Preliminary Drainage Report JeniShay Farms

Colorado Springs, Colorado 80908

Prepared for:
El Paso County, CO

On Behalf of:
Phillip S. and Jennifer Miles
PO Box 88461
Colorado Springs, CO 80908
719-352-8886

Prepared by:
Lodestar Engineering, LLC
PO Box 88461
Colorado Springs, CO 80908
Phillip Shay Miles, PE
719-352-8886

February 25, 2021
PCD File \#: SP209

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused b Delete "certification negligent acts, errors, or omissions on my part in preparing this report.
statement".
[Unresolved]

Signature: \qquad Date: \qquad
Phillip Shay Miles, PE
Registered Professional Engineer State of Colorado No. 40462

DEVELOPER'S STATEMENT:

I, the owner/developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Name of Owner/Developer: Phillip S. Miles
Authorized Signature: \qquad Date: \qquad
Title: Owner
Address: 15630 Fox Creek Lane, Colorado Springs, CO 80908

EL PASO COUNTY:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Jennifer Irvine, P.E.
Date
County Engineer / ECM Administrator

Conditions:

Table of Contents

1. Purpose 1
2. General Description 1
3. Soils Conditions 2
4. Drainage Criteria 3
5. Existing and Proposed Drainage Conditions 3
5.1 Drainage Patterns and Hydraulic Routing 3
5.2 Site Improvements 5
5.3 Hydraulic Calculations 5
5.4 On-site Detention Requirements 5
5.5 Compliance with Other Studies 5
5.6 Four Step Process 5
6. Water Quality 6
7. Erosion Control Plan 7
8. Floodplain Statement 7
9. Drainage and Bridge Fees 7
10. Construction Cost Opinion 7
11. Summary 7
12. References 8

Appendix A - Maps

- NRCS Soils Map and Hydrologic Group Data
- FEMA Flood Insurance Rate Map

Appendix B - Calculations
Hydrologic

- Composite Runoff Coefficients
- Percentage of Imperviousness
- Point Precipitation Frequency Table
- Basin Runoff Summary (Rational Methodology)
- Surface Routing Summary

Hydraulic

- Ditches
- Culverts
- Outlet Erosion Protection

Water Quality

- LID IRF Spreadsheet

Detention Pond

- Forebay
- Stage-Storage
- Outlet Structure Design
- Spillway Riprap

Appendix C - Plan (located in plan pocket)

- Drainage Plan
- Preliminary Plat

1. Purpose

The purpose of this Preliminary Drainage Report for JeniShay Farms is to quantify and evaluate the impacts of stormwater runoff generated by this Project and to provide adequate water quality/detention treatment.

2. General Description

The JeniShay Farms property (Project) is a 52.6 -acre single-family development consisting 9 lots and a public street (Fox Creek Lane) located within Black Forest, Colorado in El Paso County. The project will consist of a public street, detention pond, and new home construction and associated site elements typical of single-family residential development (e.g. - driveways, patios, landscaping, etc.). The property is bounded by Ridgeview Acres to the north, Whispering Hills Estates to the west Wildwood Village to the east, and Terra Ridge Estates to the south. All lots surrounding the subject property are all zoned RR-5. The entire 39.72-acre parcel lies within unincorporated El Paso County and is currently zoned RR-5.

This project is located in the Town of Black Forest, El Paso County, Colorado. Access to the site is off Fox Creek Lane. It is located in Section 29, Township 11 south, Range 65 west of the $6^{\text {th }}$ principal meridian. A vicinity map is provided below in Figure 1.

Figure 1 - Vicinity Map

The site is being re-platted from a portion of the Terra Ridge Filing No. 1 subdivision (lots 5 and 6) to be included in the newly formed JeniShay Farms subdivision. The site is bounded by large lot subdivision single-family development.

The existing site is covered with native grasses with a few randomly located ponderosa pines. The topography of the site is rolling hills with two drainage ways extending from south to north through the property. A 100 foot wide electric easement extends north to south along the eastern portion of the site.

3. Soils Conditions

The proposed development is 52.6 acres. Ground cover primarily consists of existing vegetation primarily consisting of native grass and shrubs.
The general topography of the land slopes to the south at slopes in the range of 2% to 30%. According to the Natural Resources Conservation Service (NRCS), the soils in this area consist of Peyton-Pring Complex and Tomah-Crowfoot loamy sands, and can be classified as a Hydrologic Soil Group (HSG) Types B. A soil map and map unit (soils type) descriptions

If used for the rational method calculation provide the computed Rainfall Intensity-Duration-Frequency (IDF) Table/Chart. The table provided is the Rainfall Depth-Duration-Frequency Table.

4. Drainage Criteria

The hydrologic and hydraulic analysis performed in this report utilizes The City of Colorado Springs and El Paso County Drainage Criteria Manual (Kol 1, 1991) (Vol 2, 2002), The City of Colorado Springs (Chpt. 6, 2014, and the MHFD USDCM (Urban Storm Drainage Criteria Manual) Volumes $1 \& 2$. Stormwater runoff was determined using the Rational Method and was calculated for existing and proposed conditions for the 5 fr (minor) and 100-yr (major) recurrences. 1-hour rainfall depths were derived from NOAA Atlas 14, Volume 8, Version 2 specific to the Project location.

The following MHFD hydrologic and hydraulic software were used in this report:

- UD-Culvert v3.05 - Culvert and Erosion Protection Calculations

Provide an existing condition drainage map and provide narrative description of the design points and sub-basins.
5.
[Unresolved.]
The current 21.5% impervious is contradictory to the exclusion from WQ stated in page 5 of this report. Update the impervious values and provide the existing condition drainage map/calculation and update the narrative. Undeveloped land impervious values is 2% (City DCM Table 6-6) while single family 5 acre lots are 7\% (ECM Appendix L Table 3-1).
\sim
ar
values for the project remain essentially the same.

Proposed

Proposed roadway construction and associated grading will create six (6) on-site basins and two (2) off-site basins. Refer to the drainage plan in Appendix C.

Design Point 1 flows are generated from basin B. Basin B consists of public roadway improvements to include pavement, and roadside ditches. Unconcentrated sheet flow across the pavement is collected in the adjacent ditch and is routed north to the proposed 18 " storm culvert. At this location, runoff will be conveyed under the proposed roadway to the ditch on the east side ultimately discharging into the proposed water quality/detention pond facility.

Design Point 2 flows are generated from basins A and B. Basin A consists of public roadway improvements to include pavement, and roadside ditches. Unconcentrated sheet flow across the pavement is collected in the adjacent ditch and combines with basin B runoff and is routed
north to design point 2 . At this location, runoff will be conveyed in a riprap rundown channel to the forebay of the proposed water quality/detention pond facility. Riprap will be provided with a d50 of 9 " and a thickness of 18 " to prevent erosion prior to entering the concrete forebay. The proposed forebay will be $\sim 95 \mathrm{cf}$ in volume. Flows into a 1.5 ' wide concrete trickle channel will be conveyed to the outlet structure micropool. Refer to the forebay and detention pond calculations located in Appendix B. The emergency overflow route is over the proposed spillway which has been designed to pass the peak flow from the 100yr flow event.

Design Point 3: The JR report shows flows entering the project site with a value of 369 cfs (JR DP5). To route this flow to Fox Creek Design Point 3, this flow value (369cfs) and the time of concentration (Tc) for Design Point 5 from the JR report ($0.765 \mathrm{hrs}=45.9 \mathrm{minutes}$) was held and a corresponding CA equivalent (rational method input) was calculated for routing to Design Point 4. The Tc for the JR flow (45.9) was added to the additional Tc (7.6 minutes) to route thru the site to Design Point 4, yielding a higher Tc (53.5) for Design Point 4 and was used to determine the peak flow (408). As a rough check, using the JR Design Point 5 report data and the 371 tributary acres with a resultant flow of 369 cfs yields $\sim 1.0 \mathrm{cfs} / \mathrm{acre}$. Our addition of off-site basin OS1 and onsite basin D (total 45acres) yielded a peak flow at Design Point 4 of 408 cfs . Therefore, our project site had flows of $\sim 0.87 \mathrm{cfs} /$ acre which is close to the 1.0 cfs /acre value determined by JR.

