### **LSC Responses to TIS Redline Comments**

| P.J. Anderson               |
|-----------------------------|
| The Commons at Falcon Field |

Page 3

June 23, 2023 Traffic Impact Study

#### LAND USE AND ACCESS

Figure 1 shows the site location relative to the adjacent and nearby roadways. The development is planned to have commercial and residential land uses. The site is directly southeast of the intersection of Woodmen Road/US Highway 24 in Parcels 4307000001 and 4307200015.

#### Land Use

Commons at Falcon Field is planned to include eight regional commercial lots and 169 single-family residential lots. This report assumes the eight regional commercial lots will be developed with up to 84,000 square feet of general retail floor space. Figure 2a shows the current site plan/Preliminary Plan.

#### Access

As shown on the site plan, the primary access will be a new southeast leg of the Woodmen Road/US Hwy 24 intersection (currently a T-intersection). This new section of Woodmen Road would be extended southeast to a new east/west Urban Non-Residential Collector, Retail Row Street.

Figure 2b shows the proposed internal access points. The proposed spacing of the access points to Retail Row Street northeast of Woodmen Road do not meet the minimum 330-foot spacing required for Urban Non-Residential Collectors when intersecting local roadways shown on Table 2-7 of The El Paso County *Engineering Criteria Manual (ECM)*. The intersection of Retail Row Street/Merlin Way will require a deviation from these criteria.

A street stubs to the west is shown on the Preliminary Plan, which would allow for a future connection to future adjacent development if ever needed. The areas within Tracts B and G directly southeast of the proposed roundabout have been reserved to accommodate a potential future fourth leg of the roundabout to provide access to what is currently the northwest corner of Arrowhead Estates IF and when redevelopment happens to occur within that area. Currently, these possible future connections are not proposed for use by this project. These are being provided for the benefit of US Hwy 24 access management and adjacent property owners, should future connections to adjacent future developments/redevelopment become necessary.

#### Sight Distance

Figures 3a-3e show the results of sight-distance analysis of the intersections and access points to Retail Row Street.

Figure 3a shows the acces Due to the volume of traffic and lots being accessed from Row Street (Gryfalcon R these private road the Sight distance criteria for roadways as ance requirement to the west opposed to driveways should be used on the easterly d for

access. Please revise the sight distance analysis accordingly. Additionally, recommendations as to the classification & cross section of the private roadway shall be provided.

# LSC Responses to TIS Redline Comments

### Page: 6

Number: 1 Author: Daniel Torres Subject: Callout Date: 3/1/2024 3:47:14 PM

Comments on the preliminary plan have been provided regarding the private roads and the proposed cross section. Due to the volume of traffic and lots being accessed from these private road the Sight distance criteria for roadways as opposed to driveways should be used on the easterly access. Please revise the sight distance analysis accordingly. Additionally, recommendations as to the classification & cross section of the private roadway shall be provided.

LSC Response: The sight-distance analysis has been updated based on the revised site plan and a modified Urban Non-Residential Collector cross section for Retail Row Street.

The analysis has been revised at the east access based on sight-distance criteria for roadway intersections. The report also references the deviation requests, which also address sight distance.

The exhibits were included in the recently-submitted deviation requests, but copies of those exhibits have been included in this TIS report as "figures."

The private roadway classification and cross section has been addressed in the updated TIS.

P.J. Anderson The Commons at Falcon Field A sight distance easement will be required to Reep<sup>4</sup> obstructions outside the line of sight.

June 23, 2023 Traffic Impact Study

2

Urban Non-Residential Collectors. The sight-distance requirement to the east was based on a design speed of 30 mph, which is the estimated maximum speed for vehicles exiting the Woodmen/Retail Row roundabout. As shown in Figure 3a, the access entering sight-distance criteria for both single-unit and multi-unit trucks can be met to the west if Retail Row Street is continued along the same alignment. The access entering sight-distance criteria for single-unit trucks can be met to the east. However, the sight-distance line for multi-unit trucks crosses through the commercial lot and it may not be reasonable to keep this area free from obstructions that would block the line of sight to the area between the sight line and the curb. For this site-specific situation it is reasonable and sufficient to provide adequate stopping sight distance please revise as it entering multi-unit truck. As shown in Figure 3a, the required stopping sight distance please revise as it on a design speed of 40 mph from Table 2-17 of the *ECM* can be met in both directic only the east is analyzed due to the

1

Figure 3b shows the intersection sight distance analysis at the proposed intersective movements. Row Street/Towhee Court based on the criteria contained in Table 2-21. The movements. requirement to the west was based on a design speed of 40 mph, which is the design speed for Urban Non-Residential Collectors. The sight-distance requirement to the east was based on a design speed of 30 mph, which is the estimated maximum speed for vehicles exiting the Woodmen/Retail Row roundabout. As shown in Figure 3b, the intersection sight-distance criteria can be met in both directions. Figure 3b also shows the required stopping sight distance of 305' based on a design speed of 40 mph from Table 2-17 of the *ECM* can be met in both directions.

Figure 3c shows the access entering sight-distance analysis at the east commercial access to Retail Row Street (Towee Lane) based on the criteria contained in Table 2-35. As this intersection is planned to be restricted to three-quarter movement (left-in/right-in/right-out only), only the sight distance to the east was analyzed. The sight-distance requirement to the east was based on a design speed of 30 mph, which is the estimated maximum speed for vehicles turning left or right onto Retail Row Street from Kite Place. Is shown in Figure 3a, the access entering sight-distance criteria for both single-unit and multi-unit trucks can be met to the west of Retail Row Street is continued along the same alignment. The access entering sight-distance criteria for single-unit trucks can be met to the east. Figure 3c also shows the required stopping sight distance of 305' based on a design speed of 40 mph from Table 2-17 of the *ECM* can be met in both directions.

Figure 3d shows the intersection sight-distance analysis at the proposed intersection of Retail Row Street/Merlin Way. As shown in Figure 3d, the required intersection sight-distance requirement from *ECM* Table 2-21 can be met based on design speed of 40 mph, which is the design speed for Urban Non-Residential Collectors. Merlin Way is located about 161 feet west of the termination of Retail Row Street at Kite Place. Retail Row Street is planned to be classified as an Urban Local between Merlin Way and Kite Place. This is less than the 280-foot intersection sight-distance requirement from Table 2-21 based on a design speed of 25 mph. However, the required stopping sight distance of 155' based on a design speed of 25 mph from Table 2-17 of the *ECM* can be met in both directions.

 Number: 1
 Author: Daniel Torres
 Subject: Callout
 Date: 8/22/2023 9:48:40 AM -06'00'

 A sight distance easement will be required to keep obstructions outside the line of sight.

 Author: kdfer
 Subject: Sticky Note
 Date: 3/6/2024 4:36:22 PM

 LSC Response: Comment noted. The sight-distance analysis has been updated - see response to the comment above for details.

 Number: 2
 Author: Daniel Torres
 Subject: Callout
 Date: 8/22/2023 9:50:39 AM -06'00'

 please revise as it was indicated that only the east is analyzed due to the restricted movements.
 Subject: Sticky Note
 Date: 3/6/2024 4:36:42 PM

 Author: jchodsdon
 Subject: Sticky Note
 Date: 3/6/2024 4:36:42 PM
 Subject: Sticky Note
 Date: 3/6/2024 4:36:42 PM

 LSC Response: The sight-distance analysis has been updated - see response to the comment above for details.
 Subject: Sticky Note
 Date: 3/6/2024 4:36:42 PM

The report also references the deviation requests, which also address sight distance.

Number: 3 Author: Daniel Torres Subject: Highlight Date: 8/17/2023 11:34:56 AM -06'00' As shown in Figure 3a, the access entering sight-distance criteria for both single-unit and multi-unit trucks can be met to the west of Retail Row Street is continued along the same alignment.

#### Site-Generated Traffic

Site-generated traffic volumes for the development during the weekday morning and evening peak hours are shown in Figure 5 for the following intersections:

- Woodmen Road/US Highway 24
- Woodmen Road/Meridian Road
- Woodmen Road/McLaughlin Road
- US Highway 24/Meridian Road
- US Highway 24/Old Meridian Road
- Internal roundabout
- Internal access points

Site-generated traffic volumes have been calculated by applying the directional-distribution percentages estimated by LSC (from Figure 5) to the trip-generation estimates (from Table 2). The pass-by trips and diverted trips were assigned, based on the magnitude and direction of the peak-hour traffic volumes projected for the major study-area streets/roads.

#### BACKGROUND TRAFFIC VOLUMES

Background traffic is traffic on the adjacent roadways that is forecast to be present without the proposed development. Short-term and 2043 background traffic scenarios were developed.

Both future forecasts also assume that the intersection of US Hwy 24/Rio Lane has been closed and the associated traffic has been re-routed. Because Rio Lane will no longer directly access US Hwy 24, LSC projects that some of the trips currently using Rio Lane and Rio Road will reroute and use Falcon Hwy or Meridian Road to access US Hwy 24.

#### Short Term

Figure 7a shows the estimated short-term background traffic volumes at the study-area intersections. The short-term background volumes assume that the US Hwy 24/Rio Lane intersection has been closed and traffic has been rerouted through the new fourth leg of the US Hwy 24/Woodmen Road intersection.

Long Term \_\_\_\_\_ fix call out 1

Figure 8 shows the estimated 2043 background traffic volumes. These projected volumes include estimates from planned future Falcon area development and increases in through traffic volumes on the study-area roadways. The 2043 background volumes were developed using the US Highway 24 PEL study. Volumes were modified as needed, based on newer count volumes and expected development in the study area. The 2043 background assumes future commercial development on the parcel to the west of the site with access through the proposed The Commons at Falcon Field development and the internal roundabout.

| Number: 1    | Author: Daniel Torres                                       | Subject: Callout        | Date: 8/17/2023 1:17:33 PM -06'00' |  |
|--------------|-------------------------------------------------------------|-------------------------|------------------------------------|--|
| fix call out |                                                             |                         |                                    |  |
| Author: k    | dferrin Subject: Sticky Note<br>onse: Revised as requested. | e Date: 3/6/2024 4:36:5 | 52 PM                              |  |
| Number: 2    | Author: Daniel Torres                                       | Subject: Pen            | Date: 8/17/2023 1:17:14 PM -06'00' |  |

#### TOTAL TRAFFIC VOLUMES

Site-generated traffic volumes from Figure 6 were added to short-term background traffic volumes from Figure 7a to calculate short-term total traffic volumes provided on Figure 9a. Similarly, 2043 total traffic volumes provided in Figure 10a were calculated by adding the site-generated traffic (Figure 6) with the 2043 background traffic volumes (Figure 8a).

#### LEVEL OF SERVICE ANALYSIS

Levels of service were calculated for both the short-term background, 2043 background, short-term total traffic, and 2043 total traffic volumes. The results of the analysis are shown in Figures 7b, 8b, 9b, and 10b. Traffic lanes used in the analysis are also provided in these figures.

#### Woodmen Road/Meridian Road

The signalized intersection of Woodmen/Meridian is projected to at an overall LOS C during the morning peak hour and an overall LOS D during the afternoon peak hour, based on both the short-term background and total traffic volumes. Some of the left-turn movements are projected to operate at LOS E during the peak hours, based on both the short-term background and total traffic volumes. By 2043, some of the through movements are projected to operate at LOS E and some of the left-turn movements are projected to operate at LOS F, based on both the 2043 background and total traffic volumes. 1

#### Woodmen Road/McLaughlin Road

figure 10 long term total indicates D. Revise accordingly.

3

The signalized intersection of Woodmen/McLaughlin is projected to operate at an overall LOS C or better during the morning and afternoon peak hours, based on the short-term background, 2043 background, short-term total, and 2043 total traffic volumes.

#### US Highway 24/Woodmen Road

In the short-term scenarios, it has been assumed that no baseline capacity improvements (additional northeast-bound/southwest-bound through lanes) will occur on US Hwy 24. The improvements assumed at the intersection of US Hwy 24/Woodmen Road would include:

- The new fourth northwest bound leg of the intersection with a left lane, two through lanes, and right lane;
- Auxiliary turn lanes on US Hwy 24 to serve the trips/vehicle turning movements associated with the new fourth leg - the development, and the "replacement" Rio Lang dual lefts are shown connection; in the figure
- Raised right-turn islands for pedestrian accessibility;
- Any lane alignment and/or median modifications on the Woodmen side of the intersection (to be determined with preliminary design); and
- Please identify the Signal modifications. modifications needed as this is the 4 and installation preliminary design (woodmen side) stage

| Number: 1         | Author: Daniel Torres            | Subject: Callout         | Date: 8/17/2023 1:26:35 PM -06'00'  |
|-------------------|----------------------------------|--------------------------|-------------------------------------|
| figure 10 lon     | ng term total indicates D. F     | Revise accordingly       | Ι.                                  |
| 4 Authory         | -<br>Kubiacti Sticky Nata        | Data: 2/6/2024 4.27.0    | 1 DM                                |
| Section Author: I | conse: Revised as requested.     | Date: 3/6/2024 4:37:0    | I FIVI                              |
|                   |                                  |                          |                                     |
| Number: 2         | Author: Daniel Torres            | Subject: Callout         | Date: 8/22/2023 10:08:55 AM -06'00' |
| dual lefts are    | e shown in the figure            |                          |                                     |
| Author: I         |                                  | Date: 3/6/2024 4:37:1    |                                     |
| LSC Resp          | ponse: The figurse have been rev | vised to show a single l | eft-turn lane.                      |
| — Number 2        | Author Devial Towns              | Cubic et Collout         | D-4-, 0/17/2022 1 20 20 DM 0/1001   |
| Number: 3         | Author: Daniel Torres            | Subject: Callout         | Date: 8/17/2023 1:30:30 PM -06'00'  |
| Please ident      | tify the modifications need      | led as this is the p     | oreliminary design stage            |
| 🚜 Author: I       | kdferrin Subject: Sticky Note    | Date: 3/6/2024 4:37:22   | 7 PM                                |
| LSC Resp          | oonse: Revised as requested.     |                          |                                     |
|                   |                                  |                          |                                     |
| Number: 4         | Author: Daniel Torres            | Subject: Callout         | Date: 8/17/2023 1:29:51 PM -06'00'  |
| and installat     | ion (woodmen side)               |                          |                                     |
| Author: I         | kdferrin Subject: Sticky Note    | Date: 3/6/2024 4:37:3    | 7 PM                                |
| N )               | conse: Revised as requested.     | 2410.0,0,20211.07.0      |                                     |
|                   | -                                |                          |                                     |

#### **QUEUING ANALYSIS**

A queuing analysis was performed using Synchro/SimTraffic for the key approach turning movements at the intersection of US Hwy 24/Woodmen Road and the proposed Retail Row Street access points to determine the projected queue lengths, based on the 2043 total traffic volumes. The simulation was run five times. The queuing reports are attached. These queuing results have been used to develop auxiliary turn-lane recommendations. The results of the analysis are shown in Figure 11.

The El Paso County *Engineering Criteria Manual (ECM)* standards were followed to develop turn-lane recommendations at the intersections. Figure 12a provides the turn-lane design for the new fourth leg of the intersection of US Hwy 24/Woodmen Road. As shown, it is recommended that the new northwest-bound left turn be 270 feet in length and the new northwest-bound right turn should be at least 275 feet.

Figure 12b shows the recommended turn-lane lengths at the proposed access points to Retail Row Street.

Table 3 provides the proposed recommended turn-lane lengths along with the relevant standards and maximum queues. Queueing reports are attached.

#### **Right-In-Only Access Points**

The assumption is that the site will be designed such that traffic entering the businesses via the proposed right-in-only access points will have a "free movement" into internal private-access drives, parking bays etc., such that queues will not form and back onto the right-in access points or onto the main entry street. This would likely be accomplished with a sufficient entry "throat" and other site-design elements that would give priority to entering traffic. The on-site/internal design and operation of these right-in access points would need to be verified with the Preliminary Plan and/or Site Development Plan stages of development.

#### **DEVIATIONS TO ECM CRITERIA**

Jackdaw

drive per the prelim.

plan.

please update all

the street

names as

necessary

as names

roadways have

changed.

of the

this is the preliminary plan. Provide full analysis at this stage of these access points

The following deviations may be required. Deviations are not submitted at this stage of the development review process. These would be submitted with the Preliminary Plan.

- Public street intersection spacing along a Non-Residential Collector for the first intersection back from an arterial roadway – Woodmen Road (proposed) southeast of US Highway 24
- Public street intersection/access spacing along a Non-Residential Collector Retail Row
   Street west of Merlin Way
  - Public street intersection spacing along an Urban Local street Retal Row Street east of Merlin Way.

deviations that may be needed for the private roadways.

revise text. Deviations shall be submitted at this stage for review.

| Number: 1       | Author: Daniel Torres            | Subject: Callout                                 | Date: 8/17/2023 2:40:14 PM -06'00'                                                                                                                                |
|-----------------|----------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| figures 12a a   | nd 12b have not been pro         | ovided. please inc                               | lude for review                                                                                                                                                   |
| 🚜 Author: ko    | Iforrin Subject: Sticky Note     | Date: 3/6/2024 4:37:47                           |                                                                                                                                                                   |
|                 | onse: The figures have been rev  |                                                  |                                                                                                                                                                   |
|                 | ,                                | j.                                               | ···· · · · · · · · · · · · · · · · · ·                                                                                                                            |
| Number: 2       | Author: Daniel Torres            | Subject: Callout                                 | Date: 8/17/2023 2:42:57 PM -06'00'                                                                                                                                |
| this is the pre | liminary plan. Provide ful       | ll analysis at this s                            | tage of these access points                                                                                                                                       |
| -Author: kc     | fferrin Subject: Sticky Note     | Date: 3/6/2024 4:38:14                           | PM                                                                                                                                                                |
|                 |                                  |                                                  | een struck from the report. The narrative has been revised to explain that the                                                                                    |
|                 |                                  |                                                  | viewed now (as they don't exist), rather at the actual site development plan<br>g areas, internal driveways and parking lot entry points, etc. A reference to the |
|                 | nly deviation request has also b |                                                  | g areas, internal driveways and parking lot entry points, etc. A reference to the                                                                                 |
| -               |                                  |                                                  |                                                                                                                                                                   |
| 🛋 Number: 3     | Author: Daniel Torres            | Subject: Callout                                 | Date: 8/22/2023 2:57:05 PM -06'00'                                                                                                                                |
| Jackdaw driv    | e per the prelim. plan. ple      | ease update all the                              | e street names as necessary as names of the roadways have                                                                                                         |
| changed.        |                                  |                                                  |                                                                                                                                                                   |
| 🚜 Author: ko    | Iforrin Subject: Sticky Note     | Date: 3/6/2024 4:38:22                           | DNA                                                                                                                                                               |
| N               | onse: Revised as requested.      | Date: 5/0/2024 4.50.22                           |                                                                                                                                                                   |
|                 | •                                |                                                  |                                                                                                                                                                   |
| 📃 Number: 4     | Author: Daniel Torres            | Subject: Callout                                 | Date: 8/22/2023 2:17:44 PM -06'00'                                                                                                                                |
| include any d   | eviations that may be ne         | eded for the privat                              | te roadways.                                                                                                                                                      |
| 4 🗏 Authors ka  | Horrin Subjects Sticky Note      | Data 2/6/2024 429-25                             | DNA                                                                                                                                                               |
| SC Response     |                                  | Date: 3/6/2024 4:38:35<br>ere recently submitted | in February. The updated TIS lists the deviations that were submitted.                                                                                            |
| ·               |                                  | ,                                                |                                                                                                                                                                   |
| Number: 5       | Author: Daniel Torres            | Subject: Callout                                 | Date: 8/17/2023 2:52:32 PM -06'00'                                                                                                                                |
| revise text. D  | eviations shall be submit        | ted at this stage fo                             | or review.                                                                                                                                                        |
| 🚜 Author: ko    | ferrin Subject: Sticky Note      | Date: 3/6/2024 4:38:43                           | PM                                                                                                                                                                |
| LSC Response    | onse: Revised as requested. The  |                                                  |                                                                                                                                                                   |

1

3

revise as half of the

site is residential

- Access to an Urban Non-Residential Collector;
- ECM-standard auxiliary turn-lane lengths on an Urban Non-Residential Collector.

#### ROADWAY CLASSIFICATIONS

Per previous studies Rio lane was to be upgraded with pedestrian facilities. Please provide discussion/analysis and recommendations for improvements to Rio Lane.

• The roads proposed for this project would be classified as either Urban Non-Residential Collector or Urban Local streets. Please refer to Figure 13, which presents the recommended classifications for the proposed streets shown on the Preliminary Plan. The figure also shows the classification of the adjacent existing roadways as described in the "Existing Roadways" section.

#### MTCP-IDENTIFIED FUTURE NEEDED ROADWAY IMPROVEMENT PROJECTS

- The *El Paso County Major Transportation Corridors Plan (MTCP*) calls for improvement to US Highway 24 from Garrett Road to Woodmen Road and upgrade to a rural six-lane Principal Arterial.
- Although not in the immediate area, the *MTCP* calls for an upgrade to Falcon Highway to a two-lane, rural Minor Arterial from US Highway 24 to one mile east of Curtis Road. Also, the *MTCP* calls for an upgrade to Eastonville Road from McLaughlin to Latigo Boulevard as a rural road upgrade to a two-lane Rural Minor Arterial.

#### provide figure

#### MULTI-MODAL TRANSPORTATION & TRANSPORTATION DEMAND MANAGEMENT OPPORTUNITIES

- The project would include urban street sections with sidewalks.
- Figure 12ashows the recommendation for pedestrian crossing of US Highway 24. LSC recommends pedestrian/bicycle trail connections between the US Highway 24/Woodmen Road intersection to the Rock Island Trail and the existing sidewalks within the existing shopping center areas of Falcon.
- Also, trail connections exist between the Rock Island Trail and the Woodmen Hills neighborhoods to the north of US Highway 24.
- A Park & Ride is planned for a site south of US Highway 24/ Woodmen Road. Future Mountain Metropolitan Transit bus service may be added to/from this Park & Ride location.
- This site is within two miles of Falcon Elementary School. No residential uses are proposed for this development.

#### COUNTY ROAD IMPROVEMENT FEE PROGRAM

• This project is subject to participation in the County Roadway Improvement Fee Program.

| Number: 1     | Author: Daniel Torres             | Subject: Text Box                                | Date: 8/17/2023 2:59:58 PM -06'00'                            |
|---------------|-----------------------------------|--------------------------------------------------|---------------------------------------------------------------|
| Per previous  | studies Rio lane was to b         | e upgraded with                                  | pedestrian facilities. Please provide discussion/analysis and |
| recommenda    | ations for improvements to        | Rio Lane.                                        |                                                               |
| 🚜 Author: k   | dferrin Subject: Sticky Note      | Date: 3/6/2024 4:38:50                           | ) PM                                                          |
| N             | onse: The updated TIS addresse    |                                                  |                                                               |
|               | ·                                 |                                                  |                                                               |
| Number: 2     | Author: Daniel Torres             | Subject: Callout                                 | Date: 8/17/2023 3:03:17 PM -06'00'                            |
| provide figur | e                                 |                                                  |                                                               |
| Author: k     |                                   | Date: 3/6/2024 4:39:03                           |                                                               |
|               | 5                                 |                                                  | destrian islands at this intersection.                        |
| A discuss     | sion of the connection to the Roo | ck Island Trail has beer                         | n added to the report narrative.                              |
| Number: 3     | Author: Daniel Torres             | Subject: Callout                                 | Date: 8/17/2023 3:03:59 PM -06'00'                            |
| revise as hal | f of the site is residential      |                                                  |                                                               |
| Author: k     |                                   | Date: 3/6/2024 4:39:12<br>ol pedestrian routes h | 2 PM<br>as been added to the updated report.                  |

please address at this 1

## US HIGHWAY ACCESS MANAGEMENT PLAN AND RIO LANE CLOSURE AT US HIGHWAY 24

- This project will implement part of the US Highway Access Management Plan. The intersection of Rio Lane/US Highway 24 is proposed to be closed, as shown in the adopted US Highway 24 Access Management Plan and the US 24 Planning and Environmental Linkages Study, October 2017. The project will help implement the US Highway 24 Access Management Plan by providing an alternative to the Rio Lane/US Highway 24 intersection.
- The site plan shows the proposed internal public streets for site circulation and the new connection to Rio Lane that would allow for the prescribed closure of the US Highway 24/Rio intersection, per CDOT's US Highway 24 Access Management Plan.
- This will benefit safety and traffic operations on US Highway 24. The existing Rio Lane/US Highway 24 intersection is substandard, as there are no left- and right-turn lanes. The level of service during the peak hour is LOS F (96 seconds of delay per vehicle on average for vehicles wanting to turn onto US Highway 24).
- The project will generate trips using Rio Lane and Rio Road between Falcon Highway and the site, but it is important to note that by closing the direct Rio Lane connection to US Highway 24, the route used by cut-through traffic will be significantly more circuitous and will likely discourage motorists who currently use Rio Lane and Rio Road as a cut-through route to Falcon Highway.
- The recent Meridian Road extension south of Rolling Thunder, across US Highway 24 to Falcon Highway will also improve the roadway connectivity to Falcon Highway (and further discourage cut-through traffic on Rio Lane and Rio Road). This is expected to be a significant improvement to the previous Meridian Road connection across US Highway 24.
- The County has indicated that they will require upgrades to Rio Lane and Rio Road, necessary to accommodate the resulting net traffic volumes on Rio Lane and Rio Road between Falcon Highway and the site The details of upgrades will be addressed as part of the upcoming Preliminary Plan application. The "net" traffic volumes will be estimated with the Preliminary Plan. The net volumes would be the current volumes plus increases due to site-generated traffic minus reductions in cut-through traffic and redistribution of area resident traffic (due to the closure of the direct connection of Rio Lane to US Highway 24).
- The project will add a signal-controlled connection to US Highway 24 and Woodmen not only for this development but also for the benefit of the residents in Falcon Ranch Estates and Arrowhead Estates Filing No. 1. This connection will have left- and right-turn lanes on US Highway 24.
- The proposed roundabout is proposed to be constructed as a T-intersection (no south leg). However, a fourth (south) leg could be added in the future if/when adjacent propert(ies) southeast of The Commons at Falcon Field redevelop in the future. The applicant will reserve land southeast of the roundabout as right-of-way preservation for a potential future extension to the adjacent property, if ever needed.

 Number: 1
 Author: Daniel Torres
 Subject: Callout
 Date: 8/17/2023 3:07:08 PM -06'00'

 please address at this stage
 Author: kdferrin
 Subject: Sticky Note
 Date: 3/6/2024 4:39:22 PM

 Author: kdferrin
 Subject: Sticky Note
 Date: 3/6/2024 4:39:22 PM

 LSC Response: Addressed in the updated report.

 Number: 2
 Author: Daniel Torres
 Subject: Highlight
 Date: 8/17/2023 3:06:57 PM -06'00'

The details of upgrades will be addressed as part of the upcoming Preliminary Plan application.

#### Page 16

and bicyclists

1

2

#### **ROUNDABOUT ANALYSIS & DESIGN**

A modern roundabout with a 180-foot inscribed circle diameter is proposed as the traffic control for the intersection of Woodmen Road/ Retail Row Street. Roundabout figures containing roundabout technical analysis are attached, along with a roundabout parameters table.

The horizontal layout, analysis, and roundabout report have been completed using the criteria contained in the Wisconsin Department of Transportation roundabout design manual (as required by El Paso County). The attached roundabout figures and roundabout parameters table contain all the details for the currently proposed roundabout. The inscribed circle diameter is 180 feet and the design vehicle is a WB-50 truck (per the *ECM*). However, the roundabout has also been designed to accommodate a larger WB-67 truck. The roundabout will also accommodate the standard county snowplow vehicle. The design accommodates pedestrians. Please refer to the attached roundabout-parameters table and figures for details. The final roundabout design report will be submitted following the review and County staff acceptance of the horizontal layout shown on attached exhibits.

#### CDOT ACCESS PERMITTING

CDOT access permits will be required for the street connection to the US Highway 24/Woodmen Road intersection and for the closure of Rio Lane at US Highway 24.

#### CONCLUSIONS AND RECOMMENDATIONS

values does not match the trip gen table #3. revise.

#### **Trip Generation**

The Commons at Falcon Field is expected to generate about 3,584 new external vehicle trips on the average weekday, with about half entering and half exiting the site during a 24-hour period. During the morning peak hour, about 118 vehicles would enter and 142 vehicles would exit the site. During the afternoon peak hour, approximately 287 vehicles would enter and 254 vehicles would exit the site.

#### **Traffic Operations Analysis**

• The signalized intersection of US Highway 24/Woodmen Road is projected to operate at LOS D or better during both peak hours for the short-term and year-2043 scenarios. The El Paso County *Engineering Criteria Manual (ECM)* standards were followed to develop turn-lane recommendations at the intersections. Figure 12a provides the turn-lane conceptual design for this intersection. Please refer to the Level of Service and Queuing Analysis sections of this report for additional details and discussion.

| Number: 1    | Author: Jeff Rice - EPC Engi | neering Review        | Subject: Callout   | Date: 8/21/2023 4:06:43 PM -06'00' |
|--------------|------------------------------|-----------------------|--------------------|------------------------------------|
| and bicyclis | sts                          |                       |                    |                                    |
| Author: k    |                              | Date: 3/6/2024 4:39:3 | 0 PM               |                                    |
| LSC Resp     | onse: Revised as requested.  |                       |                    |                                    |
| Number: 2    | Author: Daniel Torres        | Subject: Callout      | Date: 8/17/2023 3: | 52:22 PM -06'00'                   |
| values does  | not match the trip gen tak   | ole #3. revise.       |                    |                                    |

Author: kdferrin Subject: Sticky Note Date: 3/6/2024 4:39:50 PM LSC Response: An older version of the trip generation table was inadvertently included with the previous submittal. The values shown are consistent with the latest site plan. An updated version of the trip generation table has been included in the updated TIS.

#### **Recommended Improvements**

revise text

1

- A list of recommended improvements within the site and in the study area is presented in Table 4.
- The intersection of US Highway 24/Rio Lane is to be closed and the proposed Collector roads within the site will connect Rio Lane to the US Highway 24/Woodmen intersection.

Short-term improvements assumed at the intersection of US 24/Woodmen Road would include:

- The fourth leg of the intersection with a northwest-bound left-lane, two northwest-bound through-lanes, and northwest-bound right-lane;
- Raised right-turn islands for pedestrian accessibility;
- Any lane alignment and/or median modifications on the Woodmen side of the intersection to be determined with preliminary design); signal installation
- Signal modifications; and *(woodmen side)*
- Auxiliary turn lanes on US Highway 24 to serve the trips/vehicle turning movements associated with the new fourth leg of this intersection. This new fourth leg would serve site traffic and background traffic shifted from the closure of the US Highway 24/ Rio Lane connection.

Based on the 2043 total traffic volumes shown in Figure 10a and the criteria contained in the *State of Colorado Highway Access Code,* the following deceleration and acceleration lanes are required on US Highway 24:

- A northeast-bound right-turn deceleration lane is warranted on US Highway 24 approaching Woodmen Road. Based on a posted speed limit of 55 mph, the prescribed lane length for the deceleration lane is 600 feet plus a 222-foot taper.
- A southwest-bound left-turn deceleration lane is warranted on US Highway 24 approaching Woodmen Road. Based on a posted speed limit of 55 mph, the prescribed lane length for the deceleration lane is 600 feet plus 100 feet of storage and a 222-foot taper.
- A northwest-bound right-turn acceleration lane is warranted on US Highway 24 east of Woodmen Road. Based on a posted speed limit of 55 mph, the prescribed lane length for the acceleration lane is 960 feet plus a 222-foot taper.
- Based on the total traffic volumes shown in Figure 9a and the criteria contained in the El Paso County *Engineering Criteria Manual (ECM)*, turn lanes are required on the urban non-residential Collector at the intersection with US Highway 24 and the intersection with Rio Lane. Additional details are provided in Figure 10.

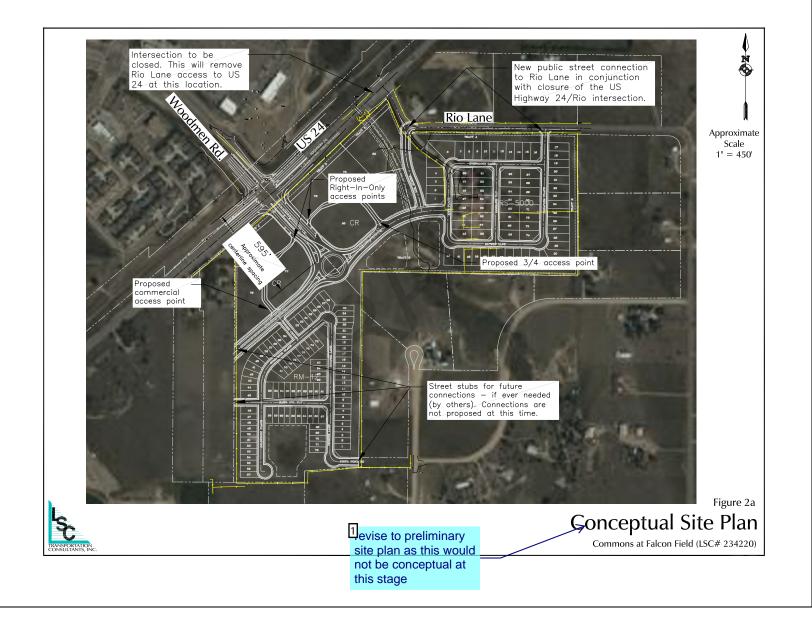
7

provide an Auxiliary turn lane analysis in the narrative and identify which meet criteria and which do not providing the ECM criteria turn lanes and the proposed turn lane lengths figure 10 is the 2043 totals. verify and revise the figures throughout the report.

| Number: 1           | Author: Daniel Torres             | Subject: Callout       | Date: 8/17/2023 3:21:31 PM -06'00'                             |
|---------------------|-----------------------------------|------------------------|----------------------------------------------------------------|
| revise text         |                                   |                        |                                                                |
| Author: k           | dferrin Subject: Sticky Note      | Date: 3/6/2024 4:40:04 | PM                                                             |
| LSC Resp            | onse: Revised as requested.       |                        |                                                                |
| TNumber: 2          | Author: Daniel Torres             | Subject: Highlight     | Date: 8/17/2023 3:21:35 PM -06'00'                             |
|                     | ed with preliminary desig         | Subject. Highlight     |                                                                |
| Author: k           | dferrin Subject: Sticky Note      | Date: 3/6/2024 4:40:13 | PM                                                             |
| LSC Resp            | oonse: The text has been struck f | from the report.       |                                                                |
|                     |                                   |                        |                                                                |
| Number: 3           | Author: Daniel Torres             | Subject: Callout       | Date: 8/17/2023 3:21:58 PM -06'00'                             |
| signal install      | ation (woodmen side)              |                        |                                                                |
| Author: k           | dferrin Subject: Sticky Note      | Date: 3/6/2024 4:40:22 | PM                                                             |
| LSC Resp            | onse: Revised as requested.       |                        |                                                                |
| Number: 4           | Author: Daniel Torres             | Subject: Callout       | Date: 8/17/2023 3:57:09 PM -06'00'                             |
| figure 10 per       | attachments                       |                        |                                                                |
| Author: k           | dferrin Subject: Sticky Note      | Date: 3/6/2024 4:40:43 | PM                                                             |
| LSC Resp            | onse: Revised to Figure 10.       | Dute: 5/0/2021 1.10.15 |                                                                |
|                     |                                   |                        |                                                                |
| Number: 5           | Author: Daniel Torres             | Subject: Callout       | Date: 8/17/2023 3:58:42 PM -06'00'                             |
| 9                   |                                   |                        |                                                                |
| 🚜 Author: k         | dferrin Subject: Sticky Note      | Date: 3/6/2024 4:40:51 | PM                                                             |
|                     | oonse: The text has been revised  |                        |                                                                |
|                     |                                   |                        |                                                                |
| Number: 6           | Author: Daniel Torres             | Subject: Callout       | Date: 8/17/2023 4:00:20 PM -06'00'                             |
| ligure 10 is t      | he 2043 totals. verify and        | revise the ligures     | throughout the report.                                         |
| Author: k           | dferrin Subject: Sticky Note      | Date: 3/6/2024 4:41:01 | PM                                                             |
| LSC Resp            | oonse: The text has been revised  | •                      |                                                                |
| Number: 7           | Author: Daniel Torres             | Subject: Callout       | Date: 8/22/2023 2:19:59 PM -06'00'                             |
| provide an A        | uxiliary turn lane analysis       | in the narrative ar    | nd identify which meet criteria and which do not providing the |
|                     | turn lanes and the propo          |                        |                                                                |
| <b>▲■</b> Author:id | chodsdon Subject: Sticky Note     | Date: 2/6/2024 4:41:14 | DM                                                             |

Author: jchodsdon Subject: Sticky Note Date: 3/6/2024 4:41:14 PM LSC Response: The report has been revised to provide the information related to US Highway 24. The report also references the submitted deviation for additional details on the turn lanes within the site.

#### Table 3: Detailed Trip Generation Estimate


| Land             |                                                                              |                      |                    | Trip Ger   | eration Ra   | ates <sup>(1)</sup> |             | 1       | Total Trip | ps Gene | rated |       |          | Ir      | nternal | Trips Gei | nerated |      | Ext     | ərnal Trip | ps Gener | rated |     |                      | Non-Passby Externa<br>Trips Generated |
|------------------|------------------------------------------------------------------------------|----------------------|--------------------|------------|--------------|---------------------|-------------|---------|------------|---------|-------|-------|----------|---------|---------|-----------|---------|------|---------|------------|----------|-------|-----|----------------------|---------------------------------------|
|                  | Land                                                                         | Trip                 | Average            |            | ning         |                     | rnoon       | Average | Morr       | -       |       | rnoon | Daily    | Average |         | ning      |         | noon | Average | Morn       | -        | After |     |                      | Average                               |
| Use              | Use                                                                          | Generation           | Weekday            | Peak       | Hour         | Peak                | Hour        | Weekday | Peak       | Hour    | Peal  | Hour  | Internal | Weekday | Pea     | k Hour    | Peak    | Hour | Weekday | Peak       | Hour     | Peak  |     | Pass-By              | Weekday                               |
| Code             | Description                                                                  | Units                | Traffic            | In         | Out          | In                  | Out         | Traffic | In         | Out     | In    | Out   | Trip %   | Traffic | In      | Out       | In      | Out  | Traffic | In         | Out      | In    | Out | Trips <sup>(2)</sup> | Traffic                               |
| Current          | Rezone Land Uses                                                             |                      |                    |            |              |                     |             |         |            |         |       |       |          | _       |         |           |         |      |         |            |          |       |     |                      |                                       |
| 821 Shopping     | Plaka (40-150k)                                                              |                      | 67.52              | 1.07       | 0.65         | 2.55                | 2.64        | 5,672   | 90         | 55      | 214   | 222   | 4%       | 227     | 6       | 4         | 15      | 16   | 5,445   | 84         | 51       | 199   | 206 | 34%                  | 3,594                                 |
| 210 Single Far   | mily Detached Housing                                                        | 80 DU                | 10.28              | 0.20       | 0.56         | 0.64                | 0.38        | 822     | 16         | 45      | 51    | 30    | 12%      | 102     | 2       | 3         | 8       | 7    | 720     | 14         | 42       | 43    | 23  | 0%                   | 720                                   |
| 220 Multi Fam    | ily Housing (Low Rise)                                                       | 145 DU               | 6.93               | 0.11       | 0.36         | 0.36                | 0.21        | 1,005   | 16         | 52      | 52    | 31    |          | 125     | 2       | 3         | 8       | 8    | 880     | 14         | 49       | 44    | 23  | 0%                   | 880                                   |
| m                | uuup                                                                         | uu                   | )                  |            | Tatal Trin   | Concretio           | on Estimate | 7,499   | 122        | 152     | 317   | 283   |          | 454     | 10      | 10        | 31      | 31   | 7,045   | 112        | 142      | 286   | 252 |                      | 5,194                                 |
|                  |                                                                              |                      |                    |            |              | Generatio           | on Esumate  | 7,499   | 122        | 152     | 317   | 203   |          | 434     | 10      | 10        | 31      | 31   | 7,045   | 112        | 142      | 200   | 232 |                      | 5,194                                 |
| FOR CO           | MPARISON - Trip Generation                                                   | From Novembe         | r 5, 2020 Pre      | liminary   | Plan TIS     | 6 (PCD F            | File No. S  | P211)   |            |         |       |       |          |         |         |           |         |      |         |            |          |       |     |                      |                                       |
| 320,862 Shopping | Center and Home Improvement Supters                                          | tore                 |                    |            |              |                     |             |         |            |         |       |       |          |         |         |           |         |      | 13,544  | 265        | 183      | 590   | 631 |                      | 8,2                                   |
| FOR CO           | MPARISON - Trip Generation                                                   | From February        | 24, 2020 Mas       | ster TIS   | (PCD File    | e No. CF            | R191)       |         |            |         |       |       |          |         |         |           |         |      |         |            |          |       |     |                      |                                       |
| 20,862 Shopping  | Center and Home Improvement Supters                                          | tore                 |                    |            |              |                     |             |         |            |         |       |       |          |         |         |           |         |      | 13,544  | 265        | 183      | 590   | 631 |                      | 8,2                                   |
|                  | and square feet of floor space<br>vitation Consultants, Inc. (REV. 12/8/2021 | JCH; added prior rep | ort trip generatio | n comparis | ion 1/21/22) | )                   |             |         | 7          |         |       |       |          |         |         |           |         |      |         |            |          |       |     |                      |                                       |

ToNumber: 1 Author: Daniel Torres Subject: Cloud+ Date: 8/17/2023 3:47:33 PM -06'00'

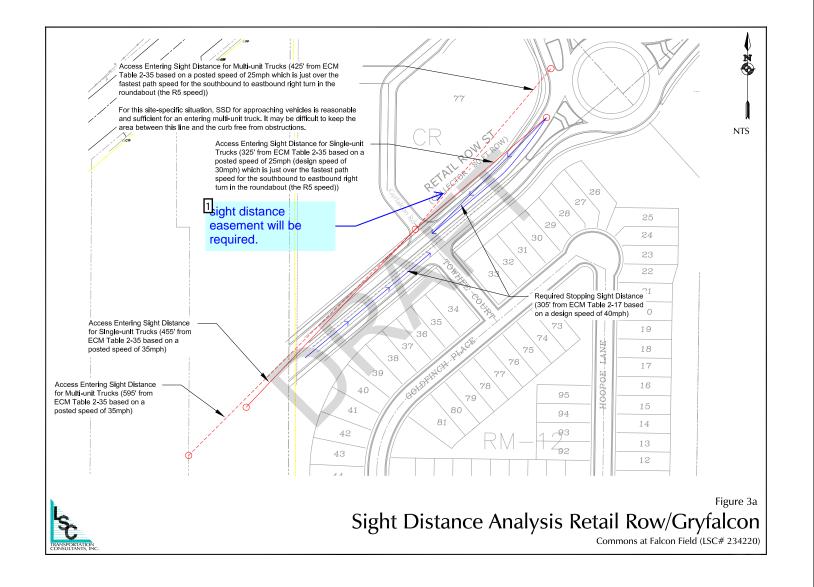
Recommend to coordinate with the applicant as to their intent. Currently the preliminary plan indicates 169 single family lots although the letter of intent does not identify the type of development single family attached or detached etc. Revise as needed.

 Author: kdferrin
 Subject: Sticky Note
 Date: 3/6/2024 4:41:26 PM

 LSC Response: A trip generation table that is consistent with the preliminarily plan has been included in the updated TIS.



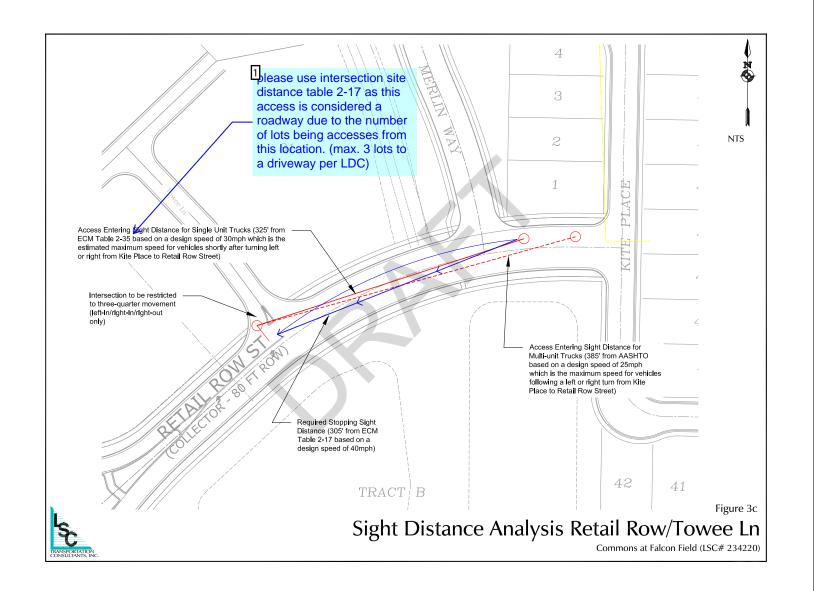
 Number: 1
 Author: Daniel Torres
 Subject: Callout
 Date: 8/17/2023 3:15:27 PM -06'00'


 revise to preliminary site plan as this would not be conceptual at this stage

 Author: kdferrin
 Subject: Sticky Note
 Date: 3/6/2024 4:41:38 PM

 LSC Response: Revised as requested.

Author: jchodsdon Subject: Sticky Note Date: 3/6/2024 4:41:56 PM

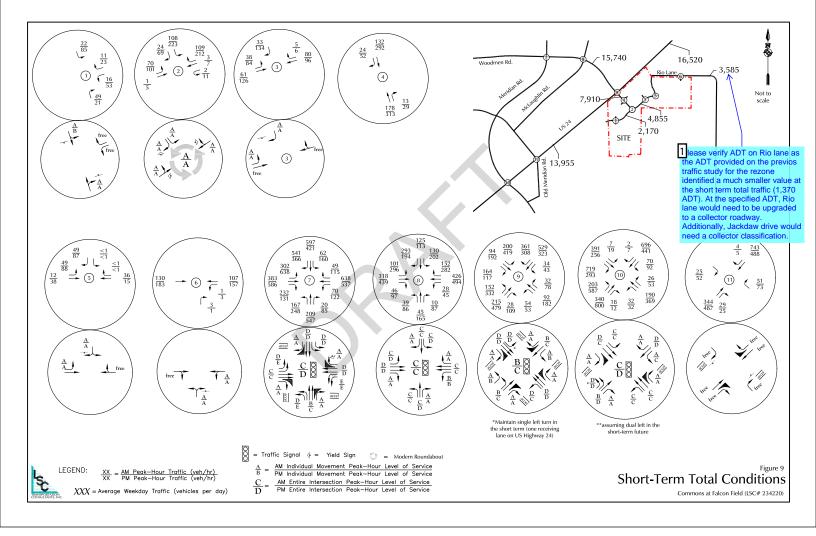

LSC response: The title has been revised to remove the word "conceptual." Note: this exhibit in the TIS is intended as an overview of the preliminary plan with general notes related to access, land uses and street connections. We have added a note to the figure referring to the submitted Preliminary Plan sheet.



Number: 1 Author: Daniel Torres Date: 8/22/2023 2:45:18 PM -06'00' Subject: Callout

sight distance easement will be required.

Author: jchodsdon Subject: Sticky Note Date: 3/6/2024 4:42:07 PM LSC Response: Comment noted. This exhibit has been revised in the updated TIS report. This was also addressed in the deviation for this access point.

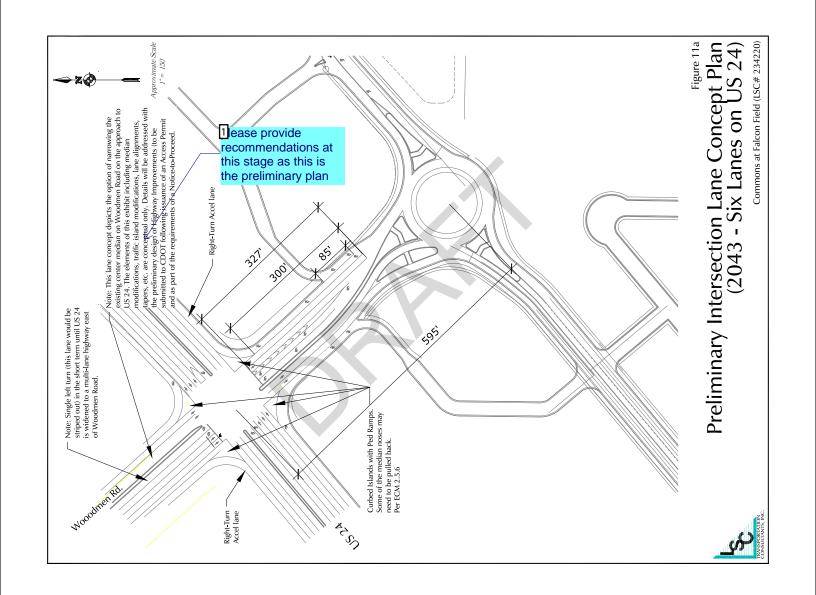



Number: 1 Author: Daniel Torres Subject: Callout Date: 8/22/2023 2:47:38 PM -06'00'

please use intersection site distance table 2-17 as this access is considered a roadway due to the number of lots being accesses from this location. (max. 3 lots to a driveway per LDC)

Author: jchodsdon Subject: Sticky Note Date: 3/6/2024 4:42:19 PM

LSC Response: This has been revised in the updated TIS. This was also addressed in the recently-submitted deviation.

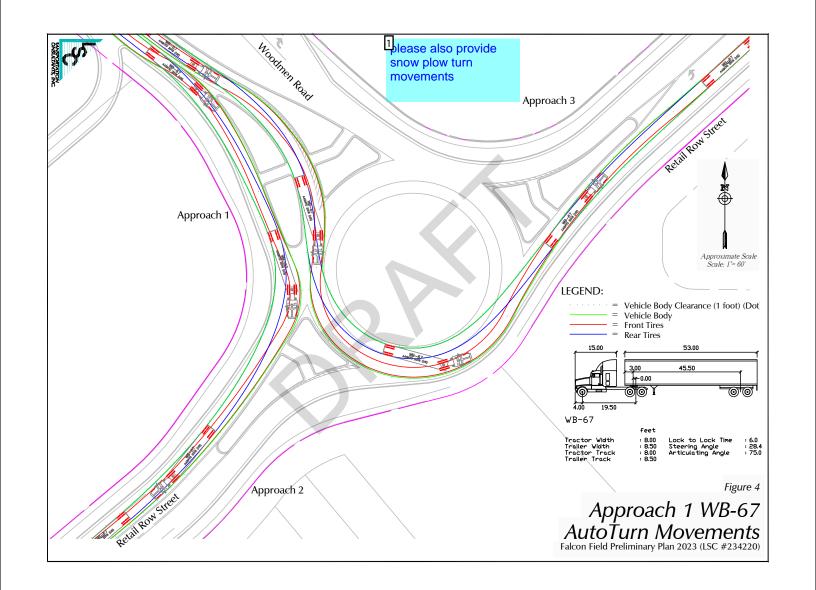



Number: 1 Author: Daniel Torres Subject: Callout Date: 8/21/2023 5:55:35 PM -06'00'

Please verify ADT on Rio lane as the ADT provided on the previos traffic study for the rezone identified a much smaller value at the short term total traffic (1,370 ADT). At the specified ADT, Rio lane would need to be upgraded to a collector roadway. Additionally, Jackdaw drive would need a collector classification.

Subject: Sticky Note Date: 3/6/2024 4:42:31 PM

LSC Response: This was a " typo" on this figure, which has been fixed in the updated TIS. Also, the ADTs have been verified and revised as needed.

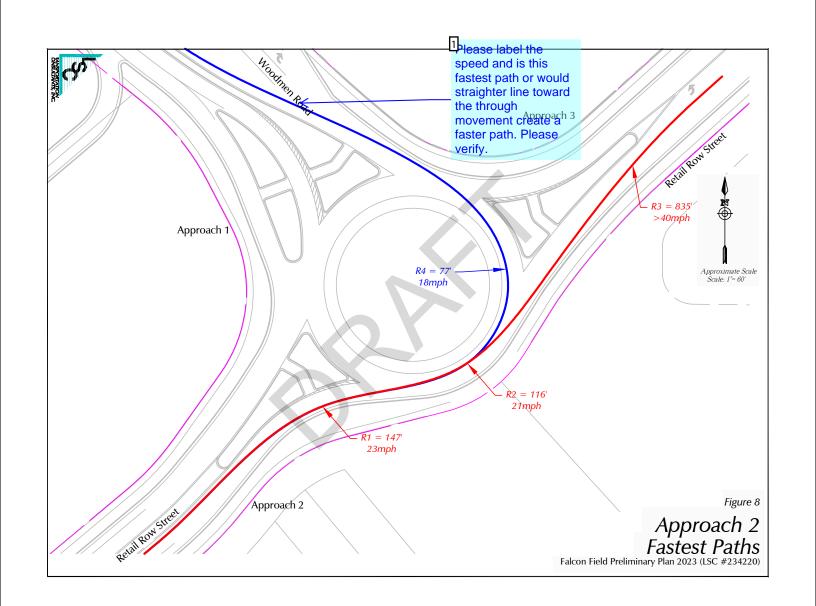



Number: 1 Author: Daniel Torres Subject: Callout Date: 8/17/2023 4:01:51 PM -06'00'

please provide recommendations at this stage as this is the preliminary plan

 Author: kdferrin
 Subject: Sticky Note
 Date: 3/6/2024 4:42:39 PM

 LSC Response: This figure has been revised.

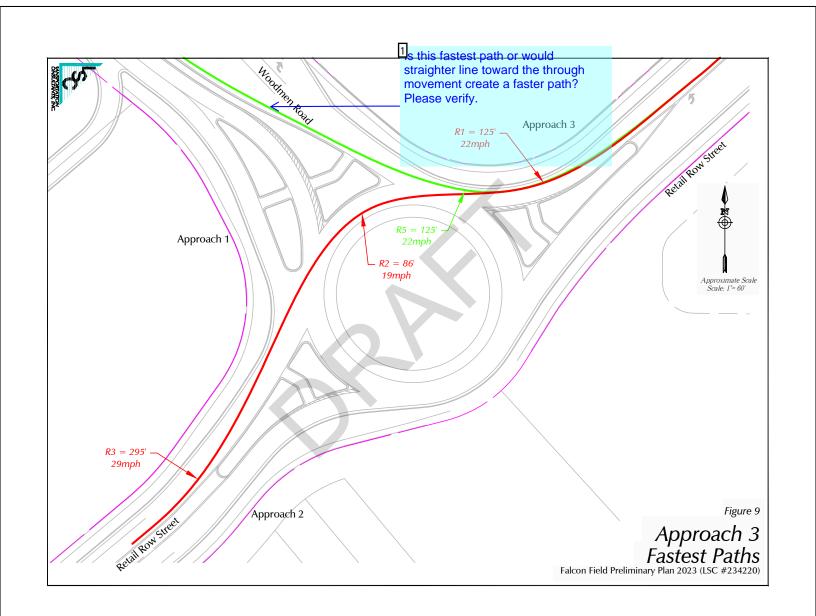



Number: 1 Author: Daniel Torres Subject: Text Box Date: 8/23/2023 7:52:19 AM -06'00'

please also provide snow plow turn movements

 Subject: Sticky Note
 Date: 3/6/2024 4:42:51 PM

 LSC Response: The roundabout exhibits have been updated and the snowplow autoturn has been added.




Number: 1 Author: Daniel Torres Subject: Callout Date: 8/23/2023 8:18:55 AM -06'00'

Please label the speed and is this fastest path or would straighter line toward the through movement create a faster path. Please verify.

Author: kdferrin Subject: Sticky Note Date: 3/6/2024 4:42:59 PM

LSC Response: The roundabout exhibits have been updated.



 Number: 1
 Author: Daniel Torres
 Subject: Callout
 Date: 8/23/2023 8:19:30 AM -06'00'

 Is this fastest path or would straighter line toward the through movement create a faster path? Please verify.

 Author: kdferrin
 Subject: Sticky Note
 Date: 3/6/2024 4:43:08 PM

 LSC Response: The roundabout exhibits have been updated.
 Date: 3/6/2024 4:43:08 PM

# PCD File No. SP232 The Commons at Falcon Field (LSC#S234220) Woodmen Road & Retail Row Stree **County: El Paso**

doesnt match figure which shows 31

2

should be 20.3 per figure 3

1

# **ROUNDABOUT CRITICAL DESIGN PARAMETERS**

| Ň                                               | LEG 1       | LEG 2             | LEG 3 | LEG 4 | LEG 5 | LEG 6 |
|-------------------------------------------------|-------------|-------------------|-------|-------|-------|-------|
| DESIGN PARAMETERS                               |             |                   |       |       |       |       |
| Approach Width, FT                              | 15.1        | <mark>18.0</mark> | 18.0  |       |       |       |
| Entry Width, FT                                 | <u>19</u> 1 | <sup>3</sup> 0.3  | 20.6  |       |       |       |
| Entry Angle, PHI Φ, DEG                         | <b>4</b> 5  | 36.0              | 31.0  |       |       |       |
| Inscribed Circle Diameter, FT                   | 180.0       | 180.0             | 180.0 |       |       |       |
| Exit Width, FT                                  | 20.0        | 20.0              | 20.0  |       |       |       |
| Circulating Roadway Width Upstream of Entry, FT | 18.0        | 18.0              | 18.0  |       |       |       |

#### **FASTEST SPEED PATH**

| R 1, Radius/Speed, FT/MPH                           | 135 23  | 147 23  | 125 22 |  |  |
|-----------------------------------------------------|---------|---------|--------|--|--|
| R <sub>2</sub> , Radius/Speed, FT/MPH               |         | 116 21  | 86 19  |  |  |
| R <sub>3</sub> , Radius/Speed, FT/MPH               | 900 >40 | 835 >40 | 294 29 |  |  |
| <i>R</i> <sub>4</sub> , Radius/Speed, FT/MPH        | 76 18   | 77 18   |        |  |  |
| R <sub>5</sub> , Radius/Speed, FT/MPH               | 165 24  |         | 125 22 |  |  |
| Bypass <i>R</i> <sub>5</sub> , Radius/Speed, FT/MPH |         |         |        |  |  |

#### **MINIMUM SIGHT PARAMETERS**

| Approach Design Speed, MPH                      | 40.0 | 40.0 | 40.0 |  |  |
|-------------------------------------------------|------|------|------|--|--|
| Horizontal Stopping Sight Distance, FT          |      |      |      |  |  |
| Circulating Intersection Sight Distance, FT/MPH |      |      |      |  |  |
| Entering Intersection Sight Distance, FT/MPH    |      |      |      |  |  |

WB-50, WB-67, EPC snowplow Design Vehicle: 10' Truck Apron Width: 5 per WisDOT criteria **OSOW** Accommodations: N/A truck apron shall be a min. 12 ft. wide Circulating Roadway Cross-Slope: 2% or less Access Control: N/A Parking Control: No Parking **Bicycle & Pedestrian Accommodations:** Ped ramps and sidewalks Matt Romero Designer: Chris McGranahan, P.E., PTOE Reviewer: \*\*\*\*\* Preliminary \*\*\*\*\*\*\* SIGNATURE: DATE: 6/2/2023 Christopher S. McGranahan, P.E., PTOE NAME:

The reviewer's signature on this document indicates that the design has been reviewed and is in general compliance with good roundabout principals. The critical design elements have been addressed. The project design engineer in responsible charge of final plan development will stamp the plans when applicable.

G:\Shared drives\CS Engineering - 2019-current\2023\S234220 - Falcon Field Preliminary Plan 2023\Roundabout Exhibits\Roundabout Design Parameters Table.xls 6/2/2023,16:38

# Page: 57

| Number: 1    | Author: Daniel Torres                                       | Subject: Callout        | Date: 8/22/2023 4:08:42 PM -06'00' |  |  |  |  |  |  |  |
|--------------|-------------------------------------------------------------|-------------------------|------------------------------------|--|--|--|--|--|--|--|
| should be 20 | .3 per figure 3                                             |                         |                                    |  |  |  |  |  |  |  |
|              | ie per ingene e                                             |                         |                                    |  |  |  |  |  |  |  |
| 🕌 Author: ko | dferrin Subject: Sticky Note Da                             | ate: 3/6/2024 4:43:15   | PM                                 |  |  |  |  |  |  |  |
|              | onse: This table has been updated                           |                         |                                    |  |  |  |  |  |  |  |
| _0 eesp      |                                                             | •                       |                                    |  |  |  |  |  |  |  |
|              |                                                             |                         |                                    |  |  |  |  |  |  |  |
| 📄 Number: 2  | Author: Daniel Torres                                       | Subject: Callout        | Date: 8/23/2023 8:20:01 AM -06'00' |  |  |  |  |  |  |  |
| doesnt match | doesnt match figure which shows 31                          |                         |                                    |  |  |  |  |  |  |  |
|              | rigure which shows of                                       |                         |                                    |  |  |  |  |  |  |  |
| Author: ke   | dferrin Subject: Sticky Note Da                             | ate: 3/6/2024 3:16:24   | PM                                 |  |  |  |  |  |  |  |
|              | e: The roundabout exhibits have been updated.               | ate: 5/ 6/ 202   5.16.2 |                                    |  |  |  |  |  |  |  |
|              | •                                                           |                         |                                    |  |  |  |  |  |  |  |
| 👖 Number: 3  | Author: Jeff Rice - EPC Enginee                             | ering Review            | Date: 8/21/2023 3:08:14 PM -06'00' |  |  |  |  |  |  |  |
| 10.3         |                                                             |                         |                                    |  |  |  |  |  |  |  |
| Number 4     | Author: Daniel Torres                                       | Subject: Highlight      | Data: 8/22/2022 4.00.00 DM 06'00'  |  |  |  |  |  |  |  |
| T Number: 4  | Author: Damer Torres                                        | Subject: Highlight      | Date: 8/22/2023 4:09:09 PM -06'00' |  |  |  |  |  |  |  |
| 5.5          |                                                             |                         |                                    |  |  |  |  |  |  |  |
| 🛋 Number: 5  | Author: Daniel Torres                                       | Subject: Callout        | Date: 8/22/2023 4:12:16 PM -06'00' |  |  |  |  |  |  |  |
| per WisDOT   | per WisDOT criteria truck apron shall be a min. 12 ft. wide |                         |                                    |  |  |  |  |  |  |  |

# The Commons at Falcon Field Traffic Impact Study PCD File No. SP232

Prepared for: P.J. Anderson 31 N Tejon, Ste 500 Colorado Springs, CO 80903

MARCH 6, 2024

LSC Transportation Consultants Prepared by: Jeffrey C. Hodsdon, P.E. & Kirstin D. Ferrin, P.E.

LSC #S234220



# CONTENTS

| REPORT CONTENTS                                                      | 1    |
|----------------------------------------------------------------------|------|
| LIST OF OTHER TRAFFIC REPORTS USED IN THE PREPARATION OF THIS REPORT | 2    |
| LAND USE And Access                                                  | 3    |
| Land Use                                                             | 3    |
| Access                                                               | 3    |
| Sight Distance                                                       | 4    |
| PROPOSED RIO LANE CLOSURE AT US HIGHWAY 24                           | 4    |
| EXISTING ROADWAYS AND TRAFFIC VOLUMES                                |      |
| Area Roadways                                                        | 5    |
| Existing Traffic Volumes                                             | 5    |
| Existing Levels of Service                                           |      |
| Woodmen Road/Meridian Road                                           | 6    |
| Woodmen Road/McLaughlin Road                                         | 6    |
| Woodmen Road/US Highway 24                                           | 6    |
| US Highway 24/Meridian Road                                          |      |
| US Highway 24/Rio Lane                                               | 7    |
| TRIP GENERATION                                                      | 7    |
| Internal Trips                                                       | 7    |
| Total External Trip Generation                                       | 7    |
| Pass-by and Diverted Trips                                           | 7    |
| Total External "New" Trip Generation                                 | 8    |
| Trip Generation Comparison                                           | 8    |
| TRIP DISTRIBUTION                                                    | 8    |
| Site-Generated Traffic                                               | 9    |
| BACKGROUND TRAFFIC VOLUMES                                           | . 10 |
| Short Term                                                           | . 10 |
| Long Term                                                            | . 10 |
| TOTAL TRAFFIC VOLUMES                                                | . 10 |
| LEVEL OF SERVICE ANALYSIS                                            | . 11 |
| Woodmen Road/Meridian Road                                           | . 11 |
| Woodmen Road/McLaughlin Road                                         | . 11 |
|                                                                      |      |

| US Highway 24/Woodmen Road                                                    | . 11 |
|-------------------------------------------------------------------------------|------|
| US Highway 24/Meridian Road                                                   | . 12 |
| Woodmen Road/Retail Row Street                                                | . 12 |
| Retail Row Site-Access Points                                                 | . 12 |
| Rio Lane Access Points                                                        | . 13 |
| QUEUING ANALYSIS                                                              | . 13 |
| INTERSECTION AND AUXILIARY TURN LANE RECOMMENDATIONS                          | . 13 |
| US Highway 24/Woodmen Road                                                    | . 13 |
| Retail Row Intersections                                                      | . 13 |
| Right-In-Only Access Point                                                    | . 13 |
| Roadway Segment Improvements                                                  | . 14 |
| Rio Lane                                                                      | . 14 |
| Retail Row Street                                                             | . 15 |
| Willet Way, Perula Way and Dunlin Drive                                       | . 15 |
| DEVIATIONS TO ECM CRITERIA                                                    | . 15 |
| ROADWAY CLASSIFICATIONS                                                       | . 16 |
| MTCP-IDENTIFIED future needed ROADWAY IMPROVEMENT PROJECTS                    | . 16 |
| MULTI-MODAL TRANSPORTATION & Transportation Demand Management OPPORTUNITIES . | . 16 |
| PEDESTRIAN & BICYCLE FACILITIES                                               | . 16 |
| COUNTY ROAD IMPROVEMENT FEE PROGRAM                                           | . 17 |
| US HIGHWAY ACCESS MANAGEMENT PLAN AND RIO LANE CLOSURE AT US HIGHWAY 24       | . 17 |
| ROUNDABOUT ANALYSIS & DESIGN                                                  | . 18 |
| CDOT ACCESS PERMITTING                                                        | . 19 |
| CONCLUSIONS AND RECOMMENDATIONS                                               | . 19 |
| Trip Generation                                                               | . 19 |
| Traffic Operations Analysis                                                   | . 19 |
| Recommended Improvements                                                      | . 19 |
| Enclosures:                                                                   | . 21 |
| Tables 2-4                                                                    |      |
| Figures 1-12                                                                  |      |
| Roundabout Figures 1-9                                                        |      |
| Roundabout Design Parameters Table                                            |      |

Traffic Count Reports Level of Service Reports Queuing Report NCHRP Report 684



LSC TRANSPORTATION CONSULTANTS, INC. 2504 East Pikes Peak Avenue, Suite 304 Colorado Springs, CO 80909 (719) 633-2868 FAX (719) 633-5430 E-mail: <u>lsc@lsctrans.com</u> Website: http://www.lsctrans.com

March 6, 2024

P.J. Anderson 31 N Tejon, Ste 500 Colorado Springs, CO 80903

RE: The Commons at Falcon Field Preliminary Plan El Paso County, CO Traffic Impact Study PCD File No.: <u>SP232</u> LSC #S234220

Dear Mr. Anderson,

LSC Transportation Consultants, Inc. has prepared this Traffic Impact Study for the Commons at Falcon Field development in the Falcon area of El Paso County, Colorado. Commons at Falcon Field is a proposed development to be located southeast of the intersection of US Highway 24 (US Hwy 24) and Woodmen Road. This report has been prepared to accompany the resubmittal of the Preliminary Plan application to El Paso County and the Colorado Department of Transportation (CDOT). The Preliminary Plan shows a mix of commercial and residential land uses. LSC previously completed traffic reports for the original rezone, the prior Preliminary Plan, and the 2022 Rezone.

#### **REPORT CONTENTS**

The preparation of this report included the following:

- An inventory of existing roadway and traffic conditions on the adjacent and nearby roadway system, including functional classification, widths, pavement markings, surface conditions, traffic, traffic-control signs, posted speed limits, intersection and access spacing, roadway and intersection alignments, roadway grades, and auxiliary turn lanes;
- Weekday peak-hour turning-movement traffic counts at the following intersections:
  - Woodmen Road/US Highway 24
  - Rio Lane/US Highway 24
  - US Highway 24/ Meridian Road
- Estimated current average weekday traffic (AWT) volumes on the study-area streets including US Highway 24, Woodmen Road, Meridian Road, McLaughlin Road, and Rio Lane;

- Projections of 20-year background traffic volumes on the study-area streets;
- The proposed site land uses;
- Estimates of average weekday and weekday peak-hour trip generation for the proposed Falcon Field development and the estimated directional distribution of site-generated vehicle trips on the area street and roadway network;
- Projected site-generated and resulting total peak-hour intersection traffic volumes at the study-area intersections;
- Projected total daily (AWT) volumes on the study-area streets;
- Intersection level of service analysis at the study-area intersections;
- Vehicle queuing and sight-distance analysis at the proposed site-access points;
- Recommended street classifications;
- A list of deviations accompanying this application; and
- Findings and recommendations.

# LIST OF OTHER TRAFFIC REPORTS USED IN THE PREPARATION OF THIS REPORT

# Prior Falcon Field Traffic Reports for this Site:

- A master TIS report for the original Falcon Field rezone, dated February 24, 2020.
- The TIS report for the previously submitted Preliminary Plan (withdrawn prior to the 2022 rezone), dated November 5, 2020.
- A master TIS report for the 2022 Falcon Field rezone, dated January 21, 2022.

The initial submittal of this report was dated June 23, 2023; Revised (and one new) deviations included with this application were recently resubmitted on February 21, 2024 (EPC PCD File No. DEV 238).

**Compared to the TIS for the initial property rezone dated February 24, 2020 (and the TIS for the Preliminary Plan Report dated November 5, 2020),** the site trip generation and site-generated traffic based on the currently-proposed zoning **is significantly lower** than for the strictly commercial zoning that was originally approved. Details are included in the Trip Generation section.

The most recent versions of the following traffic reports were utilized in preparing this report: *Falcon Marketplace (LSC), Meadowlake Ranch* (LSC), *The Ranch* (LSC), and the School District 49 Transportation Facility study (LSC), *US Highway 24 Planning and Linkage Study* (CDOT). This report is generally consistent with these reports. Minor adjustments to background traffic volumes have been made to account for newer traffic counts, and traffic projections in the CDOT PEL study.

#### LAND USE AND ACCESS

Figure 1 shows the site location relative to the adjacent and nearby roadways. The development is planned to have commercial and residential land uses. The site is directly southeast of the intersection of Woodmen Road/US Highway 24 in Parcels 4307000001 and 4307200015.

#### Land Use

Commons at Falcon Field is planned to include eight regional commercial lots and 169 single-family residential lots. This report assumes the eight regional commercial lots will be developed with up to 84,000 square feet of general retail floor space. Figure 2a shows the current site plan/Preliminary Plan.

#### Access

As shown on the site plan, the primary access to the development will be a new southeast leg of the Woodmen Road/US Hwy 24 intersection (currently a T-intersection). This new section of Woodmen Road would be extended southeast to a roundabout intersection with a new Urban Non-Residential Collector, Retail Row Street with a modified cross section. A modified cross section is proposed for this street, which will require approval of a deviation to the criteria contained in The El Paso County *Engineering Criteria Manual (ECM)*. This deviation (No. 5) was recently resubmitted.

The residential development areas are planned to be served by proposed Urban Local streets (that would be public). The commercial lots are planned to be served by private commercial (local) streets. Direct access to the individual commercial lots would be via three private commercial local streets shown on the Preliminary Plan (Willet Way, Perula Way, and Dunlin Drive).

Figure 2b shows the proposed internal public streets and commercial access points/intersections. The proposed spacing of the intersections/access points to Retail Row Street northeast of the proposed roundabout do not meet the prescribed minimum 330-foot spacing required for Urban Non-Residential Collectors, as shown on Table 2-7 of the *ECM*. The intersection of Retail Row Street/Rio Lane (realigned) will require approval of a deviation from these criteria. This deviation (No. 1) was recently resubmitted.

A right-in only access is proposed to Woodmen Road. This access will require approval of a deviation from the criteria contained in the *ECM*. This deviation (No. 2a) was recently resubmitted.

A street stub to the west is shown on the Preliminary Plan, which would allow for a future connection to future adjacent development if ever needed. The areas within Tracts B and G directly southeast of the proposed roundabout have been reserved to accommodate a potential

future fourth leg of the roundabout to provide access to what is currently the northwest corner of Arrowhead Estates IF and when redevelopment happens to occur within that area. Currently, these possible future connections are not proposed for use by this project. These are being provided for the benefit of US Hwy 24 access management and adjacent property owners, should future connections to adjacent future developments/redevelopment become necessary.

# Sight Distance

Figures 3a and 3b show the results of sight-distance analysis of the intersections and access points to Retail Row Street. The analysis is based on a design speed of 25 miles per hour (mph) for the modified cross section. As shown in Figures 3a and 3c, the required intersection sight distance of 280 feet from taken *ECM* Table 2-21 and the required stopping sight distance of 155 feet taken from *ECM* Table 2-17 can be met at all of the proposed intersections and access points to Retail Row Way. One reasonable exception (citing AASHTO criteria) is noted on Figure 3a for sight distance for drivers turning onto Retail Row Street to vehicles also turning (simultaneously) onto Retail Row Street at the adjacent Rio Lane intersection (and vice versa).

Figure 3b shows the results of the sight distance analysis of the intersection of Woodmen Road/Dunlin Drive. As this access is proposed to be restricted to right-in only, the analysis was limited to stopping sight distance for south-eastbound traffic arriving from the intersection of US Hwy 24/Woodmen. Figure 3c shows the required stopping sight distance based on 40 mph for south-eastbound through vehicles from the intersection of US Hwy 24/Woodmen, based on a 15 mph for north-eastbound right-turning vehicles from the intersection of US Hwy 24/Woodmen, and based on 20 mph for south-westbound left-turning vehicles from the intersection of us Hwy 24/Woodmen. As shown in Figure 3c, the required stopping sight distance can be met for all three scenarios.

# **PROPOSED RIO LANE CLOSURE AT US HIGHWAY 24**

The intersection of Rio Lane/US Highway 24 is proposed to be closed, as shown in the adopted US Highway 24 Access Management Plan and the US 24 Planning and Environmental Linkages Study, October 2017. The project will help implement the US Highway 24 Access Management Plan by providing an alternative to the Rio Lane/US Hwy 24 intersection.

The site plan shows the proposed internal public streets, Retail Row Street and the extension of Woodmen Road into the site, for site circulation and the new connection to Rio Lane that would allow for the prescribed closure of the US Hwy 24/Rio intersection per CDOT's US Highway 24 Access Management Plan.

#### EXISTING ROADWAYS AND TRAFFIC VOLUMES

#### Area Roadways

The major roadways in the site's vicinity are shown in Figure 1 and are described below.

**US Highway 24** is a two-lane, category EX - Expressway/Major Bypass (CDOT Classification) adjacent to the site that runs northeast/southwest with a 55-mile-per hour (mph) posted speed limit adjacent to the site. The corridor was studied in-depth in the *US 24 Planning and Environmental Linkages Study*. CDOT will be completing a US Highway 24 corridor improvement project that will widen the roadway to four lanes from Garrett Road to Woodmen Road. Construction is expected to begin in 2025.

**Woodmen Road** is a four-lane east/west Expressway that ends at the intersection with US Highway 24. The intersections of Woodmen Road with Meridian Road, McLaughlin Road, and US Highway 24 are all signalized.

**Meridian Road** is a four-lane north/south Principal Arterial. Meridian Road (the arterial roadway portion) extends north from Falcon Highway to Hodgen Road. Note: the US Hwy 24/Old Meridian Road intersection was converted to a right-in/right-out intersection.

**McLaughlin Road** is a two-lane, Non-Residential Collector road that extends north from Rolling Thunder Avenue to Eastonville Road. The roadway provides retail and residential access, both north and south of Woodmen Road.

**Rio Lane and Rio Road** are two-lane Rural Local roadways that connect US Hwy 24 to Falcon Highway. The roadways are about 24 feet wide. The intersection with US Hwy 24 is stop-sign controlled. The intersection with US Hwy 24 is planned to be closed and the new internal roads planned as part of this development will serve as the replacement connection to US Hwy 24.

#### **Existing Traffic Volumes**

Figure 4a shows the results of recent morning and afternoon peak-hour turning-movement traffic counts at the intersections of Woodmen Road/US Hwy 24, US Hwy 24/ Meridian Road, US Hwy 24/"Old" Meridian Road, Woodmen/McLaughlin, Woodmen/Meridian and Rio Lane/US Hwy 24. The intersection-traffic counts were collected recently in May 2023.

#### **Existing Levels of Service**

Level of service (LOS) is a quantitative measure of the level of delay at an intersection. Level of service is indicated on a scale from "A" to "F." LOS A represents control delay of less than 10 seconds for unsignalized and signalized intersections. LOS F represents control delay of more

than 50 seconds for unsignalized intersections and more than 80 seconds for signalized intersections. Table 1 shows the level of service delay ranges.

| Table 1. Intersection Levels of Service Delay Ranges |                                                                    |                                                         |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|                                                      | Signalized Intersections                                           | Unsignalized Intersections                              |  |  |  |  |  |  |  |  |  |
|                                                      | Average Control Delay                                              | Average Control Delay                                   |  |  |  |  |  |  |  |  |  |
| Level of Service                                     | (seconds per vehicle)                                              | (seconds per vehicle) <sup>(1)</sup>                    |  |  |  |  |  |  |  |  |  |
| А                                                    | 10.0 sec or less                                                   | 10.0 sec or less                                        |  |  |  |  |  |  |  |  |  |
| В                                                    | 10.1-20.0 sec                                                      | 10.1-15.0 sec                                           |  |  |  |  |  |  |  |  |  |
| С                                                    | 20.1-35.0 sec                                                      | 15.1-25.0 sec                                           |  |  |  |  |  |  |  |  |  |
| D                                                    | 35.1-55.0 sec                                                      | 25.1-35.0 sec                                           |  |  |  |  |  |  |  |  |  |
| E                                                    | 55.1-80.0 sec                                                      | 35.1-50.0 sec                                           |  |  |  |  |  |  |  |  |  |
| F                                                    | 80.1 sec or more                                                   | 50.1 sec or more                                        |  |  |  |  |  |  |  |  |  |
|                                                      | ersections, if V/C ratio is great<br>of the projected average cont | er than 1.0 the level of service rol delay per vehicle. |  |  |  |  |  |  |  |  |  |

| Table 1. Intersection Levels of Service Delay R | langes |  |
|-------------------------------------------------|--------|--|
|-------------------------------------------------|--------|--|

Figure 4b presents the results of the existing intersection level of service analysis. The signalized intersections were analyzed using Synchro, while the unsignalized intersection of US Hwy 24/Rio Lane was analyzed based on the unsignalized method of analysis procedures from the *Highway* Capacity Manual, 6<sup>th</sup> Edition by the Transportation Research Board. The level of service reports are attached.

