR	24.00 in	24.00 in	24.00 in	24.00 in	24.00 in	24.00 in	3.14	
PIPE 6B-1	30.90	CIRCULAR	30.00 in	30.00 in	33.00 in	33.00 in	30.00 in	30.00 in	4.91	Existing height is smaller than the suggested height.

										Existing width is smaller than the suggested width. Exceeds max. Depth/Rise
PIPE 6B-2	30.90	CIRCULAR	30.00 in	30.00 in	33.00 in	33.00 in	30.00 in	30.00 in	4.91	Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise
PIPE 39-1	30.90	CIRCULAR	30.00 in	30.00 in	24.00 in	24.00 in	30.00 in	30.00 in	<mark>4.91</mark>	
PIPE 39-2	30.90	CIRCULAR	30.00 in	30.00 in	24.00 in	24.00 in	30.00 in	30.00 in	<mark>4.91</mark>	
PIPE 39-3	30.90	CIRCULAR	30.00 in	30.00 in	24.00 in	24.00 in	30.00 in	30.00 in	<mark>4.91</mark>	
PIPE 37	13.10	CIRCULAR	24.00 in	24.00 in	21.00 in	21.00 in	24.00 in	24.00 in	3.14	
PIPE 38	3.70	CIRCULAR	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	1.77	
PIPE 36-1	14.90	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	
PIPE 36-2	14.90	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	-
PIPE 36-3	14.90	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	
PIPE 8	8.30	CIRCULAR	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	18.00 in	1.77	

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater Elevation (ft): 0.00

	Invert l	Elev.		eam Manhole osses	HG	L		EGL	
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)
PIPE 14	7055.59	7055.95	0.00	0.00	7059.09	7059.52	7060.10	0.43	7060.53
PIPE 13	7057.45	7059.19	0.40	0.00	7060.62	7060.62	7060.92	0.21	7061.13
PIPE 12-1	7056.15	7056.78	0.04	0.29	7060.12	7060.66	7060.85	0.53	7061.38
PIPE 12-2	7056.77	7057.09	0.39	0.46	7061.51	7061.78	7062.23	0.27	7062.50
PIPE 10	7059.10	7059.39	0.20	0.00	7062.46	7062.59	7062.70	0.13	7062.83
PIPE 11	7059.09	7059.69	0.06	0.00	7062.41	7062.43	7062.56	0.02	7062.57
PIPE 9-1	7057.59	7060.09	0.05	0.00	7061.83	7063.12	7062.84	1.29	7064.13
PIPE 9-2	7060.29	7060.97	0.10	0.27	7063.49	7063.86	7064.50	0.39	7064.89
PIPE 9-3	7060.97	7061.58	0.08	0.23	7064.19	7064.60	7065.20	0.40	7065.60
PIPE 9-4	7061.59	7062.13	0.08	0.23	7064.91	7065.27	7065.92	0.36	7066.27
PIPE 9-5	7062.33	7062.93	0.08	0.23	7065.58	7066.01	7066.59	0.43	7067.02
PIPE 9-6	7062.93	7063.39	0.08	0.23	7066.33	7066.66	7067.33	0.34	7067.67
PIPE 9-7	7063.39	7064.32	0.08	0.23	7066.97	7067.65	7067.98	0.67	7068.65
PIPE 9-8	7064.52	7064.90	0.91	0.72	7069.28	7069.82	7070.28	0.55	7070.83
PIPE 7	7065.90	7066.17	0.74	0.00	7071.01	7071.20	7071.57	0.19	7071.76
PIPE 6B-1	7065.39	7065.59	0.03	0.39	7070.63	7070.86	7071.25	0.22	7071.47
PIPE 6B-2	7065.59	7065.82	0.03	0.10	7070.99	7071.24	7071.60	0.26	7071.86
PIPE 39-1	7066.12	7067.36	0.03	0.10	7071.37	7071.68	7071.99	0.30	7072.29
PIPE 39-2	7067.35	7068.83	0.03	0.12	7071.82	7072.19	7072.44	0.36	7072.80
PIPE 39-3	7068.83	7072.05	0.03	0.10	7072.31	7073.94	7072.93	1.95	7074.88
PIPE 37	7072.55	7072.82	0.36	0.00	7074.96	7075.05	7075.23	0.09	7075.32

PIPE 38	7073.05	7073.42	0.09	0.00	7074.03	7075.75	7075.82	0.00	7075.82
PIPE 36-1	7072.56	7077.92	0.02	0.27	7074.23	7079.31	7076.75	3.19	<mark>7079.94</mark>
PIPE 36-2	7078.22	7095.09	0.02	0.00	7079.33	7096.48	7083.06	14.06	7097.11
PIPE 36-3	7095.40	7097.90	0.13	0.20	7096.81	7099.29	7099.78	0.14	<mark>7099.9</mark> 2
PIPE 8	7066.40	7066.69	0.45	0.00	7070.94	7070.96	7071.28	0.02	7071.30

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.
- Bend loss = Bend K * $V_{fi} ^ 2/(2*g)$
- Lateral loss = $V_{fo} \wedge 2/(2*g)$ Junction Loss K * $V_{fi} \wedge 2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.

Excavation Estimate:

The trench side slope is 1.0 ft/ft The minimum trench width is 2.00 ft

					D	ownstrea	m	l	U pstream	1		
Element Name	Length (ft)	Wall (in)	Bedding (in)	Bottom Width (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Volume (cu. yd)	Comment
PIPE 14	72.62	4.50	6.00	7.25	0.00	0.88	0.00	17.10	10.68	5.93	145.26	Sewer Too Shallow
PIPE 13	17.38	3.00	4.00	5.50	15.60	8.88	6.05	11.52	6.84	4.01	38.95	
PIPE 12-1	125.04	4.50	6.00	7.25	16.69	10.47	5.72	19.02	11.64	6.89	502.88	
PIPE 12-2	63.60	4.50	6.00	7.25	19.04	11.64	6.89	20.68	12.47	7.72	299.86	
PIPE 10	29.31	2.50	4.00	4.92	18.67	10.12	7.87	18.76	10.17	7.92	105.82	