Design Point 4 flows are generated from off-site basins OS1 and OS2, Design Point 3 as well as on-site basins C and D. Basin OS1 and OS2 consist of large lot single family subdivision development improvements with homes, driveways, sheds, and various outbuildings. Basin C consists of half of a segment of driveway pavement and fill slope. Runoff flows down the side slope and directly into the adjacent drainageway. Basin D consists of a naturally vegetated field which will have some minor impervious area additions from the proposed home sites. Runoff from basin D is routed directly into the drainageway and then to the north to design point 4 . To enable the flows at this location to pass under the proposed driveway, three $48^{\prime \prime}$ culverts are proposed. Energy dissipation will be provided at the outfall to minimize the potential for erosion/local scour.

Basin E flows are generated from a naturally vegetated field and a short segment of driveway pavement. This basin runoff is not being treated in the proposed water quality/detention pond because of the topographical constraints on site. Basin E flows are routed in the existing drainageway to the northeast combining with another drainageway to the east near the northeastern lot corner.

Basin F flows are generated from a naturally vegetated field which will have home site construction. Basin E flows are routed in an existing drainageway on the east side of the property which combines with the aforementioned drainageway within basin E near the northeastern lot corner.

Basic C is not used.

Basins D, E \& F are excluded from permanent water quality per ECM Appendix I Section I.7.1.B. 5 since these contain large lot single family sites (greater than 2.5 ac) and will have a total lot impervious area of less than 10 percent.

5.2 Site Improvements

Utilities that exist within the project area a across the east half of the project. There a

Add a sentence at the end of section
5.3 stating hydraulic analysis will be uth existing electric lines are contained within submitted with the final plat application.
5.3 Hydraulic Calculations

Culverts

The calculations for the 18 " culvert which routes ditch flows from basin B to basin A under the proposed driveway were performed using 2019 Civil3D design software and are contained in Appendix B. The triple 48 " storm culverts routing the drainageway under the proposed driveway are also contained in Appendix B.

Ditch Capacities

The hydraulic analysis for the Fox Creek Lane roadway ditches was performed using 2019 Civil3D design software and are contained in Appendix B.

5.4 On-site Detention Requirements

A full spectrum water quality/detention pond is proposed for this site to provide water quality for developed flows as a result of this development. In addition to water quality, detention is provided in the pond design. Refer to section 7 in this report for additional information regarding water quality capture volume (WQCV) and detention (peak flow attenuation) flow requirements for this project.

The JeniShay Farms HOA will own and maintain the water quality/detention pond.

5.5 Compliance with Other Studies

The only studies related to this project are the Terra Ridge Filing No 1 and 2 reports (see references). The basins that are common to this project (Terra Ridge - basin 12 and 17) have only been modified slightly to account for the proposed roadway construction. Flows as determined in the Terra Ridge reports for the natural drainageway have been used and supplemented with the additional flows from the JeniShay Farms watershed to determine the on-site flow at the proposed driveway crossing. Unresolved comment from Review \#1:

Revise entire Four Step Process per ECM Section 1.7.2.A.

5.6 Four Step Process

Specifically: switch Steps 2 and 3, and revise the heading and text of Step 4.
This development address Low Impact Development strategies primarily through the utilization of roadway ditches. Runoff from the pavement sheet flows across the grass lined ditch side slopes which provides some level of water quality treatment.

Step 2 - Implement BMPs that Provide a Water Quality Capture Volume with Slow Release

On-site flow is directed to the on-site private proposed full-spectrum detention/water quality facility. The extended detention basin provides Water Quality Capture Volume (WQCV) required for this site and attenuates the peak flows releasing them at approximate historic runoff rates over a longer period by releasing Excess Urban Runoff Volume (EURV).

Step 3 - Stabilize Drainageways

Portions of the existing conditions runoff currently enter the on-site natural drainageway via overland flow across the vacant lots and via the proposed full-spectrum detention pond. Due to the minor anticipated extent of land disturbance and improvements on these large lots coupled with on-site detention; the amount of runoff entering the drainageways remains basically the same. Predevelopment levels of release of the Excess Urban Runoff Volume (EURV) help the drainageway maintain its current morphology by mimicking the natural historic runoff rates over a longer period by peak flow attenuation.

Step 4 - Source Control BMPs

Construction BMP's that will be implemented include silt fence, a vehicle tracking pad, a stabilized staging area, concrete washout, inlet protection, adequately installed vegetation, side slopes will be $3: 1$ or flatter, and straw bale ditch checks. The implementation of these BMP's is outlined in the Grading, Erosion and Stormwater Quality Control Plan and Stormwater Management Plan for the site. The Stormwater Management Plan also addresses materials storage and spill containment handling during construction to protect downstream receiving waters.

6. Water Quality

Update narrative. On Page 4 the report

Stormwater that is generated from this Proj noted Basin C is not unconcentrated sheet flow or is collected in used. water quality/detention facility outfalling via an 10 storm sewer pipe.
site in the form of ed thru the proposed

The proposed on-site imperviousness of the area contributing to the pond is 30.3%. Basin C is the only area of improvements that has not been included in the sites imperviousness calculations because runoff cannot be physically treated in the proposed pond and yield extremely minor runoff values ($\mathrm{Q} 5=0.5 \mathrm{cfs}, \mathrm{Q} 100=1.5 \mathrm{cfs}$).

The proposed full spectrum extended detention basin (EDB) has been analyzed in this study based on the proposed site conditions as shown on the Drainage Plan. The pond facility provides 0.066 acre-ft of water quality capture volume, 0.161 acre-ft of excess urban runoff volume and 0.291 acre-ft of detention storage. The proposed EDB will release a peak flow 5.0cfs during the 100 -year storm event. Outflows from the proposed EDB are released via a proposed 18" storm sewer pipe with a restrictor plate located within the outlet structure box. The outlet structure will have an orifice plate designed to drain the EURV over a period of 72 hours. The orifice plate will have 3 rows of holes. The lowest will be $3 / 4 "$ in diameter, and the second and third rows will be $1 / 2 "$ in diameter. The EDB will have a rip rap emergency overflow spillway that will drain the 100 yr peak flows (8.6 cfs) in the event the outlet structure becomes entirely clogged or the pond is already full. The spillway will be constructed of rip rap with a d50 $=9{ }^{\prime \prime}, 18$ " thick, a crest length of 5.4^{\prime} with $3: 1$ side slopes. Flow depth over the crest of the spillway during the 100 yr event storm will be 0.56^{\prime} with 1.0^{\prime} of freeboard. A 10 ft maintenance road has been provided

Add a sentence stating pond design will be finalized in the Final Drainage Report submitted with the final plat application.
extending from the pripate driveway to the bottom of the pond. The pond will be maintained using a skid loader. Refer to the design calculations in Appendix B for additional information.

The slope downstream of the detention pond emergency spill [Unresolved] Replace with peak outflow during the 100 yr event, assuming complete clo "requested". Pre-development cfs. The velocity of the flow for the 100 yr event was calculat grading is not a requirement but a velocity of 4.50 fps which is below the 5.0 fps threshold rer may be requested by the applicant at this stage of the land development process.

Preliminary Drainage Report JeniShay Farms
\qquad

7. Erosion Control Plan

Pre-development grading is with the preliminary plan application and a predevelopment GEC and SWMP has been submitted separately as a stand-alone construction drawing. Refer to plans titled JeniShay Farms - Grading, Erosion and Stormwater Quality Control Plans, prepared by Lodestar Engineering, dated February 25, 2021.

8. Floodplain Statement

According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) numbers 08041C0305G and08041C0315G dated December 7, 2018 this project is not located within a FEMA designated 100yr floodplain. Therefore, no map revisions will be necessary as a result of this project. A copy of the FIRM maps is provided in Appendix A.

9. Drainage and Bridge Fees

The drainage basin is located within the East Cherry Creek Drainage Basin.
The project is not located within a fee (drainage) basin and bridge fees are not required. Therefore, no drainage or bridge fees are required for this development.