#### Woodmen Road/Meridian Road

The signalized intersection of Woodmen/Meridian is currently operating at an overall LOS C during the morning peak hour and an overall LOS D during the afternoon peak hour. Some of the left-turn movements are currently operating at LOS E during the peak hours.

#### Woodmen Road/McLaughlin Road

The signalized intersection of Woodmen/McLaughlin is currently operating at an overall LOS B during the morning peak hour and an overall LOS C during the afternoon peak hour.

#### Woodmen Road/US Highway 24

The signalized intersection of Woodmen/US Hwy 24 is currently operating at an overall LOS C during both the morning and afternoon peak hours.

## US Highway 24/Meridian Road

The signalized intersection of US Hwy 24/Meridian is currently operating at an overall LOS B during the morning peak hour and an overall LOS D during the afternoon peak hour. During the afternoon peak hour, the existing single northeast-bound left-turn lane is operating at LOS F and the southwest-bound through movement is operating at LOS E.

#### US Highway 24/Rio Lane

The southwest-bound through/left at the stop-sign-controlled intersection of US Highway 24/Rio Lane currently operates at LOS B or better during the peak hours. The shared northwest-bound left-/right-turning movement on Rio Lane operates at LOS F during the peak hours. The levels of service F for this movement are due both to the volume of left-turning vehicles and the high volume of through vehicles on US Highway 24.

#### **TRIP GENERATION**

Estimates of the vehicle trips projected to be generated by the proposed development have been made using the nationally-published trip-generation rates from *Trip Generation*, 11<sup>th</sup> Edition, 2021 by the Institute of Transportation Engineers (ITE). Table 2 (attached) presents the estimated trip generation for The Commons at Falcon Field development.

#### **Internal Trips**

Internal trips are trips that occur within a development and do not impact the external roadways. Because the site is planned to have multiple retail pads and housing, some of the generated trips will be traveling within the site. Table 2 includes estimates of internal trip capture to account for trips generated within the site. The internal trips were estimated using the NCHRP 684 Internal Trip Capture Estimation Tool. The results of the tool are attached.

#### **Total External Trip Generation**

Approximately 6,817 total external daily trips are projected to enter and exit the site at the access point ("driveway trips") on the average weekday. During the morning peak hour, approximately 118 vehicles would enter and 142 vehicles would exit the site. During the evening peak, approximately 287 vehicles would enter and 254 vehicles would exit.

#### Pass-by and Diverted Trips

The trips generated by the commercial portions of the site have also been aggregated by trip type to account for the pass-by phenomenon. A pass-by trip is one made by a motorist who would already be on an adjacent road regardless of the proposed development, but who stops in at the site while passing by. The pass-by motorist would then continue on his or her way to a final

destination in the original direction. For purposes of this report, pass-by trips are trips by motorists already traveling through the intersection of US Highway 24/Woodmen Road.

Because the site is near the intersections of US Hwy 24/Falcon Hwy and US Hwy 24/Meridian Road, vehicles traveling through these intersections, but not through the intersection of US Hwy 24/Woodmen Road may still stop at the site on the way to their destination. Because these intersections are not directly adjacent to the site, these trips would be considered "diverted trips", based on ITE terminology, and therefore are referred to as such in this report. These trips would result in altered turning movements at the nearby major intersections of US Hwy 24/Falcon Hwy, US Hwy 24/Meridian Road, and Woodmen Road/Meridian Road and new turning movements at the intersection of US Hwy 24/Woodmen Road. In addition, it has been assumed that some of these diverted trips coming to and from Falcon Hwy to the east will use Rio Road and Rio Lane to access the site.

#### Total External "New" Trip Generation

Estimates of Pass-by and diverted trips are shown in Table 2 and are based on *Trip Generation Handbook - An ITE Proposed Recommended Practice*, 3rd Edition, 2014 by ITE. The table shows the resulting external "new" trip generation, which reflects the subtraction of passby trips. Diverted trips are shown as "new" trips, as diverted trips will result in trips added to the Woodmen/US Hwy 24 intersection. Note that many of the diverted trips would not generally represent "new" trips at some off-site intersections – such as US Hwy 24/Meridian and Woodmen/Meridian - although some turning movements would be altered as part of travel route diversions.

#### Trip Generation Comparison

Table 2 also includes comparison to the estimate presented in the 2022 property rezone TIS, dated December 15, 2021. About 228 fewer daily external vehicle trips are estimated to be generated, based on the currently-proposed site plan, than were assumed in the previous report.

#### TRIP DISTRIBUTION

An estimate of the directional distribution of site-generated vehicle trips to the study-area roads and intersections is a necessary component in determining the site-generated traffic volumes. Figure 5 shows the directional-distribution estimate for the primary site-generated trips. The figure shows the percentages of the site-generated vehicle trips (primary trips) projected to be oriented to and from the site's major approaches. Estimates have been based on the following factors: traffic counts conducted at major intersections adjacent to the proposed development, the proposed land uses, the access plan, the area road system serving the site, the site's geographic location, and previously-conducted LSC studies in the vicinity. The directional-distribution estimates for primary trips are based on the anticipated service area for the retail portion of the development. This commercial center will primarily serve the Falcon area. The higher percentages for Meridian Road north of Woodmen, McLaughlin Road north of Woodmen Road, and US Hwy 24 east of the site reflect the higher current density of "rooftops" and the anticipated growth areas to the north and northeast. The ten-percent split is associated with current residential development and potential future developments to the east (Falcon Highway corridor) and southeast. The five-percent split to/from the southwest on US Hwy 24 (primary trips, like the other directional splits) is intended to account for some future Banning Lewis Ranch connections to US Hwy 24 and potentially some trips from the Cimarron Hills area (likely limited by the longer trip length and availability of retail shops in the Powers Boulevard corridor). The six-percent split to/from west Rolling Thunder Way reflects the residential development in that direction. While the seven-percent split to/from west Woodmen Road accounts for some traffic coming from areas to the west, including northern Colorado Springs, via this route.

Additionally, Figure 5 shows what percentage of overall pass-by and diverted trips have been pulled from each turning movement at the affected intersections to be rerouted as part of the site-generated traffic.

For the residential portion of the development, the directional distribution of the trips is based on residential-oriented destinations during peak hours, such as places of employment, shopping centers, schools, etc. It is anticipated that most trips will travel to/from the west either via Woodmen Road or US Hwy 24, as most retail and employment centers are to the west. Most of the remaining trips are expected to go to/from the north and east via US Hwy 24, McLaughlin Road, and Meridian Road.

# Site-Generated Traffic

Site-generated traffic volumes for the development during the weekday morning and evening peak hours are shown in Figure 6 for the following intersections:

- Woodmen Road/US Highway 24
- Woodmen Road/Meridian Road
- Woodmen Road/McLaughlin Road
- US Highway 24/Meridian Road
- US Highway 24/Old Meridian Road
- Internal roundabout
- Internal access points

Site-generated traffic volumes have been calculated by applying the directional-distribution percentages estimated by LSC (from Figure 5) to the trip-generation estimates (from Table 2). The pass-by trips and diverted trips were assigned, based on the magnitude and direction of the peak-hour traffic volumes projected for the major study-area streets/roads.

#### **BACKGROUND TRAFFIC VOLUMES**

Background traffic is traffic on the adjacent roadways that is forecast to be present without the proposed development. Short-term and 2044 background traffic scenarios were developed.

Both future forecasts also assume that the intersection of US Hwy 24/Rio Lane has been closed and the associated traffic has been re-routed. Because Rio Lane will no longer directly access US Hwy 24, LSC projects that some of the trips currently using Rio Lane and Rio Road will reroute and use Falcon Hwy or Meridian Road to access US Hwy 24.

#### Short Term

Figure 7a shows the estimated short-term background traffic volumes at the study-area intersections. The short-term background volumes assume that the US Hwy 24/Rio Lane intersection has been closed and traffic has been rerouted through the new fourth leg of the US Hwy 24/Woodmen Road intersection.

#### Long Term

Figure 8 shows the estimated 2044 background traffic volumes. These projected volumes include estimates from planned future Falcon area development and increases in through traffic volumes on the study-area roadways. The 2044 background volumes were developed using the US Highway 24 PEL study. Volumes were modified as needed, based on newer count volumes and expected development in the study area. The 2044 background assumes future commercial development on the parcel to the west of the site with access through the proposed The Commons at Falcon Field development and the internal roundabout.

#### TOTAL TRAFFIC VOLUMES

Site-generated traffic volumes from Figure 6 were added to short-term background traffic volumes from Figure 7 to calculate short-term total traffic volumes provided on Figure 9. Similarly, 2044 total traffic volumes provided in Figure 10 were calculated by adding the site-generated traffic (Figure 6) with the 2044 background traffic volumes (Figure 8).

#### LEVEL OF SERVICE ANALYSIS

Levels of service were calculated for both the short-term background, 2044 background, short-term total traffic, and 2044 total traffic volumes. The results of the analysis are shown in Figures 7, 8, 9, and 10. Traffic lanes used in the analysis are also provided in these figures.

#### Woodmen Road/Meridian Road

The signalized intersection of Woodmen/Meridian is projected to at an overall LOS C during the morning peak hour and an overall LOS D during the afternoon peak hour, based on both the short-term background and total traffic volumes. Some of the left-turn movements are projected to operate at LOS E during the peak hours, based on both the short-term background and total traffic volumes. By 2044, some of the through movements are projected to operate at LOS E and some of the left-turn movements are projected to operate at LOS E and some of the left-turn movements are projected to operate at LOS E and some of the left-turn movements are projected to operate at LOS E and some of the left-turn movements are projected to operate at LOS E.

#### Woodmen Road/McLaughlin Road

The signalized intersection of Woodmen/McLaughlin is projected to operate at an overall LOS D or better during the morning and afternoon peak hours, based on the short-term background, 2044 background, short-term total, and 2044 total traffic volumes.

#### US Highway 24/Woodmen Road

In the short-term scenarios, it has been assumed that no baseline capacity improvements (additional northeast-bound/southwest-bound through lanes) will occur on US Hwy 24. However, per recent meetings with CDOT, coordination will continue as this project and the adjacent Highway 24 CDOT project move forward. Cooperation with respect to phasing of improvements, such as potential future use of eastbound right-turn deceleration and acceleration lanes that may be built by this project as future through lanes. The CDOT project would then add new lanes to replace them (for example). The improvements based on the Access Code and CDOT direction provided thus far at the intersection of US Hwy 24/Woodmen Road would include:

- The new fourth northwest bound leg of the intersection with a left lane, two through lanes, and right lane;
- Auxiliary turn lanes on US Hwy 24 to serve the trips/vehicle turning movements associated with the new fourth leg the development, and the "replacement" Rio Lane connection;
- Raised right-turn islands for pedestrian accessibility;

- Lane alignment and median modifications on the existing south-east bound leg of the intersection to align with the new fourth leg. Note: The laneage is shown in Figure 11b.
- Signal modifications including installation of any traffic-signal components (including new signal pole(s) on the Woodmen side of the intersection) needed to accommodate the new intersection leg.

Overall, the signalized intersection is forecast to operate at LOS C or better during both peak hours in both the short-term background and short-term total scenarios.

By 2044, it has been assumed that US Hwy 24 will be widened to provide northeast-bound and southwest-bound through lanes per meetings with CDOT regarding the upcoming CDOT Highway 24 project. Overall, the signalized intersection is forecast to operate at LOS D or better during both peak hours in both the 2044 background and 2044 total scenarios.

## US Highway 24/Meridian Road

As shown in Figure 4a, the existing northeast-bound left-turn volume at the intersection of US Hwy 24/Meridian is 608 vehicles per hour during the afternoon peak hour. As dual left-turn lanes are typically considered when the left-turn volume exceeds 300 vph, it has been assumed that a second northeast-bound left-turn lane will be constructed in the short term (Potentially, this may be completed as part of the upcoming CDOT Highway 24 project). With the addition of a second turn lane, all movements at this intersection are projected to operate at LOS D or better during the peak hours, based on both the short-term background and short-term total traffic volumes.

By 2044, it has been assumed that US Hwy 24 will be widened to provide northeast-bound and southwest-bound through lanes. Overall, the signalized intersection is forecast to operate at LOS D or better during both peak hours in both the 2044 background and 2044 total scenarios.

#### Woodmen Road/Retail Row Street

The proposed roundabout at the intersection of Woodmen Road/Retail Row Street has been analyzed using Sidra. The roundabout is expected to have all approaches operate at LOS A during both peak hours, based on the projected short-term and 2044 total traffic volumes.

#### **Retail Row Site-Access Points**

The access points to the Retail Row Street have been analyzed as stop-sign-controlled (unsignalized) intersections. All yielding turning movements at the proposed access points are anticipated to operate at LOS C or better through 2044.

#### **Rio Lane Access Points**

The proposed intersections of Rio Lane/Perula Lane and Rio Lane/Toddy Way been analyzed as a stop-sign-controlled (unsignalized) intersections. All approaches are projected to operate at LOS A during the peak hours, based on the short-term total and 2044 total traffic volumes.

#### QUEUING ANALYSIS

A queuing analysis was performed using Synchro/SimTraffic for the key approach turning movements at the intersection of US Hwy 24/Woodmen Road and the proposed Retail Row Street access points to determine the projected queue lengths, based on the 2044 total traffic volumes. The simulation was run five times. The queuing reports are attached. These queuing results have been used to develop auxiliary turn-lane recommendations. The results of the analysis are shown in Table 3.

#### INTERSECTION AND AUXILIARY TURN LANE RECOMMENDATIONS

The El Paso County *Engineering Criteria Manual (ECM)* and the *Colorado State Highway Access Code* standards were used as a basis for the following turn-lane and other recommendations at the intersections.

#### US Highway 24/Woodmen Road

Figure 11a provides the recommendations for improvements at the intersection of US Highway 24/Woodmen Road, including auxiliary turn-lane dimensions and modifications needed with the new fourth leg of the intersection of US Hwy 24/Woodmen Road.

#### **Retail Row Intersections**

Figure 11b shows the recommended turn-lane lengths at the proposed internal intersections/access points to Retail Row Street.

#### **Right-In-Only Access Point**

Figures 2a and 2b show the proposed right-in-only access point to Woodmen Road, including the access spacing details. The proposed right-in-only access point would provide a low-impact, low-conflict secondary entry point to the commercial lot areas west of Woodmen.

The proposed right-turn lane would have abbreviated lane and taper lengths. The *ECM* standard is 155-foot lane plus 160-foot taper, plus storage. Figure 11d (a copy of Deviation Exhibit 2a-1 from Deviation 2a) shows the proposed lengths. The lane would be about 130 feet plus a 55-foot bay taper. The abbreviated length will be mitigated by the proposed 50-foot corner radius. Please refer to Deviation No. 3, which addresses turn lane design.

The assumption is that site plans for specific development served by the proposed right-in-only access point will be designed such that traffic entering via the proposed right-in-only access will have a "free movement" onto internal private-access drives, parking bays, etc., such that queues will not form and back into the right-in access point or the main entry street (Woodmen Road). This would likely be accomplished with a sufficient entry "throat" and other site-plan-level design elements that would give priority to entering traffic. Please refer to the deviation request for the right-in-only access for additional details.

#### **ROADWAY SEGMENT IMPROVEMENTS**

## **Rio Lane**

As identified above, Rio Lane and Rio Road are two-lane Rural Local roadways that connect US Hwy 24 to Falcon Highway. The roadways are 24 feet wide and were recently paved.

The project will generate trips using Rio Lane between Falcon Highway and the site, but it is important to note that the daily volume has already reduced with opening of New Meridian Road north of Falcon Highway. Closing the direct Rio Lane connection to US Highway 24, the route used by cut-through traffic will create a significantly more circuitous route and will likely discourage some motorists continue to use Rio Lane as a cut-through route between Falcon Highway and US Highway 24.

The projected net volumes presented in this report are the estimated current volume (1,700 vehicles per day) plus increases due to site-generated traffic **minus** estimated reductions in cutthrough traffic and redistribution of area resident traffic (due to the closure of the direct connection of Rio Lane to US Hwy 24). There will be an overall net decrease from the 2021 volume of 2,700 vehicles per day shown in the January 2022 rezone report.

The current roadway cross section will be sufficient for accommodating the resulting net vehicular traffic volumes on Rio Lane and Rio Road. Given the large adjacent lots and driveway lengths, on-street parking, while allowed, is likely infrequent. Widening the drivable pavement width of Rio Road has the potential to encourage higher speeds. Therefore, any future enhancements/upgrades should be for non-motorized use (pedestrians and bicycles) that would fit within the right-of-way. Rio Road has a straight alignment, and the vertical profile is relatively level, which both allow for good sight distance.

Working within the available right-of-way, it may be feasible to add enhancements for pedestrians/bikes by creating segments of north-south gravel, separated pedestrian path combined with segments of widened gravel shoulder. Widened shoulders would provide additional space for pedestrians, but don't offer physical protection. This project will be installing a sidewalk along the south side of the east-west segment adjacent to the site frontage and on both sides of the street for the section within the site. The project will also provide a street stub

to Pinto Pony Road that could be used as a pedestrian collection to Chief Road and Pinto Pony Road.

Other measures to enhance pedestrian safety could potentially include roadway illumination. However, it is not likely practical or desirable to the area residents to improve pedestrian visibility with roadway illumination. Measures to educate and encourage the use of flashing LED lights, retroreflective clothing, vests, armbands etc. by local-residents clothing or armbands should be considered. Signs along the roadway could be placed to remind area residents and other users of the roadway for non-motorized travel, to wear retro-reflective gear.

#### **Retail Row Street**

Aside from the extension of Woodmen Road into the site from the US Highway 24 intersection, Retail Row Street will be the main internal street serving the commercial and residential development, it will also provide the replacement Rio Lane connection to US Highway 24.

Retail Row Street is proposed as a Non-Residential Collector with a modified cross-section. Please refer to the Intersection improvements section for intersection recommendations. Please refer to deviation request No. 5 for details regarding the proposed cross section and other planning and design details.

#### Willet Way, Perula Way and Dunlin Drive

Direct access to the individual commercial lots would be via three "private commercial (local)" streets shown on the Preliminary Plan (Willet Way, Perula Way and Dunlin Drive). These streets would be 26-feet wide plus curb and gutter (30-feet of width flowline-to-flowline), with attached 5-foot-wide sidewalks.

#### **DEVIATIONS TO ECM CRITERIA**

The following deviations to the criteria contained in the El Paso County *Engineering Criteria Manual* (*ECM*) have been recently submitted as part of this application:

- Public street intersection spacing along an Urban Non-Residential Collector Woodmen Road (proposed) southeast of US Highway 24/Retail Row Street and Retail Row Street/Willet Way
- Access to an Urban Non-Residential Collector;
- ECM-standard auxiliary turn-lane lengths on an Urban Non-Residential Collector.
- Modification to the design standards of an Urban Non-Residential Collector Street (Retail Row Street)

#### **ROADWAY CLASSIFICATIONS**

• The streets proposed for this project would be classified as either Urban Non-Residential Collector or Urban Local or "private commercial (local)" streets. Please refer to Figure 12, which presents the recommended classifications for the proposed streets shown on the Preliminary Plan. The figure also shows the classification of the adjacent existing roadways as described in the "Existing Roadways" section.

#### MTCP-IDENTIFIED FUTURE NEEDED ROADWAY IMPROVEMENT PROJECTS

- The *El Paso County Major Transportation Corridors Plan (MTCP*) calls for improvement to US Hwy 24 from Garrett Road to Woodmen Road and upgrade to a rural six-lane Principal Arterial. As mentioned in the "Existing Roadways" section above, CDOT will be completing a US Hwy 24 corridor improvement project that will widen the roadway to four lanes from Garrett Road to Woodmen Road. Construction is expected to begin in 2025.
- Although not in the immediate area, the *MTCP* calls for an upgrade to Falcon Highway to a two-lane, rural Minor Arterial from US Hwy 24 to one mile east of Curtis Road. Also, the *MTCP* calls for an upgrade to Eastonville Road from McLaughlin to Latigo Boulevard as a rural road upgrade to a two-lane Rural Minor Arterial.
- The project would need to construct a sidewalk or potentially a multi-use trail, along the north side of Woodmen Road between the US Hwy 24 intersection and the current sidewalk located about 450 feet northwest of US Hwy 24. This point is adjacent to the connection.

# MULTI-MODAL TRANSPORTATION & TRANSPORTATION DEMAND MANAGEMENT OPPORTUNITIES

- The following section describes the details of a pedestrian/bicycle connection between this project and the Rock Island Trail.
- Trail connections exist between the Rock Island Trail and the Woodmen Hills neighborhoods to the north of US Highway 24.
- A Park & Ride facility has been developed nearby at the intersection of Meridian Road and Swingline Road. Future Mountain Metropolitan Transit bus service may be added to/from this Park & Ride location.

#### PEDESTRIAN & BICYCLE FACILITIES

- The project would include urban street sections with sidewalks.
- Figure 11a shows the recommendation for curbed right-turn pedestrian islands. The traffic signal would be modified to provide full pedestrian access on all four legs of the intersection. These details would be shown as part of the traffic-signal modification plan and the intersection-improvement construction drawings. These design details and plans

would be part of the access permit process with CDOT and would need CDOT approval prior to issuance of a NTP (Notice-to-proceed).

- The project would need to construct a sidewalk or potentially a multi-use trail, along the north side of Woodmen Road between the US Highway 24 intersection and the current sidewalk on the north side of Woodmen Road, which currently ends about 450 feet northwest of Highway 24. This point is adjacent to the connection to the Rock Island Trail.
- Improvements to Rio Lane along the site frontage (sidewalk along the south side of the roadway adjacent to the site and on both sides of the street for the section within the site (development on both sides).
- "Rio Road"
- School Pedestrian Routes
  - School pedestrian connection to Falcon Elementary School: Potentially, a pedestrian connection could be implemented to connect to the northeast corner of the school district property, along with a pedestrian path to the school on the school district property. However, about 140' of private property lies between the southeast corner of this project and the northeast corner of the school district property.
  - If the above plan is not workable, the Preliminary Plan shows pedestrian connections to Rio Lane and Pinto Pony Road. Pinto Pony Road connects to Chief Road, which extends south to Falcon Highway. Pinto Pony Road and Chief Road are low volume, rural gravel roadways. Consideration could be given to providing a gravel-surface, pedestrian path/trail, with sufficient separation from the edge of the roadway along the north side of Falcon Highway between Chief Road and the school. Note: currently, there are almost no pedestrian facilities within the school district property and no sidewalks along Falcon Highway.

# COUNTY ROAD IMPROVEMENT FEE PROGRAM

• This project is subject to participation in the County Roadway Improvement Fee Program.

# US HIGHWAY ACCESS MANAGEMENT PLAN AND RIO LANE CLOSURE AT US HIGHWAY 24

- This project will implement part of the US Highway Access Management Plan. The intersection of Rio Lane/US Highway 24 is proposed to be closed, as shown in the adopted US Highway 24 Access Management Plan and the US 24 Planning and Environmental Linkages Study, October 2017. The project will help implement the US Highway 24 Access Management Plan by providing an alternative to the Rio Lane/US Highway 24 intersection.
- The site plan shows the proposed internal public streets for site circulation and the new connection to Rio Lane that would allow for the prescribed closure of the US Highway 24/Rio intersection, per CDOT's US Highway 24 Access Management Plan.
- This will benefit safety and traffic operations on US Highway 24. The existing Rio Lane/US Highway 24 intersection is substandard, as there are no left- and right-turn

lanes. The level of service during the peak hour is LOS F (96 seconds of delay per vehicle on average for vehicles wanting to turn onto US Highway 24).

- The project will generate trips using Rio Lane and Rio Road between Falcon Highway and the site, but it is important to note that by closing the direct Rio Lane connection to US Highway 24, the route used by cut-through traffic will be significantly more circuitous and will likely discourage motorists who currently use Rio Lane and Rio Road as a cut-through route to Falcon Highway.
- The recently completed Meridian Road extension south of Rolling Thunder, across US Highway 24 to Falcon Highway has improved the roadway connectivity to Falcon Highway (and traffic volumes show a resulting reduction in volume on Rio Lane and Rio Road).
- The County has indicated that they will require upgrades to Rio Lane and Rio Road, necessary to accommodate the resulting net traffic volumes on Rio Lane and Rio Road between Falcon Highway and the site. The details of recommended upgrades are included in the section above.
- The project will add a signal-controlled connection to US Highway 24 and Woodmen not only for this development but also for the benefit of the residents in Falcon Ranch Estates and Arrowhead Estates Filing No. 1. This connection will have left- and right-turn lanes on US Highway 24.
- The proposed roundabout is proposed to be constructed as a T-intersection (no south leg). However, a fourth (south) leg could be added in the future if/when adjacent propert(ies) southeast of The Commons at Falcon Field redevelop in the future. The applicant will reserve land southeast of the roundabout as right-of-way preservation for a potential future extension to the adjacent property, if ever needed.

# ROUNDABOUT ANALYSIS & DESIGN

A modern roundabout with a 180-foot inscribed circle diameter is proposed as the traffic control for the intersection of Woodmen Road/ Retail Row Street. Roundabout figures containing roundabout technical analysis are attached, along with a roundabout parameters table.

The horizontal layout and analysis exhibits have been completed using the criteria contained in the Wisconsin Department of Transportation roundabout design manual (as required by El Paso County). The attached roundabout figures and roundabout parameters table contain all the details for the currently proposed roundabout. The inscribed circle diameter is 180 feet and the design vehicles are a WB-50 truck and an El Paso County standard snowplow vehicle (per the *ECM*). However, the roundabout has also been designed to accommodate a larger WB-67 truck. The roundabout will also accommodate the standard county snowplow vehicle. The roundabout will accommodate pedestrians and bicyclists. Please refer to the attached roundabout-parameters table and figures for details. The final roundabout design report will be submitted following the review and County staff acceptance of the horizontal layout shown on attached exhibits.

#### CDOT ACCESS PERMITTING

CDOT access permits will be required for the street connection to the US Highway 24/Woodmen Road intersection and for the closure of Rio Lane at US Highway 24. Per recent meetings with CDOT, coordination will continue as this project and the adjacent Highway 24 CDOT project move forward.

#### CONCLUSIONS AND RECOMMENDATIONS

#### **Trip Generation**

The Commons at Falcon Field is expected to generate about 3,584 new external vehicle trips on the average weekday, with about half entering and half exiting the site during a 24-hour period. During the morning peak hour, about 118 vehicles would enter and 142 vehicles would exit the site. During the afternoon peak hour, approximately 287 vehicles would enter and 254 vehicles would exit the site.

#### Traffic Operations Analysis

• The signalized intersection of US Highway 24/Woodmen Road is projected to operate at LOS D or better during both peak hours for the short-term and year-2044 scenarios. The El Paso County *Engineering Criteria Manual (ECM)* standards were followed to develop turn-lane recommendations at the intersections. Figure 11a provides the turn-lane conceptual design for this intersection. Please refer to the Level of Service and Queuing Analysis sections of this report for additional details and discussion.

#### **Recommended Improvements**

- A list of recommended improvements within the site and in the study area is presented in Table 4.
- The intersection of US Highway 24/Rio Lane is to be closed and the proposed Collector roads within the site will connect Rio Lane to the US Highway 24/Woodmen intersection.

Short-term improvements assumed at the intersection of US 24/Woodmen Road would include:

- The fourth leg of the intersection with a northwest-bound left-lane, two northwest-bound through-lanes, and northwest-bound right-lane as shown in Figure 11a;
- Raised right-turn islands for pedestrian accessibility;
- Lane alignment and median modifications on the existing northwest of the intersection as shown in Figure 12a;
- Signal modifications including installation of traffic-signal components needed for the new leg; and

• Auxiliary turn lanes on US Highway 24 to serve the trips/vehicle turning movements associated with the new fourth leg of this intersection. This new fourth leg would serve site traffic and background traffic shifted from the closure of the US Highway 24/ Rio Lane connection.

Based on the 2044 total traffic volumes shown in Figure 10 and the criteria contained in the *State of Colorado Highway Access Code,* the following deceleration and acceleration lanes are required on US Highway 24:

- A northeast-bound right-turn deceleration lane is warranted on US Highway 24 approaching Woodmen Road. Based on a posted speed limit of 55 mph, the prescribed lane length for the deceleration lane is 600 feet plus a 222-foot taper.
- A southwest-bound left-turn deceleration lane is warranted on US Highway 24 approaching Woodmen Road. Based on a posted speed limit of 55 mph, the prescribed lane length for the deceleration lane is 600 feet plus 100 feet of storage and a 222-foot taper.
- A northwest-bound right-turn acceleration lane is warranted on US Highway 24 east of Woodmen Road. Based on a posted speed limit of 55 mph, the prescribed lane length for the acceleration lane is 960 feet plus a 222-foot taper.

Based on the 2044 total traffic volumes shown in Figure 10 and the criteria contained in the *ECM*, the following deceleration and acceleration lanes are required on Retail Row Street:

- A southwest-bound left-turn lane is warranted on Retail Row Street approaching Nunbird Court. Based on a design speed limit of 25 mph, the *ECM*-required lane length would be 115 feet for deceleration, 50 to 75 feet for storage, and a 80-foot taper. Based on the available lane length and the 95<sup>th</sup> percentile queue length analysis results shown in Figure 11, LSC recommends a 100-foot left-turn lane plus 65-foot reverse curve bay taper.
- A northeast-bound left-turn lane is not projected to be warranted on Retail Row Street approaching Dunlin Drive. However, this lane will be needed to algin with the recommended left-turn lane approaching Nunbird Court. Based on a design speed limit of 25 mph, the *ECM*-required lane length would be 115 feet for deceleration, 50 to 75 feet for storage, and an 80-foot taper. Based on the available lane length and the 95<sup>th</sup> percentile queue length analysis results shown in Table 3, LSC recommends a 165-foot left-turn lane plus 80-foot taper.
- A northeast-bound left-turn lane is projected to be warranted on Retail Row Street approaching Willet Way. Based on a design speed limit of 25 mph, the *ECM*-required lane length would be 115 feet for deceleration, 100 feet for storage, and a 80-foot taper. Based on the available lane length and the 95<sup>th</sup> percentile queue length analysis results shown in Table 3, LSC recommends a 120-foot left-turn lane plus a 50 to 75-foot reverse curve bay taper.
- A northeast-bound left-turn lane is projected to be warranted on Retail Row Street approaching Rio Lane. Based on a design speed limit of 25 mph, the *ECM*-required lane length would be 115 feet for deceleration, 100 feet for storage, and a 80-foot taper. Based

on the available lane length and the 95<sup>th</sup> percentile queue length analysis results shown in Table 3, LSC recommends a 115-foot left-turn lane plus a 50 to 75-foot reverse curve bay taper.

\* \* \* \* \*

Please contact me if you have any questions regarding this report.

Sincerely,

LSC TRANSPORTATION CONSULTANTS, INC.

By: Jeffrey C. Hodsdon, P.E. Principal

JCH/KDF/JAB:jas

Enclosures: Tables 2-4 Figures 1-12 Roundabout Figures 1-9 Roundabout Design Parameters Table Traffic Count Reports Level of Service Reports Queuing Report NCHRP Report 684

References:

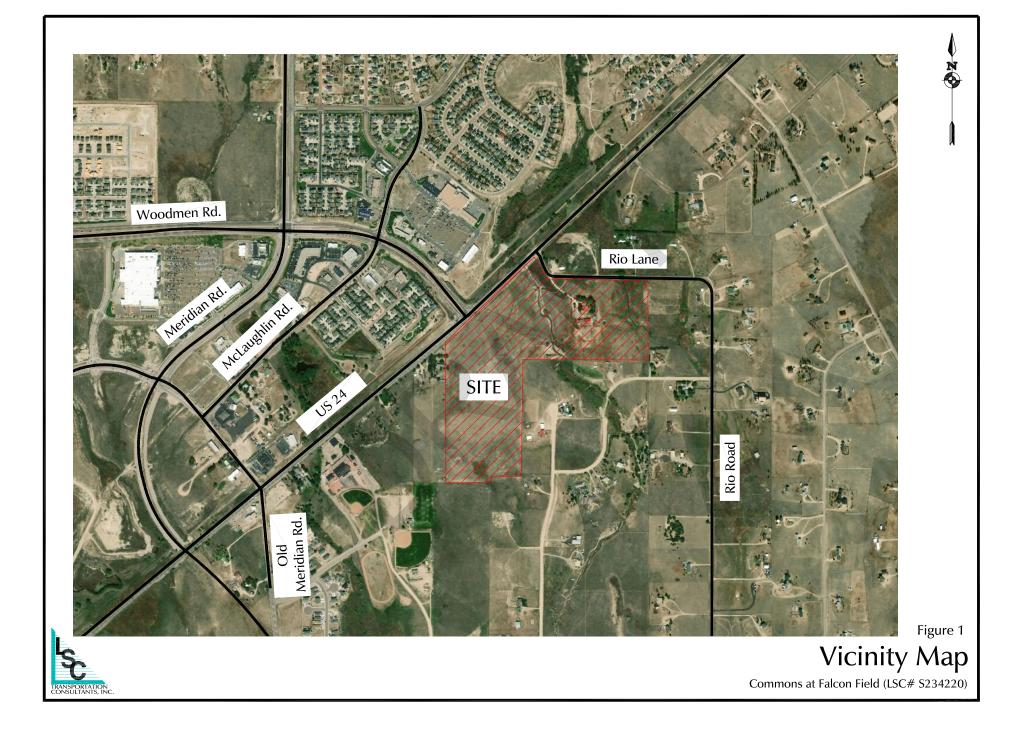
Trip Generation Handbook - An ITE Proposed Recommended Practice, Third Edition September 2017, Institute of Transportation Engineers
Trip Generation, 10<sup>th</sup> Edition, 2017, Institute of Transportation Engineers
El Paso County Major Transportation Corridors Plan, 2016
Engineering Criteria Manual, 2016, El Paso County
NCHRP Report 684 Enhancing Internal Trip Capture Estimation for Mixed-Use Developments, 2011, Transportation Research Board
State Highway Access Code, Volume Two, 2002, Colorado Department of Transportation
US 24 Access Control Plan, 2005
US 24 PEL Final Corridor Conditions Report, December 2016

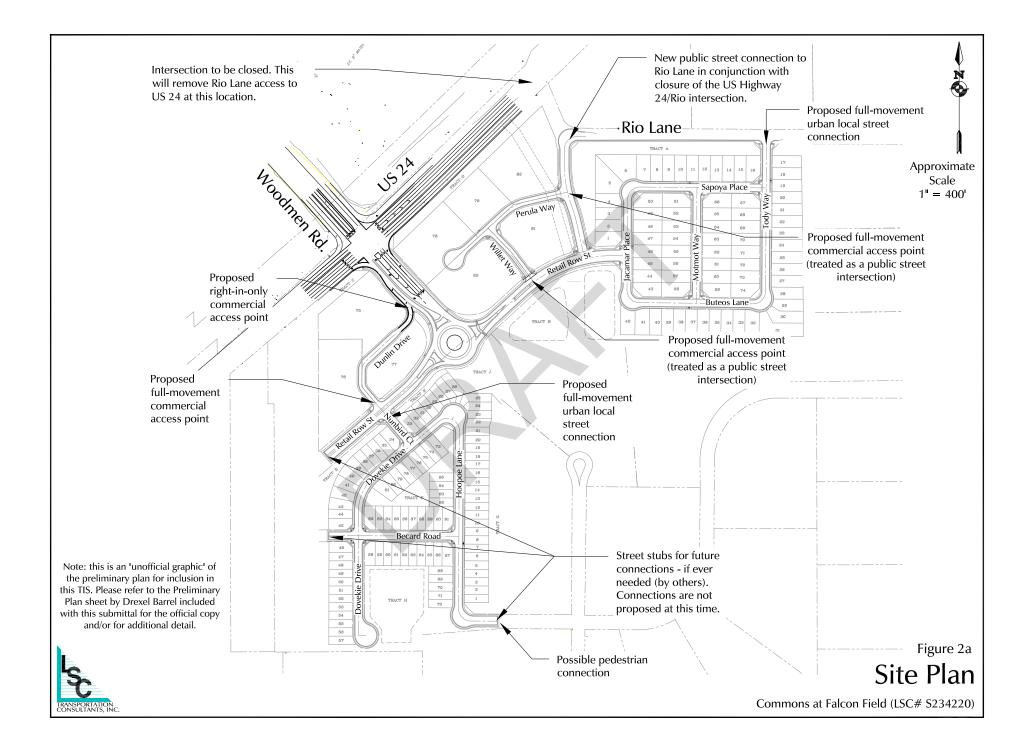


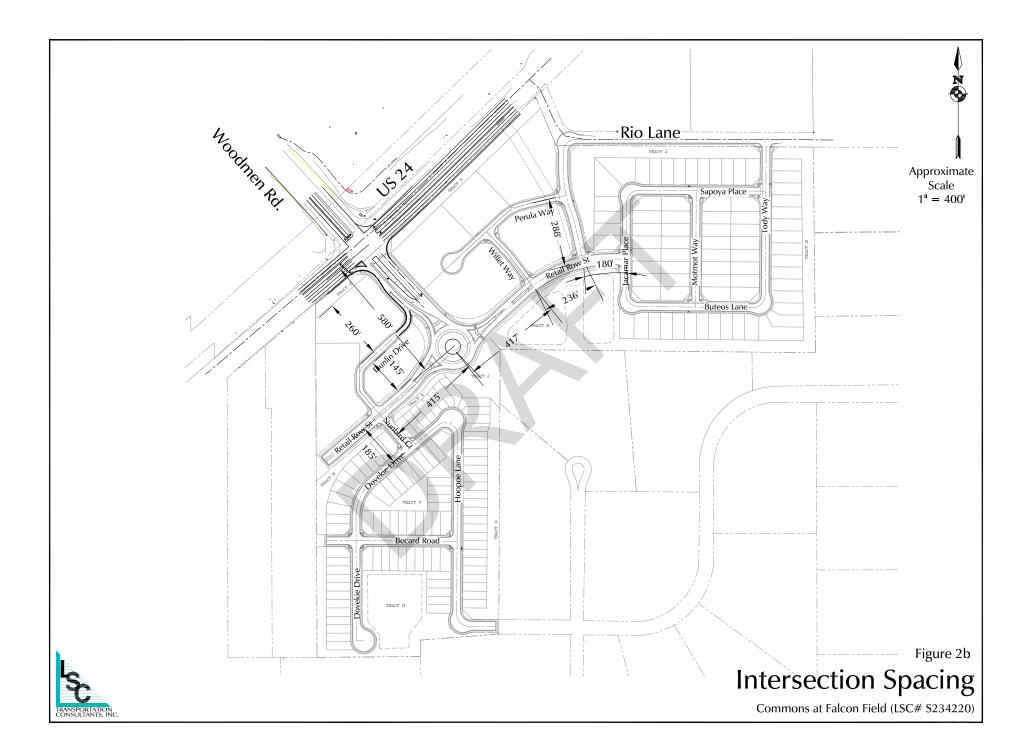


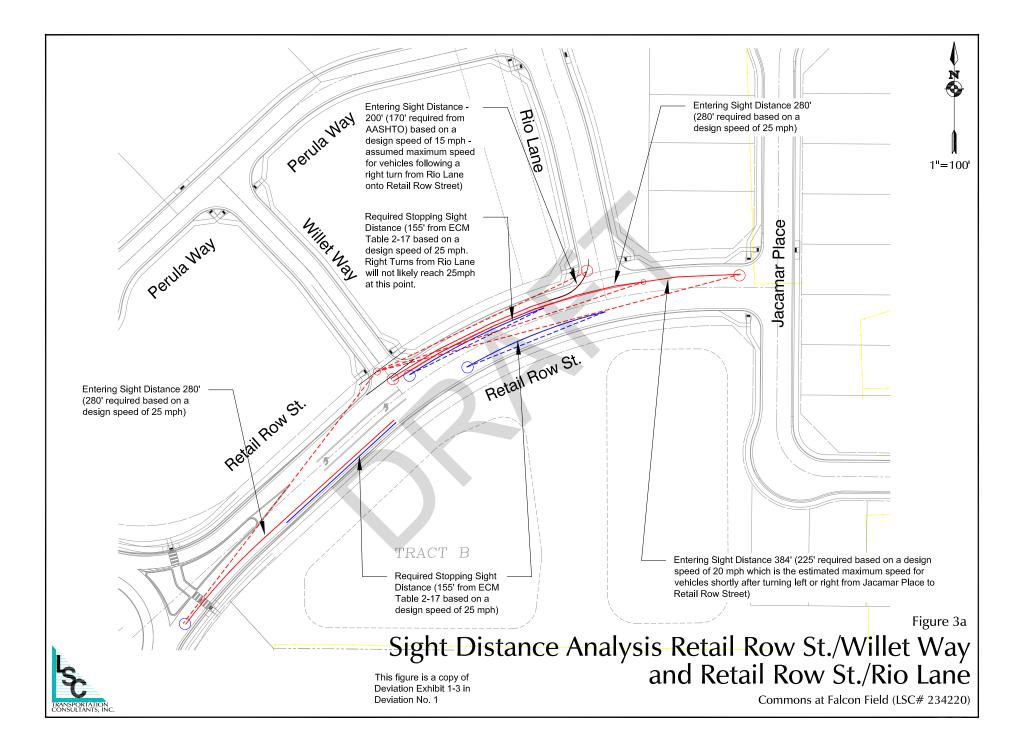
|                |                                           |                       |                    |               |         |                   |         |                       |              |           |                   | p Genera         | able 2<br>ration Estimati<br>ns at Falcon F |             |     |                        |          |                    |               |                  |                  |           |                        |                       |                        |                                 |                                  |
|----------------|-------------------------------------------|-----------------------|--------------------|---------------|---------|-------------------|---------|-----------------------|--------------|-----------|-------------------|------------------|---------------------------------------------|-------------|-----|------------------------|----------|--------------------|---------------|------------------|------------------|-----------|------------------------|-----------------------|------------------------|---------------------------------|----------------------------------|
|                |                                           |                       | _                  |               |         | . (1)             |         |                       |              |           |                   |                  |                                             |             |     | (2)                    |          |                    |               |                  |                  |           |                        | Total Passby<br>Trips |                        | Total<br>Diverted Link<br>Trips | Total New<br>"External"<br>Trips |
| Land           |                                           | Trin                  |                    | rip Gener     |         |                   |         | -                     |              | ips Gene  |                   |                  |                                             |             |     | nerated <sup>(2)</sup> |          |                    |               |                  | Generate         |           | Dees by                | Generated             | Diverted<br>Link       | Generated                       | Generated                        |
| Land<br>Use    | Land Use                                  | Trip<br>Generation    | Average<br>Weekday | Morr<br>Peak- | •       | Afterno<br>Peak-H |         | Average<br>Weekday    | Mor<br>Peak⊷ | -         |                   | rnoon<br>-Hour   | Average<br>Weekday                          | Mor<br>Peak | -   | Afternoo<br>Peak-Ho    |          | Average<br>Weekday | Morı<br>Peak- | •                | After<br>Peak-   |           | Pass-by<br>Trip        | Average<br>Weekday    | Trip                   | Average<br>Weekday              | Average<br>Weekday               |
| Code           | Description                               | Units                 | Traffic            | In            | Out     |                   | Out     | Traffic               | In           | Out       | In                | Out              | Traffic                                     | In          | Out |                        | Out      | Traffic            | In            | Out              | In               | Out       | Percent <sup>(3)</sup> |                       | Percent <sup>(3)</sup> |                                 | Traffic                          |
|                | 2000.19.000                               |                       |                    |               |         |                   |         |                       |              |           |                   |                  |                                             |             |     |                        |          |                    |               | • • • •          |                  |           |                        |                       |                        |                                 |                                  |
|                | n Estimate Based on the Currently Propose |                       |                    |               |         |                   |         |                       |              |           |                   |                  |                                             |             |     |                        |          |                    |               |                  |                  |           |                        |                       |                        |                                 |                                  |
|                | ping Plaza (40-150 KSF No Supermarket)    | 84 KSF <sup>(2)</sup> | 67.52              | 1.07          | 0.66    |                   | 2.65    | 5,672                 | 90           | 55        | 214               | 222              | 283                                         | 1           | 1   | 21<br>6                | 6        | 5,389              | 89            | 54               | 193              | 216       | 34%                    | 1,832                 | 26%                    | 1,401                           | 2,156                            |
| 210 Single-    | e-Family Detached Housing                 | 169 DU <sup>(4)</sup> | 9.43               | 0.18          | 0.53    | 0.59              | 0.35    | 1,594<br><b>7,266</b> | 30<br>120    | 89<br>144 | 100<br><b>314</b> | 59<br><b>281</b> | 166<br><b>449</b>                           | 1           | 1   | 0                      | 21<br>27 | 1,428<br>6,817     | 29<br>118     | 88<br><b>142</b> | 94<br><b>287</b> | 38<br>254 | 0%                     | 0 1,832               | 0%                     | <u> </u>                        | 1,428<br><b>3,584</b>            |
|                |                                           |                       |                    |               |         |                   |         | 1,200                 | 120          | 144       | 514               | 201              |                                             | 4           | -   | 21                     | 21       | 0,017              | 110           | 142              | 207              | 204       |                        | 1,032                 |                        | 1,401                           | 3,004                            |
| rip Generation | n Estimate From the Falcon Field 2021 Rez | one Master Tra        | fic Impact S       | atudv         |         |                   |         |                       |              |           |                   |                  |                                             |             |     |                        |          |                    |               |                  |                  |           |                        |                       |                        |                                 |                                  |
| 821 Shopp      | oing Plaza (40-150 KSF No Supermarket)    | 84 KSF                | 67.52              | 1.07          | 0.65    | 2.55              | 2.64    | 5,672                 | 90           | 55        | 214               | 222              | 227                                         | 6           | 4   | 15                     | 16       | 5,445              | 84            | 51               | 199              | 206       | 34%                    | 1,851                 | 0%                     | 0                               | 3,594                            |
|                | e Family Detached Housing                 | 80 DU                 | 10.28              | 0.20          | 0.56    |                   | 0.38    | 822                   | 16           | 45        | 51                | 30               | 102                                         | 2           | 3   | 8                      | 7        | 720                | 14            | 42               | 43               | 23        | 0%                     | 0                     | 0%                     | 0                               | 720                              |
| 220 Multi F    | Family Housing (Low Rise)                 | 145 KSF               | 6.93               | 0.11          | 0.36    | 0.36              | 0.21    | 1,005                 | 16           | 52        | 52                | 31               | 125                                         | 2           | 3   | 8                      | 8        | 880                | 14            | 49               | 44               | 23        | 0%                     | 0                     | 0%                     | 0                               | 880                              |
|                |                                           |                       |                    |               |         |                   |         | 7,499                 | 122          | 152       | 317               | 283              | 454                                         | 10          | 10  | 31                     | 31       | 7,045              | 112           | 142              | 286              | 252       |                        | 1,851                 |                        | 0                               | 4,474                            |
|                |                                           |                       | Cha                | nae in Tr     | ip Gene | aration Est       | stimate | -233                  | -2           | -8        | -3                | -2               | -5                                          | -8          | -8  | -4                     | -4       | -228               | 6             | 0                | 1                | 2         |                        | -19                   |                        |                                 | -890                             |

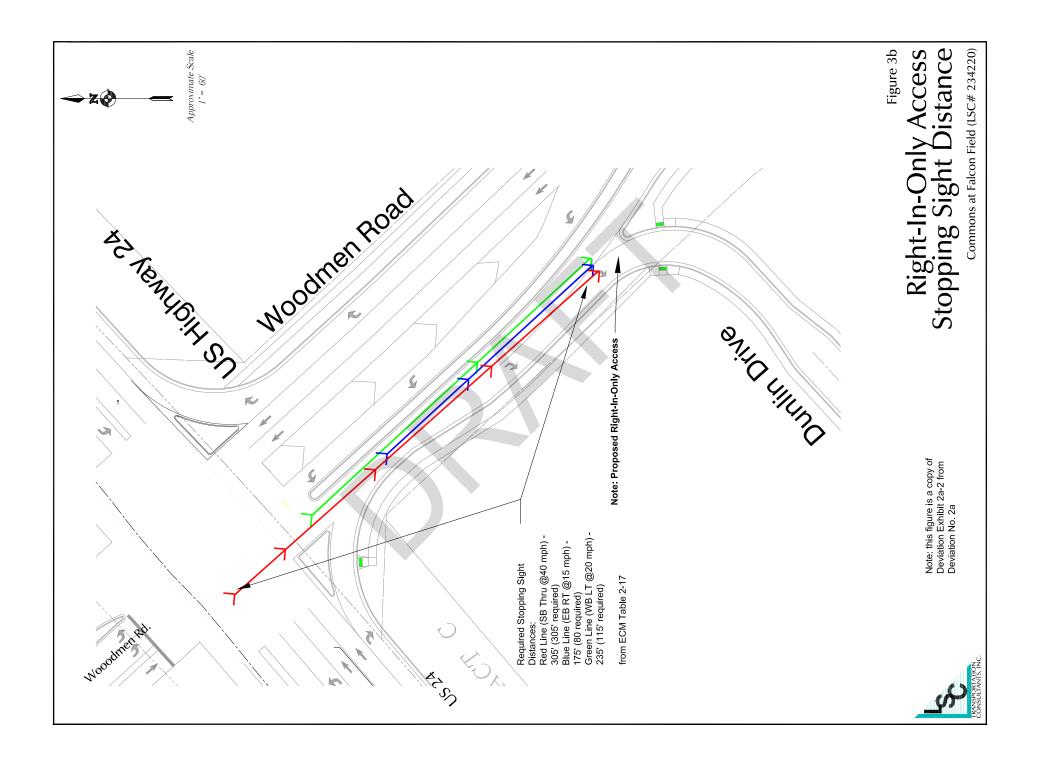
| Intersection                 | Turning Movement                          | Recommended Length<br>(feet)             | ECM/CDOT Standard<br>(feet)               | Maximum Queue (feet) |  |
|------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|----------------------|--|
|                              | Northwestbound Left*                      | 260 Decel + Storage<br>80 Bay Taper      | 155 Decel<br>150 Storage<br>160 Bay Taper | 137                  |  |
|                              | Northwestbound Through                    | 260 (second through lane)                |                                           | 196                  |  |
|                              | Northwestbound Right                      | 260 Decel                                | 155 Decel                                 | 0                    |  |
| US 24/Woodmen                | Northeastbound Right (Accel)              | 960 Accel<br>225 Taper                   | 960 Accel<br>225 Taper                    |                      |  |
|                              | Northeastbound Right                      | 600 Decel<br>225 Taper                   | 600 Decel<br>225 Taper                    | 64                   |  |
|                              | Southwestbound Left                       | 600 Decel<br>100 Storage<br>225 Taper    | 600 Decel<br>100 Storage<br>225 Taper     | 255                  |  |
| Retail Row St/<br>Dunlin Dr/ | Eastbound Left                            | 165 (Decel + Storage)<br>80 Bay Taper    | 115 Decel<br>50 Storage<br>80 Bay Taper   | <5                   |  |
| Nunbird Ct                   | Westbound Left                            | 100 (Decel + Storage)<br>65 Bay Taper    | 115 Decel<br>50 Storage<br>80 Bay Taper   | 34                   |  |
| Retail Row St/<br>Willet Way | Eastbound Left                            | 120 (Decel + Storage) 115 De             |                                           |                      |  |
| Retail Row St/<br>Rio Lane   | Eastbound Left                            | 115 (Decel + Storage)<br>50-75 Bay Taper | 115 Decel<br>100 Storage<br>80 Bay Taper  | 25                   |  |
| otential long-term future 2n | d left turn to be striped out with initia | I construction                           |                                           | 3/4/202              |  |

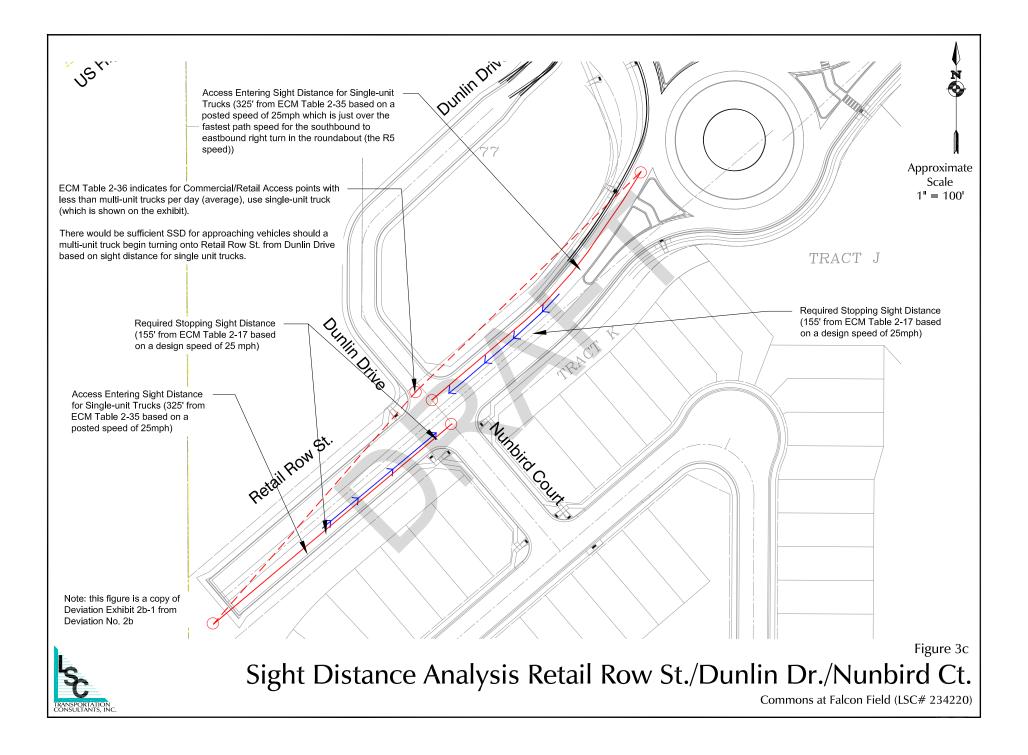

# Table 3: Auxiliary Lane Analysis - Lane Dimensions and Projected Queues


| ltem # | Improvement                                                                                                                                                                                                                                                                                                                                                                                            | Timing                                                                                                                       | Responsibility                                                                                                                                                                                                                                                                    |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|        | •                                                                                                                                                                                                                                                                                                                                                                                                      | gment Improvements                                                                                                           |                                                                                                                                                                                                                                                                                   |  |  |  |
| 1      | Construct Retail Row Street as an Urban Non-Residential Collector with a modified<br>cross section                                                                                                                                                                                                                                                                                                     | With the subdivision (plat)                                                                                                  | Applicant                                                                                                                                                                                                                                                                         |  |  |  |
| 2      | Upgrade Rio Lane (Falcon Highway to the site) to Urban Local standards or a<br>County approved alternative; pedestrian facilities would be included in the Urban<br>Local cross section evaluate the roadway for potential traffic calming measures.                                                                                                                                                   | Current Traffic Volumes exceed Rural<br>Local Design ADT                                                                     | Applicant to contribute a proportionate share to an escrow<br>account. Proportionate share shall be finalized with the plat. T<br>plat or site development plan warranting the improvements w<br>be responsible to construct                                                      |  |  |  |
| 3      | Widen US Highway 24 to provide two through lanes in each direction from Garrett Road to east of Woodmen Road, plus associated/other corridor improvements.                                                                                                                                                                                                                                             | Per recent meeting with CDOT:<br>Construction to begin 2025.                                                                 | CDOT/US Highway 24 project                                                                                                                                                                                                                                                        |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                        | oodmen Road Intersection                                                                                                     |                                                                                                                                                                                                                                                                                   |  |  |  |
| 4      | Extend the southwestbound left-turn deceleration lane plus transition taper on US<br>Hwy 24 (westbound) approaching Woodmen Road to 700 feet. This requires<br>widening of the box culvert under US Hwy 24 just west of the<br>US Hwy 24/Rio Lane intersection.                                                                                                                                        | With site development, when the peak-<br>hour volume for this movement<br>exceeds 10 vph<br>Requires the closure of Rio Lane | Applicant                                                                                                                                                                                                                                                                         |  |  |  |
| 5      | Potential future lengthening/extension of the southwestbound right-turn deceleration lane on US Highway 24 at Woodmen Road to CDOT standards (600 feet plus transition taper).                                                                                                                                                                                                                         | To be determined by CDOT                                                                                                     | CDOT (potentially as part of the US Highway 24 project) Note:<br>any additional cost associated with any culvert widening needer<br>specifically for the right-turn lane, and the lengthening of the right<br>turn lane itself should not be the responsibility of this applicant |  |  |  |
| 6      | Construct a 600 foot-long northeastbound right-turn deceleration lane plus transition taper on US Hwy 24 (eastbound) approaching Woodmen Road                                                                                                                                                                                                                                                          | With site development, when the peak-<br>hour volume for this movement<br>exceeds 10 vph                                     | Applicant                                                                                                                                                                                                                                                                         |  |  |  |
| 7      | Construct a northwestbound right-turn acceleration lane on US Hwy 24 (eastbound) from the Woodmen Road intersection. Rio Lane would be closed with the added southern leg of the Woodmen/US Hwy 24 intersection and this will allow for the full-length, CDOT standard acceleration lane.                                                                                                              | With site development, when the peak-<br>hour volume for this movement<br>exceeds 10 vph                                     | Applicant                                                                                                                                                                                                                                                                         |  |  |  |
| 8      | Construct a 960 foot-long northwestbound right-turn acceleration lane (plus transition taper) on US Hwy 24 (eastbound) east of Woodmen Road.                                                                                                                                                                                                                                                           | With the closure of Rio Lane                                                                                                 | Applicant                                                                                                                                                                                                                                                                         |  |  |  |
| 9      | Construct the southeast leg of the intersection. as shown in Figure 11b. Modify the northwest leg of this intersection such that lanes need to align across US Hwy 24 (also shown in Figure11b) (within allowable/acceptable lane offset tolerances and considering protected/permissive left-turn sight distance and left-turning vehicle paths).                                                     | With the subdivision (plat)                                                                                                  | Applicant                                                                                                                                                                                                                                                                         |  |  |  |
| 10     | Construct 260' northwestbound left-turn lane plus 80' Taper.                                                                                                                                                                                                                                                                                                                                           | With the subdivision (plat)                                                                                                  | Applicant                                                                                                                                                                                                                                                                         |  |  |  |
| 11     | Construct 260' northwestbound right-turn decleration lane plus 80' Taper.                                                                                                                                                                                                                                                                                                                              | With the subdivision (plat)                                                                                                  | Applicant                                                                                                                                                                                                                                                                         |  |  |  |
| 12     | Modify the northwest leg (Woodmen Road) <b>as needed</b> so lanes align across US<br>Hwy 24; construct raised/curbed right turn islands for pedestrians and for installing a<br>signal pole on the northeast corner, construct a sidewalk connection to the Rock<br>Island Trail (which connects to the sidewalk along the north side of Woodmen Road<br>adjacent to the Falcon Town Center (Safeway). | With the subdivision (plat)                                                                                                  | Applicant                                                                                                                                                                                                                                                                         |  |  |  |
| 13     | Traffic signal system modifications, pedestrian accommodations, signing/striping<br>improvements to convert the existing intersection from a<br>T intersection to a four-leg intersection.                                                                                                                                                                                                             | With the subdivision (plat)                                                                                                  | Applicant                                                                                                                                                                                                                                                                         |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                        | ail Row Street                                                                                                               |                                                                                                                                                                                                                                                                                   |  |  |  |
| 13     | Construct a modern roundabout at Woodmen/Retail Row Street (See roundabout figures and design parameters table)                                                                                                                                                                                                                                                                                        | With the subdivision (plat)                                                                                                  | Applicant                                                                                                                                                                                                                                                                         |  |  |  |
| 14     | Construct 165 foot long northeastbound left-turn lane plus 80-foot taper on Retail<br>Row Street approaching Dunlin Drive.                                                                                                                                                                                                                                                                             | With the subdivision (plat)                                                                                                  | Applicant                                                                                                                                                                                                                                                                         |  |  |  |
| 15     | Construct 100 foot long southwestbound left-turn lane plus 65-foot reverse curve bay taper on Retail Row Street approaching Nunbird Court                                                                                                                                                                                                                                                              | With the subdivision (plat)                                                                                                  | Applicant                                                                                                                                                                                                                                                                         |  |  |  |
| 16     | Construct 120 foot long northeastbound left-turn lane plus 50 to 75-foot reverse curve bay taper on Retail Row Street approaching Willet Way                                                                                                                                                                                                                                                           | With the subdivision (plat)                                                                                                  | Applicant                                                                                                                                                                                                                                                                         |  |  |  |
| 17     | Construct 115 foot long northeastbound left-turn lane plus 50-foot reverse curve bay taper on Retail Row Street approaching Rio Lane                                                                                                                                                                                                                                                                   | With the subdivision (plat)                                                                                                  | Applicant                                                                                                                                                                                                                                                                         |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                        | f-Way Dedication & Preservation                                                                                              | A1                                                                                                                                                                                                                                                                                |  |  |  |
| 18     | CDOT required Right-of-way Dedication & Preservation along US Highway 24                                                                                                                                                                                                                                                                                                                               | With the subdivision (plat)                                                                                                  | Applicant                                                                                                                                                                                                                                                                         |  |  |  |
|        | US Highway 2                                                                                                                                                                                                                                                                                                                                                                                           | 4/Rio Lane Intersection                                                                                                      |                                                                                                                                                                                                                                                                                   |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                        | Short-Term - CDOT indicated at a                                                                                             |                                                                                                                                                                                                                                                                                   |  |  |  |

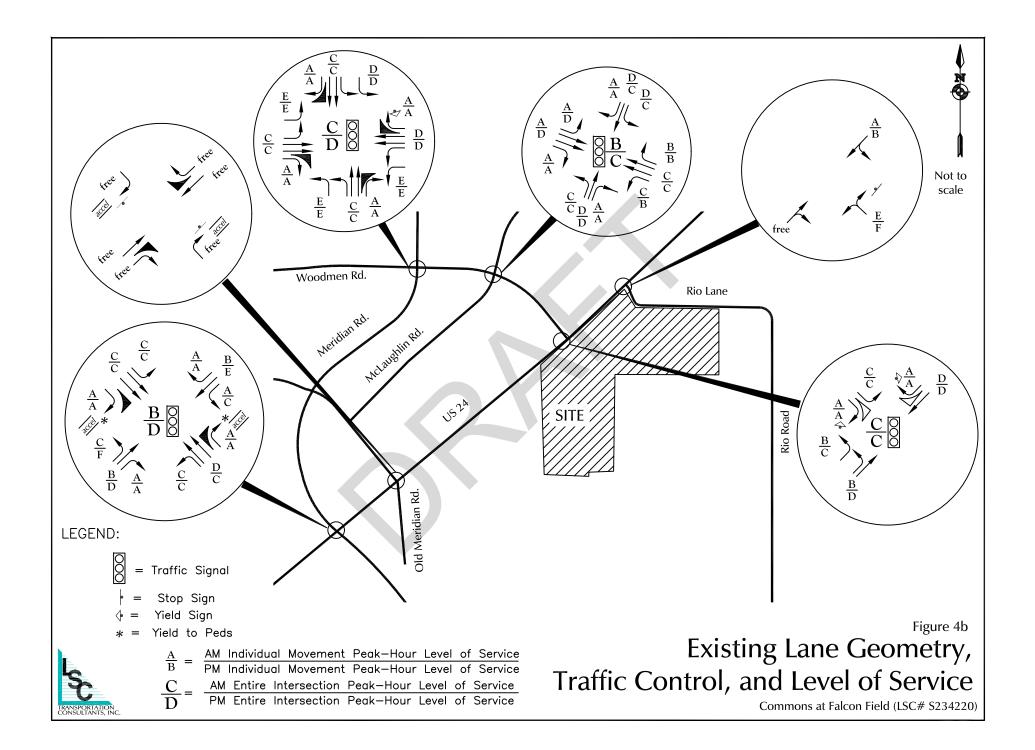

| 19         | Close intersection in conjuction with Improvement Nos. 1 and 9                                                                                | recent meeting that the Rio Lane<br>connection to Highway 24 will need to<br>be closed with Improvement No. 9. | Applicant |  |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|
|            | Falcon Highway/Rio Lane Intersection                                                                                                          |                                                                                                                |           |  |  |  |  |  |  |
| 20         | 20 Construct westbound right-turn deceleration lane Once westbound right-turning volume exceeds 50 right-turning vehicles per Applicant hour. |                                                                                                                |           |  |  |  |  |  |  |
| Source: LS | Source: LSC Transportation Consultants, Inc. (February 2024)                                                                                  |                                                                                                                |           |  |  |  |  |  |  |