PIPE 11 5.96 2.50 4.00 4.92 18.68 10.13 7.88 18.16 9.87 7.62 20.93 PIPE 9-1 178.52 4.00 6.00 6.67 20.18 11.92 7.76 20.58 12.12 7.96 840.84 PIPE 9-2 61.53 4.00 6.00 6.67 20.17 11.92 7.75 20.56 12.11 7.95 289.52 PIPE 9-3 55.87 4.00 6.00 6.67 20.57 12.12 7.95 20.86 12.26 8.10 270.27 PIPE 9-4 49.39 4.00 6.00 6.67 20.85 12.26 8.09 21.32 12.49 8.33 245.99 PIPE 9-5 59.96 4.00 6.00 6.67 21.37 12.52 8.35 21.74 12.70 8.54 239.28 PIPE 9-4 46.32 4.00 6.00 6.67 21.17 12.92 8.75 20.28 11.97 7.81 380.67 PIPE 9-7 27.37 3.00 4.00 5.50 19.29 10													
PIPE 9-2 61.53 4.00 6.00 6.67 20.17 11.92 7.75 20.56 12.11 7.95 289.52 PIPE 9-3 55.87 4.00 6.00 6.67 20.57 12.12 7.95 20.86 12.26 8.10 270.27 PIPE 9-4 49.39 4.00 6.00 6.67 20.85 12.26 8.09 21.32 12.49 8.33 245.99 PIPE 9-5 59.96 4.00 6.00 6.67 20.92 12.29 8.13 21.36 12.51 8.35 299.95 PIPE 9-6 46.32 4.00 6.00 6.67 21.17 12.52 8.35 21.74 12.70 8.54 239.28 PIPE 9-7 92.93 4.00 6.00 6.67 21.17 12.92 8.75 20.28 11.97 7.81 380.67 PIPE 9-8 75.46 4.00 6.00 6.67 22.17 12.92 8.75 20.28 11.97 7.81 380.67 PIPE 6B-1 39.51 3.50 6.00 6.08 19.80 <t< td=""><td>PIPE 11</td><td>5.96</td><td>2.50</td><td>4.00</td><td>4.92</td><td>18.68</td><td>10.13</td><td>7.88</td><td>18.16</td><td>9.87</td><td>7.62</td><td>20.93</td><td></td></t<>	PIPE 11	5.96	2.50	4.00	4.92	18.68	10.13	7.88	18.16	9.87	7.62	20.93	
PIPE 9-3 55.87 4.00 6.00 6.67 20.57 12.12 7.95 20.86 12.26 8.10 270.27 PIPE 9-4 49.39 4.00 6.00 6.67 20.85 12.26 8.09 21.32 12.49 8.33 245.99 PIPE 9-5 59.96 4.00 6.00 6.67 20.92 12.29 8.13 21.36 12.51 8.35 299.95 PIPE 9-6 46.32 4.00 6.00 6.67 21.37 12.52 8.35 21.74 12.70 8.54 239.28 PIPE 9-7 92.93 4.00 6.00 6.67 21.74 12.70 8.54 22.58 13.12 8.96 502.98 PIPE 9-7 92.93 4.00 6.00 6.67 22.17 12.92 8.75 20.28 11.97 7.81 380.67 PIPE 7 27.37 3.00 4.00 5.50 19.29 10.73 7.89 19.34 10.75 7.92 108.24 PIPE 6B-1 39.51 3.50 6.00 6.08 11.47	PIPE 9-1	178.52	4.00	6.00	6.67	20.18	11.92	7.76	20.58	12.12	7.96	840.84	
PIPE 9-4 49.39 4.00 6.00 6.67 20.85 12.26 8.09 21.32 12.49 8.33 245.99 PIPE 9-5 59.96 4.00 6.00 6.67 20.92 12.29 8.13 21.36 12.51 8.35 299.95 PIPE 9-6 46.32 4.00 6.00 6.67 21.37 12.52 8.35 21.74 12.70 8.54 239.28 PIPE 9-7 92.93 4.00 6.00 6.67 21.74 12.70 8.54 22.58 13.12 8.96 502.98 PIPE 9-7 92.93 4.00 6.00 6.67 21.71 12.92 8.75 20.28 11.97 7.81 380.67 PIPE 7 27.37 3.00 4.00 5.50 19.29 10.73 7.89 19.34 10.75 7.92 108.24 PIPE 6B-1 39.51 3.50 6.00 6.08 19.80 11.44 7.86 19.86 11.47 7.89 171.08 PIPE 39-1 53.80 3.50 6.00 6.08 20.21 <td< td=""><td>PIPE 9-2</td><td>61.53</td><td>4.00</td><td>6.00</td><td>6.67</td><td>20.17</td><td>11.92</td><td>7.75</td><td>20.56</td><td>12.11</td><td>7.95</td><td>289.52</td><td></td></td<>	PIPE 9-2	61.53	4.00	6.00	6.67	20.17	11.92	7.75	20.56	12.11	7.95	289.52	
PIPE 9-5 59.96 4.00 6.00 6.67 20.92 12.29 8.13 21.36 12.51 8.35 299.95 PIPE 9-6 46.32 4.00 6.00 6.67 21.37 12.52 8.35 21.74 12.70 8.54 239.28 PIPE 9-7 92.93 4.00 6.00 6.67 21.74 12.70 8.54 22.58 13.12 8.96 502.98 PIPE 9-7 92.93 4.00 6.00 6.67 22.17 12.92 8.75 20.28 11.97 7.81 380.67 PIPE 7 27.37 3.00 4.00 5.50 19.29 10.73 7.89 19.34 10.75 7.92 108.24 PIPE 6B-1 39.51 3.50 6.00 6.08 19.80 11.44 7.86 19.86 11.47 7.89 171.08 PIPE 39-1 53.80 3.50 6.00 6.08 20.11 11.55 7.97 20.20 11.64 8.06 238.53 PIPE 39-2 64.14 3.50 6.00 6.08 19.76 <t< td=""><td>PIPE 9-3</td><td>55.87</td><td>4.00</td><td>6.00</td><td>6.67</td><td>20.57</td><td>12.12</td><td>7.95</td><td>20.86</td><td>12.26</td><td>8.10</td><td>270.27</td><td></td></t<>	PIPE 9-3	55.87	4.00	6.00	6.67	20.57	12.12	7.95	20.86	12.26	8.10	270.27	
PIPE 9-6 46.32 4.00 6.00 6.67 21.37 12.52 8.35 21.74 12.70 8.54 239.28 PIPE 9-7 92.93 4.00 6.00 6.67 21.74 12.70 8.54 22.58 13.12 8.96 502.98 PIPE 9-7 92.93 4.00 6.00 6.67 22.17 12.92 8.75 20.28 11.97 7.81 380.67 PIPE 7 27.37 3.00 4.00 5.50 19.29 10.73 7.89 19.34 10.75 7.92 108.24 PIPE 6B-1 39.51 3.50 6.00 6.08 19.80 11.44 7.86 19.86 11.47 7.89 171.08 PIPE 39-1 53.80 3.50 6.00 6.08 20.01 11.55 7.97 20.20 11.64 8.06 238.53 PIPE 39-2 64.14 3.50 6.00 6.08 20.21 11.65 8.06 19.76 11.42 7.84 281.49 9 PIPE 39-3 139.94 3.50 6.00 6.08	PIPE 9-4	49.39	4.00	6.00	6.67	20.85	12.26	8.09	21.32	12.49	8.33	245.99	
PIPE 9-7 92.93 4.00 6.00 6.67 21.74 12.70 8.54 22.58 13.12 8.96 502.98 PIPE 9-8 75.46 4.00 6.00 6.67 22.17 12.92 8.75 20.28 11.97 7.81 380.67 PIPE 7 27.37 3.00 4.00 5.50 19.29 10.73 7.89 19.34 10.75 7.92 108.24 PIPE 6B-1 39.51 3.50 6.00 6.08 19.80 11.44 7.86 19.86 11.47 7.89 171.08 PIPE 6B-2 45.39 3.50 6.00 6.08 19.85 11.47 7.89 20.62 11.85 8.27 203.50 PIPE 39-1 53.80 3.50 6.00 6.08 20.21 11.65 8.06 19.76 11.42 7.84 281.49 9 PIPE 39-2 64.14 3.50 6.00 6.08 19.76 11.42 7.84 20.24 11.66 8.08 614.86 9 PIPE 37 26.71 3.00 4.00 5.50<	PIPE 9-5	59.96	4.00	6.00	6.67	20.92	12.29	8.13	21.36	12.51	8.35	299.95	
PIPE 9-8 75.46 4.00 6.00 6.67 22.17 12.92 8.75 20.28 11.97 7.81 380.67 PIPE 7 27.37 3.00 4.00 5.50 19.29 10.73 7.89 19.34 10.75 7.92 108.24 PIPE 6B-1 39.51 3.50 6.00 6.08 19.80 11.44 7.86 19.86 11.47 7.89 171.08 PIPE 6B-2 45.39 3.50 6.00 6.08 19.85 11.47 7.89 20.62 11.85 8.27 203.50 PIPE 39-1 53.80 3.50 6.00 6.08 20.01 11.55 7.97 20.20 11.64 8.06 238.53 PIPE 39-2 64.14 3.50 6.00 6.08 20.21 11.65 8.06 19.76 11.42 7.84 281.49 9 PIPE 39-3 139.94 3.50 6.00 6.08 19.76 11.42 7.84 20.24 11.66 8.08 614.86 PIPE 37 26.71 3.00 4.00 5.50	PIPE 9-6	46.32	4.00	6.00	6.67	21.37	12.52	8.35	21.74	12.70	8.54	239.28	
PIPE 7 27.37 3.00 4.00 5.50 19.29 10.73 7.89 19.34 10.75 7.92 108.24 PIPE 6B-1 39.51 3.50 6.00 6.08 19.80 11.44 7.86 19.86 11.47 7.89 171.08 PIPE 6B-2 45.39 3.50 6.00 6.08 19.85 11.47 7.89 20.62 11.85 8.27 203.50 PIPE 39-1 53.80 3.50 6.00 6.08 20.01 11.55 7.97 20.20 11.64 8.06 238.53 9 PIPE 39-2 64.14 3.50 6.00 6.08 20.21 11.65 8.06 19.76 11.42 7.84 281.49 9 PIPE 39-3 139.94 3.50 6.00 6.08 19.76 11.42 7.84 20.24 11.66 8.08 614.86 9 PIPE 37 26.71 3.00 4.00 5.50 19.73 10.95 8.12 19.56 10.86 8.03 108.84 9 PIPE 36-1 89.40 3.00 <td>PIPE 9-7</td> <td>92.93</td> <td>4.00</td> <td>6.00</td> <td>6.67</td> <td>21.74</td> <td>12.70</td> <td>8.54</td> <td>22.58</td> <td>13.12</td> <td>8.96</td> <td>502.98</td> <td></td>	PIPE 9-7	92.93	4.00	6.00	6.67	21.74	12.70	8.54	22.58	13.12	8.96	502.98	
PIPE 6B-1 39.51 3.50 6.00 6.08 19.80 11.44 7.86 19.86 11.47 7.89 171.08 PIPE 6B-2 45.39 3.50 6.00 6.08 19.85 11.47 7.89 20.62 11.85 8.27 203.50 PIPE 39-1 53.80 3.50 6.00 6.08 20.01 11.55 7.97 20.20 11.64 8.06 238.53 PIPE 39-2 64.14 3.50 6.00 6.08 20.21 11.65 8.06 19.76 11.42 7.84 281.49 PIPE 39-3 139.94 3.50 6.00 6.08 19.76 11.42 7.84 20.24 11.66 8.08 614.86 PIPE 37 26.71 3.00 4.00 5.50 19.73 10.95 8.12 19.56 10.86 8.03 108.84 10.82 7.97 13.53 10.86 10.22 7.97 13.53 10.86 10.22 7.97 13.53 10.86 10.22 7.97 13.53 10.86 10.22 7.97 13.53 10.86	PIPE 9-8	75.46	4.00	6.00	6.67	22.17	12.92	8.75	20.28	11.97	7.81	380.67	
PIPE 6B-2 45.39 3.50 6.00 6.08 19.85 11.47 7.89 20.62 11.85 8.27 203.50 PIPE 39-1 53.80 3.50 6.00 6.08 20.01 11.55 7.97 20.20 11.64 8.06 238.53 PIPE 39-2 64.14 3.50 6.00 6.08 20.21 11.65 8.06 19.76 11.42 7.84 281.49 PIPE 39-3 139.94 3.50 6.00 6.08 19.76 11.42 7.84 20.24 11.66 8.08 614.86 PIPE 37 26.71 3.00 4.00 5.50 19.73 10.95 8.12 19.56 10.86 8.03 108.84 PIPE 38 3.63 2.50 4.00 4.92 19.24 10.41 8.16 18.86 10.22 7.97 13.53 PIPE 36-1 89.40 3.00 4.00 5.50 19.73 10.95 8.11 19.00 10.58 7.75 355.27 PIPE 36-2 219.12 3.00 4.00 5.50 18.40	PIPE 7	27.37	3.00	4.00	5.50	19.29	10.73	7.89	19.34	10.75	7.92	108.24	
PIPE 39-1 53.80 3.50 6.00 6.08 20.01 11.55 7.97 20.20 11.64 8.06 238.53 PIPE 39-2 64.14 3.50 6.00 6.08 20.21 11.65 8.06 19.76 11.42 7.84 281.49 PIPE 39-3 139.94 3.50 6.00 6.08 19.76 11.42 7.84 20.24 11.66 8.08 614.86 PIPE 37 26.71 3.00 4.00 5.50 19.73 10.95 8.12 19.56 10.86 8.03 108.84 9 PIPE 38 3.63 2.50 4.00 4.92 19.24 10.41 8.16 18.86 10.22 7.97 13.53 PIPE 36-1 89.40 3.00 4.00 5.50 19.73 10.95 8.11 19.00 10.58 7.75 355.27 PIPE 36-2 219.12 3.00 4.00 5.50 18.40 10.29 7.45 19.48 10.82 7.99 838.30 PIPE 36-3 38.56 3.00 4.00 5.50 <td< td=""><td>PIPE 6B-1</td><td>39.51</td><td>3.50</td><td>6.00</td><td>6.08</td><td>19.80</td><td>11.44</td><td>7.86</td><td>19.86</td><td>11.47</td><td>7.89</td><td>171.08</td><td></td></td<>	PIPE 6B-1	39.51	3.50	6.00	6.08	19.80	11.44	7.86	19.86	11.47	7.89	171.08	
PIPE 39-2 64.14 3.50 6.00 6.08 20.21 11.65 8.06 19.76 11.42 7.84 281.49 PIPE 39-3 139.94 3.50 6.00 6.08 19.76 11.42 7.84 20.24 11.66 8.08 614.86 PIPE 37 26.71 3.00 4.00 5.50 19.73 10.95 8.12 19.56 10.86 8.03 108.84 PIPE 38 3.63 2.50 4.00 4.92 19.24 10.41 8.16 18.86 10.22 7.97 13.53 PIPE 36-1 89.40 3.00 4.00 5.50 19.73 10.95 8.11 19.00 10.58 7.75 355.27 PIPE 36-2 219.12 3.00 4.00 5.50 18.40 10.29 7.45 19.48 10.82 7.99 838.30 PIPE 36-3 38.56 3.00 4.00 5.50 18.86 10.51 7.68 19.20 10.68 7.85 148.62	PIPE 6B-2	45.39	3.50	6.00	6.08	19.85	11.47	7.89	20.62	11.85	8.27	203.50	
PIPE 39-3 139.94 3.50 6.00 6.08 19.76 11.42 7.84 20.24 11.66 8.08 614.86 PIPE 37 26.71 3.00 4.00 5.50 19.73 10.95 8.12 19.56 10.86 8.03 108.84 PIPE 38 3.63 2.50 4.00 4.92 19.24 10.41 8.16 18.86 10.22 7.97 13.53 PIPE 36-1 89.40 3.00 4.00 5.50 19.73 10.95 8.11 19.00 10.58 7.75 355.27 PIPE 36-2 219.12 3.00 4.00 5.50 18.40 10.29 7.45 19.48 10.82 7.99 838.30 PIPE 36-3 38.56 3.00 4.00 5.50 18.86 10.51 7.68 19.20 10.68 7.85 148.62	PIPE 39-1	53.80	3.50	<mark>6.00</mark>	<mark>6.08</mark>	20.01	11.55	7.97	20.20	11.64	8.06	238.53	
PIPE 37 26.71 3.00 4.00 5.50 19.73 10.95 8.12 19.56 10.86 8.03 108.84 PIPE 38 3.63 2.50 4.00 4.92 19.24 10.41 8.16 18.86 10.22 7.97 13.53 PIPE 36-1 89.40 3.00 4.00 5.50 19.73 10.95 8.11 19.00 10.58 7.75 355.27 PIPE 36-2 219.12 3.00 4.00 5.50 18.40 10.29 7.45 19.48 10.82 7.99 838.30 PIPE 36-3 38.56 3.00 4.00 5.50 18.86 10.51 7.68 19.20 10.68 7.85 148.62	PIPE 39-2	<mark>64.14</mark>	3.50	<mark>6.00</mark>	<mark>6.08</mark>	20.21	11.65	8.06	<mark>19.76</mark>	11.42	7.84	281.49	
PIPE 38 3.63 2.50 4.00 4.92 19.24 10.41 8.16 18.86 10.22 7.97 13.53 PIPE 36-1 89.40 3.00 4.00 5.50 19.73 10.95 8.11 19.00 10.58 7.75 355.27 PIPE 36-2 219.12 3.00 4.00 5.50 18.40 10.29 7.45 19.48 10.82 7.99 838.30 PIPE 36-3 38.56 3.00 4.00 5.50 18.86 10.51 7.68 19.20 10.68 7.85 148.62	PIPE 39-3	139.94	3.50	<mark>6.00</mark>	<mark>6.08</mark>	<mark>19.76</mark>	11.42	7.84	20.24	11.66	8.08	<mark>614.86</mark>	
PIPE 36-1 89.40 3.00 4.00 5.50 19.73 10.95 8.11 19.00 10.58 7.75 355.27 PIPE 36-2 219.12 3.00 4.00 5.50 18.40 10.29 7.45 19.48 10.82 7.99 838.30 PIPE 36-3 38.56 3.00 4.00 5.50 18.86 10.51 7.68 19.20 10.68 7.85 148.62	PIPE 37	<mark>26.71</mark>	3.00	4.00	<mark>5.50</mark>	19.73	10.95	8.12	<mark>19.56</mark>	10.86	8.03	108.84	
PIPE 36-2 219.12 3.00 4.00 5.50 18.40 10.29 7.45 19.48 10.82 7.99 838.30 PIPE 36-3 38.56 3.00 4.00 5.50 18.86 10.51 7.68 19.20 10.68 7.85 148.62	PIPE 38	3.63	2.50	4.00	<mark>4.92</mark>	19.24	10.41	8.16	18.86	10.22	7.97	13.53	
PIPE 36-3 38.56 3.00 4.00 5.50 18.86 10.51 7.68 19.20 10.68 7.85 148.62	PIPE 36-1	<mark>89.40</mark>	3.00	4.00	<mark>5.50</mark>	<mark>19.73</mark>	10.95	8.11	19.00	10.58	7.75	355.27	
	PIPE 36-2	219.12	3.00	4.00	<mark>5.50</mark>	18.40	10.29	7.45	19.48	10.82	7.99	838.30	
PIPE 8 2 97 2 50 4 00 4 92 18 78 10 18 7 93 18 80 10 19 7 94 10 80	PIPE 36-3	38.56	3.00	4.00	<mark>5.50</mark>	18.86	10.51	7.68	19.20	10.68	7.85	148.62	
111 1 6 2.37 2.30 4.00 4.32 18.78 10.18 7.33 18.80 10.13 7.34 10.80	PIPE 8	2.97	2.50	4.00	4.92	18.78	10.18	7.93	18.80	10.19	7.94	10.80	

Total earth volume for sewer trenches = 7276 cubic yards.