10. Construction Cost Opinion

Item	Unit	Quantity	Unit Price	Extended Cost
$18^{\prime \prime}$ Storm Pipe	LF	40	$\$ 65$	$\$ 2,600$
$24 "$ Storm Pipe	LF	20	$\$ 75$	$\$ 1,500$
$48^{\prime \prime}$ Storm Pipe	LF	150	$\$ 120$	$\$ 18,000$
Outlet Structure	EA	1	$\$ 10,000$	$\$ 10,000$
Forebay	EA	1	$\$ 5,000$	$\$ 5,000$
Trickle Channel	LS	1	$\$ 2,500$	$\$ 2,500$
			Sub-total	$\$ 39,600$
			Contingency 10%	$\$ 3,960$
			TOTAL	$\$ 43,560$

All storm system elements for this project are private and therefore there will be no reimbursement from El Paso County.

11. Summary

The Preliminary drainage report for JeniShay Farms was prepared using the El Paso County Engineering Criteria Manual, City of Colorado Springs Drainage Criteria Manuals, and Mile High Flood Control District Manuals. Stormwater quality and detention is provided by a proposed facility located on-site. No adverse downstream impacts are anticipated as a result of the proposed site improvements.

12. References

1. Engineering Criteria Manual, El Paso County, December 2016
2. Drainage Criteria Manual, Volumes I and II, El Paso County and City of Colorado Springs, Vol 1, 1991 and Vol 2, 2002
3. Drainage Criteria Manual, Chapter 6, City of Colorado Springs, May 2014
4. Urban Storm Drainage Criteria Manual (USDCM), Volumes I-III, Mile High Flood Control District (MHFD).
5. Preliminary drainage report for Terra Ridge Filing No. 1, JR Engineering, April 1997.
6. Preliminary drainage report for Terra Ridge Filing No. 2, JR Engineering, June 1999.
7. FEMA Flood Insurance Rate Map Numbers 08041C0305G and 08041C0305G, El Paso County, Colorado, December 7, 2018
8. Natural Resources Conservation Service, Web Soil Survey, http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx
9. United States Geological Survey (USGS) Topographic Quadrangle Map
10. NOAA Atlas 14, Volume 8, Version 2 Point Precipitation Frequency Data Server, https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html

Appendix A
Maps

United States Department of Agriculture

Natural
Resources
Conservation
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for El Paso County Area, Colorado

fox creek subdivision

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.
Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/ portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).
Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.
Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface 2
Soil Map 5
Soil Map
Legend 7
Map Unit Legend 8
Map Unit Descriptions 8
El Paso County Area, Colorado 10
14-Brussett loam, 1 to 3 percent slopes 10
68-Peyton-Pring complex, 3 to 8 percent slopes 11
92-Tomah-Crowfoot loamy sands, 3 to 8 percent slopes 12

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
14	Brussett loam, 1 to 3 percent slopes	1.2	1.0\%
68	Peyton-Pring complex, 3 to 8 percent slopes	123.2	94.7\%
92	Tomah-Crowfoot loamy sands, 3 to 8 percent slopes	5.7	4.4\%
Totals for Area of Interest		130.1	100.0\%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or

Custom Soil Resource Report

landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.
Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.
Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.
A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.
An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.
Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

14—Brussett loam, 1 to 3 percent slopes

Map Unit Setting

National map unit symbol: 367j
Elevation: 7,200 to 7,500 feet
Frost-free period: 115 to 125 days
Farmland classification: Prime farmland if irrigated

Map Unit Composition

Brussett and similar soils: 85 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Brussett

Setting

Landform: Flats
Landform position (three-dimensional): Talf
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Eolian deposits
Typical profile
A - 0 to 8 inches: loam
BA-8 to 12 inches: loam
Bt-12 to 26 inches: clay loam
Bk-26 to 60 inches: silt loam
Properties and qualities
Slope: 1 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to $0.60 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 5 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: High (about 9.1 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3c
Hydrologic Soil Group: B
Ecological site: Loamy Park (R048AY222CO)
Hydric soil rating: No
Minor Components
Other soils
Percent of map unit:
Hydric soil rating: No

68-Peyton-Pring complex, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 369f
Elevation: 6,800 to 7,600 feet
Farmland classification: Not prime farmland

Map Unit Composition

Peyton and similar soils: 40 percent
Pring and similar soils: 30 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Peyton

Setting

Landform: Hills
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Arkosic alluvium derived from sedimentary rock and/or arkosic residuum weathered from sedimentary rock

Typical profile

A - 0 to 12 inches: sandy loam
$B t-12$ to 25 inches: sandy clay loam
BC -25 to 35 inches: sandy loam
C-35 to 60 inches: sandy loam
Properties and qualities
Slope: 3 to 5 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to $0.60 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Moderate (about 7.3 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4c
Hydrologic Soil Group: B
Ecological site: Sandy Divide (R049BY216CO)
Hydric soil rating: No

```
Description of Pring
    Setting
        Landform: Hills
        Landform position (three-dimensional): Side slope
        Down-slope shape: Linear
        Across-slope shape: Linear
        Parent material: Arkosic alluvium derived from sedimentary rock
    Typical profile
        A - 0 to 14 inches: coarse sandy loam
        C - }14\mathrm{ to 60 inches: gravelly sandy loam
    Properties and qualities
        Slope: }3\mathrm{ to }8\mathrm{ percent
        Depth to restrictive feature: More than }80\mathrm{ inches
        Natural drainage class:Well drained
        Runoff class: Low
        Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00
            in/hr)
        Depth to water table:More than }80\mathrm{ inches
        Frequency of flooding: None
        Frequency of ponding: None
        Available water storage in profile: Low (about 6.0 inches)
    Interpretive groups
    Land capability classification (irrigated): None specified
    Land capability classification (nonirrigated): 3e
    Hydrologic Soil Group: B
    Ecological site:Loamy Park (R048AY222CO)
    Hydric soil rating: No
```


Minor Components

Other soils

```
Percent of map unit:
Hydric soil rating: No
```


Pleasant

```
Percent of map unit:
Landform: Depressions
Hydric soil rating: Yes
```


92—Tomah-Crowfoot loamy sands, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 36b9
Elevation: 7,300 to 7,600 feet
Farmland classification: Not prime farmland

Map Unit Composition

Tomah and similar soils: 50 percent
Crowfoot and similar soils: 30 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Tomah

Setting

Landform: Hills, alluvial fans
Landform position (three-dimensional): Side slope, crest
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from arkose and/or residuum weathered from arkose

Typical profile
A - 0 to 10 inches: loamy sand
$E-10$ to 22 inches: coarse sand
C - 48 to 60 inches: coarse sand
Properties and qualities
Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to $2.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Very low (about 2.0 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4 e
Hydrologic Soil Group: B
Ecological site: Sandy Divide (R049BY216CO)
Hydric soil rating: No

Description of Crowfoot

Setting

Landform: Alluvial fans, hills
Landform position (three-dimensional): Side slope, crest
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium

Typical profile

A - 0 to 12 inches: loamy sand
$E-12$ to 23 inches: sand
Bt - 23 to 36 inches: sandy clay loam
C-36 to 60 inches: coarse sand
Properties and qualities
Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to $2.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4 e
Hydrologic Soil Group: B
Ecological site: Sandy Divide (R049BY216CO)
Hydric soil rating: No

Minor Components

Other soils

Percent of map unit:
Hydric soil rating: No

Pleasant

Percent of map unit:
Landform: Depressions
Hydric soil rating: Yes


```
NOTESTO USERS
```


 \square отеR HDOO MEEAS
rouex
otuen mens

Contu naner resounce sitre (cras) arel

\ldots.
$\square=3$

(A) - (A) asscoin
(3) -(2)

Dosio
OXSA10
M1s

ascaile

FIRM
 LOOD INSURANCE RATE
 el paso co
 ND INCORPORATED AR
 PANEL 305 OF 1300

 anown emer
 (8)

DEC

nemon
\square ontrr hoco areas

отиен неныs

———
............ senoman

(A)-(A) Cosemosion
(2)- (2) mextm

 sontavens Guabisinn
oxss10. sument
3 Here

mp scaner- 100

FIRM

LOOD INSURANCE RATE
el paso co
OL INCORPORATED AR
PANEL 315 OF 1300
SEE MAP INDE F FOR FBM PANELI
momit

ㅍavinumanaze

(3)

O8041C0
MAP REV

Abstract

Appendix B Calculations

Provide the rational method calculations for the onsite historic condition and provide a historic draiange map.