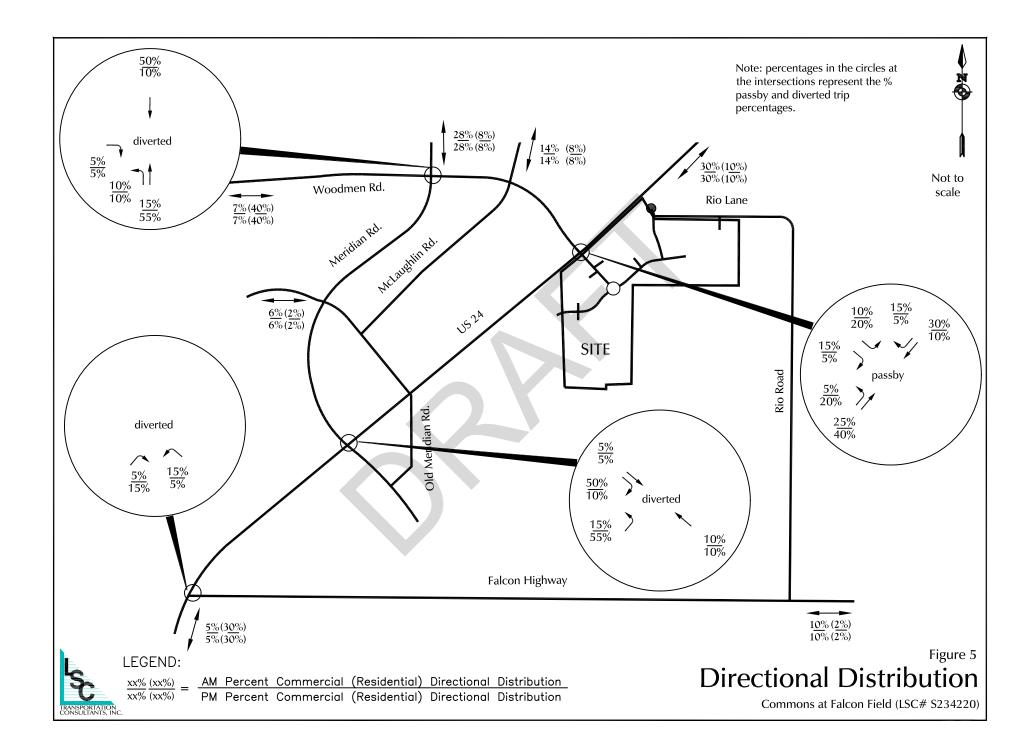


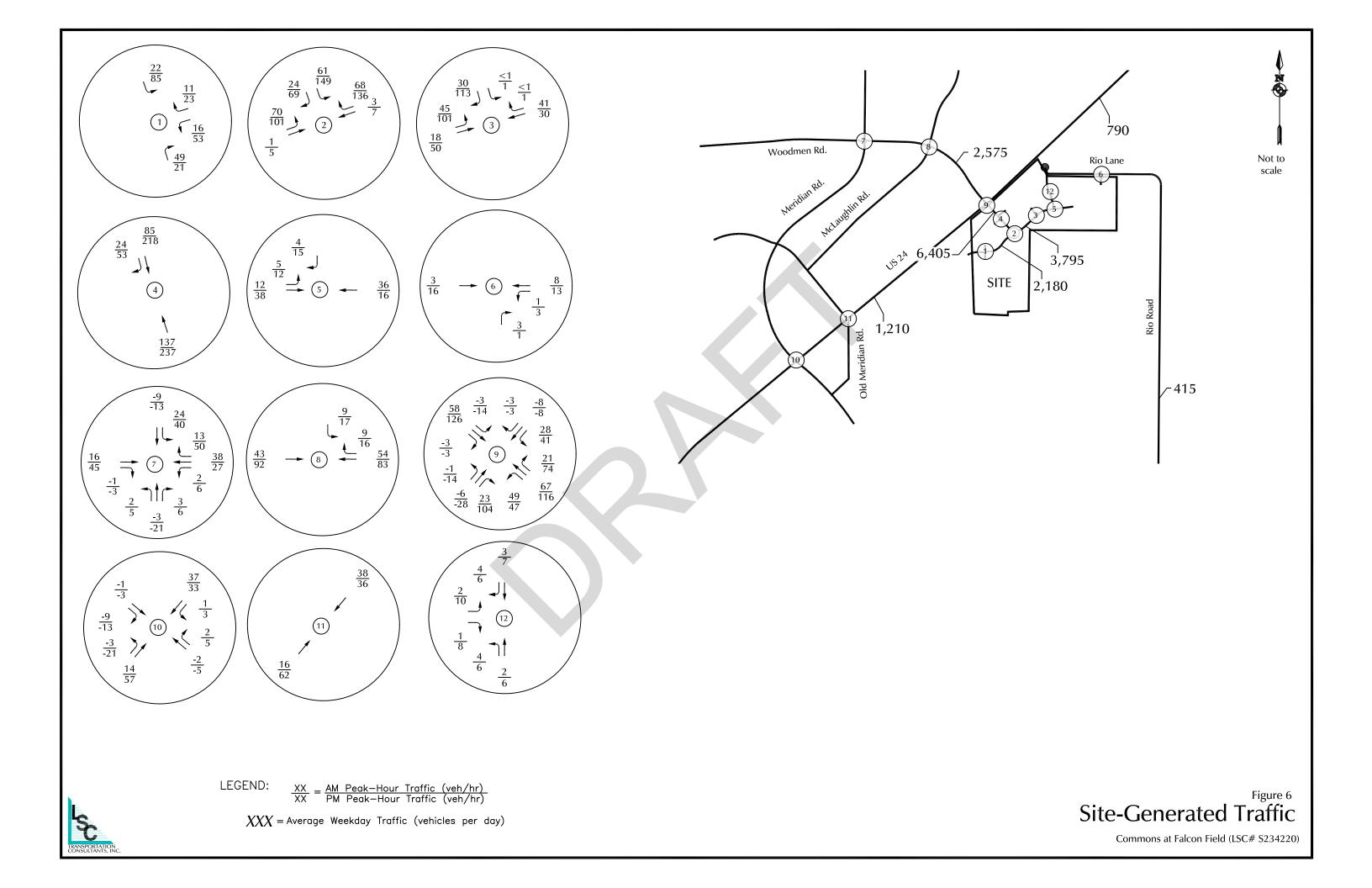



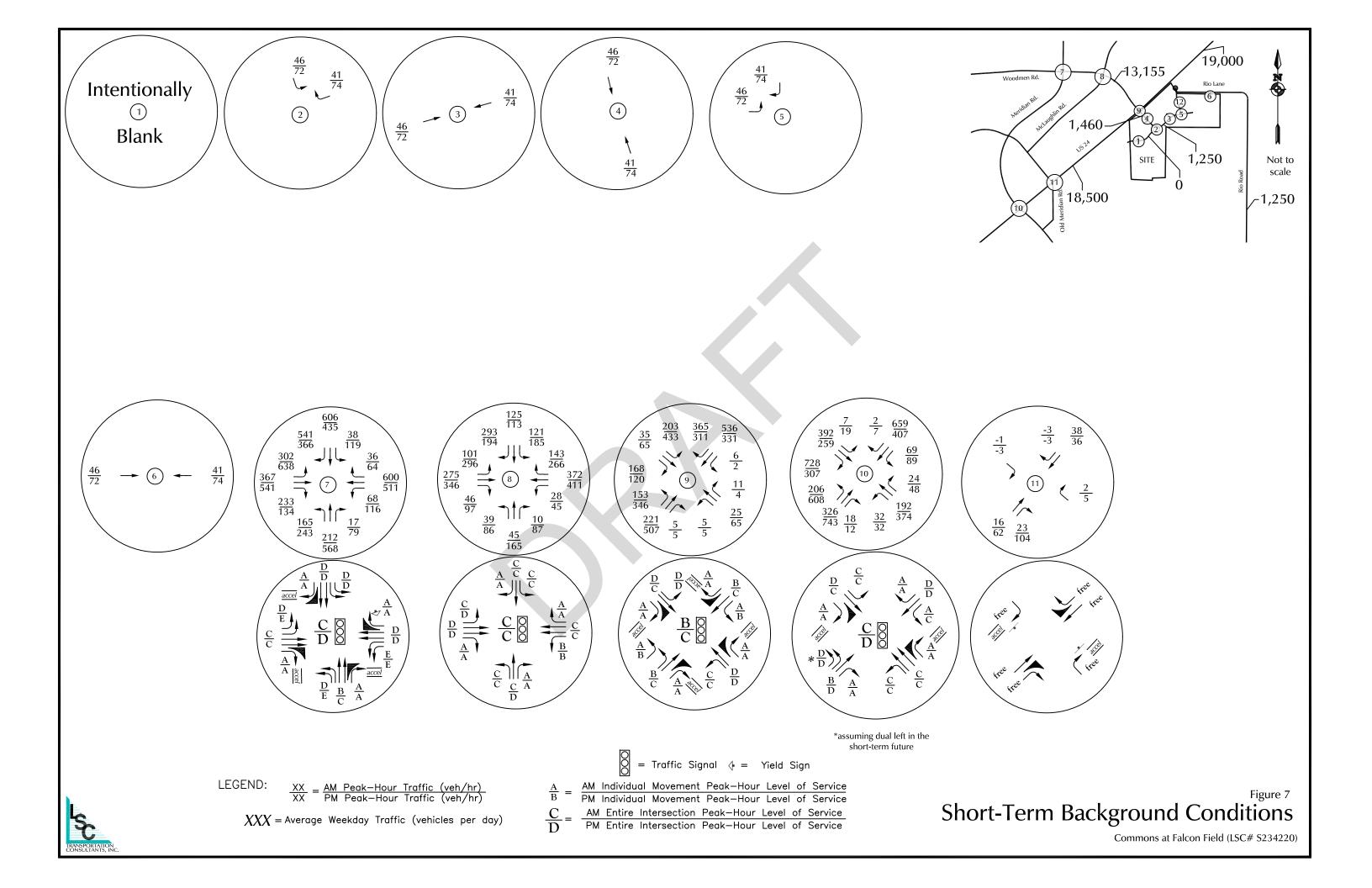



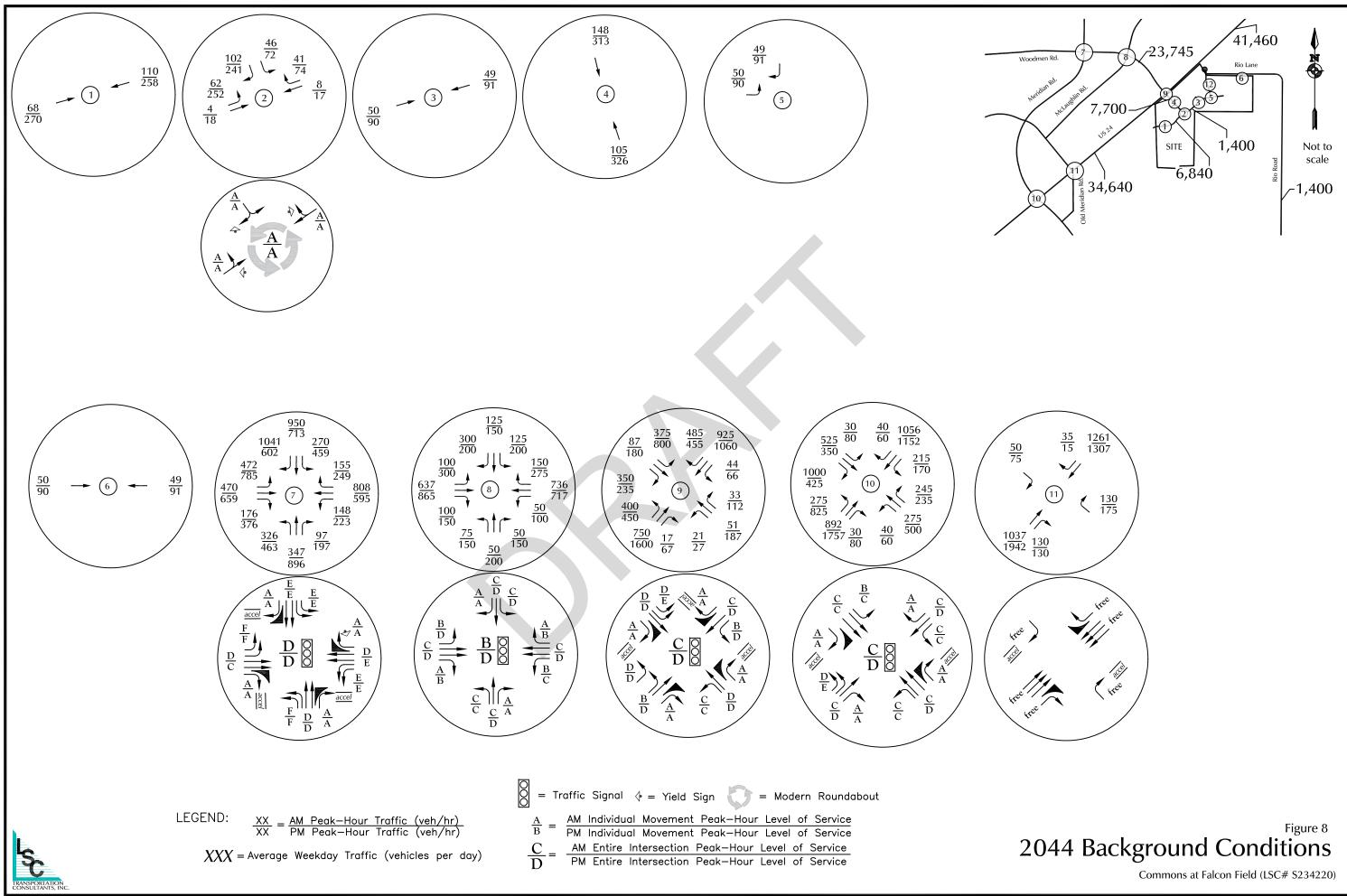


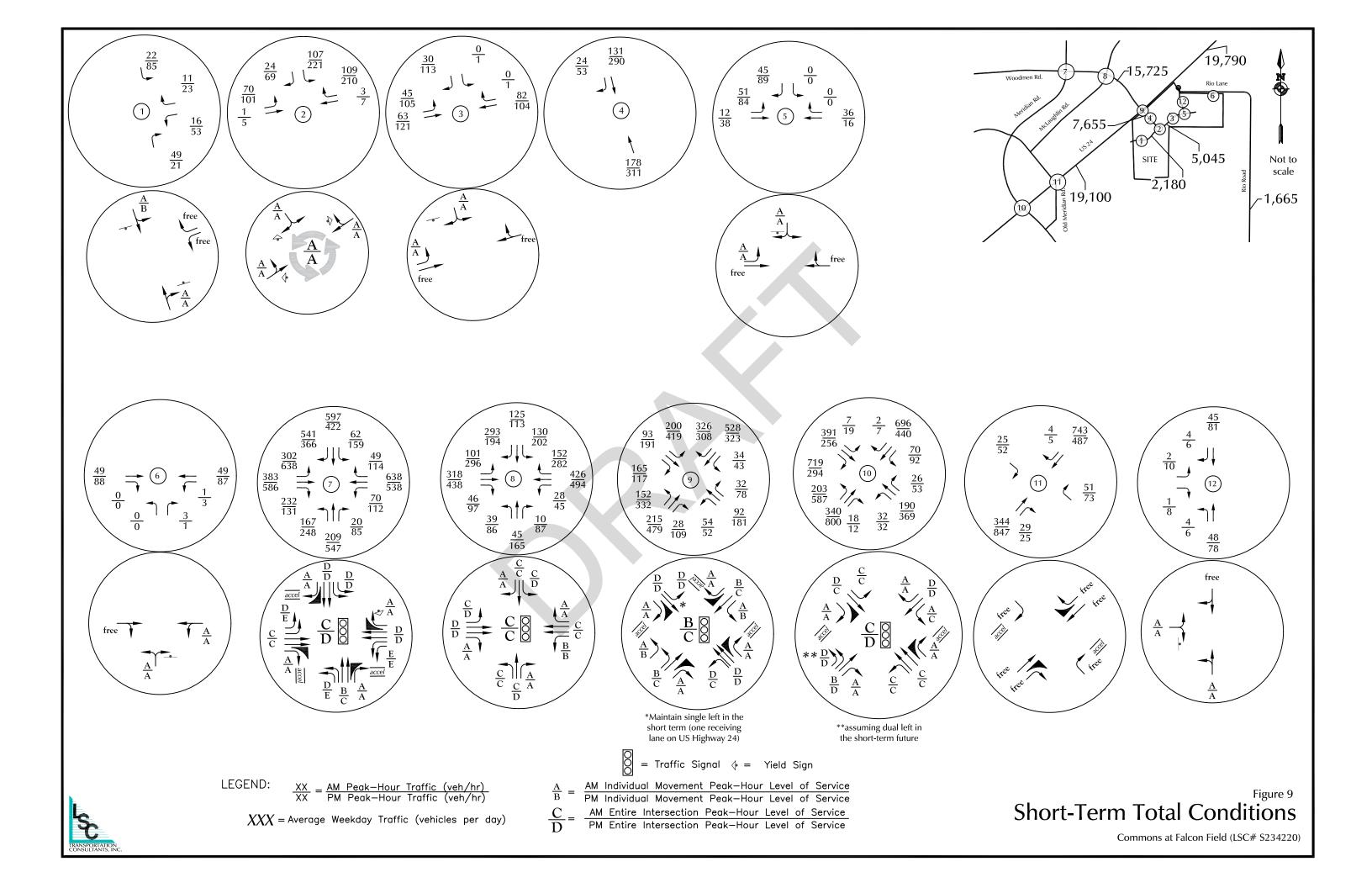



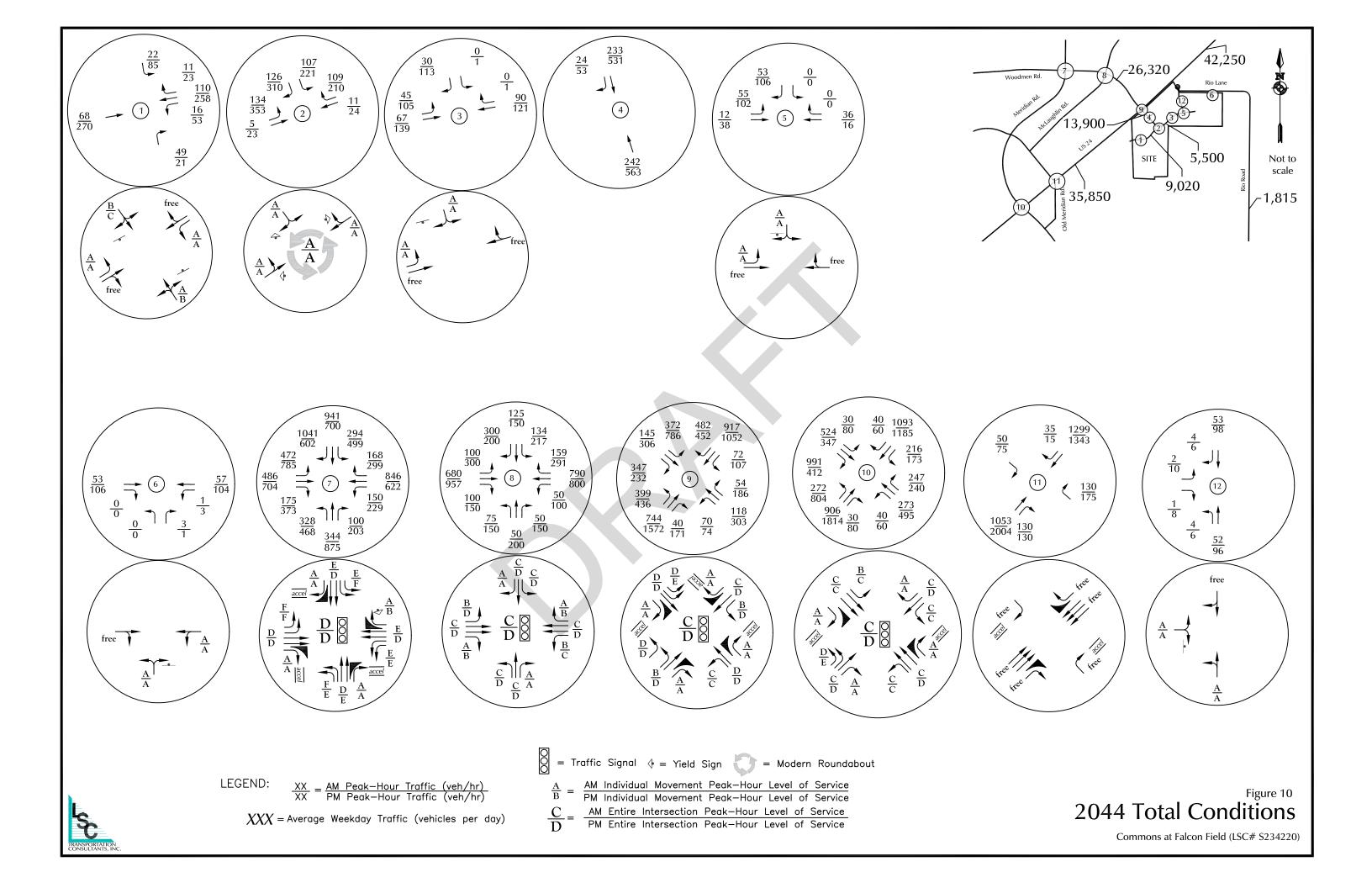



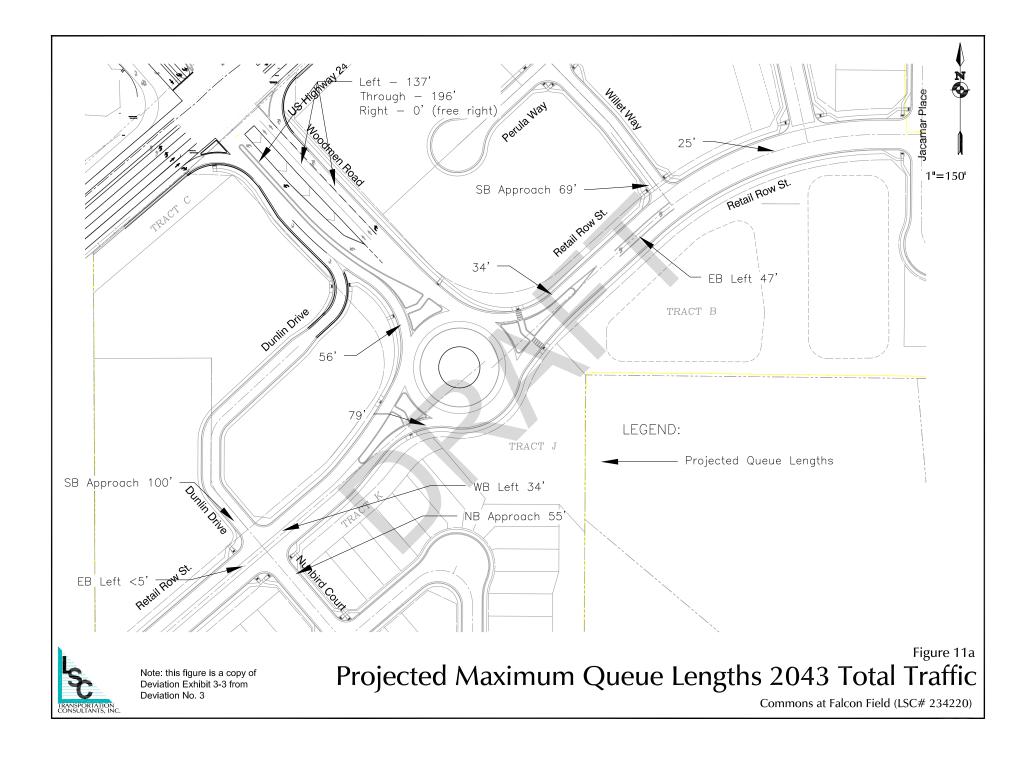



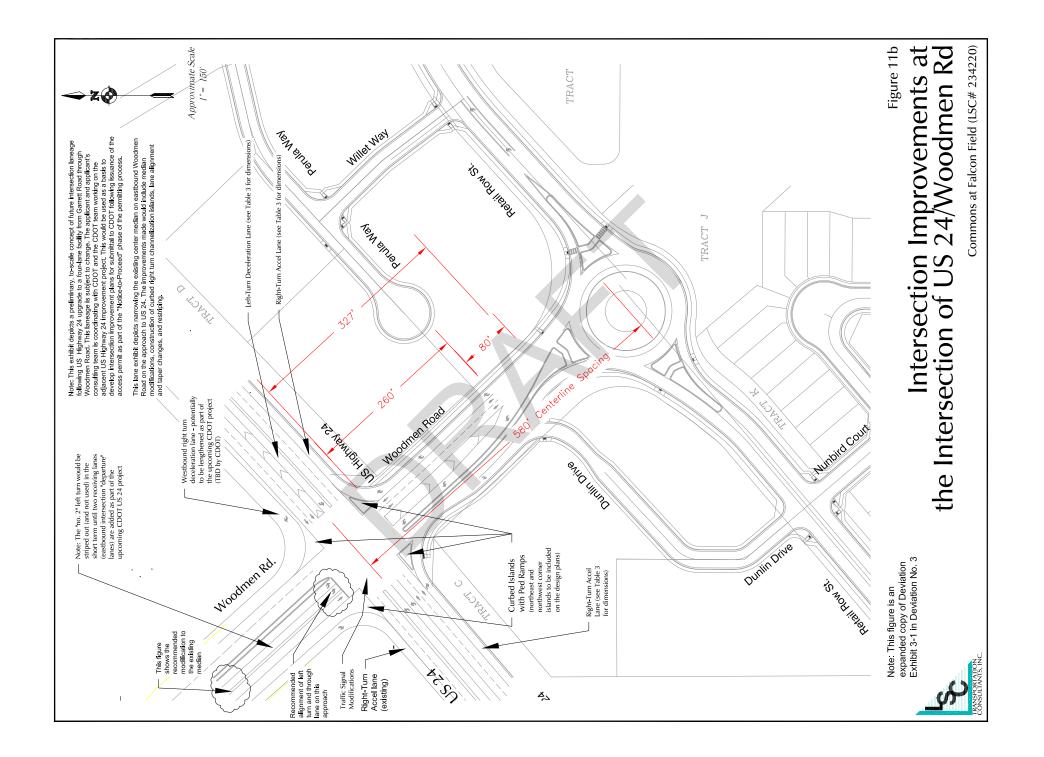



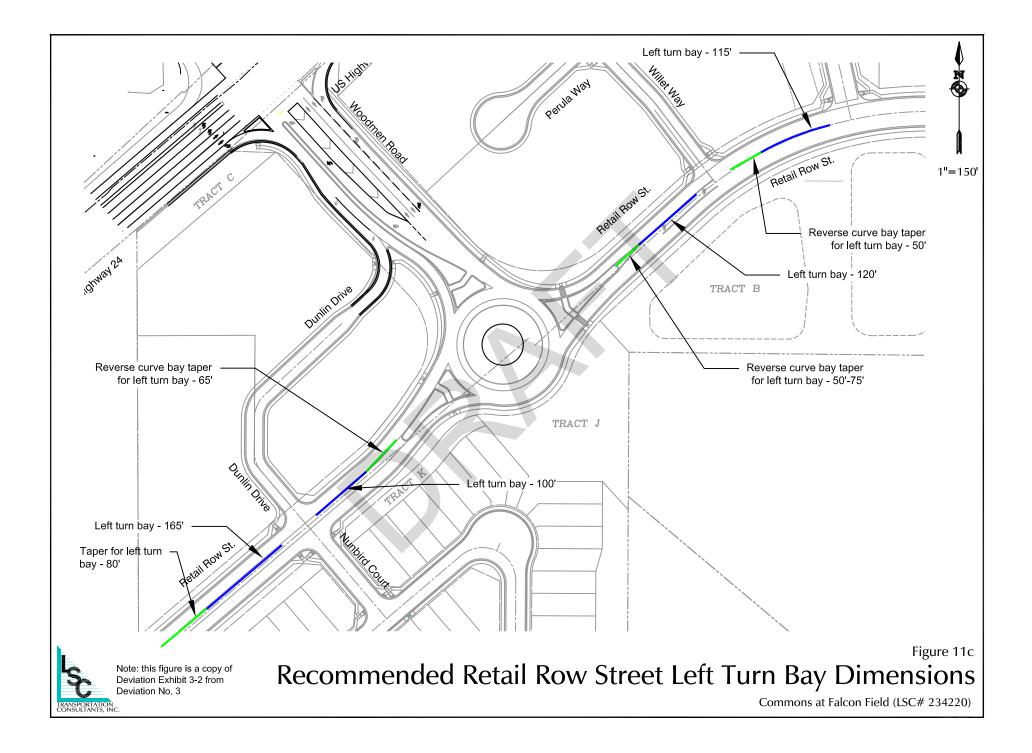



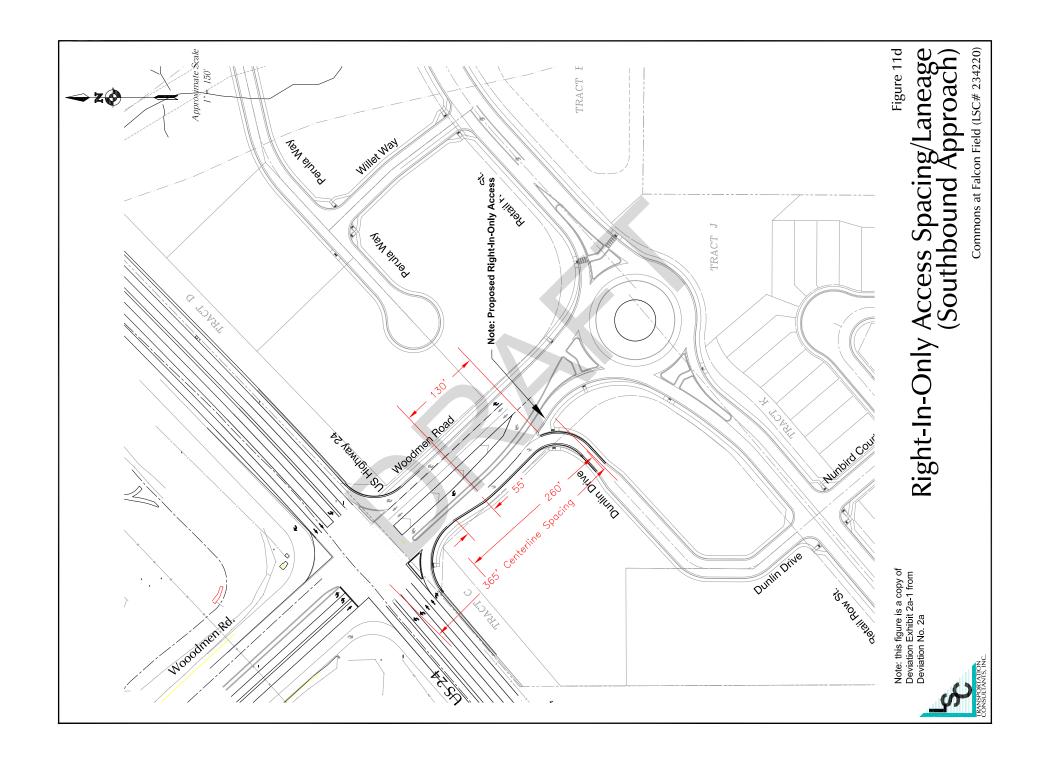



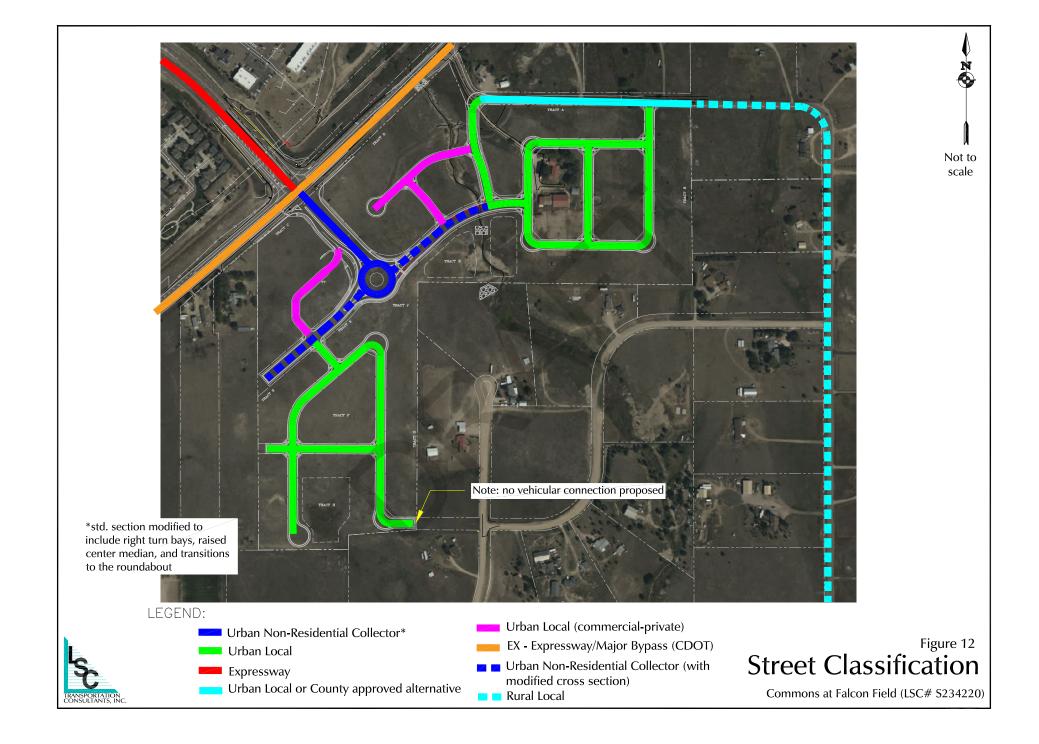



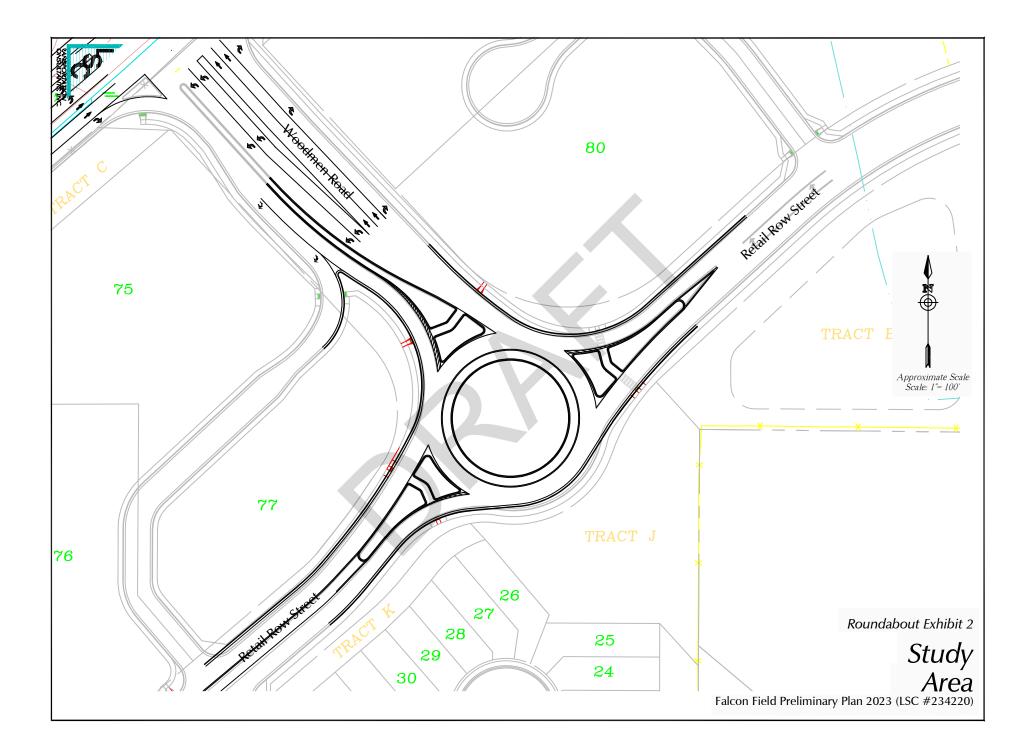



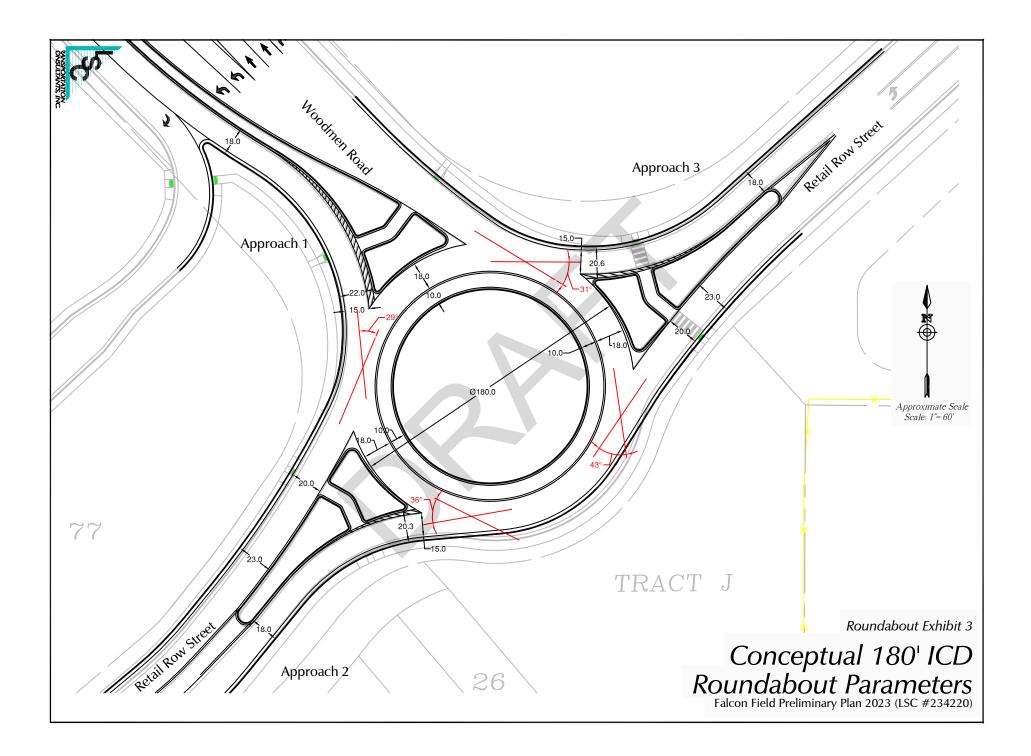



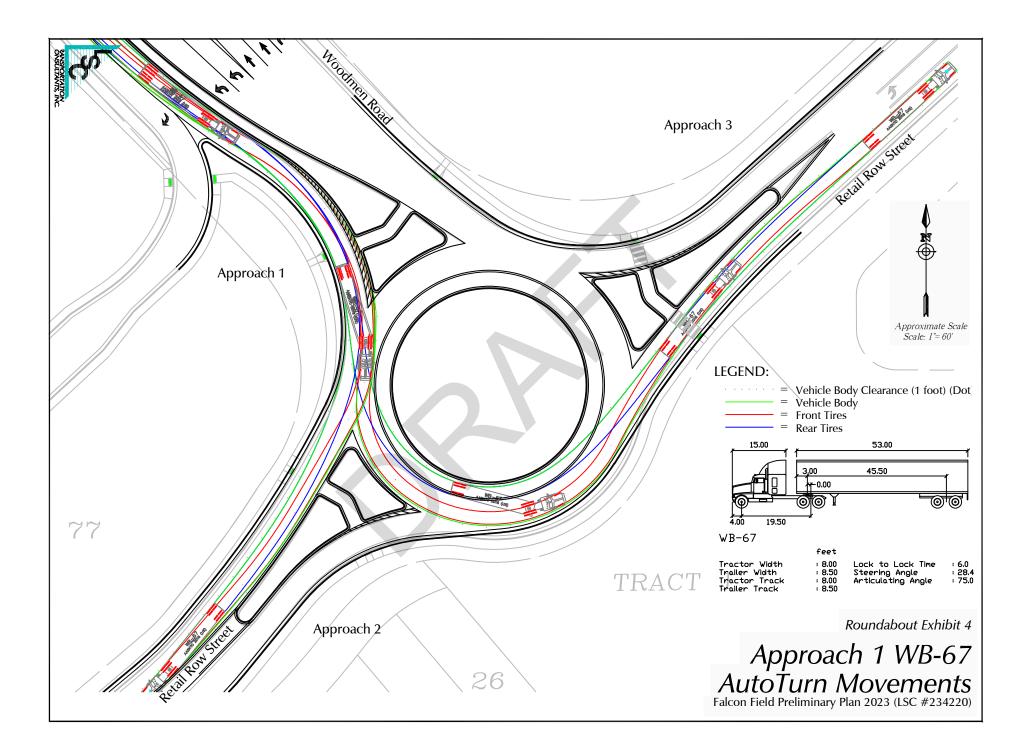


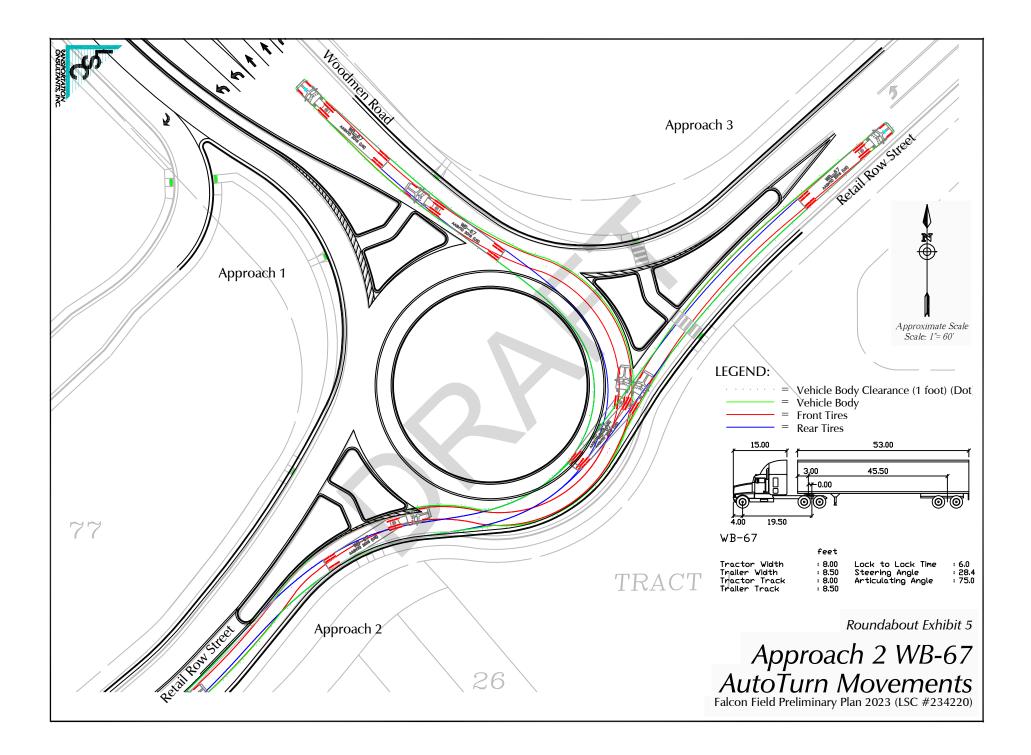


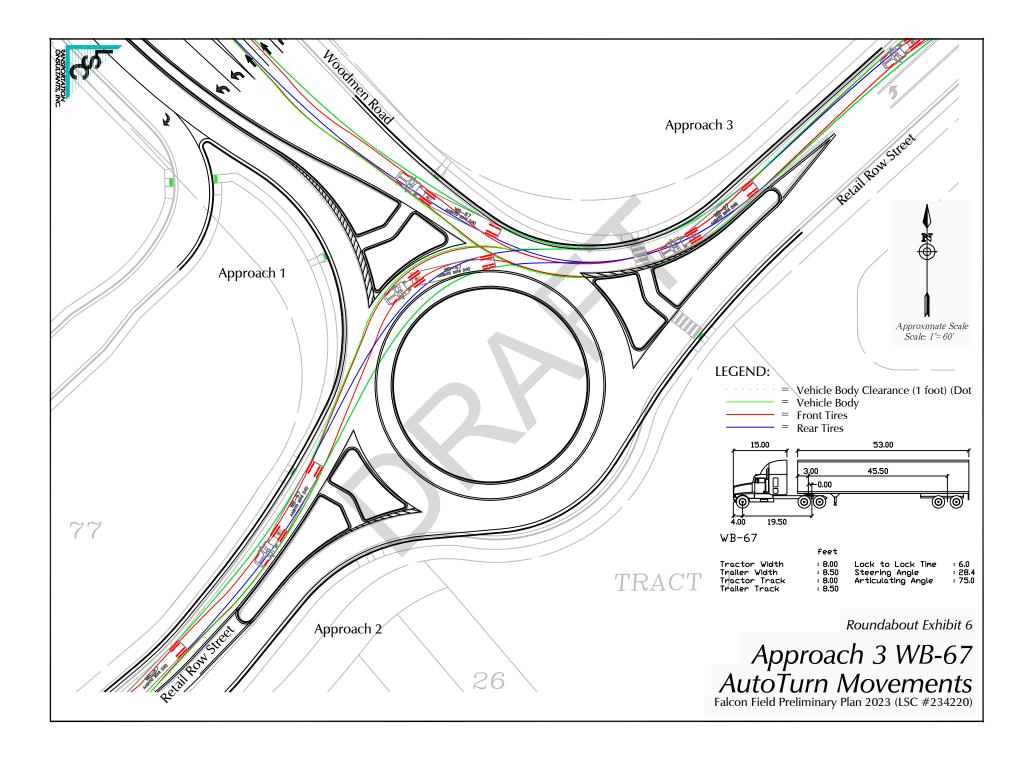


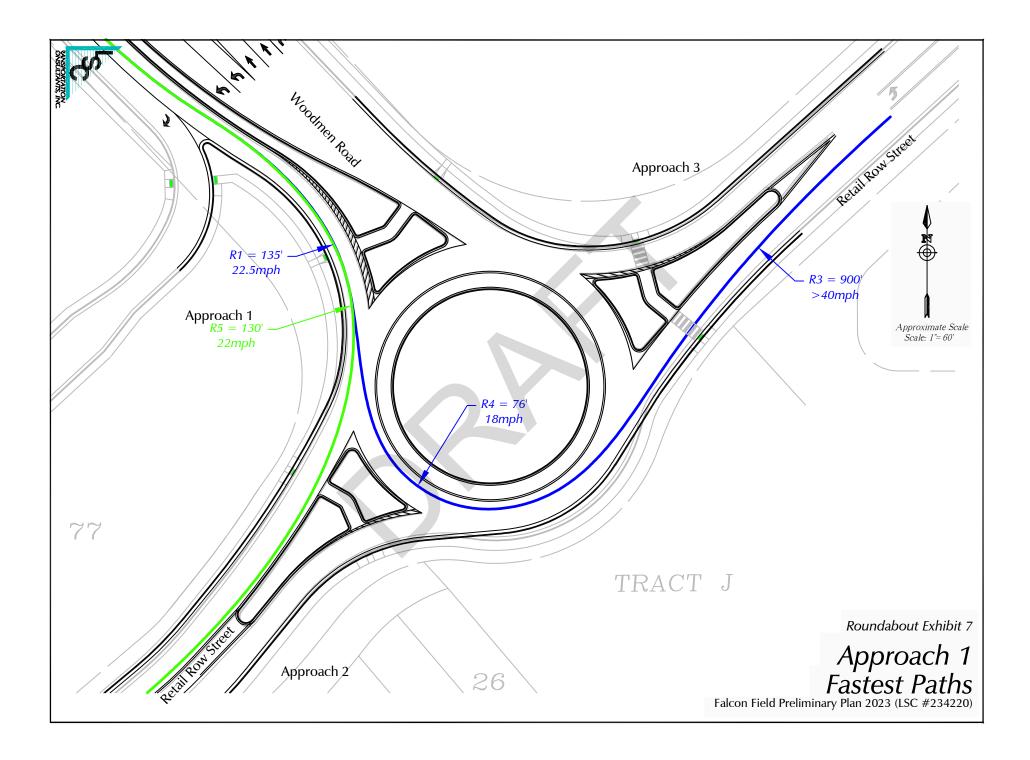



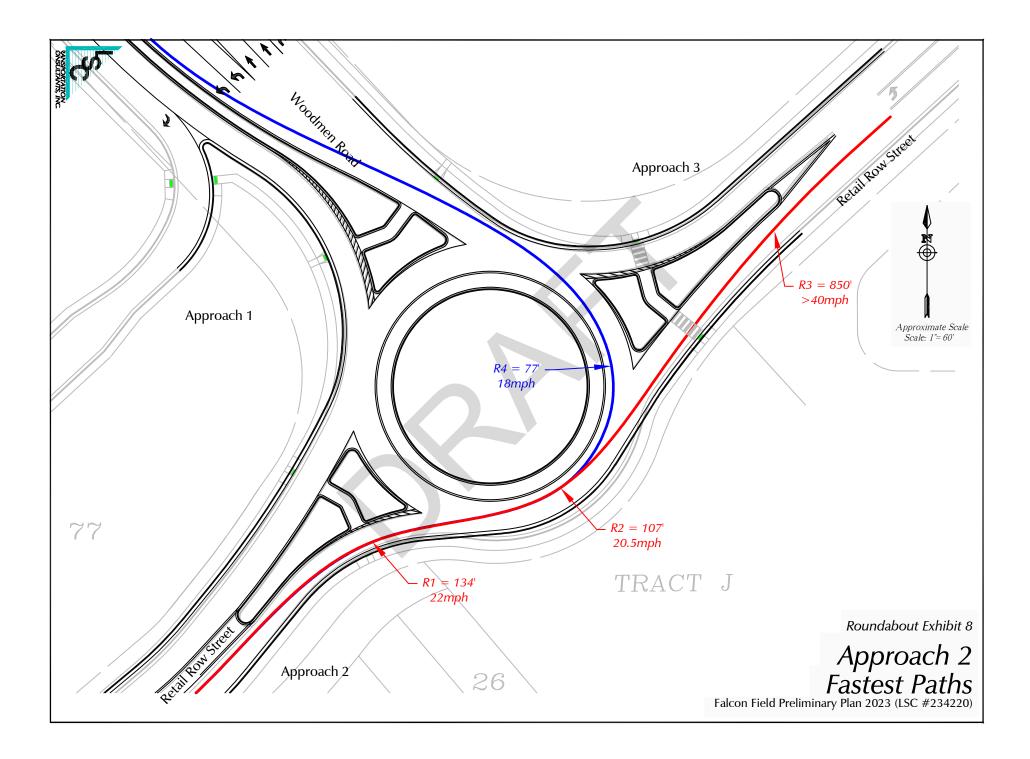



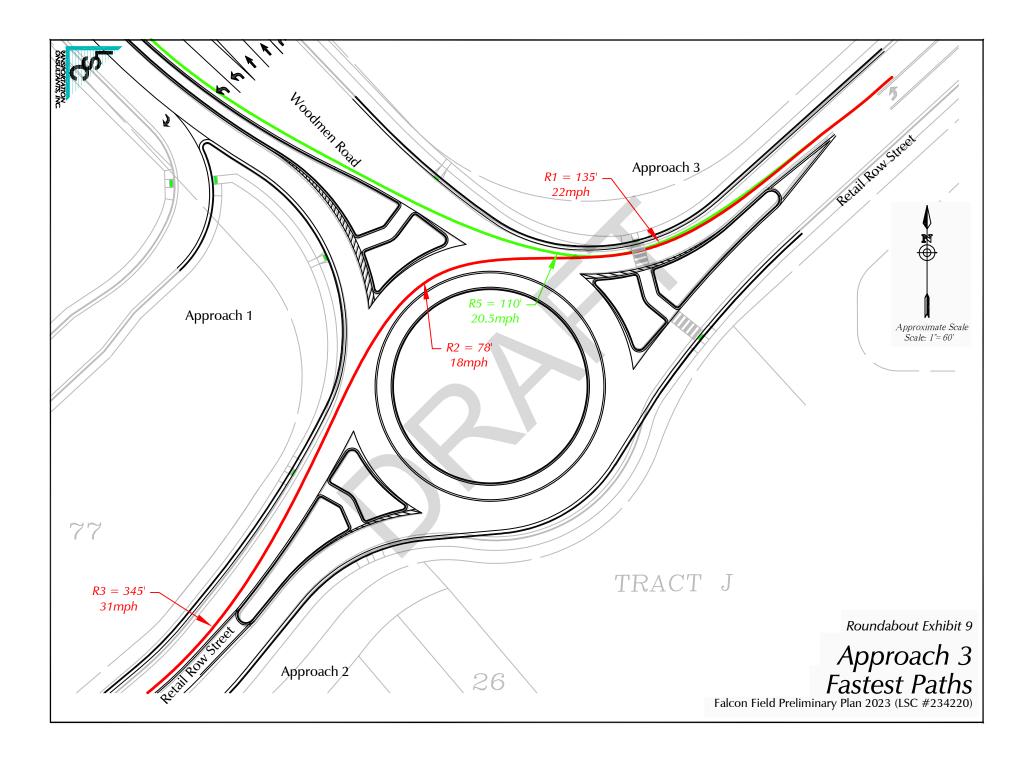















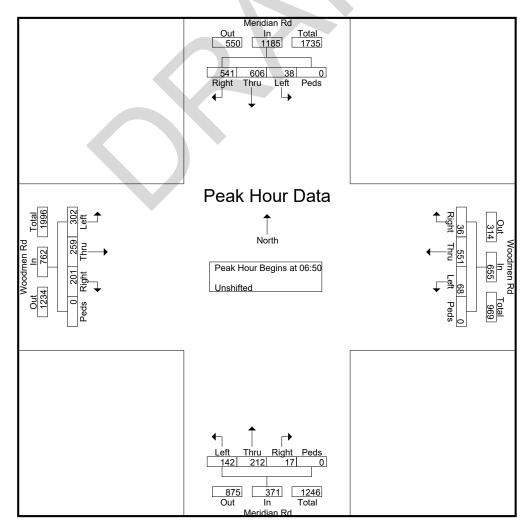



#### **Traffic Counts**





719-633-2868


File Name : Meridian Rd - Woodmen Rd AM 4-23 Site Code : S224050 Start Date : 4/13/2023 Page No : 1

|             |       |      |        |      |            |       |      | G     | roups | Printe     | d- Uns | shifted | k       |      |            |       |      |       |      |            |            |
|-------------|-------|------|--------|------|------------|-------|------|-------|-------|------------|--------|---------|---------|------|------------|-------|------|-------|------|------------|------------|
|             |       |      | ridian |      |            |       |      | odme  |       |            |        |         | eridiar |      |            |       |      | odme  |      |            |            |
|             |       |      | uthbo  |      |            |       |      | estbo |       |            |        | -       | rthbo   | und  |            |       |      | astbo | und  |            |            |
| Start Time  | Right | Thru | Left   | Peds | App. Total | Right | Thru | Left  | Peds  | App. Total | Right  | Thru    | Left    | Peds | App. Total | Right | Thru | Left  | Peds | App. Total | Int. Total |
| 06:30       | 29    | 58   | 2      | 0    | 89         | 1     | 36   | 1     | 0     | 38         | 1      | 8       | 11      | 0    | 20         | 10    | 15   | 13    | 0    | 38         | 185        |
| 06:35       | 34    | 52   | 1      | 0    | 87         | 1     | 48   | 2     | 0     | 51         | 0      | 7       | 10      | 0    | 17         | 9     | 12   | 14    | 1    | 36         | 191        |
| 06:40       | 52    | 79   | 3      | 1    | 135        | 1     | 26   | 1     | 0     | 28         | 1      | 11      | 16      | 0    | 28         | 14    | 17   | 10    | 0    | 41         | 232        |
| 06:45       | 41    | 32   | 1      | 0    | 74         | 3     | 46   | 5     | 0     | 54         | 1      | 8       | 12      | 0    | 21         | 11    | 20   | 27    | 0    | 58         | 207        |
| 06:50       | 47    | 74   | 3      | 0    | 124        | 2     | 33   | 2     | 0     | 37         | 2      | 20      | 9       | 0    | 31         | 20    | 27   | 14    | 0    | 61         | 253        |
| 06:55       | 52    | 52   | 1      | 0    | 105        | 2     | 46   | 9     | 0     | 57         | 0      | 18      | 12      | 0    | 30         | 17    | 22   | 19    | 0    | 58         | 250        |
| Total       | 255   | 347  | 11     | 1    | 614        | 10    | 235  | 20    | 0     | 265        | 5      | 72      | 70      | 0    | 147        | 81    | 113  | 97    | 1    | 292        | 1318       |
| 07:00       | 44    | 70   | 2      | 0    | 116        | 1     | 24   | 4     | 0     | 29         | 2      | 12      | 17      | 0    | 31         | 14    | 16   | 21    | 0    | 51         | 227        |
| 07:05       | 63    | 39   | 2      | 0    | 104        | 0     | 50   | 4     | 0     | 54         | 2      | 17      | 5       | 0    | 24         | 14    | 20   | 24    | 0    | 58         | 240        |
| 07:10       | 54    | 63   | 6      | 0    | 123        | 4     | 42   | 3     | 0     | 49         | 1      | 20      | 19      | 0    | 40         | 8     | 24   | 27    | 0    | 59         | 271        |
| 07:15       | 43    | 54   | 5      | 0    | 102        | 5     | 44   | 9     | 0     | 58         | 1      | 12      | 11      | 0    | 24         | 22    | 22   | 36    | 0    | 80         | 264        |
| 07:20       | 41    | 51   | 2      | 0    | 94         | 3     | 46   | 4     | 0     | 53         | 2      | 23      | 15      | 0    | 40         | 26    | 22   | 26    | 0    | 74         | 261        |
| 07:25       | 35    | 38   | 2      | 0    | 75         | 5     | 55   | 6     | 0     | 66         | 1      | 27      | 13      | 0    | 41         | 26    | 31   | 32    | 0    | 89         | 271        |
| 07:30       | 37    | 49   | 5      | 0    | 91         | 2     | 47   | 2     | 0     | 51         | 3      | 17      | 14      | 0    | 34         | 17    | 16   | 18    | 0    | 51         | 227        |
| 07:35       | 51    | 41   | 1      | 0    | 93         | 3     | 63   | 7     | 0     | 73         | 0      | 18      | 8       | 0    | 26         | 12    | 18   | 23    | 0    | 53         | 245        |
| 07:40       | 36    | 47   | 3      | 0    | 86         | 3     | 35   | 11    | 0     | 49         | 2      | 16      | 15      | 0    | 33         | 14    | 20   | 35    | 0    | 69         | 237        |
| 07:45       | 38    | 28   | 6      | 0    | 72         | 6     | 66   | 7     | 0     | 79         | 1      | 12      | 4       | 0    | 17         | 11    | 21   | 27    | 0    | 59         | 227        |
| 07:50       | 37    | 37   | 6      | 0    | 80         | 6     | 26   | 11    | 0     | 43         | 1      | 21      | 15      | 0    | 37         | 13    | 19   | 30    | 0    | 62         | 222        |
| 07:55       | 21    | 26   | 2      | 0    | 49         | 5     | 61   | 9     | 0     | 75         | 1      | 23      | 8       | 1    | 33         | 16    | 36   | 36    | 0    | 88         | 245        |
| Total       | 500   | 543  | 42     | 0    | 1085       | 43    | 559  | 77    | 0     | 679        | 17     | 218     | 144     | 1    | 380        | 193   | 265  | 335   | 0    | 793        | 2937       |
| 08:00       | 23    | 53   | 6      | 0    | 82         | 2     | 31   | 5     | 0     | 38         | 0      | 19      | 12      | 0    | 31         | 12    | 18   | 24    | 0    | 54         | 205        |
| 08:05       | 23    | 30   | 3      | 0    | 56         | 2     | 47   | 6     | 0     | 55         | 1      | 17      | 13      | 1    | 32         | 10    | 20   | 30    | 0    | 60         | 203        |
| 08:10       | 35    | 42   | 5      | 0    | 82         | 3     | 19   | 6     | 0     | 28         | 0      | 31      | 14      | 0    | 45         | 8     | 30   | 33    | 0    | 71         | 226        |
| 08:15       | 30    | 32   | 6      | 0    | 68         | 5     | 57   | 9     | 0     | 71         | 3      | 20      | 10      | 0    | 33         | 8     | 33   | 20    | 0    | 61         | 233        |
| 08:20       | 31    | 44   | 7      | 0    | 82         | 3     | 41   | 5     | 0     | 49         | 2      | 23      | 19      | 0    | 44         | 7     | 10   | 22    | 0    | 39         | 214        |
| 08:25       | 29    | 32   | 7      | 0    | 68         | 1     | 48   | 14    | 0     | 63         | 3      | 12      | 6       | 0    | 21         | 11    | 24   | 33    | 0    | 68         | 220        |
| Grand Total | 926   | 1123 | 87     | 1    | 2137       | 69    | 1037 | 142   | 0     | 1248       | 31     | 412     | 288     | 2    | 733        | 330   | 513  | 594   | 1    | 1438       | 5556       |
| Apprch %    | 43.3  | 52.6 | 4.1    | 0    |            | 5.5   | 83.1 | 11.4  | 0     |            | 4.2    | 56.2    | 39.3    | 0.3  |            | 22.9  | 35.7 | 41.3  | 0.1  |            |            |
| Total %     | 16.7  | 20.2 | 1.6    | 0    | 38.5       | 1.2   | 18.7 | 2.6   | 0     | 22.5       | 0.6    | 7.4     | 5.2     | 0    | 13.2       | 5.9   | 9.2  | 10.7  | 0    | 25.9       |            |

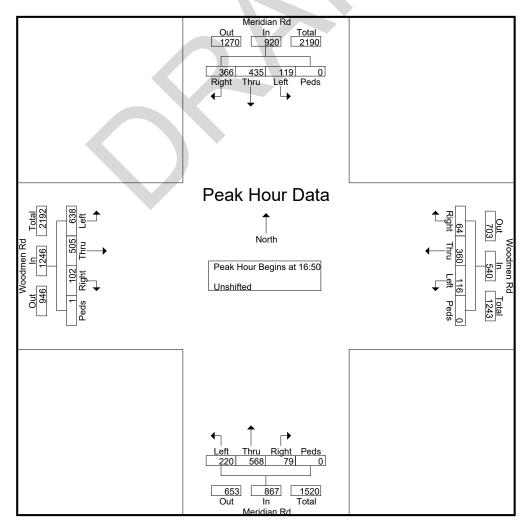
719-633-2868

File Name : Meridian Rd - Woodmen Rd AM 4-23 Site Code : S224050 Start Date : 4/13/2023 Page No : 2

|              |        | Ме       | ridiar  | n Rd    |            |        | Wo   | odme  | n Rd |            |       | Me   | eridiar | n Rd |            |       | Wo   | odme   | n Rd |            |            |
|--------------|--------|----------|---------|---------|------------|--------|------|-------|------|------------|-------|------|---------|------|------------|-------|------|--------|------|------------|------------|
|              |        | So       | uthbo   | und     |            |        | W    | estbo | und  |            |       | No   | orthbo  | und  |            |       | Ea   | astbou | und  |            |            |
| Start Time   | Right  | Thru     | Left    | Peds    | App. Total | Right  | Thru | Left  | Peds | App. Total | Right | Thru | Left    | Peds | App. Total | Right | Thru | Left   | Peds | App. Total | Int. Total |
| Peak Hour A  | Analys | is Fror  | m 06:3  | 30 to 0 | 8:25 - F   | Peak 1 | of 1 |       |      |            |       |      |         |      |            |       |      |        |      |            |            |
| Peak Hour f  | or Ent | ire Inte | ersecti | ion Be  | gins at    | 06:50  |      |       |      |            |       |      |         |      |            |       |      |        |      |            |            |
| 06:50        | 47     | 74       | 3       | 0       | 124        | 2      | 33   | 2     | 0    | 37         | 2     | 20   | 9       | 0    | 31         | 20    | 27   | 14     | 0    | 61         | 253        |
| 06:55        | 52     | 52       | 1       | 0       | 105        | 2      | 46   | 9     | 0    | 57         | 0     | 18   | 12      | 0    | 30         | 17    | 22   | 19     | 0    | 58         | 250        |
| 07:00        | 44     | 70       | 2       | 0       | 116        | 1      | 24   | 4     | 0    | 29         | 2     | 12   | 17      | 0    | 31         | 14    | 16   | 21     | 0    | 51         | 227        |
| 07:05        | 63     | 39       | 2       | 0       | 104        | 0      | 50   | 4     | 0    | 54         | 2     | 17   | 5       | 0    | 24         | 14    | 20   | 24     | 0    | 58         | 240        |
| 07:10        | 54     | 63       | 6       | 0       | 123        | 4      | 42   | 3     | 0    | 49         | 1     | 20   | 19      | 0    | 40         | 8     | 24   | 27     | 0    | 59         | 271        |
| 07:15        | 43     | 54       | 5       | 0       | 102        | 5      | 44   | 9     | 0    | 58         | 1     | 12   | 11      | 0    | 24         | 22    | 22   | 36     | 0    | 80         | 264        |
| 07:20        | 41     | 51       | 2       | 0       | 94         | 3      | 46   | 4     | 0    | 53         | 2     | 23   | 15      | 0    | 40         | 26    | 22   | 26     | 0    | 74         | 261        |
| 07:25        | 35     | 38       | 2       | 0       | 75         | 5      | 55   | 6     | 0    | 66         | 1     | 27   | 13      | 0    | 41         | 26    | 31   | 32     | 0    | 89         | 271        |
| 07:30        | 37     | 49       | 5       | 0       | 91         | 2      | 47   | 2     | 0    | 51         | 3     | 17   | 14      | 0    | 34         | 17    | 16   | 18     | 0    | 51         | 227        |
| 07:35        | 51     | 41       | 1       | 0       | 93         | 3      | 63   | 7     | 0    | 73         | 0     | 18   | 8       | 0    | 26         | 12    | 18   | 23     | 0    | 53         | 245        |
| 07:40        | 36     | 47       | 3       | 0       | 86         | 3      | 35   | 11    | 0    | 49         | 2     | 16   | 15      | 0    | 33         | 14    | 20   | 35     | 0    | 69         | 237        |
| 07:45        | 38     | 28       | 6       | 0       | 72         | 6      | 66   | 7     | 0    | 79         | 1     | 12   | 4       | 0    | 17         | 11    | 21   | 27     | 0    | 59         | 227        |
| Total Volume | 541    | 606      | 38      | 0       | 1185       | 36     | 551  | 68    | 0    | 655        | 17    | 212  | 142     | 0    | 371        | 201   | 259  | 302    | 0    | 762        | 2973       |
| % App. Total | 45.7   | 51.1     | 3.2     | 0       |            | 5.5    | 84.1 | 10.4  | 0    |            | 4.6   | 57.1 | 38.3    | 0    |            | 26.4  | 34   | 39.6   | 0    |            |            |
| PHF          | .716   | .682     | .528    | .000    | .796       | .500   | .696 | .515  | .000 | .691       | .472  | .654 | .623    | .000 | .754       | .644  | .696 | .699   | .000 | .713       | .914       |



719-633-2868


File Name : Meridian Rd - Woodmen Rd PM 4-23 Site Code : S224050 Start Date : 4/13/2023 Page No : 1

|             |       | Me   | ridiar | n Rd |            |       | Wo   | odme  | n Rd |            |       | Me   | eridiar | Rd   |            |       | Wo   | odme  | n Rd |            | 1         |
|-------------|-------|------|--------|------|------------|-------|------|-------|------|------------|-------|------|---------|------|------------|-------|------|-------|------|------------|-----------|
|             |       |      | uthbo  |      |            |       |      | estbo |      |            |       |      | rthbo   |      |            |       |      | astbo |      |            | ĺ         |
| Start Time  | Right | Thru | Left   | Peds | App. Total | Right | Thru | Left  | Peds | App. Total | Right | Thru | Left    | Peds | App. Total | Right | Thru | Left  | Peds | App. Total | Int. Tota |
| 16:00       | 22    | 34   | 11     | 0    | 67         | 12    | 35   | 9     | 0    | 56         | 3     | 29   | 10      | 0    | 42         | 6     | 47   | 57    | 0    | 110        | 275       |
| 16:05       | 29    | 49   | 5      | 1    | 84         | 3     | 25   | 4     | 0    | 32         | 10    | 55   | 20      | 0    | 85         | 4     | 40   | 40    | 0    | 84         | 285       |
| 16:10       | 15    | 32   | 8      | 0    | 55         | 2     | 38   | 13    | 0    | 53         | 6     | 28   | 14      | 0    | 48         | 8     | 39   | 55    | 0    | 102        | 258       |
| 16:15       | 25    | 61   | 10     | 0    | 96         | 9     | 22   | 12    | 0    | 43         | 11    | 52   | 24      | 0    | 87         | 8     | 28   | 30    | 0    | 66         | 292       |
| 16:20       | 21    | 21   | 1      | 0    | 43         | 10    | 25   | 9     | 0    | 44         | 9     | 40   | 20      | 0    | 69         | 4     | 52   | 65    | 0    | 121        | 277       |
| 16:25       | 32    | 37   | 10     | 0    | 79         | 2     | 27   | 4     | 0    | 33         | 11    | 51   | 34      | 0    | 96         | 7     | 32   | 47    | 0    | 86         | 294       |
| 16:30       | 15    | 30   | 4      | 0    | 49         | 4     | 28   | 17    | 0    | 49         | 10    | 39   | 19      | 0    | 68         | 8     | 50   | 65    | 0    | 123        | 289       |
| 16:35       | 27    | 34   | 15     | 0    | 76         | 6     | 12   | 21    | 1    | 40         | 9     | 57   | 31      | 0    | 97         | 7     | 24   | 44    | 0    | 75         | 288       |
| 16:40       | 27    | 18   | 5      | 0    | 50         | 4     | 30   | 20    | 0    | 54         | 8     | 47   | 18      | 0    | 73         | 15    | 52   | 58    | 0    | 125        | 302       |
| 16:45       | 28    | 33   | 5      | 0    | 66         | 4     | 18   | 12    | 0    | 34         | 6     | 38   | 29      | 0    | 73         | 11    | 31   | 50    | 0    | 92         | 265       |
| 16:50       | 21    | 29   | 8      | 0    | 58         | 6     | 34   | 6     | 0    | 46         | 8     | 30   | 18      | 0    | 56         | 10    | 47   | 64    | 0    | 121        | 281       |
| 16:55       | 30    | 41   | 16     | 0    | 87         | 5     | 30   | 3     | 0    | 38         | 3     | 51   | 22      | 0    | 76         | 9     | 35   | 42    | 0    | 86         | 287       |
| Total       | 292   | 419  | 98     | 1    | 810        | 67    | 324  | 130   | 1    | 522        | 94    | 517  | 259     | 0    | 870        | 97    | 477  | 617   | 0    | 1191       | 3393      |
| 17:00       | 16    | 24   | 6      | 0    | 46         | 5     | 33   | 3     | 0    | 41         | 6     | 40   | 12      | 0    | 58         | 14    | 46   | 76    | 1    | 137        | 282       |
| 17:05       | 22    | 43   | 13     | 0    | 78         | 4     | 37   | 3     | 0    | 44         | 5     | 43   | 24      | 0    | 72         | 11    | 34   | 29    | 0    | 74         | 268       |
| 17:10       | 34    | 29   | 8      | 0    | 71         | 7     | 20   | 31    | 0    | 58         | 4     | 40   | 20      | 0    | 64         | 4     | 43   | 65    | 0    | 112        | 305       |
| 17:15       | 36    | 42   | 8      | 0    | 86         | 2     | 39   | 7     | 0    | 48         | 7     | 39   | 33      | 0    | 79         | 4     | 36   | 46    | 0    | 86         | 299       |
| 17:20       | 32    | 36   | 9      | 0    | 77         | 9     | 39   | 12    | 0    | 60         | 6     | 56   | 13      | 0    | 75         | 5     | 52   | 69    | 0    | 126        | 338       |
| 17:25       | 38    | 30   | 13     | 0    | 81         | 4     | 24   | 10    | 0    | 38         | 9     | 59   | 23      | 0    | 91         | 11    | 31   | 41    | 0    | 83         | 293       |
| 17:30       | 37    | 37   | 6      | 0    | 80         | 3     | 34   | 12    | 0    | 49         | 8     | 51   | 13      | 0    | 72         | 8     | 50   | 34    | 0    | 92         | 293       |
| 17:35       | 31    | 36   | 14     | 0    | 81         | 9     | 18   | 13    | 0    | 40         | 10    | 68   | 20      | 0    | 98         | 10    | 37   | 43    | 0    | 90         | 309       |
| 17:40       | 39    | 31   | 8      | 0    | 78         | 5     | 27   | 6     | 0    | 38         | 8     | 39   | 9       | 0    | 56         | 7     | 54   | 83    | 0    | 144        | 316       |
| 17:45       | 30    | 57   | 10     | 0    | 97         | 5     | 25   | 10    | 0    | 40         | 5     | 52   | 13      | 0    | 70         | 9     | 40   | 46    | 0    | 95         | 302       |
| 17:50       | 29    | 23   | 7      | 0    | 59         | 3     | 31   | 11    | 0    | 45         | 8     | 30   | 5       | 1    | 44         | 14    | 46   | 61    | 0    | 121        | 269       |
| 17:55       | 27    | 41   | 15     | 0    | 83         | 2     | 23   | 9     | 0    | 34         | 8     | 65   | 15      | 0    | 88         | 11    | 17   | 45    | 0    | 73         | 278       |
| Total       | 371   | 429  | 117    | 0    | 917        | 58    | 350  | 127   | 0    | 535        | 84    | 582  | 200     | 1    | 867        | 108   | 486  | 638   | 1    | 1233       | 3552      |
| Grand Total | 663   | 848  | 215    | 1    | 1727       | 125   | 674  | 257   | 1    | 1057       | 178   | 1099 | 459     | 1    | 1737       | 205   | 963  | 1255  | 1    | 2424       | 694       |
| Apprch %    | 38.4  | 49.1 | 12.4   | 0.1  |            | 11.8  | 63.8 | 24.3  | 0.1  |            | 10.2  | 63.3 | 26.4    | 0.1  |            | 8.5   | 39.7 | 51.8  | 0    |            |           |
| Total %     | 9.5   | 12.2 | 3.1    | 0    | 24.9       | 1.8   | 9.7  | 3.7   | 0    | 15.2       | 2.6   | 15.8 | 6.6     | 0    | 25         | 3     | 13.9 | 18.1  | 0    | 34.9       | 1         |

719-633-2868

File Name : Meridian Rd - Woodmen Rd PM 4-23 Site Code : S224050 Start Date : 4/13/2023 Page No : 2

|              |        | Ме       | ridiar  | n Rd    |            |        | Wo   | odme  | n Rd |            |       | Me   | ridiar | n Rd |            |       | Wo   | odme   | n Rd |            |            |
|--------------|--------|----------|---------|---------|------------|--------|------|-------|------|------------|-------|------|--------|------|------------|-------|------|--------|------|------------|------------|
|              |        | So       | uthbo   | und     |            |        | W    | estbo | und  |            |       | No   | orthbo | und  |            |       | Ea   | astbou | und  |            |            |
| Start Time   | Right  | Thru     | Left    | Peds    | App. Total | Right  | Thru | Left  | Peds | App. Total | Right | Thru | Left   | Peds | App. Total | Right | Thru | Left   | Peds | App. Total | Int. Total |
| Peak Hour A  | Analys | is Fro   | m 16:0  | )0 to 1 | 7:55 - F   | Peak 1 | of 1 |       |      |            |       |      |        |      |            |       |      |        |      |            |            |
| Peak Hour f  | or Ent | ire Inte | ersecti | ion Be  | gins at    | 16:50  |      |       |      |            |       |      |        |      |            |       |      |        |      |            |            |
| 16:50        | 21     | 29       | 8       | 0       | 58         | 6      | 34   | 6     | 0    | 46         | 8     | 30   | 18     | 0    | 56         | 10    | 47   | 64     | 0    | 121        | 281        |
| 16:55        | 30     | 41       | 16      | 0       | 87         | 5      | 30   | 3     | 0    | 38         | 3     | 51   | 22     | 0    | 76         | 9     | 35   | 42     | 0    | 86         | 287        |
| 17:00        | 16     | 24       | 6       | 0       | 46         | 5      | 33   | 3     | 0    | 41         | 6     | 40   | 12     | 0    | 58         | 14    | 46   | 76     | 1    | 137        | 282        |
| 17:05        | 22     | 43       | 13      | 0       | 78         | 4      | 37   | 3     | 0    | 44         | 5     | 43   | 24     | 0    | 72         | 11    | 34   | 29     | 0    | 74         | 268        |
| 17:10        | 34     | 29       | 8       | 0       | 71         | 7      | 20   | 31    | 0    | 58         | 4     | 40   | 20     | 0    | 64         | 4     | 43   | 65     | 0    | 112        | 305        |
| 17:15        | 36     | 42       | 8       | 0       | 86         | 2      | 39   | 7     | 0    | 48         | 7     | 39   | 33     | 0    | 79         | 4     | 36   | 46     | 0    | 86         | 299        |
| 17:20        | 32     | 36       | 9       | 0       | 77         | 9      | 39   | 12    | 0    | 60         | 6     | 56   | 13     | 0    | 75         | 5     | 52   | 69     | 0    | 126        | 338        |
| 17:25        | 38     | 30       | 13      | 0       | 81         | 4      | 24   | 10    | 0    | 38         | 9     | 59   | 23     | 0    | 91         | 11    | 31   | 41     | 0    | 83         | 293        |
| 17:30        | 37     | 37       | 6       | 0       | 80         | 3      | 34   | 12    | 0    | 49         | 8     | 51   | 13     | 0    | 72         | 8     | 50   | 34     | 0    | 92         | 293        |
| 17:35        | 31     | 36       | 14      | 0       | 81         | 9      | 18   | 13    | 0    | 40         | 10    | 68   | 20     | 0    | 98         | 10    | 37   | 43     | 0    | 90         | 309        |
| 17:40        | 39     | 31       | 8       | 0       | 78         | 5      | 27   | 6     | 0    | 38         | 8     | 39   | 9      | 0    | 56         | 7     | 54   | 83     | 0    | 144        | 316        |
| 17:45        | 30     | 57       | 10      | 0       | 97         | 5      | 25   | 10    | 0    | 40         | 5     | 52   | 13     | 0    | 70         | 9     | 40   | 46     | 0    | 95         | 302        |
| Total Volume | 366    | 435      | 119     | 0       | 920        | 64     | 360  | 116   | 0    | 540        | 79    | 568  | 220    | 0    | 867        | 102   | 505  | 638    | 1    | 1246       | 3573       |
| % App. Total | 39.8   | 47.3     | 12.9    | 0       |            | 11.9   | 66.7 | 21.5  | 0    |            | 9.1   | 65.5 | 25.4   | 0    |            | 8.2   | 40.5 | 51.2   | 0.1  |            |            |
| PHF          | .782   | .636     | .620    | .000    | .790       | .593   | .769 | .312  | .000 | .750       | .658  | .696 | .556   | .000 | .737       | .607  | .779 | .641   | .083 | .721       | .881       |



719-633-2868

File Name : McLaughlin Rd - Woodmen Rd AM 5-23 Site Code : S234220 Start Date : 5/16/2023 Page No : 1

|             |       |      |        |      |            |       |      | G     | roups | Printe     | d- Uns | shifted | ł     |      |            |       |      |       |      |            |            |
|-------------|-------|------|--------|------|------------|-------|------|-------|-------|------------|--------|---------|-------|------|------------|-------|------|-------|------|------------|------------|
|             |       |      | aughli |      |            |       |      | odme  |       |            |        |         | aughl |      |            |       |      | odme  |      |            |            |
|             |       | So   | uthbo  | und  |            |       | W    | estbo | und   |            |        | No      | rthbo |      |            |       |      | astbo | und  |            |            |
| Start Time  | Right | Thru | Left   | Peds | App. Total | Right | Thru | Left  | Peds  | App. Total | Right  | Thru    | Left  | Peds | App. Total | Right | Thru | Left  | Peds | App. Total | Int. Total |
| 06:30       | 18    | 1    | 12     | 1    | 32         | 7     | 15   | 1     | 0     | 23         | 1      | 1       | 1     | 0    | 3          | 2     | 15   | 1     | 0    | 18         | 76         |
| 06:35       | 7     | 1    | 12     | 0    | 20         | 5     | 26   | 1     | 0     | 32         | 2      | 0       | 1     | 0    | 3          | 1     | 17   | 3     | 0    | 21         | 76         |
| 06:40       | 20    | 2    | 11     | 0    | 33         | 6     | 32   | 0     | 0     | 38         | 2      | 2       | 1     | 0    | 5          | 0     | 13   | 3     | 0    | 16         | 92         |
| 06:45       | 10    | 0    | 8      | 0    | 18         | 8     | 43   | 2     | 0     | 53         | 1      | 4       | 1     | 0    | 6          | 3     | 24   | 7     | 0    | 34         | 111        |
| 06:50       | 20    | 2    | 18     | 0    | 40         | 5     | 30   | 1     | 0     | 36         | 0      | 3       | 4     | 0    | 7          | 0     | 15   | 4     | 0    | 19         | 102        |
| 06:55       | 19    | 3    | 18     | 0    | 40         | 10    | 32   | 4     | 0     | 46         | 2      | 2       | 2     | 0    | 6          | 0     | 23   | 3     | 0    | 26         | 118        |
| Total       | 94    | 9    | 79     | 1    | 183        | 41    | 178  | 9     | 0     | 228        | 8      | 12      | 10    | 0    | 30         | 6     | 107  | 21    | 0    | 134        | 575        |
| 07:00       | 19    | 6    | 20     | 0    | 45         | 8     | 25   | 2     | 0     | 35         | 1      | 1       | 2     | 0    | 4          | 0     | 24   | 3     | 0    | 27         | 111        |
| 07:05       | 30    | 9    | 13     | 0    | 52         | 15    | 26   | 1     | 0     | 42         | 2      | 3       | 3     | 0    | 8          | 2     | 26   | 2     | 0    | 30         | 132        |
| 07:10       | 27    | 10   | 8      | 0    | 45         | 12    | 36   | 1     | 0     | 49         | 1      | 5       | 2     | 0    | 8          | 1     | 26   | 9     | 0    | 36         | 138        |
| 07:15       | 28    | 6    | 13     | 0    | 47         | 9     | 31   | 0     | 0     | 40         | 0      | 2       | 0     | 0    | 2          | 6     | 16   | 5     | 0    | 27         | 116        |
| 07:20       | 20    | 8    | 6      | 0    | 34         | 14    | 40   | 3     | 0     | 57         | 0      | 3       | 3     | 0    | 6          | 1     | 17   | 3     | 1    | 22         | 119        |
| 07:25       | 30    | 13   | 10     | 0    | 53         | 10    | 28   | 4     | 0     | 42         | 1      | 4       | 2     | 0    | 7          | 4     | 21   | 4     | 0    | 29         | 131        |
| 07:30       | 32    | 15   | 5      | 0    | 52         | 7     | 28   | 4     | 1     | 40         | 2      | 4       | 4     | 0    | 10         | 2     | 15   | 7     | 0    | 24         | 126        |
| 07:35       | 30    | 9    | 9      | 0    | 48         | 11    | 25   | 0     | 0     | 36         | 1      | 3       | 5     | 0    | 9          | 3     | 26   | 6     | 0    | 35         | 128        |
| 07:40       | 25    | 11   | 9      | 0    | 45         | 16    | 43   | 3     | 0     | 62         | 0      | 2       | 1     | 0    | 3          | 1     | 14   | 13    | 0    | 28         | 138        |
| 07:45       | 20    | 14   | 17     | 0    | 51         | 9     | 22   | 3     | 0     | 34         | 1      | 8       | 4     | 0    | 13         | 6     | 12   | 8     | 0    | 26         | 124        |
| 07:50       | 19    | 15   | 7      | 0    | 41         | 17    | 20   | 4     | 0     | 41         | 0      | 3       | 5     | 0    | 8          | 5     | 22   | 21    | 0    | 48         | 138        |
| 07:55       | 18    | 8    | 12     | 0    | 38         | 10    | 29   | 3     | 0     | 42         | 0      | 3       | 4     | 0    | 7          | 11    | 17   | 10    | 0    | 38         | 125        |
| Total       | 298   | 124  | 129    | 0    | 551        | 138   | 353  | 28    | 1     | 520        | 9      | 41      | 35    | 0    | 85         | 42    | 236  | 91    | 1    | 370        | 1526       |
| 08:00       | 14    | 7    | 12     | 0    | 33         | 13    | 21   | 2     | 0     | 36         | 2      | 5       | 6     | 0    | 13         | 4     | 24   | 13    | 0    | 41         | 123        |
| 08:05       | 16    | 11   | 9      | 0    | 36         | 6     | 25   | 1     | 0     | 32         | 3      | 5       | 1     | 0    | 9          | 10    | 25   | 8     | 0    | 43         | 120        |
| 08:10       | 16    | 3    | 9      | 0    | 28         | 17    | 23   | 0     | 0     | 40         | 5      | 4       | 3     | 0    | 12         | 2     | 7    | 7     | 0    | 16         | 96         |
| 08:15       | 15    | 8    | 14     | 0    | 37         | 17    | 26   | 3     | 0     | 46         | 1      | 4       | 3     | 0    | 8          | 4     | 15   | 13    | 0    | 32         | 123        |
| 08:20       | 15    | 3    | 19     | 0    | 37         | 15    | 29   | 2     | 0     | 46         | 1      | 5       | 4     | 0    | 10         | 4     | 16   | 4     | 0    | 24         | 117        |
| 08:25       | 17    | 6    | 16     | 0    | 39         | 10    | 30   | 1     | 0     | 41         | 0      | 4       | 2     | 0    | 6          | 6     | 17   | 6     | 0    | 29         | 115        |
| Grand Total | 485   | 171  | 287    | 1    | 944        | 257   | 685  | 46    | 1     | 989        | 29     | 80      | 64    | 0    | 173        | 78    | 447  | 163   | 1    | 689        | 2795       |
| Apprch %    | 51.4  | 18.1 | 30.4   | 0.1  |            | 26    | 69.3 | 4.7   | 0.1   |            | 16.8   | 46.2    | 37    | 0    |            | 11.3  | 64.9 | 23.7  | 0.1  |            |            |
| Total %     | 17.4  | 6.1  | 10.3   | 0    | 33.8       | 9.2   | 24.5 | 1.6   | 0     | 35.4       | 1      | 2.9     | 2.3   | 0    | 6.2        | 2.8   | 16   | 5.8   | 0    | 24.7       |            |

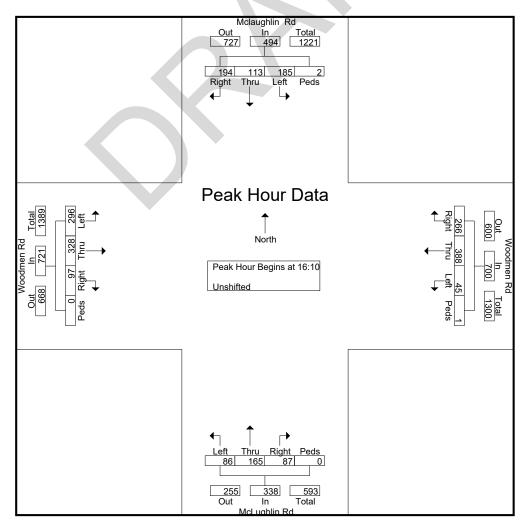
719-633-2868

File Name : McLaughlin Rd - Woodmen Rd AM 5-23 Site Code : S234220 Start Date : 5/16/2023 Page No : 2

|              |        | Mcl      | aughli  | in Rd   |            |        | Wo   | odme  | n Rd |            |       | Mcl  | aughl | in Rd |            |       | Wo   | odme  | n Rd |            |            |
|--------------|--------|----------|---------|---------|------------|--------|------|-------|------|------------|-------|------|-------|-------|------------|-------|------|-------|------|------------|------------|
|              |        | So       | uthbo   | und     |            |        | W    | estbo | und  |            |       | No   | rthbo | und   |            |       | Ea   | astbo | und  |            |            |
| Start Time   | Right  | Thru     | Left    | Peds    | App. Total | Right  | Thru | Left  | Peds | App. Total | Right | Thru | Left  | Peds  | App. Total | Right | Thru | Left  | Peds | App. Total | Int. Total |
| Peak Hour A  | Analys | is Fro   | m 06:3  | 30 to 0 | 8:25 - F   | Peak 1 | of 1 |       |      |            |       |      |       |       |            |       |      |       |      |            |            |
| Peak Hour fe | or Ent | ire Inte | ersecti | ion Be  | gins at    | 07:05  |      |       |      |            |       |      |       |       |            |       |      |       |      |            |            |
| 07:05        | 30     | 9        | 13      | 0       | 52         | 15     | 26   | 1     | 0    | 42         | 2     | 3    | 3     | 0     | 8          | 2     | 26   | 2     | 0    | 30         | 132        |
| 07:10        | 27     | 10       | 8       | 0       | 45         | 12     | 36   | 1     | 0    | 49         | 1     | 5    | 2     | 0     | 8          | 1     | 26   | 9     | 0    | 36         | 138        |
| 07:15        | 28     | 6        | 13      | 0       | 47         | 9      | 31   | 0     | 0    | 40         | 0     | 2    | 0     | 0     | 2          | 6     | 16   | 5     | 0    | 27         | 116        |
| 07:20        | 20     | 8        | 6       | 0       | 34         | 14     | 40   | 3     | 0    | 57         | 0     | 3    | 3     | 0     | 6          | 1     | 17   | 3     | 1    | 22         | 119        |
| 07:25        | 30     | 13       | 10      | 0       | 53         | 10     | 28   | 4     | 0    | 42         | 1     | 4    | 2     | 0     | 7          | 4     | 21   | 4     | 0    | 29         | 131        |
| 07:30        | 32     | 15       | 5       | 0       | 52         | 7      | 28   | 4     | 1    | 40         | 2     | 4    | 4     | 0     | 10         | 2     | 15   | 7     | 0    | 24         | 126        |
| 07:35        | 30     | 9        | 9       | 0       | 48         | 11     | 25   | 0     | 0    | 36         | 1     | 3    | 5     | 0     | 9          | 3     | 26   | 6     | 0    | 35         | 128        |
| 07:40        | 25     | 11       | 9       | 0       | 45         | 16     | 43   | 3     | 0    | 62         | 0     | 2    | 1     | 0     | 3          | 1     | 14   | 13    | 0    | 28         | 138        |
| 07:45        | 20     | 14       | 17      | 0       | 51         | 9      | 22   | 3     | 0    | 34         | 1     | 8    | 4     | 0     | 13         | 6     | 12   | 8     | 0    | 26         | 124        |
| 07:50        | 19     | 15       | 7       | 0       | 41         | 17     | 20   | 4     | 0    | 41         | 0     | 3    | 5     | 0     | 8          | 5     | 22   | 21    | 0    | 48         | 138        |
| 07:55        | 18     | 8        | 12      | 0       | 38         | 10     | 29   | 3     | 0    | 42         | 0     | 3    | 4     | 0     | 7          | 11    | 17   | 10    | 0    | 38         | 125        |
| 08:00        | 14     | 7        | 12      | 0       | 33         | 13     | 21   | 2     | 0    | 36         | 2     | 5    | 6     | 0     | 13         | 4     | 24   | 13    | 0    | 41         | 123        |
| Total Volume | 293    | 125      | 121     | 0       | 539        | 143    | 349  | 28    | 1    | 521        | 10    | 45   | 39    | 0     | 94         | 46    | 236  | 101   | 1    | 384        | 1538       |
| % App. Total | 54.4   | 23.2     | 22.4    | 0       |            | 27.4   | 67   | 5.4   | 0.2  |            | 10.6  | 47.9 | 41.5  | 0     |            | 12    | 61.5 | 26.3  | 0.3  |            |            |
| PHF          | .763   | .694     | .593    | .000    | .847       | .701   | .676 | .583  | .083 | .700       | .417  | .469 | .542  | .000  | .603       | .348  | .756 | .401  | .083 | .667       | .929       |