• The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.

- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
 - Four inches for pipes less than 33 inches.
 - Six inches for pipes less than 60 inches.
 - Eight inches for all larger sizes.

System Input Summary

POND A OUTFALL PIPE – 100 YR

Rainfall Parameters

Rainfall Return Period: 100 **Rainfall Calculation Method:** Formula

One Hour Depth (in): Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300 Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 0.00

		Give	en Flow			Sub Basii	n Informati	ion		
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution (cfs)	Drainage Area (Ac.)	Runoff Coefficient	5yr	Overland Length (ft)	Overland Slope (%)	Gutter Length (ft)	Gutter Velocity (fps)
OUTFALL 1	7105.73	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 26	7114.40	48.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Manhole Input Summary:

Manhole Output Summary:

		Loca	l Contrib	oution			Total De	sign Flow		
Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak Flow (cfs)	Comment
OUTFALL 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
PIPE 26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	48.50	Surface Water Present (Downstream)

Sewer Input Summary:

Elevation	Loss Coefficients	Given Dimensions
-----------	-------------------	------------------

Element Name	Sewer Length (ft)	Downstream Invert (ft)	Slope (%)	Upstream Invert (ft)	Mannings n	Bend Loss	Lateral Loss	Cross Section	Rise (ft or in)	Span (ft or in)
PIPE 26	63.81	7106.72	1.7	7107.80	0.013	0.03	1.00	CIRCULAR	30.00 in	30.00 in

Sewer Flow Summary:

	Full Flow Capacity Critical Flow					Noi	rmal Flow				
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	Velocity (fps)	Depth (in)	Velocity (fps)	Froude Number	Flow Condition	Flow (cfs)	Surcharged Length (ft)	Comment
PIPE 26	53.62	10.92	27.35	10.33	22.34	12.37	1.63	Supercritical	48.50	0.00	

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Exis	ting	Calcu	lated				
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
PIPE 26	48.50	CIRCULAR	30.00 in	30.00 in	30.00 in	30.00 in	30.00 in	30.00 in	4.91	

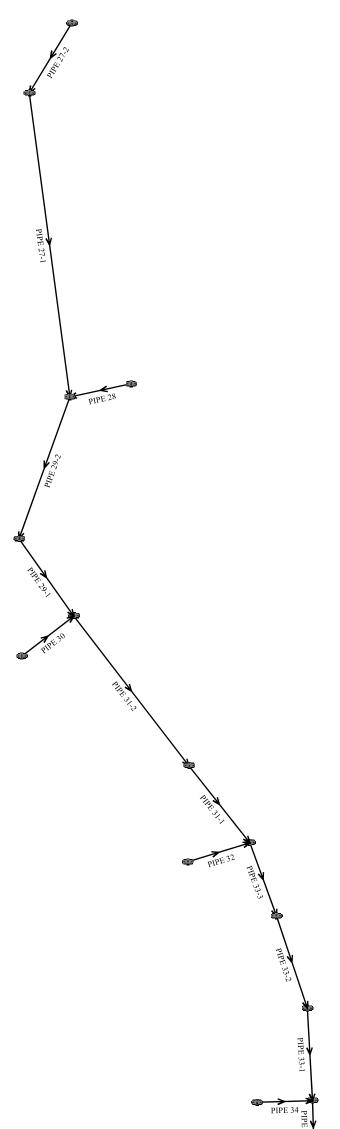
- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

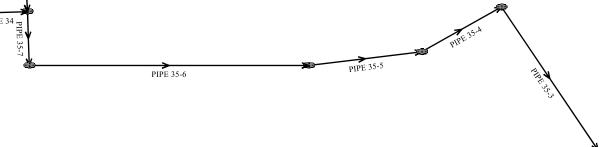
Grade Line Summary:

Tailwater Elevation (ft): 0.00

	Invert l	Elev.		am Manhole osses	HGI	L		EGL	
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)
PIPE 26	7106.72	7107.80	0.00	0.00	7108.58	7110.08	7110.95	0.78	7111.74

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.
- Bend loss = Bend K * $V_{fi} ^ 2/(2*g)$
- Lateral loss = $V_{fo} \wedge 2/(2*g)$ Junction Loss K * $V_{fi} \wedge 2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.


Excavation Estimate:


The trench side slope is 1.0 ft/ft The minimum trench width is 2.00 ft

					De	ownstrea	m	l	Upstream	l		
Element Name	Length (ft)	Wall (in)	Bedding (in)	Bottom Width (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Volume (cu. yd)	Comment
PIPE 26	63.81	3.50	6.00	6.08	0.00	0.00	0.00	11.70	7.39	3.81	62.45	Sewer Too Shallow

Total earth volume for sewer trenches = 62 cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
 - Four inches for pipes less than 33 inches.
 - Six inches for pipes less than 60 inches.
 - Eight inches for all larger sizes.

System Input Summary

BYPASS SYSTEM – 100-YR HGL CALCS

Rainfall Parameters

Rainfall Return Period: 100 **Rainfall Calculation Method:** Formula

One Hour Depth (in): Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300 Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 0.00

		Give	en Flow			Sub Basi	n Informati	ion		
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution (cfs)	Drainage Area (Ac.)	Runoff Coefficient	5yr Coefficient	Overland Length (ft)	Overland Slope (%)	Gutter Length (ft)	Gutter Velocity (fps)
OUTFALL 1	7119.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 35-3	7141.53	172.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 35-4	7142.20	172.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 35-5	7143.72	172.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 35-6	7163.69	172.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 35-7	7166.76	172.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 34	7165.75	14.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 33-1	7174.66	162.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 33-2	7190.89	162.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 33-3	7200.77	162.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 31-1	7208.51	148.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 31-2	7225.34	148.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 30	7232.00	36.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 29-1	7238.81	112.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 29-2	7247.83	112.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 27-1	7266.02	51.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 27-2	7260.00	51.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PIPE 28	7242.45	60.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Manhole Input Summary:

PIPE 32	7204.50	16.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
---------	---------	-------	------	------	------	------	------	------	------	------

Manhole Output Summary:

		Loca	l Contril	oution			Total D	esign Flow		
Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak Flow (cfs)	Comment
OUTFALL 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
PIPE 35-3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	172.40	Surface Water Present (Downstream)
PIPE 35-4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	172.40	
PIPE 35-5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	172.40	
PIPE 35-6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	172.40	
PIPE 35-7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	172.40	
PIPE 34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	14.10	
PIPE 33-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	162.30	
PIPE 33-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	162.30	
PIPE 33-3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	162.30	
PIPE 31-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	148.00	
PIPE 31-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	148.00	
PIPE 30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	36.50	
PIPE 29-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	112.40	
PIPE 29-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	112.40	

PIPE 27-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	51.90	
PIPE 27-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	51.90	
PIPE 28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	60.60	
PIPE 32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	16.60	

Sewer Input Summary:

		El	evation		Loss C	Coefficie	ents	Giver	n Dimensior	15
Element Name	Sewer Length (ft)	Downstream Invert (ft)	Slope (%)	Upstream Invert (ft)	Mannings n	Bend Loss	Lateral Loss	Cross Section	Rise (ft or in)	Span (ft or in)
PIPE 35-3	186.71	7120.75	1.9	7124.30	0.013	0.03	1.00	CIRCULAR	48.00 in	48.00 in
PIPE 35-4	66.85	7128.96	1.9	7130.23	0.013	1.21	0.25	CIRCULAR	48.00 in	48.00 in
PIPE 35-5	90.43	7130.23	1.9	7131.95	0.013	0.06	0.81	CIRCULAR	48.00 in	48.00 in
PIPE 35-6	369.55	7132.26	4.0	7147.04	0.013	0.07	0.77	CIRCULAR	48.00 in	48.00 in
PIPE 35-7	52.92	7149.58	4.0	7151.70	0.013	1.32	0.25	CIRCULAR	48.00 in	48.00 in
PIPE 34	14.62	7158.19	10.1	7159.67	0.013	1.32	0.00	CIRCULAR	24.00 in	24.00 in
PIPE 33-1	129.69	7156.70	4.0	7161.89	0.013	0.05	1.00	CIRCULAR	42.00 in	42.00 in
PIPE 33-2	235.38	7165.89	4.0	7175.31	0.013	0.05	0.87	CIRCULAR	42.00 in	42.00 in
PIPE 33-3	73.31	7180.31	4.0	7183.24	0.013	0.05	1.00	CIRCULAR	42.00 in	42.00 in
PIPE 31-1	46.86	7190.24	4.4	7192.30	0.013	0.05	0.84	CIRCULAR	42.00 in	42.00 in
PIPE 31-2	256.34	7197.30	4.4	7208.58	0.013	0.05	1.00	CIRCULAR	42.00 in	42.00 in
PIPE 30	43.29	7215.08	5.0	7217.24	0.013	1.32	0.00	CIRCULAR	30.00 in	30.00 in
PIPE 29-1	87.99	7214.58	4.4	7218.45	0.013	0.05	1.00	CIRCULAR	36.00 in	36.00 in
PIPE 29-2	223.31	7226.80	4.3	7236.40	0.013	0.38	0.44	CIRCULAR	36.00 in	36.00 in

PIPE 27-1	347.52	7236.95	4.8	7253.63	0.013	0.15	0.64	CIRCULAR	30.00 in	30.00 in
PIPE 27-2	38.77	7253.93	2.0	7254.71	0.013	0.38	0.44	CIRCULAR	30.00 in	30.00 in
PIPE 28	17.09	7236.90	2.0	7237.24	0.013	0.38	0.00	CIRCULAR	30.00 in	30.00 in
PIPE 32	30.42	7191.74	9.0	7194.48	0.013	1.32	0.00	CIRCULAR	24.00 in	24.00 in

Sewer Flow Summary:

	Full Flow	w Capacity	Critic	al Flow		Noi	mal Flow	V			
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	Velocity (fps)	Depth (in)	Velocity (fps)	Froude Number	Flow Condition	Flow (cfs)	Surcharged Length (ft)	Comment
PIPE 35-3	198.53	15.80	44.87	14.11	34.57	17.79	1.91	Supercritical	172.40	0.00	
PIPE 35-4	198.52	15.80	44.87	14.11	34.57	17.79	1.91	Pressurized	172.40	66.85	
PIPE 35-5	198.65	15.81	44.87	14.11	34.56	17.80	1.91	Pressurized	172.40	90.43	
PIPE 35-6	288.04	22.92	44.87	14.11	26.76	23.94	3.13	Supercritical Jump	172.40	59.91	Velocity is Too High
PIPE 35-7	288.06	22.92	44.87	14.11	26.76	23.95	3.13	Pressurized	172.40	52.92	Velocity is Too High
PIPE 34	72.09	22.95	16.23	6.24	7.20	17.80	4.77	Supercritical	14.10	0.00	
PIPE 33-1	201.76	20.97	41.00	16.97	28.53	23.32	2.82	Supercritical	162.30	0.00	Velocity is Too High
PIPE 33-2	201.76	20.97	41.00	16.97	28.53	23.32	2.82	Supercritical	162.30	0.00	Velocity is Too High
PIPE 33-3	201.76	20.97	41.00	16.97	28.53	23.32	2.82	Supercritical	162.30	0.00	Velocity is Too High
PIPE 31-1	211.61	21.99	40.57	15.55	25.88	23.79	3.10	Supercritical	148.00	0.00	Velocity is Too High
PIPE 31-2	211.61	21.99	40.57	15.55	25.88	23.79	3.10	Supercritical	148.00	0.00	Velocity is Too High
PIPE 30	91.96	18.73	24.57	8.48	13.14	17.66	3.41	Supercritical	36.50	0.00	
PIPE 29-1	140.28	19.85	35.20	15.99	24.38	22.06	2.88	Supercritical	112.40	0.00	Velocity is Too High

PIPE 29-2	138.68	19.62	35.20	15.99	24.59	21.85	2.84	Supercritical	112.40	0.00	Velocity is Too High
PIPE 27-1	90.11	18.36	27.87	10.92	16.33	19.00	3.20	Supercritical Jump	51.90	161.96	Velocity is Too High
PIPE 27-2	58.16	11.85	27.87	10.92	22.09	13.39	1.78	Pressurized	51.90	38.77	
PIPE 28	58.16	11.85	30.00	12.35	30.00	12.35	0.00	Pressurized	60.60	17.09	
PIPE 32	68.05	21.66	17.62	6.71	8.07	17.88	4.50	Supercritical	16.60	0.00	

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Exis	ting	Calcu	lated		Used		
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
PIPE 35-3	172.40	CIRCULAR	48.00 in	48.00 in	48.00 in	48.00 in	48.00 in	48.00 in	12.57	
PIPE 35-4	172.40	CIRCULAR	48.00 in	48.00 in	48.00 in	48.00 in	48.00 in	48.00 in	12.57	
PIPE 35-5	172.40	CIRCULAR	48.00 in	48.00 in	48.00 in	48.00 in	48.00 in	48.00 in	12.57	
PIPE 35-6	172.40	CIRCULAR	48.00 in	48.00 in	42.00 in	42.00 in	48.00 in	48.00 in	12.57	
PIPE 35-7	172.40	CIRCULAR	48.00 in	48.00 in	42.00 in	42.00 in	48.00 in	48.00 in	12.57	
PIPE 34	14.10	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	
PIPE 33-1	162.30	CIRCULAR	42.00 in	42.00 in	42.00 in	42.00 in	42.00 in	42.00 in	9.62	
PIPE 33-2	162.30	CIRCULAR	42.00 in	42.00 in	42.00 in	42.00 in	42.00 in	42.00 in	9.62	

PIPE 33-3	162.30	CIRCULAR	42.00 in	42.00 in	42.00 in	42.00 in	42.00 in	42.00 in	9.62	
PIPE 31-1	148.00	CIRCULAR	42.00 in	42.00 in	42.00 in	42.00 in	42.00 in	42.00 in	9.62	
PIPE 31-2	148.00	CIRCULAR	42.00 in	42.00 in	42.00 in	42.00 in	42.00 in	42.00 in	9.62	
PIPE 30	36.50	CIRCULAR	30.00 in	30.00 in	24.00 in	24.00 in	30.00 in	30.00 in	4.91	
PIPE 29-1	112.40	CIRCULAR	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	7.07	
PIPE 29-2	112.40	CIRCULAR	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	36.00 in	7.07	
PIPE 27-1	51.90	CIRCULAR	30.00 in	30.00 in	27.00 in	27.00 in	30.00 in	30.00 in	4.91	
PIPE 27-2	51.90	CIRCULAR	30.00 in	30.00 in	30.00 in	30.00 in	30.00 in	30.00 in	4.91	
PIPE 28	60.60	CIRCULAR	30.00 in	30.00 in	33.00 in	33.00 in	30.00 in	30.00 in	4.91	Existing height is smaller than the suggested height. Existing width is smaller than the suggested width. Exceeds max. Depth/Rise
PIPE 32	16.60	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater Elevation (ft): 0.00

	Invert Elev.	Downstream Manhole Losses	HGL	EGL
--	--------------	------------------------------	-----	-----

Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)
PIPE 35-3	7120.75	7124.30	0.00	0.00	7123.63	7128.04	7128.55	2.58	7131.13
PIPE 35-4	7128.96	7130.23	3.54	2.19	7133.94	7134.89	7136.86	0.96	7137.82
PIPE 35-5	7130.23	7131.95	0.18	0.56	7135.62	7136.92	7138.55	1.30	7139.84
PIPE 35-6	7132.26	7147.04	0.20	0.67	7137.80	7150.78	7140.72	13.15	7153.87
PIPE 35-7	7149.58	7151.70	3.86	2.19	7157.00	7157.76	7159.92	0.76	7160.68
PIPE 34	7158.19	7159.67	0.41	0.00	7158.79	7163.40	7163.71	0.00	7163.71
PIPE 33-1	7156.70	7161.89	0.22	0.00	7159.08	7165.31	7167.53	2.26	7169.78
PIPE 33-2	7165.89	7175.31	0.22	0.57	7168.27	7178.73	7176.72	6.48	7183.20
PIPE 33-3	7180.31	7183.24	0.22	0.00	7182.69	7186.66	7191.13	0.00	7191.13
PIPE 31-1	7190.24	7192.30	0.18	1.33	7192.90	7195.68	7198.41	1.02	7199.43
PIPE 31-2	7197.30	7208.58	0.18	0.00	7199.46	7211.96	7208.25	7.47	7215.71
PIPE 30	7215.08	7217.24	1.13	0.00	7216.17	7220.15	7221.01	0.00	7221.01
PIPE 29-1	7214.58	7218.45	0.20	0.00	7216.61	7221.38	7224.16	1.19	7225.35
PIPE 29-2	7226.80	7236.40	1.49	2.20	7228.85	7239.33	7236.26	7.04	7243.30
PIPE 27-1	7236.95	7253.63	0.26	2.82	7244.64	7255.95	7246.38	11.42	7257.80
PIPE 27-2	7253.93	7254.71	0.66	0.97	7257.70	7258.32	7259.43	0.62	7260.05
PIPE 28	7236.90	7237.24	0.90	0.00	7241.84	7242.21	7244.20	0.37	7244.57
PIPE 32	7191.74	7194.48	0.57	0.00	7192.41	7196.95	7197.38	0.00	7197.38

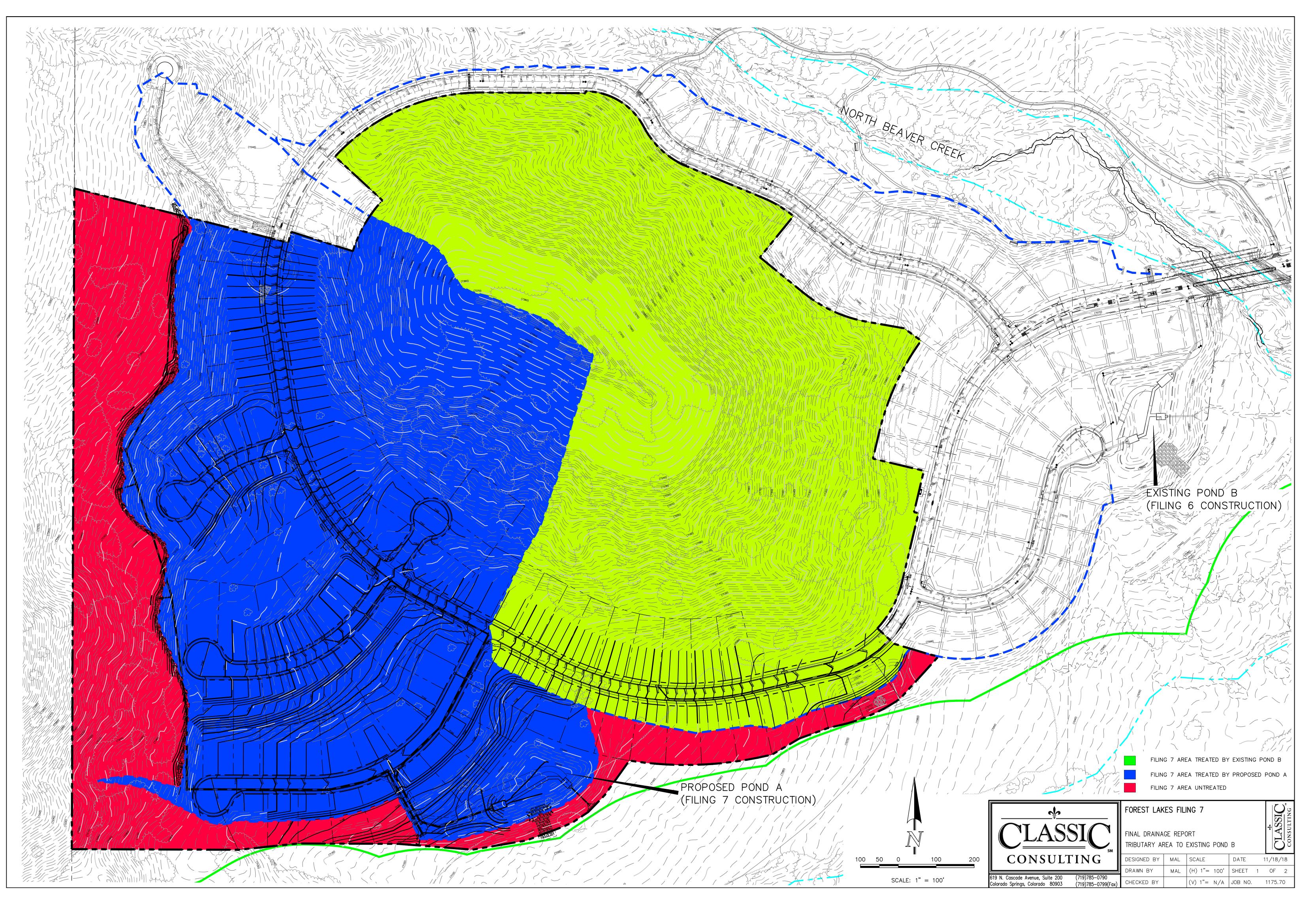
- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.
- Bend loss = Bend K * V_fi ^ 2/(2*g)
 Lateral loss = V_fo ^ 2/(2*g)- Junction Loss K * V_fi ^ 2/(2*g).

• Friction loss is always Upstream EGL - Downstream EGL.