FINAL DRAINAGE REPORT
JeniShay Farms
(Composite Runoff Coefficient - 5 Year)

ON-SITE						
Basin	Area (acres)					C5
	Paved/Drive/Walk	Res >1acre	Gravel	Lawn/Meadow	TOTAL	
A	0.42	2.57	0.12	1.06	4.17	0.25
B	0.40	0.00	0.12	0.44	0.95	0.48
C						
D	0.00	15.02	0.00	0.00	15.02	0.20
E	0.03	5.35	0.00	0.00	5.38	0.20
F	0.00	14.13	0.00	0.00	14.13	$\nearrow 10.20$

	OFF-SITE				7	C5
Basin	Area (acres)					
	Paved/Drive/Walks	Res >1acre	Gravel	Lawn/Meadow	TOTAL	
OS1	0.00	30.00	0.00	0.00	30.00	0.20
OS2	0.00	6.36	0.00	0.00	6.36	0.20
r DCM Table 6-6						
Surface Paved/Drive/Walk Res $>$ 1acre Gravel Lawn/Meadow	$\begin{gathered} \text { Runoff Coefficent } \\ 0.90 \\ 0.20 \\ 0.59 \\ 0.08 \end{gathered}$	Staff recommends changing the C value for the onsite drainage. This is for a 1 acre residential lot. You may want to extrapolate or identify a comparative c value based on the 7% imperviousness in table 6-6				

FINAL DRAINAGE REPORT
 JeniShay Farms

(Composite Runoff Coefficient - 100 Year)

ON-SITE									C100
Basin	Area (acres)								
	Paved/Drive/Walk	Res $>$ 1acre	Gravel	Lawn/Meadow	TOTAL				
A	0.42	2.57	0.12	1.06	4.17	0.48			
B	0.40	0.00	0.12	0.44	0.95	0.65			
C									
D	0.00	15.02	0.00	0.00	15.02	0.44			
E	0.03	5.35	0.00	0.00	5.38	0.44			
F	0.00	14.13	0.00	0.00	14.13	0.44			

OFF-SITE								
Basin	Area (acres)				C100			
	Paved/Drive/Walks	Res >1acre	Gravel	Lawn/Meadow	TOTAL			
OS1	0.00	30.00	0.00	0.00	30.00	0.44		
OS2	0.00	6.36	0.00	0.00	6.36	0.44		

Per DCM Table 6-6
Surface
Runoff Coefficent
Paved/Drive/Walk
Res >1 acre
0.96

Gravel
0.44

Lawn/Meadow
0.35

(Percentage of Imperviousness)

ON-SITE: PROPOSED						
Basin	Area (acres)					\% Imp
	Paved/Drive/Walk	Res $>$ 1acre	Gravel	Lawn/Meadow	TOTAL	
A	0.42	2.57	0.12	1.06	4.17	25.26
B	0.40	0.00	0.12	0.44	0.95	52.36
C						
D	0.00	15.02	0.00	0.00	15.02	20.00
E	0.03	5.35	0.00	0.00	5.38	20.43
F	0.00	14.13	0.00	0.00	14.13	20.00
Totals	0.94	37.08	0.23	1.75	40.00	21.44

OFF-SITE: PROPOSED						
Basin	Area (acres)					redmprn
	Paved/Drive/Walks	Res >1acre	Gravel	Lawn/Meadow	TOTAL	
OS1	0.00	30.00	0.00	0.00	30.00	20.00
OS2	0.00	6.36	0.00	0.00	6.36	20.00
Totals	0.00	36.36	0.00	0.00	36.36	20.00
						-
TO POND: PROPOSED						
A, B	0.82	2.57	0.23	1.50	5.13	30.29

Per DCM Table 6-6

Surface
Paved/Drive/Walk
Res >1 acre
Gravel
Lawn/Meadow
\% Impervious
100
$20<$
80
2 Update the percent impervious per ECM Appendix L Table 3-1.

Revise or provide an explanation on how this was derived. These seems high. The upstream development are generally 5 ac or larger lots.

NOAA Atlas 14, Volume 8, Version 2
Location name: Colorado Springs, Colorado, USA ${ }^{*}$
Latitude: 39.0612°, Longitude: -104.6936 ${ }^{\circ}$
Elevation: $7469.19 \mathrm{ft}^{* *}$