719-633-2868


File Name : McLaughlin Rd - Woodmen Rd PM 5-23 Site Code : S234220 Start Date : 5/16/2023 Page No : 1

|                |          |         |          |        |            |          |          |        |        | Printe     | d- Uns  |          |         |      |            |        |          |          |        |            |            |
|----------------|----------|---------|----------|--------|------------|----------|----------|--------|--------|------------|---------|----------|---------|------|------------|--------|----------|----------|--------|------------|------------|
|                |          |         | aughli   |        |            |          |          | odme   |        |            |         |          | _ughli  |      |            |        |          | odme     |        |            |            |
|                |          |         | uthbo    |        |            |          |          | estbo  |        |            |         |          | rthbo   |      |            |        |          | astbo    |        |            |            |
| Start Time     | Right    | Thru    | Left     | Peds   | App. Total | Right    | Thru     | Left   | Peds   | App. Total | Right   | Thru     | Left    | Peds | App. Total | Right  | Thru     | Left     | Peds   | App. Total | Int. Total |
| 16:00          | 9        | 5       | 21       | 0      | 35         | 19       | 26       | 2      | 0      | 47         | 8       | 10       | 6       | 0    | 24         | 12     | 31       | 14       | 0      | 57         | 163        |
| 16:05          | 18       | 13      | 9        | 0      | 40         | 13       | 24       | 3      | 0      | 40         | 6       | 27       | 10      | 0    | 43         | 11     | 24       | 21       | 0      | 56         | 179        |
| 16:10          | 16       | 9       | 15       | 0      | 40         | 28       | 38       | 5      | 0      | 71         | 9       | 10       | 2       | 0    | 21         | 7      | 24       | 37       | 0      | 68         | 200        |
| 16:15          | 17       | 11      | 17       | 0      | 45         | 18       | 26       | 2<br>7 | 0      | 46         | 4       | 16       | 7<br>7  | 0    | 27         | 8      | 39       | 21       | 0      | 68         | 186        |
| 16:20          | 14       | 11      | 11       | 0      | 36<br>47   | 18       | 41       |        | 0      | 66         | 11      | 15       |         | 0    | 33         | 10     | 24       | 24       | 0      | 58         | 193        |
| 16:25<br>16:30 | 10<br>24 | 15      | 22<br>14 | 0      | 47<br>49   | 28<br>18 | 12<br>33 | 5<br>4 | 0<br>0 | 45<br>55   | 8       | 14<br>12 | 11<br>6 | 0    | 33<br>27   | 5<br>8 | 23<br>28 | 24<br>20 | 0<br>0 | 52<br>56   | 177<br>187 |
| 16:30          | 15       | 9<br>8  | 14<br>19 | 2<br>0 | 49<br>42   | 18       | 33<br>30 | 4      | 0      | ວວ<br>52   | 9<br>11 | 12       | 6<br>4  | 0    | 27<br>33   | 8      | ∠8<br>42 | 20<br>31 | 0      | 00<br>80   | 207        |
| 16:35          | 15       | 0<br>15 | 20       | 0      | 42         | 25       | 30       | 4<br>5 | 0      | 52<br>60   | 3       | 10       | 10      | 0    | 33<br>25   | 3      | 42<br>18 | 19       | 0      | 80<br>40   | 171        |
| 16:40          | 7        | 7       | 20<br>17 | 0      | 31         | 20       | 38       | 5      | 0      | 63         | 3       | 12       | 5       | 0    | 18         | 8      | 32       | 33       | 0      | 40<br>73   | 185        |
| 16:50          | 18       | 8       | 14       | 0      | 40         | 32       | 30       | 2      | 1      | 72         | 8       | 16       | 7       | 0    | 31         | 8      | 28       | 17       | 0      | 53         | 196        |
| 16:55          | 22       | 8       | 10       | 0      | 40         | 21       | 32       | 1      | 0      | 54         | 7       | 14       | 7       | 0    | 28         | 10     | 23       | 24       | 0      | 57         | 179        |
| Total          | 181      | 119     | 189      | 2      | 491        | 258      | 367      | 45     | 1      | 671        | 87      | 174      | 82      | 0    | 343        | 97     | 336      | 285      | 0      | 718        | 2223       |
|                |          |         |          |        |            |          |          |        |        |            |         |          |         |      |            |        |          |          |        |            |            |
| 17:00          | 13       | 4       | 16       | 0      | 33         | 17       | 35       | 2      | 0      | 54         | 9       | 15       | 15      | 0    | 39         | 8      | 16       | 16       | 0      | 40         | 166        |
| 17:05          | 27       | 8       | 10       | 0      | 45         | 23       | 36       | 3      | 0      | 62         | 5       | 13       | 5       | 0    | 23         | 15     | 31       | 30       | 0      | 76         | 206        |
| 17:10          | 26       | 6       | 18       | 0      | 50         | 21       | 18       | 4      | 0      | 43         | 5       | 13       | 16      | 0    | 34         | 6      | 25       | 16       | 1      | 48         | 175        |
| 17:15          | 19       | 9       | 11       | 0      | 39         | 26       | 32       | 4      | 0      | 62         | 1       | 19       | 6       | 0    | 26         | 10     | 34       | 23       | 0      | 67         | 194        |
| 17:20          | 17       | 5       | 14       | 0      | 36         | 17       | 24       | 5      | 0      | 46         | 5       | 6        | 3       | 0    | 14         | 4      | 36       | 20       | 1      | 61         | 157        |
| 17:25          | 19       | 8       | 21       | 0      | 48         | 31       | 37       | 0      | 0      | 68         | 2       | 21       | 7       | 0    | 30         | 11     | 33       | 19       | 0      | 63         | 209        |
| 17:30          | 15       | 6       | 16       | 0      | 37         | 16       | 33       | 2      | 0      | 51         | 10      | 19       | 6       | 0    | 35         | 13     | 37       | 24       | 0      | 74         | 197        |
| 17:35          | 14       | 6       | 19       | 0      | 39         | 17       | 30       | 3      | 0      | 50         | 8       | 19       | 8       | 0    | 35         | 12     | 34       | 24       | 0      | 70         | 194        |
| 17:40          | 12       | 5       | 11       | 0      | 28         | 20       | 21       | 5      | 0      | 46         | 5       | 12       | 9       | 0    | 26         | 7      | 19       | 27       | 0      | 53         | 153        |
| 17:45          | 12       | 7       | 10       | 0      | 29         | 31       | 27       | 4      | 0      | 62         | 2       | 9        | 7       | 0    | 18         | 14     | 40       | 20       | 0      | 74         | 183        |
| 17:50          | 11       | 2       | 12       | 0      | 25         | 18       | 23       | 1      | 0      | 42         | 14      | 12       | 4       | 0    | 30         | 5      | 25       | 19       | 0      | 49         | 146        |
| 17:55          | 12       | 4       | 15       | 0      | 31         | 24       | 27       | 4      | 0      | 55         | 8       | 7        | 4       | 0    | 19         | 13     | 31       | 30       | 0      | 74         | 179        |
| Total          | 197      | 70      | 173      | 0      | 440        | 261      | 343      | 37     | 0      | 641        | 74      | 165      | 90      | 0    | 329        | 118    | 361      | 268      | 2      | 749        | 2159       |
| Grand Total    | 378      | 189     | 362      | 2      | 931        | 519      | 710      | 82     | 1      | 1312       | 161     | 339      | 172     | 0    | 672        | 215    | 697      | 553      | 2      | 1467       | 4382       |
| Apprch %       | 40.6     | 20.3    | 38.9     | 0.2    |            | 39.6     | 54.1     | 6.2    | 0.1    |            | 24      | 50.4     | 25.6    | 0    |            | 14.7   | 47.5     | 37.7     | 0.1    |            |            |
| Total %        | 8.6      | 4.3     | 8.3      | 0      | 21.2       | 11.8     | 16.2     | 1.9    | 0      | 29.9       | 3.7     | 7.7      | 3.9     | 0    | 15.3       | 4.9    | 15.9     | 12.6     | 0      | 33.5       |            |

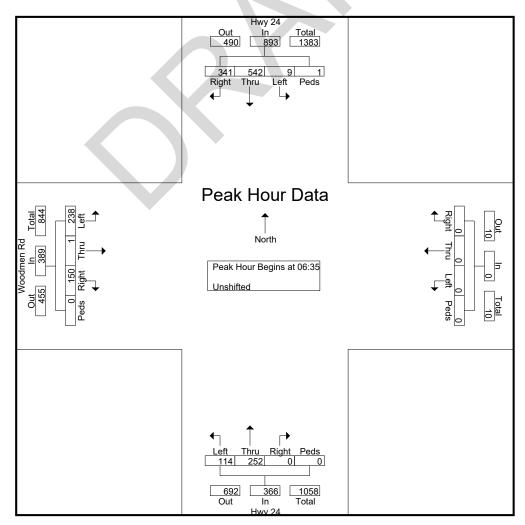
719-633-2868

File Name : McLaughlin Rd - Woodmen Rd PM 5-23 Site Code : S234220 Start Date : 5/16/2023 Page No : 2

|              |        | Mcla     | aughli  | n Rd    |            |        | Wo   | odme  | n Rd |            |       | Mc   | Lughli | in Rd |            |       | Wo   | odme  | n Rd |            |            |
|--------------|--------|----------|---------|---------|------------|--------|------|-------|------|------------|-------|------|--------|-------|------------|-------|------|-------|------|------------|------------|
|              |        | So       | uthbo   | und     |            |        | W    | estbo | und  |            |       | No   | orthbo | und   |            |       | Ea   | astbo | und  |            |            |
| Start Time   | Right  | Thru     | Left    | Peds    | App. Total | Right  | Thru | Left  | Peds | App. Total | Right | Thru | Left   | Peds  | App. Total | Right | Thru | Left  | Peds | App. Total | Int. Total |
| Peak Hour A  | Analys | is Fro   | m 16:0  | 00 to 1 | 7:55 - F   | Peak 1 | of 1 |       |      |            |       |      |        |       |            |       |      |       |      |            |            |
| Peak Hour f  | or Ent | ire Inte | ersecti | ion Beg | gins at    | 16:10  |      |       |      |            |       |      |        |       |            |       |      |       |      |            |            |
| 16:10        | 16     | 9        | 15      | 0       | 40         | 28     | 38   | 5     | 0    | 71         | 9     | 10   | 2      | 0     | 21         | 7     | 24   | 37    | 0    | 68         | 200        |
| 16:15        | 17     | 11       | 17      | 0       | 45         | 18     | 26   | 2     | 0    | 46         | 4     | 16   | 7      | 0     | 27         | 8     | 39   | 21    | 0    | 68         | 186        |
| 16:20        | 14     | 11       | 11      | 0       | 36         | 18     | 41   | 7     | 0    | 66         | 11    | 15   | 7      | 0     | 33         | 10    | 24   | 24    | 0    | 58         | 193        |
| 16:25        | 10     | 15       | 22      | 0       | 47         | 28     | 12   | 5     | 0    | 45         | 8     | 14   | 11     | 0     | 33         | 5     | 23   | 24    | 0    | 52         | 177        |
| 16:30        | 24     | 9        | 14      | 2       | 49         | 18     | 33   | 4     | 0    | 55         | 9     | 12   | 6      | 0     | 27         | 8     | 28   | 20    | 0    | 56         | 187        |
| 16:35        | 15     | 8        | 19      | 0       | 42         | 18     | 30   | 4     | 0    | 52         | 11    | 18   | 4      | 0     | 33         | 7     | 42   | 31    | 0    | 80         | 207        |
| 16:40        | 11     | 15       | 20      | 0       | 46         | 25     | 30   | 5     | 0    | 60         | 3     | 12   | 10     | 0     | 25         | 3     | 18   | 19    | 0    | 40         | 171        |
| 16:45        | 7      | 7        | 17      | 0       | 31         | 20     | 38   | 5     | 0    | 63         | 3     | 10   | 5      | 0     | 18         | 8     | 32   | 33    | 0    | 73         | 185        |
| 16:50        | 18     | 8        | 14      | 0       | 40         | 32     | 37   | 2     | 1    | 72         | 8     | 16   | 7      | 0     | 31         | 8     | 28   | 17    | 0    | 53         | 196        |
| 16:55        | 22     | 8        | 10      | 0       | 40         | 21     | 32   | 1     | 0    | 54         | 7     | 14   | 7      | 0     | 28         | 10    | 23   | 24    | 0    | 57         | 179        |
| 17:00        | 13     | 4        | 16      | 0       | 33         | 17     | 35   | 2     | 0    | 54         | 9     | 15   | 15     | 0     | 39         | 8     | 16   | 16    | 0    | 40         | 166        |
| 17:05        | 27     | 8        | 10      | 0       | 45         | 23     | 36   | 3     | 0    | 62         | 5     | 13   | 5      | 0     | 23         | 15    | 31   | 30    | 0    | 76         | 206        |
| Total Volume | 194    | 113      | 185     | 2       | 494        | 266    | 388  | 45    | 1    | 700        | 87    | 165  | 86     | 0     | 338        | 97    | 328  | 296   | 0    | 721        | 2253       |
| % App. Total | 39.3   | 22.9     | 37.4    | 0.4     |            | 38     | 55.4 | 6.4   | 0.1  |            | 25.7  | 48.8 | 25.4   | 0     |            | 13.5  | 45.5 | 41.1  | 0    |            |            |
| PHF          | .599   | .628     | .701    | .083    | .840       | .693   | .789 | .536  | .083 | .810       | .659  | .764 | .478   | .000  | .722       | .539  | .651 | .667  | .000 | .751       | .907       |



719-633-2868


File Name : Hwy 24 - Woodmen Rd AM 5-23 Site Code : S214730 Start Date : 5/2/2023 Page No : 1

|             |       |      |       |      |            |       |      | G     | roups | Printe     | d- Uns |      |       |      |            |       |      |       |      |            |            |
|-------------|-------|------|-------|------|------------|-------|------|-------|-------|------------|--------|------|-------|------|------------|-------|------|-------|------|------------|------------|
|             |       |      | Hwy 2 |      |            |       |      |       | -     |            |        |      | Hwy 2 |      |            |       |      | odme  |      |            |            |
|             |       |      | uthbo |      |            |       |      | estbo | und   |            |        | -    | rthbo | und  |            |       |      | astbo | und  |            |            |
| Start Time  | Right | Thru | Left  | Peds | App. Total | Right | Thru | Left  | Peds  | App. Total | Right  | Thru | Left  | Peds | App. Total | Right | Thru | Left  | Peds | App. Total | Int. Total |
| 06:30       | 36    | 45   | 0     | 0    | 81         | 0     | 0    | 0     | 0     | 0          | 0      | 16   | 15    | 0    | 31         | 14    | 0    | 9     | 0    | 23         | 135        |
| 06:35       | 29    | 50   | 0     | 0    | 79         | 0     | 0    | 0     | 0     | 0          | 0      | 27   | 5     | 0    | 32         | 7     | 0    | 12    | 0    | 19         | 130        |
| 06:40       | 39    | 53   | 0     | 0    | 92         | 0     | 0    | 0     | 0     | 0          | 0      | 24   | 5     | 0    | 29         | 14    | 0    | 15    | 0    | 29         | 150        |
| 06:45       | 36    | 54   | 0     | 0    | 90         | 0     | 0    | 0     | 0     | 0          | 0      | 24   | 12    | 0    | 36         | 12    | 0    | 20    | 0    | 32         | 158        |
| 06:50       | 19    | 46   | 9     | 0    | 74         | 0     | 0    | 0     | 0     | 0          | 0      | 14   | 4     | 0    | 18         | 16    | 0    | 27    | 0    | 43         | 135        |
| 06:55       | 20    | 40   | 0     | 0    | 60         | 0     | 0    | 0     | 0     | 0          | 0      | 17   | 11    | 0    | 28         | 12    | 0    | 21    | 0    | 33         | 121        |
| Total       | 179   | 288  | 9     | 0    | 476        | 0     | 0    | 0     | 0     | 0          | 0      | 122  | 52    | 0    | 174        | 75    | 0    | 104   | 0    | 179        | 829        |
| 07:00       | 27    | 50   | 0     | 0    | 77         | 0     | 0    | 0     | 0     | 0          | 0      | 15   | 6     | 0    | 21         | 18    | 0    | 26    | 0    | 44         | 142        |
| 07:05       | 25    | 42   | 0     | 0    | 67         | 0     | 0    | 0     | 0     | 0          | 0      | 25   | 9     | 0    | 34         | 17    | 0    | 20    | 0    | 37         | 138        |
| 07:10       | 25    | 52   | 0     | 0    | 77         | 0     | 0    | 0     | 0     | 0          | 0      | 23   | 12    | 0    | 35         | 8     | 0    | 26    | 0    | 34         | 146        |
| 07:15       | 34    | 48   | 0     | 0    | 82         | 0     | 0    | 0     | 0     | 0          | 0      | 23   | 10    | 0    | 33         | 15    | 0    | 13    | 0    | 28         | 143        |
| 07:20       | 30    | 39   | 0     | 0    | 69         | 0     | 0    | 0     | 0     | 0          | 0      | 21   | 11    | 0    | 32         | 10    | 1    | 17    | 0    | 28         | 129        |
| 07:25       | 28    | 32   | 0     | 1    | 61         | 0     | 0    | 0     | 0     | 0          | 0      | 19   | 11    | 0    | 30         | 9     | 0    | 19    | 0    | 28         | 119        |
| 07:30       | 29    | 36   | 0     | 0    | 65         | 0     | 0    | 0     | 0     | 0          | 0      | 20   | 18    | 0    | 38         | 12    | 0    | 22    | 0    | 34         | 137        |
| 07:35       | 34    | 29   | 0     | 0    | 63         | 0     | 0    | 0     | 0     | 0          | 0      | 22   | 17    | 0    | 39         | 8     | 0    | 12    | 0    | 20         | 122        |
| 07:40       | 39    | 37   | 0     | 0    | 76         | 0     | 0    | 0     | 0     | 0          | 0      | 16   | 14    | 0    | 30         | 10    | 0    | 20    | 0    | 30         | 136        |
| 07:45       | 29    | 31   | 0     | 0    | 60         | 0     | 0    | 0     | 0     | 0          | 0      | 13   | 10    | 0    | 23         | 13    | 0    | 22    | 0    | 35         | 118        |
| 07:50       | 36    | 40   | 0     | 0    | 76         | 0     | 0    | 0     | 0     | 0          | 0      | 22   | 10    | 0    | 32         | 9     | 0    | 19    | 0    | 28         | 136        |
| 07:55       | 29    | 28   | 0     | 0    | 57         | 0     | 0    | 0     | 0     | 0          | 0      | 14   | 22    | 0    | 36         | 8     | 0    | 19    | 0    | 27         | 120        |
| Total       | 365   | 464  | 0     | 1    | 830        | 0     | 0    | 0     | 0     | 0          | 0      | 233  | 150   | 0    | 383        | 137   | 1    | 235   | 0    | 373        | 1586       |
| 08:00       | 24    | 29   | 0     | 0    | 53         | 0     | 0    | 0     | 0     | 0          | 0      | 16   | 14    | 0    | 30         | 10    | 0    | 28    | 0    | 38         | 121        |
| 08:05       | 30    | 27   | 0     | 0    | 57         | 0     | 0    | 0     | 0     | 0          | 0      | 15   | 10    | 0    | 25         | 5     | 0    | 18    | 0    | 23         | 105        |
| 08:10       | 27    | 37   | 0     | 0    | 64         | 0     | 0    | 0     | 0     | 0          | 0      | 19   | 10    | 0    | 29         | 11    | 0    | 13    | 0    | 24         | 117        |
| 08:15       | 32    | 40   | 0     | 0    | 72         | 0     | 0    | 0     | 0     | 0          | 0      | 18   | 9     | 0    | 27         | 12    | 0    | 24    | 0    | 36         | 135        |
| 08:20       | 25    | 44   | 0     | 0    | 69         | 0     | 0    | 0     | 0     | 0          | 0      | 17   | 10    | 0    | 27         | 13    | 0    | 24    | 0    | 37         | 133        |
| 08:25       | 29    | 33   | 0     | 0    | 62         | 0     | 0    | 0     | 0     | 0          | 0      | 16   | 12    | 0    | 28         | 13    | 0    | 13    | 0    | 26         | 116        |
| Grand Total | 711   | 962  | 9     | 1    | 1683       | 0     | 0    | 0     | 0     | 0          | 0      | 456  | 267   | 0    | 723        | 276   | 1    | 459   | 0    | 736        | 3142       |
| Apprch %    | 42.2  | 57.2 | 0.5   | 0.1  |            | 0     | 0    | 0     | 0     |            | 0      | 63.1 | 36.9  | 0    |            | 37.5  | 0.1  | 62.4  | 0    |            |            |
| Total %     | 22.6  | 30.6 | 0.3   | 0    | 53.6       | 0     | 0    | 0     | 0     | 0          | 0      | 14.5 | 8.5   | 0    | 23         | 8.8   | 0    | 14.6  | 0    | 23.4       |            |

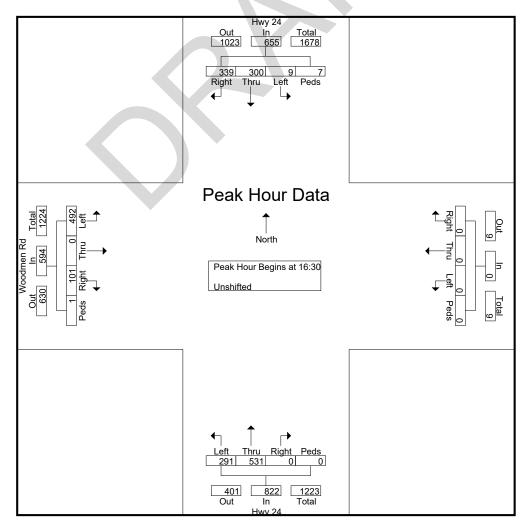
719-633-2868

File Name : Hwy 24 - Woodmen Rd AM 5-23 Site Code : S214730 Start Date : 5/2/2023 Page No : 2

|              |        |          | Hwy 2   | .4      |            |        |      |       |      |            |       |      | Hwy 2  | 24   |            |       | Wo   | odme  | n Rd |            |            |
|--------------|--------|----------|---------|---------|------------|--------|------|-------|------|------------|-------|------|--------|------|------------|-------|------|-------|------|------------|------------|
|              |        | So       | uthbo   | und     |            |        | W    | estbo | und  |            |       | No   | orthbo | und  |            |       | Ea   | astbo | und  |            |            |
| Start Time   | Right  | Thru     | Left    | Peds    | App. Total | Right  | Thru | Left  | Peds | App. Total | Right | Thru | Left   | Peds | App. Total | Right | Thru | Left  | Peds | App. Total | Int. Total |
| Peak Hour A  | Analys | is Fro   | n 06:3  | 30 to 0 | 8:25 - F   | Peak 1 | of 1 |       |      |            |       |      |        |      |            |       |      |       |      |            |            |
| Peak Hour f  | or Ent | ire Inte | ersecti | ion Be  | gins at    | 06:35  |      |       |      |            |       |      |        |      |            |       |      |       |      |            |            |
| 06:35        | 29     | 50       | 0       | 0       | 79         | 0      | 0    | 0     | 0    | 0          | 0     | 27   | 5      | 0    | 32         | 7     | 0    | 12    | 0    | 19         | 130        |
| 06:40        | 39     | 53       | 0       | 0       | 92         | 0      | 0    | 0     | 0    | 0          | 0     | 24   | 5      | 0    | 29         | 14    | 0    | 15    | 0    | 29         | 150        |
| 06:45        | 36     | 54       | 0       | 0       | 90         | 0      | 0    | 0     | 0    | 0          | 0     | 24   | 12     | 0    | 36         | 12    | 0    | 20    | 0    | 32         | 158        |
| 06:50        | 19     | 46       | 9       | 0       | 74         | 0      | 0    | 0     | 0    | 0          | 0     | 14   | 4      | 0    | 18         | 16    | 0    | 27    | 0    | 43         | 135        |
| 06:55        | 20     | 40       | 0       | 0       | 60         | 0      | 0    | 0     | 0    | 0          | 0     | 17   | 11     | 0    | 28         | 12    | 0    | 21    | 0    | 33         | 121        |
| 07:00        | 27     | 50       | 0       | 0       | 77         | 0      | 0    | 0     | 0    | 0          | 0     | 15   | 6      | 0    | 21         | 18    | 0    | 26    | 0    | 44         | 142        |
| 07:05        | 25     | 42       | 0       | 0       | 67         | 0      | 0    | 0     | 0    | 0          | 0     | 25   | 9      | 0    | 34         | 17    | 0    | 20    | 0    | 37         | 138        |
| 07:10        | 25     | 52       | 0       | 0       | 77         | 0      | 0    | 0     | 0    | 0          | 0     | 23   | 12     | 0    | 35         | 8     | 0    | 26    | 0    | 34         | 146        |
| 07:15        | 34     | 48       | 0       | 0       | 82         | 0      | 0    | 0     | 0    | 0          | 0     | 23   | 10     | 0    | 33         | 15    | 0    | 13    | 0    | 28         | 143        |
| 07:20        | 30     | 39       | 0       | 0       | 69         | 0      | 0    | 0     | 0    | 0          | 0     | 21   | 11     | 0    | 32         | 10    | 1    | 17    | 0    | 28         | 129        |
| 07:25        | 28     | 32       | 0       | 1       | 61         | 0      | 0    | 0     | 0    | 0          | 0     | 19   | 11     | 0    | 30         | 9     | 0    | 19    | 0    | 28         | 119        |
| 07:30        | 29     | 36       | 0       | 0       | 65         | 0      | 0    | 0     | 0    | 0          | 0     | 20   | 18     | 0    | 38         | 12    | 0    | 22    | 0    | 34         | 137        |
| Total Volume | 341    | 542      | 9       | 1       | 893        | 0      | 0    | 0     | 0    | 0          | 0     | 252  | 114    | 0    | 366        | 150   | 1    | 238   | 0    | 389        | 1648       |
| % App. Total | 38.2   | 60.7     | 1       | 0.1     |            | 0      | 0    | 0     | 0    |            | 0     | 68.9 | 31.1   | 0    |            | 38.6  | 0.3  | 61.2  | 0    |            |            |
| PHF          | .729   | .836     | .083    | .083    | .809       | .000   | .000 | .000  | .000 | .000       | .000  | .778 | .528   | .000 | .803       | .694  | .083 | .735  | .000 | .737       | .869       |



719-633-2868


File Name : Hwy 24 - Woodmen Rd PM 5-23 Site Code : S214730 Start Date : 5/2/2023 Page No : 1

|                | Right 26 |      | Hwy 2<br>uthbo |      |            |       |      |       |   |            |       |      |        |      |            |       | 14/- |       | DI   |            | l .        |
|----------------|----------|------|----------------|------|------------|-------|------|-------|---|------------|-------|------|--------|------|------------|-------|------|-------|------|------------|------------|
|                |          |      | uthbo          | al   |            |       |      |       |   |            |       |      | Hwy 2  |      |            |       |      | odme  |      |            | l .        |
|                |          | Thru |                |      |            |       |      | estbo |   |            |       |      | orthbo |      |            |       |      | astbo |      |            | L          |
| 16.00 0        | 26       |      | Left           | Peds | App. Total | Right | Thru | Left  |   | App. Total | Right | Thru | Left   | Peds | App. Total | Right | Thru | Left  | Peds | App. Total | Int. Total |
|                |          | 17   | 0              | 0    | 43         | 0     | 0    | 0     | 0 | 0          | 0     | 39   | 33     | 0    | 72         | 4     | 0    | 48    | 0    | 52         | 167        |
|                | 28       | 28   | 0              | 0    | 56         | 0     | 0    | 0     | 0 | 0          | 0     | 41   | 24     | 0    | 65         | 9     | 0    | 41    | 1    | 51         | 172        |
|                | 28       | 30   | 0              | 0    | 58         | 0     | 0    | 0     | 0 | 0          | 0     | 37   | 21     | 0    | 58         | 8     | 0    | 14    | 0    | 22         | 138        |
|                | 31       | 28   | 0              | 0    | 59         | 0     | 0    | 0     | 0 | 0          | 0     | 40   | 29     | 0    | 69         | 9     | 0    | 53    | 0    | 62         | 190        |
|                | 24       | 19   | 0              | 0    | 43         | 0     | 0    | 0     | 0 | 0          | 0     | 42   | 23     | 0    | 65         | 5     | 0    | 52    | 0    | 57         | 165        |
|                | 38       | 26   | 0              | 0    | 64         | 0     | 0    | 0     | 0 | 0          | 0     | 41   | 17     | 0    | 58         | 9     | 0    | 43    | 0    | 52         | 174        |
|                | 20       | 23   | 0              | 0    | 43         | 0     | 0    | 0     | 0 | 0          | 0     | 35   | 21     | 0    | 56         | 11    | 0    | 38    | 0    | 49         | 148        |
|                | 25       | 19   | 0              | 2    | 46         | 0     | 0    | 0     | 0 | 0          | 0     | 40   | 18     | 0    | 58         | 12    | 0    | 44    | 0    | 56         | 160        |
|                | 32       | 18   | 0              | 0    | 50         | 0     | 0    | 0     | 0 | 0          | 0     | 41   | 28     | 0    | 69         | 6     | 0    | 38    | 0    | 44         | 163        |
|                | 33       | 26   | 9              | 0    | 68         | 0     | 0    | 0     | 0 | 0          | 0     | 59   | 19     | 0    | 78         | 9     | 0    | 5     | 0    | 14         | 160        |
|                | 32       | 25   | 0              | 0    | 57         | 0     | 0    | 0     | 0 | 0          | 0     | 45   | 22     | 0    | 67         | 10    | 0    | 54    | 1    | 65         | 189        |
|                | 23       | 14   | 0              | 0    | 37         | 0     | 0    | 0     | 0 | 0          | 0     | 35   | 18     | 0    | 53         | 6     | 0    | 50    | 0    | 56         | 146        |
| Total   34     | 340      | 273  | 9              | 2    | 624        | 0     | 0    | 0     | 0 | 0          | 0     | 495  | 273    | 0    | 768        | 98    | 0    | 480   | 2    | 580        | 1972       |
| 17:00 3        | 35       | 23   | 0              | 0    | 58         | 0     | 0    | 0     | 0 | 0          | 0     | 44   | 24     | 0    | 68         | 10    | 0    | 44    | 0    | 54         | 180        |
| 17:05 2        | 26       | 23   | 0              | 0    | 49         | 0     | 0    | 0     | 0 | 0          | 0     | 27   | 26     | 0    | 53         | 9     | 0    | 45    | 0    | 54         | 156        |
| 17:10 2        | 23       | 34   | 0              | 0    | 57         | 0     | 0    | 0     | 0 | 0          | 0     | 50   | 28     | 0    | 78         | 4     | 0    | 43    | 0    | 47         | 182        |
| 17:15 2        | 26       | 37   | 0              | 0    | 63         | 0     | 0    | 0     | 0 | 0          | 0     | 71   | 37     | 0    | 108        | 8     | 0    | 34    | 0    | 42         | 213        |
| 17:20 2        | 27       | 28   | 0              | 4    | 59         | 0     | 0    | 0     | 0 | 0          | 0     | 42   | 24     | 0    | 66         | 6     | 0    | 46    | 0    | 52         | 177        |
| 17:25 3        | 37       | 30   | 0              | 1    | 68         | 0     | 0    | 0     | 0 | 0          | 0     | 42   | 26     | 0    | 68         | 10    | 0    | 51    | 0    | 61         | 197        |
| 17:30 2        | 22       | 13   | 0              | 0    | 35         | 0     | 0    | 0     | 0 | 0          | 0     | 37   | 27     | 0    | 64         | 10    | 0    | 39    | 0    | 49         | 148        |
| 17:35 2        | 29       | 16   | 0              | 1    | 46         | 0     | 0    | 0     | 0 | 0          | 0     | 24   | 23     | 0    | 47         | 10    | 0    | 53    | 0    | 63         | 156        |
| 17:40 2        | 21       | 19   | 0              | 1    | 41         | 0     | 0    | 0     | 0 | 0          | 0     | 35   | 18     | 0    | 53         | 7     | 0    | 61    | 0    | 68         | 162        |
| 17:45 1        | 16       | 19   | 0              | 0    | 35         | 0     | 0    | 0     | 0 | 0          | 0     | 43   | 34     | 0    | 77         | 5     | 0    | 46    | 0    | 51         | 163        |
| 17:50 2        | 26       | 16   | 0              | 0    | 42         | 0     | 0    | 0     | 0 | 0          | 0     | 44   | 22     | 0    | 66         | 8     | 0    | 25    | 0    | 33         | 141        |
| 17:55 2        | 23       | 15   | 0              | 1    | 39         | 0     | 0    | 0     | 0 | 0          | 0     | 41   | 26     | 0    | 67         | 6     | 0    | 33    | 0    | 39         | 145        |
| Total 31       | 311      | 273  | 0              | 8    | 592        | 0     | 0    | 0     | 0 | 0          | 0     | 500  | 315    | 0    | 815        | 93    | 0    | 520   | 0    | 613        | 2020       |
| Grand Total 65 | 651      | 546  | 9              | 10   | 1216       | 0     | 0    | 0     | 0 | 0          | 0     | 995  | 588    | 0    | 1583       | 191   | 0    | 1000  | 2    | 1193       | 3992       |
| Apprch % 53    | 3.5      | 44.9 | 0.7            | 0.8  |            | 0     | 0    | 0     | 0 |            | 0     | 62.9 | 37.1   | 0    |            | 16    | 0    | 83.8  | 0.2  |            |            |
|                | 6.3      | 13.7 | 0.2            | 0.3  | 30.5       | 0     | 0    | 0     | 0 | 0          | 0     | 24.9 | 14.7   | 0    | 39.7       | 4.8   | 0    | 25.1  | 0.1  | 29.9       | 1          |

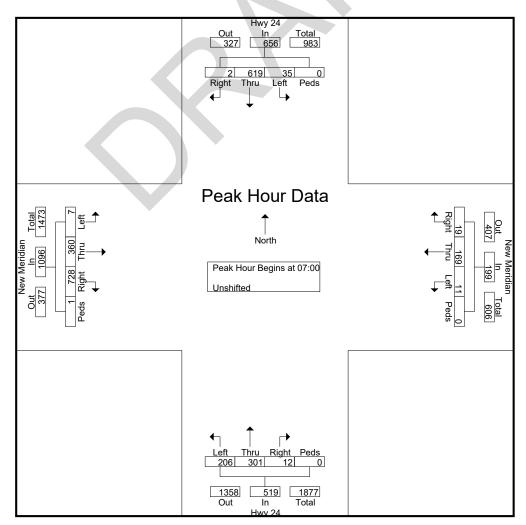
719-633-2868

File Name : Hwy 24 - Woodmen Rd PM 5-23 Site Code : S214730 Start Date : 5/2/2023 Page No : 2

|              |        |          | Hwy 2   | 24      |            |        |      |       |      |            |       |      | Hwy 2  | 24   |            |       | Wo   | odme  | n Rd |            |            |
|--------------|--------|----------|---------|---------|------------|--------|------|-------|------|------------|-------|------|--------|------|------------|-------|------|-------|------|------------|------------|
|              |        | So       | uthbo   | und     |            |        | We   | estbo | und  |            |       | No   | orthbo | und  |            |       | Ea   | astbo | und  |            |            |
| Start Time   | Right  | Thru     | Left    | Peds    | App. Total | Right  | Thru | Left  | Peds | App. Total | Right | Thru | Left   | Peds | App. Total | Right | Thru | Left  | Peds | App. Total | Int. Total |
| Peak Hour A  | Analys | is Fror  | m 16:0  | )0 to 1 | 7:55 - F   | Peak 1 | of 1 |       |      |            |       |      |        |      |            |       |      |       |      |            |            |
| Peak Hour f  | or Ent | ire Inte | ersecti | ion Be  | gins at    | 16:30  |      |       |      |            |       |      |        |      |            |       |      |       |      |            |            |
| 16:30        | 20     | 23       | 0       | 0       | 43         | 0      | 0    | 0     | 0    | 0          | 0     | 35   | 21     | 0    | 56         | 11    | 0    | 38    | 0    | 49         | 148        |
| 16:35        | 25     | 19       | 0       | 2       | 46         | 0      | 0    | 0     | 0    | 0          | 0     | 40   | 18     | 0    | 58         | 12    | 0    | 44    | 0    | 56         | 160        |
| 16:40        | 32     | 18       | 0       | 0       | 50         | 0      | 0    | 0     | 0    | 0          | 0     | 41   | 28     | 0    | 69         | 6     | 0    | 38    | 0    | 44         | 163        |
| 16:45        | 33     | 26       | 9       | 0       | 68         | 0      | 0    | 0     | 0    | 0          | 0     | 59   | 19     | 0    | 78         | 9     | 0    | 5     | 0    | 14         | 160        |
| 16:50        | 32     | 25       | 0       | 0       | 57         | 0      | 0    | 0     | 0    | 0          | 0     | 45   | 22     | 0    | 67         | 10    | 0    | 54    | 1    | 65         | 189        |
| 16:55        | 23     | 14       | 0       | 0       | 37         | 0      | 0    | 0     | 0    | 0          | 0     | 35   | 18     | 0    | 53         | 6     | 0    | 50    | 0    | 56         | 146        |
| 17:00        | 35     | 23       | 0       | 0       | 58         | 0      | 0    | 0     | 0    | 0          | 0     | 44   | 24     | 0    | 68         | 10    | 0    | 44    | 0    | 54         | 180        |
| 17:05        | 26     | 23       | 0       | 0       | 49         | 0      | 0    | 0     | 0    | 0          | 0     | 27   | 26     | 0    | 53         | 9     | 0    | 45    | 0    | 54         | 156        |
| 17:10        | 23     | 34       | 0       | 0       | 57         | 0      | 0    | 0     | 0    | 0          | 0     | 50   | 28     | 0    | 78         | 4     | 0    | 43    | 0    | 47         | 182        |
| 17:15        | 26     | 37       | 0       | 0       | 63         | 0      | 0    | 0     | 0    | 0          | 0     | 71   | 37     | 0    | 108        | 8     | 0    | 34    | 0    | 42         | 213        |
| 17:20        | 27     | 28       | 0       | 4       | 59         | 0      | 0    | 0     | 0    | 0          | 0     | 42   | 24     | 0    | 66         | 6     | 0    | 46    | 0    | 52         | 177        |
| 17:25        | 37     | 30       | 0       | 1       | 68         | 0      | 0    | 0     | 0    | 0          | 0     | 42   | 26     | 0    | 68         | 10    | 0    | 51    | 0    | 61         | 197        |
| Total Volume | 339    | 300      | 9       | 7       | 655        | 0      | 0    | 0     | 0    | 0          | 0     | 531  | 291    | 0    | 822        | 101   | 0    | 492   | 1    | 594        | 2071       |
| % App. Total | 51.8   | 45.8     | 1.4     | 1.1     |            | 0      | 0    | 0     | 0    |            | 0     | 64.6 | 35.4   | 0    |            | 17    | 0    | 82.8  | 0.2  |            |            |
| PHF          | .764   | .676     | .083    | .146    | .803       | .000   | .000 | .000  | .000 | .000       | .000  | .623 | .655   | .000 | .634       | .701  | .000 | .759  | .083 | .762       | .810       |



719-633-2868


File Name : Hwy 24 - New Meridian Rd AM 5-23 Site Code : S214730 Start Date : 5/4/2023 Page No : 1

|             |       |      |       |   |            |       |      | G      | roups | Printe     | d- Uns |      |        |      |            |       |      |       |      |            |            |
|-------------|-------|------|-------|---|------------|-------|------|--------|-------|------------|--------|------|--------|------|------------|-------|------|-------|------|------------|------------|
|             |       |      | Hwy 2 |   |            |       |      | v Meri |       |            |        |      | Hwy 2  |      |            |       |      | w Mer |      |            |            |
|             |       |      | uthbo |   |            |       |      | estbo  |       |            |        | -    | orthbo |      |            |       |      | astbo |      |            |            |
| Start Time  | Right | Thru | Left  |   | App. Total | Right | Thru | Left   | Peds  | App. Total | Right  | Thru | Left   | Peds | App. Total | Right | Thru | Left  | Peds | App. Total | Int. Total |
| 06:30       | 0     | 59   | 4     | 0 | 63         | 1     | 14   | 0      | 0     | 15         | 0      | 20   | 16     | 0    | 36         | 49    | 17   | 0     | 0    | 66         | 180        |
| 06:35       | 1     | 60   | 5     | 0 | 66         | 2     | 13   | 0      | 0     | 15         | 0      | 22   | 15     | 0    | 37         | 52    | 15   | 1     | 0    | 68         | 186        |
| 06:40       | 0     | 58   | 6     | 0 | 64         | 0     | 12   | 0      | 0     | 12         | 1      | 19   | 14     | 0    | 34         | 50    | 18   | 0     | 0    | 68         | 178        |
| 06:45       | 1     | 60   | 7     | 0 | 68         | 2     | 16   | 0      | 0     | 18         | 0      | 33   | 15     | 0    | 48         | 52    | 14   | 0     | 0    | 66         | 200        |
| 06:50       | 2     | 52   | 4     | 0 | 58         | 1     | 16   | 0      | 0     | 17         | 0      | 22   | 17     | 0    | 39         | 54    | 15   | 1     | 0    | 70         | 184        |
| 06:55       | 1     | 70   | 1     | 0 | 72         | 1     | 10   | 1      | 0     | 12         | 0      | 23   | 13     | 0    | 36         | 55    | 22   | 1     | 0    | 78         | 198        |
| Total       | 5     | 359  | 27    | 0 | 391        | 7     | 81   | 1      | 0     | 89         | 1      | 139  | 90     | 0    | 230        | 312   | 101  | 3     | 0    | 416        | 1126       |
| 07:00       | 0     | 70   | 1     | 0 | 71         | 2     | 5    | 0      | 0     | 7          | 2      | 28   | 21     | 0    | 51         | 69    | 26   | 0     | 0    | 95         | 224        |
| 07:05       | 1     | 49   | 4     | 0 | 54         | 0     | 17   | 0      | 0     | 17         | 2      | 21   | 10     | 0    | 33         | 74    | 29   | 2     | 0    | 105        | 209        |
| 07:10       | 1     | 69   | 3     | 0 | 73         | 2     | 6    | 0      | 0     | 8          | 0      | 24   | 19     | 0    | 43         | 56    | 20   | 0     | 0    | 76         | 200        |
| 07:15       | 0     | 64   | 3     | 0 | 67         | 1     | 0    | 0      | 0     | 1          | 0      | 21   | 27     | 0    | 48         | 69    | 27   | 0     | 0    | 96         | 212        |
| 07:20       | 0     | 40   | 4     | 0 | 44         | 2     | 24   | 0      | 0     | 26         | 0      | 27   | 15     | 0    | 42         | 64    | 27   | 0     | 0    | 91         | 203        |
| 07:25       | 0     | 39   | 3     | 0 | 42         | 5     | 20   | 2      | 0     | 27         | 1      | 25   | 14     | 0    | 40         | 65    | 31   | 2     | 0    | 98         | 207        |
| 07:30       | 0     | 42   | 1     | 0 | 43         | 2     | 24   | 2      | 0     | 28         | 2      | 19   | 11     | 0    | 32         | 71    | 38   | 1     | 0    | 110        | 213        |
| 07:35       | 0     | 44   | 2     | 0 | 46         | 0     | 27   | 4      | 0     | 31         | 0      | 34   | 17     | 0    | 51         | 43    | 48   | 0     | 0    | 91         | 219        |
| 07:40       | 0     | 35   | 5     | 0 | 40         | 0     | 19   | 1      | 0     | 20         | 0      | 22   | 16     | 0    | 38         | 58    | 41   | 1     | 1    | 101        | 199        |
| 07:45       | 0     | 38   | 2     | 0 | 40         | 2     | 18   | 2      | 0     | 22         | 1      | 18   | 17     | 0    | 36         | 55    | 27   | 0     | 0    | 82         | 180        |
| 07:50       | 0     | 59   | 0     | 0 | 59         | 1     | 2    | 0      | 0     | 3          | 2      | 31   | 16     | 0    | 49         | 67    | 19   | 1     | 0    | 87         | 198        |
| 07:55       | 0     | 70   | 7     | 0 | 77         | 2     | 7    | 0      | 0     | 9          | 2      | 31   | 23     | 0    | 56         | 37    | 27   | 0     | 0    | 64         | 206        |
| Total       | 2     | 619  | 35    | 0 | 656        | 19    | 169  | 11     | 0     | 199        | 12     | 301  | 206    | 0    | 519        | 728   | 360  | 7     | 1    | 1096       | 2470       |
| 08:00       | 1     | 51   | 5     | 0 | 57         | 2     | 18   | 1      | 0     | 21         | 0      | 33   | 33     | 0    | 66         | 39    | 12   | 1     | 0    | 52         | 196        |
| 08:05       | 0     | 30   | 4     | 0 | 34         | 2     | 16   | 1      | 0     | 19         | 3      | 31   | 28     | 0    | 62         | 31    | 17   | 0     | 0    | 48         | 163        |
| 08:10       | 1     | 52   | 5     | 0 | 58         | 1     | 17   | 1      | 0     | 19         | 1      | 30   | 22     | 0    | 53         | 45    | 17   | 0     | 0    | 62         | 192        |
| 08:15       | 0     | 36   | 2     | 0 | 38         | 4     | 26   | 2      | 0     | 32         | 3      | 13   | 17     | 0    | 33         | 29    | 24   | 3     | 0    | 56         | 159        |
| 08:20       | 0     | 39   | 4     | 0 | 43         | 2     | 24   | 1      | 0     | 27         | 2      | 24   | 20     | 0    | 46         | 41    | 20   | 2     | 0    | 63         | 179        |
| 08:25       | 1     | 39   | 8     | 0 | 48         | 3     | 25   | 0      | 0     | 28         | 0      | 15   | 24     | 0    | 39         | 45    | 17   | 0     | 0    | 62         | 177        |
| Grand Total | 10    | 1225 | 90    | 0 | 1325       | 40    | 376  | 18     | 0     | 434        | 22     | 586  | 440    | 0    | 1048       | 1270  | 568  | 16    | 1    | 1855       | 4662       |
| Apprch %    | 0.8   | 92.5 | 6.8   | 0 |            | 9.2   | 86.6 | 4.1    | 0     |            | 2.1    | 55.9 | 42     | 0    |            | 68.5  | 30.6 | 0.9   | 0.1  |            |            |
| Total %     | 0.2   | 26.3 | 1.9   | 0 | 28.4       | 0.9   | 8.1  | 0.4    | 0     | 9.3        | 0.5    | 12.6 | 9.4    | 0    | 22.5       | 27.2  | 12.2 | 0.3   | 0    | 39.8       |            |

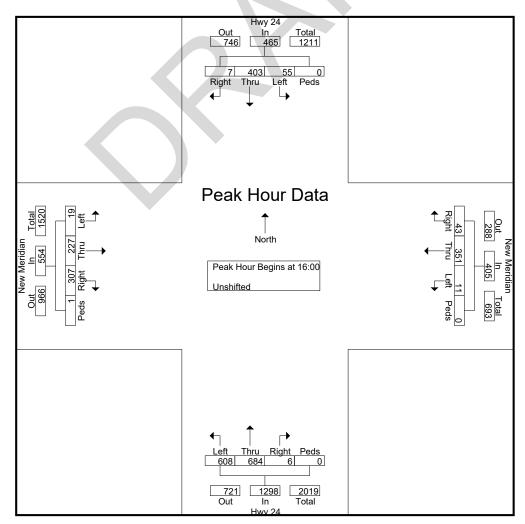
719-633-2868

File Name : Hwy 24 - New Meridian Rd AM 5-23 Site Code : S214730 Start Date : 5/4/2023 Page No : 2

|              |        |          | Hwy 2   | 4       |            |        | Nev  | v Meri | idian |            |       |      | Hwy 2 | 24   |            |       | Nev  | w Meri | idian |            |            |
|--------------|--------|----------|---------|---------|------------|--------|------|--------|-------|------------|-------|------|-------|------|------------|-------|------|--------|-------|------------|------------|
|              |        | So       | uthbo   | und     |            |        | W    | estbo  | und   |            |       | No   | rthbo | und  |            |       | Ea   | astbo  | und   |            |            |
| Start Time   | Right  | Thru     | Left    | Peds    | App. Total | Right  | Thru | Left   | Peds  | App. Total | Right | Thru | Left  | Peds | App. Total | Right | Thru | Left   | Peds  | App. Total | Int. Total |
| Peak Hour A  | Analys | is Fro   | m 06:3  | 30 to 0 | 8:25 - F   | Peak 1 | of 1 |        |       |            |       |      |       |      |            |       |      |        |       |            |            |
| Peak Hour f  | or Ent | ire Inte | ersecti | on Beg  | gins at    | 07:00  |      |        |       |            |       |      |       |      |            |       |      |        |       |            |            |
| 07:00        | 0      | 70       | 1       | 0       | 71         | 2      | 5    | 0      | 0     | 7          | 2     | 28   | 21    | 0    | 51         | 69    | 26   | 0      | 0     | 95         | 224        |
| 07:05        | 1      | 49       | 4       | 0       | 54         | 0      | 17   | 0      | 0     | 17         | 2     | 21   | 10    | 0    | 33         | 74    | 29   | 2      | 0     | 105        | 209        |
| 07:10        | 1      | 69       | 3       | 0       | 73         | 2      | 6    | 0      | 0     | 8          | 0     | 24   | 19    | 0    | 43         | 56    | 20   | 0      | 0     | 76         | 200        |
| 07:15        | 0      | 64       | 3       | 0       | 67         | 1      | 0    | 0      | 0     | 1          | 0     | 21   | 27    | 0    | 48         | 69    | 27   | 0      | 0     | 96         | 212        |
| 07:20        | 0      | 40       | 4       | 0       | 44         | 2      | 24   | 0      | 0     | 26         | 0     | 27   | 15    | 0    | 42         | 64    | 27   | 0      | 0     | 91         | 203        |
| 07:25        | 0      | 39       | 3       | 0       | 42         | 5      | 20   | 2      | 0     | 27         | 1     | 25   | 14    | 0    | 40         | 65    | 31   | 2      | 0     | 98         | 207        |
| 07:30        | 0      | 42       | 1       | 0       | 43         | 2      | 24   | 2      | 0     | 28         | 2     | 19   | 11    | 0    | 32         | 71    | 38   | 1      | 0     | 110        | 213        |
| 07:35        | 0      | 44       | 2       | 0       | 46         | 0      | 27   | 4      | 0     | 31         | 0     | 34   | 17    | 0    | 51         | 43    | 48   | 0      | 0     | 91         | 219        |
| 07:40        | 0      | 35       | 5       | 0       | 40         | 0      | 19   | 1      | 0     | 20         | 0     | 22   | 16    | 0    | 38         | 58    | 41   | 1      | 1     | 101        | 199        |
| 07:45        | 0      | 38       | 2       | 0       | 40         | 2      | 18   | 2      | 0     | 22         | 1     | 18   | 17    | 0    | 36         | 55    | 27   | 0      | 0     | 82         | 180        |
| 07:50        | 0      | 59       | 0       | 0       | 59         | 1      | 2    | 0      | 0     | 3          | 2     | 31   | 16    | 0    | 49         | 67    | 19   | 1      | 0     | 87         | 198        |
| 07:55        | 0      | 70       | 7       | 0       | 77         | 2      | 7    | 0      | 0     | 9          | 2     | 31   | 23    | 0    | 56         | 37    | 27   | 0      | 0     | 64         | 206        |
| Total Volume | 2      | 619      | 35      | 0       | 656        | 19     | 169  | 11     | 0     | 199        | 12    | 301  | 206   | 0    | 519        | 728   | 360  | 7      | 1     | 1096       | 2470       |
| % App. Total | 0.3    | 94.4     | 5.3     | 0       |            | 9.5    | 84.9 | 5.5    | 0     |            | 2.3   | 58   | 39.7  | 0    |            | 66.4  | 32.8 | 0.6    | 0.1   |            |            |
| PHF          | .167   | .737     | .417    | .000    | .710       | .317   | .522 | .229   | .000  | .535       | .500  | .738 | .636  | .000 | .772       | .820  | .625 | .292   | .083  | .830       | .919       |



719-633-2868


File Name : Hwy 24 - New Meridian PM Site Code : S214730 Start Date : 5/4/2023 Page No : 1

|             |       |      |       |      |            |       |      | G     | roups | Printe     | d- Uns | shifte | d      |   |            |       |      |       |     |            |            |
|-------------|-------|------|-------|------|------------|-------|------|-------|-------|------------|--------|--------|--------|---|------------|-------|------|-------|-----|------------|------------|
|             |       |      | Hwy 2 |      |            |       |      | v Mer |       |            |        |        | Hwy 2  |   |            |       |      | v Mer |     |            |            |
|             |       |      | uthbo |      |            |       |      | estbo | und   |            |        | -      | prthbo |   |            |       |      | astbo |     |            |            |
| Start Time  | Right | Thru | Left  | Peds | App. Total | Right | Thru | Left  | Peds  | App. Total | Right  | Thru   | Left   |   | App. Total | Right | Thru | Left  |     | App. Total | Int. Total |
| 16:00       | 1     | 37   | 4     | 0    | 42         | 1     | 48   | 2     | 0     | 51         | 1      | 47     | 40     | 0 | 88         | 23    | 21   | 2     | 0   | 46         | 227        |
| 16:05       | 0     | 29   | 8     | 0    | 37         | 6     | 28   | 3     | 0     | 37         | 0      | 58     | 41     | 0 | 99         | 31    | 21   | 0     | 0   | 52         | 225        |
| 16:10       | 2     | 35   | 3     | 0    | 40         | 4     | 29   | 0     | 0     | 33         | 0      | 55     | 52     | 0 | 107        | 18    | 11   | 4     | 0   | 33         | 213        |
| 16:15       | 0     | 33   | 5     | 0    | 38         | 6     | 34   | 1     | 0     | 41         | 1      | 63     | 53     | 0 | 117        | 33    | 20   | 0     | 0   | 53         | 249        |
| 16:20       | 0     | 44   | 5     | 0    | 49         | 4     | 23   | 1     | 0     | 28         | 2      | 65     | 53     | 0 | 120        | 30    | 15   | 1     | 0   | 46         | 243        |
| 16:25       | 1     | 50   | 4     | 0    | 55         | 2     | 28   | 1     | 0     | 31         | 0      | 55     | 50     | 0 | 105        | 21    | 17   | 1     | 0   | 39         | 230        |
| 16:30       | 1     | 21   | 4     | 0    | 26         | 4     | 26   | 0     | 0     | 30         | 1      | 51     | 60     | 0 | 112        | 16    | 20   | 2     | 0   | 38         | 206        |
| 16:35       | 0     | 29   | 5     | 0    | 34         | 2     | 37   | 0     | 0     | 39         | 0      | 69     | 54     | 0 | 123        | 17    | 19   | 0     | 1   | 37         | 233        |
| 16:40       | 0     | 29   | 3     | 0    | 32         | 3     | 33   | 1     | 0     | 37         | 0      | 42     | 51     | 0 | 93         | 24    | 22   | 2     | 0   | 48         | 210        |
| 16:45       | 0     | 26   | 5     | 0    | 31         | 4     | 22   | 0     | 0     | 26         | 0      | 73     | 63     | 0 | 136        | 47    | 15   | 4     | 0   | 66         | 259        |
| 16:50       | 0     | 22   | 7     | 0    | 29         | 6     | 21   | 1     | 0     | 28         | 1      | 53     | 48     | 0 | 102        | 25    | 24   | 3     | 0   | 52         | 211        |
| 16:55       | 2     | 48   | 2     | 0    | 52         | 1     | 22   | 1     | 0     | 24         | 0      | 53     | 43     | 0 | 96         | 22    | 22   | 0     | 0   | 44         | 216        |
| Total       | 7     | 403  | 55    | 0    | 465        | 43    | 351  | 11    | 0     | 405        | 6      | 684    | 608    | 0 | 1298       | 307   | 227  | 19    | 1   | 554        | 2722       |
| 17:00       | 1     | 33   | 4     | 0    | 38         | 4     | 18   | 0     | 0     | 22         | 0      | 59     | 61     | 0 | 120        | 30    | 14   | 2     | 0   | 46         | 226        |
| 17:05       | 0     | 30   | 8     | 0    | 38         | 2     | 24   | 2     | 0     | 28         | 0      | 46     | 49     | 0 | 95         | 20    | 21   | 2     | 0   | 43         | 204        |
| 17:10       | 1     | 38   | 2     | 0    | 41         | 1     | 33   | 3     | 0     | 37         | 0      | 47     | 45     | 1 | 93         | 27    | 16   | 0     | 0   | 43         | 214        |
| 17:15       | 0     | 31   | 7     | 0    | 38         | 6     | 25   | 1     | 0     | 32         | 0      | 34     | 34     | 0 | 68         | 25    | 33   | 2     | 0   | 60         | 198        |
| 17:20       | 0     | 39   | 6     | 0    | 45         | 1     | 14   | 0     | 0     | 15         | 1      | 72     | 50     | 0 | 123        | 25    | 11   | 0     | 0   | 36         | 219        |
| 17:25       | 1     | 32   | 9     | 0    | 42         | 3     | 20   | 0     | 0     | 23         | 0      | 73     | 42     | 0 | 115        | 25    | 16   | 0     | 0   | 41         | 221        |
| 17:30       | 1     | 19   | 4     | 0    | 24         | 3     | 13   | 0     | 0     | 16         | 0      | 63     | 52     | 0 | 115        | 20    | 18   | 0     | 0   | 38         | 193        |
| 17:35       | 0     | 26   | 1     | 0    | 27         | 1     | 20   | 1     | 0     | 22         | 1      | 55     | 53     | 0 | 109        | 20    | 11   | 3     | 0   | 34         | 192        |
| 17:40       | 0     | 33   | 7     | 0    | 40         | 2     | 10   | 0     | 0     | 12         | 1      | 47     | 42     | 0 | 90         | 25    | 12   | 0     | 0   | 37         | 179        |
| 17:45       | 0     | 26   | 3     | 0    | 29         | 5     | 15   | 0     | 0     | 20         | 0      | 48     | 43     | 0 | 91         | 19    | 26   | 2     | 0   | 47         | 187        |
| 17:50       | 2     | 20   | 5     | 0    | 27         | 3     | 15   | 0     | 0     | 18         | 0      | 49     | 41     | 0 | 90         | 17    | 20   | 2     | 0   | 39         | 174        |
| 17:55       | 0     | 37   | 5     | 0    | 42         | 1     | 11   | 1     | 0     | 13         | 0      | 41     | 38     | 0 | 79         | 14    | 12   | 2     | 0   | 28         | 162        |
| Total       | 6     | 364  | 61    | 0    | 431        | 32    | 218  | 8     | 0     | 258        | 3      | 634    | 550    | 1 | 1188       | 267   | 210  | 15    | 0   | 492        | 2369       |
| Grand Total | 13    | 767  | 116   | 0    | 896        | 75    | 569  | 19    | 0     | 663        | 9      | 1318   | 1158   | 1 | 2486       | 574   | 437  | 34    | 1   | 1046       | 5091       |
| Apprch %    | 1.5   | 85.6 | 12.9  | 0    |            | 11.3  | 85.8 | 2.9   | 0     |            | 0.4    | 53     | 46.6   | 0 |            | 54.9  | 41.8 | 3.3   | 0.1 |            |            |
| Total %     | 0.3   | 15.1 | 2.3   | 0    | 17.6       | 1.5   | 11.2 | 0.4   | 0     | 13         | 0.2    | 25.9   | 22.7   | 0 | 48.8       | 11.3  | 8.6  | 0.7   | 0   | 20.5       |            |

719-633-2868

File Name : Hwy 24 - New Meridian PM Site Code : S214730 Start Date : 5/4/2023 Page No : 2

|              |        |          | Hwy 2   | 24      |            |        | Nev  | v Mer | idian |            |       |      | Hwy 2  | 24   |            |       | Nev  | v Meri | idian |            |            |
|--------------|--------|----------|---------|---------|------------|--------|------|-------|-------|------------|-------|------|--------|------|------------|-------|------|--------|-------|------------|------------|
|              |        | So       | uthbo   | und     |            |        | W    | estbo | und   |            |       | No   | orthbo | und  |            |       | Ea   | astbou | und   |            |            |
| Start Time   | Right  | Thru     | Left    | Peds    | App. Total | Right  | Thru | Left  | Peds  | App. Total | Right | Thru | Left   | Peds | App. Total | Right | Thru | Left   | Peds  | App. Total | Int. Total |
| Peak Hour A  | Analys | is Fro   | m 16:0  | )0 to 1 | 7:55 - F   | Peak 1 | of 1 |       |       |            |       |      |        |      |            |       |      |        |       |            |            |
| Peak Hour f  | or Ent | ire Inte | ersecti | ion Be  | gins at    | 16:00  |      |       |       |            |       |      |        |      |            |       |      |        |       |            |            |
| 16:00        | 1      | 37       | 4       | 0       | 42         | 1      | 48   | 2     | 0     | 51         | 1     | 47   | 40     | 0    | 88         | 23    | 21   | 2      | 0     | 46         | 227        |
| 16:05        | 0      | 29       | 8       | 0       | 37         | 6      | 28   | 3     | 0     | 37         | 0     | 58   | 41     | 0    | 99         | 31    | 21   | 0      | 0     | 52         | 225        |
| 16:10        | 2      | 35       | 3       | 0       | 40         | 4      | 29   | 0     | 0     | 33         | 0     | 55   | 52     | 0    | 107        | 18    | 11   | 4      | 0     | 33         | 213        |
| 16:15        | 0      | 33       | 5       | 0       | 38         | 6      | 34   | 1     | 0     | 41         | 1     | 63   | 53     | 0    | 117        | 33    | 20   | 0      | 0     | 53         | 249        |
| 16:20        | 0      | 44       | 5       | 0       | 49         | 4      | 23   | 1     | 0     | 28         | 2     | 65   | 53     | 0    | 120        | 30    | 15   | 1      | 0     | 46         | 243        |
| 16:25        | 1      | 50       | 4       | 0       | 55         | 2      | 28   | 1     | 0     | 31         | 0     | 55   | 50     | 0    | 105        | 21    | 17   | 1      | 0     | 39         | 230        |
| 16:30        | 1      | 21       | 4       | 0       | 26         | 4      | 26   | 0     | 0     | 30         | 1     | 51   | 60     | 0    | 112        | 16    | 20   | 2      | 0     | 38         | 206        |
| 16:35        | 0      | 29       | 5       | 0       | 34         | 2      | 37   | 0     | 0     | 39         | 0     | 69   | 54     | 0    | 123        | 17    | 19   | 0      | 1     | 37         | 233        |
| 16:40        | 0      | 29       | 3       | 0       | 32         | 3      | 33   | 1     | 0     | 37         | 0     | 42   | 51     | 0    | 93         | 24    | 22   | 2      | 0     | 48         | 210        |
| 16:45        | 0      | 26       | 5       | 0       | 31         | 4      | 22   | 0     | 0     | 26         | 0     | 73   | 63     | 0    | 136        | 47    | 15   | 4      | 0     | 66         | 259        |
| 16:50        | 0      | 22       | 7       | 0       | 29         | 6      | 21   | 1     | 0     | 28         | 1     | 53   | 48     | 0    | 102        | 25    | 24   | 3      | 0     | 52         | 211        |
| 16:55        | 2      | 48       | 2       | 0       | 52         | 1      | 22   | 1     | 0     | 24         | 0     | 53   | 43     | 0    | 96         | 22    | 22   | 0      | 0     | 44         | 216        |
| Total Volume | 7      | 403      | 55      | 0       | 465        | 43     | 351  | 11    | 0     | 405        | 6     | 684  | 608    | 0    | 1298       | 307   | 227  | 19     | 1     | 554        | 2722       |
| % App. Total | 1.5    | 86.7     | 11.8    | 0       |            | 10.6   | 86.7 | 2.7   | 0     |            | 0.5   | 52.7 | 46.8   | 0    |            | 55.4  | 41   | 3.4    | 0.2   |            |            |
| PHF          | .292   | .672     | .573    | .000    | .705       | .597   | .609 | .306  | .000  | .662       | .250  | .781 | .804   | .000 | .795       | .544  | .788 | .396   | .083  | .699       | .876       |



2504 E. Pikes Peak Ave, Suite 304 Colorado Springs, CO 80909 719-633-2868

File Name : Hwy 24 - Rio Ln TM AM 5-23 Site Code : S214730 Start Date : 5/16/2023 Page No : 1

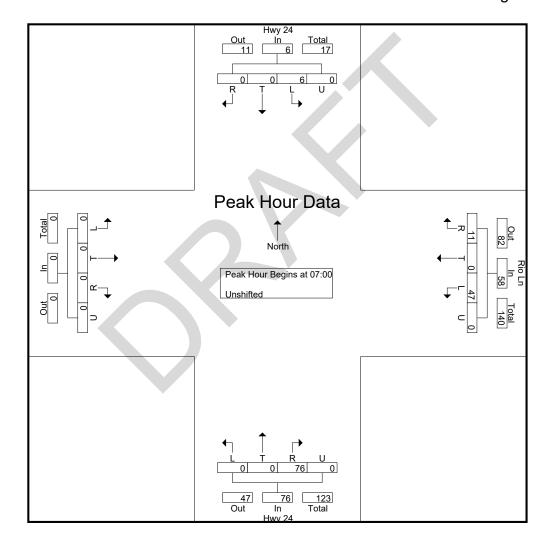
|               |   |     |         |   |            |    |    |          | Groups | Printed-U  | Inshifted |     |         |      |           |   |     |         |   |            | -          |
|---------------|---|-----|---------|---|------------|----|----|----------|--------|------------|-----------|-----|---------|------|-----------|---|-----|---------|---|------------|------------|
|               |   |     | Iwy 24  |   |            |    |    | Rio Ln   |        |            |           |     | Iwy 24  |      |           |   |     |         |   |            |            |
|               |   | Sou | thbound |   |            |    | We | estbound | l      |            |           | Noi | thbound |      |           |   | Eas | stbound |   |            |            |
| Start<br>Time | R | Т   | L       | U | App. Total | R  | Т  | L        | U      | App. Total | R         | Т   | L       | U Ap | op. Total | R | Т   | L       | U | App. Total | Int. Total |
| 06:30         | 0 | 0   | 0       | 0 | 0          | 0  | 0  | 3        | 0      | 3          | 4         | 0   | 0       | 0    | 4         | 0 | 0   | 0       | 0 | 0          | 7          |
| 06:35         | 0 | 0   | 0       | 0 | 0          | 0  | 0  | 3        | 0      | 3          | 5         | 0   | 0       | 0    | 5         | 0 | 0   | 0       | 0 | 0          | 8          |
| 06:40         | 0 | 0   | 0       | 0 | 0          | 0  | 0  | 8        | 0      | 8          | 4         | 0   | 0       | 0    | 4         | 0 | 0   | 0       | 0 | 0          | 12         |
| 06:45         | 0 | 0   | 1       | 0 | 1          | 0  | 0  | 7        | 0      | 7          | 2         | 0   | 0       | 0    | 2         | 0 | 0   | 0       | 0 | 0          | 10         |
| 06:50         | 0 | 0   | 0       | 0 | 0          | 1  | 0  | 4        | 0      | 5          | 5         | 0   | 0       | 0    | 5         | 0 | 0   | 0       | 0 | 0          | 10         |
| 06:55         | 0 | 0   | 0       | 0 | 0          | 0  | 0  | 4        | 0      | 4          | 5         | 0   | 0       | 0    | 5         | 0 | 0   | 0       | 0 | 0          | 9          |
| Total         | 0 | 0   | 1       | 0 | 1          | 1  | 0  | 29       | 0      | 30         | 25        | 0   | 0       | 0    | 25        | 0 | 0   | 0       | 0 | 0          | 56         |
| 07:00         | 0 | 0   | 0       | 0 | 0          | 0  | 0  | 7        | 0      | 7          | 6         | 0   | 0       | 0    | 6         | 0 | 0   | 0       | 0 | 0          | 13         |
| 07:05         | 0 | 0   | 0       | 0 | 0          | 0  | 0  | 2        | 0      | 2          | 5         | 0   | 0       | 0    | 5         | 0 | 0   | 0       | 0 | 0          | 7          |
| 07:10         | 0 | 0   | 0       | 0 | 0          | 0  | 0  | 3        | 0      | 2          | 3         | 0   | 0       | 0    | 3         | 0 | 0   | 0       | 0 | 0          | 6          |
| 07:15         | 0 | 0   | 0       | 0 | 0          | 2  | 0  | 4        | 0      | 6          | 10        | 0   | 0       | 0    | 10        | 0 | 0   | 0       | 0 | 0          | 16         |
| 07:20         | 0 | 0   | 0       | 0 | 0          | 0  | 0  | 2        | 0      | 2          | 6         | 0   | 0       | 0    | 6         | 0 | 0   | 0       | 0 | 0          | 8          |
| 07:25         | 0 | 0   | 1       | 0 | 1          | 1  | 0  | 3        | 0      | 4          | 6         | 0   | 0       | 0    | 6         | 0 | 0   | 0       | 0 | 0          | 11         |
| 07:30         | 0 | 0   | 1       | 0 | 1          | 1  | 0  | 1        | 0      | 2          | 8         | 0   | 0       | 0    | 8         | 0 | 0   | 0       | 0 | 0          | 11         |
| 07:35         | 0 | 0   | 1       | 0 | 1          | 1  | 0  | 5        | 0      | 6          | 11        | 0   | 0       | 0    | 11        | 0 | 0   | 0       | 0 | 0          | 18         |
| 07:40         | 0 | 0   | 3       | 0 | 3          | 0  | 0  | 4        | 0      | 4          | 8         | 0   | 0       | 0    | 8         | 0 | 0   | 0       | 0 | 0          | 15         |
| 07:45         | 0 | 0   | 0       | 0 | 0          | 1  | 0  | 3        | 0      | 4          | 3         | 0   | 0       | 0    | 3         | 0 | 0   | 0       | 0 | 0          | 7          |
| 07:50         | 0 | 0   | 0       | 0 | 0          | 4  | 0  | 5        | 0      | 9          | 7         | 0   | 0       | 0    | 7         | 0 | 0   | 0       | 0 | 0          | 16         |
| 07:55         | 0 | 0   | 0       | 0 | 0          | 1  | 0  | 8        | 0      | 9          | 3         | 0   | 0       | 0    | 3         | 0 | 0   | 0       | 0 | 0          | 12         |
| Total         | 0 | 0   | 6       | 0 | 6          | 11 | 0  | 47       | 0      | 58         | 76        | 0   | 0       | 0    | 76        | 0 | 0   | 0       | 0 | 0          | 140        |
| 08:00         | 0 | 0   | 0       | 0 | 0          | 0  | 0  | 4        | 0      | 4          | 5         | 0   | 0       | 0    | 5         | 0 | 0   | 0       | 0 | 0          | 9          |

719-633-2868

File Name : Hwy 24 - Rio Ln TM AM 5-23 Site Code : S214730 Start Date : 5/16/2023 Page No : 2

|             |   |   |         |    |            |      |   |         | Groups | s Printed- | Unshifte | d  |        |    |            |   |   |          |          |            | _          |
|-------------|---|---|---------|----|------------|------|---|---------|--------|------------|----------|----|--------|----|------------|---|---|----------|----------|------------|------------|
|             |   |   | Hwy 24  |    |            |      |   | Rio Ln  |        |            |          |    | Hwy 24 |    |            |   |   |          |          |            |            |
|             |   | S | outhbou | nd |            |      | W | estbour | ıd     |            |          | No | rthbou | nd |            |   | E | astbound | <u>l</u> |            |            |
| Start       |   | т |         |    |            | ъ    | T |         |        |            | Б        | -  |        |    |            | n |   | <b>.</b> |          |            |            |
| Time        | R | Т | L       | U  | App. Total | R    | Т | L       | U      | App. Total | R        | T  | L      | U  | App. Total | R | Т | L        | U        | App. Total | Int. Total |
| 08:05       | 0 | 0 | 0       | 0  | 0          | 0    | 0 | 1       | 0      | 1          | 5        | 0  | 0      | 0  | 5          | 0 | 0 | 0        | 0        | 0          | 6          |
| 08:10       | 0 | 0 | 0       | 0  | 0          | 0    | 0 | 2       | 0      | 2          | 2        | 0  | 0      | 0  | 2          | 0 | 0 | 0        | 0        | 0          | 4          |
| 08:15       | 0 | 0 | 0       | 0  | 0          | 1    | 0 | 6       | 0      | 7          | 2        | 0  | 0      | 0  | 2          | 0 | 0 | 0        | 0        | 0          | 9          |
| 08:20       | 0 | 0 | 0       | 0  | 0          | 0    | 0 | 4       | 0      | 4          | 1        | 0  | 0      | 0  | 1          | 0 | 0 | 0        | 0        | 0          | 5          |
| 08:25       | 0 | 0 | 0       | 0  | 0          | 0    | 0 | 3       | 0      | 3          | 2        | 0  | 0      | 0  | 2          | 0 | 0 | 0        | 0        | 0          | 5          |
| Grand Total | 0 | 0 | 7       | 0  | 7          | 13   | 0 | 96      | 0      | 109        | 118      | 0  | 0      | 0  | 118        | 0 | 0 | 0        | 0        | 0          | 234        |
| Apprch %    | 0 | 0 | 100     | 0  |            | 11.9 | 0 | 88.1    | 0      |            | 100      | 0  | 0      | 0  |            | 0 | 0 | 0        | 0        |            |            |
| Total %     | 0 | 0 | 3       | 0  | 3          | 5.6  | 0 | 41      | 0      | 46.6       | 50.4     | 0  | 0      | 0  | 50.4       | 0 | 0 | 0        | 0        | 0          |            |

2504 E. Pikes Peak Ave, Suite 304 Colorado Springs, CO 80909 719-633-2868


File Name : Hwy 24 - Rio Ln TM AM 5-23 Site Code : S214730 Start Date : 5/16/2023

Page No : 3

|                  |      |           | Hwy 24<br>uthboun |      |            |      | W    | Rio Ln<br>/estboun |      |            |      |      | Hwy 24<br>orthbour |      |            |      | E    | astbound | 1    |            |            |
|------------------|------|-----------|-------------------|------|------------|------|------|--------------------|------|------------|------|------|--------------------|------|------------|------|------|----------|------|------------|------------|
| Start Time       | R    | Т         | L                 |      | App. Total | R    | Т    | L                  | U    | App. Total | R    | Т    | L                  | U    | App. Total | R    | Т    | L        | U    | App. Total | Int. Total |
| Peak Hour Analy  |      |           |                   |      | of 1       |      |      |                    |      |            |      |      |                    |      |            |      |      |          |      |            |            |
| Peak Hour for En |      | ection Be | gins at 0         |      |            |      |      |                    |      | 1          |      |      |                    |      |            |      |      |          |      |            | I          |
| 07:00            | 0    | 0         | 0                 | 0    | 0          | 0    | 0    | 7                  | 0    | 7          | 6    | 0    | 0                  | 0    | 6          | 0    | 0    | 0        | 0    | 0          | 13         |
| 07:05            | 0    | 0         | 0                 | 0    | 0          | 0    | 0    | 2                  | 0    | 2          | 5    | 0    | 0                  | 0    | 5          | 0    | 0    | 0        | 0    | 0          | 7          |
| 07:10            | 0    | 0         | 0                 | 0    | 0          | 0    | 0    | 3                  | 0    | 3          | 3    | 0    | 0                  | 0    | 3          | 0    | 0    | 0        | 0    | 0          | 6          |
| 07:15            | 0    | 0         | 0                 | 0    | 0          | 2    | 0    | 4                  | 0    | 6          | 10   | 0    | 0                  | 0    | 10         | 0    | 0    | 0        | 0    | 0          | 16         |
| 07:20            | 0    | 0         | 0                 | 0    | 0          | 0    | 0    | 2                  | 0    | 2          | 6    | 0    | 0                  | 0    | 6          | 0    | 0    | 0        | 0    | 0          | 8          |
| 07:25            | 0    | 0         | 1                 | 0    | 1          | 1    | 0    | 3                  | 0    | 4          | 6    | 0    | 0                  | 0    | 6          | 0    | 0    | 0        | 0    | 0          | 11         |
| 07:30            | 0    | 0         | 1                 | 0    | 1          | 1    | 0    | 1                  | 0    | 2          | 8    | 0    | 0                  | 0    | 8          | 0    | 0    | 0        | 0    | 0          | 11         |
| 07:35            | 0    | 0         | 1                 | 0    | 1          | 1    | 0    | 5                  | 0    | 6          | 11   | 0    | 0                  | 0    | 11         | 0    | 0    | 0        | 0    | 0          | 18         |
| 07:40            | 0    | 0         | 3                 | 0    | 3          | 0    | 0    | 4                  | 0    | 4          | 8    | 0    | 0                  | 0    | 8          | 0    | 0    | 0        | 0    | 0          | 15         |
| 07:45            | 0    | 0         | 0                 | 0    | 0          | 1    | 0    | 3                  | 0    | 4          | 3    | 0    | 0                  | 0    | 3          | 0    | 0    | 0        | 0    | 0          | 7          |
| 07:50            | 0    | 0         | 0                 | 0    | 0          | 4    | 0    | 5                  | 0    | 9          | 7    | 0    | 0                  | 0    | 7          | 0    | 0    | 0        | 0    | 0          | 16         |
| 07:55            | 0    | 0         | 0                 | 0    | 0          | 1    | 0    | 8                  | 0    | 9          | 3    | 0    | 0                  | 0    | 3          | 0    | 0    | 0        | 0    | 0          | 12         |
| Total Volume     | 0    | 0         | 6                 | 0    | 6          | 11   | 0    | 47                 | 0    | 58         | 76   | 0    | 0                  | 0    | 76         | 0    | 0    | 0        | 0    | 0          | 140        |
| % App. Total     | 0    | 0         | 100               | 0    |            | 19   | 0    | 81                 | 0    |            | 100  | 0    | 0                  | 0    |            | 0    | 0    | 0        | 0    |            |            |
| PHF              | .000 | .000      | .167              | .000 | .167       | .229 | .000 | .490               | .000 | .537       | .576 | .000 | .000               | .000 | .576       | .000 | .000 | .000     | .000 | .000       | .648       |
|                  |      |           |                   |      |            |      |      |                    |      |            |      |      |                    |      |            |      |      |          |      |            |            |

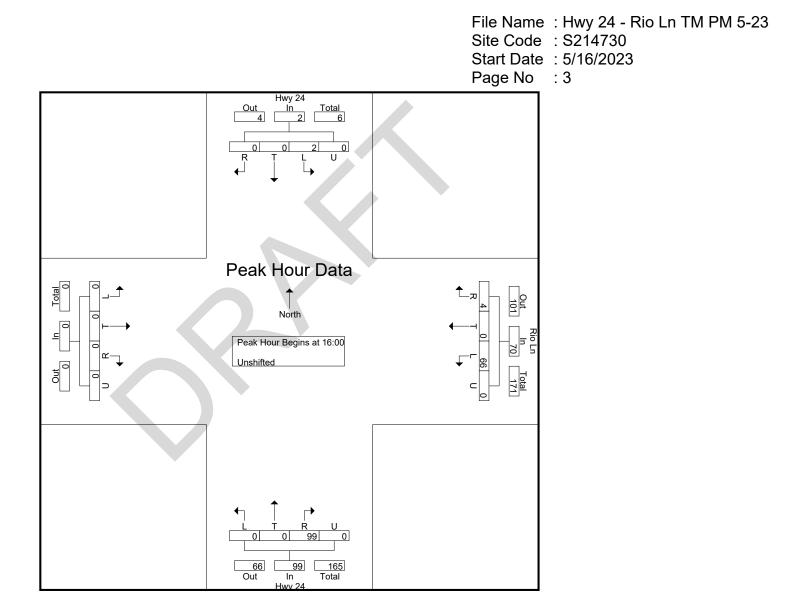
2504 E. Pikes Peak Ave, Suite 304 Colorado Springs, CO 80909 719-633-2868

File Name : Hwy 24 - Rio Ln TM AM 5-23 Site Code : S214730 Start Date : 5/16/2023 Page No : 4