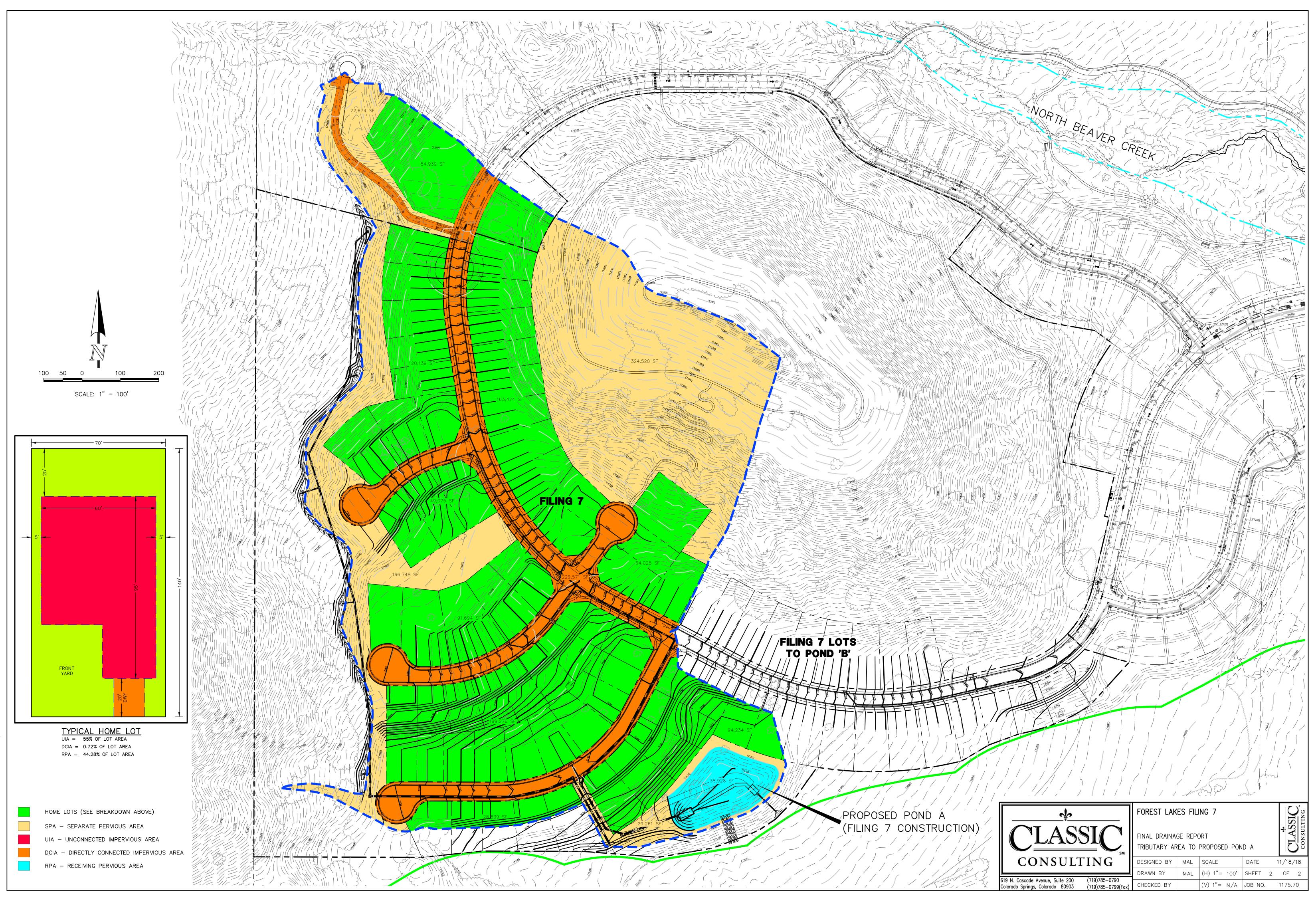
Excavation Estimate:

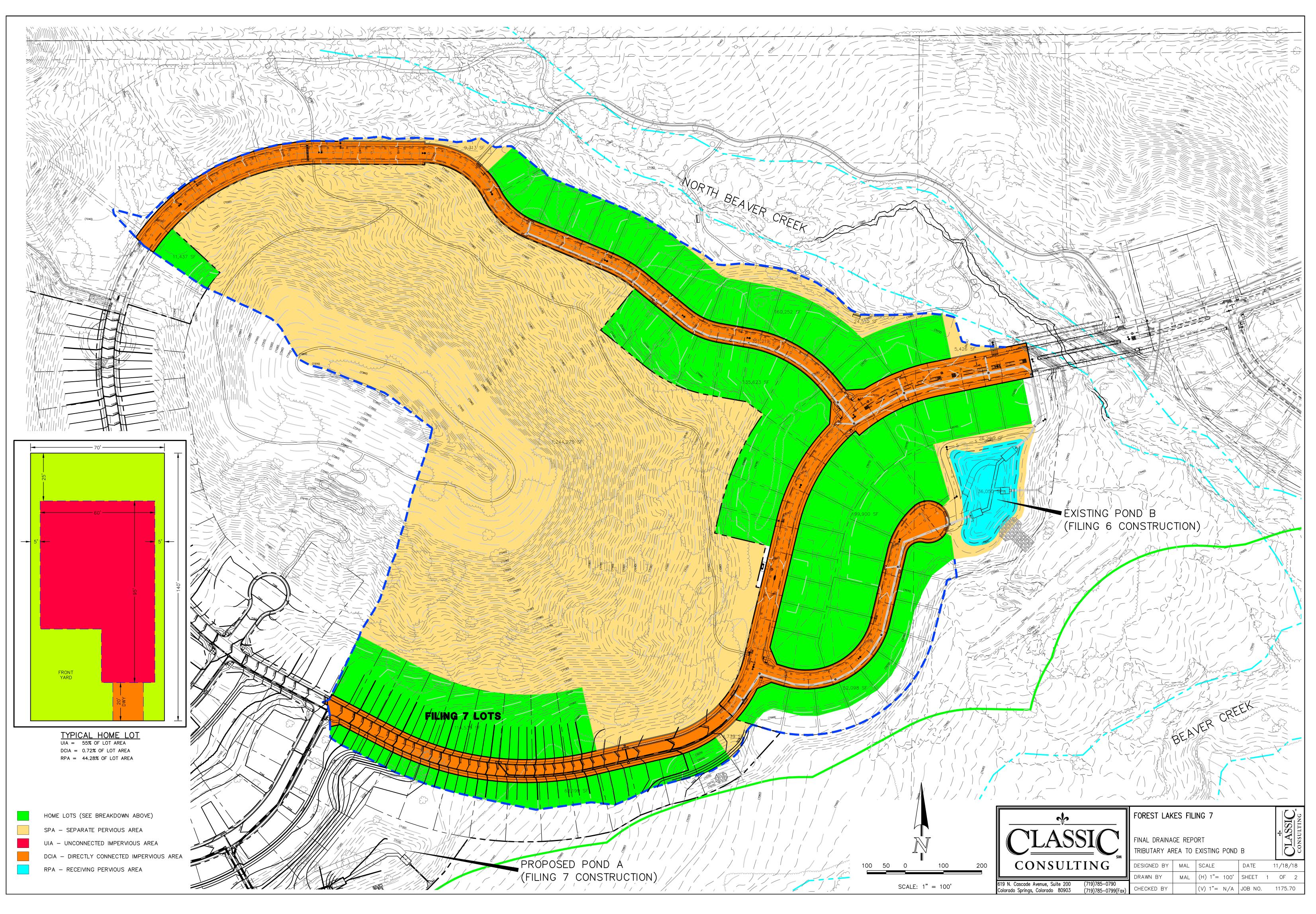
The trench side slope is 1.0 ft/ft The minimum trench width is 2.00 ft

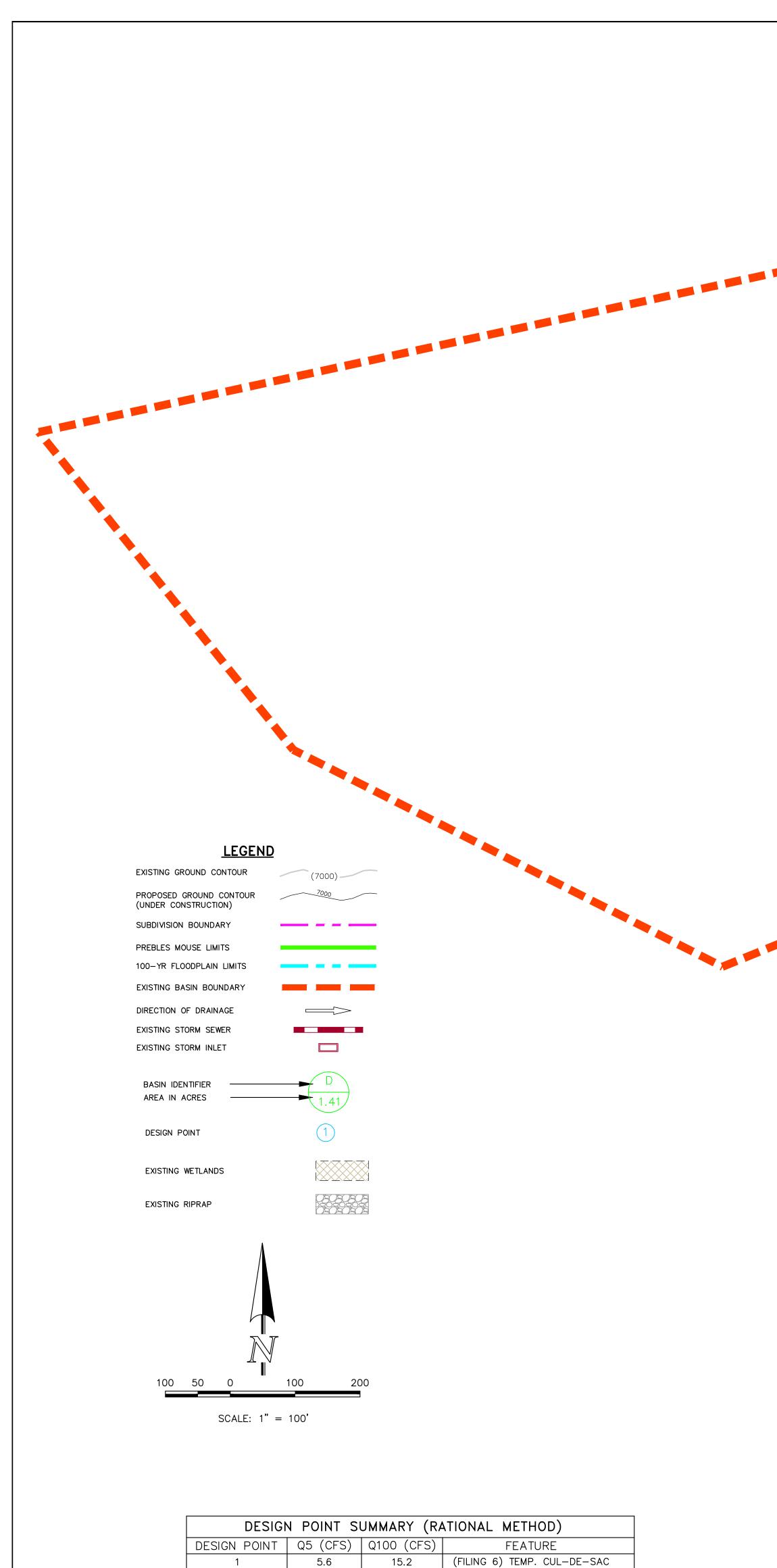
					D	ownstrea	m	1	Upstream			
Element Name	Length (ft)	Wall (in)	Bedding (in)	Bottom Width (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Volume (cu. yd)	Comment
PIPE 35-3	186.71	5.00	6.00	7.83	0.00	0.00	0.00	31.46	18.15	12.81	974.02	Sewer Too Shallow
PIPE 35-4	66.85	5.00	6.00	7.83	22.14	13.49	8.15	20.94	12.89	7.55	372.27	
PIPE 35-5	90.43	5.00	6.00	7.83	20.94	12.89	7.55	20.54	12.69	7.35	474.99	
PIPE 35-6	369.55	5.00	6.00	7.83	19.92	12.38	7.04	30.30	17.57	12.23	2718.73	
PIPE 35-7	52.92	5.00	6.00	7.83	25.21	15.02	9.69	27.12	15.98	10.64	403.12	
PIPE 34	14.62	3.00	4.00	5.50	16.13	9.15	6.32	11.16	6.66	3.83	33.37	
PIPE 33-1	129.69	4.50	6.00	7.25	17.62	10.93	6.18	23.04	13.65	8.90	642.15	
PIPE 33-2	235.38	4.50	6.00	7.25	15.03	9.64	4.89	28.66	16.46	11.71	1390.14	
PIPE 33-3	73.31	4.50	6.00	7.25	18.66	11.46	6.71	32.56	18.41	13.66	555.56	
PIPE 31-1	46.86	4.50	6.00	7.25	18.56	11.41	6.66	29.92	17.09	12.34	318.52	
PIPE 31-2	256.34	4.50	6.00	7.25	19.92	12.08	7.33	31.02	17.64	12.89	1883.79	
PIPE 30	43.29	3.50	6.00	6.08	19.03	11.06	7.47	28.02	15.55	11.97	259.79	
PIPE 29-1	87.99	4.00	6.00	6.67	19.52	11.59	7.43	38.72	21.19	17.03	842.04	
PIPE 29-2	223.31	4.00	6.00	6.67	22.02	12.85	8.68	20.86	12.26	8.10	1144.35	


PIPE 27-1	347.52	3.50	6.00	6.08	20.26	11.67	8.09	23.28	13.18	9.60	1772.26
PIPE 27-2	38.77	3.50	6.00	6.08	22.67	12.88	9.29	9.08	6.08	2.50	133.80
PIPE 28	17.09	3.50	6.00	6.08	20.36	11.72	8.14	8.92	6.00	2.42	50.90
PIPE 32	30.42	3.00	4.00	5.50	17.06	9.61	6.78	19.04	10.60	7.77	107.26

Total earth volume for sewer trenches = 14077 cubic yards.


- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
 - Four inches for pipes less than 33 inches.
 - Six inches for pipes less than 60 inches.
 - Eight inches for all larger sizes.


DRAINAGE MAPS



:\117570\DRAWINGS\DEVELOPMENT\FIL7BOUNDARY-TRIB_EXHIBIT.dwg, 2/3/2022_3:17:04_PM, 1:

117570\DRAWINGS\DEVELOPMENT\TRIB AREA EXHIBIT-POND B.dwg, 11/17/2021 9:33:29 AM, 1

155.4

2.8

23.1

0.4

44.3

13.8

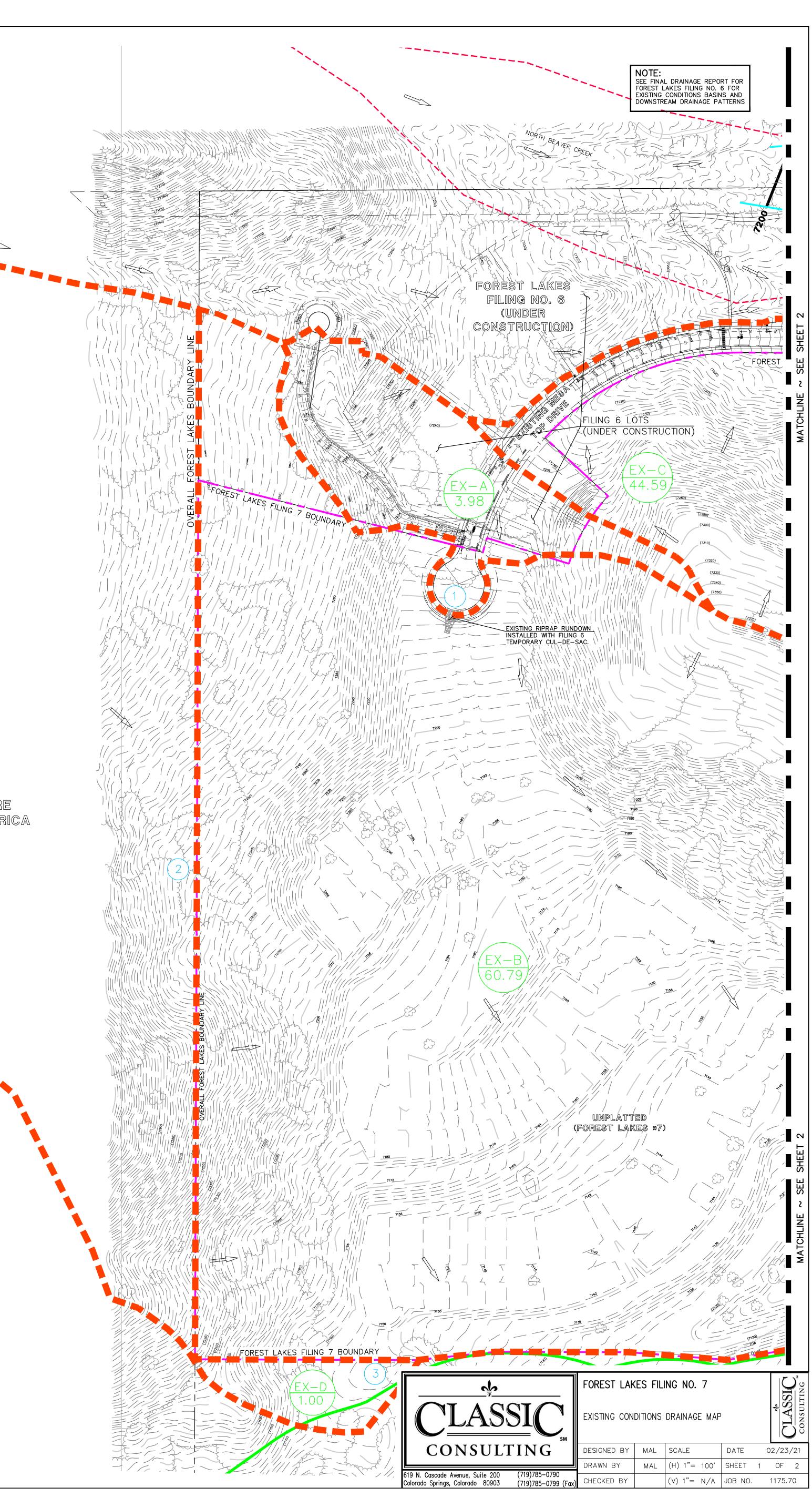
2

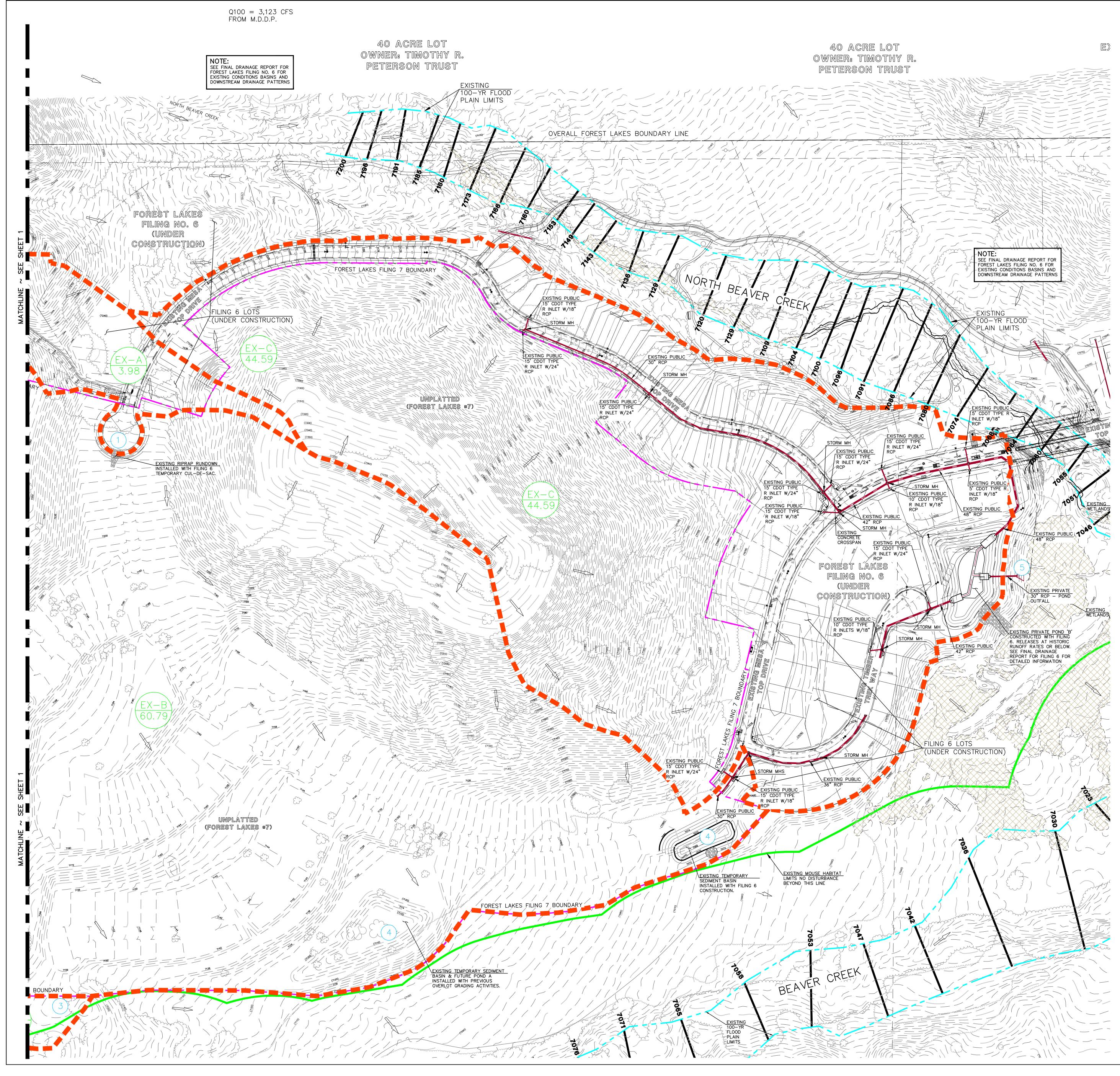
3

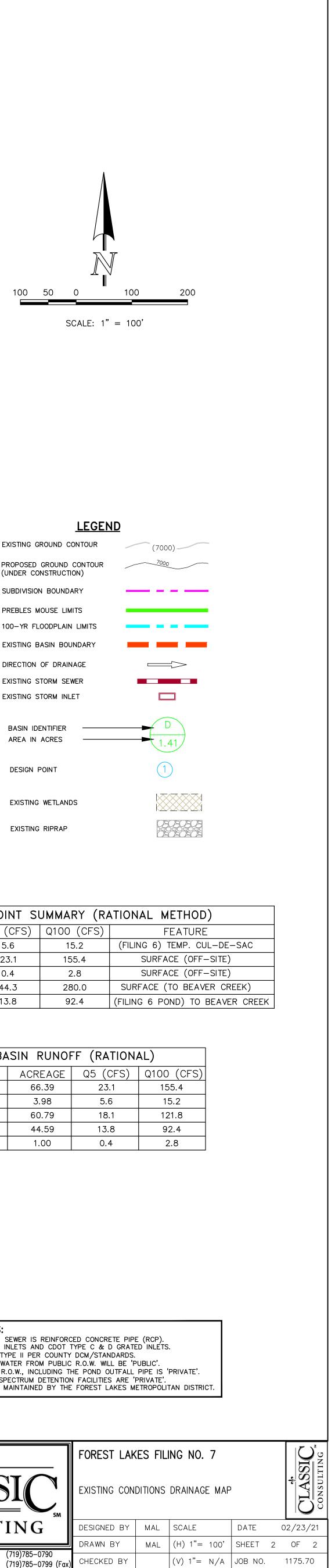
5

SURFACE (OFF-SITE)

SURFACE (OFF-SITE)