* source: ESRI Maps
** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland
PF tabular | PF graphical | Maps \& aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ${ }^{1}$										
Duration	Average recurrence interval (years)									
	1	2	5	10	25	50	100	200	500	1000
5-min	0.237 $(0.193-0.293)$	0.288 $(0.234-0.356)$	0.375 $(0.304-0.466)$	$\begin{gathered} \mathbf{0 . 4 5 3} \\ (0.365-0.564) \end{gathered}$	$\begin{gathered} 0.567 \\ (0.444-0.737) \\ \hline \end{gathered}$	0.661 $(0.504-0.868)$	0.760 $(0.558-1.02)$	0.865 $(0.608-1.19)$	$\begin{gathered} 1.01 \\ (0.683-1.43) \end{gathered}$	$\begin{gathered} 1.13 \\ (0.739-1.61) \end{gathered}$
10-min	$\begin{array}{\|c\|} \hline \mathbf{0 . 3 4 7} \\ (0.283-0.429) \\ \hline \end{array}$	$\begin{gathered} \mathbf{0 . 4 2 1} \\ (0.343-0.521) \\ \hline \end{gathered}$	$\begin{gathered} 0.550 \\ (0.446-0.682) \\ \hline \end{gathered}$	$\begin{gathered} 0.663 \\ (0.535-0.826) \\ \hline \end{gathered}$	0.831 $(0.650-1.08)$	$\begin{gathered} 0.968 \\ (0.738-1.27) \\ \hline \end{gathered}$	$\begin{gathered} 1.11 \\ (0.817-1.50) \\ \hline \end{gathered}$	$\begin{gathered} 1.27 \\ (0.891-1.75) \end{gathered}$	$\begin{gathered} 1.48 \\ (1.00-2.10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.65 \\ (1.08-2.36) \\ \hline \end{gathered}$
15-min	$\begin{gathered} 0.423 \\ (0.345-0.523) \\ \hline \end{gathered}$	$\begin{gathered} 0.514 \\ (0.418-0.635) \\ \hline \end{gathered}$	$\begin{gathered} 0.670 \\ (0.544-0.831) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 0.809 \\ (0.652-1.01) \\ \hline \end{array}$	$\begin{gathered} 1.01 \\ (0.793-1.32) \\ \hline \end{gathered}$	$\begin{gathered} 1.18 \\ (0.900-1.55) \\ \hline \end{gathered}$	1.36 $(0.997-1.82)$	$\begin{gathered} 1.54 \\ (1.09-2.13) \\ \hline \end{gathered}$	$\begin{gathered} 1.81 \\ (1.22-2.56) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.02 \\ (1.32-2.88) \\ \hline \end{gathered}$
30-1	$\mathbf{0 . 6 0 4}$ $(0.492-0.746)$	0.732 $(0.596-0.905)$	$\begin{gathered} 0.955 \\ (0.774-1.18) \end{gathered}$	$\begin{gathered} 1.15 \\ (0.928-1.43) \\ \hline \end{gathered}$	$\begin{gathered} 1.44 \\ (1.13-1.87) \end{gathered}$	$\begin{gathered} 1.68 \\ (1.28-2.20) \\ \hline \end{gathered}$	$\begin{gathered} 1.93 \\ (1.42-2.59) \\ \hline \end{gathered}$	$\begin{gathered} 2.19 \\ (1.54-3.03) \\ \hline \end{gathered}$	$\begin{gathered} 2.57 \\ (1.73-3.63) \end{gathered}$	$\begin{gathered} 2.86 \\ (1.87-4.09) \end{gathered}$
60-min	$\begin{array}{\|c} \hline 0.769 \\ (0.626-0.950) \\ \hline \end{array}$	$\begin{gathered} 0.921 \\ (0.749-1.14) \\ \hline \end{gathered}$	$\begin{gathered} 1.19 \\ (0.968-1.48) \\ \hline \end{gathered}$	$\begin{gathered} 1.44 \\ (1.16-1.80) \\ \hline \end{gathered}$	$\begin{gathered} 1.82 \\ (1.43-2.37) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.13 \\ (1.63-2.81) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.47 \\ (1.82-3.33) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.84 \\ (2.00-3.93) \\ \hline \end{gathered}$	$\begin{gathered} 3.36 \\ (2.27-4.77) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.78 \\ (2.48-5.40) \\ \hline \end{gathered}$
2-hr	$\begin{gathered} 0.933 \\ (0.765-1.15) \\ \hline \end{gathered}$	$\begin{gathered} 1.11 \\ (0.908-1.36) \\ \hline \end{gathered}$	$\begin{gathered} 1.43 \\ (1.17-1.76) \\ \hline \end{gathered}$	$\begin{gathered} 1.73 \\ (1.41-2.14) \\ \hline \end{gathered}$	$\begin{gathered} 2.19 \\ (1.74-2.86) \\ \hline \end{gathered}$	$\begin{gathered} 2.59 \\ (1.99-3.40) \\ \hline \end{gathered}$	$\begin{gathered} 3.01 \\ (2.24-4.05) \\ \hline \end{gathered}$	$\begin{gathered} 3.48 \\ (2.47-4.80) \\ \hline \end{gathered}$	$\begin{gathered} 4.15 \\ (2.83-5.86) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.70 \\ (3.10-6.67) \\ \hline \end{gathered}$
3-hr	$\begin{array}{\|c\|} \hline 1.02 \\ (0.840-1.25) \\ \hline \end{array}$	$\begin{gathered} 1.20 \\ (0.987-1.47) \\ \hline \end{gathered}$	$\begin{gathered} 1.54 \\ (1.26-1.89) \\ \hline \end{gathered}$	$\begin{gathered} 1.87 \\ (1.52-2.30) \\ \hline \end{gathered}$	$\begin{gathered} 2.38 \\ (1.90-3.10) \\ \hline \end{gathered}$	$\begin{gathered} 2.82 \\ (2.19-3.70) \\ \hline \end{gathered}$	$\begin{gathered} 3.31 \\ (2.47-4.44) \\ \hline \end{gathered}$	$\begin{gathered} 3.85 \\ (2.75-5.30) \\ \hline \end{gathered}$	$\begin{gathered} 4.63 \\ (3.18-6.53) \\ \hline \end{gathered}$	$\begin{gathered} 5.28 \\ (3.50-7.47) \\ \hline \end{gathered}$
6-hr	$\begin{array}{\|c\|} \hline 1.19 \\ (0.986-1.44) \\ \hline \end{array}$	$\begin{gathered} 1.38 \\ (1.14-1.68) \\ \hline \end{gathered}$	$\begin{gathered} 1.75 \\ (1.45-2.13) \\ \hline \end{gathered}$	$\begin{gathered} 2.12 \\ (1.74-2.59) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.71 \\ (2.19-3.53) \\ \hline \end{gathered}$	$\begin{gathered} 3.24 \\ (2.53-4.23) \\ \hline \end{gathered}$	$\begin{gathered} 3.82 \\ (2.88-5.11) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.47 \\ (3.23-6.13) \\ \hline \end{gathered}$	$\begin{gathered} 5.43 \\ (3.76-7.62) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.22 \\ (4.16-8.75) \\ \hline \end{gathered}$
12-hr	$\begin{gathered} \hline 1.40 \\ (1.16-1.68) \\ \hline \end{gathered}$	$\begin{gathered} 1.61 \\ (1.34-1.94) \\ \hline \end{gathered}$	$\begin{gathered} 2.03 \\ (1.69-2.46) \\ \hline \end{gathered}$	$\begin{gathered} 2.45 \\ (2.02-2.97) \\ \hline \end{gathered}$	$\begin{gathered} 3.12 \\ (2.53-4.02) \\ \hline \end{gathered}$	$\begin{gathered} 3.71 \\ (2.92-4.81) \end{gathered}$	$\begin{gathered} 4.36 \\ (3.31-5.79) \\ \hline \end{gathered}$	$\begin{gathered} 5.10 \\ (3.70-6.93) \\ \hline \end{gathered}$	$\begin{gathered} 6.17 \\ (4.30-8.60) \end{gathered}$	7.06 $(4.75-9.86)$
24-hr	$\begin{gathered} 1.63 \\ (1.37-1.95) \\ \hline \end{gathered}$	$\begin{gathered} 1.90 \\ (1.59-2.27) \\ \hline \end{gathered}$	$\begin{gathered} 2.41 \\ (2.01-2.88) \\ \hline \end{gathered}$	$\begin{gathered} 2.88 \\ (2.39-3.47) \\ \hline \end{gathered}$	$\begin{gathered} 3.63 \\ (2.95-4.61) \\ \hline \end{gathered}$	$\begin{gathered} 4.27 \\ (3.37-5.47) \\ \hline \end{gathered}$	$\begin{gathered} 4.97 \\ (3.79-6.52) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.74 \\ (4.19-7.73) \\ \hline \end{gathered}$	$\begin{gathered} 6.86 \\ (4.81-9.47) \\ \hline \end{gathered}$	$\begin{gathered} 7.78 \\ (5.27-10.8) \\ \hline \end{gathered}$
2-day	$\begin{gathered} 1.90 \\ (1.60-2.25) \\ \hline \end{gathered}$	$\begin{gathered} 2.25 \\ (1.89-2.66) \\ \hline \end{gathered}$	$\begin{gathered} 2.86 \\ (2.40-3.40) \\ \hline \end{gathered}$	$\begin{gathered} 3.42 \\ (2.85-4.08) \\ \hline \end{gathered}$	$\begin{gathered} 4.24 \\ (3.45-5.31) \\ \hline \end{gathered}$	$\begin{gathered} 4.93 \\ (3.91-6.24) \\ \hline \end{gathered}$	$\begin{gathered} 5.67 \\ (4.33-7.34) \end{gathered}$	$\begin{gathered} 6.45 \\ (4.73-8.59) \\ \hline \end{gathered}$	$\begin{gathered} 7.57 \\ (5.33-10.3) \\ \hline \end{gathered}$	$\begin{gathered} 8.46 \\ (5.78-11.7) \\ \hline \end{gathered}$
3-day	$\begin{gathered} 2.09 \\ (1.77-2.46) \\ \hline \end{gathered}$	$\begin{gathered} 2.46 \\ (2.08-2.91) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.13 \\ (2.63-3.70) \\ \hline \end{gathered}$	$\begin{gathered} 3.72 \\ (3.11-4.42) \\ \hline \end{gathered}$	$\begin{gathered} 4.59 \\ (3.74-5.71) \\ \hline \end{gathered}$	$\begin{gathered} 5.31 \\ (4.22-6.68) \end{gathered}$	$\begin{gathered} 6.08 \\ (4.66-7.83) \\ \hline \end{gathered}$	6.90 $(5.07-9.13)$	$\begin{gathered} 8.05 \\ (5.69-10.9) \\ \hline \end{gathered}$	$\begin{gathered} 8.97 \\ (6.15-12.3) \\ \hline \end{gathered}$
4-day	$\begin{gathered} 2.25 \\ (1.91-2.64) \\ \hline \end{gathered}$	$\begin{gathered} 2.64 \\ (2.23-3.10) \\ \hline \end{gathered}$	$\begin{gathered} 3.32 \\ (2.80-3.92) \\ \hline \end{gathered}$	$\begin{gathered} 3.93 \\ (3.30-4.66) \\ \hline \end{gathered}$	$\begin{gathered} 4.83 \\ (3.95-5.99) \\ \hline \end{gathered}$	$\begin{gathered} 5.58 \\ (4.45-6.99) \\ \hline \end{gathered}$	$\begin{gathered} 6.37 \\ (4.90-8.18) \\ \hline \end{gathered}$	$\begin{gathered} 7.22 \\ (5.33-9.52) \\ \hline \end{gathered}$	$\begin{gathered} 8.41 \\ (5.96-11.4) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 9.36 \\ (6.44-12.8) \\ \hline \end{array}$
7-day	$\begin{gathered} 2.65 \\ (2.26-3.09) \\ \hline \end{gathered}$	$\begin{gathered} 3.06 \\ (2.60-3.58) \\ \hline \end{gathered}$	$\begin{gathered} 3.78 \\ (3.21-4.43) \\ \hline \end{gathered}$	$\begin{gathered} 4.43 \\ (3.74-5.21) \\ \hline \end{gathered}$	$\begin{gathered} 5.38 \\ (4.43-6.62) \\ \hline \end{gathered}$	$\begin{gathered} 6.18 \\ (4.95-7.69) \\ \hline \end{gathered}$	$\begin{gathered} 7.02 \\ (5.43-8.96) \end{gathered}$	7.92 $(5.88-10.4)$	$\begin{gathered} 9.19 \\ (6.56-12.4) \end{gathered}$	$\begin{gathered} 10.2 \\ (7.07-13.9) \end{gathered}$
10-day	$\begin{gathered} 3.00 \\ (2.56-3.49) \\ \hline \end{gathered}$	$\begin{gathered} 3.44 \\ (2.94-4.01) \\ \hline \end{gathered}$	$\begin{gathered} 4.21 \\ (3.59-4.92) \\ \hline \end{gathered}$	$\begin{gathered} 4.90 \\ (4.15-5.75) \\ \hline \end{gathered}$	$\begin{gathered} 5.91 \\ (4.87-7.23) \\ \hline \end{gathered}$	$\begin{gathered} 6.75 \\ (5.42-8.36) \\ \hline \end{gathered}$	$\begin{gathered} 7.63 \\ (5.92-9.69) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 8.57 \\ (6.38-11.2) \\ \hline \end{array}$	$\begin{gathered} 9.88 \\ (7.08-13.3) \\ \hline \end{gathered}$	$\begin{gathered} 10.9 \\ (7.61-14.8) \\ \hline \end{gathered}$
20-day	$\begin{gathered} 3.99 \\ (3.43-4.60) \\ \hline \end{gathered}$	$\begin{gathered} 4.57 \\ (3.93-5.28) \\ \hline \end{gathered}$	$\begin{gathered} 5.55 \\ (4.76-6.43) \\ \hline \end{gathered}$	$\begin{gathered} 6.39 \\ (5.45-7.44) \\ \hline \end{gathered}$	$\begin{gathered} 7.60 \\ (6.28-9.17) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.56 \\ (6.91-10.5) \\ \hline \end{gathered}$	$\begin{gathered} 9.56 \\ (7.46-12.0) \\ \hline \end{gathered}$	10.6 $(7.93-13.7)$	$\begin{gathered} 12.0 \\ (8.65-16.0) \\ \hline \end{gathered}$	$\begin{gathered} 13.1 \\ (9.20-17.7) \\ \hline \end{gathered}$
30-day	$\begin{gathered} 4.80 \\ (4.15-5.52) \\ \hline \end{gathered}$	$\begin{gathered} 5.51 \\ (4.75-6.34) \\ \hline \end{gathered}$	$\begin{gathered} 6.68 \\ (5.74-7.70) \\ \hline \end{gathered}$	$\begin{gathered} 7.65 \\ (6.55-8.87) \\ \hline \end{gathered}$	$\begin{gathered} 9.01 \\ (7.46-10.8) \\ \hline \end{gathered}$	$\begin{gathered} 10.1 \\ (8.15-12.2) \\ \hline \end{gathered}$	$\begin{gathered} 11.1 \\ (8.72-13.9) \\ \hline \end{gathered}$	$\begin{gathered} 12.2 \\ (9.19-15.7) \\ \hline \end{gathered}$	$\begin{gathered} 13.7 \\ (9.90-18.1) \end{gathered}$	$\begin{gathered} 14.8 \\ (10.4-19.9) \\ \hline \end{gathered}$
45-day	$\begin{gathered} 5.81 \\ (5.04-6.65) \\ \hline \end{gathered}$	$\begin{gathered} 6.68 \\ (5.78-7.65) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.07 \\ (6.97-9.27) \\ \hline \end{gathered}$	$\begin{gathered} 9.21 \\ (7.91-10.6) \\ \hline \end{gathered}$	$\begin{gathered} 10.7 \\ (8.90-12.7) \\ \hline \end{gathered}$	$\begin{gathered} 11.9 \\ (9.65-14.3) \\ \hline \end{gathered}$	$\begin{gathered} 13.0 \\ (10.2-16.1) \\ \hline \end{gathered}$	$\begin{gathered} 14.2 \\ (10.7-18.1) \end{gathered}$	$\begin{gathered} 15.7 \\ (11.3-20.5) \\ \hline \end{gathered}$	$\begin{gathered} 16.8 \\ (11.9-22.4) \\ \hline \end{gathered}$
60-day	$\begin{gathered} 6.67 \\ (5.80-7.60) \\ \hline \end{gathered}$	$\begin{gathered} 7.66 \\ (6.65-8.74) \end{gathered}$	$\begin{gathered} 9.23 \\ (7.99-10.6) \\ \hline \end{gathered}$	$\begin{gathered} 10.5 \\ (9.03-12.1) \end{gathered}$	$\begin{gathered} 12.2 \\ (10.1-14.3) \end{gathered}$	$\begin{gathered} \hline 13.4 \\ (10.9-16.1) \\ \hline \end{gathered}$	$\begin{gathered} 14.6 \\ (11.5-17.9) \end{gathered}$	$\begin{gathered} 15.7 \\ (11.9-19.9) \end{gathered}$	$\begin{gathered} 17.2 \\ (12.5-22.4) \end{gathered}$	$\begin{gathered} 18.2 \\ (13.0-24.3) \end{gathered}$