2504 E. Pikes Peak Ave, Suite 304 Colorado Springs, CO 80909 719-633-2868

> File Name : Hwy 24 - Rio Ln TM PM 5-23 Site Code : S214730 Start Date : 5/16/2023 Page No : 1


|             |   |    |          |   |            |     |   |         | Group | s Printed- | Unshifted | 1  |         |   |            |   |    |         |   |            | _          |
|-------------|---|----|----------|---|------------|-----|---|---------|-------|------------|-----------|----|---------|---|------------|---|----|---------|---|------------|------------|
|             |   |    | Hwy 24   |   |            |     |   | Rio Ln  |       |            |           | 1  | Hwy 24  |   |            |   |    |         |   |            |            |
|             |   | So | uthbound | l |            |     | W | estbour | nd    |            |           | No | rthboun | d |            |   | Ea | stbound | [ |            |            |
| Start       | R | т  | T        | U |            | R   | т | т       | U     |            | R         | Т  | - T     | U |            | R | т  | L       | T |            | Int Tatal  |
| Time        | ĸ | 1  | L        | U | App. Total | ĸ   | 1 | L       | U     | App. Total | ĸ         | 1  | L       |   | App. Total | ĸ | 1  | L       | U | App. Total | Int. Total |
| 16:00       | 0 | 0  | 0        | 0 | 0          | 0   | 0 | 13      | 0     | 13         | 33        | 0  | 0       | 0 | 33         | 0 | 0  | 0       | 0 | 0          | 46         |
| 16:15       | 0 | 0  | 0        | 0 | 0          | 0   | 0 | 16      | 0     | 16         | 15        | 0  | 0       | 0 | 15         | 0 | 0  | 0       | 0 | 0          | 31         |
| 16:30       | 0 | 0  | 0        | 0 | 0          | 2   | 0 | 21      | 0     | 23         | 23        | 0  | 0       | 0 | 23         | 0 | 0  | 0       | 0 | 0          | 46         |
| 16:45       | 0 | 0  | 2        | 0 | 2          | 2   | 0 | 16      | 0     | 18         | 28        | 0  | 0       | 0 | 28         | 0 | 0  | 0       | 0 | 0          | 48         |
| Total       | 0 | 0  | 2        | 0 | 2          | 4   | 0 | 66      | 0     | 70         | 99        | 0  | 0       | 0 | 99         | 0 | 0  | 0       | 0 | 0          | 171        |
| 17:00       | 0 | 0  | 1        | 0 | 1          | 0   | 0 | 5       | 0     | 5          | 28        | 0  | 0       | 0 | 28         | 0 | 0  | 0       | 0 | 0          | 34         |
| 17:15       | 0 | 0  | 1        | 0 | 1          | 1   | 0 | 10      | 0     | 11         | 19        | 0  | 0       | 0 | 19         | 0 | 0  | 0       | 0 | 0          | 31         |
| 17:30       | 0 | 0  | 1        | 0 | 1          | 2   | 0 | 5       | 0     | 7          | 32        | 0  | 0       | 0 | 32         | 0 | 0  | 0       | 0 | 0          | 40         |
| 17:45       | 0 | 0  | 0        | 0 | 0          | 0   | 0 | 12      | 0     | 12         | 21        | 0  | 0       | 0 | 21         | 0 | 0  | 0       | 0 | 0          | 33         |
| Total       | 0 | 0  | 3        | 0 | 3          | 3   | 0 | 32      | 0     | 35         | 100       | 0  | 0       | 0 | 100        | 0 | 0  | 0       | 0 | 0          | 138        |
| Grand Total | 0 | 0  | 5        | 0 | 5          | 7   | 0 | 98      | 0     | 105        | 199       | 0  | 0       | 0 | 199        | 0 | 0  | 0       | 0 | 0          | 309        |
| Apprch %    | 0 | 0  | 100      | 0 |            | 6.7 | 0 | 93.3    | 0     |            | 100       | 0  | 0       | 0 |            | 0 | 0  | 0       | 0 |            |            |
| Total %     | 0 | 0  | 1.6      | 0 | 1.6        | 2.3 | 0 | 31.7    | 0     | 34         | 64.4      | 0  | 0       | 0 | 64.4       | 0 | 0  | 0       | 0 | 0          |            |

719-633-2868

File Name : Hwy 24 - Rio Ln TM PM 5-23 Site Code : S214730 Start Date : 5/16/2023 Page No : 2

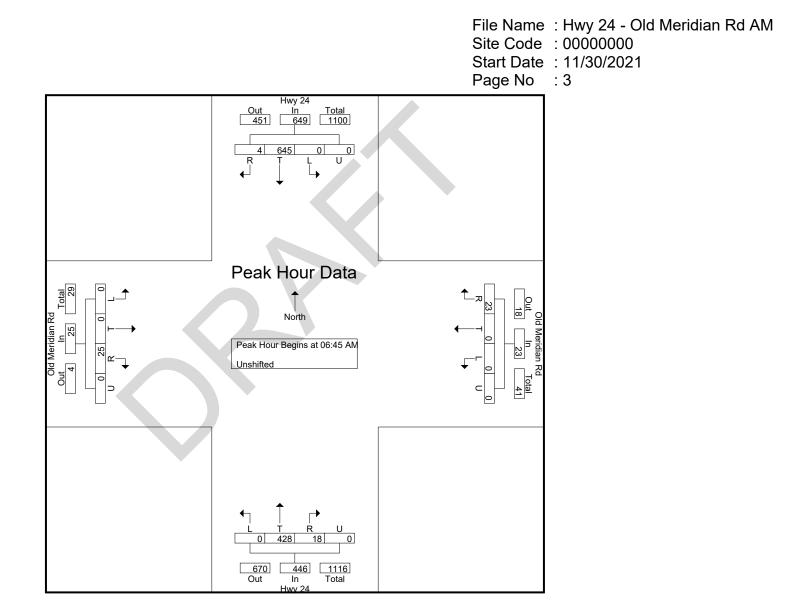
|                   |              |           | Hwy 24    |           |            |        |      | Rio Ln  |      |            |      |      | Hwy 24   |      |           |      |      |          |      |            |            |
|-------------------|--------------|-----------|-----------|-----------|------------|--------|------|---------|------|------------|------|------|----------|------|-----------|------|------|----------|------|------------|------------|
|                   |              | So        | uthboun   | d         |            |        | W    | estboun | ł    |            |      | No   | orthbour | nd   |           |      | E    | astbound | l    |            |            |
| Start Time        | R            | Т         | L         | U         | App. Total | R      | Т    | L       | U    | App. Total | R    | Т    | L        | UA   | pp. Total | R    | Т    | L        | U    | App. Total | Int. Total |
| Peak Hour Analy   | sis From     | 4:00:00   | PM to 5   | :45:00 P  | M - Peak   | 1 of 1 |      |         |      |            |      |      |          |      |           |      |      |          |      |            |            |
| Peak Hour for Ent | tire Interse | ection Be | gins at 4 | :00:00 PI | M          |        |      |         |      |            |      |      |          |      |           |      |      |          |      |            |            |
| 4:00:00 PM        | 0            | 0         | 0         | 0         | 0          | 0      | 0    | 13      | 0    | 13         | 33   | 0    | 0        | 0    | 33        | 0    | 0    | 0        | 0    | 0          | 46         |
| 4:15:00 PM        | 0            | 0         | 0         | 0         | 0          | 0      | 0    | 16      | 0    | 16         | 15   | 0    | 0        | 0    | 15        | 0    | 0    | 0        | 0    | 0          | 31         |
| 4:30:00 PM        | 0            | 0         | 0         | 0         | 0          | 2      | 0    | 21      | 0    | 23         | 23   | 0    | 0        | 0    | 23        | 0    | 0    | 0        | 0    | 0          | 46         |
| 4:45:00 PM        | 0            | 0         | 2         | 0         | 2          | 2      | 0    | 16      | 0    | 18         | 28   | 0    | 0        | 0    | 28        | 0    | 0    | 0        | 0    | 0          | 48         |
| Total Volume      | 0            | 0         | 2         | 0         | 2          | 4      | 0    | 66      | 0    | 70         | 99   | 0    | 0        | 0    | 99        | 0    | 0    | 0        | 0    | 0          | 171        |
| % App. Total      | 0            | 0         | 100       | 0         |            | 5.7    | 0    | 94.3    | 0    |            | 100  | 0    | 0        | 0    |           | 0    | 0    | 0        | 0    |            |            |
| PHF               | .000         | .000      | .250      | .000      | .250       | .500   | .000 | .786    | .000 | .761       | .750 | .000 | .000     | .000 | .750      | .000 | .000 | .000     | .000 | .000       | .891       |

2504 E. Pikes Peak Ave, Suite 304 Colorado Springs, CO 80909 719-633-2868



719-633-2868

File Name : Hwy 24 - Old Meridian Rd AM Site Code : 0000000 Start Date : 11/30/2021 Page No : 1


|             |   |      |          |   |            |   |   |         | Group | s Printed- | Unshifte | d    |          |    |            |   |     |         |   |            | _          |
|-------------|---|------|----------|---|------------|---|---|---------|-------|------------|----------|------|----------|----|------------|---|-----|---------|---|------------|------------|
|             |   | a    | Hwy 24   |   |            |   |   | Meridia |       |            |          |      | Hwy 24   |    |            |   |     | Meridia |   |            |            |
|             |   | So   | outhboun | d |            |   | W | estbour | nd    |            |          |      | orthbour | nd |            |   | E   | astboun | d |            |            |
| Start       | L | т    | R        | U | App. Total | L | T | R       | U     | App. Total | L        | Т    | R        | U  | App. Total | L | Т   | R       | U | App. Total | Int. Total |
| Time        | _ | -    |          | - |            | _ | - |         |       |            |          |      |          |    |            | _ | _   |         | - |            |            |
| 06:30 AM    | 0 | 187  | 0        | 0 | 187        | 0 | 0 | 4       | 0     | 4          | 0        | 76   | 2        | 0  | 78         | 0 | 0   | 7       | 0 | 7          | 276        |
| 06:45 AM    | 0 | 183  | 0        | 0 | 183        | 0 | 0 | 2       | 0     | 2          | 0        | 116  | 5        | 0  | 121        | 0 | 0   | 7       | 0 | 7          | 313        |
| Total       | 0 | 370  | 0        | 0 | 370        | 0 | 0 | 6       | 0     | 6          | 0        | 192  | 7        | 0  | 199        | 0 | 0   | 14      | 0 | 14         | 589        |
|             |   |      |          |   |            |   |   |         |       |            |          |      |          |    |            |   |     |         |   |            |            |
| 07:00 AM    | 0 | 182  | 2        | 0 | 184        | 0 | 0 | 7       | 0     | 7          | 0        | 115  | 7        | 0  | 122        | 0 | 0   | 4       | 0 | 4          | 317        |
| 07:15 AM    | 0 | 125  | 1        | 0 | 126        | 0 | 0 | 7       | 0     | 7          | 0        | 92   | 2        | 0  | 94         | 0 | 0   | 6       | 0 | 6          | 233        |
| 07:30 AM    | 0 | 155  | 1        | 0 | 156        | 0 | 0 | 7       | 0     | 7          | 0        | 105  | 4        | 0  | 109        | 0 | 0   | 8       | 0 | 8          | 280        |
| 07:45 AM    | 0 | 167  | 3        | 0 | 170        | 0 | 0 | 11      | 0     | 11         | 0        | 95   | 4        | 0  | 99         | 0 | 0   | 3       | 0 | 3          | 283        |
| Total       | 0 | 629  | 7        | 0 | 636        | 0 | 0 | 32      | 0     | 32         | 0        | 407  | 17       | 0  | 424        | 0 | 0   | 21      | 0 | 21         | 1113       |
|             |   |      |          |   |            |   |   |         |       |            |          |      |          |    |            |   |     |         |   |            |            |
| 08:00 AM    | 0 | 112  | 0        | 0 | 112        | 0 | 0 | 10      | 0     | 10         | 0        | 82   | 5        | 0  | 87         | 0 | 0   | 9       | 0 | 9          | 218        |
| 08:15 AM    | 0 | 144  | 4        | 0 | 148        | 0 | 0 | 6       | 0     | 6          | 0        | 91   | 5        | 0  | 96         | 0 | 1   | 8       | 0 | 9          | 259        |
| Grand Total | 0 | 1255 | 11       | 0 | 1266       | 0 | 0 | 54      | 0     | 54         | 0        | 772  | 34       | 0  | 806        | 0 | 1   | 52      | 0 | 53         | 2179       |
| Apprch %    | 0 | 99.1 | 0.9      | 0 |            | 0 | 0 | 100     | 0     |            | 0        | 95.8 | 4.2      | 0  |            | 0 | 1.9 | 98.1    | 0 |            |            |
| Total %     | 0 | 57.6 | 0.5      | 0 | 58.1       | 0 | 0 | 2.5     | 0     | 2.5        | 0        | 35.4 | 1.6      | 0  | 37         | 0 | 0   | 2.4     | 0 | 2.4        |            |

719-633-2868

File Name : Hwy 24 - Old Meridian Rd AM Site Code : 00000000 Start Date : 11/30/2021 Page No : 2

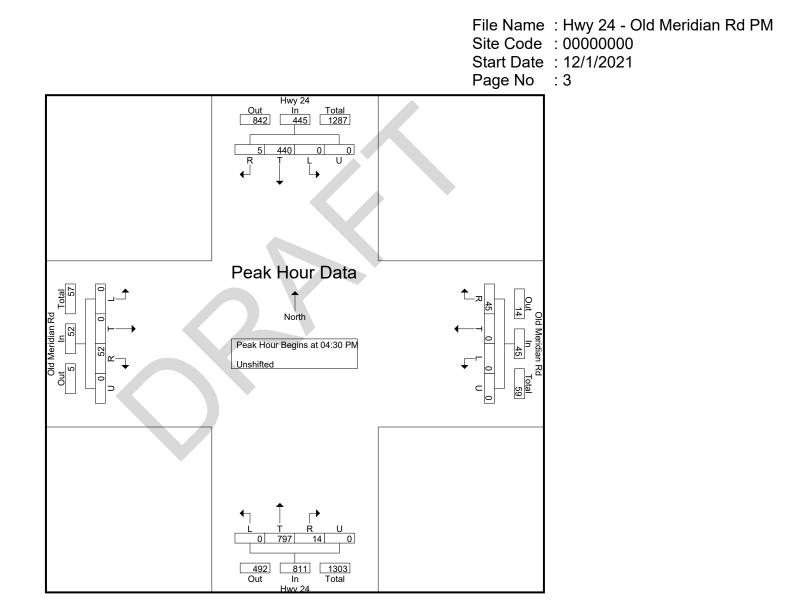
|                   |             |           | Hwy 24    |          |            |        | Old  | Meridiar | n Rd |            |      |      | Hwy 24   |      |           |      | Old I | Meridia | ı Rd |            |            |
|-------------------|-------------|-----------|-----------|----------|------------|--------|------|----------|------|------------|------|------|----------|------|-----------|------|-------|---------|------|------------|------------|
|                   |             | So        | uthboun   | d        |            |        | W    | estbound | 1    |            |      | No   | orthboun | d    |           |      | E     | astboun | 1    |            |            |
| Start Time        | L           | Т         | R         | U        | App. Total | L      | Т    | R        | U    | App. Total | L    | Т    | R        | UA   | pp. Total | L    | Т     | R       | U    | App. Total | Int. Total |
| Peak Hour Analy   | sis From    | 6:30:00   | AM to 8   | :15:00 A | M - Peak   | 1 of 1 |      |          |      |            |      |      |          |      |           |      |       |         |      |            |            |
| Peak Hour for Ent | ire Interse | ection Be | gins at 6 | 45:00 Al | M          |        |      |          |      |            |      |      |          |      |           |      |       |         |      |            |            |
| 6:45:00 AM        | 0           | 183       | 0         | 0        | 183        | 0      | 0    | 2        | 0    | 2          | 0    | 116  | 5        | 0    | 121       | 0    | 0     | 7       | 0    | 7          | 313        |
| 7:00:00 AM        | 0           | 182       | 2         | 0        | 184        | 0      | 0    | 7        | 0    | 7          | 0    | 115  | 7        | 0    | 122       | 0    | 0     | 4       | 0    | 4          | 317        |
| 7:15:00 AM        | 0           | 125       | 1         | 0        | 126        | 0      | 0    | 7        | 0    | 7          | 0    | 92   | 2        | 0    | 94        | 0    | 0     | 6       | 0    | 6          | 233        |
| 7:30:00 AM        | 0           | 155       | 1         | 0        | 156        | 0      | 0    | 7        | 0    | 7          | 0    | 105  | 4        | 0    | 109       | 0    | 0     | 8       | 0    | 8          | 280        |
| Total Volume      | 0           | 645       | 4         | 0        | 649        | 0      | 0    | 23       | 0    | 23         | 0    | 428  | 18       | 0    | 446       | 0    | 0     | 25      | 0    | 25         | 1143       |
| % App. Total      | 0           | 99.4      | 0.6       | 0        |            | 0      | 0    | 100      | 0    |            | 0    | 96   | 4        | 0    |           | 0    | 0     | 100     | 0    |            |            |
| PHF               | .000        | .881      | .500      | .000     | .882       | .000   | .000 | .821     | .000 | .821       | .000 | .922 | .643     | .000 | .914      | .000 | .000  | .781    | .000 | .781       | .901       |

2504 E. Pikes Peak Ave, Suite 304 Colorado Springs, CO 80909 719-633-2868



719-633-2868

File Name : Hwy 24 - Old Meridian Rd PM Site Code : 00000000 Start Date : 12/1/2021 Page No : 1


|             |   |      |          |   |             |   |       |                | Groups | s Printed- | Unshiftee | 1    |          |   |            |   |       |          |      |             | _           |
|-------------|---|------|----------|---|-------------|---|-------|----------------|--------|------------|-----------|------|----------|---|------------|---|-------|----------|------|-------------|-------------|
|             |   |      | Hwy 24   |   |             |   | Old N | <b>Ieridia</b> | n Rd   |            |           |      | Hwy 24   |   |            |   | Old 1 | Meridiar | n Rd |             |             |
|             |   | So   | uthbound |   |             |   | We    | estboun        | d      |            |           | N    | orthboun | d |            |   | E     | astbound | 1    |             |             |
| Start       | T | т    | R        | U | App. Total  | L | т     | R              | U      | Ann Total  | T         | т    | R        | п | Ann Total  | L | т     | R        | U    | App. Total  | Int. Total  |
| Time        | L | 1    | N        | U | App. 1 otai | L | 1     | ĸ              | U      | App. Total | L         | 1    | ĸ        |   | App. Total | L | 1     | ĸ        | U    | App. 1 otai | IIII. Totai |
| 04:00 PM    | 0 | 118  | 3        | 0 | 121         | 0 | 0     | 12             | 0      | 12         | 0         | 152  | 7        | 0 | 159        | 0 | 0     | 19       | 0    | 19          | 311         |
| 04:15 PM    | 0 | 106  | 3        | 0 | 109         | 0 | 0     | 11             | 0      | 11         | 0         | 178  | 1        | 0 | 179        | 0 | 0     | 11       | 0    | 11          | 310         |
| 04:30 PM    | 0 | 109  | 3        | 0 | 112         | 0 | 0     | 12             | 0      | 12         | 0         | 219  | 1        | 0 | 220        | 0 | 0     | 12       | 0    | 12          | 356         |
| 04:45 PM    | 0 | 82   | 1        | 0 | 83          | 0 | 0     | 12             | 0      | 12         | 0         | 191  | 1        | 0 | 192        | 0 | 0     | 15       | 0    | 15          | 302         |
| Total       | 0 | 415  | 10       | 0 | 425         | 0 | 0     | 47             | 0      | 47         | 0         | 740  | 10       | 0 | 750        | 0 | 0     | 57       | 0    | 57          | 1279        |
| 05:00 PM    | 0 | 119  | 1        | 0 | 120         | 0 | 0     | 8              | 0      | 8          | 0         | 192  | 6        | 0 | 198        | 0 | 0     | 17       | 0    | 17          | 343         |
| 05:15 PM    | 0 | 130  | 0        | 0 | 130         | 0 | 0     | 13             | 0      | 13         | 0         | 195  | 6        | 0 | 201        | 0 | 0     | 8        | 0    | 8           | 352         |
| 05:30 PM    | 0 | 89   | 2        | 0 | 91          | 0 | 0     | 12             | 0      | 12         | 0         | 179  | 5        | 0 | 184        | 0 | 0     | 16       | 0    | 16          | 303         |
| 05:45 PM    | 0 | 100  | 1        | 0 | 101         | 0 | 0     | 6              | 0      | 6          | 0         | 208  | 6        | 0 | 214        | 0 | 0     | 10       | 0    | 10          | 331         |
| Total       | 0 | 438  | 4        | 0 | 442         | 0 | 0     | 39             | 0      | 39         | 0         | 774  | 23       | 0 | 797        | 0 | 0     | 51       | 0    | 51          | 1329        |
| Grand Total | 0 | 853  | 14       | 0 | 867         | 0 | 0     | 86             | 0      | 86         | 0         | 1514 | 33       | 0 | 1547       | 0 | 0     | 108      | 0    | 108         | 2608        |
| Apprch %    | 0 | 98.4 | 1.6      | 0 |             | 0 | 0     | 100            | 0      |            | 0         | 97.9 | 2.1      | 0 |            | 0 | 0     | 100      | 0    |             |             |
| Total %     | 0 | 32.7 | 0.5      | 0 | 33.2        | 0 | 0     | 3.3            | 0      | 3.3        | 0         | 58.1 | 1.3      | 0 | 59.3       | 0 | 0     | 4.1      | 0    | 4.1         |             |

719-633-2868

File Name : Hwy 24 - Old Meridian Rd PM Site Code : 00000000 Start Date : 12/1/2021 Page No : 2

|                   |              |           | Hwy 24     |          |            |        | Old  | Meridian | Rd   |            |      |      | Hwy 24   |      |            |      | Old  | Meridia  | n Rd |            | ]          |
|-------------------|--------------|-----------|------------|----------|------------|--------|------|----------|------|------------|------|------|----------|------|------------|------|------|----------|------|------------|------------|
|                   |              | So        | uthboun    | d        |            |        | W    | estbound | 1    |            |      | No   | orthbour | d    |            |      | E    | astbound | ł    |            |            |
| Start Time        | L            | Т         | R          | U        | App. Total | L      | Т    | R        | U    | App. Total | L    | Т    | R        | U    | App. Total | L    | Т    | R        | U    | App. Total | Int. Total |
| Peak Hour Analy   | ysis From    | 4:00:00   | PM to 5    | :45:00 P | M - Peak   | 1 of 1 |      |          |      |            |      |      |          |      |            |      |      |          |      |            |            |
| Peak Hour for Ent | tire Interse | ection Be | gins at 4: | 30:00 PM | M.         |        |      |          |      |            |      |      |          |      |            |      |      |          |      |            |            |
| 4:30:00 PM        | 0            | 109       | 3          | 0        | 112        | 0      | 0    | 12       | 0    | 12         | 0    | 219  | 1        | 0    | 220        | 0    | 0    | 12       | 0    | 12         | 356        |
| 4:45:00 PM        | 0            | 82        | 1          | 0        | 83         | 0      | 0    | 12       | 0    | 12         | 0    | 191  | 1        | 0    | 192        | 0    | 0    | 15       | 0    | 15         | 302        |
| 5:00:00 PM        | 0            | 119       | 1          | 0        | 120        | 0      | 0    | 8        | 0    | 8          | 0    | 192  | 6        | 0    | 198        | 0    | 0    | 17       | 0    | 17         | 343        |
| 5:15:00 PM        | 0            | 130       | 0          | 0        | 130        | 0      | 0    | 13       | 0    | 13         | 0    | 195  | 6        | 0    | 201        | 0    | 0    | 8        | 0    | 8          | 352        |
| Total Volume      | 0            | 440       | 5          | 0        | 445        | 0      | 0    | 45       | 0    | 45         | 0    | 797  | 14       | 0    | 811        | 0    | 0    | 52       | 0    | 52         | 1353       |
| % App. Total      | 0            | 98.9      | 1.1        | 0        |            | 0      | 0    | 100      | 0    |            | 0    | 98.3 | 1.7      | 0    |            | 0    | 0    | 100      | 0    |            |            |
| PHF               | .000         | .846      | .417       | .000     | .856       | .000   | .000 | .865     | .000 | .865       | .000 | .910 | .583     | .000 | .922       | .000 | .000 | .765     | .000 | .765       | .950       |

2504 E. Pikes Peak Ave, Suite 304 Colorado Springs, CO 80909 719-633-2868







### Timings 7: Meridian Rd & Woodmen Rd

|                               | ۶          | -         | $\mathbf{r}$ | 4           | -          | •          | 1          | Ť        | 1     | 5     | Ļ        | ~     |
|-------------------------------|------------|-----------|--------------|-------------|------------|------------|------------|----------|-------|-------|----------|-------|
| Lane Group                    | EBL        | EBT       | EBR          | WBL         | WBT        | WBR        | NBL        | NBT      | NBR   | SBL   | SBT      | SBR   |
| Lane Configurations           | ካካ         | <u>††</u> | 1            | ካካ          | <b>††</b>  | 1          | ሻሻ         | <b>^</b> | 1     | ኘኘ    | <b>^</b> | 1     |
| Traffic Volume (vph)          | 302        | 349       | 201          | 68          | 577        | 36         | 142        | 212      | 17    | 38    | 606      | 541   |
| Future Volume (vph)           | 302        | 349       | 201          | 68          | 577        | 36         | 142        | 212      | 17    | 38    | 606      | 541   |
| Turn Type                     | Prot       | NA        | Free         | Prot        | NA         | Perm       | Prot       | NA       | Free  | Prot  | NA       | Free  |
| Protected Phases              | 7          | 4         |              | 3           | 8          |            | 5          | 2        |       | 1     | 6        |       |
| Permitted Phases              |            |           | Free         |             |            | 8          |            |          | Free  |       |          | Free  |
| Detector Phase                | 7          | 4         |              | 3           | 8          | 8          | 5          | 2        |       | 1     | 6        |       |
| Switch Phase                  |            |           |              |             |            |            |            |          |       |       |          |       |
| Minimum Initial (s)           | 5.0        | 15.0      |              | 5.0         | 15.0       | 15.0       | 5.0        | 15.0     |       | 5.0   | 15.0     |       |
| Minimum Split (s)             | 13.5       | 25.0      |              | 13.5        | 22.0       | 22.0       | 13.5       | 22.0     |       | 13.5  | 22.0     |       |
| Total Split (s)               | 25.0       | 40.0      |              | 15.0        | 30.0       | 30.0       | 15.0       | 45.0     |       | 15.0  | 45.0     |       |
| Total Split (%)               | 21.7%      | 34.8%     |              | 13.0%       | 26.1%      | 26.1%      | 13.0%      | 39.1%    |       | 13.0% | 39.1%    |       |
| Yellow Time (s)               | 4.0        | 5.0       |              | 4.0         | 5.0        | 5.0        | 5.0        | 5.0      |       | 5.0   | 5.0      |       |
| All-Red Time (s)              | 3.5        | 2.0       |              | 3.5         | 2.0        | 2.0        | 3.5        | 2.0      |       | 3.5   | 2.0      |       |
| Lost Time Adjust (s)          | 0.0        | 0.0       |              | 0.0         | 0.0        | 0.0        | 0.0        | 0.0      |       | 0.0   | 0.0      |       |
| Total Lost Time (s)           | 7.5        | 7.0       |              | 7.5         | 7.0        | 7.0        | 8.5        | 7.0      |       | 8.5   | 7.0      |       |
| Lead/Lag                      | Lead       | Lag       |              | Lead        | Lag        | Lag        | Lead       | Lag      |       | Lead  | Lag      |       |
| Lead-Lag Optimize?            | Yes        | Yes       |              | Yes         | Yes        | Yes        | Yes        | Yes      |       | Yes   | Yes      |       |
| Recall Mode                   | None       | None      |              | None        | None       | None       | None       | C-Max    |       | None  | C-Max    |       |
| Act Effct Green (s)           | 15.3       | 33.5      | 115.0        | 7.1         | 22.6       | 22.6       | 7.3        | 46.6     | 115.0 | 6.2   | 39.8     | 115.0 |
| Actuated g/C Ratio            | 0.13       | 0.29      | 1.00         | 0.06        | 0.20       | 0.20       | 0.06       | 0.41     | 1.00  | 0.05  | 0.35     | 1.00  |
| v/c Ratio                     | 0.69       | 0.35      | 0.13         | 0.34        | 0.86       | 0.07       | 0.68       | 0.15     | 0.01  | 0.22  | 0.52     | 0.36  |
| Control Delay                 | 55.8       | 33.7      | 0.2          | 76.7        | 50.3       | 0.6        | 66.8       | 22.4     | 0.0   | 54.8  | 32.3     | 0.6   |
| Queue Delay                   | 0.0        | 0.0       | 0.0          | 0.0         | 0.0        | 0.0        | 0.0        | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Delay                   | 55.8       | 33.7      | 0.2          | 76.7        | 50.3       | 0.6        | 66.8       | 22.4     | 0.0   | 54.8  | 32.3     | 0.6   |
| LOS                           | E          | С         | Α            | E           | D          | А          | E          | С        | А     | D     | С        | A     |
| Approach Delay                |            | 33.7      |              |             | 50.2       |            |            | 38.3     |       |       | 18.6     |       |
| Approach LOS                  |            | С         |              |             | D          |            |            | D        |       |       | В        |       |
| Intersection Summary          |            |           |              |             |            |            |            |          |       |       |          |       |
| Cycle Length: 115             |            |           |              |             |            |            |            |          |       |       |          |       |
| Actuated Cycle Length: 115    |            |           |              |             |            |            |            |          |       |       |          |       |
| Offset: 0 (0%), Referenced t  | o phase 2  | :NBT and  | 6:SBT, 5     | Start of FD | OW or yel  | ow, Mast   | er Interse | ection   |       |       |          |       |
| Natural Cycle: 75             |            |           |              |             | _          |            |            |          |       |       |          |       |
| Control Type: Actuated-Coo    | rdinated   |           |              |             |            |            |            |          |       |       |          |       |
| Maximum v/c Ratio: 0.86       |            |           |              |             |            |            |            |          |       |       |          |       |
| Intersection Signal Delay: 32 | 2.1        |           |              | Ir          | ntersectio | n LOS: C   |            |          |       |       |          |       |
| Intersection Capacity Utiliza | tion 70.5% | )         |              | IC          | CU Level   | of Service | ЭC         |          |       |       |          |       |
| interestion suparity stinza   |            |           |              |             |            |            |            |          |       |       |          |       |

Splits and Phases: 7: Meridian Rd & Woodmen Rd

| Ø1          | Ø2 (R) |   | <b>√</b> Ø3 | <b>→</b> Ø4 |                             |
|-------------|--------|---|-------------|-------------|-----------------------------|
| 15 s        | 45 s   |   | 15 s        | 40 s        |                             |
| <b>▲</b> Ø5 | Ø6 (R) | • |             |             | <b>4</b> <sup>⊕</sup><br>Ø8 |
| 15 s        | 45 s   |   | 25 s        |             | 30 s                        |

### Timings 8: McLaughlin Rd & Woodmen Rd

|                               | ۶           | -       | •        | 4         | +          | •          | 1        | 1        | 1     | 1     | ţ        | ~     |
|-------------------------------|-------------|---------|----------|-----------|------------|------------|----------|----------|-------|-------|----------|-------|
| Lane Group                    | EBL         | EBT     | EBR      | WBL       | WBT        | WBR        | NBL      | NBT      | NBR   | SBL   | SBT      | SBR   |
| Lane Configurations           | ሻ           | <u></u> | 1        | ٦         | <u>^</u>   | 1          | <u>۲</u> | <b>↑</b> | 1     | - ሽ   | <b>↑</b> | 1     |
| Traffic Volume (vph)          | 101         | 257     | 46       | 28        | 349        | 143        | 39       | 45       | 10    | 121   | 125      | 293   |
| Future Volume (vph)           | 101         | 257     | 46       | 28        | 349        | 143        | 39       | 45       | 10    | 121   | 125      | 293   |
| Turn Type                     | pm+pt       | NA      | Perm     | pm+pt     | NA         | Perm       | pm+pt    | NA       | Perm  | pm+pt | NA       | Perm  |
| Protected Phases              | 5           | 2       |          | 1         | 6          |            | 3        | 8        |       | 7     | 4        |       |
| Permitted Phases              | 2           |         | 2        | 6         |            | 6          | 8        |          | 8     | 4     |          | 4     |
| Detector Phase                | 5           | 2       | 2        | 1         | 6          | 6          | 3        | 8        | 8     | 7     | 4        | 4     |
| Switch Phase                  |             |         |          |           |            |            |          |          |       |       |          |       |
| Minimum Initial (s)           | 5.0         | 5.0     | 5.0      | 5.0       | 5.0        | 5.0        | 5.0      | 5.0      | 5.0   | 5.0   | 5.0      | 5.0   |
| Minimum Split (s)             | 12.5        | 25.0    | 25.0     | 12.5      | 25.0       | 25.0       | 13.5     | 25.0     | 25.0  | 13.5  | 25.0     | 25.0  |
| Total Split (s)               | 15.0        | 60.0    | 60.0     | 15.0      | 60.0       | 60.0       | 15.0     | 25.0     | 25.0  | 15.0  | 25.0     | 25.0  |
| Total Split (%)               | 13.0%       | 52.2%   | 52.2%    | 13.0%     | 52.2%      | 52.2%      | 13.0%    | 21.7%    | 21.7% | 13.0% | 21.7%    | 21.7% |
| Yellow Time (s)               | 4.0         | 5.0     | 5.0      | 4.0       | 5.0        | 5.0        | 5.0      | 5.0      | 5.0   | 5.0   | 5.0      | 5.0   |
| All-Red Time (s)              | 3.5         | 2.0     | 2.0      | 3.5       | 2.0        | 2.0        | 3.5      | 2.0      | 2.0   | 3.5   | 2.0      | 2.0   |
| Lost Time Adjust (s)          | 0.0         | 0.0     | 0.0      | 0.0       | 0.0        | 0.0        | 0.0      | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Lost Time (s)           | 7.5         | 7.0     | 7.0      | 7.5       | 7.0        | 7.0        | 8.5      | 7.0      | 7.0   | 8.5   | 7.0      | 7.0   |
| Lead/Lag                      | Lead        | Lag     | Lag      | Lead      | Lag        | Lag        | Lead     | Lag      | Lag   | Lead  | Lag      | Lag   |
| Lead-Lag Optimize?            | Yes         | Yes     | Yes      | Yes       | Yes        | Yes        | Yes      | Yes      | Yes   | Yes   | Yes      | Yes   |
| Recall Mode                   | None        | C-Max   | C-Max    | None      | C-Max      | C-Max      | None     | Max      | Max   | None  | Max      | Max   |
| Act Effct Green (s)           | 63.5        | 59.5    | 59.5     | 59.0      | 53.2       | 53.2       | 22.8     | 18.0     | 18.0  | 26.4  | 24.0     | 24.0  |
| Actuated g/C Ratio            | 0.55        | 0.52    | 0.52     | 0.51      | 0.46       | 0.46       | 0.20     | 0.16     | 0.16  | 0.23  | 0.21     | 0.21  |
| v/c Ratio                     | 0.18        | 0.14    | 0.05     | 0.05      | 0.22       | 0.18       | 0.14     | 0.16     | 0.02  | 0.40  | 0.33     | 0.53  |
| Control Delay                 | 8.7         | 9.9     | 0.2      | 14.6      | 25.2       | 5.1        | 32.8     | 43.6     | 0.1   | 38.6  | 44.1     | 8.7   |
| Queue Delay                   | 0.0         | 0.0     | 0.0      | 0.0       | 0.0        | 0.0        | 0.0      | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Delay                   | 8.7         | 9.9     | 0.2      | 14.6      | 25.2       | 5.1        | 32.8     | 43.6     | 0.1   | 38.6  | 44.1     | 8.7   |
| LOS                           | А           | А       | Α        | В         | С          | А          | С        | D        | А     | D     | D        | A     |
| Approach Delay                |             | 8.5     |          |           | 19.1       |            |          | 34.6     |       |       | 23.6     |       |
| Approach LOS                  |             | А       |          |           | В          |            |          | С        |       |       | С        |       |
| Intersection Summary          |             |         |          |           |            |            |          |          |       |       |          |       |
| Cycle Length: 115             |             |         |          |           |            |            |          |          |       |       |          |       |
| Actuated Cycle Length: 115    | 5           |         |          |           |            |            |          |          |       |       |          |       |
| Offset: 0 (0%), Referenced    | to phase 2  | EBTL an | d 6:WBTI | , Start o | f Green    |            |          |          |       |       |          |       |
| Natural Cycle: 80             |             |         |          |           |            |            |          |          |       |       |          |       |
| Control Type: Actuated-Coo    | ordinated   |         |          |           |            |            |          |          |       |       |          |       |
| Maximum v/c Ratio: 0.53       |             |         |          |           |            |            |          |          |       |       |          |       |
| Intersection Signal Delay: 1  | 8.9         |         |          | li        | ntersectio | n LOS: B   |          |          |       |       |          |       |
| Intersection Capacity Utiliza | ation 49.9% | ,<br>D  |          | l         | CU Level   | of Service | eΑ       |          |       |       |          |       |
| Analysis Period (min) 15      |             |         |          |           |            |            |          |          |       |       |          |       |
|                               |             |         |          |           |            |            |          |          |       |       |          |       |

Splits and Phases: 8: McLaughlin Rd & Woodmen Rd

| Ø1      | ₩ Ø2 (R)      | <b>A</b> Ø3 | Ø4          |
|---------|---------------|-------------|-------------|
| 15 s    | 60 s          | 15 s        | 25 s        |
| ∕<br>Ø5 | ●<br>● Ø6 (R) | Ø7          | <b>1</b> 08 |
| 15 s    | 60 s          | 15 s        | 25 s        |

### Timings 9: US 24 & Woodmen Rd

|                              | ٦            | $\rightarrow$ | 1         | 1        | Ļ          | -         |     |
|------------------------------|--------------|---------------|-----------|----------|------------|-----------|-----|
| Lane Group                   | EBL          | EBR           | NBL       | NBT      | SBT        | SBR       |     |
| Lane Configurations          | 5            | 1             | ሻሻ        | 1        | <b>†</b>   | 1         |     |
| Traffic Volume (vph)         | 238          | 150           | 130       | 252      | 542        | 390       |     |
| Future Volume (vph)          | 238          | 150           | 130       | 252      | 542        | 390       |     |
| Turn Type                    | Prot         | Perm          | pm+pt     | NA       | NA         | Perm      |     |
| Protected Phases             | 2            |               | 3         | 8        | 4          |           |     |
| Permitted Phases             |              | 2             | 8         |          |            | 4         |     |
| Detector Phase               | 2            | 2             | 3         | 8        | 4          | 4         |     |
| Switch Phase                 |              |               |           |          |            |           |     |
| Minimum Initial (s)          | 5.0          | 5.0           | 5.0       | 5.0      | 5.0        | 5.0       |     |
| Minimum Split (s)            | 23.5         | 23.5          | 10.5      | 23.5     | 23.5       | 23.5      |     |
| Total Split (s)              | 35.0         | 35.0          | 15.0      | 80.0     | 65.0       | 65.0      |     |
| Total Split (%)              | 30.4%        | 30.4%         | 13.0%     | 69.6%    | 56.5%      | 56.5%     |     |
| Yellow Time (s)              | 3.0          | 3.0           | 3.0       | 3.0      | 3.0        | 3.0       |     |
| All-Red Time (s)             | 2.0          | 2.0           | 2.0       | 2.0      | 2.0        | 2.0       |     |
| Lost Time Adjust (s)         | 0.0          | 0.0           | 0.0       | 0.0      | 0.0        | 0.0       |     |
| Total Lost Time (s)          | 5.0          | 5.0           | 5.0       | 5.0      | 5.0        | 5.0       |     |
| Lead/Lag                     |              |               | Lead      |          | Lag        | Lag       |     |
| Lead-Lag Optimize?           |              |               | Yes       |          | Yes        | Yes       |     |
| Recall Mode                  | C-Max        | C-Max         | None      | None     | None       | None      |     |
| Act Effct Green (s)          | 45.4         | 45.4          | 59.6      | 59.6     | 46.5       | 46.5      |     |
| Actuated g/C Ratio           | 0.39         | 0.39          | 0.52      | 0.52     | 0.40       | 0.40      |     |
| v/c Ratio                    | 0.37         | 0.22          | 0.28      | 0.28     | 0.77       | 0.47      |     |
| Control Delay                | 34.9         | 18.4          | 15.1      | 14.5     | 36.4       | 3.4       |     |
| Queue Delay                  | 0.0          | 0.0           | 0.0       | 0.0      | 0.0        | 0.0       |     |
| Total Delay                  | 34.9         | 18.4          | 15.1      | 14.5     | 36.4       | 3.4       |     |
| LOS                          | С            | В             | В         | В        | D          | А         |     |
| Approach Delay               | 28.5         |               |           | 14.7     | 22.6       |           |     |
| Approach LOS                 | С            |               |           | В        | C          |           |     |
| Intersection Summary         |              |               |           |          |            |           |     |
| Cycle Length: 115            |              |               |           |          |            |           |     |
| Actuated Cycle Length: 11    | 5            |               |           |          |            |           |     |
| Offset: 0 (0%), Referenced   |              | EBL and       | 6:, Start | of Green |            |           |     |
| Natural Cycle: 60            |              |               |           |          |            |           |     |
| Control Type: Actuated-Co    | ordinated    |               |           |          |            |           |     |
| Maximum v/c Ratio: 0.77      |              |               |           |          |            |           |     |
| Intersection Signal Delay:   | 22.2         |               |           | lı       | ntersectio | n LOS: C  |     |
| Intersection Capacity Utiliz |              | ,<br>D        |           |          | CU Level   | of Servic | e B |
| Analysis Period (min) 15     |              |               |           |          |            |           |     |
| Splite and Phases 0: 110     | 2 24 8 11/00 | dmon Dd       |           |          |            |           |     |
| Splits and Phases: 9: US     | 5 24 & Woo   |               |           |          |            |           |     |

# Ø2 (R) Ø3 Ø4 35 s 15 s 65 s Ø8 80 s

### Timings 10: US 24 & Meridian Rd

|                                | ۶           | <b>→</b>     | $\mathbf{F}$ | •           | +          | *                                       | 1           | 1          | 1                                       | 1                                       | ŧ          | ~                                       |
|--------------------------------|-------------|--------------|--------------|-------------|------------|-----------------------------------------|-------------|------------|-----------------------------------------|-----------------------------------------|------------|-----------------------------------------|
| Lane Group                     | EBL         | EBT          | EBR          | WBL         | WBT        | WBR                                     | NBL         | NBT        | NBR                                     | SBL                                     | SBT        | SBR                                     |
| Lane Configurations            | ሻ           | <u></u>      | 1            | ሻ           | <u>††</u>  | 1                                       | ሻ           | <b>↑</b>   | 1                                       | ሻ                                       | <b>↑</b>   | 1                                       |
| Traffic Volume (vph)           | 7           | 360          | 728          | 11          | 169        | 19                                      | 206         | 351        | 12                                      | 35                                      | 676        | 2                                       |
| Future Volume (vph)            | 7           | 360          | 728          | 11          | 169        | 19                                      | 206         | 351        | 12                                      | 35                                      | 676        | 2                                       |
| Turn Type                      | pm+pt       | NA           | Free         | pm+pt       | NA         | Free                                    | pm+pt       | NA         | Perm                                    | pm+pt                                   | NA         | Perm                                    |
| Protected Phases               | 1           | 6            |              | 5           | 2          |                                         | 7           | 4          |                                         | 3                                       | 8          |                                         |
| Permitted Phases               | 6           |              | Free         | 2           |            | Free                                    | 4           |            | 4                                       | 8                                       |            | 8                                       |
| Detector Phase                 | 1           | 6            |              | 5           | 2          |                                         | 7           | 4          | 4                                       | 3                                       | 8          | 8                                       |
| Switch Phase                   |             |              |              |             |            |                                         |             |            |                                         |                                         |            |                                         |
| Minimum Initial (s)            | 5.0         | 5.0          |              | 5.0         | 5.0        |                                         | 10.0        | 5.0        | 5.0                                     | 5.0                                     | 5.0        | 5.0                                     |
| Minimum Split (s)              | 11.0        | 20.0         |              | 11.0        | 20.0       |                                         | 16.0        | 20.0       | 20.0                                    | 11.0                                    | 20.0       | 20.0                                    |
| Total Split (s)                | 11.0        | 22.0         |              | 11.0        | 22.0       |                                         | 18.0        | 71.0       | 71.0                                    | 11.0                                    | 64.0       | 64.0                                    |
| Total Split (%)                | 9.6%        | 19.1%        |              | 9.6%        | 19.1%      |                                         | 15.7%       | 61.7%      | 61.7%                                   | 9.6%                                    | 55.7%      | 55.7%                                   |
| Yellow Time (s)                | 3.0         | 5.0          |              | 3.0         | 5.0        |                                         | 3.0         | 4.5        | 4.5                                     | 3.0                                     | 4.5        | 4.5                                     |
| All-Red Time (s)               | 3.0         | 2.0          |              | 3.0         | 2.0        |                                         | 3.0         | 2.0        | 2.0                                     | 3.0                                     | 2.0        | 2.0                                     |
| Lost Time Adjust (s)           | 0.0         | 0.0          |              | 0.0         | 0.0        |                                         | 0.0         | 0.0        | 0.0                                     | 0.0                                     | 0.0        | 0.0                                     |
| Total Lost Time (s)            | 6.0         | 7.0          |              | 6.0         | 7.0        |                                         | 6.0         | 6.5        | 6.5                                     | 6.0                                     | 6.5        | 6.5                                     |
| Lead/Lag<br>Lead-Lag Optimize? | Lead<br>Yes | Lag<br>Yes   |              | Lead<br>Yes | Lag<br>Yes |                                         | Lead<br>Yes | Lag<br>Yes | Lag<br>Yes                              | Lead<br>Yes                             | Lag<br>Yes | Lag<br>Yes                              |
| Recall Mode                    | None        | res<br>C-Max |              | None        | C-Max      |                                         | None        | None       | None                                    | None                                    | None       | None                                    |
| Act Effct Green (s)            | 33.7        | 31.7         | 115.0        | 33.7        | 31.7       | 115.0                                   | 68.1        | 61.0       | 61.0                                    | 55.2                                    | 49.7       | 49.7                                    |
| Actuated g/C Ratio             | 0.29        | 0.28         | 1.00         | 0.29        | 0.28       | 1.00                                    | 0.59        | 0.53       | 0.53                                    | 0.48                                    | 0.43       | 0.43                                    |
| v/c Ratio                      | 0.29        | 0.28         | 0.47         | 0.29        | 0.20       | 0.01                                    | 0.69        | 0.36       | 0.03                                    | 0.40                                    | 0.45       | 0.43                                    |
| Control Delay                  | 29.4        | 34.4         | 3.0          | 33.0        | 35.8       | 0.01                                    | 24.9        | 16.7       | 0.01                                    | 4.1                                     | 22.4       | 0.00                                    |
| Queue Delay                    | 0.0         | 0.0          | 0.0          | 0.0         | 0.0        | 0.0                                     | 0.0         | 0.0        | 0.0                                     | 0.0                                     | 0.0        | 0.0                                     |
| Total Delay                    | 29.4        | 34.4         | 3.0          | 33.0        | 35.8       | 0.0                                     | 24.9        | 16.7       | 0.0                                     | 4.1                                     | 22.4       | 0.0                                     |
| LOS                            | 20.4<br>C   | с.+0         | J.U<br>A     | 00.0<br>C   | 00.0<br>D  | 0.0<br>A                                | 24.5<br>C   | В          | 0.0<br>A                                | A                                       | 22.4<br>C  | 0.0<br>A                                |
| Approach Delay                 | U           | 13.5         |              | Ū           | 32.3       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | U           | 19.3       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 21.5       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| Approach LOS                   |             | B            |              |             | C          |                                         |             | B          |                                         |                                         | C          |                                         |
| Intersection Summary           |             |              |              |             |            |                                         |             |            |                                         |                                         |            |                                         |
| Cycle Length: 115              |             |              |              |             |            |                                         |             |            |                                         |                                         |            |                                         |
| Actuated Cycle Length: 115     |             |              |              |             |            |                                         |             |            |                                         |                                         |            |                                         |
| Offset: 103 (90%), Reference   |             | se 2:WBT     | and 6:E      | BTL Sta     | rt of FDW  | or vellov                               | J           |            |                                         |                                         |            |                                         |
| Natural Cycle: 90              |             |              |              | , etc       |            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |             |            |                                         |                                         |            |                                         |
| Control Type: Actuated-Coo     | ordinated   |              |              |             |            |                                         |             |            |                                         |                                         |            |                                         |
| Maximum v/c Ratio: 0.86        |             |              |              |             |            |                                         |             |            |                                         |                                         |            |                                         |
| Intersection Signal Delay: 1   | 8.4         |              |              | I           | ntersectio | n LOS: B                                |             |            |                                         |                                         |            |                                         |
| Intersection Capacity Utiliza  |             | þ            |              |             | CU Level   |                                         | e D         |            |                                         |                                         |            |                                         |
| Analysis Period (min) 15       |             |              |              |             |            |                                         |             |            |                                         |                                         |            |                                         |
|                                |             |              |              |             |            |                                         |             |            |                                         |                                         |            |                                         |

Splits and Phases: 10: US 24 & Meridian Rd

| ▶ <sub>Ø1</sub> | €<br>€<br>Ø2 (R) | Ø3          | <i>₫</i> Ø4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------|------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11 s            | 22 s             | 11 s        | 71 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>√</b> Ø5     |                  | <b>1</b> Ø7 | de terre de la constante de l |
| 11 s            | 22 s             | 18 s        | 64 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

0

#### Intersection

Int Delay, s/veh

| Movement               | EBL   | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|-------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations    |       |      | 1    |      |      | 1    |      | 1    | 1    |      | 1    | 1    |  |
| Traffic Vol, veh/h     | 0     | 0    | 25   | 0    | 0    | 23   | 0    | 359  | 18   | 0    | 688  | 4    |  |
| Future Vol, veh/h      | 0     | 0    | 25   | 0    | 0    | 23   | 0    | 359  | 18   | 0    | 688  | 4    |  |
| Conflicting Peds, #/hr | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Stop  | Stop | Stop | Stop | Stop | Stop | Free | Free | Free | Free | Free | Free |  |
| RT Channelized         | -     | -    | Free | -    | -    | Free | -    | -    | None | -    | -    | None |  |
| Storage Length         | -     | -    | 0    | -    | -    | 0    | -    | -    | 400  | -    | -    | 400  |  |
| Veh in Median Storage  | , # - | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -     | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 91    | 91   | 91   | 91   | 91   | 91   | 91   | 91   | 91   | 91   | 91   | 91   |  |
| Heavy Vehicles, %      | 2     | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 0     | 0    | 27   | 0    | 0    | 25   | 0    | 395  | 20   | 0    | 756  | 4    |  |
|                        |       |      |      |      |      |      |      |      |      |      |      |      |  |

| Major/Minor          | Minor2 |     | М     | inor1  |      | М   | ajor1  |   | М | ajor2 |   |   |  |  |
|----------------------|--------|-----|-------|--------|------|-----|--------|---|---|-------|---|---|--|--|
| Conflicting Flow All |        |     | 141   |        |      | 141 | ajor i | 0 | 0 | ajorz |   | 0 |  |  |
|                      | -      | -   | -     | -      | -    | -   | -      | U | U | -     | - | 0 |  |  |
| Stage 1              | -      | -   | -     | -      | -    | -   | -      | - | - | -     | - | - |  |  |
| Stage 2              | -      | -   | -     | -      | -    | -   | -      | - | - | -     | - | - |  |  |
| Critical Hdwy        | -      | -   | -     | -      | -    |     | -      | - | - | -     | - | - |  |  |
| Critical Hdwy Stg 1  | -      | -   | -     | -      | -    |     | -      | - | - | -     | - | - |  |  |
| Critical Hdwy Stg 2  | -      | -   | -     | -      | -    | -   |        | - | - | -     | - | - |  |  |
| Follow-up Hdwy       | -      | -   | -     | -      | -    | -   | -      | - | - | -     | - | - |  |  |
| Pot Cap-1 Maneuver   | 0      | 0   | 0     | 0      | 0    | 0   | 0      | - | - | 0     | - | - |  |  |
| Stage 1              | 0      | 0   | 0     | 0      | 0    | 0   | 0      | - | - | 0     | - | - |  |  |
| Stage 2              | 0      | 0   | 0     | 0      | 0    | 0   | 0      | - | - | 0     | - | - |  |  |
| Platoon blocked, %   |        |     |       |        |      |     |        | - | - |       | - | - |  |  |
| Mov Cap-1 Maneuver   | -      | -   | -     | -      | -    | -   | -      | - | - | -     | - | - |  |  |
| Mov Cap-2 Maneuver   | -      | _   | -     | -      | -    | -   | -      | - | - | -     | - | - |  |  |
| Stage 1              | -      | -   | -     | -      | -    | -   | -      | - | - | -     | - | - |  |  |
| Stage 2              | -      | -   | -     | -      | -    | -   | -      | - | - | -     | - | - |  |  |
|                      |        |     |       |        |      |     |        |   |   |       |   |   |  |  |
| Approach             | EB     |     |       | WB     |      |     | NB     |   |   | SB    |   |   |  |  |
| HCM Control Delay, s | 0      |     |       | 0      |      |     | 0      |   |   | 0     |   |   |  |  |
| HCM LOS              | А      |     |       | А      |      |     |        |   |   |       |   |   |  |  |
|                      |        |     |       |        |      |     |        |   |   |       |   |   |  |  |
| Minor Lane/Major Mvn | nt     | NBT | NBR E | 3Ln1WE | BLn1 | SBT | SBR    |   |   |       |   |   |  |  |
| Capacity (veh/h)     |        | -   | -     | -      | -    | -   | -      |   |   |       |   |   |  |  |

| HCM Lane V/C Ratio    | - | - | - | - | - | - |  |  |
|-----------------------|---|---|---|---|---|---|--|--|
| HCM Control Delay (s) | - | - | 0 | 0 | - | - |  |  |
| HCM Lane LOS          | - | - | А | А | - | - |  |  |
| HCM 95th %tile Q(veh) | - | - | - | - | - | - |  |  |

#### Intersection

| Int Delay, s/veh       | 2     |      |          |      |      |              |  |
|------------------------|-------|------|----------|------|------|--------------|--|
| Movement               | WBL   | WBR  | NBT      | NBR  | SBL  | SBT          |  |
| Lane Configurations    | Y     |      | el<br>el |      |      | <del>ا</del> |  |
| Traffic Vol, veh/h     | 47    | 11   | 414      | 76   | 6    | 885          |  |
| Future Vol, veh/h      | 47    | 11   | 414      | 76   | 6    | 885          |  |
| Conflicting Peds, #/hr | 0     | 0    | 0        | 0    | 0    | 0            |  |
| Sign Control           | Stop  | Stop | Free     | Free | Free | Free         |  |
| RT Channelized         | -     | None | -        | None | -    | None         |  |
| Storage Length         | 0     | -    | -        | -    | -    | -            |  |
| Veh in Median Storage  | , # 0 | -    | 0        | -    | -    | 0            |  |
| Grade, %               | 0     | -    | 0        | -    | -    | 0            |  |
| Peak Hour Factor       | 88    | 88   | 88       | 88   | 88   | 88           |  |
| Heavy Vehicles, %      | 2     | 2    | 2        | 2    | 2    | 2            |  |
| Mvmt Flow              | 53    | 13   | 470      | 86   | 7    | 1006         |  |
|                        |       |      |          |      |      |              |  |

| Major/Minor         Minor1         Major1         Major2           Conflicting Flow All         1533         513         0         0         556         0           Stage 1         513         -         -         -         -         -           Stage 2         1020         -         -         -         -         -           Critical Hdwy         6.42         6.22         -         4.12         -         -           Critical Hdwy Stg 1         5.42         -         -         -         -         -           Critical Hdwy Stg 2         5.42         -         -         -         -         -           Critical Hdwy Stg 2         5.42         -         -         -         -         -           Follow-up Hdwy         3.518         3.318         -         2.218         -         -           Follow-up Hdwy         3.518         3.318         -         2.218         -         -           Pot Cap-1 Maneuver         128         561         -         1015         -         -           Stage 1         601         -         -         -         -         -           Mov Cap-2 Maneuver <th>Major/Minor</th> <th>Minor1</th> <th>Ν</th> <th>/lajor1</th> <th>N.A.</th> <th>aior?</th> <th></th> <th></th> | Major/Minor         | Minor1 | Ν     | /lajor1 | N.A. | aior? |   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------|-------|---------|------|-------|---|--|
| Stage 1       513       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                        |                     |        |       |         |      |       |   |  |
| Stage 2       1020       -       -       -       -         Critical Hdwy       6.42       6.22       -       4.12       -         Critical Hdwy Stg 1       5.42       -       -       -       -         Critical Hdwy Stg 2       5.42       -       -       -       -         Critical Hdwy Stg 2       5.42       -       -       -       -         Follow-up Hdwy       3.518       3.318       -       2.218       -         Follow-up Hdwy       3.518       3.318       -       2.218       -         Pot Cap-1 Maneuver       128       561       -       1015       -         Stage 1       601       -       -       -       -         Stage 2       348       -       -       -       -         Platoon blocked, %       -       -       -       -       -         Mov Cap-1 Maneuver       126       561       -       1015       -         Mov Cap-2 Maneuver       126       -       -       -       -         Stage 1       601       -       -       -       -         Stage 2       342       -       -                                                                                                                                                                                                                         |                     |        | 513   | 0       | 0    | 556   | 0 |  |
| Critical Hdwy       6.42       6.22       -       4.12       -         Critical Hdwy Stg 1       5.42       -       -       -       -         Critical Hdwy Stg 2       5.42       -       -       -       -         Follow-up Hdwy       3.518       3.318       -       2.218       -         Follow-up Hdwy       3.518       3.318       -       2.218       -         Pot Cap-1 Maneuver       128       561       -       1015       -         Stage 1       601       -       -       -       -         Stage 2       348       -       -       -       -         Platoon blocked, %       -       -       -       -       -         Mov Cap-1 Maneuver       126       561       -       1015       -         Mov Cap-2 Maneuver       126       -       -       -       -         Stage 1       601       -       -       -       -       -         Stage 2       342       -       -       -       -       -         Approach       WB       NB       SB       -       -       -       -         Hdw Control De                                                                                                                                                                                                                        | Stage 1             | 513    | -     | -       | -    | -     | - |  |
| Critical Hdwy Stg 1       5.42       -       -       -       -         Critical Hdwy Stg 2       5.42       -       -       -       -         Follow-up Hdwy       3.518       3.318       -       -       2.218       -         Pot Cap-1 Maneuver       128       561       -       -       1015       -         Stage 1       601       -       -       -       -       -         Stage 2       348       -       -       -       -       -         Platoon blocked, %       -       -       -       -       -         Mov Cap-1 Maneuver       126       561       -       1015       -         Mov Cap-2 Maneuver       126       -       -       -       -         Stage 1       601       -       -       -       -         Stage 2       342       -       -       -       -         Stage 2       342       -       -       -       -         Mov Cap-2 Maneuver       126       -       -       -       -         Stage 2       342       -       -       -       -       -         HCM Control Delay,                                                                                                                                                                                                                                 | Stage 2             | 1020   | -     | -       | -    | -     | - |  |
| Critical Hdwy Stg 2       5.42       -       -       -       -         Follow-up Hdwy       3.518       3.318       -       2.218       -         Pot Cap-1 Maneuver       128       561       -       1015       -         Stage 1       601       -       -       -       -         Stage 2       348       -       -       -       -         Platoon blocked, %       -       -       -       -         Mov Cap-1 Maneuver       126       561       -       1015       -         Mov Cap-2 Maneuver       126       -       -       -       -         Stage 1       601       -       -       -       -         Stage 1       601       -       -       -       -         Stage 2       342       -       -       -       -         Stage 2       342       -       -       -       -         Mov Control Delay, s       47.5       0       0.1       -                                                                                                                                                                                                                                                                                                                                                                                      | Critical Hdwy       | 6.42   | 6.22  | -       | -    | 4.12  | - |  |
| Follow-up Hdwy       3.518       3.318       -       2.218       -         Pot Cap-1 Maneuver       128       561       -       1015       -         Stage 1       601       -       -       -       -         Stage 2       348       -       -       -       -         Platoon blocked, %       -       -       -       -         Mov Cap-1 Maneuver       126       561       -       1015       -         Mov Cap-2 Maneuver       126       561       -       -       -         Stage 1       601       -       -       -       -         Stage 2       342       -       -       -       -         Mov Cap-2 Maneuver       126       -       -       -       -         Stage 1       601       -       -       -       -       -         Stage 2       342       -       -       -       -       -         Approach       WB       NB       SB       -       -       -         HCM Control Delay, s       47.5       0       0.1       -       -                                                                                                                                                                                                                                                                                          | Critical Hdwy Stg 1 | 5.42   | -     | -       | -    | -     |   |  |
| Pot Cap-1 Maneuver       128       561       -       1015       -         Stage 1       601       -       -       -       -       -         Stage 2       348       -       -       -       -       -         Platoon blocked, %       -       -       -       -       -         Mov Cap-1 Maneuver       126       561       -       1015       -         Mov Cap-2 Maneuver       126       -       -       -       -         Stage 1       601       -       -       -       -         Stage 2       342       -       -       -       -         Approach       WB       NB       SB       -       -         HCM Control Delay, s       47.5       0       0.1       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Critical Hdwy Stg 2 |        | -     | -       | -    | -     | - |  |
| Stage 1       601       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                        |                     | 3.518  | 3.318 | -       | - 2  | 2.218 | - |  |
| Stage 2       348       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                        | Pot Cap-1 Maneuver  | 128    | 561   | -       | -    | 1015  | - |  |
| Platoon blocked, %       -       -       -         Mov Cap-1 Maneuver       126       561       -       1015         Mov Cap-2 Maneuver       126       -       -       -         Stage 1       601       -       -       -         Stage 2       342       -       -       -         Approach       WB       NB       SB         HCM Control Delay, s       47.5       0       0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stage 1             | 601    | -     | -       | -    | -)    | - |  |
| Mov Cap-1 Maneuver         126         561         -         1015         -           Mov Cap-2 Maneuver         126         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td>Stage 2</td> <td>348</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td>                                | Stage 2             | 348    | -     |         | -    | -     |   |  |
| Mov Cap-2 Maneuver         126         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                   | Platoon blocked, %  |        |       | -       | -    |       | - |  |
| Stage 1         601         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                    |                     |        | 561   | -       | -    | 1015  | - |  |
| Stage 2     342     -     -       Approach     WB     NB     SB       HCM Control Delay, s     47.5     0     0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mov Cap-2 Maneuver  | 126    | -     | -       | -    | -     | - |  |
| Approach     WB     NB     SB       HCM Control Delay, s     47.5     0     0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stage 1             | 601    | -     | -       | -    | -     | - |  |
| HCM Control Delay, s 47.5 0 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stage 2             | 342    | -     | -       | -    | -     | - |  |
| HCM Control Delay, s 47.5 0 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |        |       |         |      |       |   |  |
| HCM Control Delay, s 47.5 0 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Approach            | WB     |       | NB      |      | SB    |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |        |       |         |      |       |   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |        |       | Ū       |      | •••   |   |  |

| Minor Lane/Major Mvmt | NBT | NBRWBLn | 1 SBL   | SBT |  |
|-----------------------|-----|---------|---------|-----|--|
| Capacity (veh/h)      | -   | - 14    | 3 1015  | -   |  |
| HCM Lane V/C Ratio    | -   | - 0.44  | 5 0.007 | -   |  |
| HCM Control Delay (s) | -   | - 47.   | 5 8.6   | 0   |  |
| HCM Lane LOS          | -   | -       | E A     | А   |  |
| HCM 95th %tile Q(veh) | -   | -       | 2 0     | -   |  |

### Timings 7: Meridian Rd & Woodmen Rd

|                              | ٦         | -         | $\mathbf{\hat{z}}$ | 4           | -          | •          | 1          | 1         | ۲    | 1     | Ļ         | ~    |
|------------------------------|-----------|-----------|--------------------|-------------|------------|------------|------------|-----------|------|-------|-----------|------|
| Lane Group                   | EBL       | EBT       | EBR                | WBL         | WBT        | WBR        | NBL        | NBT       | NBR  | SBL   | SBT       | SBR  |
| Lane Configurations          | ካካ        | <b>††</b> | 1                  | ኘኘ          | <b>†</b> † | 1          | ሻሻ         | <b>††</b> | 1    | ኘኘ    | <b>††</b> | 1    |
| Traffic Volume (vph)         | 638       | 523       | 102                | 116         | 488        | 64         | 220        | 568       | 79   | 119   | 435       | 366  |
| Future Volume (vph)          | 638       | 523       | 102                | 116         | 488        | 64         | 220        | 568       | 79   | 119   | 435       | 366  |
| Turn Type                    | Prot      | NA        | Free               | Prot        | NA         | Perm       | Prot       | NA        | Free | Prot  | NA        | Free |
| Protected Phases             | 7         | 4         |                    | 3           | 8          |            | 5          | 2         |      | 1     | 6         |      |
| Permitted Phases             |           |           | Free               |             |            | 8          |            |           | Free |       |           | Free |
| Detector Phase               | 7         | 4         |                    | 3           | 8          | 8          | 5          | 2         |      | 1     | 6         |      |
| Switch Phase                 |           |           |                    |             |            |            |            |           |      |       |           |      |
| Minimum Initial (s)          | 5.0       | 15.0      |                    | 5.0         | 15.0       | 15.0       | 5.0        | 15.0      |      | 5.0   | 15.0      |      |
| Minimum Split (s)            | 12.5      | 22.0      |                    | 12.5        | 22.0       | 22.0       | 13.5       | 22.0      |      | 13.5  | 22.0      |      |
| Total Split (s)              | 25.0      | 33.0      |                    | 15.0        | 23.0       | 23.0       | 18.0       | 27.0      |      | 15.0  | 24.0      |      |
| Total Split (%)              | 27.8%     | 36.7%     |                    | 16.7%       | 25.6%      | 25.6%      | 20.0%      | 30.0%     |      | 16.7% | 26.7%     |      |
| Yellow Time (s)              | 4.0       | 5.0       |                    | 4.0         | 5.0        | 5.0        | 5.0        | 5.0       |      | 5.0   | 5.0       |      |
| All-Red Time (s)             | 3.5       | 2.0       |                    | 3.5         | 2.0        | 2.0        | 3.5        | 2.0       |      | 3.5   | 2.0       |      |
| Lost Time Adjust (s)         | 0.0       | 0.0       |                    | 0.0         | 0.0        | 0.0        | 0.0        | 0.0       |      | 0.0   | 0.0       |      |
| Total Lost Time (s)          | 7.5       | 7.0       |                    | 7.5         | 7.0        | 7.0        | 8.5        | 7.0       |      | 8.5   | 7.0       |      |
| Lead/Lag                     | Lead      | Lag       |                    | Lead        | Lag        | Lag        | Lead       | Lag       |      | Lead  | Lag       |      |
| Lead-Lag Optimize?           | Yes       | Yes       |                    | Yes         | Yes        | Yes        | Yes        | Yes       |      | Yes   | Yes       |      |
| Recall Mode                  | None      | None      |                    | None        | None       | None       | None       | C-Max     |      | None  | C-Max     |      |
| Act Effct Green (s)          | 17.5      | 26.0      | 90.0               | 7.3         | 15.8       | 15.8       | 9.2        | 20.2      | 90.0 | 6.5   | 17.5      | 90.0 |
| Actuated g/C Ratio           | 0.19      | 0.29      | 1.00               | 0.08        | 0.18       | 0.18       | 0.10       | 0.22      | 1.00 | 0.07  | 0.19      | 1.00 |
| v/c Ratio                    | 1.00      | 0.53      | 0.07               | 0.44        | 0.82       | 0.12       | 0.65       | 0.74      | 0.05 | 0.50  | 0.66      | 0.24 |
| Control Delay                | 71.9      | 29.2      | 0.1                | 65.4        | 42.3       | 1.6        | 58.4       | 24.8      | 0.1  | 47.8  | 39.0      | 0.4  |
| Queue Delay                  | 0.0       | 0.0       | 0.0                | 0.0         | 0.0        | 0.0        | 0.0        | 0.0       | 0.0  | 0.0   | 0.0       | 0.0  |
| Total Delay                  | 71.9      | 29.2      | 0.1                | 65.4        | 42.3       | 1.6        | 58.4       | 24.8      | 0.1  | 47.8  | 39.0      | 0.4  |
| LOS                          | E         | С         | Α                  | E           | D          | А          | Е          | С         | А    | D     | D         | A    |
| Approach Delay               |           | 48.4      |                    |             | 42.4       |            |            | 31.1      |      |       | 24.8      |      |
| Approach LOS                 |           | D         |                    |             | D          |            |            | С         |      |       | С         |      |
| Intersection Summary         |           |           |                    |             |            |            |            |           |      |       |           |      |
| Cycle Length: 90             |           |           |                    |             |            |            |            |           |      |       |           |      |
| Actuated Cycle Length: 90    |           |           |                    |             |            |            |            |           |      |       |           |      |
| Offset: 0 (0%), Referenced   |           | ·NBT and  | 6.SBT S            | Start of FI | )W or vel  | low Mast   | er Interse | ection    |      |       |           |      |
| Natural Cycle: 80            |           |           | 0.001,0            |             |            | ,          |            |           |      |       |           |      |
| Control Type: Actuated-Co    | ordinated |           |                    |             |            |            |            |           |      |       |           |      |
| Maximum v/c Ratio: 1.00      |           |           |                    |             |            |            |            |           |      |       |           |      |
| Intersection Signal Delay:   | 37.4      |           |                    | Ir          | ntersectio | n LOS: D   |            |           |      |       |           |      |
| Intersection Capacity Utiliz |           | )         |                    |             |            | of Service |            |           |      |       |           |      |
| Analysis Period (min) 15     |           |           |                    |             |            | 0.001410   |            |           |      |       |           |      |
|                              |           |           |                    |             |            |            |            |           |      |       |           |      |

Splits and Phases: 7: Meridian Rd & Woodmen Rd

| Ø1      | 4    | Ø2 (R) 🕊 | <b>√</b> Ø3 | <b>→</b> Ø4                 |  |
|---------|------|----------|-------------|-----------------------------|--|
| 15 s    | 27 s |          | 15 s        | 33 s                        |  |
| ▲<br>Ø5 |      |          |             | <b>4</b> <sup>⊕</sup><br>Ø8 |  |
| 18 s    |      | 24 s     | 25 s        | 23 s                        |  |

### Timings 8: McLaughlin Rd & Woodmen Rd

| Lane Group<br>Lane Configurations<br>Traffic Volume (vph) | EBL     | EBT      |          |            |              |            | ۰<br>۱ |       |       |          | •     |       |
|-----------------------------------------------------------|---------|----------|----------|------------|--------------|------------|--------|-------|-------|----------|-------|-------|
| Traffic Volume (vph)                                      |         |          | EBR      | WBL        | WBT          | WBR        | NBL    | NBT   | NBR   | SBL      | SBT   | SBF   |
|                                                           |         | <u></u>  | 1        | ٦          | - <b>†</b> † | 1          | ۲.     | •     | 1     | <u>۲</u> | •     | 1     |
| - · · · · · · · · · · · · · · · · · · ·                   | 296     | 328      | 97       | 45         | 388          | 266        | 86     | 165   | 87    | 185      | 113   | 194   |
| Future Volume (vph)                                       | 296     | 328      | 97       | 45         | 388          | 266        | 86     | 165   | 87    | 185      | 113   | 194   |
| Turn Type                                                 | pm+pt   | NA       | Perm     | pm+pt      | NA           | Perm       | pm+pt  | NA    | Perm  | pm+pt    | NA    | Perm  |
| Protected Phases                                          | 5       | 2        |          | 1          | 6            |            | 3      | 8     |       | 7        | 4     |       |
| Permitted Phases                                          | 2       |          | 2        | 6          |              | 6          | 8      |       | 8     | 4        |       | 4     |
| Detector Phase                                            | 5       | 2        | 2        | 1          | 6            | 6          | 3      | 8     | 8     | 7        | 4     | Z     |
| Switch Phase                                              |         |          |          |            |              |            |        |       |       |          |       |       |
| Minimum Initial (s)                                       | 5.0     | 5.0      | 5.0      | 5.0        | 5.0          | 5.0        | 5.0    | 5.0   | 5.0   | 5.0      | 5.0   | 5.0   |
| Minimum Split (s)                                         | 12.5    | 25.0     | 25.0     | 12.5       | 25.0         | 25.0       | 13.5   | 25.0  | 25.0  | 13.5     | 25.0  | 25.0  |
| Total Split (s)                                           | 14.0    | 37.0     | 37.0     | 14.0       | 37.0         | 37.0       | 14.0   | 25.0  | 25.0  | 14.0     | 25.0  | 25.0  |
| Total Split (%)                                           | 15.6%   | 41.1%    | 41.1%    | 15.6%      | 41.1%        | 41.1%      | 15.6%  | 27.8% | 27.8% | 15.6%    | 27.8% | 27.8% |
| Yellow Time (s)                                           | 4.0     | 5.0      | 5.0      | 4.0        | 5.0          | 5.0        | 5.0    | 5.0   | 5.0   | 5.0      | 5.0   | 5.0   |
| All-Red Time (s)                                          | 3.5     | 2.0      | 2.0      | 3.5        | 2.0          | 2.0        | 3.5    | 2.0   | 2.0   | 3.5      | 2.0   | 2.0   |
| Lost Time Adjust (s)                                      | 0.0     | 0.0      | 0.0      | 0.0        | 0.0          | 0.0        | 0.0    | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   |
| Total Lost Time (s)                                       | 7.5     | 7.0      | 7.0      | 7.5        | 7.0          | 7.0        | 8.5    | 7.0   | 7.0   | 8.5      | 7.0   | 7.0   |
| Lead/Lag                                                  | Lead    | Lag      | Lag      | Lead       | Lag          | Lag        | Lead   | Lag   | Lag   | Lead     | Lag   | Lag   |
| Lead-Lag Optimize?                                        | Yes     | Yes      | Yes      | Yes        | Yes          | Yes        | Yes    | Yes   | Yes   | Yes      | Yes   | Yes   |
| Recall Mode                                               | None    | C-Max    | C-Max    | None       | C-Max        | C-Max      | None   | Max   | Max   | None     | Max   | Max   |
| Act Effct Green (s)                                       | 39.0    | 35.6     | 35.6     | 35.7       | 30.0         | 30.0       | 22.0   | 18.0  | 18.0  | 23.7     | 20.8  | 20.8  |
| Actuated g/C Ratio                                        | 0.43    | 0.40     | 0.40     | 0.40       | 0.33         | 0.33       | 0.24   | 0.20  | 0.20  | 0.26     | 0.23  | 0.23  |
| v/c Ratio                                                 | 0.71    | 0.24     | 0.13     | 0.10       | 0.34         | 0.39       | 0.26   | 0.46  | 0.18  | 0.57     | 0.27  | 0.36  |
| Control Delay                                             | 47.4    | 38.6     | 8.7      | 16.5       | 30.9         | 14.4       | 23.6   | 36.3  | 0.8   | 32.6     | 32.3  | 4.2   |
| Queue Delay                                               | 0.0     | 0.0      | 0.0      | 0.0        | 0.0          | 0.0        | 0.0    | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   |
| Total Delay                                               | 47.4    | 38.6     | 8.7      | 16.5       | 30.9         | 14.4       | 23.6   | 36.3  | 0.8   | 32.6     | 32.3  | 4.2   |
| LOS                                                       | D       | D        | Α        | В          | С            | В          | С      | D     | А     | С        | С     | A     |
| Approach Delay                                            |         | 38.2     | K        |            | 23.7         |            |        | 23.9  |       |          | 21.3  |       |
| Approach LOS                                              |         | D        |          |            | C            |            |        | С     |       |          | С     |       |
| Intersection Summary                                      |         |          |          |            |              |            |        |       |       |          |       |       |
| Cycle Length: 90                                          |         |          |          |            |              |            |        |       |       |          |       |       |
| Actuated Cycle Length: 90                                 |         |          |          |            |              |            |        |       |       |          |       |       |
| Offset: 0 (0%), Referenced to                             | phase 2 | :EBTL an | d 6:WBTI | , Start of | Green        |            |        |       |       |          |       |       |
| Natural Cycle: 80                                         |         |          |          |            |              |            |        |       |       |          |       |       |
| Control Type: Actuated-Coord                              | linated |          |          |            |              |            |        |       |       |          |       |       |
| Maximum v/c Ratio: 0.71                                   |         |          |          |            |              |            |        |       |       |          |       |       |
| Intersection Signal Delay: 27.8                           | 8       |          |          |            | ntersectio   |            |        |       |       |          |       |       |
| Intersection Capacity Utilization                         |         | )        |          | [(         | CU Level     | of Service | эC     |       |       |          |       |       |
| Analysis Period (min) 15                                  |         |          |          |            |              |            |        |       |       |          |       |       |

Splits and Phases: 8: McLaughlin Rd & Woodmen Rd

| Ø1          | 🖉 🖉 🖉 🖉       | <b>▲</b> Ø3 | <b>↓</b> Ø4            |
|-------------|---------------|-------------|------------------------|
| 14 s        | 37 s          | 14 s        | 25 s                   |
| <u>∕</u> ø₅ | ●<br>● Ø6 (R) | Ø7          | <b>↓</b> <sub>Ø8</sub> |
| 14 s        | 37 s          | 14 s        | 25 s                   |