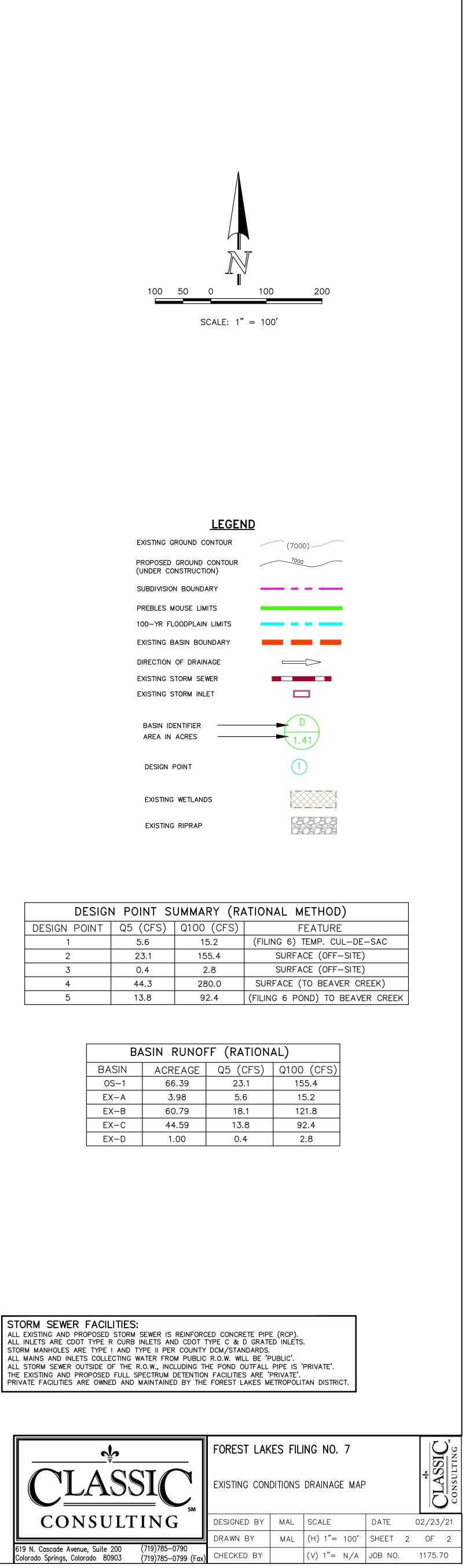

280.0 SURFACE (TO BEAVER CREEK)

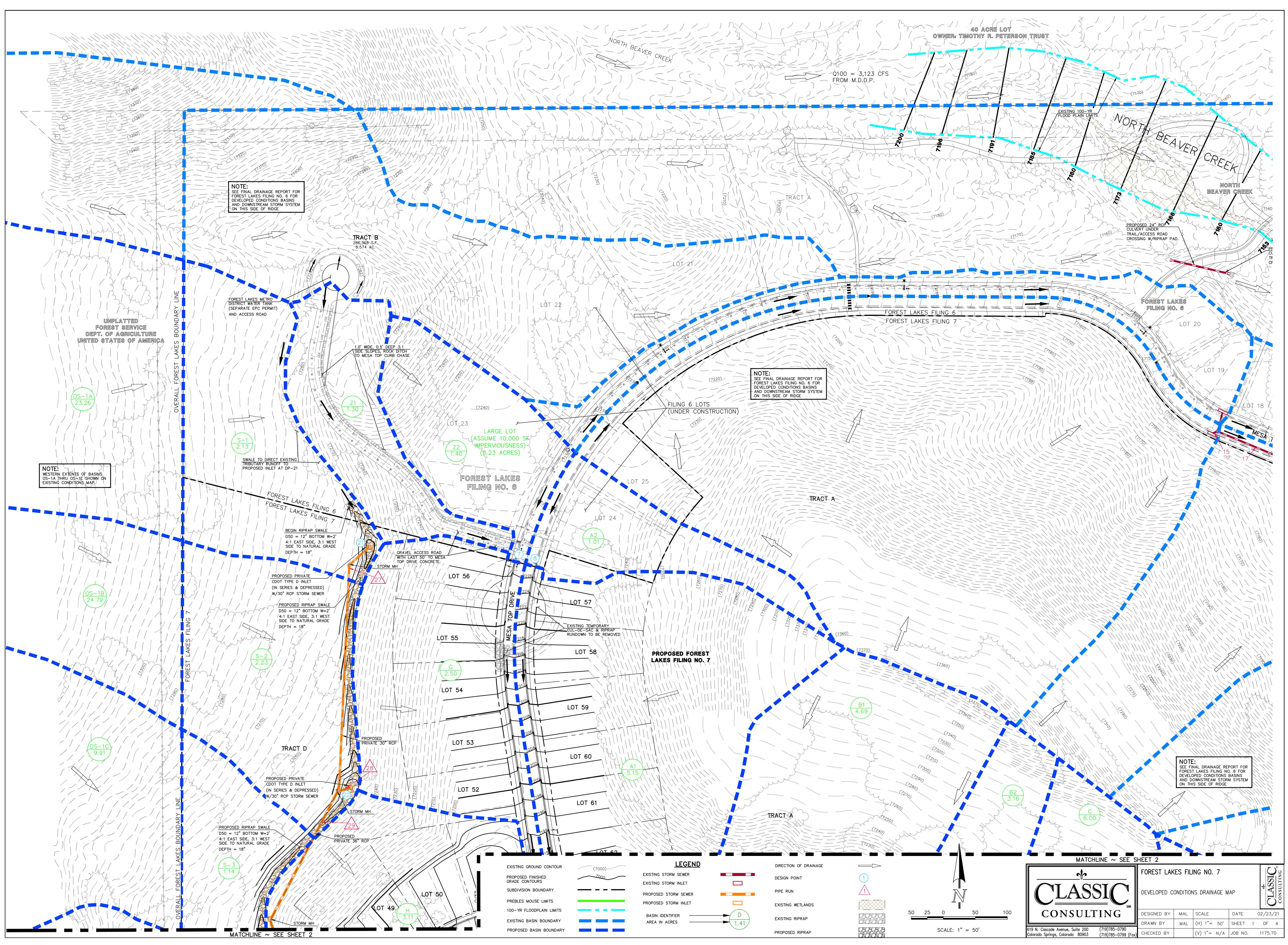

92.4 (FILING 6 POND) TO BEAVER CREEK

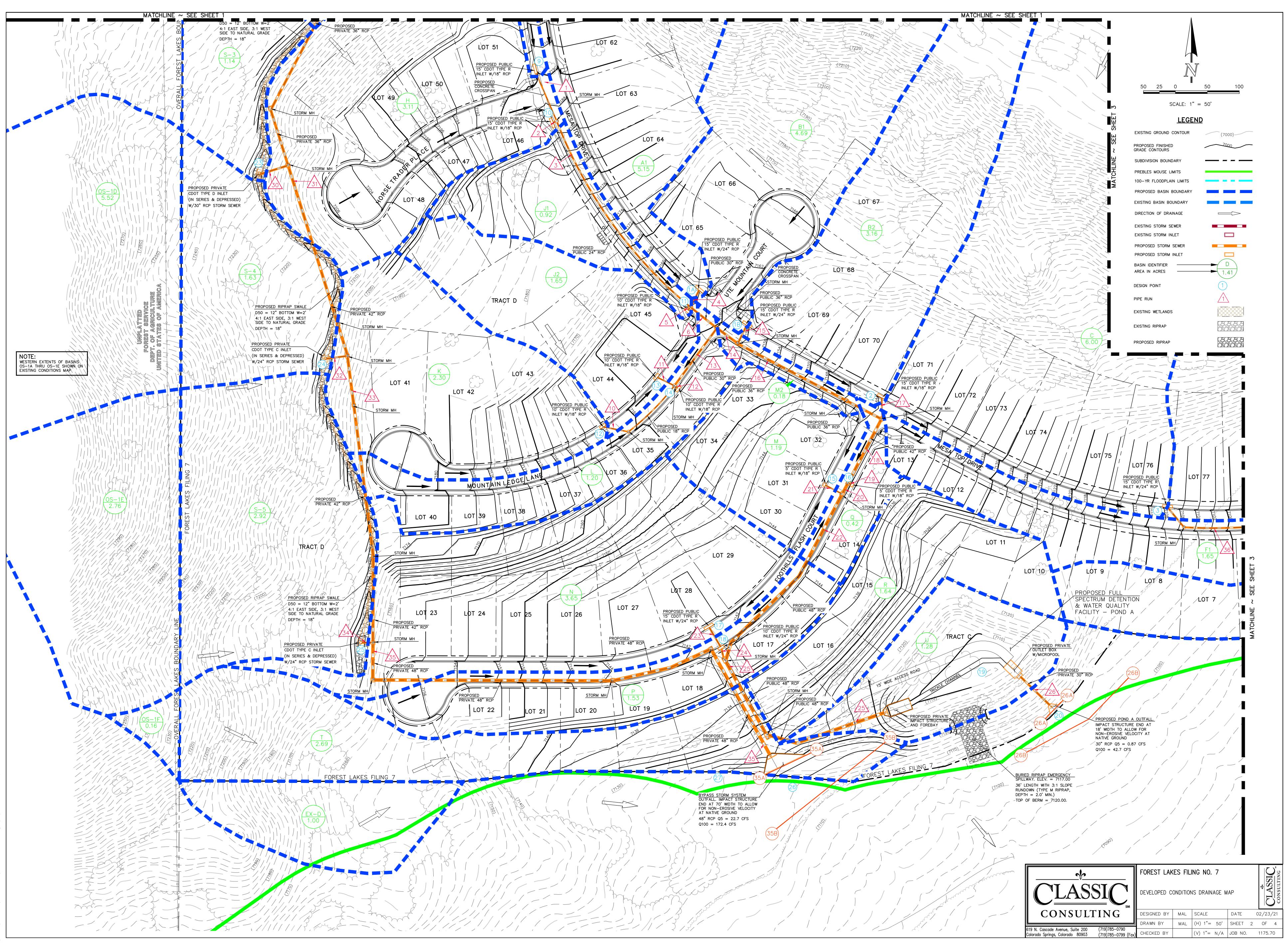

BA	SIN RUNO	FF (RATION	AL)
BASIN	ACREAGE	Q5 (CFS)	Q100 (CFS)
OS-1	66.39	23.1	155.4
EX-A	3.98	5.6	15.2
EX-B	60.79	18.1	121.8
EX-C	44.59	13.8	92.4
EX-D	1.00	0.4	2.8

UNPLATTED FOREST SERVICE DEPT. OF AGRICULTURE UNITED STATES OF AMERICA NOTE: BASIN OS-1 EXTENTS DETERMINED USING GOOGLE EARTH CONTOUR INFORMATION AND AERIAL PHOTOGRAPH OVERLAYS. CONTOUR INFORMATION NOT AVAILABLE IN AUTOCAD AND IS THEREFORE NOT SHOWN ON THIS MAP 66.39 UNPLATTED FOREST SERVICE DEPT. OF AGRICULTURE UNITED STATES OF AMERICA

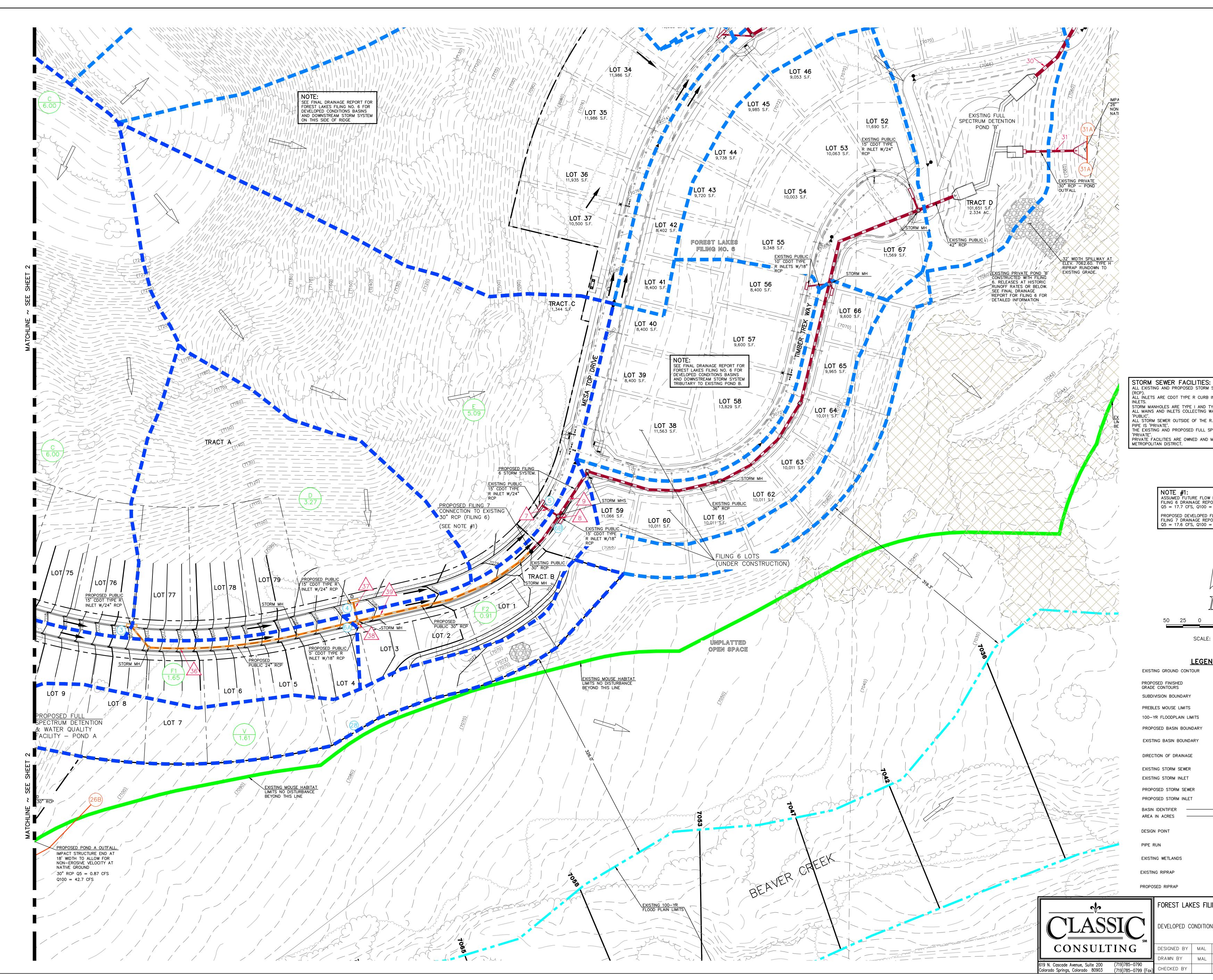
> STORM SEWER FACILITIES: ALL EXISTING AND PROPOSED STORM SEWER IS REINFORCED CONCRETE PIPE (RCP). ALL INLETS ARE CDOT TYPE R CURB INLETS AND CDOT TYPE C & D GRATED INLETS. STORM MANHOLES ARE TYPE I AND TYPE II PER COUNTY DCM/STANDARDS. ALL MAINS AND INLETS COLLECTING WATER FROM PUBLIC R.O.W. WILL BE 'PUBLIC'. ALL STORM SEWER OUTSIDE OF THE R.O.W., INCLUDING THE POND OUTFALL PIPE IS 'PRIVATE'. THE EXISTING AND PROPOSED FULL SPECTRUM DETENTION FACILITIES ARE 'PRIVATE'. PRIVATE FACILITIES ARE OWNED AND MAINTAINED BY THE FOREST LAKES METROPOLITAN DISTRICT.