[^0]
PF graphical

Final Drainage Report

JeniShay Farms

(Basin Summary)

* Intensity equations assume a minimum travel time of 5 minutes.

Calculated by: PSM
Date: 10/28/2019
Checked by: PSM

FINAL DRAINAGE REPORT

JeniShay Farms
(Surface Routing Summary)

					Intensity		Flow		Comments
Design Point(s)	Contributing Basins/Design Points	Equivalent $\boldsymbol{C A}_{5}$	$\begin{gathered} \text { Equivalent } \\ C A_{100} \end{gathered}$	$\begin{gathered} \text { Maximum } \\ T_{C} \end{gathered}$	I_{5}	I_{100}	Q_{5}	\boldsymbol{Q}_{100}	
1	B	0.46	0.62	7.5	4.6	7.6	2.1	4.7	To proposed 18" culvert
2	DP1, A	1.50	2.62	11.6	3.9	6.6	5.8	17.3	To proposed pond (inflow)
3	JR ENG DP-005	47.97	118.08	45.9	1.8	3.1	86.3	366.0	Creek flow at entrance to property
4	DP3, OS1, OS2, D	58.25	140.69	53.5	1.7	2.9	99.0	408.0	To proposed Triple 48" culverts

Channel Report

Basin A ditch 100yr Sta. 6+50

Triangular	
Side Slopes (z:1)	$=4.00,3.00$
Total Depth (ft)	$=2.00$
	$=100.00$
Invert Elev (ft)	$=4.80$
Slope (\%)	$=0.030$
N-Value	
Calculations	Known Q
Compute by:	$=2.62$

Highlighted
Depth (ft)
$=0.45$
Q (cfs)
$=2.620$
Area (sqft)
Velocity (ft/s)
$=0.71$
Wetted Perim
$=3.70$
Crit Depth, Yc (ft)
Top Width (ft)
$=3.28$

EGL (ft)
$=0.52$
$=3.15$
$=0.66$

Elev (ft)

Section

Depth (ft)

Reach (ft)

Channel Report

Basin A ditch 100yr Sta. 10+00

Triangular

Side Slopes $(z: 1) \quad=4.00,3.00$
Total Depth $(\mathrm{ft}) \quad=2.00$
Invert Elev (ft)
Slope (\%)
N -Value

Calculations
Compute by:
Known Q (cfs)
$=100.00$
$=2.50$
$=0.030$

Known Q
$=10.00$

Highlighted
Depth (ft)
$=0.83$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=10.00$
$=2.41$
$=4.15$
$=6.05$
$=0.88$
$=5.81$
$=1.10$

Elev (ft)

Section

Depth (ft)

Reach (ft)

Channel Report

Basin A ditch 100yr Sta. 12+00

Triangular	
Side Slopes (z:1)	$=4.00,3.00$
Total Depth (ft)	$=2.00$
	$=100.00$
Invert Elev (ft)	$=2.10$
Slope (\%)	$=0.030$
N-Value	
Calculations	Known Q
Compute by:	$=16.50$

FYI: Hydraulic analysis will be reviewed in detail with the final drainage report in conjunction with the construction drawings.