### Timings 9: US 24 & Woodmen Rd

|                                   | ≯           | $\mathbf{r}$ | 1         | 1        | Ļ          | -         |    |
|-----------------------------------|-------------|--------------|-----------|----------|------------|-----------|----|
| Lane Group                        | EBL         | EBR          | NBL       | NBT      | SBT        | SBR       |    |
| Lane Configurations               | ሻ           | 1            | ካካ        | 1        | <b>†</b>   | 1         |    |
| Traffic Volume (vph)              | 498         | 102          | 323       | 531      | 316        | 376       |    |
| Future Volume (vph)               | 498         | 102          | 323       | 531      | 316        | 376       |    |
| Turn Type                         | Prot        | Perm         | pm+pt     | NA       | NA         | Perm      |    |
| Protected Phases                  | 2           |              | 3         | 8        | 4          |           |    |
| Permitted Phases                  |             | 2            | 8         |          |            | 4         |    |
| Detector Phase                    | 2           | 2            | 3         | 8        | 4          | 4         |    |
| Switch Phase                      |             |              |           |          |            |           |    |
| Minimum Initial (s)               | 5.0         | 5.0          | 5.0       | 5.0      | 5.0        | 5.0       |    |
| Minimum Split (s)                 | 23.5        | 23.5         | 10.5      | 23.5     | 23.5       | 23.5      |    |
| Total Split (s)                   | 30.0        | 30.0         | 20.0      | 60.0     | 40.0       | 40.0      |    |
| Total Split (%)                   | 33.3%       | 33.3%        | 22.2%     | 66.7%    | 44.4%      | 44.4%     |    |
| Yellow Time (s)                   | 3.0         | 3.0          | 3.0       | 3.0      | 3.0        | 3.0       |    |
| All-Red Time (s)                  | 2.0         | 2.0          | 2.0       | 2.0      | 2.0        | 2.0       |    |
| Lost Time Adjust (s)              | 0.0         | 0.0          | 0.0       | 0.0      | 0.0        | 0.0       |    |
| Total Lost Time (s)               | 5.0         | 5.0          | 5.0       | 5.0      | 5.0        | 5.0       |    |
| Lead/Lag                          |             |              | Lead      |          | Lag        | Lag       |    |
| Lead-Lag Optimize?                |             |              | Yes       |          | Yes        | Yes       |    |
| Recall Mode                       | C-Max       | C-Max        | None      | None     | None       | None      |    |
| Act Effct Green (s)               | 37.9        | 37.9         | 42.1      | 42.1     | 25.5       | 25.5      |    |
| Actuated g/C Ratio                | 0.42        | 0.42         | 0.47      | 0.47     | 0.28       | 0.28      |    |
| v/c Ratio                         | 0.70        | 0.15         | 0.51      | 0.72     | 0.70       | 0.57      |    |
| Control Delay                     | 33.1        | 7.2          | 26.8      | 37.5     | 35.2       | 5.4       |    |
| Queue Delay                       | 0.0         | 0.0          | 0.0       | 0.0      | 0.0        | 0.0       |    |
| Total Delay                       | 33.1        | 7.2          | 26.8      | 37.5     | 35.2       | 5.4       |    |
| LOS                               | С           | А            | С         | D        | D          | А         |    |
| Approach Delay                    | 28.7        |              |           | 33.4     | 19.0       |           |    |
| Approach LOS                      | С           |              |           | C        | В          |           |    |
| Intersection Summary              |             |              |           |          |            |           |    |
| Cycle Length: 90                  |             |              |           |          |            |           |    |
| Actuated Cycle Length: 90         |             |              |           |          |            |           |    |
| Offset: 0 (0%), Referenced        | to phase 2  | :EBL and     | 6:, Start | of Green |            |           |    |
| Natural Cycle: 60                 |             |              |           |          |            |           |    |
| Control Type: Actuated-Co         | ordinated   |              |           |          |            |           |    |
| Maximum v/c Ratio: 0.72           |             |              |           |          |            |           |    |
| Intersection Signal Delay: 2      | 27.4        |              |           | li       | ntersectio | n LOS: C  |    |
| Intersection Capacity Utilization | ation 65.9% | )            |           | 10       | CU Level   | of Servic | eC |
| Analysis Period (min) 15          |             |              |           |          |            |           |    |
| Splits and Phases: 9: US          | 3 24 & Woo  | dmen Rd      |           |          |            |           |    |

### Splits and Phases: 9: US 24 & Woodmen Rd

| Ø2 (R) | <b>1</b> Ø3 |      |
|--------|-------------|------|
| 30 s   | 20 s        | 40 s |
|        | Ø8          |      |
|        | 60 s        |      |

### Timings 10: US 24 & Meridian Rd

|                                 | ≯        | -          | $\mathbf{r}$ | 4         | +          | •          | 1     | Ť        | ۲     | 1        | Ŧ        | ~     |
|---------------------------------|----------|------------|--------------|-----------|------------|------------|-------|----------|-------|----------|----------|-------|
| Lane Group                      | EBL      | EBT        | EBR          | WBL       | WBT        | WBR        | NBL   | NBT      | NBR   | SBL      | SBT      | SBR   |
| Lane Configurations             | 1        | <b>†</b> † | 1            | ۲         | <u></u>    | 1          | ۲     | <b>†</b> | 1     | <u>۲</u> | <b>†</b> | 1     |
| Traffic Volume (vph)            | 19       | 227        | 307          | 11        | 351        | 43         | 608   | 761      | 6     | 55       | 403      | 7     |
| Future Volume (vph)             | 19       | 227        | 307          | 11        | 351        | 43         | 608   | 761      | 6     | 55       | 403      | 7     |
| Turn Type                       | pm+pt    | NA         | Perm         | pm+pt     | NA         | Perm       | pm+pt | NA       | Perm  | pm+pt    | NA       | Perm  |
| Protected Phases                | 5        | 2          |              | 1         | 6          |            | 3     | 8        |       | 7        | 4        |       |
| Permitted Phases                | 2        |            | 2            | 6         |            | 6          | 8     |          | 8     | 4        |          | 4     |
| Detector Phase                  | 5        | 2          | 2            | 1         | 6          | 6          | 3     | 8        | 8     | 7        | 4        | 4     |
| Switch Phase                    |          |            |              |           |            |            |       |          |       |          |          |       |
| Minimum Initial (s)             | 5.0      | 5.0        | 5.0          | 5.0       | 5.0        | 5.0        | 5.0   | 5.0      | 5.0   | 5.0      | 5.0      | 5.0   |
| Minimum Split (s)               | 11.0     | 20.0       | 20.0         | 11.0      | 20.0       | 20.0       | 11.0  | 20.0     | 20.0  | 11.0     | 20.0     | 20.0  |
| Total Split (s)                 | 11.0     | 20.0       | 20.0         | 11.0      | 20.0       | 20.0       | 31.0  | 47.0     | 47.0  | 12.0     | 28.0     | 28.0  |
| Total Split (%)                 | 12.2%    | 22.2%      | 22.2%        | 12.2%     | 22.2%      | 22.2%      | 34.4% | 52.2%    | 52.2% | 13.3%    | 31.1%    | 31.1% |
| Yellow Time (s)                 | 3.0      | 5.0        | 5.0          | 3.0       | 5.0        | 5.0        | 3.0   | 4.5      | 4.5   | 3.0      | 4.5      | 4.5   |
| All-Red Time (s)                | 3.0      | 2.0        | 2.0          | 3.0       | 2.0        | 2.0        | 3.0   | 2.0      | 2.0   | 3.0      | 2.0      | 2.0   |
| Lost Time Adjust (s)            | 0.0      | 0.0        | 0.0          | 0.0       | 0.0        | 0.0        | 0.0   | 0.0      | 0.0   | 0.0      | 0.0      | 0.0   |
| Total Lost Time (s)             | 6.0      | 7.0        | 7.0          | 6.0       | 7.0        | 7.0        | 6.0   | 6.5      | 6.5   | 6.0      | 6.5      | 6.5   |
| Lead/Lag                        | Lead     | Lag        | Lag          | Lead      | Lag        | Lag        | Lead  | Lag      | Lag   | Lead     | Lag      | Lag   |
| Lead-Lag Optimize?              | Yes      | Yes        | Yes          | Yes       | Yes        | Yes        | Yes   | Yes      | Yes   | Yes      | Yes      | Yes   |
| Recall Mode                     | None     | C-Max      | C-Max        | None      | C-Max      | C-Max      | None  | None     | None  | None     | None     | None  |
| Act Effct Green (s)             | 23.8     | 21.8       | 21.8         | 22.6      | 19.6       | 19.6       | 53.0  | 42.9     | 42.9  | 27.9     | 21.5     | 21.5  |
| Actuated g/C Ratio              | 0.26     | 0.24       | 0.24         | 0.25      | 0.22       | 0.22       | 0.59  | 0.48     | 0.48  | 0.31     | 0.24     | 0.24  |
| v/c Ratio                       | 0.08     | 0.28       | 0.52         | 0.04      | 0.48       | 0.08       | 1.13  | 0.91     | 0.01  | 0.30     | 0.96     | 0.01  |
| Control Delay                   | 26.3     | 29.7       | 9.2          | 24.3      | 34.9       | 0.3        | 102.0 | 39.8     | 0.0   | 21.5     | 73.9     | 0.0   |
| Queue Delay                     | 0.0      | 0.0        | 0.0          | 0.0       | 0.0        | 0.0        | 0.0   | 0.0      | 0.0   | 0.0      | 0.0      | 0.0   |
| Total Delay                     | 26.3     | 29.7       | 9.2          | 24.3      | 34.9       | 0.3        | 102.0 | 39.8     | 0.0   | 21.5     | 73.9     | 0.0   |
| LOS                             | С        | С          | Α            | С         | С          | А          | F     | D        | А     | С        | E        | A     |
| Approach Delay                  |          | 18.2       | K            |           | 30.9       |            |       | 67.1     |       |          | 66.6     |       |
| Approach LOS                    |          | В          |              |           | C          |            |       | E        |       |          | E        |       |
| Intersection Summary            |          |            |              |           |            |            |       |          |       |          |          |       |
| Cycle Length: 90                |          |            |              |           |            |            |       |          |       |          |          |       |
| Actuated Cycle Length: 90       |          |            |              |           |            |            |       |          |       |          |          |       |
| Offset: 71 (79%), Referenced    | to phase | 2:EBTL     | and 6:WE     | BTL, Star | of FDW     | or yellow  |       |          |       |          |          |       |
| Natural Cycle: 90               |          |            |              |           |            |            |       |          |       |          |          |       |
| Control Type: Actuated-Coor     | dinated  |            |              |           |            |            |       |          |       |          |          |       |
| Maximum v/c Ratio: 1.13         |          |            |              |           |            |            |       |          |       |          |          |       |
| Intersection Signal Delay: 52   | .1       |            |              | I         | ntersectio | n LOS: D   |       |          |       |          |          |       |
| Intersection Capacity Utilizati | on 86.9% | )          |              | 10        | CU Level   | of Service | θE    |          |       |          |          |       |
| Analysis Period (min) 15        |          |            |              |           |            |            |       |          |       |          |          |       |

Splits and Phases: 10: US 24 & Meridian Rd

| <b>√</b> Ø1 | 📌 102 (R)     | <b>↑</b> ø3 | <b>↓</b> Ø4 |
|-------------|---------------|-------------|-------------|
| 11 s        | 20 s          | 31 s        | 28 s        |
|             | ●<br>● Ø6 (R) | ₩ø7 ₩ø8     |             |
| 11 s        | 20 s          | 12 s 47 s   |             |

0

#### Intersection

Int Delay, s/veh

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations    |      |      | 1    |      |      | 1    |      | 1    | 1    |      | 1    | 1    |  |
| Traffic Vol, veh/h     | 0    | 0    | 52   | 0    | 0    | 45   | 0    | 809  | 14   | 0    | 413  | 5    |  |
| Future Vol, veh/h      | 0    | 0    | 52   | 0    | 0    | 45   | 0    | 809  | 14   | 0    | 413  | 5    |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Stop | Stop | Stop | Stop | Stop | Stop | Free | Free | Free | Free | Free | Free |  |
| RT Channelized         | -    | -    | Free | -    | -    | Free | -    | -    | None | -    | -    | None |  |
| Storage Length         | -    | -    | 0    | -    | -    | 0    | -    | -    | 400  | -    | -    | 400  |  |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   |  |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 0    | 0    | 58   | 0    | 0    | 50   | 0    | 899  | 16   | 0    | 459  | 6    |  |
|                        |      |      |      |      |      |      |      |      |      |      |      |      |  |

| Major/Minor          | Minor2 |     | М      | inor1  |      | Ν   | 1ajor1 |   | M | ajor2                  |   |   |  |  |
|----------------------|--------|-----|--------|--------|------|-----|--------|---|---|------------------------|---|---|--|--|
| Conflicting Flow All | -      | _   | -      | _      | _    | -   | -      | 0 | 0 | - <u>j</u> e. <u>-</u> | - | 0 |  |  |
| Stage 1              | -      | -   | -      | -      | -    | -   | -      | - | - | -                      | - | - |  |  |
| Stage 2              | -      | -   | -      | -      | -    | -   | -      | - | - | -                      | - | - |  |  |
| Critical Hdwy        | -      | -   | -      | -      | -    | -   | -      | - | - | -                      | - | - |  |  |
| Critical Hdwy Stg 1  | -      | -   | -      | -      | -    |     | -      | - | - | -                      | - | - |  |  |
| Critical Hdwy Stg 2  | -      | -   | -      | -      | -    | -   | -      | - | - | -                      | - | - |  |  |
| Follow-up Hdwy       | -      | -   | -      | -      | -    | -   | -      |   | - | -                      | - | - |  |  |
| Pot Cap-1 Maneuver   | 0      | 0   | 0      | 0      | 0    | 0   | 0      | - | - | 0                      | - | - |  |  |
| Stage 1              | 0      | 0   | 0      | 0      | 0    | 0   | 0      | - | - | 0                      | - | - |  |  |
| Stage 2              | 0      | 0   | 0      | 0      | 0    | 0   | 0      | - | - | 0                      | - | - |  |  |
| Platoon blocked, %   |        |     |        |        |      |     |        | - | - |                        | - | - |  |  |
| Mov Cap-1 Maneuver   |        | -   | -      | -      | -    | -   | -      | - | - | -                      | - | - |  |  |
| Mov Cap-2 Maneuver   | -      | -   | -      | -      | -    | -   | -      | - | - | -                      | - | - |  |  |
| Stage 1              | -      | -   | -      | -      | -    | -   | -      | - | - | -                      | - | - |  |  |
| Stage 2              | -      | -   | -      | -      | -    | -   | -      | - | - | -                      | - | - |  |  |
|                      |        |     |        |        |      |     |        |   |   |                        |   |   |  |  |
| Approach             | EB     |     |        | WB     |      |     | NB     |   |   | SB                     |   |   |  |  |
| HCM Control Delay, s | 0      |     |        | 0      |      |     | 0      |   |   | 0                      |   |   |  |  |
| HCM LOS              | А      |     |        | А      |      |     |        |   |   |                        |   |   |  |  |
|                      |        |     |        |        |      |     |        |   |   |                        |   |   |  |  |
| Minor Lane/Major Mvn | nt     | NBT | NBR EI | BLn1WE | 3Ln1 | SBT | SBR    |   |   |                        |   |   |  |  |
| Capacity (veh/h)     |        | -   | -      | -      | -    | -   | -      |   |   |                        |   |   |  |  |

| HCM Lane V/C Ratio    | - | - | - | - | - | - |  |  |  |
|-----------------------|---|---|---|---|---|---|--|--|--|
| HCM Control Delay (s) | - | - | 0 | 0 | - | - |  |  |  |
| HCM Lane LOS          | - | - | А | А | - | - |  |  |  |
| HCM 95th %tile Q(veh) | - | - | - | - | - | - |  |  |  |

#### Intersection

| Int Delay, s/veh 388.2         |          |      |
|--------------------------------|----------|------|
| Movement WBL WBR NBT N         | BR SBL   | SBT  |
| Lane Configurations 🧗 🎁        |          | र्च  |
| Traffic Vol, veh/h 66 4 930    | 99 2     | 626  |
| Future Vol, veh/h 66 4 930     | 99 2     | 626  |
| Conflicting Peds, #/hr 0 0 0   | 0 0      | 0    |
| Sign Control Free Free F       | ree Stop | Stop |
| RT Channelized - None - No     | one -    | None |
| Storage Length 0               |          | -    |
| Veh in Median Storage, # 0 - 0 |          | 0    |
| Grade, % 0 - 0                 |          | 0    |
| Peak Hour Factor 87 87 87      | 87 87    | 87   |
| Heavy Vehicles, % 2 2 2        | 2 2      | 2    |
| Mvmt Flow 76 5 1069            | 114 2    | 720  |

| Major/Minor                | Major1           | Minor2    |         |                      |                                |  |
|----------------------------|------------------|-----------|---------|----------------------|--------------------------------|--|
| Conflicting Flow All       | 0                | 0 1126    | 1183    |                      |                                |  |
| Stage 1                    | -                | - 0       | 0       |                      |                                |  |
| Stage 2                    | -                | - 1126    | 1183    |                      |                                |  |
| Critical Hdwy              | -                | - 6.42    | 6.52    |                      |                                |  |
| Critical Hdwy Stg 1        | -                |           |         |                      |                                |  |
| Critical Hdwy Stg 2        | -                | - 5.42    | 5.52    |                      |                                |  |
| Follow-up Hdwy             | -                | - 3.518   |         |                      |                                |  |
| Pot Cap-1 Maneuver         | -                | - 227     | ~ 189   |                      |                                |  |
| Stage 1                    | -                |           | -       |                      |                                |  |
| Stage 2                    | -                | - 310     | ~ 263   |                      |                                |  |
| Platoon blocked, %         | -                | -         |         |                      |                                |  |
| Mov Cap-1 Maneuver         | -                | - 227     | 0       |                      |                                |  |
| Mov Cap-2 Maneuver         | -                | - 227     | 0       |                      |                                |  |
| Stage 1                    | -                |           | 0       |                      |                                |  |
| Stage 2                    | -                | - 310     | 0       |                      |                                |  |
|                            |                  |           |         |                      |                                |  |
| Approach                   | NB               | SB        |         |                      |                                |  |
| HCM Control Delay, s       | 0                | \$ 1024.4 |         |                      |                                |  |
| HCM LOS                    |                  | F         |         |                      |                                |  |
|                            |                  |           |         |                      |                                |  |
| Minor Lane/Major Mvmt      | NBT NBR SBL      | .n1       |         |                      |                                |  |
| Capacity (veh/h)           | 2                | 27        |         |                      |                                |  |
| HCM Lane V/C Ratio         |                  | 18        |         |                      |                                |  |
| HCM Control Delay (s)      | - \$1024         |           |         |                      |                                |  |
| HCM Lane LOS               |                  | F         |         |                      |                                |  |
| HCM 95th %tile Q(veh)      |                  | 66        |         |                      |                                |  |
| Notes                      |                  |           |         |                      |                                |  |
| ~: Volume exceeds capacity | \$: Delay exceed | ls 300s   | +: Comp | outation Not Defined | *: All major volume in platoon |  |
|                            |                  |           |         |                      |                                |  |

### Timings 7: Meridian Rd & Woodmen Rd

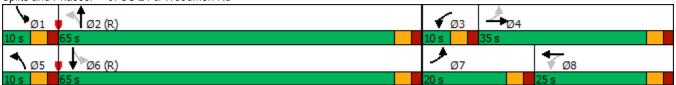
|                                   | ٨          | -         | $\mathbf{r}$ | 4           | +            | •          | 1          | 1        | 1    | 1     | ţ        | ~    |
|-----------------------------------|------------|-----------|--------------|-------------|--------------|------------|------------|----------|------|-------|----------|------|
| Lane Group                        | EBL        | EBT       | EBR          | WBL         | WBT          | WBR        | NBL        | NBT      | NBR  | SBL   | SBT      | SBR  |
| Lane Configurations               | ካካ         | <u>††</u> | 1            | ካካ          | - <b>†</b> † | 1          | ሻሻ         | <b>^</b> | 1    | ካካ    | <u>^</u> | 1    |
| Traffic Volume (vph)              | 302        | 367       | 233          | 68          | 600          | 36         | 165        | 212      | 17   | 38    | 606      | 541  |
| Future Volume (vph)               | 302        | 367       | 233          | 68          | 600          | 36         | 165        | 212      | 17   | 38    | 606      | 541  |
| Turn Type                         | Prot       | NA        | Free         | Prot        | NA           | Perm       | Prot       | NA       | Free | Prot  | NA       | Free |
| Protected Phases                  | 7          | 4         |              | 3           | 8            |            | 5          | 2        |      | 1     | 6        |      |
| Permitted Phases                  |            |           | Free         |             |              | 8          |            |          | Free |       |          | Free |
| Detector Phase                    | 7          | 4         |              | 3           | 8            | 8          | 5          | 2        |      | 1     | 6        |      |
| Switch Phase                      |            |           |              |             |              |            |            |          |      |       |          |      |
| Minimum Initial (s)               | 5.0        | 15.0      |              | 5.0         | 15.0         | 15.0       | 5.0        | 15.0     |      | 5.0   | 15.0     |      |
| Minimum Split (s)                 | 12.5       | 22.0      |              | 12.5        | 22.0         | 22.0       | 13.5       | 22.0     |      | 13.5  | 22.0     |      |
| Total Split (s)                   | 25.0       | 33.0      |              | 15.0        | 23.0         | 23.0       | 18.0       | 27.0     |      | 15.0  | 24.0     |      |
| Total Split (%)                   | 27.8%      | 36.7%     |              | 16.7%       | 25.6%        | 25.6%      | 20.0%      | 30.0%    |      | 16.7% | 26.7%    |      |
| Yellow Time (s)                   | 4.0        | 5.0       |              | 4.0         | 5.0          | 5.0        | 5.0        | 5.0      |      | 5.0   | 5.0      |      |
| All-Red Time (s)                  | 3.5        | 2.0       |              | 3.5         | 2.0          | 2.0        | 3.5        | 2.0      |      | 3.5   | 2.0      |      |
| Lost Time Adjust (s)              | 0.0        | 0.0       |              | 0.0         | 0.0          | 0.0        | 0.0        | 0.0      |      | 0.0   | 0.0      |      |
| Total Lost Time (s)               | 7.5        | 7.0       |              | 7.5         | 7.0          | 7.0        | 8.5        | 7.0      |      | 8.5   | 7.0      |      |
| Lead/Lag                          | Lead       | Lag       |              | Lead        | Lag          | Lag        | Lead       | Lag      |      | Lead  | Lag      |      |
| Lead-Lag Optimize?                | Yes        | Yes       |              | Yes         | Yes          | Yes        | Yes        | Yes      |      | Yes   | Yes      |      |
| Recall Mode                       | None       | None      |              | None        | None         | None       | None       | C-Max    |      | None  | C-Max    |      |
| Act Effct Green (s)               | 13.5       | 28.6      | 90.0         | 6.9         | 19.4         | 19.4       | 8.9        | 26.6     | 90.0 | 6.2   | 18.3     | 90.0 |
| Actuated g/C Ratio                | 0.15       | 0.32      | 1.00         | 0.08        | 0.22         | 0.22       | 0.10       | 0.30     | 1.00 | 0.07  | 0.20     | 1.00 |
| v/c Ratio                         | 0.61       | 0.34      | 0.15         | 0.27        | 0.82         | 0.06       | 0.51       | 0.21     | 0.01 | 0.17  | 0.88     | 0.36 |
| Control Delay                     | 40.8       | 25.5      | 0.2          | 59.7        | 38.2         | 0.2        | 47.7       | 14.7     | 0.0  | 41.1  | 50.9     | 0.6  |
| Queue Delay                       | 0.0        | 0.0       | 0.0          | 0.0         | 0.0          | 0.0        | 0.0        | 0.0      | 0.0  | 0.0   | 0.0      | 0.0  |
| Total Delay                       | 40.8       | 25.5      | 0.2          | 59.7        | 38.2         | 0.2        | 47.7       | 14.7     | 0.0  | 41.1  | 50.9     | 0.6  |
| LOS                               | D          | С         | Α            | E           | D            | А          | D          | В        | А    | D     | D        | A    |
| Approach Delay                    |            | 24.1      |              |             | 38.3         |            |            | 27.9     |      |       | 27.6     |      |
| Approach LOS                      |            | С         |              |             | D            |            |            | С        |      |       | С        |      |
| Intersection Summary              |            |           |              |             |              |            |            |          |      |       |          |      |
| Cycle Length: 90                  |            |           |              |             |              |            |            |          |      |       |          |      |
| Actuated Cycle Length: 90         |            |           |              |             |              |            |            |          |      |       |          |      |
| Offset: 0 (0%), Referenced        | to phase 2 | :NBT and  | 6:SBT, 5     | Start of FE | DW or yel    | low, Mast  | er Interse | ection   |      |       |          |      |
| Natural Cycle: 75                 |            |           |              |             |              |            |            |          |      |       |          |      |
| Control Type: Actuated-Co         | ordinated  |           |              |             |              |            |            |          |      |       |          |      |
| Maximum v/c Ratio: 0.88           |            |           |              |             |              |            |            |          |      |       |          |      |
| Intersection Signal Delay: 2      | 29.0       |           |              | Ir          | ntersectio   | n LOS: C   |            |          |      |       |          |      |
| Intersection Capacity Utilization |            | )         |              | 10          | CU Level     | of Service | эC         |          |      |       |          |      |
| Analysis Period (min) 15          |            |           |              |             |              |            |            |          |      |       |          |      |
|                                   |            |           |              |             |              |            |            |          |      |       |          |      |

Splits and Phases: 7: Meridian Rd & Woodmen Rd

| Ø1         | 🕇 Ø2 (R) 🕊       | <b>√</b> Ø3 | <b>→</b> <sub>Ø4</sub> |  |
|------------|------------------|-------------|------------------------|--|
| 15 s       | 27 s             | 15 s        | 33 s                   |  |
| <b>Ø</b> 5 | ↓ Ø6 <b>(</b> R) | ▶ Ø7        | <b>▲</b><br>Ø8         |  |
| 18 s       | 24 s             | 25 s        | 23 s                   |  |

### Timings 8: McLaughlin Rd & Woodmen Rd

|                                   | ≯        | -         | $\mathbf{i}$ | 4          | +           | •          | 1     | Ť        | 1     | 1     | Ŧ        | ~     |
|-----------------------------------|----------|-----------|--------------|------------|-------------|------------|-------|----------|-------|-------|----------|-------|
| Lane Group                        | EBL      | EBT       | EBR          | WBL        | WBT         | WBR        | NBL   | NBT      | NBR   | SBL   | SBT      | SBF   |
| Lane Configurations               | ሻ        | <b>††</b> | 1            | ሻ          | - <b>††</b> | 1          | ሻ     | <b>↑</b> | 1     | ሻ     | <b>↑</b> | 5     |
| Traffic Volume (vph)              | 101      | 275       | 46           | 28         | 372         | 143        | 39    | 45       | 10    | 121   | 125      | 293   |
| Future Volume (vph)               | 101      | 275       | 46           | 28         | 372         | 143        | 39    | 45       | 10    | 121   | 125      | 293   |
| Turn Type                         | pm+pt    | NA        | Perm         | pm+pt      | NA          | Perm       | pm+pt | NA       | Perm  | pm+pt | NA       | Perm  |
| Protected Phases                  | 5        | 2         |              | 1          | 6           |            | 3     | 8        |       | 7     | 4        |       |
| Permitted Phases                  | 2        |           | 2            | 6          |             | 6          | 8     |          | 8     | 4     |          | 4     |
| Detector Phase                    | 5        | 2         | 2            | 1          | 6           | 6          | 3     | 8        | 8     | 7     | 4        | 4     |
| Switch Phase                      |          |           |              |            |             |            |       |          |       |       |          |       |
| Minimum Initial (s)               | 5.0      | 5.0       | 5.0          | 5.0        | 5.0         | 5.0        | 5.0   | 5.0      | 5.0   | 5.0   | 5.0      | 5.(   |
| Minimum Split (s)                 | 12.5     | 25.0      | 25.0         | 12.5       | 25.0        | 25.0       | 13.5  | 25.0     | 25.0  | 13.5  | 25.0     | 25.0  |
| Total Split (s)                   | 14.0     | 37.0      | 37.0         | 14.0       | 37.0        | 37.0       | 14.0  | 25.0     | 25.0  | 14.0  | 25.0     | 25.0  |
| Total Split (%)                   | 15.6%    | 41.1%     | 41.1%        | 15.6%      | 41.1%       | 41.1%      | 15.6% | 27.8%    | 27.8% | 15.6% | 27.8%    | 27.8% |
| Yellow Time (s)                   | 4.0      | 5.0       | 5.0          | 4.0        | 5.0         | 5.0        | 5.0   | 5.0      | 5.0   | 5.0   | 5.0      | 5.0   |
| All-Red Time (s)                  | 3.5      | 2.0       | 2.0          | 3.5        | 2.0         | 2.0        | 3.5   | 2.0      | 2.0   | 3.5   | 2.0      | 2.0   |
| Lost Time Adjust (s)              | 0.0      | 0.0       | 0.0          | 0.0        | 0.0         | 0.0        | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Lost Time (s)               | 7.5      | 7.0       | 7.0          | 7.5        | 7.0         | 7.0        | 8.5   | 7.0      | 7.0   | 8.5   | 7.0      | 7.0   |
| Lead/Lag                          | Lead     | Lag       | Lag          | Lead       | Lag         | Lag        | Lead  | Lag      | Lag   | Lead  | Lag      | Lag   |
| Lead-Lag Optimize?                | Yes      | Yes       | Yes          | Yes        | Yes         | Yes        | Yes   | Yes      | Yes   | Yes   | Yes      | Yes   |
| Recall Mode                       | None     | C-Max     | C-Max        | None       | C-Max       | C-Max      | None  | Max      | Max   | None  | Max      | Max   |
| Act Effct Green (s)               | 40.5     | 38.4      | 38.4         | 37.3       | 32.8        | 32.8       | 22.0  | 18.0     | 18.0  | 25.4  | 23.6     | 23.6  |
| Actuated g/C Ratio                | 0.45     | 0.43      | 0.43         | 0.41       | 0.36        | 0.36       | 0.24  | 0.20     | 0.20  | 0.28  | 0.26     | 0.26  |
| v/c Ratio                         | 0.23     | 0.19      | 0.06         | 0.06       | 0.29        | 0.20       | 0.12  | 0.12     | 0.02  | 0.32  | 0.26     | 0.47  |
| Control Delay                     | 34.1     | 38.8      | 4.8          | 12.9       | 22.2        | 0.7        | 21.6  | 30.7     | 0.1   | 25.1  | 30.7     | 6.7   |
| Queue Delay                       | 0.0      | 0.0       | 0.0          | 0.0        | 0.0         | 0.0        | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Delay                       | 34.1     | 38.8      | 4.8          | 12.9       | 22.2        | 0.7        | 21.6  | 30.7     | 0.1   | 25.1  | 30.7     | 6.7   |
| LOS                               | С        | D         | Α            | В          | С           | А          | С     | С        | А     | С     | С        | ŀ     |
| Approach Delay                    |          | 34.0      |              |            | 16.0        |            |       | 23.7     |       |       | 16.4     |       |
| Approach LOS                      |          | С         |              |            | В           |            |       | С        |       |       | В        |       |
| Intersection Summary              |          |           |              |            |             |            |       |          |       |       |          |       |
| Cycle Length: 90                  |          |           |              |            |             |            |       |          |       |       |          |       |
| Actuated Cycle Length: 90         |          |           |              | Ť          |             |            |       |          |       |       |          |       |
| Offset: 0 (0%), Referenced to     | phase 2  | :EBTL an  | d 6:WBTI     | _, Start o | f Green     |            |       |          |       |       |          |       |
| Natural Cycle: 80                 |          |           |              |            |             |            |       |          |       |       |          |       |
| Control Type: Actuated-Coord      | linated  |           |              |            |             |            |       |          |       |       |          |       |
| Maximum v/c Ratio: 0.47           |          |           |              |            |             |            |       |          |       |       |          |       |
| Intersection Signal Delay: 21.4   | 4        |           |              | li         | ntersectio  | n LOS: C   |       |          |       |       |          |       |
| Intersection Capacity Utilization | on 50.5% | Ď         |              | l          | CU Level    | of Service | eΑ    |          |       |       |          |       |
| Analysis Period (min) 15          |          |           |              |            |             |            |       |          |       |       |          |       |


Splits and Phases: 8: McLaughlin Rd & Woodmen Rd

| Ø1                 | Ø2 (R) | <b>▲</b> ø3 | <b>↓</b> <sub>Ø4</sub> |
|--------------------|--------|-------------|------------------------|
| 14 s               | 37 s   | 14 s        | 25 s                   |
| <u></u> <i>Ø</i> 5 | ●      | Ø7          | 1 <sub>08</sub>        |
| 14 s               | 37 s   | 14 s        | 25 s                   |

### Timings 9: US 24 & Woodmen Rd

|                                                                                     | ≯            | -        | $\mathbf{r}$ | 1         | -          | •         | 1     | 1     | ۲     | ×     | Ŧ        | ~     |
|-------------------------------------------------------------------------------------|--------------|----------|--------------|-----------|------------|-----------|-------|-------|-------|-------|----------|-------|
| Lane Group                                                                          | EBL          | EBT      | EBR          | WBL       | WBT        | WBR       | NBL   | NBT   | NBR   | SBL   | SBT      | SBI   |
| Lane Configurations                                                                 | ٦<br>۲       | <b>†</b> | 1            | 1         | <u>†</u> † | 1         | ሻሻ    | 1     | 1     | ٦     | <b>†</b> | ĩ     |
| Traffic Volume (vph)                                                                | 203          | 35       | 168          | 5         | 25         | 11        | 153   | 221   | 5     | 6     | 536      | 36    |
| Future Volume (vph)                                                                 | 203          | 35       | 168          | 5         | 25         | 11        | 153   | 221   | 5     | 6     | 536      | 36    |
| Turn Type                                                                           | pm+pt        | NA       | Free         | pm+pt     | NA         | Free      | pm+pt | NA    | Free  | pm+pt | NA       | Fre   |
| Protected Phases                                                                    | 7            | 4        |              | 3         | 8          |           | 5     | 2     |       | 1     | 6        |       |
| Permitted Phases                                                                    | 4            |          | Free         | 8         |            | Free      | 2     |       | Free  | 6     |          | Fre   |
| Detector Phase                                                                      | 7            | 4        |              | 3         | 8          |           | 5     | 2     |       | 1     | 6        |       |
| Switch Phase                                                                        |              |          |              |           |            |           |       |       |       |       |          |       |
| Minimum Initial (s)                                                                 | 5.0          | 15.0     |              | 5.0       | 15.0       |           | 5.0   | 15.0  |       | 5.0   | 15.0     |       |
| Minimum Split (s)                                                                   | 10.0         | 23.0     |              | 10.0      | 23.0       |           | 10.0  | 23.0  |       | 10.0  | 23.0     |       |
| Total Split (s)                                                                     | 20.0         | 35.0     |              | 10.0      | 25.0       |           | 10.0  | 65.0  |       | 10.0  | 65.0     |       |
| Total Split (%)                                                                     | 16.7%        | 29.2%    |              | 8.3%      | 20.8%      |           | 8.3%  | 54.2% |       | 8.3%  | 54.2%    |       |
| Yellow Time (s)                                                                     | 3.0          | 3.0      |              | 3.0       | 3.0        |           | 3.0   | 3.0   |       | 3.0   | 3.0      |       |
| All-Red Time (s)                                                                    | 2.0          | 2.0      |              | 2.0       | 2.0        |           | 2.0   | 2.0   |       | 2.0   | 2.0      |       |
| Lost Time Adjust (s)                                                                | 0.0          | 0.0      |              | 0.0       | 0.0        |           | 0.0   | 0.0   |       | 0.0   | 0.0      |       |
| Total Lost Time (s)                                                                 | 5.0          | 5.0      |              | 5.0       | 5.0        |           | 5.0   | 5.0   |       | 5.0   | 5.0      |       |
| Lead/Lag                                                                            | Lead         | Lag      |              | Lead      | Lag        |           | Lead  | Lag   |       | Lead  | Lag      |       |
| Lead-Lag Optimize?                                                                  | Yes          | Yes      |              | Yes       | Yes        |           | Yes   | Yes   |       | Yes   | Yes      |       |
| Recall Mode                                                                         | None         | None     |              | None      | None       |           | None  | C-Max |       | None  | C-Max    |       |
| Act Effct Green (s)                                                                 | 27.0         | 25.0     | 120.0        | 14.0      | 15.0       | 120.0     | 82.6  | 80.8  | 120.0 | 76.2  | 70.5     | 120.0 |
| Actuated g/C Ratio                                                                  | 0.22         | 0.21     | 1.00         | 0.12      | 0.12       | 1.00      | 0.69  | 0.67  | 1.00  | 0.64  | 0.59     | 1.0   |
| v/c Ratio                                                                           | 0.69         | 0.10     | 0.11         | 0.03      | 0.06       | 0.01      | 0.19  | 0.19  | 0.00  | 0.01  | 0.53     | 0.2   |
| Control Delay                                                                       | 51.4         | 36.5     | 0.1          | 31.6      | 46.8       | 0.0       | 7.9   | 10.1  | 0.0   | 8.8   | 19.3     | 0.4   |
| Queue Delay                                                                         | 0.0          | 0.0      | 0.0          | 0.0       | 0.0        | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Delay                                                                         | 51.4         | 36.5     | 0.1          | 31.6      | 46.8       | 0.0       | 7.9   | 10.1  | 0.0   | 8.8   | 19.3     | 0.4   |
| LOS                                                                                 | D            | D        | Α            | С         | D          | А         | А     | В     | А     | А     | В        | ŀ     |
| Approach Delay                                                                      |              | 28.9     |              |           | 32.3       |           |       | 9.1   |       |       | 11.6     |       |
| Approach LOS                                                                        |              | С        |              |           | C          |           |       | А     |       |       | В        |       |
| Intersection Summary                                                                |              |          |              |           |            |           |       |       |       |       |          |       |
| Cycle Length: 120                                                                   |              |          |              |           |            |           |       |       |       |       |          |       |
| Actuated Cycle Length: 12                                                           | 20           |          |              |           |            |           |       |       |       |       |          |       |
| Offset: 63 (53%), Referen                                                           |              | 2:NBTL   | and 6:SE     | TL, Start | of Green   |           |       |       |       |       |          |       |
| Natural Cycle: 70                                                                   |              |          |              |           |            |           |       |       |       |       |          |       |
| Control Type: Actuated-Co                                                           | oordinated   |          |              |           |            |           |       |       |       |       |          |       |
| Maximum v/c Ratio: 0.69                                                             |              |          |              |           |            |           |       |       |       |       |          |       |
| Intersection Signal Delay:                                                          | 15.6         |          |              | lı        | ntersectio | n LOS: B  |       |       |       |       |          |       |
| Intersection Capacity Utiliz                                                        | zation 63.0% | )        |              | l         | CU Level   | of Servic | e B   |       |       |       |          |       |
| Analysis Period (min) 15                                                            |              |          |              |           |            |           |       |       |       |       |          |       |
| Intersection Capacity Utili:<br>Analysis Period (min) 15<br>Splits and Phases: 9:11 |              |          |              | 1         | CU Level   | of Servic | e B   |       |       |       |          |       |

Splits and Phases: 9: US 24 & Woodmen Rd



## Timings 10: US 24 & Meridian Rd

|                                |            | -          | •        | - 🗲       | -           | •          | 1     | T     | 1     | - >   | ŧ        | -     |
|--------------------------------|------------|------------|----------|-----------|-------------|------------|-------|-------|-------|-------|----------|-------|
| Lane Group                     | EBL        | EBT        | EBR      | WBL       | WBT         | WBR        | NBL   | NBT   | NBR   | SBL   | SBT      | SBF   |
| Lane Configurations            | ሻ          | <u>††</u>  | 1        | ٦         | <u></u>     | 1          | ሻሻ    | •     | 1     | ሻ     | <b>†</b> | 1     |
| Traffic Volume (vph)           | 7          | 392        | 728      | 32        | 192         | 24         | 206   | 326   | 18    | 69    | 659      | 4     |
| Future Volume (vph)            | 7          | 392        | 728      | 32        | 192         | 24         | 206   | 326   | 18    | 69    | 659      | 1     |
| Turn Type                      | pm+pt      | NA         | Free     | pm+pt     | NA          | Free       | Prot  | NA    | Perm  | pm+pt | NA       | Pern  |
| Protected Phases               | 5          | 2          |          | 1         | 6           |            | 3     | 8     |       | 7     | 4        |       |
| Permitted Phases               | 2          |            | Free     | 6         |             | Free       |       |       | 8     | 4     |          | 4     |
| Detector Phase                 | 5          | 2          |          | 1         | 6           |            | 3     | 8     | 8     | 7     | 4        | 4     |
| Switch Phase                   |            |            |          |           |             |            |       |       |       |       |          |       |
| Minimum Initial (s)            | 5.0        | 5.0        |          | 5.0       | 5.0         |            | 5.0   | 5.0   | 5.0   | 5.0   | 5.0      | 5.0   |
| Minimum Split (s)              | 11.0       | 20.0       |          | 11.0      | 20.0        |            | 11.0  | 20.0  | 20.0  | 11.0  | 20.0     | 20.0  |
| Total Split (s)                | 11.0       | 20.0       |          | 11.0      | 20.0        |            | 15.0  | 47.0  | 47.0  | 12.0  | 44.0     | 44.(  |
| Total Split (%)                | 12.2%      | 22.2%      |          | 12.2%     | 22.2%       |            | 16.7% | 52.2% | 52.2% | 13.3% | 48.9%    | 48.9% |
| Yellow Time (s)                | 3.0        | 5.0        |          | 3.0       | 5.0         |            | 3.0   | 4.5   | 4.5   | 3.0   | 4.5      | 4.5   |
| All-Red Time (s)               | 3.0        | 2.0        |          | 3.0       | 2.0         |            | 3.0   | 2.0   | 2.0   | 3.0   | 2.0      | 2.0   |
| Lost Time Adjust (s)           | 0.0        | 0.0        |          | 0.0       | 0.0         |            | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Lost Time (s)            | 6.0        | 7.0        |          | 6.0       | 7.0         |            | 6.0   | 6.5   | 6.5   | 6.0   | 6.5      | 6.5   |
| Lead/Lag                       | Lead       | Lag        |          | Lead      | Lag         |            | Lead  | Lag   | Lag   | Lead  | Lag      | Lag   |
| Lead-Lag Optimize?             | Yes        | Yes        |          | Yes       | Yes         |            | Yes   | Yes   | Yes   | Yes   | Yes      | Yes   |
| Recall Mode                    | None       | C-Max      |          | None      | C-Max       |            | None  | None  | None  | None  | None     | None  |
| Act Effct Green (s)            | 23.8       | 19.8       | 90.0     | 26.2      | 24.2        | 90.0       | 8.8   | 40.5  | 40.5  | 41.8  | 35.4     | 35.4  |
| Actuated g/C Ratio             | 0.26       | 0.22       | 1.00     | 0.29      | 0.27        | 1.00       | 0.10  | 0.45  | 0.45  | 0.46  | 0.39     | 0.39  |
| v/c Ratio                      | 0.02       | 0.51       | 0.47     | 0.12      | 0.21        | 0.02       | 0.63  | 0.40  | 0.02  | 0.13  | 0.92     | 0.00  |
| Control Delay                  | 26.4       | 35.6       | 2.0      | 25.1      | 28.5        | 0.0        | 48.0  | 18.5  | 0.1   | 9.2   | 45.0     | 0.0   |
| Queue Delay                    | 0.0        | 0.0        | 0.0      | 0.0       | 0.0         | 0.0        | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Delay                    | 26.4       | 35.6       | 2.0      | 25.1      | 28.5        | 0.0        | 48.0  | 18.5  | 0.1   | 9.2   | 45.0     | 0.0   |
| LOS                            | С          | D          | Α        | С         | С           | А          | D     | В     | А     | А     | D        | ŀ     |
| Approach Delay                 |            | 13.8       |          |           | 25.4        |            |       | 28.9  |       |       | 41.5     |       |
| Approach LOS                   |            | В          |          |           | C           |            |       | С     |       |       | D        |       |
| Intersection Summary           |            |            |          |           |             |            |       |       |       |       |          |       |
| Cycle Length: 90               |            |            |          |           |             |            |       |       |       |       |          |       |
| Actuated Cycle Length: 90      |            |            |          | Ť.        |             |            |       |       |       |       |          |       |
| Offset: 71 (79%), Reference    | d to phase | e 2:EBTL a | and 6:WE | BTL, Star | t of FDW of | or yellow  |       |       |       |       |          |       |
| Natural Cycle: 80              |            |            |          |           |             |            |       |       |       |       |          |       |
| Control Type: Actuated-Cool    | rdinated   |            |          |           |             |            |       |       |       |       |          |       |
| Maximum v/c Ratio: 0.92        |            |            |          |           |             |            |       |       |       |       |          |       |
| Intersection Signal Delay: 25  | 5.6        |            |          | l         | ntersectior | LOS: C     |       |       |       |       |          |       |
| Intersection Capacity Utilizat |            | )          |          | [(        | CU Level o  | of Service | e D   |       |       |       |          |       |
| Analysis Period (min) 15       |            |            |          |           |             |            |       |       |       |       |          |       |

Splits and Phases: 10: US 24 & Meridian Rd

| <b>√</b> Ø1 | 📌 02 (R)    | <b>▲</b> Ø3 | <b>↓</b> Ø4     |
|-------------|-------------|-------------|-----------------|
| 11 s        | 20 s        | 15 s        | 44 s            |
|             | €<br>Ø6 (R) | Ø7          | <b>≜</b><br>™øs |
| 11 s        | 20 s        | 12 s 4      | 7s 🛛 🚽          |

0

#### Intersection

| Movement               | EBL   | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|-------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations    |       |      | 1    |      |      | 1    |      | 1    | 1    |      | 1    | 1    |  |
| Traffic Vol, veh/h     | 0     | 0    | 25   | 0    | 0    | 51   | 0    | 328  | 29   | 0    | 705  | 4    |  |
| Future Vol, veh/h      | 0     | 0    | 25   | 0    | 0    | 51   | 0    | 328  | 29   | 0    | 705  | 4    |  |
| Conflicting Peds, #/hr | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Stop  | Stop | Stop | Stop | Stop | Stop | Free | Free | Free | Free | Free | Free |  |
| RT Channelized         | -     | -    | Free | -    | -    | Free | -    | -    | None | -    | -    | None |  |
| Storage Length         | -     | -    | 0    | -    | -    | 0    | -    | -    | 400  | -    | -    | 400  |  |
| Veh in Median Storage  | , # - | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -     | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 91    | 91   | 91   | 91   | 91   | 91   | 91   | 91   | 91   | 91   | 91   | 91   |  |
| Heavy Vehicles, %      | 2     | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 0     | 0    | 27   | 0    | 0    | 56   | 0    | 360  | 32   | 0    | 775  | 4    |  |
|                        |       |      |      |      |      |      |      |      |      |      |      |      |  |

| Major/Minor          | Minor2 |     | М     | inor1   |     | Ν   | /lajor1 |   | М | ajor2 |   |   |
|----------------------|--------|-----|-------|---------|-----|-----|---------|---|---|-------|---|---|
| Conflicting Flow All | -      | -   | -     | -       | -   | -   | -       | 0 | 0 | -     | - | 0 |
| Stage 1              | -      | -   | -     | -       | -   | -   | -       | - |   | -     | - | - |
| Stage 2              | -      | -   | -     | -       | -   | -   | -       | - | - | -     | - | - |
| Critical Hdwy        | -      | -   | -     | -       | -   | -   | -       | - | - | -     | - | - |
| Critical Hdwy Stg 1  | -      | -   | -     | -       | -   | -   | -       | - | - | -     | - | - |
| Critical Hdwy Stg 2  | -      | -   | -     | -       | -   | -   | -       | - | - | -     | - | - |
| Follow-up Hdwy       | -      | -   | -     | -       | -   | -   |         | - | - | -     | - | - |
| Pot Cap-1 Maneuver   | 0      | 0   | 0     | 0       | 0   | 0   | 0       | - | - | 0     | - | - |
| Stage 1              | 0      | 0   | 0     | 0       | 0   | 0   | 0       | - | - | 0     | - | - |
| Stage 2              | 0      | 0   | 0     | 0       | 0   | 0   | 0       | - | - | 0     | - | - |
| Platoon blocked, %   |        |     |       |         |     |     |         | - | - |       | - | - |
| Mov Cap-1 Maneuver   | r -    | -   | -     | -       | -   | -   | -       | - | - | -     | - | - |
| Mov Cap-2 Maneuver   | r -    | -   | -     | -       | -   | -   | -       | - | - | -     | - | - |
| Stage 1              | -      | -   | -     | -       | -   | -   | -       | - | - | -     | - | - |
| Stage 2              | -      | -   | -     | -       | -   | -   | -       | - | - | -     | - | - |
|                      |        |     |       |         |     |     |         |   |   |       |   |   |
| Approach             | EB     |     |       | WB      |     |     | NB      |   |   | SB    |   |   |
| HCM Control Delay, s | s 0    |     |       | 0       |     |     | 0       |   |   | 0     |   |   |
| HCM LOS              | А      |     |       | А       |     |     |         |   |   |       |   |   |
|                      |        |     |       |         |     |     |         |   |   |       |   |   |
| Minor Lane/Major Mv  | mt     | NBT | NBR E | 3Ln1WBI | Ln1 | SBT | SBR     |   |   |       |   |   |
| Capacity (veh/h)     |        | -   | -     | -       | _   | -   | -       |   |   |       |   |   |

| Capacity (ven/n)      | - | - | - | - | - | - |  |  |  |
|-----------------------|---|---|---|---|---|---|--|--|--|
| HCM Lane V/C Ratio    | - | - | - | - | - | - |  |  |  |
| HCM Control Delay (s) | - | - | 0 | 0 | - | - |  |  |  |
| HCM Lane LOS          | - | - | А | А | - | - |  |  |  |
| HCM 95th %tile Q(veh) | - | - | - | - | - | - |  |  |  |

# Timings 7: Meridian Rd & Woodmen Rd

|                                       | ٨            | -            | $\mathbf{F}$ | 4            | +            | •           | 1          | 1            | 1           | 1            | ţ            | ~          |
|---------------------------------------|--------------|--------------|--------------|--------------|--------------|-------------|------------|--------------|-------------|--------------|--------------|------------|
| Lane Group                            | EBL          | EBT          | EBR          | WBL          | WBT          | WBR         | NBL        | NBT          | NBR         | SBL          | SBT          | SBR        |
| Lane Configurations                   | ሻሻ           | <b>^</b>     | 1            | ካካ           | - <b>†</b> † | 1           | ሻሻ         | <b>^</b>     | 1           | ካካ           | <u>^</u>     | 1          |
| Traffic Volume (vph)                  | 638          | 541          | 134          | 116          | 511          | 64          | 243        | 568          | 79          | 119          | 435          | 366        |
| Future Volume (vph)                   | 638          | 541          | 134          | 116          | 511          | 64          | 243        | 568          | 79          | 119          | 435          | 366        |
| Turn Type                             | Prot         | NA           | Free         | Prot         | NA           | Perm        | Prot       | NA           | Free        | Prot         | NA           | Free       |
| Protected Phases                      | 7            | 4            |              | 3            | 8            |             | 5          | 2            |             | 1            | 6            |            |
| Permitted Phases                      |              |              | Free         |              |              | 8           |            |              | Free        |              |              | Free       |
| Detector Phase                        | 7            | 4            |              | 3            | 8            | 8           | 5          | 2            |             | 1            | 6            |            |
| Switch Phase                          |              |              |              |              |              |             |            |              |             |              |              |            |
| Minimum Initial (s)                   | 5.0          | 15.0         |              | 5.0          | 15.0         | 15.0        | 5.0        | 15.0         |             | 5.0          | 15.0         |            |
| Minimum Split (s)                     | 12.5         | 22.0         |              | 12.5         | 22.0         | 22.0        | 13.5       | 22.0         |             | 13.5         | 22.0         |            |
| Total Split (s)                       | 25.0         | 33.0         |              | 15.0         | 23.0         | 23.0        | 18.0       | 27.0         |             | 15.0         | 24.0         |            |
| Total Split (%)                       | 27.8%        | 36.7%        |              | 16.7%        | 25.6%        | 25.6%       | 20.0%      | 30.0%        |             | 16.7%        | 26.7%        |            |
| Yellow Time (s)                       | 4.0          | 5.0          |              | 4.0          | 5.0          | 5.0         | 5.0        | 5.0          |             | 5.0          | 5.0          |            |
| All-Red Time (s)                      | 3.5          | 2.0          |              | 3.5          | 2.0          | 2.0         | 3.5        | 2.0          |             | 3.5          | 2.0          |            |
| Lost Time Adjust (s)                  | 0.0          | 0.0          |              | 0.0          | 0.0          | 0.0         | 0.0        | 0.0          |             | 0.0          | 0.0          | _          |
| Total Lost Time (s)                   | 7.5          | 7.0          |              | 7.5          | 7.0          | 7.0         | 8.5        | 7.0          |             | 8.5          | 7.0          |            |
| Lead/Lag                              | Lead         | Lag          |              | Lead         | Lag          | Lag         | Lead       | Lag          |             | Lead         | Lag          | _          |
| Lead-Lag Optimize?                    | Yes          | Yes          |              | Yes          | Yes          | Yes         | Yes        | Yes          |             | Yes          | Yes          |            |
| Recall Mode                           | None         | None         | 00.0         | None         | None         | None        | None       | C-Max        | 00.0        | None         | C-Max        | 00.0       |
| Act Effct Green (s)                   | 17.5         | 26.0         | 90.0         | 7.3          | 15.8         | 15.8        | 9.3        | 20.2         | 90.0        | 6.5          | 17.4         | 90.0       |
| Actuated g/C Ratio                    | 0.19         | 0.29         | 1.00         | 0.08         | 0.18         | 0.18        | 0.10       | 0.22         | 1.00        | 0.07         | 0.19         | 1.00       |
| v/c Ratio                             | 1.00<br>71.9 | 0.55<br>29.5 | 0.09<br>0.1  | 0.44<br>65.0 | 0.86         | 0.12<br>1.3 | 0.71 62.9  | 0.74<br>21.3 | 0.05<br>0.1 | 0.50<br>47.8 | 0.66<br>39.2 | 0.24       |
| Control Delay                         | 0.0          | 29.5<br>0.0  | 0.1          | 0.0          | 44.1<br>0.0  | 0.0         | 02.9       | 21.3         | 0.1         | 47.8         | 39.2<br>0.0  | 0.4<br>0.0 |
| Queue Delay                           |              |              | 0.0          |              | 44.1         |             |            |              | 0.0         | 0.0<br>47.8  | 0.0<br>39.2  | 0.0        |
| Total Delay<br>LOS                    | 71.9<br>E    | 29.5<br>C    | 0.1<br>A     | 65.0<br>E    | 44.1<br>D    | 1.3<br>A    | 62.9<br>E  | 21.3<br>C    | 0.1<br>A    | 47.8<br>D    | 39.2<br>D    | 0.4<br>A   |
| Approach Delay                        | E            | 47.1         | A            |              | 43.6         | A           | E          | 30.8         | A           | U            | 24.9         | A          |
| Approach LOS                          |              | 47.1<br>D    |              |              | 43.0<br>D    |             |            | 30.8<br>C    |             |              | 24.9<br>C    |            |
|                                       |              |              |              |              |              |             |            | U            |             |              | U            |            |
| Intersection Summary Cycle Length: 90 |              |              |              |              |              |             |            |              |             |              |              |            |
| Actuated Cycle Length: 90             |              |              |              |              |              |             |            |              |             |              |              |            |
| Offset: 0 (0%), Referenced            | to phase 2   | NRT and      | 6.SBT        | start of FI  | )W or vel    | low Mast    | or Intorse | oction       |             |              |              |            |
| Natural Cycle: 90                     | to pridoe z  |              | 0.001, 0     |              |              | iow, mast   |            |              |             |              |              |            |
| Control Type: Actuated-Cod            | ordinated    |              |              |              |              |             |            |              |             |              |              |            |
| Maximum v/c Ratio: 1.00               | oraniatou    |              |              |              |              |             |            |              |             |              |              |            |
| Intersection Signal Delay: 3          | 37.3         |              |              | Ir           | ntersectio   | n I OS · D  |            |              |             |              |              |            |
| Intersection Capacity Utiliza         |              |              |              |              | CU Level     |             |            |              |             |              |              |            |
| Analysis Period (min) 15              |              | ,            |              | N            |              | 01 001 1100 |            |              |             |              |              |            |
|                                       |              |              |              |              |              |             |            |              |             |              |              |            |

Splits and Phases: 7: Meridian Rd & Woodmen Rd

| Ø1   | 🕇 Ø2 (R) 🛡       | <b>√</b> Ø3 | <b>→</b> Ø4                 |  |
|------|------------------|-------------|-----------------------------|--|
| 15 s | 27 s             | 15 s        | 33 s                        |  |
| ▲ ø5 | ↓ Ø6 <b>(</b> R) | ▶ Ø1        | <b>4</b> <sup>⊕</sup><br>Ø8 |  |
| 18 s | 24 s             | 25 s        | 23 s                        |  |

### Timings 8: McLaughlin Rd & Woodmen Rd

|                               | ۶          | -            | $\mathbf{F}$ | *          | -            | *        | 1     | 1        | 1     | 1     | ţ        | ~     |
|-------------------------------|------------|--------------|--------------|------------|--------------|----------|-------|----------|-------|-------|----------|-------|
| Lane Group                    | EBL        | EBT          | EBR          | WBL        | WBT          | WBR      | NBL   | NBT      | NBR   | SBL   | SBT      | SBR   |
| Lane Configurations           | ሻ          | - <b>†</b> † | 1            | ሻ          | - <b>†</b> † | 1        | ሻ     | <b>↑</b> | 1     | ሻ     | <b>↑</b> | 1     |
| Traffic Volume (vph)          | 296        | 346          | 97           | 45         | 411          | 266      | 86    | 165      | 87    | 185   | 113      | 194   |
| Future Volume (vph)           | 296        | 346          | 97           | 45         | 411          | 266      | 86    | 165      | 87    | 185   | 113      | 194   |
| Turn Type                     | pm+pt      | NA           | Perm         | pm+pt      | NA           | Perm     | pm+pt | NA       | Perm  | pm+pt | NA       | Perm  |
| Protected Phases              | 5          | 2            |              | 1          | 6            |          | 3     | 8        |       | 7     | 4        |       |
| Permitted Phases              | 2          |              | 2            | 6          |              | 6        | 8     |          | 8     | 4     |          | 4     |
| Detector Phase                | 5          | 2            | 2            | 1          | 6            | 6        | 3     | 8        | 8     | 7     | 4        | 4     |
| Switch Phase                  |            |              |              |            |              |          |       |          |       |       |          |       |
| Minimum Initial (s)           | 5.0        | 5.0          | 5.0          | 5.0        | 5.0          | 5.0      | 5.0   | 5.0      | 5.0   | 5.0   | 5.0      | 5.0   |
| Minimum Split (s)             | 12.5       | 25.0         | 25.0         | 12.5       | 25.0         | 25.0     | 13.5  | 25.0     | 25.0  | 13.5  | 25.0     | 25.0  |
| Total Split (s)               | 14.0       | 37.0         | 37.0         | 14.0       | 37.0         | 37.0     | 14.0  | 25.0     | 25.0  | 14.0  | 25.0     | 25.0  |
| Total Split (%)               | 15.6%      | 41.1%        | 41.1%        | 15.6%      | 41.1%        | 41.1%    | 15.6% | 27.8%    | 27.8% | 15.6% | 27.8%    | 27.8% |
| Yellow Time (s)               | 4.0        | 5.0          | 5.0          | 4.0        | 5.0          | 5.0      | 5.0   | 5.0      | 5.0   | 5.0   | 5.0      | 5.0   |
| All-Red Time (s)              | 3.5        | 2.0          | 2.0          | 3.5        | 2.0          | 2.0      | 3.5   | 2.0      | 2.0   | 3.5   | 2.0      | 2.0   |
| Lost Time Adjust (s)          | 0.0        | 0.0          | 0.0          | 0.0        | 0.0          | 0.0      | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Lost Time (s)           | 7.5        | 7.0          | 7.0          | 7.5        | 7.0          | 7.0      | 8.5   | 7.0      | 7.0   | 8.5   | 7.0      | 7.0   |
| Lead/Lag                      | Lead       | Lag          | Lag          | Lead       | Lag          | Lag      | Lead  | Lag      | Lag   | Lead  | Lag      | Lag   |
| Lead-Lag Optimize?            | Yes        | Yes          | Yes          | Yes        | Yes          | Yes      | Yes   | Yes      | Yes   | Yes   | Yes      | Yes   |
| Recall Mode                   | None       | C-Max        | C-Max        | None       | C-Max        | C-Max    | None  | Max      | Max   | None  | Max      | Max   |
| Act Effct Green (s)           | 39.0       | 35.6         | 35.6         | 35.7       | 30.0         | 30.0     | 22.0  | 18.0     | 18.0  | 23.7  | 20.8     | 20.8  |
| Actuated g/C Ratio            | 0.43       | 0.40         | 0.40         | 0.40       | 0.33         | 0.33     | 0.24  | 0.20     | 0.20  | 0.26  | 0.23     | 0.23  |
| v/c Ratio                     | 0.73       | 0.26         | 0.13         | 0.10       | 0.36         | 0.39     | 0.26  | 0.46     | 0.18  | 0.57  | 0.27     | 0.36  |
| Control Delay                 | 48.7       | 38.8         | 8.7          | 13.3       | 23.8         | 4.6      | 23.6  | 36.3     | 0.8   | 32.6  | 32.3     | 4.2   |
| Queue Delay                   | 0.0        | 0.0          | 0.0          | 0.0        | 0.0          | 0.0      | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Delay                   | 48.7       | 38.8         | 8.7          | 13.3       | 23.8         | 4.6      | 23.6  | 36.3     | 0.8   | 32.6  | 32.3     | 4.2   |
| LOS                           | D          | D            | А            | В          | С            | А        | С     | D        | А     | С     | С        | А     |
| Approach Delay                |            | 38.8         |              |            | 16.1         |          |       | 23.9     |       |       | 21.3     |       |
| Approach LOS                  |            | D            |              |            | В            |          |       | С        |       |       | С        |       |
| Intersection Summary          |            |              |              |            |              |          |       |          |       |       |          |       |
| Cycle Length: 90              |            |              |              |            |              |          |       |          |       |       |          |       |
| Actuated Cycle Length: 90     |            |              |              |            |              |          |       |          |       |       |          |       |
| Offset: 0 (0%), Referenced    | to phase 2 | :EBTL an     | d 6:WBTI     | L. Start o | f Green      |          |       |          |       |       |          |       |
| Natural Cycle: 80             |            |              |              | ,          |              |          |       |          |       |       |          |       |
| Control Type: Actuated-Coc    | ordinated  |              |              |            |              |          |       |          |       |       |          |       |
| Maximum v/c Ratio: 0.73       |            |              |              |            |              |          |       |          |       |       |          |       |
| Intersection Signal Delay: 2  | 5.7        |              |              | l          | ntersectio   | n LOS: C |       |          |       |       |          |       |
| Intersection Capacity Utiliza |            | ,<br>)       |              |            | CU Level     |          |       |          |       |       |          |       |
| Analysis Period (min) 15      |            | -<br>        |              |            |              |          |       |          |       |       |          |       |
|                               |            |              |              |            |              |          |       |          |       |       |          |       |

Splits and Phases: 8: McLaughlin Rd & Woodmen Rd

| Ø1   | Ø2 (R)        | <b>1</b> Ø3 | <b>↓</b> <sub>Ø4</sub> |
|------|---------------|-------------|------------------------|
| 14 s | 37 s          | 14 s        | 25 s                   |
|      | ●<br>● Ø6 (R) | Ø7          | <b>√</b> Ø8            |
| 14 s | 37 s          | 14 s        | 25 s                   |

# Timings 9: US 24 & Woodmen Rd

|                              | ۶            | <b>→</b> | $\mathbf{r}$ | 4         | -            | •         | •     | 1     | 1     | 5     | Ļ     | ~               |
|------------------------------|--------------|----------|--------------|-----------|--------------|-----------|-------|-------|-------|-------|-------|-----------------|
| Lane Group                   | EBL          | EBT      | EBR          | WBL       | WBT          | WBR       | NBL   | NBT   | NBR   | SBL   | SBT   | SBF             |
| Lane Configurations          | 1            | •        | 1            | ሻ         | - <b>†</b> † | 1         | ሻሻ    | •     | 1     | ሻ     | •     | 1               |
| Traffic Volume (vph)         | 433          | 65       | 120          | 5         | 65           | 4         | 346   | 507   | 5     | 2     | 331   | 311             |
| Future Volume (vph)          | 433          | 65       | 120          | 5         | 65           | 4         | 346   | 507   | 5     | 2     | 331   | 31 <sup>-</sup> |
| Turn Type                    | pm+pt        | NA       | Free         | pm+pt     | NA           | Free      | pm+pt | NA    | Free  | pm+pt | NA    | Free            |
| Protected Phases             | 7            | 4        |              | 3         | 8            |           | 5     | 2     |       | 1     | 6     |                 |
| Permitted Phases             | 4            |          | Free         | 8         |              | Free      | 2     |       | Free  | 6     |       | Free            |
| Detector Phase               | 7            | 4        |              | 3         | 8            |           | 5     | 2     |       | 1     | 6     |                 |
| Switch Phase                 |              |          |              |           |              |           |       |       |       |       |       |                 |
| Minimum Initial (s)          | 5.0          | 15.0     |              | 5.0       | 15.0         |           | 5.0   | 15.0  |       | 5.0   | 15.0  |                 |
| Minimum Split (s)            | 10.0         | 23.0     |              | 10.0      | 23.0         |           | 10.0  | 23.0  |       | 10.0  | 23.0  |                 |
| Total Split (s)              | 31.0         | 46.0     |              | 10.0      | 25.0         |           | 15.0  | 54.0  |       | 10.0  | 49.0  |                 |
| Total Split (%)              | 25.8%        | 38.3%    |              | 8.3%      | 20.8%        |           | 12.5% | 45.0% |       | 8.3%  | 40.8% |                 |
| Yellow Time (s)              | 3.0          | 3.0      |              | 3.0       | 3.0          |           | 3.0   | 3.0   |       | 3.0   | 3.0   |                 |
| All-Red Time (s)             | 2.0          | 2.0      |              | 2.0       | 2.0          |           | 2.0   | 2.0   |       | 2.0   | 2.0   |                 |
| Lost Time Adjust (s)         | 0.0          | 0.0      |              | 0.0       | 0.0          |           | 0.0   | 0.0   |       | 0.0   | 0.0   |                 |
| Total Lost Time (s)          | 5.0          | 5.0      |              | 5.0       | 5.0          |           | 5.0   | 5.0   |       | 5.0   | 5.0   |                 |
| Lead/Lag                     | Lead         | Lag      |              | Lead      | Lag          |           | Lead  | Lag   |       | Lead  | Lag   |                 |
| Lead-Lag Optimize?           | Yes          | Yes      |              | Yes       | Yes          |           | Yes   | Yes   |       | Yes   | Yes   |                 |
| Recall Mode                  | None         | None     |              | None      | None         |           | None  | C-Max |       | None  | C-Max |                 |
| Act Effct Green (s)          | 42.0         | 40.0     | 120.0        | 17.0      | 15.0         | 120.0     | 68.0  | 65.8  | 120.0 | 56.1  | 50.5  | 120.0           |
| Actuated g/C Ratio           | 0.35         | 0.33     | 1.00         | 0.14      | 0.12         | 1.00      | 0.57  | 0.55  | 1.00  | 0.47  | 0.42  | 1.00            |
| v/c Ratio                    | 0.88         | 0.11     | 0.08         | 0.02      | 0.16         | 0.00      | 0.45  | 0.58  | 0.00  | 0.01  | 0.49  | 0.23            |
| Control Delay                | 52.6         | 27.5     | 0.1          | 26.0      | 48.0         | 0.0       | 15.5  | 23.2  | 0.0   | 14.0  | 30.2  | 0.3             |
| Queue Delay                  | 0.0          | 0.0      | 0.0          | 0.0       | 0.0          | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0             |
| Total Delay                  | 52.6         | 27.5     | 0.1          | 26.0      | 48.0         | 0.0       | 15.5  | 23.2  | 0.0   | 14.0  | 30.2  | 0.3             |
| LOS                          | D            | С        | Α            | С         | D            | А         | В     | С     | А     | В     | С     | ŀ               |
| Approach Delay               |              | 39.7     |              |           | 44.2         |           |       | 19.9  |       |       | 15.7  |                 |
| Approach LOS                 |              | D        |              |           | D            |           |       | В     |       |       | В     |                 |
| Intersection Summary         |              |          |              |           |              |           |       |       |       |       |       |                 |
| Cycle Length: 120            |              |          |              |           |              |           |       |       |       |       |       |                 |
| Actuated Cycle Length: 12    | 20           |          |              | × ·       |              |           |       |       |       |       |       |                 |
| Offset: 63 (53%), Reference  | ced to phase | 2:NBTL   | and 6:SB     | TL, Start | of Green     |           |       |       |       |       |       |                 |
| Natural Cycle: 80            |              |          |              |           |              |           |       |       |       |       |       |                 |
| Control Type: Actuated-Co    | pordinated   |          |              |           |              |           |       |       |       |       |       |                 |
| Maximum v/c Ratio: 0.88      |              |          |              |           |              |           |       |       |       |       |       |                 |
| Intersection Signal Delay:   | 24.6         |          |              |           | ntersectio   |           |       |       |       |       |       |                 |
| Intersection Capacity Utiliz | zation 74.0% | )        |              | 10        | CU Level     | of Servic | e D   |       |       |       |       |                 |
| Analysis Period (min) 15     |              |          |              |           |              |           |       |       |       |       |       |                 |
| Splits and Phases: 9: U      | S 24 & Woo   | dmen Rd  |              |           |              |           |       |       |       |       |       |                 |

Splits and Phases: 9: US 24 & Woodmen Rd

| ▶ø1 ▲ ₩Ø2 (R)   | <b>√</b> Ø3 →Ø4 |             |
|-----------------|-----------------|-------------|
| 10 s 54 s       | 10 s 46 s       |             |
| ▲ Ø5 🖡 🕶 Ø6 (R) | ▶ 07            | <b>₹</b> Ø8 |
| 15 s 49 s       | 31 s            | 25 s        |

# Timings 10: US 24 & Meridian Rd

|                              | ٦           | -        | $\mathbf{r}$ | •         | -           | *         | 1     | 1        | 1     | 5     | ţ        | ~     |
|------------------------------|-------------|----------|--------------|-----------|-------------|-----------|-------|----------|-------|-------|----------|-------|
| Lane Group                   | EBL         | EBT      | EBR          | WBL       | WBT         | WBR       | NBL   | NBT      | NBR   | SBL   | SBT      | SBR   |
| Lane Configurations          | ሻ           | <u></u>  | 1            | ሻ         | <u></u>     | 1         | ሻሻ    | <b>↑</b> | 1     | ሻ     | <b>†</b> | 7     |
| Traffic Volume (vph)         | 19          | 259      | 307          | 32        | 374         | 48        | 608   | 743      | 12    | 89    | 407      | 7     |
| Future Volume (vph)          | 19          | 259      | 307          | 32        | 374         | 48        | 608   | 743      | 12    | 89    | 407      | 7     |
| Turn Type                    | pm+pt       | NA       | Free         | pm+pt     | NA          | Free      | Prot  | NA       | Perm  | pm+pt | NA       | Perm  |
| Protected Phases             | 5           | 2        |              | 1         | 6           |           | 3     | 8        |       | 7     | 4        |       |
| Permitted Phases             | 2           |          | Free         | 6         |             | Free      |       |          | 8     | 4     |          | 4     |
| Detector Phase               | 5           | 2        |              | 1         | 6           |           | 3     | 8        | 8     | 7     | 4        | 4     |
| Switch Phase                 |             |          |              |           |             |           |       |          |       |       |          |       |
| Minimum Initial (s)          | 5.0         | 5.0      |              | 5.0       | 5.0         |           | 5.0   | 5.0      | 5.0   | 5.0   | 5.0      | 5.0   |
| Minimum Split (s)            | 11.0        | 20.0     |              | 11.0      | 20.0        |           | 11.0  | 20.0     | 20.0  | 11.0  | 20.0     | 20.0  |
| Total Split (s)              | 11.0        | 20.0     |              | 11.0      | 20.0        |           | 25.0  | 47.0     | 47.0  | 12.0  | 34.0     | 34.0  |
| Total Split (%)              | 12.2%       | 22.2%    |              | 12.2%     | 22.2%       |           | 27.8% | 52.2%    | 52.2% | 13.3% | 37.8%    | 37.8% |
| Yellow Time (s)              | 3.0         | 5.0      |              | 3.0       | 5.0         |           | 3.0   | 4.5      | 4.5   | 3.0   | 4.5      | 4.5   |
| All-Red Time (s)             | 3.0         | 2.0      |              | 3.0       | 2.0         |           | 3.0   | 2.0      | 2.0   | 3.0   | 2.0      | 2.0   |
| Lost Time Adjust (s)         | 0.0         | 0.0      |              | 0.0       | 0.0         |           | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Lost Time (s)          | 6.0         | 7.0      |              | 6.0       | 7.0         |           | 6.0   | 6.5      | 6.5   | 6.0   | 6.5      | 6.5   |
| Lead/Lag                     | Lead        | Lag      |              | Lead      | Lag         |           | Lead  | Lag      | Lag   | Lead  | Lag      | Lag   |
| Lead-Lag Optimize?           | Yes         | Yes      |              | Yes       | Yes         |           | Yes   | Yes      | Yes   | Yes   | Yes      | Yes   |
| Recall Mode                  | None        | C-Max    |              | None      | C-Max       |           | None  | None     | None  | None  | None     | None  |
| Act Effct Green (s)          | 23.4        | 19.4     | 90.0         | 24.6      | 21.6        | 90.0      | 18.8  | 40.9     | 40.9  | 32.2  | 25.7     | 25.7  |
| Actuated g/C Ratio           | 0.26        | 0.22     | 1.00         | 0.27      | 0.24        | 1.00      | 0.21  | 0.45     | 0.45  | 0.36  | 0.29     | 0.29  |
| v/c Ratio                    | 0.07        | 0.36     | 0.21         | 0.11      | 0.47        | 0.03      | 0.90  | 0.93     | 0.02  | 0.48  | 0.82     | 0.01  |
| Control Delay                | 25.9        | 32.4     | 0.3          | 25.1      | 34.1        | 0.0       | 52.6  | 43.7     | 0.0   | 20.8  | 43.2     | 0.0   |
| Queue Delay                  | 0.0         | 0.0      | 0.0          | 0.0       | 0.0         | 0.0       | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Delay                  | 25.9        | 32.4     | 0.3          | 25.1      | 34.1        | 0.0       | 52.6  | 43.7     | 0.0   | 20.8  | 43.2     | 0.0   |
| LOS                          | С           | С        | Α            | С         | С           | А         | D     | D        | А     | С     | D        | A     |
| Approach Delay               |             | 15.4     | K            |           | 29.9        |           |       | 47.3     |       |       | 38.6     |       |
| Approach LOS                 |             | В        |              |           | C           |           |       | D        |       |       | D        |       |
| Intersection Summary         |             |          |              |           |             |           |       |          |       |       |          |       |
| Cycle Length: 90             |             |          |              |           |             |           |       |          |       |       |          |       |
| Actuated Cycle Length: 90    |             |          |              |           |             |           |       |          |       |       |          |       |
| Offset: 71 (79%), Reference  | ed to phase | 2:EBTL a | and 6:WE     | BTL, Star | t of FDW of | or yellow |       |          |       |       |          |       |
| Natural Cycle: 90            |             |          |              |           |             | •         |       |          |       |       |          |       |
| Control Type: Actuated-Co    | ordinated   |          |              |           |             |           |       |          |       |       |          |       |
| Maximum v/c Ratio: 0.93      |             |          |              |           |             |           |       |          |       |       |          |       |
| Intersection Signal Delay:   | 36.6        |          |              | I         | ntersectio  | n LOS: D  |       |          |       |       |          |       |
| Intersection Capacity Utiliz |             | )        |              |           | CU Level    |           | e D   |          |       |       |          |       |
| Analysis Period (min) 15     |             |          |              |           |             |           |       |          |       |       |          |       |
|                              |             |          |              |           |             |           |       |          |       |       |          |       |

Splits and Phases: 10: US 24 & Meridian Rd

| <b>√</b> Ø1 | 📌 Ø2 (R) | <b>▲</b> Ø3 | <b>↓</b> Ø4 |  |
|-------------|----------|-------------|-------------|--|
| 11 s        | 20 s     | 25 s        | 34 s        |  |
|             | ✓ Ø6 (R) | Ø7          | Ø8          |  |
| 11 s        | 20 s     | 12 s        | 47 s        |  |

0

#### Intersection

| Movement               | EBL    | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|--------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations    |        |      | 1    |      |      | 1    |      | 1    | 1    |      | 1    | 1    |  |
| Traffic Vol, veh/h     | 0      | 0    | 52   | 0    | 0    | 73   | 0    | 785  | 25   | 0    | 451  | 5    |  |
| Future Vol, veh/h      | 0      | 0    | 52   | 0    | 0    | 73   | 0    | 785  | 25   | 0    | 451  | 5    |  |
| Conflicting Peds, #/hr | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Stop   | Stop | Stop | Stop | Stop | Stop | Free | Free | Free | Free | Free | Free |  |
| RT Channelized         | -      | -    | Free | -    | -    | Free | -    | -    | None | -    | -    | None |  |
| Storage Length         | -      | -    | 0    | -    | -    | 0    | -    | -    | 400  | -    | -    | 400  |  |
| Veh in Median Storage  | e, # - | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -      | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 90     | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   |  |
| Heavy Vehicles, %      | 2      | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 0      | 0    | 58   | 0    | 0    | 81   | 0    | 872  | 28   | 0    | 501  | 6    |  |
|                        |        |      |      |      |      |      |      |      |      |      |      |      |  |

| Major/Minor          | Minor2                                  |     | Μ     | inor1  |     | Ν   | /lajor1 |   | М | ajor2 |   |   |
|----------------------|-----------------------------------------|-----|-------|--------|-----|-----|---------|---|---|-------|---|---|
| Conflicting Flow All | -                                       | -   | -     | -      | -   | -   | -       | 0 | 0 | -     | - | 0 |
| Stage 1              | -                                       | -   | -     | -      | -   | -   | -       | - |   | -     | - | - |
| Stage 2              | -                                       | -   | -     | -      | -   | -   | -       | - | - | -     | - | - |
| Critical Hdwy        | -                                       | -   | -     | -      | -   | -   | -       | - | - | -     | - | - |
| Critical Hdwy Stg 1  | -                                       | -   | -     | -      | -   | -   | -       | - | - | -     | - | - |
| Critical Hdwy Stg 2  | -                                       | -   | -     | -      | -   | -   | -       | - | - | -     | - | - |
| Follow-up Hdwy       | -                                       | -   | -     | -      | -   | -   |         |   | - | -     | - | - |
| Pot Cap-1 Maneuver   | 0                                       | 0   | 0     | 0      | 0   | 0   | 0       | - | - | 0     | - | - |
| Stage 1              | 0                                       | 0   | 0     | 0      | 0   | 0   | 0       | - | - | 0     | - | - |
| Stage 2              | 0                                       | 0   | 0     | 0      | 0   | 0   | 0       | - | - | 0     | - | - |
| Platoon blocked, %   |                                         |     |       |        |     |     |         | - | - |       | - | - |
| Mov Cap-1 Maneuver   |                                         | -   | -     | -      | -   | -   | -       | - | - | -     | - | - |
| Mov Cap-2 Maneuver   | · _                                     | -   | -     | -      | -   | -   | -       | - | - | -     | - | - |
| Stage 1              | -                                       | -   | -     | -      | -   | -   | -       | - | - | -     | - | - |
| Stage 2              | -                                       | -   | -     | -      | -   | -   | -       | - | - | -     | - | - |
|                      |                                         |     |       |        |     |     |         |   |   |       |   |   |
| Approach             | EB                                      |     |       | WB     |     |     | NB      |   |   | SB    |   |   |
| HCM Control Delay, s |                                         |     |       | 0      |     |     | 0       |   |   | 0     |   |   |
| HCM LOS              | A                                       |     |       | Ă      |     |     | v       |   |   | v     |   |   |
|                      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |     |       |        |     |     |         |   |   |       |   |   |
|                      |                                         | NDT |       |        |     | ODT | 000     |   |   |       |   |   |
| Minor Lane/Major Mvr | mt                                      | NBT | NBK F | BLn1WB | Ln1 | SBT | SBR     |   |   |       |   |   |
| Capacity (veh/h)     |                                         | -   | -     | -      | -   | -   | -       |   |   |       |   |   |

|                       | - | - | - | - | - | - |  |  |
|-----------------------|---|---|---|---|---|---|--|--|
| HCM Lane V/C Ratio    | - | - | - | - | - | - |  |  |
| HCM Control Delay (s) | - | - | 0 | 0 | - | - |  |  |
| HCM Lane LOS          | - | - | А | А | - | - |  |  |
| HCM 95th %tile Q(veh) | - | - | - | - | - | - |  |  |