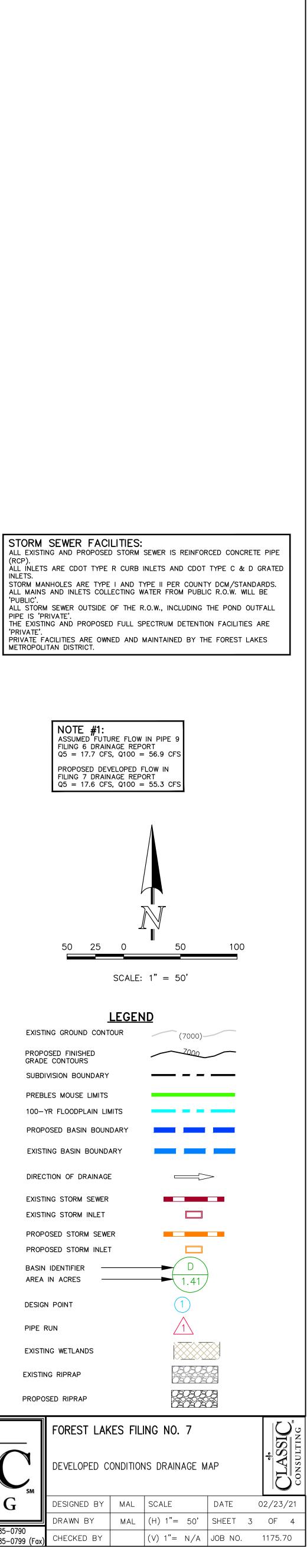





EXISTING GROUND CONTOUR
PROPOSED GROUND CONTOUR (UNDER CONSTRUCTION)
SUBDIVISION BOUNDARY
PREBLES MOUSE LIMITS
100-YR FLOODPLAIN LIMITS
EXISTING BASIN BOUNDARY
DIRECTION OF DRAINAGE
EXISTING STORM SEWER
EXISTING STORM INLET

DESIGN POINT SUMMARY (RAI			
DESIGN POINT	Q5 (CFS)	Q100 (CFS)	
1	5.6	15.2	(FILI
2	23.1	155.4	
3	0.4	2.8	
4	44.3	280.0	SUR
5	13.8	92.4	(FILIN

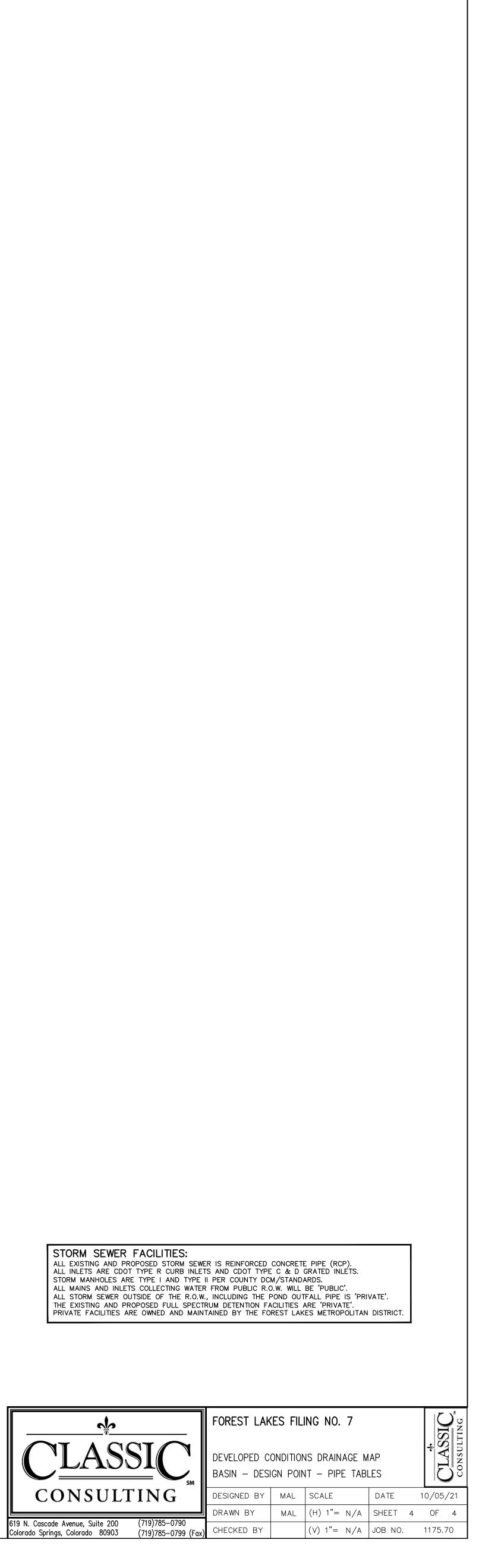

_				
	BASIN RUNOFF (RATION			
	BASIN	BASIN ACREAGE		
	0S-1	66.39	23.1	
	EX-A	3.98	5.6	
	EX-B	60.79	18.1	
	EX-C	44.59	13.8	
	EX-D	1.00	0.4	



N:\117570\DRAWINGS\DEVELOPMENT\117570-DEV-MAPS.dwg, 3/31/2022 10:55

\117570\DRAWINGS\DEVELOPMENT\117570-DEV-MAPS.dwg, 3/31/2022 10:55:52 AM, 1:'




	BASIN	RUNOF
BASIN	(Q5 CFS)	(Q100
A1	7.7	19.
A2	1.7	4.
B1	4.0	14.
B2	4.2	12.
С	5.9	19.
D	3.8	11.
E	2.9	13.
F1	4.5	8.
F2	2.5	4.
G	4.4	10.
Н	5.5	12.
J1	2.0	4.
J2	2.7	6.
К	4.3	9.
L	3.3	6.
М	2.6	5.
M2	0.8	1.4
Ν	6.8	15.
Р	4.1	8.
Q	1.2	2.
R	3.8	8.
S-1	0.8	5.
S-2	0.8	5.
S-3	0.4	2.
S-4	0.6	4.
S-5	1.2	7.
Т	2.7	9.
U	3.2	7.
V	3.2	7.
Z1	1.5	5.
Z2	2.1	5.
EX-D	0.4	2.
0S-1A	7.1	47.
0S-1B	7.5	50.
0S-1C	3.2	21.
0S-1D	1.8	12.
0S-1E	1.0	6.
OS-1F	0.1	0.

DESIGN POINT SUMMARY				
DESIGN POINT	(Q5 CFS)	(Q100 CFS)	INLET SIZE	
1A	9.3	23.1	15' TYPE R AT-GRADE	
1B	4.4	21.8	15' TYPE R AT-GRADE	
2	3.6	17.6	15' TYPE R AT-GRADE	
3	5.6	22.4	15' TYPE R AT-GRADE	
4	3.5	17.7	15' TYPE R AT-GRADE	
5	2.7	17.6	15' TYPE R SUMP	
6A	4.5	8.9	5' TYPE R AT-GRADE	
6B	4.2	10.1	10' TYPE R SUMP	
7	3.3	9.6	SURFACE FROM FIL. 6	
8	1.7	4.0	SURFACE FROM FIL. 6	
9	7.6	19.6	15' TYPE R AT-GRADE	
10	5.6	18.5	15' TYPE R AT-GRADE	
11	2.0	9.2	10' TYPE R AT-GRADE	
12	4.3	9.7	10' TYPE R AT-GRADE	
13	2.8	11.4	10' TYPE R SUMP	
14	3.3	6.6	10' TYPE R SUMP	
15	3.2	6.5	5' TYPE R SUMP	
16	1.2	2.4	5' TYPE R SUMP	
17	6.8	15.1	15' TYPE R SUMP	
18	4.1	8.2	10' TYPE R SUMP	
19	59.1	137.8	FSD/SWQ POND 'A'	
20	4.4	48.5	SURFACE TO S. BEAVER	
21	7.7	51.9	TYPE D (IN SERIES & DEPRESSED)	
22	8.2	60.6	TYPE D (IN SERIES & DEPRESSED)	
23	3.4	36.5	TYPE D (IN SERIES & DEPRESSED)	
24	2.3	16.6	TYPE C (DEPRESSED)	
25	2.1	14.1	TYPE C (DEPRESSED)	
26	22.7	172.4	SURFACE TO S. BEAVER	
27	3.0	11.7	SURFACE TO S. BEAVER	
28	3.2	7.5	SURFACE TO S. BEAVER	

F	
CFS)	ACREAGE
5	5.15
)	1.01
3	4.69
	3.16
)	6.00
	3.27
)	5.09
)	1.65
)	0.91
2	2.50
}	3.11
2 3 2 3 7	0.92
6	1.65
7	2.30
6	1.20
5 - -	1.19
-	0.18
	3.65
2	1.53
2 - - - 	0.42
ŀ	1.64
3	2.13
	2.23
7	1.14
2	1.63
7	2.92
2 7 2 2 5	2.69
2	1.28
5	1.61
	1.30
5	1.40
5	1.00
5	23.26
5	24.79
5 5 5 2 9	9.91
2	5.52
)	2.76
5	0.16

PIPE RUN SUMMARY			
PIPE	Q5 (CFS)	Q100 (CFS)	PIPE SIZE
1	7.5	13.8	24"
2	5.6	13.4	24"
3	13.1	27.2	30"
4	8.8	15.1	24"
5	2.0	6.9	18"
6	23.4	48.3	36"
7	2.7	17.6	EX. 24"
8	4.5	8.9	EX. 18"
9	17.6	55.3	EX. 30"
10	4.2	7.1	18"
11	2.8	11.4	18"
12	3.3	6.6	18"
13	10.0	24.4	30"
14	33.1	72.1	42"
15	4.4	14.6	24"
16	37.5	86.7	42"
17	3.6	13.1	24"
18	40.9	99.2	42"
19	1.2	2.4	18"
20	41.7	100.7	42"
21	3.2	6.5	18"
22	44.7	106.9	48"
23	6.8	15.1	24"
24	10.5	22.5	24"
25	53.8	126.1	48"
26	4.4	48.5	30"
27	7.7	51.9	30"
28	8.2	60.6	36"
29	15.9	112.4	48"
30	3.4	36.5	30"
31	19.2	148.0	48"
32	2.3	16.6	24"
33	21.2	162.3	42"
34	2.1	14.1	24"
35	22.7	172.4	48"
36	5.6	14.9	24"
37	3.5	13.1	24"
38	2.7	3.7	18"
39	11.3	30.9	30"