The 4.44 exceeds short native grass which typically have allowable velocities of 3 to 4
Elev (ft)

Highlighted

Depth (ft) 3.00
2.50 2.00
100.00
99.50

Channel Report

Basin A + B ditch 100yr Rundown to Pond

Triangular
Side Slopes (z:1)
$=4.00,3.00$
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=2.00$
= 100.00
= 7.60
$=0.030$

Known Q
$=17.80$

Highlighted
Depth (ft)
$=0.83$
Q (cfs)
$=17.80$
Area (sqft)
Velocity (ft/s)
$=2.41$
Wetted Perim (ft)
$=7.38$

Crit Depth, Yc (ft)
$=6.05$
Top Width (ft)
$=1.10$
EGL (ft)
$=5.81$
$=1.68$

Elev (ft)

Section

Depth (ft)

Reach (ft)

Channel Report

Channel downstream of emergency overflow

Trapezoidal
Bottom Width (ft)
Side Slopes (z:1)
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value

Calculations
Compute by:
Known Q (cfs)
$=6.00$
$=25.00,25.00$
$=2.00$
$=100.00$
$=14.00$
$=0.030$

Known Q
$=8.50$

Highlighted
Depth (ft)
$=0.18$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=8.500$
$=1.89$
$=4.50$
$=15.01$
$=0.28$
$=15.00$
$=0.49$

Elev (ft)
Section
Depth (ft)

Reach (ft)

Channel Report

West Existing Channel 1

Trapezoidal

Bottom Width (ft)	$=54.00$
Side Slopes (z:1)	$=5.00,5.00$
Total Depth (ft)	$=10.00$
Invert Elev (ft)	$=100.00$
Slope (\%)	$=0.70$
N-Value	$=0.035$
Calculations	
Compute by:	Known Q
Known Q (cfs)	$=408.00$

Highlighted
Depth (ft)
$=1.53$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=408.00$
= 94.32
$=4.33$
$=69.60$
= 1.17
$=69.30$
$=1.82$

Elev (ft)

Section

Depth (ft)

Channel Report

West Existing Channel Section 2

Trapezoidal
Bottom Width (ft)
Side Slopes (z:1)
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=40.00$
$=5.00,5.00$
$=10.00$
$=100.00$
$=0.70$
$=0.035$

Known Q
$=408.00$

Highlighted
Depth (ft)
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=1.79$
$=408.00$
$=87.62$
$=4.66$
$=58.25$
$=1.40$
$=57.90$
$=2.13$

Elev (ft)

Section

Depth (ft)

Culvert Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Basin A + B Pond Access Culvert

Invert Elev Dn (ft)
Pipe Length (ft)
Slope (\%)
Invert Elev Up (ft)
Rise (in)
Shape
Span (in)
No. Barrels
n-Value
Culvert Type
Culvert Entrance
Coeff. K,M,c, Y,k

Embankment

Top Elevation (ft)
Top Width (ft)
Crest Width (ft)

$$
\begin{aligned}
& =100.00 \\
& =15.00 \\
& =2.00 \\
& =100.30 \\
& =24.0 \\
& =\text { Circular } \\
& =24.0 \\
& =1 \\
& =0.022 \\
& =\text { Circular Concrete } \\
& =\text { Groove end projecting (C) } \\
& =0.0045,2,0.0317,0.69,0.2
\end{aligned}
$$

$$
=103.00
$$

$$
=10.00
$$

$$
=10.00
$$

Calculations

Qmin (cfs) $\quad=17.80$
Qmax (cfs) $\quad=17.80$
Tailwater Elev (ft) $=(\mathrm{dc}+\mathrm{D}) / 2$
Highlighted
Qtotal (cfs) $\quad=17.80$
Qpipe (cfs) $\quad=17.80$
Qovertop (cfs) $\quad=0.00$
Veloc Dn (ft/s)
$=6.08$
Veloc Up (ft/s) $\quad=6.93$
HGL Dn (ft) $=101.76$
HGL Up (ft)
Hw Elev (ft)
= 101.82
Hw/D (ft)
= 102.70
Flow Regime
$=1.20$
$=$ Inlet Control

Culvert Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

18inch Culvert

Invert Elev Dn (ft)	= 100.00
Pipe Length (ft)	$=40.00$
Slope (\%)	= 1.00
Invert Elev Up (ft)	= 100.40
Rise (in)	= 18.0
Shape	= Circular
Span (in)	= 18.0
No. Barrels	= 1
n -Value	= 0.012
Culvert Type	= Circular Culvert
Culvert Entrance	= Rough tapered inlet throat
Coeff. K,M,c,Y,k	$=0.519,0.64,0.021,0.9,0.5$
Embankment	
Top Elevation (ft)	= 105.00
Top Width (ft)	= 24.00
Crest Width (ft)	$=150.00$

Calculations

Qmin (cfs) $\quad=4.70$
Qmax (cfs) $=4.70$
Tailwater Elev (ft) $\quad=(\mathrm{dc}+\mathrm{D}) / 2$
Highlighted
Qtotal (cfs) $=4.70$
Qpipe (cfs) $=4.70$
Qovertop (cfs) $\quad=0.00$
Veloc Dn (ft/s) = 3.19
Veloc Up (ft/s) = 4.67
HGL Dn (ft) = 101.17
HGL Up (ft) = 101.23
Hw Elev (ft) = 101.68
$\mathrm{Hw} / \mathrm{D}(\mathrm{ft}) \quad=0.85$
Flow Regime = Inlet Control

Culvert Report

Triple 48inch Culverts

Invert Elev Dn (ft)	$=100.00$
Pipe Length (ft)	$=50.00$
Slope (\%)	$=1.00$
Invert Elev Up (ft)	$=100.50$
Rise (in)	$=48.0$
Shape	$=$ Circular
Span (in)	$=48.0$
No. Barrels	$=3$
n-Value	$=0.012$
Culvert Type	$=$ Circular Culvert
Culvert Entrance	$=$ Rough tapered inlet throat
Coeff. K,M,c,Y,k	$=0.519,0.64,0.021,0.9,0.5$
Embankment	
Top Elevation (ft)	$=108.00$
Top Width (ft)	$=24.00$
Crest Width (ft)	$=150.00$

Calculations

Qmin (cfs) $\quad=408.00$
Qmax (cfs) $=408.00$
Tailwater Elev (ft) = (dc+D)/2
Highlighted
Qtotal (cfs) $=408.00$
Qpipe (cfs) $\quad=408.00$
Qovertop (cfs) $\quad=0.00$
Veloc Dn (ft/s) $=11.14$
Veloc Up (ft/s) $=11.75$
HGL Dn (ft)
= 103.74
HGL Up (ft)
Hw Elev (ft)
Hw/D (ft)
Flow Regime
$=103.97$
$=106.62$
$=1.53$
$=$ Inlet Control

Determination of Culvert Headwater and Outlet Protection

Project: JeniShay Farms
 Basin ID: Triple 48" Culvert Outfall

Supercritical Flow! Using Da to calculate protection type.

Final Drainage Report
 JeniShay Farms
 (Forebay Calculations)

WQCV Equation

WQCV $=\mathrm{a}\left(0.91 *(\mathrm{I})^{\wedge} 3-1.19^{*} \mathrm{I}^{\wedge} 2+0.78^{*} \mathrm{I}\right)$
(per UDFCD eq 3-1) Solve
1
$\mathrm{WQCV}=$ water quality capture volume (watershed inches)
0.306

Solution $=$
$\mathrm{a}=40-\mathrm{hr}$ drain time coefficient (per UDFCD Vol 3 Table 3-2) $\mathrm{I}=$ imperviousness $(\% / 100)$ (per imperviousness calculations) 0.15

Water Quality Capture Volume Required
$\mathrm{V}=(\mathrm{WQCV} / 12)^{*} \mathrm{~A}$
Solve
(per UDFCD eq 3-3)
0.15
5.13

Solution $=$
Solution $=$
0.066
acre-ft
2855
$\mathrm{ft} \wedge 3$

Water Quality Capture Volume Required (per UDFCD: Basins 5 to 20 acres = 3\%)

$\mathrm{V}=\left(\mathrm{WQCV}^{*} .03\right)$	Solve	$\mathrm{V}=$ required storage volume $\left(\mathrm{ft}^{\wedge} 3\right)$, minimum
	2855	WQCV Required $\left(\mathrm{ft}^{\wedge} 3\right)$
	Solution $=$	$\mathbf{8 5 . 7} \quad \mathrm{ft}^{\wedge} 3-$ Minimum
	Solution $=$	$\mathbf{9 5 . 0} \quad \mathrm{ft}^{\wedge} 3-$ Per geometric design