7.4

#### Intersection

| Movement               | EBL   | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|-------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations    | ٦     | ef 👘 |      | ኘ    | ef 👘 |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h     | 0     | 0    | 0    | 16   | 0    | 11   | 0    | 0    | 49   | 22   | 0    | 0    |  |
| Future Vol, veh/h      | 0     | 0    | 0    | 16   | 0    | 11   | 0    | 0    | 49   | 22   | 0    | 0    |  |
| Conflicting Peds, #/hr | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free  | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -     | -    | None | -    | -    | None | -    | -    | None | -    | -    | None |  |
| Storage Length         | 135   | -    | -    | 190  | -    | -    | -    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage  | , # - | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -     | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 92    | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   |  |
| Heavy Vehicles, %      | 2     | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 0     | 0    | 0    | 17   | 0    | 12   | 0    | 0    | 53   | 24   | 0    | 0    |  |
|                        |       |      |      |      |      |      |      |      |      |      |      |      |  |

| Major/Minor          | Major1 |   | 1 | Major2 |   |   | Minor1 |      |          | Minor2 |      |       |  |
|----------------------|--------|---|---|--------|---|---|--------|------|----------|--------|------|-------|--|
| Conflicting Flow All | 12     | 0 | 0 | 1      | 0 | 0 | 41     | 47   | 1        | 68     | 41   | 6     |  |
| Stage 1              | -      | - | - | -      | - | - | 1      | 1    | -        | 40     | 40   | -     |  |
| Stage 2              | -      | - | - | -      | - | - | 40     | 46   | -        | 28     | 1    | -     |  |
| Critical Hdwy        | 4.12   | - | - | 4.12   | - | - | 7.12   | 6.52 | 6.22     | 7.12   | 6.52 | 6.22  |  |
| Critical Hdwy Stg 1  | -      | - | - | -      | - | - | 6.12   | 5.52 | -        | 6.12   | 5.52 | -     |  |
| Critical Hdwy Stg 2  | -      | - | - | -      | - | - | 6.12   | 5.52 | -        | 6.12   | 5.52 | -     |  |
| Follow-up Hdwy       | 2.218  | - | - | 2.218  | - | - | 3.518  |      | 3.318    | 3.518  |      | 3.318 |  |
| Pot Cap-1 Maneuver   | 1607   | - | - | 1622   | - | - | 963    | 845  | 1084     | 925    | 851  | 1077  |  |
| Stage 1              | -      | - | - | -      | - | - | 1022   | 895  | -        | 975    | 862  | -     |  |
| Stage 2              | -      | - | - | -      | - |   | 975    | 857  | -        | 989    | 895  | -     |  |
| Platoon blocked, %   |        | - | - |        | - | - |        |      |          |        |      |       |  |
| Mov Cap-1 Maneuve    | r 1607 | - | - | 1622   | - | - | 955    | 837  | 1084     | 872    | 842  | 1077  |  |
| Mov Cap-2 Maneuve    | r -    | - | - | -      | - | - | 955    | 837  | -        | 872    | 842  | -     |  |
| Stage 1              | -      | - | - | -      | - | - | 1022   | 895  | -        | 975    | 853  | -     |  |
| Stage 2              | -      | - | - | -      | - | - | 965    | 848  | -        | 940    | 895  | -     |  |
|                      |        |   |   |        |   |   |        |      |          |        |      |       |  |
| Approach             | EB     |   |   | WB     |   |   | NB     |      |          | SB     |      |       |  |
| HCM Control Delay, s | s 0    |   |   | 4.3    |   |   | 8.5    |      |          | 9.2    |      |       |  |
| HCM LOS              |        |   |   |        |   |   | А      |      |          | А      |      |       |  |
|                      |        |   |   |        |   |   |        |      |          |        |      |       |  |
| NA' 1 /NA ' NA       |        |   |   | FDT    |   |   | WET    |      | <u> </u> |        |      |       |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL  | EBT | EBR | WBL   | WBT | WBR S | SBLn1 |  |
|-----------------------|-------|------|-----|-----|-------|-----|-------|-------|--|
| Capacity (veh/h)      | 1084  | 1607 | -   | -   | 1622  | -   | -     | 872   |  |
| HCM Lane V/C Ratio    | 0.049 | -    | -   | -   | 0.011 | -   | -     | 0.027 |  |
| HCM Control Delay (s) | 8.5   | 0    | -   | -   | 7.2   | -   | -     | 9.2   |  |
| HCM Lane LOS          | А     | Α    | -   | -   | А     | -   | -     | Α     |  |
| HCM 95th %tile Q(veh) | 0.2   | 0    | -   | -   | 0     | -   | -     | 0.1   |  |

#### Intersection

| Lane ConfigurationsImage: Additional systemImage: Additional systemTraffic Vol, veh/h4563820Future Vol, veh/h4563820Conflicting Peds, #/hr0000Sign ControlFreeFreeFreeFreeStop                                                                                                                                                                                                                                                                                                                                                   | SBR<br>30<br>30<br>0 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Traffic Vol, veh/h         45         63         82         0         0           Future Vol, veh/h         45         63         82         0         0           Conflicting Peds, #/hr         0         0         0         0         0           Sign Control         Free         Free         Free         Free         Stop S           RT Channelized         -         None         -         None         -         No           Storage Length         120         -         -         0         0         0         | 30<br>0              |
| Traffic Vol, veh/h         45         63         82         0         0           Future Vol, veh/h         45         63         82         0         0           Conflicting Peds, #/hr         0         0         0         0         0           Sign Control         Free         Free         Free         Free         Stop         S           RT Channelized         -         None         -         None         -         No           Storage Length         120         -         -         0         0         0 | 30<br>0              |
| Conflicting Peds, #/hr0000Sign ControlFreeFreeFreeStopSRT Channelized-None-NoneNoneStorage Length1200                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                    |
| Sign ControlFreeFreeFreeFreeStopSRT Channelized-None-None-NoneStorage Length1200                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                    |
| RT Channelized - None - None - No<br>Storage Length 120 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
| Storage Length 120 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stop                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lone                 |
| Veh in Median Storage, # - 0 0 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                    |
| Grade, % - 0 0 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                    |
| Peak Hour Factor 92 92 92 92 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 92                   |
| Heavy Vehicles, % 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                    |
| Mvmt Flow 49 68 89 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33                   |

| Major/Minor          | Major1 | Ν     | Aajor2 |     | Minor2 |       |  |  |  |
|----------------------|--------|-------|--------|-----|--------|-------|--|--|--|
| Conflicting Flow All | 89     | 0     | -      | 0   | 255    | 89    |  |  |  |
| Stage 1              | -      | -     | -      | -   | 89     | -     |  |  |  |
| Stage 2              | -      | -     | -      | -   | 166    | -     |  |  |  |
| Critical Hdwy        | 4.12   | -     | -      | -   | 0.12   | 6.22  |  |  |  |
| Critical Hdwy Stg 1  | -      | -     | -      | -   | 5.42   | -     |  |  |  |
| Critical Hdwy Stg 2  | -      | -     | -      | -   | 5.42   | -     |  |  |  |
| Follow-up Hdwy       | 2.218  | -     | -      | -   | 3.518  | 3.318 |  |  |  |
| Pot Cap-1 Maneuver   | 1506   | -     | -      | -   | 734    | 969   |  |  |  |
| Stage 1              | -      | -     | -      | -   | 934    | -     |  |  |  |
| Stage 2              | -      | -     | -      | -   | 863    |       |  |  |  |
| Platoon blocked, %   |        | -     | -      | -   |        |       |  |  |  |
| Mov Cap-1 Maneuver   | 1506   | -     | -      | -   | 710    | 969   |  |  |  |
| Mov Cap-2 Maneuver   | -      | -     | -      | -   | 710    | -     |  |  |  |
| Stage 1              | -      |       | -      | -   | 903    | -     |  |  |  |
| Stage 2              | -      | -     | -      | -   | 863    | -     |  |  |  |
|                      |        |       |        |     |        |       |  |  |  |
| Approach             | EB     |       | WB     |     | SB     |       |  |  |  |
| HCM Control Delay, s | 3.1    |       | 0      | -   | 8.8    |       |  |  |  |
| HCM LOS              |        |       |        |     | А      |       |  |  |  |
|                      |        |       |        |     |        |       |  |  |  |
| Minor Lane/Major Mvn | nt     | EBL   | EBT    | WBT | WBR    | SBLn1 |  |  |  |
| Capacity (veh/h)     |        | 1506  | -      | -   | -      | 969   |  |  |  |
| HCM Lane V/C Ratio   |        | 0.032 | -      | -   | -      | 0.034 |  |  |  |
| HCM Control Delay (s | )      | 7.5   | -      | -   | -      | 8.8   |  |  |  |
| HCM Lane LOS         |        | А     | -      | -   | -      | А     |  |  |  |
| HCM 95th %tile Q(veh | I)     | 0.1   | -      | -   | -      | 0.1   |  |  |  |
|                      |        |       |        |     |        |       |  |  |  |

| Intersection                                              |  |
|-----------------------------------------------------------|--|
| Int Delay, s/veh 5.3                                      |  |
| Movement EBL EBT WBT WBR SBL SBR                          |  |
| Lane Configurations 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |  |
| Traffic Vol, veh/h 51 12 36 0 0 45                        |  |
| Future Vol, veh/h 51 12 36 0 0 45                         |  |
| Conflicting Peds, $\#/hr = 0 = 0 = 0 = 0 = 0$             |  |
| Sign Control Free Free Free Stop Stop                     |  |
| RT Channelized - None - None - None                       |  |
| Storage Length 100 0 -                                    |  |
| Veh in Median Storage, # - 0 0 - 0 -                      |  |
| Grade, % - 0 0 - 0 -                                      |  |
| Peak Hour Factor 92 92 92 92 92 92                        |  |
| Heavy Vehicles, % 2 2 2 2 2 2 2 2                         |  |
| Mymt Flow 55 13 39 0 0 49                                 |  |
|                                                           |  |
| Major/Minor Major1 Major2 Minor2                          |  |
|                                                           |  |
| Conflicting Flow All 39 0 - 0 162 39                      |  |
| Stage 1 39 -                                              |  |
| Stage 2 123 -                                             |  |
| Critical Hdwy 4.12 6.42 6.22                              |  |
| Critical Hdwy Stg 1 5.42 -                                |  |
| Critical Hdwy Stg 2 5.42 -                                |  |
| Follow-up Hdwy 2.218 3.518 3.318                          |  |
| Pot Cap-1 Maneuver 1571 829 1033                          |  |
| Stage 1 983 -                                             |  |
| Stage 2 902 -                                             |  |
| Platoon blocked, %                                        |  |
| Mov Cap-1 Maneuver 1571 800 1033                          |  |
| Mov Cap-2 Maneuver                                        |  |
| Stage 1 949 -                                             |  |
| Stage 2 902 -                                             |  |
|                                                           |  |
| Approach EB WB SB                                         |  |
| HCM Control Delay, s 6 0 8.7                              |  |
| HCM LOS A                                                 |  |
|                                                           |  |
| Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1               |  |
| Capacity (veh/h) 1571 1033                                |  |
| HCM Lane V/C Ratio 0.035 0.047                            |  |
| HCM Control Delay (s) 7.4 8.7                             |  |
| HCM Lane LOS A A                                          |  |

0.1

-

HCM 95th %tile Q(veh)

0.1

\_

\_

| Intersection           |        |      |      |      |      |      |  |
|------------------------|--------|------|------|------|------|------|--|
| Int Delay, s/veh       | 0.3    |      |      |      |      |      |  |
| Movement               | EBT    | EBR  | WBL  | WBT  | NBL  | NBR  |  |
| Lane Configurations    | 4      |      |      | र्च  | - ¥  |      |  |
| Traffic Vol, veh/h     | 49     | 0    | 1    | 49   | 0    | 3    |  |
| Future Vol, veh/h      | 49     | 0    | 1    | 49   | 0    | 3    |  |
| Conflicting Peds, #/hr | 0      | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free   | Free | Free | Free | Stop | Stop |  |
| RT Channelized         | -      | None | -    | None | -    | None |  |
| Storage Length         | -      | -    | -    | -    | 0    | -    |  |
| Veh in Median Storage  | e, # 0 | -    | -    | 0    | 0    | -    |  |
| Grade, %               | 0      | -    | -    | 0    | 0    | -    |  |
| Peak Hour Factor       | 92     | 92   | 92   | 92   | 92   | 92   |  |
| Heavy Vehicles, %      | 2      | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 53     | 0    | 1    | 53   | 0    | 3    |  |
|                        |        |      |      |      |      |      |  |
|                        |        |      |      |      |      |      |  |

| Major/Minor          | Major1 | Ν     | /lajor2 |     | Minor1 |       |  |  |
|----------------------|--------|-------|---------|-----|--------|-------|--|--|
| Conflicting Flow All | 0      | 0     | 53      | 0   | 108    | 53    |  |  |
| Stage 1              | -      | -     | -       | -   | 53     | -     |  |  |
| Stage 2              | -      | -     | -       | -   | 55     | -     |  |  |
| Critical Hdwy        | -      | -     | 4.12    | -   | 6.42   | 6.22  |  |  |
| Critical Hdwy Stg 1  | -      | -     | -       | -   | 5.42   | -     |  |  |
| Critical Hdwy Stg 2  | -      | -     | -       | -   | 5.42   | -     |  |  |
| Follow-up Hdwy       | -      | -     | 2.218   | -   |        | 3.318 |  |  |
| Pot Cap-1 Maneuver   | -      | -     | 1553    | -   | 889    | 1014  |  |  |
| Stage 1              | -      | -     | -       | -   | 970    | -     |  |  |
| Stage 2              | -      | -     | -       | -   | 968    |       |  |  |
| Platoon blocked, %   | -      | -     |         | -   |        |       |  |  |
| Mov Cap-1 Maneuver   |        | -     | 1553    | -   | 888    | 1014  |  |  |
| Mov Cap-2 Maneuver   | -      |       | -       | -   | 888    | -     |  |  |
| Stage 1              | -      | -     | -       | -   | 970    | -     |  |  |
| Stage 2              | -      | -     | -       | -   | 967    | -     |  |  |
|                      |        |       |         |     |        |       |  |  |
| Approach             | EB     |       | WB      |     | NB     |       |  |  |
| HCM Control Delay, s | 0      |       | 0.1     |     | 8.6    |       |  |  |
| HCM LOS              |        |       |         |     | А      |       |  |  |
|                      |        |       |         |     |        |       |  |  |
| Minor Lane/Major Mvn | nt N   | IBLn1 | EBT     | EBR | WBL    | WBT   |  |  |
| Capacity (veh/h)     |        | 1014  | -       | -   | 1553   | -     |  |  |
| HCM Lane V/C Ratio   |        | 0.003 | -       | -   | 0.001  | -     |  |  |
| HCM Control Delay (s | )      | 8.6   | -       | -   | 7.3    | 0     |  |  |
| HCM Lane LOS         |        | А     | -       | -   | А      | А     |  |  |
|                      |        |       |         |     |        |       |  |  |

0

-

HCM 95th %tile Q(veh)

0

## Timings 7: Meridian Rd & Woodmen Rd

|                              |           |          |               |             |            |           |            |         |      |       | AMTO    |      |
|------------------------------|-----------|----------|---------------|-------------|------------|-----------|------------|---------|------|-------|---------|------|
|                              | ٦         | -        | $\rightarrow$ | •           | -          | •         | 1          | 1       | 1    | 1     | Ŧ       | ~    |
| Lane Group                   | EBL       | EBT      | EBR           | WBL         | WBT        | WBR       | NBL        | NBT     | NBR  | SBL   | SBT     | SBR  |
| Lane Configurations          | ኘኘ        | <u></u>  | 1             | ሻሻ          | <u></u>    | 1         | ሻሻ         | <u></u> | 1    | ኘ     | <u></u> | 1    |
| Traffic Volume (vph)         | 302       | 383      | 232           | 70          | 638        | 49        | 167        | 209     | 20   | 62    | 597     | 541  |
| Future Volume (vph)          | 302       | 383      | 232           | 70          | 638        | 49        | 167        | 209     | 20   | 62    | 597     | 541  |
| Turn Type                    | Prot      | NA       | Free          | Prot        | NA         | Perm      | Prot       | NA      | Free | Prot  | NA      | Free |
| Protected Phases             | 7         | 4        |               | 3           | 8          |           | 5          | 2       |      | 1     | 6       |      |
| Permitted Phases             |           |          | Free          |             |            | 8         |            |         | Free |       |         | Free |
| Detector Phase               | 7         | 4        |               | 3           | 8          | 8         | 5          | 2       |      | 1     | 6       |      |
| Switch Phase                 |           |          |               |             |            |           |            |         |      |       |         |      |
| Minimum Initial (s)          | 5.0       | 15.0     |               | 5.0         | 15.0       | 15.0      | 5.0        | 15.0    |      | 5.0   | 15.0    |      |
| Minimum Split (s)            | 12.5      | 22.0     |               | 12.5        | 22.0       | 22.0      | 13.5       | 22.0    |      | 13.5  | 22.0    |      |
| Total Split (s)              | 25.0      | 33.0     |               | 15.0        | 23.0       | 23.0      | 18.0       | 27.0    |      | 15.0  | 24.0    |      |
| Total Split (%)              | 27.8%     | 36.7%    |               | 16.7%       | 25.6%      | 25.6%     | 20.0%      | 30.0%   |      | 16.7% | 26.7%   |      |
| Yellow Time (s)              | 4.0       | 5.0      |               | 4.0         | 5.0        | 5.0       | 5.0        | 5.0     |      | 5.0   | 5.0     |      |
| All-Red Time (s)             | 3.5       | 2.0      |               | 3.5         | 2.0        | 2.0       | 3.5        | 2.0     |      | 3.5   | 2.0     |      |
| Lost Time Adjust (s)         | 0.0       | 0.0      |               | 0.0         | 0.0        | 0.0       | 0.0        | 0.0     |      | 0.0   | 0.0     |      |
| Total Lost Time (s)          | 7.5       | 7.0      |               | 7.5         | 7.0        | 7.0       | 8.5        | 7.0     |      | 8.5   | 7.0     |      |
| Lead/Lag                     | Lead      | Lag      |               | Lead        | Lag        | Lag       | Lead       | Lag     |      | Lead  | Lag     |      |
| Lead-Lag Optimize?           | Yes       | Yes      |               | Yes         | Yes        | Yes       | Yes        | Yes     |      | Yes   | Yes     |      |
| Recall Mode                  | None      | None     |               | None        | None       | None      | None       | C-Max   |      | None  | C-Max   |      |
| Act Effct Green (s)          | 13.5      | 29.2     | 90.0          | 6.9         | 20.0       | 20.0      | 8.9        | 23.0    | 90.0 | 6.3   | 17.6    | 90.0 |
| Actuated g/C Ratio           | 0.15      | 0.32     | 1.00          | 0.08        | 0.22       | 0.22      | 0.10       | 0.26    | 1.00 | 0.07  | 0.20    | 1.00 |
| v/c Ratio                    | 0.61      | 0.35     | 0.15          | 0.28        | 0.84       | 0.08      | 0.52       | 0.24    | 0.01 | 0.27  | 0.90    | 0.36 |
| Control Delay                | 40.8      | 25.4     | 0.2           | 60.6        | 39.0       | 0.4       | 48.0       | 16.5    | 0.0  | 42.6  | 53.4    | 0.6  |
| Queue Delay                  | 0.0       | 0.0      | 0.0           | 0.0         | 0.0        | 0.0       | 0.0        | 0.0     | 0.0  | 0.0   | 0.0     | 0.0  |
| Total Delay                  | 40.8      | 25.4     | 0.2           | 60.6        | 39.0       | 0.4       | 48.0       | 16.5    | 0.0  | 42.6  | 53.4    | 0.6  |
| LOS                          | D         | С        | А             | E           | D          | А         | D          | В       | А    | D     | D       | A    |
| Approach Delay               |           | 24.1     |               |             | 38.5       |           |            | 28.9    |      |       | 29.1    |      |
| Approach LOS                 |           | С        |               |             | D          |           |            | С       |      |       | С       |      |
| Intersection Summary         |           |          |               |             |            |           |            |         |      |       |         |      |
| Cycle Length: 90             |           |          |               |             |            |           |            |         |      |       |         |      |
| Actuated Cycle Length: 90    |           |          |               |             |            |           |            |         |      |       |         |      |
| Offset: 0 (0%), Referenced   |           | :NBT and | 6:SBT, S      | Start of FE | DW or vel  | low, Mast | er Interse | ection  |      |       |         |      |
| Natural Cycle: 80            |           |          |               |             | ,          | ,         |            |         |      |       |         |      |
| Control Type: Actuated-Co    | ordinated |          |               |             |            |           |            |         |      |       |         |      |
| Maximum v/c Ratio: 0.90      |           |          |               |             |            |           |            |         |      |       |         |      |
| Intersection Signal Delay:   | 29.8      |          |               | Ir          | ntersectio | n LOS: C  |            |         |      |       |         |      |
| Intersection Capacity Utiliz |           | )        |               |             | CU Level   |           |            |         |      |       |         |      |
| Analysis Period (min) 15     |           |          |               |             |            |           |            |         |      |       |         |      |
|                              |           |          |               |             |            |           |            |         |      |       |         |      |

Splits and Phases: 7: Meridian Rd & Woodmen Rd

| Ø1   | 🕇 Ø2 (R) 🛡       | <b>√</b> Ø3 | <b>→</b> Ø4                 |  |
|------|------------------|-------------|-----------------------------|--|
| 15 s | 27 s             | 15 s        | 33 s                        |  |
| ▲ ø5 | ↓ Ø6 <b>(</b> R) | ▶ Ø1        | <b>4</b> <sup>⊕</sup><br>Ø8 |  |
| 18 s | 24 s             | 25 s        | 23 s                        |  |

## Timings 8: McLaughlin Rd & Woodmen Rd

|                                    | ۶        | -        | $\mathbf{r}$ | 4           | -          | •          | 1      | 1     | ۲     | 1     | Ļ        | -     |
|------------------------------------|----------|----------|--------------|-------------|------------|------------|--------|-------|-------|-------|----------|-------|
| Lane Group                         | EBL      | EBT      | EBR          | WBL         | WBT        | WBR        | NBL    | NBT   | NBR   | SBL   | SBT      | SBF   |
| Lane Configurations                | ľ        | <u></u>  | 1            | ľ           | <u></u>    | 1          | ۲<br>۲ | •     | 1     | ľ     | <b>†</b> | 1     |
| Traffic Volume (vph)               | 101      | 318      | 46           | 28          | 426        | 152        | 39     | 45    | 10    | 130   | 125      | 293   |
| Future Volume (vph)                | 101      | 318      | 46           | 28          | 426        | 152        | 39     | 45    | 10    | 130   | 125      | 293   |
| Turn Type                          | pm+pt    | NA       | Perm         | pm+pt       | NA         | Perm       | pm+pt  | NA    | Perm  | pm+pt | NA       | Perm  |
| Protected Phases                   | 5        | 2        |              | 1           | 6          |            | 3      | 8     |       | 7     | 4        |       |
| Permitted Phases                   | 2        |          | 2            | 6           |            | 6          | 8      |       | 8     | 4     |          | 2     |
| Detector Phase                     | 5        | 2        | 2            | 1           | 6          | 6          | 3      | 8     | 8     | 7     | 4        | 2     |
| Switch Phase                       |          |          |              |             |            |            |        |       |       |       |          |       |
| Minimum Initial (s)                | 5.0      | 5.0      | 5.0          | 5.0         | 5.0        | 5.0        | 5.0    | 5.0   | 5.0   | 5.0   | 5.0      | 5.0   |
| Minimum Split (s)                  | 12.5     | 25.0     | 25.0         | 12.5        | 25.0       | 25.0       | 13.5   | 25.0  | 25.0  | 13.5  | 25.0     | 25.0  |
| Total Split (s)                    | 14.0     | 37.0     | 37.0         | 14.0        | 37.0       | 37.0       | 14.0   | 25.0  | 25.0  | 14.0  | 25.0     | 25.0  |
| Total Split (%)                    | 15.6%    | 41.1%    | 41.1%        | 15.6%       | 41.1%      | 41.1%      | 15.6%  | 27.8% | 27.8% | 15.6% | 27.8%    | 27.8% |
| Yellow Time (s)                    | 4.0      | 5.0      | 5.0          | 4.0         | 5.0        | 5.0        | 5.0    | 5.0   | 5.0   | 5.0   | 5.0      | 5.0   |
| All-Red Time (s)                   | 3.5      | 2.0      | 2.0          | 3.5         | 2.0        | 2.0        | 3.5    | 2.0   | 2.0   | 3.5   | 2.0      | 2.0   |
| Lost Time Adjust (s)               | 0.0      | 0.0      | 0.0          | 0.0         | 0.0        | 0.0        | 0.0    | 0.0   | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Lost Time (s)                | 7.5      | 7.0      | 7.0          | 7.5         | 7.0        | 7.0        | 8.5    | 7.0   | 7.0   | 8.5   | 7.0      | 7.0   |
| Lead/Lag                           | Lead     | Lag      | Lag          | Lead        | Lag        | Lag        | Lead   | Lag   | Lag   | Lead  | Lag      | Lag   |
| Lead-Lag Optimize?                 | Yes      | Yes      | Yes          | Yes         | Yes        | Yes        | Yes    | Yes   | Yes   | Yes   | Yes      | Yes   |
| Recall Mode                        | None     | C-Max    | C-Max        | None        | C-Max      | C-Max      | None   | Max   | Max   | None  | Max      | Max   |
| Act Effct Green (s)                | 40.5     | 38.4     | 38.4         | 37.3        | 32.8       | 32.8       | 22.0   | 18.0  | 18.0  | 25.4  | 23.6     | 23.6  |
| Actuated g/C Ratio                 | 0.45     | 0.43     | 0.43         | 0.41        | 0.36       | 0.36       | 0.24   | 0.20  | 0.20  | 0.28  | 0.26     | 0.26  |
| v/c Ratio                          | 0.24     | 0.21     | 0.06         | 0.06        | 0.34       | 0.21       | 0.12   | 0.12  | 0.02  | 0.35  | 0.26     | 0.47  |
| Control Delay                      | 33.0     | 38.0     | 4.0          | 13.0        | 22.7       | 1.0        | 21.6   | 30.7  | 0.1   | 25.8  | 30.7     | 6.7   |
| Queue Delay                        | 0.0      | 0.0      | 0.0          | 0.0         | 0.0        | 0.0        | 0.0    | 0.0   | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Delay                        | 33.0     | 38.0     | 4.0          | 13.0        | 22.7       | 1.0        | 21.6   | 30.7  | 0.1   | 25.8  | 30.7     | 6.7   |
| LOS                                | С        | D        | А            | В           | С          | А          | С      | С     | А     | С     | С        | A     |
| Approach Delay                     |          | 33.5     |              |             | 16.8       |            |        | 23.7  |       |       | 16.7     |       |
| Approach LOS                       |          | С        |              |             | В          |            |        | С     |       |       | В        |       |
| Intersection Summary               |          |          |              |             |            |            |        |       |       |       |          |       |
| Cycle Length: 90                   |          |          |              |             |            |            |        |       |       |       |          |       |
| Actuated Cycle Length: 90          |          |          |              | Ť           |            |            |        |       |       |       |          |       |
| Offset: 0 (0%), Referenced to      | phase 2  | :EBTL an | d 6:WBTI     | L, Start of | f Green    |            |        |       |       |       |          |       |
| Natural Cycle: 80                  |          |          |              |             |            |            |        |       |       |       |          |       |
| Control Type: Actuated-Coordinated |          |          |              |             |            |            |        |       |       |       |          |       |
| Maximum v/c Ratio: 0.47            |          |          |              |             |            |            |        |       |       |       |          |       |
| Intersection Signal Delay: 21.     | 7        |          |              | li          | ntersectio | n LOS: C   |        |       |       |       |          |       |
| Intersection Capacity Utilization  | on 52.5% | )        |              | 10          | CU Level   | of Service | θA     |       |       |       |          |       |
| Analysis Period (min) 15           |          |          |              |             |            |            |        |       |       |       |          |       |

Splits and Phases: 8: McLaughlin Rd & Woodmen Rd

| Ø1          | 🗸 🖉 Ø2 (R)    | <b>▲</b> Ø3 | <b>↓</b> <sub>Ø4</sub> |
|-------------|---------------|-------------|------------------------|
| 14 s        | 37 s          | 14 s        | 25 s                   |
| <u>∕</u> ø₅ | ●<br>● Ø6 (R) | Ø7          | <b>√</b> Ø8            |
| 14 s        | 37 s          | 14 s        | 25 s                   |

## Timings 9: US 24 & Woodmen Rd

|                               | ٦        | -      | $\mathbf{\hat{z}}$ | 1         | +           | *        | 1     | Ť     | 1     | 1     | Ļ     | ~     |
|-------------------------------|----------|--------|--------------------|-----------|-------------|----------|-------|-------|-------|-------|-------|-------|
| Lane Group                    | EBL      | EBT    | EBR                | WBL       | WBT         | WBR      | NBL   | NBT   | NBR   | SBL   | SBT   | SBF   |
| Lane Configurations           | ľ        | •      | 1                  | ۲         | <u></u>     | 1        | ሻሻ    | •     | 1     | ٢     | •     | 1     |
| Traffic Volume (vph)          | 200      | 93     | 165                | 54        | 92          | 32       | 152   | 215   | 28    | 34    | 528   | 362   |
| Future Volume (vph)           | 200      | 93     | 165                | 54        | 92          | 32       | 152   | 215   | 28    | 34    | 528   | 362   |
| Turn Type                     | pm+pt    | NA     | Free               | pm+pt     | NA          | Free     | pm+pt | NA    | Free  | pm+pt | NA    | Free  |
| Protected Phases              | 7        | 4      |                    | 3         | 8           |          | 5     | 2     |       | 1     | 6     |       |
| Permitted Phases              | 4        |        | Free               | 8         |             | Free     | 2     |       | Free  | 6     |       | Free  |
| Detector Phase                | 7        | 4      |                    | 3         | 8           |          | 5     | 2     |       | 1     | 6     |       |
| Switch Phase                  |          |        |                    |           |             |          |       |       |       |       |       |       |
| Minimum Initial (s)           | 5.0      | 15.0   |                    | 5.0       | 15.0        |          | 5.0   | 15.0  |       | 5.0   | 15.0  |       |
| Minimum Split (s)             | 10.0     | 23.0   |                    | 10.0      | 23.0        |          | 10.0  | 23.0  |       | 10.0  | 23.0  |       |
| Total Split (s)               | 15.0     | 25.0   |                    | 15.0      | 25.0        |          | 10.0  | 70.0  |       | 10.0  | 70.0  |       |
| Total Split (%)               | 12.5%    | 20.8%  |                    | 12.5%     | 20.8%       |          | 8.3%  | 58.3% |       | 8.3%  | 58.3% |       |
| Yellow Time (s)               | 3.0      | 3.0    |                    | 3.0       | 3.0         |          | 3.0   | 3.0   |       | 3.0   | 3.0   |       |
| All-Red Time (s)              | 2.0      | 2.0    |                    | 2.0       | 2.0         |          | 2.0   | 2.0   |       | 2.0   | 2.0   |       |
| Lost Time Adjust (s)          | 0.0      | 0.0    |                    | 0.0       | 0.0         |          | 0.0   | 0.0   |       | 0.0   | 0.0   |       |
| Total Lost Time (s)           | 5.0      | 5.0    |                    | 5.0       | 5.0         |          | 5.0   | 5.0   |       | 5.0   | 5.0   |       |
| Lead/Lag                      | Lead     | Lag    |                    | Lead      | Lag         |          | Lead  | Lag   |       | Lead  | Lag   |       |
| Lead-Lag Optimize?            | Yes      | Yes    |                    | Yes       | Yes         |          | Yes   | Yes   |       | Yes   | Yes   |       |
| Recall Mode                   | None     | None   |                    | None      | None        |          | None  | C-Max |       | None  | C-Max |       |
| Act Effct Green (s)           | 27.1     | 19.1   | 120.0              | 23.6      | 15.3        | 120.0    | 77.5  | 72.7  | 120.0 | 73.6  | 67.3  | 120.0 |
| Actuated g/C Ratio            | 0.23     | 0.16   | 1.00               | 0.20      | 0.13        | 1.00     | 0.65  | 0.61  | 1.00  | 0.61  | 0.56  | 1.00  |
| v/c Ratio                     | 0.71     | 0.34   | 0.11               | 0.21      | 0.22        | 0.02     | 0.19  | 0.20  | 0.02  | 0.05  | 0.54  | 0.25  |
| Control Delay                 | 53.7     | 50.5   | 0.1                | 36.8      | 48.3        | 0.0      | 7.7   | 12.3  | 0.0   | 7.4   | 19.4  | 0.4   |
| Queue Delay                   | 0.0      | 0.0    | 0.0                | 0.0       | 0.0         | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Delay                   | 53.7     | 50.5   | 0.1                | 36.8      | 48.3        | 0.0      | 7.7   | 12.3  | 0.0   | 7.4   | 19.4  | 0.4   |
| LOS                           | D        | D      | Α                  | D         | D           | А        | А     | В     | А     | А     | В     | A     |
| Approach Delay                |          | 33.8   |                    |           | 36.1        |          |       | 9.7   |       |       | 11.5  |       |
| Approach LOS                  |          | С      |                    |           | D           |          |       | А     |       |       | В     |       |
| Intersection Summary          |          |        |                    |           |             |          |       |       |       |       |       |       |
| Cycle Length: 120             |          |        |                    |           |             |          |       |       |       |       |       |       |
| Actuated Cycle Length: 120    |          |        |                    |           |             |          |       |       |       |       |       |       |
| Offset: 63 (53%), Reference   |          | 2:NBTL | and 6:SB           | TL, Start | of Green    |          |       |       |       |       |       |       |
| Natural Cycle: 70             |          |        |                    |           |             |          |       |       |       |       |       |       |
| Control Type: Actuated-Coo    | rdinated |        |                    |           |             |          |       |       |       |       |       |       |
| Maximum v/c Ratio: 0.71       |          |        |                    |           |             |          |       |       |       |       |       |       |
| Intersection Signal Delay: 18 | 8.6      |        |                    | Ir        | ntersection | 1 LOS: B |       |       |       |       |       |       |
| Intersection Capacity Utiliza |          | )      |                    |           | CU Level    |          | эB    |       |       |       |       |       |
| Analysis Period (min) 15      |          |        |                    |           |             |          |       |       |       |       |       |       |

Splits and Phases: 9: US 24 & Woodmen Rd

| ▶ø1 <b>•</b> Ø2 (R) | <b>√</b> Ø3 | <u>↓</u> <sub>Ø4</sub> |
|---------------------|-------------|------------------------|
| 10 s 70 s           | 15 s        | 25 s                   |
| ▲ øs 🖡 🕨 ø6 (R)     |             | <b>₩</b> Ø8            |
| 10 s 70 s           | 15 s        | 25 s                   |

# Timings 10: US 24 & Meridian Rd

|                              | ٦           | -          | $\mathbf{r}$ | 4         | -           | •          | 1     | 1        | 1     | 1     | Ļ     | -     |
|------------------------------|-------------|------------|--------------|-----------|-------------|------------|-------|----------|-------|-------|-------|-------|
| Lane Group                   | EBL         | EBT        | EBR          | WBL       | WBT         | WBR        | NBL   | NBT      | NBR   | SBL   | SBT   | SBF   |
| Lane Configurations          | 1           | <u>††</u>  | 1            | ٦         | <u></u>     | 1          | ካካ    | <b>↑</b> | 1     | ሻ     | •     | 1     |
| Traffic Volume (vph)         | 7           | 391        | 719          | 32        | 190         | 26         | 203   | 340      | 18    | 70    | 696   | 2     |
| Future Volume (vph)          | 7           | 391        | 719          | 32        | 190         | 26         | 203   | 340      | 18    | 70    | 696   | 4     |
| Turn Type                    | pm+pt       | NA         | Free         | pm+pt     | NA          | Free       | Prot  | NA       | Perm  | pm+pt | NA    | Perm  |
| Protected Phases             | 5           | 2          |              | 1         | 6           |            | 3     | 8        |       | 7     | 4     |       |
| Permitted Phases             | 2           |            | Free         | 6         |             | Free       |       |          | 8     | 4     |       | 2     |
| Detector Phase               | 5           | 2          |              | 1         | 6           |            | 3     | 8        | 8     | 7     | 4     | 4     |
| Switch Phase                 |             |            |              |           |             |            |       |          |       |       |       |       |
| Minimum Initial (s)          | 5.0         | 5.0        |              | 5.0       | 5.0         |            | 5.0   | 5.0      | 5.0   | 5.0   | 5.0   | 5.0   |
| Minimum Split (s)            | 11.0        | 20.0       |              | 11.0      | 20.0        |            | 11.0  | 20.0     | 20.0  | 11.0  | 20.0  | 20.0  |
| Total Split (s)              | 11.0        | 20.0       |              | 11.0      | 20.0        |            | 15.0  | 47.0     | 47.0  | 12.0  | 44.0  | 44.(  |
| Total Split (%)              | 12.2%       | 22.2%      |              | 12.2%     | 22.2%       |            | 16.7% | 52.2%    | 52.2% | 13.3% | 48.9% | 48.9% |
| Yellow Time (s)              | 3.0         | 5.0        |              | 3.0       | 5.0         |            | 3.0   | 4.5      | 4.5   | 3.0   | 4.5   | 4.5   |
| All-Red Time (s)             | 3.0         | 2.0        |              | 3.0       | 2.0         |            | 3.0   | 2.0      | 2.0   | 3.0   | 2.0   | 2.0   |
| Lost Time Adjust (s)         | 0.0         | 0.0        |              | 0.0       | 0.0         |            | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Lost Time (s)          | 6.0         | 7.0        |              | 6.0       | 7.0         |            | 6.0   | 6.5      | 6.5   | 6.0   | 6.5   | 6.5   |
| Lead/Lag                     | Lead        | Lag        |              | Lead      | Lag         |            | Lead  | Lag      | Lag   | Lead  | Lag   | Lag   |
| Lead-Lag Optimize?           | Yes         | Yes        |              | Yes       | Yes         |            | Yes   | Yes      | Yes   | Yes   | Yes   | Yes   |
| Recall Mode                  | None        | C-Max      |              | None      | C-Max       |            | None  | None     | None  | None  | None  | None  |
| Act Effct Green (s)          | 22.7        | 18.7       | 90.0         | 25.1      | 23.1        | 90.0       | 8.7   | 41.6     | 41.6  | 42.8  | 36.4  | 36.4  |
| Actuated g/C Ratio           | 0.25        | 0.21       | 1.00         | 0.28      | 0.26        | 1.00       | 0.10  | 0.46     | 0.46  | 0.48  | 0.40  | 0.40  |
| v/c Ratio                    | 0.02        | 0.54       | 0.46         | 0.13      | 0.21        | 0.02       | 0.62  | 0.40     | 0.02  | 0.14  | 0.94  | 0.00  |
| Control Delay                | 26.6        | 36.5       | 1.9          | 25.4      | 29.0        | 0.0        | 47.7  | 18.2     | 0.1   | 9.1   | 48.2  | 0.0   |
| Queue Delay                  | 0.0         | 0.0        | 0.0          | 0.0       | 0.0         | 0.0        | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Delay                  | 26.6        | 36.5       | 1.9          | 25.4      | 29.0        | 0.0        | 47.7  | 18.2     | 0.1   | 9.1   | 48.2  | 0.0   |
| LOS                          | С           | D          | Α            | С         | С           | А          | D     | В        | А     | А     | D     | A     |
| Approach Delay               |             | 14.2       |              |           | 25.5        |            |       | 28.3     |       |       | 44.6  |       |
| Approach LOS                 |             | В          |              |           | C           |            |       | С        |       |       | D     |       |
| Intersection Summary         |             |            |              |           |             |            |       |          |       |       |       |       |
| Cycle Length: 90             |             |            |              |           |             |            |       |          |       |       |       |       |
| Actuated Cycle Length: 90    |             |            |              | Ť         |             |            |       |          |       |       |       |       |
| Offset: 71 (79%), Reference  | ed to phase | e 2:EBTL a | and 6:WE     | BTL, Star | t of FDW o  | or yellow  |       |          |       |       |       |       |
| Natural Cycle: 80            |             |            |              |           |             |            |       |          |       |       |       |       |
| Control Type: Actuated-Co    | ordinated   |            |              |           |             |            |       |          |       |       |       |       |
| Maximum v/c Ratio: 0.94      |             |            |              |           |             |            |       |          |       |       |       |       |
| Intersection Signal Delay: 2 |             |            |              | li        | ntersectior | LOS: C     |       |          |       |       |       |       |
| Intersection Capacity Utiliz | ation 78.6% | ò          |              | 10        | CU Level o  | of Service | e D   |          |       |       |       |       |
| Analysis Period (min) 15     |             |            |              |           |             |            |       |          |       |       |       |       |

Splits and Phases: 10: US 24 & Meridian Rd

| <b>√</b> Ø1 | 📌 Ø2 (R)    | <b>▲</b> Ø3 | <b>↓</b> <sub>Ø4</sub> |
|-------------|-------------|-------------|------------------------|
| 11 s        | 20 s        | 15 s        | 44 s                   |
|             | €<br>Ø6 (R) | Ø7          | t øs                   |
| 11 s        | 20 s        | 12 s 4      | 47 s                   |

0

#### Intersection

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations    |      |      | 1    |      |      | 1    |      | ↑    | 1    |      | 1    | 1    |  |
| Traffic Vol, veh/h     | 0    | 0    | 25   | 0    | 0    | 51   | 0    | 344  | 29   | 0    | 743  | 4    |  |
| Future Vol, veh/h      | 0    | 0    | 25   | 0    | 0    | 51   | 0    | 344  | 29   | 0    | 743  | 4    |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Stop | Stop | Stop | Stop | Stop | Stop | Free | Free | Free | Free | Free | Free |  |
| RT Channelized         | -    | -    | Free | -    | -    | Free | -    | -    | None | -    | -    | None |  |
| Storage Length         | -    | -    | 0    | -    | -    | 0    | -    | -    | 400  | -    | -    | 400  |  |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 91   | 91   | 91   | 91   | 91   | 91   | 91   | 91   | 91   | 91   | 91   | 91   |  |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 0    | 0    | 27   | 0    | 0    | 56   | 0    | 378  | 32   | 0    | 816  | 4    |  |
|                        |      |      |      |      |      |      |      |      |      |      |      |      |  |

| Major/Minor          | Minor2 |     | Mi    | inor1  |      | Ν   | 1ajor1 |   | M | ajor2 |   |   |
|----------------------|--------|-----|-------|--------|------|-----|--------|---|---|-------|---|---|
| Conflicting Flow All | -      | -   | -     | -      | -    | -   | -      | 0 | 0 | -     |   | 0 |
| Stage 1              | -      | -   | -     | -      | -    | -   | -      | - | - | -     | - | - |
| Stage 2              | -      | -   | -     | -      | -    | -   | -      | - | - | -     | - | - |
| Critical Hdwy        | -      | -   | -     | -      | -    | -   | -      | - | - | -     | - | - |
| Critical Hdwy Stg 1  | -      | -   | -     | -      | -    | - \ | -      | - | - | -     | - | - |
| Critical Hdwy Stg 2  | -      | -   | -     | -      | -    | -   | -      | - | - | -     | - | - |
| Follow-up Hdwy       | -      | -   | -     | -      | -    | -   | -      | - | - | -     | - | - |
| Pot Cap-1 Maneuver   | 0      | 0   | 0     | 0      | 0    | 0   | 0      | - | - | 0     | - | - |
| Stage 1              | 0      | 0   | 0     | 0      | 0    | 0   | 0      | - | - | 0     | - | - |
| Stage 2              | 0      | 0   | 0 <   | 0      | 0    | 0   | 0      | - | - | 0     | - | - |
| Platoon blocked, %   |        |     |       |        |      |     |        | - | - |       | - | - |
| Mov Cap-1 Maneuver   | -      | -   | -     | -      | -    | -   | -      | - | - | -     | - | - |
| Mov Cap-2 Maneuver   | -      | -   | -     | -      | -    | -   | -      | - | - | -     | - | - |
| Stage 1              | -      | -   | -     | -      | -    | -   | -      | - | - | -     | - | - |
| Stage 2              | -      | -   | -     | -      | -    | -   | -      | - | - | -     | - | - |
|                      |        |     |       |        |      |     |        |   |   |       |   |   |
| Approach             | EB     |     |       | WB     |      |     | NB     |   |   | SB    |   |   |
| HCM Control Delay, s | 0      |     |       | 0      |      |     | 0      |   |   | 0     |   |   |
| HCM LOS              | А      |     |       | А      |      |     |        |   |   |       |   |   |
|                      |        |     |       |        |      |     |        |   |   |       |   |   |
| Minor Lane/Major Mvn | nt     | NBT | NBR E | 3Ln1WE | 3Ln1 | SBT | SBR    |   |   |       |   |   |
| Capacity (veh/h)     |        | -   | -     | -      | -    | -   | -      |   |   |       |   |   |
| HCM Lana V//C Datia  |        |     |       |        |      |     |        |   |   |       |   |   |

| HCM Lane V/C Ratio    | - | - | - | - | - | - |  |  |
|-----------------------|---|---|---|---|---|---|--|--|
| HCM Control Delay (s) | - | - | 0 | 0 | - | - |  |  |
| HCM Lane LOS          | - | - | А | А | - | - |  |  |
| HCM 95th %tile Q(veh) | - | - | - | - | - | - |  |  |

| Intersection | on        |
|--------------|-----------|
|              | a lu a la |

| Int Delay, s/veh       | 0.6   |      |      |      |      |      |  |
|------------------------|-------|------|------|------|------|------|--|
| Movement               | EBL   | EBR  | NBL  | NBT  | SBT  | SBR  |  |
| Lane Configurations    | Y     |      |      | ↑    | 1    |      |  |
| Traffic Vol, veh/h     | 2     | 1    | 4    | 48   | 45   | 4    |  |
| Future Vol, veh/h      | 2     | 1    | 4    | 48   | 45   | 4    |  |
| Conflicting Peds, #/hr | 0     | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Stop  | Stop | Free | Free | Free | Free |  |
| RT Channelized         | -     | None | -    | None | -    | None |  |
| Storage Length         | 0     | -    | -    | -    | -    | -    |  |
| Veh in Median Storage  | , # 0 | -    | -    | 0    | 0    | -    |  |
| Grade, %               | 0     | -    | -    | 0    | 0    | -    |  |
| Peak Hour Factor       | 92    | 92   | 92   | 92   | 92   | 92   |  |
| Heavy Vehicles, %      | 2     | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 2     | 1    | 4    | 52   | 49   | 4    |  |
|                        |       |      |      |      |      |      |  |

| Major/Minor          | Minor2 |       | Major1 | M | ajor2 |   |  |  |
|----------------------|--------|-------|--------|---|-------|---|--|--|
| Conflicting Flow All | 111    | 51    | 53     | 0 | -     | 0 |  |  |
| Stage 1              | 51     | -     | -      | - | -     | - |  |  |
| Stage 2              | 60     | -     | -      | - | -     | - |  |  |
| Critical Hdwy        | 6.42   | 6.22  | 4.12   | - | -     | - |  |  |
| Critical Hdwy Stg 1  | 5.42   | -     | -      | - | -     | - |  |  |
| Critical Hdwy Stg 2  | 5.42   | -     | -      | - | -     | - |  |  |
| Follow-up Hdwy       | 3.518  | 3.318 | 2.218  | - | -     | - |  |  |
| Pot Cap-1 Maneuver   | 886    | 1017  | 1553   | - | -     | - |  |  |
| Stage 1              | 971    | -     | -      | - | -)    | - |  |  |
| Stage 2              | 963    | -     | -      | - |       |   |  |  |
| Platoon blocked, %   |        |       |        | - | -     |   |  |  |
| Mov Cap-1 Maneuver   | 883    | 1017  | 1553   | - | -     | - |  |  |
| Mov Cap-2 Maneuver   | 883    | -     | -      | - | -     | - |  |  |
| Stage 1              | 968    | -     | -      | - | -     | - |  |  |
| Stage 2              | 963    | -     | -      | - | -     | - |  |  |
|                      |        |       |        |   |       |   |  |  |
| Approach             | EB     |       | NB     |   | SB    |   |  |  |
| HCM Control Delay, s | 8.9    |       | 0.6    |   | 0     |   |  |  |

HCM LOS A

| Minor Lane/Major Mvmt | NBL   | NBT | EBLn1 | SBT | SBR |
|-----------------------|-------|-----|-------|-----|-----|
| Capacity (veh/h)      | 1553  | -   | 924   | -   | -   |
| HCM Lane V/C Ratio    | 0.003 | -   | 0.004 | -   | -   |
| HCM Control Delay (s) | 7.3   | -   | 8.9   | -   | -   |
| HCM Lane LOS          | А     | -   | А     | -   | -   |
| HCM 95th %tile Q(veh) | 0     | -   | 0     | -   | -   |

7.8

#### Intersection

| <b>,</b>               |      |      |      |          |              |      |      |      |      |      |      |      |  |
|------------------------|------|------|------|----------|--------------|------|------|------|------|------|------|------|--|
| Movement               | EBL  | EBT  | EBR  | WBL      | WBT          | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations    | - ሽ  | - î> |      | <u>۲</u> | - <b>1</b> 2 |      |      | - 40 |      |      | - 44 |      |  |
| Traffic Vol, veh/h     | 0    | 0    | 0    | 53       | 0            | 23   | 0    | 0    | 21   | 85   | 0    | 0    |  |
| Future Vol, veh/h      | 0    | 0    | 0    | 53       | 0            | 23   | 0    | 0    | 21   | 85   | 0    | 0    |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0        | 0            | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free | Free | Free     | Free         | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None | -        | -            | None | -    | -    | None | -    | -    | None |  |
| Storage Length         | 135  | -    | -    | 190      | -            | -    | -    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage, | # -  | 0    | -    | -        | 0            | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -        | 0            | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 92   | 92   | 92   | 92       | 92           | 92   | 92   | 92   | 92   | 92   | 92   | 92   |  |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2        | 2            | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 0    | 0    | 0    | 58       | 0            | 25   | 0    | 0    | 23   | 92   | 0    | 0    |  |
|                        |      |      |      |          |              |      |      |      |      |      |      |      |  |
|                        |      |      |      |          |              |      |      |      | . 🗸  |      |      |      |  |

| Major/Minor          | Major1 |       | 1   | Major2 |     |     | Minor1 |      |       | Minor2 |       |      |  |
|----------------------|--------|-------|-----|--------|-----|-----|--------|------|-------|--------|-------|------|--|
| Conflicting Flow All | 25     | 0     | 0   | 1      | 0   | 0   | 130    | 142  | 1     | 142    | 130   | 13   |  |
| Stage 1              | -      | -     | -   | -      | -   | -   | 1      | 1    | -     | 129    | 129   | -    |  |
| Stage 2              | -      | -     | -   | -      | -   | -   | 129    | 141  | -     | 13     | 1     | -    |  |
| Critical Hdwy        | 4.12   | -     | -   | 4.12   | -   | -   | 7.12   | 6.52 | 6.22  | 7.12   | 6.52  | 6.22 |  |
| Critical Hdwy Stg 1  | -      | -     | -   | -      | -   | -   | 6.12   | 5.52 | -     | 6.12   | 5.52  | -    |  |
| Critical Hdwy Stg 2  | -      | -     | -   | -      | -   | -   | 6.12   | 5.52 | -     | 6.12   | 5.52  | -    |  |
| Follow-up Hdwy       | 2.218  | -     | -   | 2.218  | -   | -   | 3.518  |      | 3.318 | 3.518  | 4.018 |      |  |
| Pot Cap-1 Maneuver   | 1589   | -     | -   | 1622   | -   | -   | 843    | 749  | 1084  | 828    | 761   | 1067 |  |
| Stage 1              | -      | -     | -   | -      | -   | -   | 1022   | 895  | -     | 875    | 789   | -    |  |
| Stage 2              | -      | -     | -   |        | -   |     | 875    | 780  | -     | 1007   | 895   | -    |  |
| Platoon blocked, %   |        | -     | -   |        | -   | -   |        |      |       |        |       |      |  |
| Mov Cap-1 Maneuver   | 1589   | -     | -   | 1622   | -   | -   | 820    | 722  | 1084  | 788    | 734   | 1067 |  |
| Mov Cap-2 Maneuver   | -      | -     | -   | -      | -   | -   | 820    | 722  | -     | 788    | 734   | -    |  |
| Stage 1              | -      | -     | -   |        | -   | -   | 1022   | 895  | -     | 875    | 761   | -    |  |
| Stage 2              | -      | -     | -   | -      | -   | -   | 844    | 752  | -     | 986    | 895   | -    |  |
|                      |        |       |     |        |     |     |        |      |       |        |       |      |  |
| Approach             | EB     |       |     | WB     |     |     | NB     |      |       | SB     |       |      |  |
| HCM Control Delay, s | 0      |       |     | 5.1    |     |     | 8.4    |      |       | 10.2   |       |      |  |
| HCM LOS              |        |       |     |        |     |     | А      |      |       | В      |       |      |  |
|                      |        |       |     |        |     |     |        |      |       |        |       |      |  |
| Minor Lane/Maior Myn | nt N   | VBLn1 | EBL | EBT    | EBR | WBL | WBT    | WBR  | SBLn1 |        |       |      |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL  | EBT | EBR | WBL   | WBT | WBR S | BLn1  |  |
|-----------------------|-------|------|-----|-----|-------|-----|-------|-------|--|
| Capacity (veh/h)      | 1084  | 1589 | -   | -   | 1622  | -   | -     | 788   |  |
| HCM Lane V/C Ratio    | 0.021 | -    | -   | -   | 0.036 | -   | -     | 0.117 |  |
| HCM Control Delay (s) | 8.4   | 0    | -   | -   | 7.3   | -   | -     | 10.2  |  |
| HCM Lane LOS          | А     | А    | -   | -   | А     | -   | -     | В     |  |
| HCM 95th %tile Q(veh) | 0.1   | 0    | -   | -   | 0.1   | -   | -     | 0.4   |  |

| Intersection           |        |       |        |      |        |       |  |
|------------------------|--------|-------|--------|------|--------|-------|--|
| Int Delay, s/veh       | 4.3    |       |        |      |        |       |  |
| Movement               | EBL    | EBT   | WBT    | WBR  | SBL    | SBR   |  |
| Lane Configurations    | ۲      | •     | et     |      | Y      |       |  |
| Traffic Vol, veh/h     | 105    | 121   | 104    | 1    | 1      | 113   |  |
| Future Vol, veh/h      | 105    | 121   | 104    | 1    | 1      | 113   |  |
| Conflicting Peds, #/hr | 0      | 0     | 0      | 0    | 0      | 0     |  |
| Sign Control           | Free   | Free  | Free   | Free | Stop   | Stop  |  |
| RT Channelized         | -      | None  | -      | None | -      | None  |  |
| Storage Length         | 120    | -     | -      | -    | 0      | -     |  |
| Veh in Median Storage  | e, # - | 0     | 0      | -    | 0      | -     |  |
| Grade, %               | -      | 0     | 0      | -    | 0      | -     |  |
| Peak Hour Factor       | 92     | 92    | 92     | 92   | 92     | 92    |  |
| Heavy Vehicles, %      | 2      | 2     | 2      | 2    | 2      | 2     |  |
| Mvmt Flow              | 114    | 132   | 113    | 1    | 1      | 123   |  |
|                        |        |       |        |      |        |       |  |
| Major/Minor            | Major1 | ľ     | Major2 |      | Vinor2 |       |  |
| Conflicting Flow All   | 114    | 0     | -      | 0    | 474    | 114   |  |
| Stage 1                | -      | -     | -      | -    | 114    | -     |  |
| Stage 2                | -      | -     | -      | -    | 360    | -     |  |
| Critical Hdwy          | 4.12   | -     | -      | -    | 6.42   | 6.22  |  |
| Critical Hdwy Stg 1    | -      | -     | -      | -    | 5.42   | -     |  |
| Critical Hdwy Stg 2    | -      | -     | -      | -    | 5.42   | -     |  |
| Follow-up Hdwy         | 2.218  | -     | -      | -    | 3.518  | 3.318 |  |
| Pot Cap-1 Maneuver     | 1475   | -     | -      | -    | 549    | 939   |  |
| Stage 1                | -      | -     | -      | -    | 911    | -     |  |
| Stage 2                | -      | -     | -      | -    | 706    | -     |  |
| Platoon blocked, %     |        | -     | -      | -    |        |       |  |
| Mov Cap-1 Maneuver     | 1475   | -     | -      | -    | 507    | 939   |  |
| Mov Cap-2 Maneuver     | -      | -     | -      | -    | 507    | -     |  |
| Stage 1                | -      | -     | -      | -    | 841    | -     |  |
| Stage 2                | -      | -     | -      | -    | 706    | -     |  |
|                        |        |       |        |      |        |       |  |
| Approach               | EB     |       | WB     |      | SB     |       |  |
| HCM Control Delay, s   | 3.6    |       | 0      | ×    | 9.5    |       |  |
| HCM LOS                |        |       |        |      | А      |       |  |
|                        |        |       |        |      |        |       |  |
| Minor Lane/Major Mvn   | nt     | EBL   | EBT    | WBT  | WBR    | SBLn1 |  |
| Capacity (veh/h)       |        | 1475  | -      | -    | -      | 932   |  |
| HCM Lane V/C Ratio     |        | 0.077 | -      | -    | -      | 0.133 |  |
| HCM Control Delay (s)  |        | 7.6   | -      | -    | -      | 9.5   |  |
| HCM Lane LOS           |        | А     | -      | -    | -      | А     |  |
| HCM 95th %tile Q(veh   | )      | 0.3   | -      | -    | -      | 0.5   |  |
|                        |        |       |        |      |        |       |  |

| Intersection           |        |       |        |      |        |       |  |
|------------------------|--------|-------|--------|------|--------|-------|--|
| Int Delay, s/veh       | 6.2    |       |        |      |        |       |  |
| Movement               | EBL    | EBT   | WBT    | WBR  | SBL    | SBR   |  |
| Lane Configurations    | ۲      | •     | el 👘   |      | Y      |       |  |
| Traffic Vol, veh/h     | 84     | 38    | 16     | 0    | 0      | 89    |  |
| Future Vol, veh/h      | 84     | 38    | 16     | 0    | 0      | 89    |  |
| Conflicting Peds, #/hr | 0      | 0     | 0      | 0    | 0      | 0     |  |
| Sign Control           | Free   | Free  | Free   | Free | Stop   | Stop  |  |
| RT Channelized         | -      | None  | -      | None | -      | None  |  |
| Storage Length         | 100    | -     | -      | -    | 0      | -     |  |
| Veh in Median Storage  | e, # - | 0     | 0      | -    | 0      | -     |  |
| Grade, %               | -      | 0     | 0      | -    | 0      | -     |  |
| Peak Hour Factor       | 92     | 92    | 92     | 92   | 92     | 92    |  |
| Heavy Vehicles, %      | 2      | 2     | 2      | 2    | 2      | 2     |  |
| Mvmt Flow              | 91     | 41    | 17     | 0    | 0      | 97    |  |
|                        |        |       |        |      |        |       |  |
| Major/Minor            | Major1 | ľ     | Major2 | 1    | Minor2 |       |  |
| Conflicting Flow All   | 17     | 0     | -      | 0    | 240    | 17    |  |
| Stage 1                | -      | -     | -      | -    | 17     | -     |  |
| Stage 2                | -      | -     | -      | -    | 223    | -     |  |
| Critical Hdwy          | 4.12   | -     | -      | -    | 6.42   | 6.22  |  |
| Critical Hdwy Stg 1    | -      | -     | -      | -    | 5.42   | -     |  |
| Critical Hdwy Stg 2    | -      | -     | -      | -    | 5.42   | -     |  |
| Follow-up Hdwy         | 2.218  | -     | -      | -    | 3.518  | 3.318 |  |
| Pot Cap-1 Maneuver     | 1600   | -     | -      | -    | 748    | 1062  |  |
| Stage 1                | -      | -     | -      | -    | 1006   | -     |  |
| Stage 2                | -      | -     | -      | -    | 814    |       |  |
| Platoon blocked, %     |        | -     | -      | -    |        |       |  |
| Mov Cap-1 Maneuver     | 1600   | -     | -      | -    | 705    | 1062  |  |
| Mov Cap-2 Maneuver     | -      | -     | -      | -    | 705    | -     |  |
| Stage 1                | -      | -     | -      | -    | 949    | -     |  |
| Stage 2                | -      | -     | -      | -    | 814    | -     |  |
|                        |        |       |        |      |        |       |  |
| Approach               | EB     |       | WB     |      | SB     |       |  |
| HCM Control Delay, s   | 5.1    |       | 0      | ×    | 8.7    |       |  |
| HCM LOS                |        |       |        |      | А      |       |  |
|                        |        |       |        |      |        |       |  |
| Minor Lane/Major Mvm   | nt     | EBL   | EBT    | WBT  | WBR 3  | SBLn1 |  |
| Capacity (veh/h)       |        | 1600  | -      | -    | -      | 1062  |  |
| HCM Lane V/C Ratio     |        | 0.057 | -      | -    | -      | 0.091 |  |
| HCM Control Delay (s)  |        | 7.4   | -      | -    | -      | 8.7   |  |
|                        |        |       |        |      |        |       |  |

А

0.3

-

-

HCM Lane LOS

HCM 95th %tile Q(veh)

А

0.2

-

-

-

-

| Intersection           |          |      |      |      |      |      |  |  |  |
|------------------------|----------|------|------|------|------|------|--|--|--|
| Int Delay, s/veh       | 0.1      |      |      |      |      |      |  |  |  |
| Movement               | EBT      | EBR  | WBL  | WBT  | NBL  | NBR  |  |  |  |
| Lane Configurations    | <b>f</b> |      |      | - सी | ۰¥   |      |  |  |  |
| Traffic Vol, veh/h     | 88       | 0    | 3    | 87   | 0    | 1    |  |  |  |
| Future Vol, veh/h      | 88       | 0    | 3    | 87   | 0    | 1    |  |  |  |
| Conflicting Peds, #/hr | 0        | 0    | 0    | 0    | 0    | 0    |  |  |  |
| Sign Control           | Free     | Free | Free | Free | Stop | Stop |  |  |  |
| RT Channelized         | -        | None | -    | None | -    | None |  |  |  |
| Storage Length         | -        | -    | -    | -    | 0    | -    |  |  |  |
| Veh in Median Storage, | # 0      | -    | -    | 0    | 0    | -    |  |  |  |
| Grade, %               | 0        | -    | -    | 0    | 0    | -    |  |  |  |
| Peak Hour Factor       | 92       | 92   | 92   | 92   | 92   | 92   |  |  |  |
| Heavy Vehicles, %      | 2        | 2    | 2    | 2    | 2    | 2    |  |  |  |
| Mvmt Flow              | 96       | 0    | 3    | 95   | 0    | 1    |  |  |  |
|                        |          |      |      |      |      |      |  |  |  |

| Major1 | Ν                                                                                           | lajor2                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Minor1                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                       |                                                      |                                                      |                                                      |                                                      |
|--------|---------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| 0      | 0                                                                                           | 96                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 197                                                                                                                                                                                                                                                             | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                       |                                                      |                                                      |                                                      | _                                                    |
| -      | -                                                                                           | -                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 96                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      | Ť                                                     |                                                      |                                                      |                                                      |                                                      |
| -      | -                                                                                           | -                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 101                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                       |                                                      |                                                      |                                                      |                                                      |
| -      | -                                                                                           | 4.12                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.42                                                                                                                                                                                                                                                            | 6.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                       |                                                      |                                                      |                                                      |                                                      |
| -      | -                                                                                           | -                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                       |                                                      |                                                      |                                                      |                                                      |
| -      | -                                                                                           | -                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                       |                                                      |                                                      |                                                      |                                                      |
| -      | -                                                                                           |                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                       |                                                      |                                                      |                                                      |                                                      |
| -      | -                                                                                           | 1498                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                 | 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                       |                                                      |                                                      |                                                      |                                                      |
| -      | -                                                                                           | -                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                       |                                                      |                                                      |                                                      |                                                      |
| -      | -                                                                                           | -                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 923                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                       |                                                      |                                                      |                                                      |                                                      |
| -      | -                                                                                           |                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                       |                                                      |                                                      |                                                      |                                                      |
|        | -                                                                                           | 1498                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                 | 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                       |                                                      |                                                      |                                                      |                                                      |
| -      |                                                                                             | -                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                       |                                                      |                                                      |                                                      |                                                      |
| -      | -                                                                                           | -                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                       |                                                      |                                                      |                                                      |                                                      |
| -      | -                                                                                           | -                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 921                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                       |                                                      |                                                      |                                                      |                                                      |
|        |                                                                                             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                       |                                                      |                                                      |                                                      |                                                      |
| EB     |                                                                                             | WB                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NB                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                       |                                                      |                                                      |                                                      |                                                      |
| 0      |                                                                                             | 0.2                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.8                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                       |                                                      |                                                      |                                                      |                                                      |
|        |                                                                                             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | А                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                       |                                                      |                                                      |                                                      |                                                      |
|        |                                                                                             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                       |                                                      |                                                      |                                                      |                                                      |
| nt N   | BLn1                                                                                        | EBT                             | EBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WBL                                                                                                                                                                                                                                                             | WBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                       |                                                      |                                                      |                                                      |                                                      |
|        | 960                                                                                         | -                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1498                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                       |                                                      |                                                      |                                                      |                                                      |
| (      | 0.001                                                                                       | -                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.002                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                       |                                                      |                                                      |                                                      |                                                      |
| )      | 8.8                                                                                         | -                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.4                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                       |                                                      |                                                      |                                                      |                                                      |
|        | Α                                                                                           | -                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | А                                                                                                                                                                                                                                                               | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                                                       |                                                      |                                                      |                                                      |                                                      |
|        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 0 0<br><br><br><br><br><br><br> | 0 0 96<br><br>4.12<br>4.12<br>2.218<br>1498<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | 0 0 96 0<br><br>4.12 -<br>4.12 -<br>2.218 -<br>1498 -<br>1498 -<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | 0         0         96         0         197           -         -         -         96         -         197           -         -         -         96         -         197           -         -         -         101         -         96           -         -         -         101         -         -         101           -         -         4.12         -         6.42         -         -         5.42           -         -         -         5.42         -         -         5.42           -         -         2.218         -         3.518         -         792           -         -         1498         -         792         -         -         923           -         -         -         923         -         -         -         920           -         -         1498         -         790         -         -         928           -         -         -         921         -         -         921           EB         WB         NB         0         0.2         8.8         A | 0         0         96         0         197         96           -         -         -         96         -         -         96         -           -         -         -         101         -         -         101         -           -         -         4.12         -         6.42         6.22         -           -         -         -         5.42         -         -         -         5.42         -           -         -         2.218         -         3.518         3.318         -         -         1498         -         792         960           -         -         1498         -         792         960         -         -         923         -         -         -         923         -         -         -         923         -         -         -         923         -         -         -         921         -         -         921         -         -         921         -         -         921         -         -         -         921         -         -         -         -         -         -         -         -         -         < | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

0

-

HCM 95th %tile Q(veh)

0

# Timings 7: Meridian Rd & Woodmen Rd

|                              | ≯           | -        | $\mathbf{r}$ | 4           | +          | •          | 1          | 1         | 1    | 5     | ţ       | ~    |
|------------------------------|-------------|----------|--------------|-------------|------------|------------|------------|-----------|------|-------|---------|------|
| Lane Group                   | EBL         | EBT      | EBR          | WBL         | WBT        | WBR        | NBL        | NBT       | NBR  | SBL   | SBT     | SBR  |
| Lane Configurations          | ኘ           | <u></u>  | 1            | ካካ          | <u></u>    | 1          | ሻሻ         | <u>††</u> | 1    | ኘ     | <u></u> | 1    |
| Traffic Volume (vph)         | 638         | 586      | 131          | 122         | 538        | 114        | 248        | 547       | 85   | 159   | 422     | 366  |
| Future Volume (vph)          | 638         | 586      | 131          | 122         | 538        | 114        | 248        | 547       | 85   | 159   | 422     | 366  |
| Turn Type                    | Prot        | NA       | Free         | Prot        | NA         | Perm       | Prot       | NA        | Free | Prot  | NA      | Free |
| Protected Phases             | 7           | 4        |              | 3           | 8          |            | 5          | 2         |      | 1     | 6       |      |
| Permitted Phases             |             |          | Free         |             |            | 8          |            |           | Free |       |         | Free |
| Detector Phase               | 7           | 4        |              | 3           | 8          | 8          | 5          | 2         |      | 1     | 6       |      |
| Switch Phase                 |             |          |              |             |            |            |            |           |      |       |         |      |
| Minimum Initial (s)          | 5.0         | 15.0     |              | 5.0         | 15.0       | 15.0       | 5.0        | 15.0      |      | 5.0   | 15.0    |      |
| Minimum Split (s)            | 12.5        | 22.0     |              | 12.5        | 22.0       | 22.0       | 13.5       | 22.0      |      | 13.5  | 22.0    |      |
| Total Split (s)              | 25.0        | 33.0     |              | 15.0        | 23.0       | 23.0       | 18.0       | 27.0      |      | 15.0  | 24.0    |      |
| Total Split (%)              | 27.8%       | 36.7%    |              | 16.7%       | 25.6%      | 25.6%      | 20.0%      | 30.0%     |      | 16.7% | 26.7%   |      |
| Yellow Time (s)              | 4.0         | 5.0      |              | 4.0         | 5.0        | 5.0        | 5.0        | 5.0       |      | 5.0   | 5.0     |      |
| All-Red Time (s)             | 3.5         | 2.0      |              | 3.5         | 2.0        | 2.0        | 3.5        | 2.0       |      | 3.5   | 2.0     |      |
| Lost Time Adjust (s)         | 0.0         | 0.0      |              | 0.0         | 0.0        | 0.0        | 0.0        | 0.0       |      | 0.0   | 0.0     |      |
| Total Lost Time (s)          | 7.5         | 7.0      |              | 7.5         | 7.0        | 7.0        | 8.5        | 7.0       |      | 8.5   | 7.0     |      |
| Lead/Lag                     | Lead        | Lag      |              | Lead        | Lag        | Lag        | Lead       | Lag       |      | Lead  | Lag     |      |
| Lead-Lag Optimize?           | Yes         | Yes      |              | Yes         | Yes        | Yes        | Yes        | Yes       |      | Yes   | Yes     |      |
| Recall Mode                  | None        | None     |              | None        | None       | None       | None       | C-Max     |      | None  | C-Max   |      |
| Act Effct Green (s)          | 17.5        | 26.1     | 90.0         | 7.3         | 15.9       | 15.9       | 9.4        | 20.0      | 90.0 | 6.6   | 17.2    | 90.0 |
| Actuated g/C Ratio           | 0.19        | 0.29     | 1.00         | 0.08        | 0.18       | 0.18       | 0.10       | 0.22      | 1.00 | 0.07  | 0.19    | 1.00 |
| v/c Ratio                    | 1.00        | 0.59     | 0.09         | 0.46        | 0.89       | 0.21       | 0.72       | 0.73      | 0.06 | 0.66  | 0.65    | 0.24 |
| Control Delay                | 71.9        | 30.3     | 0.1          | 66.6        | 46.3       | 3.4        | 63.5       | 20.5      | 0.1  | 54.5  | 38.9    | 0.4  |
| Queue Delay                  | 0.0         | 0.0      | 0.0          | 0.0         | 0.0        | 0.0        | 0.0        | 0.0       | 0.0  | 0.0   | 0.0     | 0.0  |
| Total Delay                  | 71.9        | 30.3     | 0.1          | 66.6        | 46.3       | 3.4        | 63.5       | 20.5      | 0.1  | 54.5  | 38.9    | 0.4  |
| LOS                          | E           | C        | A            | E           | D          | А          | E          | C         | А    | D     | D       | A    |
| Approach Delay               |             | 47.0     |              |             | 43.2       |            |            | 30.6      |      |       | 26.6    |      |
| Approach LOS                 |             | D        |              |             | D          |            |            | С         |      |       | С       |      |
| Intersection Summary         |             |          |              |             |            |            |            |           |      |       |         |      |
| Cycle Length: 90             |             |          |              |             |            |            |            |           |      |       |         |      |
| Actuated Cycle Length: 90    |             |          |              |             |            | ••         |            |           |      |       |         |      |
| Offset: 0 (0%), Referenced   | to phase 2  | INBT and | 6:SB1, S     | start of FD | JW or yel  | low, Mast  | er Interse | ection    |      |       |         |      |
| Natural Cycle: 90            | P           |          |              |             |            |            |            |           |      |       |         |      |
| Control Type: Actuated-Co    | ordinated   |          |              |             |            |            |            |           |      |       |         |      |
| Maximum v/c Ratio: 1.00      |             |          |              |             |            |            |            |           |      |       |         |      |
| Intersection Signal Delay:   |             |          |              |             | ntersectio |            |            |           |      |       |         |      |
| Intersection Capacity Utiliz | ation 77.3% | )        |              | 10          | CU Level   | of Service | эD         |           |      |       |         |      |
| Analysis Period (min) 15     |             |          |              |             |            |            |            |           |      |       |         |      |

Splits and Phases: 7: Meridian Rd & Woodmen Rd

| Ø1         | 🕇 Ø2 (R) 🕊       | <b>√</b> Ø3     | <b>→</b> <sub>Ø4</sub> |  |
|------------|------------------|-----------------|------------------------|--|
| 15 s       | 27 s             | 15 s            | 33 s                   |  |
| <b>Ø</b> 5 | ↓ Ø6 <b>(</b> R) | ▶ <sub>Ø7</sub> | <b>▲</b><br>Ø8         |  |
| 18 s       | 24 s             | 25 s            | 23 s                   |  |

## Timings 8: McLaughlin Rd & Woodmen Rd

|                                 | ۶        | -        | $\mathbf{r}$ | 4          | +          |            | 1     | 1     | ۲     | 1     | Ļ        | -     |
|---------------------------------|----------|----------|--------------|------------|------------|------------|-------|-------|-------|-------|----------|-------|
| Lane Group                      | EBL      | EBT      | EBR          | WBL        | WBT        | WBR        | NBL   | NBT   | NBR   | SBL   | SBT      | SBF   |
| Lane Configurations             | ľ        | <u></u>  | 1            | 1          | <u></u>    | 1          | 1     | •     | 1     | ľ     | <b>†</b> | 1     |
| Traffic Volume (vph)            | 296      | 438      | 97           | 45         | 494        | 282        | 86    | 165   | 87    | 202   | 113      | 194   |
| Future Volume (vph)             | 296      | 438      | 97           | 45         | 494        | 282        | 86    | 165   | 87    | 202   | 113      | 194   |
| Turn Type                       | pm+pt    | NA       | Perm         | pm+pt      | NA         | Perm       | pm+pt | NA    | Perm  | pm+pt | NA       | Pern  |
| Protected Phases                | 5        | 2        |              | 1          | 6          |            | 3     | 8     |       | 7     | 4        |       |
| Permitted Phases                | 2        |          | 2            | 6          |            | 6          | 8     |       | 8     | 4     |          | 4     |
| Detector Phase                  | 5        | 2        | 2            | 1          | 6          | 6          | 3     | 8     | 8     | 7     | 4        | 4     |
| Switch Phase                    |          |          |              |            |            |            |       |       |       |       |          |       |
| Minimum Initial (s)             | 5.0      | 5.0      | 5.0          | 5.0        | 5.0        | 5.0        | 5.0   | 5.0   | 5.0   | 5.0   | 5.0      | 5.0   |
| Minimum Split (s)               | 12.5     | 25.0     | 25.0         | 12.5       | 25.0       | 25.0       | 13.5  | 25.0  | 25.0  | 13.5  | 25.0     | 25.0  |
| Total Split (s)                 | 14.0     | 37.0     | 37.0         | 14.0       | 37.0       | 37.0       | 14.0  | 25.0  | 25.0  | 14.0  | 25.0     | 25.0  |
| Total Split (%)                 | 15.6%    | 41.1%    | 41.1%        | 15.6%      | 41.1%      | 41.1%      | 15.6% | 27.8% | 27.8% | 15.6% | 27.8%    | 27.8% |
| Yellow Time (s)                 | 4.0      | 5.0      | 5.0          | 4.0        | 5.0        | 5.0        | 5.0   | 5.0   | 5.0   | 5.0   | 5.0      | 5.0   |
| All-Red Time (s)                | 3.5      | 2.0      | 2.0          | 3.5        | 2.0        | 2.0        | 3.5   | 2.0   | 2.0   | 3.5   | 2.0      | 2.0   |
| Lost Time Adjust (s)            | 0.0      | 0.0      | 0.0          | 0.0        | 0.0        | 0.0        | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Lost Time (s)             | 7.5      | 7.0      | 7.0          | 7.5        | 7.0        | 7.0        | 8.5   | 7.0   | 7.0   | 8.5   | 7.0      | 7.0   |
| Lead/Lag                        | Lead     | Lag      | Lag          | Lead       | Lag        | Lag        | Lead  | Lag   | Lag   | Lead  | Lag      | Lag   |
| Lead-Lag Optimize?              | Yes      | Yes      | Yes          | Yes        | Yes        | Yes        | Yes   | Yes   | Yes   | Yes   | Yes      | Yes   |
| Recall Mode                     | None     | C-Max    | C-Max        | None       | C-Max      | C-Max      | None  | Max   | Max   | None  | Max      | Max   |
| Act Effct Green (s)             | 39.0     | 35.6     | 35.6         | 35.7       | 30.0       | 30.0       | 22.0  | 18.0  | 18.0  | 23.7  | 20.8     | 20.8  |
| Actuated g/C Ratio              | 0.43     | 0.40     | 0.40         | 0.40       | 0.33       | 0.33       | 0.24  | 0.20  | 0.20  | 0.26  | 0.23     | 0.23  |
| v/c Ratio                       | 0.81     | 0.32     | 0.13         | 0.11       | 0.43       | 0.40       | 0.26  | 0.46  | 0.18  | 0.62  | 0.27     | 0.36  |
| Control Delay                   | 53.9     | 38.9     | 7.7          | 13.4       | 24.8       | 4.6        | 23.6  | 36.3  | 0.8   | 35.1  | 32.3     | 4.2   |
| Queue Delay                     | 0.0      | 0.0      | 0.0          | 0.0        | 0.0        | 0.0        | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Delay                     | 53.9     | 38.9     | 7.7          | 13.4       | 24.8       | 4.6        | 23.6  | 36.3  | 0.8   | 35.1  | 32.3     | 4.2   |
| LOS                             | D        | D        | А            | В          | С          | А          | С     | D     | А     | D     | С        | A     |
| Approach Delay                  |          | 40.6     |              |            | 17.2       |            |       | 23.9  |       |       | 22.7     |       |
| Approach LOS                    |          | D        |              |            | В          |            |       | С     |       |       | С        |       |
| Intersection Summary            |          |          |              |            |            |            |       |       |       |       |          |       |
| Cycle Length: 90                |          |          |              |            |            |            |       |       |       |       |          |       |
| Actuated Cycle Length: 90       |          |          |              |            |            |            |       |       |       |       |          |       |
| Offset: 0 (0%), Referenced to   | phase 2  | :EBTL an | d 6:WBTI     | _, Start o | f Green    |            |       |       |       |       |          |       |
| Natural Cycle: 80               |          |          |              |            |            |            |       |       |       |       |          |       |
| Control Type: Actuated-Coor     | dinated  |          |              |            |            |            |       |       |       |       |          |       |
| Maximum v/c Ratio: 0.81         |          |          |              |            |            |            |       |       |       |       |          |       |
| Intersection Signal Delay: 27   |          |          |              | li         | ntersectio | n LOS: C   |       |       |       |       |          |       |
| Intersection Capacity Utilizati | on 73.3% | ò        |              | l          | CU Level   | of Service | e D   |       |       |       |          |       |
| Analysis Period (min) 15        |          |          |              |            |            |            |       |       |       |       |          |       |