Peak Release Rate
$\mathrm{Q}=\mathrm{V} / \mathrm{T}$

Solve	$\mathrm{Q}=$ peak release rate $(\mathrm{ft} \wedge 3 / \mathrm{s})$
95.0	$\mathrm{~V}=$ required storage volume $\left(\mathrm{ft}^{\wedge} 3\right)$
300	$\mathrm{~T}=5$ minute drain time (s)
Solution $=$	$\mathbf{0 . 3 1 7} \quad \mathrm{ft}^{\wedge} 3 / \mathrm{s}$

Area of Orifice
$\mathrm{Ao}=\mathrm{Q} /(\mathrm{Cd} * 2 * \mathrm{~g} * \mathrm{~h}$
Solve
0.317
0.6
$\mathrm{Q}=$ peak release rate ($\mathrm{ft} \mathrm{t}^{\wedge} 3 / \mathrm{s}$)
(orifice equation)
$\mathrm{Cd}=$ coefficient of discharge
$32.17 \quad \mathrm{~g}=$ gravitational constant $(\mathrm{ft} / \mathrm{s})^{\wedge} 2$
$1.5 \quad \mathrm{~h}=$ head (ft) - per forebay design depth
Solution $=0.00547 \quad\left(\mathrm{ft}^{\wedge} 2\right)$
Solution $=\mathbf{0 . 7 8 7 5} \quad\left(\mathrm{in}^{\wedge} 2\right)$

Release Pipe Size
$\left.\mathrm{D}=\left(4^{*} \mathrm{~A}\right) / \mathrm{pi}\right)^{\wedge} 2$
Solve
$\mathrm{D}=$ diameter of pipe (in)
0.7875

Ao $=$ area of orifice $\left(\mathrm{in}^{\wedge} 2\right)$
3.1416
pi
Solution $=1.01 \quad$ (in)

Release Pipe Size ($8^{\prime \prime}$ Minimum)
Solution $=$
8.00
(in)

Underdrain Orifice Invert Depth $=$	N/A
Underdrain Orifice Diameter $=$	ft (distance below the filtration media surface)
$/ \mathrm{N} / \mathrm{A}$	inches

Underdrain Orifice Area	$=\square \mathrm{N} / \mathrm{A}$
Underdrain Orifice Centroid	$=\mathrm{ft}$
feet	

User Input: Orifice Plate with one or more orifice	or Elliptical Slot	Weir (typically use	to drain WOCV a	/or EURV in a sed	mentation BMP)		Calculated Parame	ters for Plate	
Invert of Lowest Orifice $=$	0.00	ft (relative to basin	bottom at Stage $=0$	$0 \mathrm{ft})$	WQ Orifi	Area per Row $=$	N/A	ft^{2}	
Depth at top of Zone using Orifice Plate $=$	3.68	ft (relative to basi	bottom at Stage $=0$	$0 \mathrm{ft})$		tical Half-Width $=$	N/A	feet	
Orifice Plate: Orifice Vertical Spacing $=$	14.60	inches				al Slot Centroid $=$	N/A	feet	
Orifice Plate: Orifice Area per Row $=$	N/A	inches				iptical Slot Area $=$	N/A	ft^{2}	
User Input: Stage and Total Area of Each Orifice	Row (numbered	from lowest to high							
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	1.23	2.45						
Orifice Area (sq. inches)	0.47	0.17	0.17						
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									
User Input: Vertical Orifice (Circular or Rectanqu							Calculated Parame	ters for Vertical Ori	
	Not Selected	Not Selected					Not Selected	Not Selected	
Invert of Vertical Orifice $=$	N/A	N/A	ft (relative to basin	bottom at Stage	0 ft) Ve	ical Orifice Area $=$	N/A	N/A	ft^{2}
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A	ft (relative to basin	bottom at Stage		Orifice Centroid $=$	N/A	N/A	feet
Vertical Orifice Diameter $=$	N/A	N/A							

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

put: Overflow Weir (Dropbox with Flat o	ate	t Pipe OR	anqular/Trapezoidal Weir (and No Outlet Pipe)	Calculated Parameters for Overflow Weir		
	Zone 3 Weir	Not Selected	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) Height of Grate Upper Edge, $\mathrm{H}_{\text {t }}=$	Zone 3 Weir	Not Selected	feet
Overflow Weir Front Edge Height, $\mathrm{Ho}=$ Overflow Weir Front Edge Length = Overflow Weir Grate Slope =	3.68	N/A		4.31	N/A	
	4.00	N/A	feet Overflow Weir Slope Length =	2.58	N/A	
	4.00	N/A	$\mathrm{H}: \mathrm{V}$ (Grate Open Area / 100-yr Orifice Area $=$	15.39	N/A	
Horiz. Length of Weir Sides =	2.50	N/A	feet Overflow Grate Open Area w/o Debris =	7.22	N/A	ft^{2}
Overflow Grate Open Area \% =	70\%	N/A	\%, grate open area/total area Overflow Grate Open Area w/ Debris =	3.61	N/A	ft^{2}
Debris Clogging \% =	50\%	N/A	\%			

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectanqular Orifice)

om at Stage $=0 \mathrm{ft}$)	Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate			
		Zone 3 Restrictor	Not Selected	
	Outlet Orifice Area $=$	0.47	N/A	ft^{2}
	Outlet Orifice Centroid =	0.27	N/A	feet
Half-Central Ang	Restrictor Plate on Pipe $=$	1.18	N/A	radians

Spillway Invert Stage=	4.91	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Spillway Crest Length =	5.40	feet
Spillway End Slopes =	3.00	H:V
Freeboard above Max Water Surface $=$	1.00	feet

	Calculated Parameters for Spillway	
Spillway Design Flow Depth	$=0.56$	feet
Stage at Top of Freeboard	$=$	6.47
feet		
Basin Area at Top of Freeboard	$=0.19$	acres
Basin Volume at Top of Freeboard	$=0.54$	acre-ft

Routed Hydrograph Results Design Storm Return Period $=$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	0.92	1.19	1.44	1.82	2.13	2.47	3.36
CUHP Runoff Volume (acre-ft) =	0.066	0.161	0.096	0.153	0.231	0.413	0.539	0.706	1.089
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.096	0.153	0.231	0.413	0.539	0.706	1.089
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.1	0.4	1.1	3.2	4.4	6.1	9.7
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.07	0.22	0.62	0.86	1.19	1.89
Peak Inflow Q (cfs)	N/A	N/A	1.1	1.7	2.7	5.2	6.7	8.6	13.0
Peak Outflow Q (cfs) $=$	0.0	0.0	0.0	0.0	0.8	3.3	4.7	5.0	10.5
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	0.1	0.7	1.0	1.1	0.8	1.1
Structure Controling Flow =	Plate	Overflow Weir 1	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.1	0.4	0.6	0.7	0.7
Max Velocity through Grate 2 (fps) $=$	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	41	67	52	66	68	63	60	56	49
Time to Drain 99\% of Inflow Volume (hours) $=$	44	72	55	71	75	72	70	68	65
Maximum Ponding Depth (ft) =	2.31	3.68	2.70	3.48	3.89	4.17	4.32	4.90	5.33
Area at Maximum Ponding Depth (acres) =	0.05	0.09	0.06	0.08	0.09	0.10	0.11	0.13	0.14
Maximum Volume Stored (acre-ft) =	0.066	0.161	0.089	0.144	0.179	0.208	0.223	0.291	0.350

EMERGENCY SPILLWAY PROFILE

EMERGENCY SPILLWAY SECTION AND SPILLWAY CHANNEL

Use
 Type L Roprap

Figure 12-21. Embankment protection details and rock sizing chart (adapted from Arapahoe County)

DETENTIONWATER QUALITY FACILITY

Preliminary Plat
 JENISHAY FARMS

Title Vacation \& Replat of Lots 5 and 6, Terra Ridge Filing No. 1, Together with 7 Lots in JeniShay Farms A Portion of Section 29, Township 11 South, Range 65 West of the 6th P.M., El Paso County, Colorado

[^0]: ${ }^{1}$ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).
 Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.
 Please refer to NOAA Atlas 14 document for more information.