Splits and Phases: 8: McLaughlin Rd & Woodmen Rd

| <b>√</b> Ø1              | 🖉 🖉 2 (R)     | <b>▲</b> Ø3 | <b>♦</b> Ø4              |
|--------------------------|---------------|-------------|--------------------------|
| 14 s                     | 37 s          | 14 s        | 25 s                     |
| <u>∕</u> ∕ <sub>Ø5</sub> | ●<br>● Ø6 (R) | Ø7          | < <b>↑</b> <sub>Ø8</sub> |
| 14 s                     | 37 s          | 14 s        | 25 s                     |

# Timings 9: US 24 & Woodmen Rd

|                              | ≯           | -        | $\mathbf{r}$ | 1         | ←           | •          | 1     | 1     | ۲     | 1     | Ļ     | ~     |
|------------------------------|-------------|----------|--------------|-----------|-------------|------------|-------|-------|-------|-------|-------|-------|
| Lane Group                   | EBL         | EBT      | EBR          | WBL       | WBT         | WBR        | NBL   | NBT   | NBR   | SBL   | SBT   | SB    |
| Lane Configurations          | ľ           | <b>†</b> | 1            | 7         | <u></u>     | 1          | ሻሻ    | •     | 1     | 7     | •     | 5     |
| Traffic Volume (vph)         | 419         | 191      | 117          | 52        | 181         | 78         | 332   | 479   | 109   | 43    | 323   | 30    |
| Future Volume (vph)          | 419         | 191      | 117          | 52        | 181         | 78         | 332   | 479   | 109   | 43    | 323   | 30    |
| Turn Type                    | pm+pt       | NA       | Perm         | pm+pt     | NA          | Free       | pm+pt | NA    | Free  | pm+pt | NA    | Free  |
| Protected Phases             | 7           | 4        |              | 3         | 8           |            | 5     | 2     |       | 1     | 6     |       |
| Permitted Phases             | 4           |          | 4            | 8         |             | Free       | 2     |       | Free  | 6     |       | Free  |
| Detector Phase               | 7           | 4        | 4            | 3         | 8           |            | 5     | 2     |       | 1     | 6     |       |
| Switch Phase                 |             |          |              |           |             |            |       |       |       |       |       |       |
| Minimum Initial (s)          | 5.0         | 15.0     | 15.0         | 5.0       | 15.0        |            | 5.0   | 15.0  |       | 5.0   | 15.0  |       |
| Minimum Split (s)            | 10.0        | 23.0     | 23.0         | 10.0      | 23.0        |            | 10.0  | 23.0  |       | 10.0  | 23.0  |       |
| Total Split (s)              | 30.0        | 45.0     | 45.0         | 10.0      | 25.0        |            | 15.0  | 55.0  |       | 10.0  | 50.0  |       |
| Total Split (%)              | 25.0%       | 37.5%    | 37.5%        | 8.3%      | 20.8%       |            | 12.5% | 45.8% |       | 8.3%  | 41.7% |       |
| Yellow Time (s)              | 3.0         | 3.0      | 3.0          | 3.0       | 3.0         |            | 3.0   | 3.0   |       | 3.0   | 3.0   |       |
| All-Red Time (s)             | 2.0         | 2.0      | 2.0          | 2.0       | 2.0         |            | 2.0   | 2.0   |       | 2.0   | 2.0   |       |
| Lost Time Adjust (s)         | 0.0         | 0.0      | 0.0          | 0.0       | 0.0         |            | 0.0   | 0.0   |       | 0.0   | 0.0   |       |
| Total Lost Time (s)          | 5.0         | 5.0      | 5.0          | 5.0       | 5.0         |            | 5.0   | 5.0   |       | 5.0   | 5.0   |       |
| Lead/Lag                     | Lead        | Lag      | Lag          | Lead      | Lag         |            | Lead  | Lag   |       | Lead  | Lag   |       |
| Lead-Lag Optimize?           | Yes         | Yes      | Yes          | Yes       | Yes         |            | Yes   | Yes   |       | Yes   | Yes   |       |
| Recall Mode                  | None        | None     | None         | None      | None        |            | None  | C-Max |       | None  | C-Max |       |
| Act Effct Green (s)          | 45.1        | 37.1     | 37.1         | 20.1      | 15.1        | 120.0      | 64.9  | 55.0  | 120.0 | 54.5  | 47.5  | 120.0 |
| Actuated g/C Ratio           | 0.38        | 0.31     | 0.31         | 0.17      | 0.13        | 1.00       | 0.54  | 0.46  | 1.00  | 0.45  | 0.40  | 1.00  |
| v/c Ratio                    | 0.86        | 0.36     | 0.21         | 0.26      | 0.44        | 0.05       | 0.44  | 0.66  | 0.07  | 0.16  | 0.51  | 0.23  |
| Control Delay                | 49.9        | 35.4     | 6.5          | 30.1      | 52.1        | 0.1        | 16.0  | 30.9  | 0.1   | 14.9  | 30.9  | 0.3   |
| Queue Delay                  | 0.0         | 0.0      | 0.0          | 0.0       | 0.0         | 0.0        | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Delay                  | 49.9        | 35.4     | 6.5          | 30.1      | 52.1        | 0.1        | 16.0  | 30.9  | 0.1   | 14.9  | 30.9  | 0.3   |
| LOS                          | D           | D        | Α            | С         | D           | А          | В     | С     | А     | В     | С     | ŀ     |
| Approach Delay               |             | 39.0     |              |           | 35.3        |            |       | 22.1  |       |       | 15.9  |       |
| Approach LOS                 |             | D        |              |           | D           |            |       | С     |       |       | В     |       |
| Intersection Summary         |             |          |              |           |             |            |       |       |       |       |       |       |
| Cycle Length: 120            |             |          |              |           |             |            |       |       |       |       |       |       |
| Actuated Cycle Length: 12    | 0           |          |              | Ť         |             |            |       |       |       |       |       |       |
| Offset: 63 (53%), Reference  | ed to phase | 2:NBTL   | and 6:SB     | TL, Start | of Green    |            |       |       |       |       |       |       |
| Natural Cycle: 80            |             |          |              |           |             |            |       |       |       |       |       |       |
| Control Type: Actuated-Co    | ordinated   |          |              |           |             |            |       |       |       |       |       |       |
| Maximum v/c Ratio: 0.86      |             |          |              |           |             |            |       |       |       |       |       |       |
| Intersection Signal Delay: 2 |             |          |              | Ir        | ntersection | n LOS: C   |       |       |       |       |       |       |
| Intersection Capacity Utiliz | ation 81.8% | )        |              | 10        | CU Level    | of Service | e D   |       |       |       |       |       |
| Analysis Period (min) 15     |             |          |              |           |             |            |       |       |       |       |       |       |

Splits and Phases: 9: US 24 & Woodmen Rd

| ↓<br>Ø1 ↓<br>Ø2 (R)  | <b>√</b> Ø3<br><b>↓</b> Ø4 |             |
|----------------------|----------------------------|-------------|
| 10 s 55 s            | 10 s 45 s                  |             |
| ▲ Ø5 <b>•</b> Ø6 (R) | ▶ <sub>Ø7</sub>            | <b>★</b> Ø8 |
| 15 s 50 s            | 30 s                       | 25 s        |

## Timings 10: US 24 & Meridian Rd

| ana Craun                       |            | -         | •        | - 🗲        | -           | ~          | 1     | T        | 1     | - >   | ÷        | -     |
|---------------------------------|------------|-----------|----------|------------|-------------|------------|-------|----------|-------|-------|----------|-------|
| Lane Group                      | EBL        | EBT       | EBR      | WBL        | WBT         | WBR        | NBL   | NBT      | NBR   | SBL   | SBT      | SBR   |
| Lane Configurations             | 7          | <u>††</u> | 1        | 7          | <b>††</b>   | 1          | ኘኘ    | <b>†</b> | 1     | ľ     | <b>†</b> | 7     |
| Traffic Volume (vph)            | 19         | 256       | 294      | 32         | 369         | 53         | 587   | 800      | 12    | 92    | 440      | 7     |
| Future Volume (vph)             | 19         | 256       | 294      | 32         | 369         | 53         | 587   | 800      | 12    | 92    | 440      | 7     |
| Turn Type                       | pm+pt      | NA        | Free     | pm+pt      | NA          | Free       | Prot  | NA       | Perm  | pm+pt | NA       | Perm  |
| Protected Phases                | 5          | 2         |          | 1          | 6           |            | 3     | 8        |       | 7     | 4        |       |
| Permitted Phases                | 2          |           | Free     | 6          |             | Free       |       |          | 8     | 4     |          | 4     |
| Detector Phase                  | 5          | 2         |          | 1          | 6           |            | 3     | 8        | 8     | 7     | 4        | 4     |
| Switch Phase                    |            |           |          |            |             |            |       |          |       |       |          |       |
| Minimum Initial (s)             | 5.0        | 5.0       |          | 5.0        | 5.0         |            | 5.0   | 5.0      | 5.0   | 5.0   | 5.0      | 5.0   |
| Minimum Split (s)               | 11.0       | 20.0      |          | 11.0       | 20.0        |            | 11.0  | 20.0     | 20.0  | 11.0  | 20.0     | 20.0  |
| Total Split (s)                 | 11.0       | 20.0      |          | 11.0       | 20.0        |            | 25.0  | 47.0     | 47.0  | 12.0  | 34.0     | 34.0  |
| Total Split (%)                 | 12.2%      | 22.2%     |          | 12.2%      | 22.2%       |            | 27.8% | 52.2%    | 52.2% | 13.3% | 37.8%    | 37.8% |
| Yellow Time (s)                 | 3.0        | 5.0       |          | 3.0        | 5.0         |            | 3.0   | 4.5      | 4.5   | 3.0   | 4.5      | 4.5   |
| All-Red Time (s)                | 3.0        | 2.0       |          | 3.0        | 2.0         |            | 3.0   | 2.0      | 2.0   | 3.0   | 2.0      | 2.0   |
| Lost Time Adjust (s)            | 0.0        | 0.0       |          | 0.0        | 0.0         |            | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Lost Time (s)             | 6.0        | 7.0       |          | 6.0        | 7.0         |            | 6.0   | 6.5      | 6.5   | 6.0   | 6.5      | 6.5   |
| Lead/Lag                        | Lead       | Lag       |          | Lead       | Lag         |            | Lead  | Lag      | Lag   | Lead  | Lag      | Lag   |
| Lead-Lag Optimize?              | Yes        | Yes       |          | Yes        | Yes         |            | Yes   | Yes      | Yes   | Yes   | Yes      | Yes   |
| Recall Mode                     | None       | C-Max     |          | None       | C-Max       |            | None  | None     | None  | None  | None     | None  |
| Act Effct Green (s)             | 22.5       | 18.5      | 90.0     | 23.7       | 20.7        | 90.0       | 18.6  | 41.8     | 41.8  | 33.3  | 26.8     | 26.8  |
| Actuated g/C Ratio              | 0.25       | 0.21      | 1.00     | 0.26       | 0.23        | 1.00       | 0.21  | 0.46     | 0.46  | 0.37  | 0.30     | 0.30  |
| v/c Ratio                       | 0.07       | 0.37      | 0.20     | 0.11       | 0.48        | 0.04       | 0.88  | 0.98     | 0.02  | 0.49  | 0.84     | 0.01  |
| Control Delay                   | 25.8       | 32.5      | 0.3      | 25.1       | 34.6        | 0.0        | 50.2  | 53.2     | 0.0   | 22.0  | 45.1     | 0.0   |
| Queue Delay                     | 0.0        | 0.0       | 0.0      | 0.0        | 0.0         | 0.0        | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Delay                     | 25.8       | 32.5      | 0.3      | 25.1       | 34.6        | 0.0        | 50.2  | 53.2     | 0.0   | 22.0  | 45.1     | 0.0   |
| LOS                             | С          | С         | Α        | С          | С           | А          | D     | D        | А     | С     | D        | A     |
| Approach Delay                  |            | 15.6      |          |            | 29.9        |            |       | 51.5     |       |       | 40.6     |       |
| Approach LOS                    |            | В         |          |            | C           |            |       | D        |       |       | D        |       |
| Intersection Summary            |            |           |          |            |             |            |       |          |       |       |          |       |
| Cycle Length: 90                |            |           |          |            |             |            |       |          |       |       |          |       |
| Actuated Cycle Length: 90       |            |           |          |            |             |            |       |          |       |       |          |       |
| Offset: 71 (79%), Referenced    | I to phase | 2:EBTL a  | and 6:WE | BTL, Start | of FDW of   | or yellow  |       |          |       |       |          |       |
| Natural Cycle: 90               |            |           |          |            |             |            |       |          |       |       |          |       |
| Control Type: Actuated-Coord    | dinated    |           |          |            |             |            |       |          |       |       |          |       |
| Maximum v/c Ratio: 0.98         |            |           |          |            |             |            |       |          |       |       |          |       |
| Intersection Signal Delay: 39.  | .3         |           |          | Ir         | ntersectior | 1 LOS: D   |       |          |       |       |          |       |
| Intersection Capacity Utilizati |            | )         |          | 10         | CU Level o  | of Service | ε     |          |       |       |          |       |
| Analysis Period (min) 15        |            |           |          |            |             |            |       |          |       |       |          |       |

Splits and Phases: 10: US 24 & Meridian Rd

| <b>√</b> Ø1 | 📌 Ø2 (R) | <b>▲</b> Ø3 | <b>↓</b> Ø4 |  |
|-------------|----------|-------------|-------------|--|
| 11 s        | 20 s     | 25 s        | 34 s        |  |
|             | ✓ Ø6 (R) | Ø7          | Ø8          |  |
| 11 s        | 20 s     | 12 s        | 47 s        |  |

0

#### Intersection

| Movement               | EBL   | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|-------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations    |       |      | 1    |      |      | 1    |      | 1    | 1    |      | 1    | 1    |  |
| Traffic Vol, veh/h     | 0     | 0    | 52   | 0    | 0    | 73   | 0    | 847  | 25   | 0    | 487  | 5    |  |
| Future Vol, veh/h      | 0     | 0    | 52   | 0    | 0    | 73   | 0    | 847  | 25   | 0    | 487  | 5    |  |
| Conflicting Peds, #/hr | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Stop  | Stop | Stop | Stop | Stop | Stop | Free | Free | Free | Free | Free | Free |  |
| RT Channelized         | -     | -    | Free | -    | -    | Free | -    | -    | None | -    | -    | None |  |
| Storage Length         | -     | -    | 0    | -    | -    | 0    | -    | -    | 400  | -    | -    | 400  |  |
| Veh in Median Storage  | , # - | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -     | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 90    | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   |  |
| Heavy Vehicles, %      | 2     | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 0     | 0    | 58   | 0    | 0    | 81   | 0    | 941  | 28   | 0    | 541  | 6    |  |
|                        |       |      |      |      |      |      |      |      |      |      |      |      |  |

|                      |        |     |        |        |      | _   |         |   |   |        |   |   | <br> |
|----------------------|--------|-----|--------|--------|------|-----|---------|---|---|--------|---|---|------|
| Major/Minor          | Minor2 |     | М      | inor1  |      | Ν   | /lajor1 |   | M | lajor2 |   |   |      |
| Conflicting Flow All | -      | -   | -      | -      | -    | -   | -       | 0 | 0 | -      |   | 0 |      |
| Stage 1              | -      | -   | -      | -      | -    | -   | -       |   | - | -      | - | - |      |
| Stage 2              | -      | -   | -      | -      | -    | -   | -       | - | - | -      | - | - |      |
| Critical Hdwy        | -      | -   | -      | -      | -    | -   | -       | - | - | -      | - | - |      |
| Critical Hdwy Stg 1  | -      | -   | -      | -      | -    | - 1 | -       | - | - | -      | - | - |      |
| Critical Hdwy Stg 2  | -      | -   | -      | -      | -    | -   | -       | - | - | -      | - | - |      |
| Follow-up Hdwy       | -      | -   | -      | -      | -    | -   | -       |   | - | -      | - | - |      |
| Pot Cap-1 Maneuver   | 0      | 0   | 0      | 0      | 0    | 0   | 0       | - | - | 0      | - | - |      |
| Stage 1              | 0      | 0   | 0      | 0      | 0    | 0   | 0       | - | - | 0      | - | - |      |
| Stage 2              | 0      | 0   | 0      | 0      | 0    | 0   | 0       | - | - | 0      | - | - |      |
| Platoon blocked, %   |        |     |        |        |      |     |         | - | - |        | - | - |      |
| Mov Cap-1 Maneuver   | -      | -   | -      | -      | -    | -   | -       | - | - | -      | - | - |      |
| Mov Cap-2 Maneuver   | -      | -   | -      | -      | -    | -   | -       | - | - | -      | - | - |      |
| Stage 1              | -      | -   | -      | -      | -    | -   | -       | - | - | -      | - | - |      |
| Stage 2              | -      | -   | -      | -      | -    | -   | -       | - | - | -      | - | - |      |
|                      |        |     |        |        |      |     |         |   |   |        |   |   |      |
| Approach             | EB     |     |        | WB     |      |     | NB      |   |   | SB     |   |   |      |
| HCM Control Delay, s | 0      |     |        | 0      |      |     | 0       |   | _ | 0      |   |   |      |
| HCM LOS              | Â      |     |        | Ă      |      |     | Ū       |   |   | Ū      |   |   |      |
|                      | ,,     |     |        | / \    |      |     |         |   |   |        |   |   |      |
|                      |        | NDT |        |        |      | ODT | 000     |   |   |        |   |   |      |
| Minor Lane/Major Mvm | It     | NBT | NBR EI | BLn1Wl | BLN1 | SBT | SBR     |   |   |        |   |   |      |
| Capacity (veh/h)     |        | -   | -      | -      | -    | -   | -       |   |   |        |   |   |      |
| UCM Lana V//C Datia  |        |     |        |        |      |     |         |   |   |        |   |   |      |

| HCM Lane V/C Ratio    | - | - | - | - | - | - |  |  |
|-----------------------|---|---|---|---|---|---|--|--|
| HCM Control Delay (s) | - | - | 0 | 0 | - | - |  |  |
| HCM Lane LOS          | - | - | А | А | - | - |  |  |
| HCM 95th %tile Q(veh) | - | - | - | - | - | - |  |  |

| ntersection | n |
|-------------|---|
|-------------|---|

| Int Delay, s/veh       | 1.1  |      |      |      |      |      |  |
|------------------------|------|------|------|------|------|------|--|
| Movement               | EBL  | EBR  | NBL  | NBT  | SBT  | SBR  |  |
| Lane Configurations    | Y    |      |      | 1    | 1    |      |  |
| Traffic Vol, veh/h     | 10   | 8    | 6    | 78   | 81   | 6    |  |
| Future Vol, veh/h      | 10   | 8    | 6    | 78   | 81   | 6    |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Stop | Stop | Free | Free | Free | Free |  |
| RT Channelized         | -    | None | -    | None | -    | None |  |
| Storage Length         | 0    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage, | ,# 0 | -    | -    | 0    | 0    | -    |  |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |  |
| Peak Hour Factor       | 92   | 92   | 92   | 92   | 92   | 92   |  |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 11   | 9    | 7    | 85   | 88   | 7    |  |
|                        |      |      |      |      |      |      |  |


| Major/Minor          | Minor2 |       | Major1 | Μ        | ajor2 |   |  |  |
|----------------------|--------|-------|--------|----------|-------|---|--|--|
| Conflicting Flow All | 191    | 92    | 95     | 0        | -     | 0 |  |  |
| Stage 1              | 92     | -     | -      | -        | -     | - |  |  |
| Stage 2              | 99     | -     | -      | -        | -     | - |  |  |
| Critical Hdwy        | 6.42   | 6.22  | 4.12   | -        | -     | - |  |  |
| Critical Hdwy Stg 1  | 5.42   | -     | -      | -        | -     | - |  |  |
| Critical Hdwy Stg 2  | 5.42   | -     | -      | -        | -     | - |  |  |
| Follow-up Hdwy       |        | 3.318 | 2.218  | -        | -     | - |  |  |
| Pot Cap-1 Maneuver   | 798    | 965   | 1499   | -        | -     | - |  |  |
| Stage 1              | 932    | -     | -      | -        | - )   | - |  |  |
| Stage 2              | 925    | -     | -      | -        | _ /   |   |  |  |
| Platoon blocked, %   |        |       |        | -        | -     | - |  |  |
| Mov Cap-1 Maneuver   |        | 965   | 1499   | -        | -     | - |  |  |
| Mov Cap-2 Maneuver   |        | -     | -      | -        | -     | - |  |  |
| Stage 1              | 927    | -     | -      | -        | -     | - |  |  |
| Stage 2              | 925    |       | -      | -        | -     | - |  |  |
|                      |        |       |        |          |       |   |  |  |
| Approach             | EB     |       | NB     |          | SB    |   |  |  |
| HCM Control Delay, s | 9.3    |       | 0.5    | <b>•</b> | 0     |   |  |  |
| HCM LOS              | А      |       |        |          |       |   |  |  |
|                      |        |       |        |          |       |   |  |  |

| Minor Lane/Major Mvmt | NBL   | NBT E | BLn1  | SBT | SBR |
|-----------------------|-------|-------|-------|-----|-----|
| Capacity (veh/h)      | 1499  | -     | 862   | -   | -   |
| HCM Lane V/C Ratio    | 0.004 | - (   | 0.023 | -   | -   |
| HCM Control Delay (s) | 7.4   | -     | 9.3   | -   | -   |
| HCM Lane LOS          | А     | -     | А     | -   | -   |
| HCM 95th %tile Q(veh) | 0     | -     | 0.1   | -   | -   |

# Timings 7: Meridian Rd & Woodmen Rd

| Lane Group         EBL         EBL         EBR         WBL         WBT         WBR         NBL         NBT         NBR         SBL         SBL         SBT         SBR           Lane Configurations         11         41         1         11         44         1         11         44         1         11         44         1         11         44         16         16         16         16         176         148         808         155         326         347         97         270         950         1041           Funt Type         Prot         NA         Free         7         4         3         8         5         2         1         6           Permitted Phases         7         4         3         8         5         2         1         6           Permitted Phase         7         4         3         8         5         2         1         6         50         15.0         5.0         15.0         5.0         15.0         50         15.0         50         15.0         50         15.0         50         15.0         50         15.0         50         50         50         50         50                                                                                                                                                                                                                               |                            | ۶          | -        | $\mathbf{F}$ | 4           | -          | •         | 1          | 1       | 1    | 1    | ţ       | ~    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------|----------|--------------|-------------|------------|-----------|------------|---------|------|------|---------|------|
| Traffic Volume (vph)       472       470       176       148       808       155       326       347       97       270       950       1041         Future Volume (vph)       472       470       176       148       808       155       326       347       97       270       950       1041         Turm Type       Prot       NA       Free       Remited Phases       Free       Prot       NA       Free       Prot       NA       Free       Prot       NA       Free       Free       Prot       NA       Free       Free<                                                                                                                                                                                                                                         | Lane Group                 |            |          | EBR          | WBL         | WBT        | WBR       | NBL        | NBT     | NBR  |      |         | SBR  |
| Future Volume (vph)       472       470       176       148       808       155       326       347       97       270       950       1041         Turn Type       Prot       NA       Free       Free       Prot       NA       Free       Free       Prot       NA       Free                                                                                                                                                                                                                                          | Lane Configurations        | ካካ         | <u></u>  | 1            | ካካ          | <u></u>    | 1         | ካካ         | <u></u> | 1    | ካካ   | <u></u> | 1    |
| Turn Type         Prot         NA         Free         Prot         NA         Free         Prot         NA         Free         NA         Free         NA         Free         NA         Free         Free </td <td></td> <td></td> <td>470</td> <td></td> |                            |            | 470      |              |             |            |           |            |         |      |      |         |      |
| Protected Phases         7         4         3         8         5         2         1         6           Permitted Phases         Free         8         Free         Free<                                                                                                                                                 |                            |            |          |              |             |            |           |            |         |      |      |         |      |
| Permitted Phases         Free         8         Free         Free         Free           Detector Phase         7         4         3         8         8         5         2         1         6           Switch Phase         50         15.0         5.0         15.0         5.0         15.0         5.0         15.0         5.0         15.0         5.0         15.0         5.0         15.0         5.0         15.0         5.0         15.0         5.0         15.0         5.0         15.0         5.0         15.0         5.0         15.0         5.0         15.0         5.0         15.0         5.0         15.0         5.0         15.0         5.0         15.0         5.0         15.0         5.0         15.0         5.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0<                                                                                                                                                                  |                            |            |          | Free         |             |            | Perm      |            |         | Free | Prot |         | Free |
| Detector Phase         7         4         3         8         8         5         2         1         6           Switch Phase         Minimum Initial (s)         5.0         15.0         5.0         15.0         5.0         15.0         5.0         15.0         5.0         15.0         15.0         5.0         15.0         5.0         15.0         15.0         5.0         15.0         5.0         15.0         15.0         5.0         15.0         5.0         15.0         15.0         5.0         15.0         5.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0         15.0                                                                                                                                                      |                            | 7          | 4        |              | 3           | 8          |           | 5          | 2       |      | 1    | 6       |      |
| Switch Phase       Minimum Initial (s)       5.0       15.0       5.0       15.0       5.0       15.0       5.0       15.0       5.0       15.0       5.0       15.0       5.0       15.0       5.0       15.0       5.0       15.0       5.0       15.0       5.0       15.0       5.0       15.0       5.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0       15.0<                                                                                                                                                                                                                         |                            |            |          | Free         |             |            |           |            |         | Free |      |         | Free |
| Minimum Initial (s)       5.0       15.0       5.0       15.0       5.0       15.0       5.0       15.0         Minimum Split (s)       12.5       22.0       13.5       22.0       13.5       22.0         Total Split (s)       21.0       41.0       19.0       39.0       39.0       20.0       34.0       26.0       40.0         Total Split (s)       17.5%       34.2%       15.8%       32.5%       32.5%       16.7%       28.3%       21.7%       33.3%         Yellow Time (s)       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0                                                                                                                                                                                                                                                                  |                            | 7          | 4        |              | 3           | 8          | 8         | 5          | 2       |      | 1    | 6       |      |
| Minimum Split (s)       12.5       22.0       12.5       22.0       13.5       22.0       13.5       22.0         Total Split (s)       11.0       41.0       19.0       39.0       39.0       20.0       34.0       26.0       40.0         Total Split (s)       17.5%       34.2%       15.8%       32.5%       16.7%       28.3%       21.7%       33.3%         Yellow Time (s)       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0                                                                                                                                                                                                                                                                    |                            |            |          |              |             |            |           |            |         |      |      |         |      |
| Total Split (s)       21.0       41.0       19.0       39.0       39.0       20.0       34.0       26.0       40.0         Total Split (%)       17.5%       34.2%       15.8%       32.5%       32.5%       16.7%       28.3%       21.7%       33.3%         Yellow Time (s)       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0                                                                                                                                                                                                                                                                      |                            |            |          |              |             |            |           |            |         |      |      |         |      |
| Total Split (%)       17.5%       34.2%       15.8%       32.5%       32.5%       16.7%       28.3%       21.7%       33.3%         Yellow Time (s)       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       <                                                                                                                                                                                                                                                                 |                            |            |          |              |             |            |           |            |         |      |      |         |      |
| Yellow Time (s)       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0                                                                                                                                                                                                                                                                           |                            |            |          |              |             |            |           |            |         |      |      |         |      |
| All-Red Time (s)       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0 <td></td>                                                                                                                                        |                            |            |          |              |             |            |           |            |         |      |      |         |      |
| Lost Time Adjust (s)       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                                                                                      |                            |            |          |              |             |            |           |            |         |      |      |         |      |
| Total Lost Time (s)       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0       5.0<                                                                                                                                                                                                                                                                      |                            |            |          |              |             |            |           |            |         |      |      |         |      |
| Lead/Lag         Lead         Lag         Lag <thlag< th="">         Lag         <thlag< th=""> <thlag<< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thlag<<></thlag<></thlag<>        |                            |            |          |              |             |            |           |            |         |      |      |         |      |
| Lead-Lag Optimize?         Yes                                                                                                                                                                              |                            | 5.0        | 5.0      |              | 5.0         | 5.0        | 5.0       | 5.0        | 5.0     |      |      | 5.0     |      |
| Recall Mode         None         None         None         None         None         None         None         None         C-Max         None         C-Max           Act Effct Green (s)         16.0         37.8         120.0         10.7         32.5         32.5         14.7         36.4         120.0         15.1         36.8         120.0           Actuated g/C Ratio         0.13         0.32         1.00         0.09         0.27         0.27         0.12         0.30         1.00         0.13         0.31         1.00           v/c Ratio         1.08         0.44         0.12         0.50         0.88         0.29         0.81         0.34         0.06         0.65         0.91         0.68           Control Delay         113.1         34.2         0.1         57.5         53.2         6.4         66.8         34.6         0.1         57.1         54.0         2.4           Queue Delay         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>U U</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                       |                            |            |          |              |             |            | U U       |            |         |      |      |         |      |
| Act Effct Green (s)       16.0       37.8       120.0       10.7       32.5       32.5       14.7       36.4       120.0       15.1       36.8       120.0         Actuated g/C Ratio       0.13       0.32       1.00       0.09       0.27       0.27       0.12       0.30       1.00       0.13       0.31       1.00         v/c Ratio       1.08       0.44       0.12       0.50       0.88       0.29       0.81       0.34       0.06       0.65       0.91       0.68         Control Delay       113.1       34.2       0.1       57.5       53.2       6.4       66.8       34.6       0.1       57.1       54.0       2.4         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                                                                                  |                            | Yes        |          |              | Yes         | Yes        | Yes       | Yes        |         |      | Yes  |         |      |
| Actuated g/C Ratio       0.13       0.32       1.00       0.09       0.27       0.27       0.12       0.30       1.00       0.13       0.31       1.00         v/c Ratio       1.08       0.44       0.12       0.50       0.88       0.29       0.81       0.34       0.06       0.65       0.91       0.68         Control Delay       113.1       34.2       0.1       57.5       53.2       6.4       66.8       34.6       0.1       57.1       54.0       2.4         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0 </td <td></td>                                                                                                                              |                            |            |          |              |             |            |           |            |         |      |      |         |      |
| v/c Ratio       1.08       0.44       0.12       0.50       0.88       0.29       0.81       0.34       0.06       0.65       0.91       0.68         Control Delay       113.1       34.2       0.1       57.5       53.2       6.4       66.8       34.6       0.1       57.1       54.0       2.4         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                                                                                              |                            |            |          |              |             |            |           |            |         |      |      |         |      |
| Control Delay       113.1       34.2       0.1       57.5       53.2       6.4       66.8       34.6       0.1       57.1       54.0       2.4         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                                                                                              |                            |            |          |              |             |            |           |            |         |      |      |         |      |
| Queue Delay         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                              |                            |            |          |              |             |            |           |            |         |      |      |         |      |
| Total Delay       113.1       34.2       0.1       57.5       53.2       6.4       66.8       34.6       0.1       57.1       54.0       2.4         LOS       F       C       A       E       D       A       E       C       A       E       D       A         Approach Delay       62.2       47.3       43.9       30.6       A       Approach LOS       E       D       D       C       Intersection Summary         Cycle Length: 120       Actuated Cycle Length: 120       Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of FDW or yellow, Master Intersection       Natural Cycle: 90       O       Control Type: Actuated-Coordinated       Maximum v/c Ratio: 1.08       Intersection LOS: D       Intersection LOS: D       Intersection Signal Delay: 42.8       Intersection LOS: D       Intersection Service E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                          |            |          |              |             |            |           |            |         |      |      |         |      |
| LOS       F       C       A       E       D       A       E       C       A       E       D       A         Approach Delay       62.2       47.3       43.9       30.6         Approach LOS       E       D       D       C         Intersection Summary       C       C       Intersection Summary       C         Cycle Length: 120       Actuated Cycle Length: 120       C       C       C         Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of FDW or yellow, Master Intersection       Natural Cycle: 90       C         Control Type: Actuated-Coordinated       Maximum v/c Ratio: 1.08       Intersection LOS: D       Intersection Signal Delay: 42.8       Intersection LOS: D         Intersection Capacity Utilization 88.0%       ICU Level of Service E       E       ICU Level of Service E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |            |          |              |             |            |           |            |         |      |      |         |      |
| Approach Delay       62.2       47.3       43.9       30.6         Approach LOS       E       D       D       C         Intersection Summary       C       C       C         Cycle Length: 120       Actuated Cycle Length: 120       C       C         Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of FDW or yellow, Master Intersection       Natural Cycle: 90       C         Control Type: Actuated-Coordinated       Maximum v/c Ratio: 1.08       Intersection LOS: D       Intersection LOS: D         Intersection Capacity Utilization 88.0%       ICU Level of Service E       C       C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |            | -        | -            |             |            |           |            |         |      | -    |         |      |
| Approach LOS       E       D       D       C         Intersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | F          |          | Α            | E           |            | А         | E          |         | А    | E    |         | A    |
| Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120 Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of FDW or yellow, Master Intersection Natural Cycle: 90 Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.08 Intersection Signal Delay: 42.8 Intersection LOS: D Intersection Capacity Utilization 88.0% ICU Level of Service E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |            |          |              |             |            |           |            |         |      |      |         |      |
| Cycle Length: 120<br>Actuated Cycle Length: 120<br>Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of FDW or yellow, Master Intersection<br>Natural Cycle: 90<br>Control Type: Actuated-Coordinated<br>Maximum v/c Ratio: 1.08<br>Intersection Signal Delay: 42.8<br>Intersection LOS: D<br>Intersection Capacity Utilization 88.0%<br>ICU Level of Service E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Approach LOS               |            | E        |              |             | D          |           |            | D       |      |      | С       |      |
| Actuated Cycle Length: 120<br>Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of FDW or yellow, Master Intersection<br>Natural Cycle: 90<br>Control Type: Actuated-Coordinated<br>Maximum v/c Ratio: 1.08<br>Intersection Signal Delay: 42.8<br>Intersection LOS: D<br>Intersection Capacity Utilization 88.0%<br>ICU Level of Service E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Intersection Summary       |            |          |              |             |            |           |            |         |      |      |         |      |
| Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of FDW or yellow, Master Intersection         Natural Cycle: 90         Control Type: Actuated-Coordinated         Maximum v/c Ratio: 1.08         Intersection Signal Delay: 42.8         Intersection Capacity Utilization 88.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cycle Length: 120          |            |          |              |             |            |           |            |         |      |      |         |      |
| Natural Cycle: 90         Control Type: Actuated-Coordinated         Maximum v/c Ratio: 1.08         Intersection Signal Delay: 42.8         Intersection Capacity Utilization 88.0%         ICU Level of Service E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Actuated Cycle Length: 120 |            |          |              |             |            |           |            |         |      |      |         |      |
| Natural Cycle: 90         Control Type: Actuated-Coordinated         Maximum v/c Ratio: 1.08         Intersection Signal Delay: 42.8         Intersection Capacity Utilization 88.0%         ICU Level of Service E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Offset: 0 (0%), Referenced | to phase 2 | :NBT and | 6:SBT, S     | Start of FD | W or yel   | low, Mast | er Interse | ection  |      |      |         |      |
| Control Type: Actuated-Coordinated         Maximum v/c Ratio: 1.08         Intersection Signal Delay: 42.8         Intersection Capacity Utilization 88.0%         ICU Level of Service E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |            |          |              |             | ,          |           |            |         |      |      |         |      |
| Maximum v/c Ratio: 1.08         Intersection Signal Delay: 42.8         Intersection Capacity Utilization 88.0%         ICU Level of Service E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | ordinated  |          |              |             |            |           |            |         |      |      |         |      |
| Intersection Capacity Utilization 88.0% ICU Level of Service E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Maximum v/c Ratio: 1.08    |            |          |              |             |            |           |            |         |      |      |         |      |
| Intersection Capacity Utilization 88.0% ICU Level of Service E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | 2.8        |          |              | lr          | ntersectio | n LOS: D  |            |         |      |      |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |            | )        |              |             |            |           |            |         |      |      |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analysis Period (min) 15   |            |          |              |             |            |           |            |         |      |      |         |      |

Splits and Phases: 7: Meridian Rd & Woodmen Rd



### Timings 8: McLaughlin Rd & Woodmen Rd

|                                                                                            | ≯       | -            | $\mathbf{r}$ | 4           | +           | •        | 1     | Ť        | 1     | 1     | Ļ        | ~     |
|--------------------------------------------------------------------------------------------|---------|--------------|--------------|-------------|-------------|----------|-------|----------|-------|-------|----------|-------|
| Lane Group                                                                                 | EBL     | EBT          | EBR          | WBL         | WBT         | WBR      | NBL   | NBT      | NBR   | SBL   | SBT      | SBF   |
| Lane Configurations                                                                        | ሻ       | - <b>†</b> † | 1            | ሻ           | - <b>††</b> | 1        | ሻ     | <b>↑</b> | 1     | ሻ     | <b>↑</b> | 1     |
| Traffic Volume (vph)                                                                       | 100     | 637          | 100          | 50          | 736         | 150      | 75    | 50       | 50    | 125   | 125      | 300   |
| Future Volume (vph)                                                                        | 100     | 637          | 100          | 50          | 736         | 150      | 75    | 50       | 50    | 125   | 125      | 300   |
| Turn Type                                                                                  | pm+pt   | NA           | Perm         | pm+pt       | NA          | Perm     | pm+pt | NA       | Perm  | pm+pt | NA       | Pern  |
| Protected Phases                                                                           | 5       | 2            |              | 1           | 6           |          | 3     | 8        |       | 7     | 4        |       |
| Permitted Phases                                                                           | 2       |              | 2            | 6           |             | 6        | 8     |          | 8     | 4     |          | 4     |
| Detector Phase                                                                             | 5       | 2            | 2            | 1           | 6           | 6        | 3     | 8        | 8     | 7     | 4        | 4     |
| Switch Phase                                                                               |         |              |              |             |             |          |       |          |       |       |          |       |
| Minimum Initial (s)                                                                        | 5.0     | 5.0          | 5.0          | 5.0         | 5.0         | 5.0      | 5.0   | 5.0      | 5.0   | 5.0   | 5.0      | 5.(   |
| Minimum Split (s)                                                                          | 12.5    | 25.0         | 25.0         | 12.5        | 25.0        | 25.0     | 13.5  | 25.0     | 25.0  | 13.5  | 25.0     | 25.0  |
| Total Split (s)                                                                            | 14.0    | 37.0         | 37.0         | 14.0        | 37.0        | 37.0     | 14.0  | 25.0     | 25.0  | 14.0  | 25.0     | 25.0  |
| Total Split (%)                                                                            | 15.6%   | 41.1%        | 41.1%        | 15.6%       | 41.1%       | 41.1%    | 15.6% | 27.8%    | 27.8% | 15.6% | 27.8%    | 27.8% |
| Yellow Time (s)                                                                            | 4.0     | 5.0          | 5.0          | 4.0         | 5.0         | 5.0      | 5.0   | 5.0      | 5.0   | 5.0   | 5.0      | 5.0   |
| All-Red Time (s)                                                                           | 3.5     | 2.0          | 2.0          | 3.5         | 2.0         | 2.0      | 3.5   | 2.0      | 2.0   | 3.5   | 2.0      | 2.0   |
| Lost Time Adjust (s)                                                                       | 0.0     | 0.0          | 0.0          | 0.0         | 0.0         | 0.0      | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Lost Time (s)                                                                        | 7.5     | 7.0          | 7.0          | 7.5         | 7.0         | 7.0      | 8.5   | 7.0      | 7.0   | 8.5   | 7.0      | 7.0   |
| Lead/Lag                                                                                   | Lead    | Lag          | Lag          | Lead        | Lag         | Lag      | Lead  | Lag      | Lag   | Lead  | Lag      | Lag   |
| Lead-Lag Optimize?                                                                         | Yes     | Yes          | Yes          | Yes         | Yes         | Yes      | Yes   | Yes      | Yes   | Yes   | Yes      | Yes   |
| Recall Mode                                                                                | None    | C-Max        | C-Max        | None        | C-Max       | C-Max    | None  | Max      | Max   | None  | Max      | Max   |
| Act Effct Green (s)                                                                        | 39.0    | 35.6         | 35.6         | 37.4        | 32.8        | 32.8     | 22.0  | 18.0     | 18.0  | 23.7  | 20.8     | 20.8  |
| Actuated g/C Ratio                                                                         | 0.43    | 0.40         | 0.40         | 0.42        | 0.36        | 0.36     | 0.24  | 0.20     | 0.20  | 0.26  | 0.23     | 0.23  |
| v/c Ratio                                                                                  | 0.36    | 0.46         | 0.13         | 0.15        | 0.58        | 0.21     | 0.23  | 0.14     | 0.10  | 0.35  | 0.30     | 0.52  |
| Control Delay                                                                              | 16.9    | 22.9         | 0.3          | 13.9        | 26.3        | 0.9      | 22.9  | 30.8     | 0.4   | 25.7  | 32.7     | 8.3   |
| Queue Delay                                                                                | 0.0     | 0.0          | 0.0          | 0.0         | 0.0         | 0.0      | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Delay                                                                                | 16.9    | 22.9         | 0.3          | 13.9        | 26.3        | 0.9      | 22.9  | 30.8     | 0.4   | 25.7  | 32.7     | 8.3   |
| LOS                                                                                        | В       | С            | А            | В           | С           | А        | С     | С        | А     | С     | С        | ŀ     |
| Approach Delay                                                                             |         | 19.5         |              |             | 21.6        |          |       | 18.8     |       |       | 17.8     |       |
| Approach LOS                                                                               |         | В            |              |             | C           |          |       | В        |       |       | В        |       |
| Intersection Summary                                                                       |         |              |              |             |             |          |       |          |       |       |          |       |
| Cycle Length: 90                                                                           |         |              |              |             |             |          |       |          |       |       |          |       |
| Actuated Cycle Length: 90                                                                  |         |              |              |             |             |          |       |          |       |       |          |       |
| Offset: 0 (0%), Referenced to                                                              | phase 2 | :EBTL an     | d 6:WBTI     | _, Start of | Green       |          |       |          |       |       |          |       |
| Natural Cycle: 80                                                                          |         |              |              |             |             |          |       |          |       |       |          |       |
| Control Type: Actuated-Coord                                                               | dinated |              |              |             |             |          |       |          |       |       |          |       |
| Maximum v/c Ratio: 0.58                                                                    |         |              |              |             |             |          |       |          |       |       |          |       |
| Intersection Signal Delay: 19.                                                             | 9       |              |              | li          | ntersectio  | n LOS: B |       |          |       |       |          |       |
| Intersection Capacity Utilization                                                          |         | )            |              |             |             |          | эB    |          |       |       |          |       |
| Intersection Capacity Utilization 60.7% ICU Level of Service B<br>Analysis Period (min) 15 |         |              |              |             |             |          |       |          |       |       |          |       |

Splits and Phases: 8: McLaughlin Rd & Woodmen Rd

| Ø1   | 🖉 🖉 🖉 🖉       | <b>▲</b> Ø3 | Ø4   |
|------|---------------|-------------|------|
| 14 s | 37 s          | 14 s        | 25 s |
|      | ●<br>● Ø6 (R) | Ø7          | 1 Ø8 |
| 14 s | 37 s          | 14 s        | 25 s |

### Timings 9: US 24 & Woodmen Rd

|                              | ٦             | -        | $\mathbf{r}$ | 4         | ←          | •          | 1     | Ť     | 1     | 1     | ţ     | ~     |
|------------------------------|---------------|----------|--------------|-----------|------------|------------|-------|-------|-------|-------|-------|-------|
| Lane Group                   | EBL           | EBT      | EBR          | WBL       | WBT        | WBR        | NBL   | NBT   | NBR   | SBL   | SBT   | SBF   |
| Lane Configurations          | ሻሻ            | <b>†</b> | 1            | ۳         | <u></u>    | 1          | ካካ    | ተተተ   | 1     | ٦     | ተተተ   | 7     |
| Traffic Volume (vph)         | 375           | 87       | 350          | 21        | 51         | 33         | 400   | 750   | 17    | 44    | 925   | 48    |
| Future Volume (vph)          | 375           | 87       | 350          | 21        | 51         | 33         | 400   | 750   | 17    | 44    | 925   | 48    |
| Turn Type                    | Prot          | NA       | Free         | pm+pt     | NA         | Free       | Prot  | NA    | Perm  | pm+pt | NA    | Free  |
| Protected Phases             | 7             | 4        |              | 3         | 8          |            | 5     | 2     |       | 1     | 6     |       |
| Permitted Phases             |               |          | Free         | 8         |            | Free       |       |       | 2     | 6     |       | Free  |
| Detector Phase               | 7             | 4        |              | 3         | 8          |            | 5     | 2     | 2     | 1     | 6     |       |
| Switch Phase                 |               |          |              |           |            |            |       |       |       |       |       |       |
| Minimum Initial (s)          | 20.0          | 15.0     |              | 5.0       | 15.0       |            | 5.0   | 15.0  | 15.0  | 5.0   | 15.0  |       |
| Minimum Split (s)            | 25.0          | 23.0     |              | 10.0      | 23.0       |            | 10.0  | 23.0  | 23.0  | 10.0  | 23.0  |       |
| Total Split (s)              | 27.0          | 37.0     |              | 15.0      | 25.0       |            | 20.0  | 58.0  | 58.0  | 10.0  | 48.0  |       |
| Total Split (%)              | 22.5%         | 30.8%    |              | 12.5%     | 20.8%      |            | 16.7% | 48.3% | 48.3% | 8.3%  | 40.0% |       |
| Yellow Time (s)              | 3.0           | 3.0      |              | 3.0       | 3.0        |            | 3.0   | 3.0   | 3.0   | 3.0   | 3.0   |       |
| All-Red Time (s)             | 2.0           | 2.0      |              | 2.0       | 2.0        |            | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   |       |
| Lost Time Adjust (s)         | 0.0           | 0.0      |              | 0.0       | 0.0        |            | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |       |
| Total Lost Time (s)          | 5.0           | 5.0      |              | 5.0       | 5.0        |            | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   |       |
| Lead/Lag                     | Lead          | Lag      |              | Lead      | Lag        |            | Lead  | Lag   | Lag   | Lead  | Lag   |       |
| Lead-Lag Optimize?           | Yes           | Yes      |              | Yes       | Yes        |            | Yes   | Yes   | Yes   | Yes   | Yes   |       |
| Recall Mode                  | None          | None     |              | None      | None       |            | None  | C-Max | C-Max | None  | C-Max |       |
| Act Effct Green (s)          | 20.6          | 29.3     | 120.0        | 18.6      | 15.0       | 120.0      | 21.0  | 63.5  | 63.5  | 54.3  | 47.4  | 120.0 |
| Actuated g/C Ratio           | 0.17          | 0.24     | 1.00         | 0.16      | 0.12       | 1.00       | 0.18  | 0.53  | 0.53  | 0.45  | 0.40  | 1.00  |
| v/c Ratio                    | 0.68          | 0.21     | 0.24         | 0.10      | 0.12       | 0.02       | 0.72  | 0.30  | 0.02  | 0.14  | 0.50  | 0.33  |
| Control Delay                | 53.1          | 37.2     | 0.4          | 28.9      | 47.5       | 0.0        | 54.4  | 18.0  | 0.1   | 13.8  | 29.6  | 0.6   |
| Queue Delay                  | 0.0           | 0.0      | 0.0          | 0.0       | 0.0        | 0.0        | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Delay                  | 53.1          | 37.2     | 0.4          | 28.9      | 47.5       | 0.0        | 54.4  | 18.0  | 0.1   | 13.8  | 29.6  | 0.6   |
| LOS                          | D             | D        | Α            | С         | D          | А          | D     | В     | А     | В     | С     | A     |
| Approach Delay               |               | 28.7     |              |           | 28.8       |            |       | 30.3  |       |       | 19.4  |       |
| Approach LOS                 |               | С        |              |           | C          |            |       | С     |       |       | В     |       |
| Intersection Summary         |               |          |              |           |            |            |       |       |       |       |       |       |
| Cycle Length: 120            |               |          |              |           |            |            |       |       |       |       |       |       |
| Actuated Cycle Length: 12    | 20            |          |              |           |            |            |       |       |       |       |       |       |
| Offset: 118 (98%), Refere    | nced to phase | e 2:NBT  | and 6:SB     | TL, Start | of Green   |            |       |       |       |       |       |       |
| Natural Cycle: 85            |               |          |              |           |            |            |       |       |       |       |       |       |
| Control Type: Actuated-Co    | oordinated    |          |              |           |            |            |       |       |       |       |       |       |
| Maximum v/c Ratio: 0.72      |               |          |              |           |            |            |       |       |       |       |       |       |
| Intersection Signal Delay:   | 25.4          |          |              | l         | ntersectio | n LOS: C   |       |       |       |       |       |       |
| Intersection Capacity Utiliz |               | )        |              | I         | CU Level   | of Service | в     |       |       |       |       |       |
|                              |               |          |              |           |            |            |       |       |       |       |       |       |
| Analysis Period (min) 15     | IS 24 & Woo   | dmon Dd  |              |           |            |            |       |       |       |       |       |       |

Splits and Phases: 9: US 24 & Woodmen Rd

| Ø1 Ø2 (R)     | <b>√</b> Ø3     | <b>→</b> <sub>Ø4</sub> |
|---------------|-----------------|------------------------|
| 10 s 58 s     | 15 s            | 37 s                   |
| ▲ øs 🖡 🖡 øs ( | ▶ <sub>Ø7</sub> | <b>₩</b> Ø8            |
| 20 s 48 s     | 27 s            | 25 s                   |

## Timings 10: US 24 & Meridian Rd

|                               | ٦           | -          | $\mathbf{\hat{z}}$ | 4         | +           | *          | 1     | Ť     | 1     | 1     | Ŧ       | ~     |
|-------------------------------|-------------|------------|--------------------|-----------|-------------|------------|-------|-------|-------|-------|---------|-------|
| Lane Group                    | EBL         | EBT        | EBR                | WBL       | WBT         | WBR        | NBL   | NBT   | NBR   | SBL   | SBT     | SBF   |
| Lane Configurations           | 1           | <u></u>    | 1                  | ľ         | <u></u>     | 1          | ሻሻ    | ተተተ   | 1     | ľ     | <u></u> | 1     |
| Traffic Volume (vph)          | 30          | 525        | 1000               | 40        | 275         | 245        | 275   | 892   | 30    | 215   | 1056    | 40    |
| Future Volume (vph)           | 30          | 525        | 1000               | 40        | 275         | 245        | 275   | 892   | 30    | 215   | 1056    | 4(    |
| Turn Type                     | pm+pt       | NA         | Free               | pm+pt     | NA          | Free       | Prot  | NA    | Perm  | pm+pt | NA      | Pern  |
| Protected Phases              | 5           | 2          |                    | 1         | 6           |            | 3     | 8     |       | 7     | 4       |       |
| Permitted Phases              | 2           |            | Free               | 6         |             | Free       |       |       | 8     | 4     |         | 4     |
| Detector Phase                | 5           | 2          |                    | 1         | 6           |            | 3     | 8     | 8     | 7     | 4       | 4     |
| Switch Phase                  |             |            |                    |           |             |            |       |       |       |       |         |       |
| Minimum Initial (s)           | 5.0         | 5.0        |                    | 5.0       | 5.0         |            | 5.0   | 5.0   | 5.0   | 5.0   | 5.0     | 5.0   |
| Minimum Split (s)             | 11.0        | 20.0       |                    | 11.0      | 20.0        |            | 11.0  | 20.0  | 20.0  | 11.0  | 20.0    | 20.0  |
| Total Split (s)               | 11.0        | 21.0       |                    | 11.0      | 21.0        |            | 16.0  | 42.0  | 42.0  | 16.0  | 42.0    | 42.0  |
| Total Split (%)               | 12.2%       | 23.3%      |                    | 12.2%     | 23.3%       |            | 17.8% | 46.7% | 46.7% | 17.8% | 46.7%   | 46.7% |
| Yellow Time (s)               | 3.0         | 5.0        |                    | 3.0       | 5.0         |            | 3.0   | 4.5   | 4.5   | 3.0   | 4.5     | 4.5   |
| All-Red Time (s)              | 3.0         | 2.0        |                    | 3.0       | 2.0         |            | 3.0   | 2.0   | 2.0   | 3.0   | 2.0     | 2.0   |
| Lost Time Adjust (s)          | 0.0         | 0.0        |                    | 0.0       | 0.0         |            | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Total Lost Time (s)           | 6.0         | 7.0        |                    | 6.0       | 7.0         |            | 6.0   | 6.5   | 6.5   | 6.0   | 6.5     | 6.5   |
| Lead/Lag                      | Lead        | Lag        |                    | Lead      | Lag         |            | Lead  | Lag   | Lag   | Lead  | Lag     | Lag   |
| Lead-Lag Optimize?            | Yes         | Yes        |                    | Yes       | Yes         |            | Yes   | Yes   | Yes   | Yes   | Yes     | Yes   |
| Recall Mode                   | None        | C-Max      |                    | None      | C-Max       |            | None  | None  | None  | None  | None    | None  |
| Act Effct Green (s)           | 30.7        | 25.6       | 90.0               | 31.1      | 25.8        | 90.0       | 9.9   | 27.3  | 27.3  | 37.3  | 27.1    | 27.1  |
| Actuated g/C Ratio            | 0.34        | 0.28       | 1.00               | 0.35      | 0.29        | 1.00       | 0.11  | 0.30  | 0.30  | 0.41  | 0.30    | 0.30  |
| v/c Ratio                     | 0.07        | 0.53       | 0.64               | 0.13      | 0.28        | 0.16       | 0.75  | 0.59  | 0.05  | 0.70  | 0.70    | 0.07  |
| Control Delay                 | 17.9        | 29.3       | 4.4                | 21.0      | 29.1        | 0.2        | 52.2  | 27.9  | 0.2   | 25.9  | 30.2    | 0.2   |
| Queue Delay                   | 0.0         | 0.0        | 0.0                | 0.0       | 0.0         | 0.0        | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Total Delay                   | 17.9        | 29.3       | 4.4                | 21.0      | 29.1        | 0.2        | 52.2  | 27.9  | 0.2   | 25.9  | 30.2    | 0.2   |
| LOS                           | В           | С          | Α                  | С         | С           | А          | D     | С     | А     | С     | С       | A     |
| Approach Delay                |             | 13.0       |                    |           | 15.9        |            |       | 32.8  |       |       | 28.6    |       |
| Approach LOS                  |             | В          |                    |           | В           |            |       | С     |       |       | С       |       |
| Intersection Summary          |             |            |                    |           |             |            |       |       |       |       |         |       |
| Cycle Length: 90              |             |            |                    |           |             |            |       |       |       |       |         |       |
| Actuated Cycle Length: 90     |             |            |                    | Ť         |             |            |       |       |       |       |         |       |
| Offset: 71 (79%), Reference   | ed to phase | e 2:EBTL a | and 6:WE           | BTL, Star | of FDW of   | or yellow  |       |       |       |       |         |       |
| Natural Cycle: 65             |             |            |                    |           |             |            |       |       |       |       |         |       |
| Control Type: Actuated-Coo    | rdinated    |            |                    |           |             |            |       |       |       |       |         |       |
| Maximum v/c Ratio: 0.75       |             |            |                    |           |             |            |       |       |       |       |         |       |
| Intersection Signal Delay: 22 | 2.9         |            |                    | li        | ntersection | LOS: C     |       |       |       |       |         |       |
| Intersection Capacity Utiliza | tion 69.1%  | ò          |                    | 10        | CU Level    | of Service | C     |       |       |       |         |       |
| Analysis Period (min) 15      |             |            |                    |           |             |            |       |       |       |       |         |       |

Splits and Phases: 10: US 24 & Meridian Rd

| Ø1   |      | <b>▲</b> ø3 | <b>↓</b> <sub>Ø4</sub> |
|------|------|-------------|------------------------|
| 11 s | 21 s | 16 s        | 42 s                   |
|      |      | Ø7          | ¶øs                    |
| 11 s | 21 s | 16 s        | 42 s                   |

0

#### Intersection

| Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------|
| Lane Configurations                                                                                                                         |
| Traffic Vol, veh/h 0 0 50 0 0 130 0 1037 130 0 1261 35                                                                                      |
| Future Vol, veh/h         0         0         50         0         130         0         1037         130         0         1261         35 |
| Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                            |
| Sign Control Stop Stop Stop Stop Stop Stop Free Free Free Free Free Free                                                                    |
| RT Channelized Free Free None None                                                                                                          |
| Storage Length 0 0                                                                                                                          |
| Veh in Median Storage, # - 0 0 0 0 -                                                                                                        |
| Grade, % - 0 0 0 0 -                                                                                                                        |
| Peak Hour Factor 91 91 91 91 91 91 91 91 91 91 91 91 91                                                                                     |
| Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                       |
| Mvmt Flow 0 0 55 0 0 143 0 1140 143 0 1386 38                                                                                               |

| Major/Minor          | Minor2 |     | М     | inor1  |      | Ν   | 1ajor1 |     | M | ajor2 |   |   |
|----------------------|--------|-----|-------|--------|------|-----|--------|-----|---|-------|---|---|
| Conflicting Flow All | -      | -   | -     | -      | -    | -   | -      | 0   | 0 | -     |   | 0 |
| Stage 1              | -      | -   | -     | -      | -    | -   |        |     | - | -     | - | - |
| Stage 2              | -      | -   | -     | -      | -    | -   | -      | - / | - | -     | - | - |
| Critical Hdwy        | -      | -   | -     | -      | -    | -   | -      | -   | - | -     | - | - |
| Critical Hdwy Stg 1  | -      | -   | -     | -      | -    | -   | -      | -   | - | -     | - | - |
| Critical Hdwy Stg 2  | -      | -   | -     | -      | -    | -   | -      | -   | - | -     | - | - |
| Follow-up Hdwy       | -      | -   | -     | -      | -    | -   | -      | -   | - | -     | - | - |
| Pot Cap-1 Maneuver   | 0      | 0   | 0     | 0      | 0    | 0   | 0      | -   | - | 0     | - | - |
| Stage 1              | 0      | 0   | 0     | 0      | 0    | 0   | 0      | -   | - | 0     | - | - |
| Stage 2              | 0      | 0   | 0     | 0      | 0    | 0   | 0      | -   | - | 0     | - | - |
| Platoon blocked, %   |        |     |       |        |      |     |        | -   | - |       | - | - |
| Mov Cap-1 Maneuver   |        | -   | -     | -      | -    | -   | -      | -   | - | -     | - | - |
| Mov Cap-2 Maneuver   | r -    | -   | -     | -      | -    | -   | -      | -   | - | -     | - | - |
| Stage 1              | -      | -   | -     | -      | -    | -   | -      | -   | - | -     | - | - |
| Stage 2              | -      | -   | -     | -      | -    | -   | -      | -   | - | -     | - | - |
|                      |        |     |       |        |      |     |        |     |   |       |   |   |
| Approach             | EB     |     |       | WB     |      |     | NB     |     |   | SB    |   |   |
| HCM Control Delay, s |        |     |       | 0      |      |     | 0      |     |   | 0     |   |   |
| HCM LOS              | A      |     |       | Ă      |      |     | Ū      |     |   | v     |   |   |
|                      |        |     |       |        |      |     |        |     |   |       |   |   |
| Minor Lane/Major Mv  | mt     | NBT | NBR E | BLn1WE | 3Ln1 | SBT | SBR    |     |   |       |   |   |
| Capacity (veh/h)     |        | -   | -     | -      | -    | -   | -      |     |   |       |   |   |
| HCM Lane V/C Ratio   |        | -   | -     | -      | -    | -   | -      |     |   |       |   |   |

| HCM Lane V/C Ratio    | - | - | - | - | - | - |  |  |
|-----------------------|---|---|---|---|---|---|--|--|
| HCM Control Delay (s) | - | - | 0 | 0 | - | - |  |  |
| HCM Lane LOS          | - | - | А | А | - | - |  |  |
| HCM 95th %tile Q(veh) | - | - | - | - | - | - |  |  |

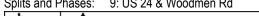
# Timings 7: Meridian Rd & Woodmen Rd

|                               | ٨          | -        | $\mathbf{F}$ | 4           | +            | •          | 1          | 1       | 1     | 1     | ţ       | 4     |
|-------------------------------|------------|----------|--------------|-------------|--------------|------------|------------|---------|-------|-------|---------|-------|
| Lane Group                    | EBL        | EBT      | EBR          | WBL         | WBT          | WBR        | NBL        | NBT     | NBR   | SBL   | SBT     | SBR   |
| Lane Configurations           | ሻሻ         | <u></u>  | 1            | ካካ          | - <b>†</b> † | 1          | ሻሻ         | <u></u> | 1     | ካካ    | <u></u> | 1     |
| Traffic Volume (vph)          | 785        | 659      | 376          | 223         | 595          | 249        | 463        | 896     | 197   | 459   | 713     | 602   |
| Future Volume (vph)           | 785        | 659      | 376          | 223         | 595          | 249        | 463        | 896     | 197   | 459   | 713     | 602   |
| Turn Type                     | Prot       | NA       | Free         | Prot        | NA           | Perm       | Prot       | NA      | Free  | Prot  | NA      | Free  |
| Protected Phases              | 7          | 4        |              | 3           | 8            |            | 5          | 2       |       | 1     | 6       |       |
| Permitted Phases              |            |          | Free         |             |              | 8          |            |         | Free  |       |         | Free  |
| Detector Phase                | 7          | 4        |              | 3           | 8            | 8          | 5          | 2       |       | 1     | 6       |       |
| Switch Phase                  |            |          |              |             |              |            |            |         |       |       |         |       |
| Minimum Initial (s)           | 5.0        | 15.0     |              | 5.0         | 15.0         | 15.0       | 5.0        | 15.0    |       | 5.0   | 15.0    |       |
| Minimum Split (s)             | 12.5       | 22.0     |              | 12.5        | 22.0         | 22.0       | 13.5       | 22.0    |       | 13.5  | 22.0    |       |
| Total Split (s)               | 32.0       | 43.0     |              | 18.0        | 29.0         | 29.0       | 23.0       | 36.0    |       | 23.0  | 36.0    |       |
| Total Split (%)               | 26.7%      | 35.8%    |              | 15.0%       | 24.2%        | 24.2%      | 19.2%      | 30.0%   |       | 19.2% | 30.0%   |       |
| Yellow Time (s)               | 3.0        | 3.0      |              | 3.0         | 3.0          | 3.0        | 3.0        | 3.0     |       | 3.0   | 3.0     |       |
| All-Red Time (s)              | 2.0        | 2.0      |              | 2.0         | 2.0          | 2.0        | 2.0        | 2.0     |       | 2.0   | 2.0     |       |
| Lost Time Adjust (s)          | 0.0        | 0.0      |              | 0.0         | 0.0          | 0.0        | 0.0        | 0.0     |       | 0.0   | 0.0     |       |
| Total Lost Time (s)           | 5.0        | 5.0      |              | 5.0         | 5.0          | 5.0        | 5.0        | 5.0     |       | 5.0   | 5.0     |       |
| Lead/Lag                      | Lead       | Lag      |              | Lead        | Lag          | Lag        | Lead       | Lag     |       | Lead  | Lag     |       |
| Lead-Lag Optimize?            | Yes        | Yes      |              | Yes         | Yes          | Yes        | Yes        | Yes     |       | Yes   | Yes     |       |
| Recall Mode                   | None       | None     |              | None        | None         | None       | None       | C-Max   |       | None  | C-Max   |       |
| Act Effct Green (s)           | 27.0       | 38.5     | 120.0        | 12.1        | 23.6         | 23.6       | 18.1       | 31.3    | 120.0 | 18.1  | 31.3    | 120.0 |
| Actuated g/C Ratio            | 0.22       | 0.32     | 1.00         | 0.10        | 0.20         | 0.20       | 0.15       | 0.26    | 1.00  | 0.15  | 0.26    | 1.00  |
| v/c Ratio                     | 1.06       | 0.60     | 0.25         | 0.67        | 0.89         | 0.50       | 0.93       | 1.01    | 0.13  | 0.93  | 0.81    | 0.40  |
| Control Delay                 | 94.0       | 37.2     | 0.4          | 78.1        | 51.7         | 11.8       | 76.2       | 76.3    | 0.2   | 75.5  | 49.5    | 0.7   |
| Queue Delay                   | 0.0        | 0.0      | 0.0          | 0.0         | 0.0          | 0.0        | 0.0        | 0.0     | 0.0   | 0.0   | 0.0     | 0.0   |
| Total Delay                   | 94.0       | 37.2     | 0.4          | 78.1        | 51.7         | 11.8       | 76.2       | 76.3    | 0.2   | 75.5  | 49.5    | 0.7   |
| LOS                           | F          | D        | Α            | E           | D            | В          | E          | E       | А     | E     | D       | A     |
| Approach Delay                |            | 54.1     |              |             | 47.9         |            |            | 66.7    |       |       | 39.7    |       |
| Approach LOS                  |            | D        |              |             | D            |            |            | E       |       |       | D       |       |
| Intersection Summary          |            |          |              |             |              |            |            |         |       |       |         |       |
| Cycle Length: 120             |            |          |              |             |              |            |            |         |       |       |         |       |
| Actuated Cycle Length: 120    | )          |          |              |             |              |            |            |         |       |       |         |       |
| Offset: 0 (0%), Referenced    | to phase 2 | :NBT and | 6:SBT, S     | Start of FE | DW or yel    | low, Mast  | er Interse | ection  |       |       |         |       |
| Natural Cycle: 110            |            |          |              |             |              |            |            |         |       |       |         |       |
| Control Type: Actuated-Cod    | ordinated  |          |              |             |              |            |            |         |       |       |         |       |
| Maximum v/c Ratio: 1.06       |            |          |              |             |              |            |            |         |       |       |         |       |
| Intersection Signal Delay: 5  | 52.1       |          |              | Ir          | ntersectio   | n LOS: D   |            |         |       |       |         |       |
| Intersection Capacity Utiliza |            | )        |              | 10          | CU Level     | of Service | ə F        |         |       |       |         |       |
| Analysis Period (min) 15      |            |          |              |             |              |            |            |         |       |       |         |       |
|                               |            |          |              |             |              |            |            |         |       |       |         |       |

Splits and Phases: 7: Meridian Rd & Woodmen Rd

| Ø1          | Ø2 (R) | • | <b>√</b> Ø3 | <b>→</b> Ø4                 |  |
|-------------|--------|---|-------------|-----------------------------|--|
| 23 s        | 36 s   |   | 18 s        | 43 s                        |  |
| <b>▲</b> ø5 | Ø6 (R) | • | ▶<br>Ø7     | <b>4</b> <sup>⊕</sup><br>Ø8 |  |
| 23 s        | 36 s   |   | 32 s        | 29 s                        |  |

### Timings 8: McLaughlin Rd & Woodmen Rd


|                                   | ٦            | -         | $\mathbf{r}$ | 4         | +            | ×          | 1     | 1        | 1     | 1     | ţ        | ~     |
|-----------------------------------|--------------|-----------|--------------|-----------|--------------|------------|-------|----------|-------|-------|----------|-------|
| Lane Group                        | EBL          | EBT       | EBR          | WBL       | WBT          | WBR        | NBL   | NBT      | NBR   | SBL   | SBT      | SBR   |
| Lane Configurations               | ሻ            | <b>^</b>  | 1            | ሻ         | - <b>†</b> † | 1          | ሻ     | <b>↑</b> | 1     | ሻ     | <b>↑</b> | 1     |
| Traffic Volume (vph)              | 300          | 865       | 150          | 100       | 717          | 275        | 150   | 200      | 150   | 200   | 150      | 200   |
| Future Volume (vph)               | 300          | 865       | 150          | 100       | 717          | 275        | 150   | 200      | 150   | 200   | 150      | 200   |
| Turn Type                         | pm+pt        | NA        | Perm         | pm+pt     | NA           | Perm       | pm+pt | NA       | Perm  | pm+pt | NA       | Perm  |
| Protected Phases                  | 5            | 2         |              | 1         | 6            |            | 3     | 8        |       | 7     | 4        |       |
| Permitted Phases                  | 2            |           | 2            | 6         |              | 6          | 8     |          | 8     | 4     |          | 4     |
| Detector Phase                    | 5            | 2         | 2            | 1         | 6            | 6          | 3     | 8        | 8     | 7     | 4        | 4     |
| Switch Phase                      |              |           |              |           |              |            |       |          |       |       |          |       |
| Minimum Initial (s)               | 5.0          | 5.0       | 5.0          | 5.0       | 5.0          | 5.0        | 5.0   | 5.0      | 5.0   | 5.0   | 5.0      | 5.0   |
| Minimum Split (s)                 | 12.5         | 25.0      | 25.0         | 12.5      | 25.0         | 25.0       | 13.5  | 25.0     | 25.0  | 13.5  | 25.0     | 25.0  |
| Total Split (s)                   | 24.0         | 57.0      | 57.0         | 15.0      | 48.0         | 48.0       | 15.0  | 29.0     | 29.0  | 19.0  | 33.0     | 33.0  |
| Total Split (%)                   | 20.0%        | 47.5%     | 47.5%        | 12.5%     | 40.0%        | 40.0%      | 12.5% | 24.2%    | 24.2% | 15.8% | 27.5%    | 27.5% |
| Yellow Time (s)                   | 4.0          | 5.0       | 5.0          | 4.0       | 5.0          | 5.0        | 5.0   | 5.0      | 5.0   | 5.0   | 5.0      | 5.0   |
| All-Red Time (s)                  | 3.5          | 2.0       | 2.0          | 3.5       | 2.0          | 2.0        | 3.5   | 2.0      | 2.0   | 3.5   | 2.0      | 2.0   |
| Lost Time Adjust (s)              | 0.0          | 0.0       | 0.0          | 0.0       | 0.0          | 0.0        | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Lost Time (s)               | 7.5          | 7.0       | 7.0          | 7.5       | 7.0          | 7.0        | 8.5   | 7.0      | 7.0   | 8.5   | 7.0      | 7.0   |
| Lead/Lag                          | Lead         | Lag       | Lag          | Lead      | Lag          | Lag        | Lead  | Lag      | Lag   | Lead  | Lag      | Lag   |
| Lead-Lag Optimize?                | Yes          | Yes       | Yes          | Yes       | Yes          | Yes        | Yes   | Yes      | Yes   | Yes   | Yes      | Yes   |
| Recall Mode                       | None         | C-Max     | C-Max        | None      | C-Max        | C-Max      | None  | Max      | Max   | None  | Max      | Max   |
| Act Effct Green (s)               | 64.2         | 50.2      | 50.2         | 48.7      | 41.9         | 41.9       | 27.0  | 22.0     | 22.0  | 35.0  | 26.0     | 26.0  |
| Actuated g/C Ratio                | 0.54         | 0.42      | 0.42         | 0.41      | 0.35         | 0.35       | 0.22  | 0.18     | 0.18  | 0.29  | 0.22     | 0.22  |
| v/c Ratio                         | 0.80         | 0.60      | 0.20         | 0.39      | 0.60         | 0.39       | 0.51  | 0.60     | 0.31  | 0.68  | 0.38     | 0.38  |
| Control Delay                     | 49.9         | 49.9      | 15.8         | 16.1      | 28.7         | 7.2        | 39.7  | 53.4     | 1.7   | 44.0  | 43.5     | 4.2   |
| Queue Delay                       | 0.0          | 0.0       | 0.0          | 0.0       | 0.0          | 0.0        | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Delay                       | 49.9         | 49.9      | 15.8         | 16.1      | 28.7         | 7.2        | 39.7  | 53.4     | 1.7   | 44.0  | 43.5     | 4.2   |
| LOS                               | D            | D         | В            | В         | С            | А          | D     | D        | А     | D     | D        | A     |
| Approach Delay                    |              | 46.0      |              |           | 22.1         |            |       | 33.7     |       |       | 29.4     |       |
| Approach LOS                      |              | D         |              |           | C            |            |       | С        |       |       | С        |       |
| Intersection Summary              |              |           |              |           |              |            |       |          |       |       |          |       |
| Cycle Length: 120                 |              |           |              |           |              |            |       |          |       |       |          |       |
| Actuated Cycle Length: 120        | 0            |           |              |           |              |            |       |          |       |       |          |       |
| Offset: 118 (98%), Referen        | ced to phase | se 2:EBTI | and 6:W      | /BTL, Sta | irt of Gree  | en         |       |          |       |       |          |       |
| Natural Cycle: 90                 |              |           |              |           |              |            |       |          |       |       |          |       |
| Control Type: Actuated-Co         | ordinated    |           |              |           |              |            |       |          |       |       |          |       |
| Maximum v/c Ratio: 0.80           |              |           |              |           |              |            |       |          |       |       |          |       |
| Intersection Signal Delay: 3      | 34.0         |           |              | l         | ntersectio   | n LOS: C   |       |          |       |       |          |       |
| Intersection Capacity Utilization |              | ,<br>D    |              | l         | CU Level     | of Service | e D   |          |       |       |          |       |
| Analysis Period (min) 15          |              |           |              |           |              |            |       |          |       |       |          |       |
|                                   |              |           |              |           |              |            |       |          |       |       |          |       |

Splits and Phases: 8: McLaughlin Rd & Woodmen Rd

| <b>√</b> Ø1 |            | <b>▲</b> Ø3 | <b>↓</b> <sub>Ø4</sub> |
|-------------|------------|-------------|------------------------|
| 15 s        | 57 s       | 15 s        | 33 s                   |
|             | ● ♥ Ø6 (R) | Ø7          | <b>√</b> Ø8            |
| 24 s        | 48 s       | 19 s        | 29 s                   |

## Timings 9: US 24 & Woodmen Rd

|                              | ٦          | -        | $\mathbf{r}$ | 4          | -           | *        | 1     | 1     | ۲     | 1     | ŧ     | ~     |
|------------------------------|------------|----------|--------------|------------|-------------|----------|-------|-------|-------|-------|-------|-------|
| Lane Group                   | EBL        | EBT      | EBR          | WBL        | WBT         | WBR      | NBL   | NBT   | NBR   | SBL   | SBT   | SBF   |
| Lane Configurations          | ሻሻ         | •        | 1            | ľ          | <u></u>     | 1        | ሻሻ    | ተተተ   | 1     | ľ     | ተተተ   | 1     |
| Traffic Volume (vph)         | 800        | 180      | 235          | 27         | 187         | 112      | 450   | 1600  | 67    | 66    | 1060  | 455   |
| Future Volume (vph)          | 800        | 180      | 235          | 27         | 187         | 112      | 450   | 1600  | 67    | 66    | 1060  | 455   |
| Turn Type                    | Prot       | NA       | Free         | pm+pt      | NA          | Free     | Prot  | NA    | Perm  | pm+pt | NA    | Free  |
| Protected Phases             | 7          | 4        |              | 3          | 8           |          | 5     | 2     |       | 1     | 6     |       |
| Permitted Phases             |            |          | Free         | 8          |             | Free     |       |       | 2     | 6     |       | Free  |
| Detector Phase               | 7          | 4        |              | 3          | 8           |          | 5     | 2     | 2     | 1     | 6     |       |
| Switch Phase                 |            |          |              |            |             |          |       |       |       |       |       |       |
| Minimum Initial (s)          | 5.0        | 15.0     |              | 5.0        | 15.0        |          | 12.0  | 15.0  | 15.0  | 5.0   | 10.0  |       |
| Minimum Split (s)            | 10.0       | 23.0     |              | 10.0       | 23.0        |          | 25.0  | 23.0  | 23.0  | 10.0  | 23.0  |       |
| Total Split (s)              | 34.0       | 47.0     |              | 10.0       | 23.0        |          | 31.0  | 53.0  | 53.0  | 10.0  | 32.0  |       |
| Total Split (%)              | 28.3%      | 39.2%    |              | 8.3%       | 19.2%       |          | 25.8% | 44.2% | 44.2% | 8.3%  | 26.7% |       |
| Yellow Time (s)              | 3.0        | 3.0      |              | 3.0        | 3.0         |          | 3.0   | 3.0   | 3.0   | 3.0   | 3.0   |       |
| All-Red Time (s)             | 2.0        | 2.0      |              | 2.0        | 2.0         |          | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   |       |
| Lost Time Adjust (s)         | 0.0        | 0.0      |              | 0.0        | 0.0         |          | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |       |
| Total Lost Time (s)          | 5.0        | 5.0      |              | 5.0        | 5.0         |          | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   |       |
| Lead/Lag                     | Lead       | Lag      |              | Lead       | Lag         |          | Lead  | Lag   | Lag   | Lead  | Lag   |       |
| Lead-Lag Optimize?           | Yes        | Yes      |              | Yes        | Yes         |          | Yes   | Yes   | Yes   | Yes   | Yes   |       |
| Recall Mode                  | None       | None     |              | None       | None        |          | None  | C-Max | C-Max | None  | C-Max |       |
| Act Effct Green (s)          | 29.0       | 43.1     | 120.0        | 20.1       | 15.1        | 120.0    | 23.5  | 50.8  | 50.8  | 39.7  | 32.4  | 120.0 |
| Actuated g/C Ratio           | 0.24       | 0.36     | 1.00         | 0.17       | 0.13        | 1.00     | 0.20  | 0.42  | 0.42  | 0.33  | 0.27  | 1.00  |
| v/c Ratio                    | 1.00       | 0.29     | 0.15         | 0.13       | 0.46        | 0.08     | 0.79  | 0.87  | 0.10  | 0.41  | 0.90  | 0.33  |
| Control Delay                | 66.5       | 23.6     | 0.2          | 26.3       | 52.3        | 0.1      | 54.7  | 38.1  | 0.3   | 27.1  | 52.4  | 0.6   |
| Queue Delay                  | 0.0        | 0.0      | 0.0          | 0.0        | 0.0         | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Delay                  | 66.5       | 23.6     | 0.2          | 26.3       | 52.3        | 0.1      | 54.7  | 38.1  | 0.3   | 27.1  | 52.4  | 0.6   |
| LOS                          | E          | С        | Α            | С          | D           | А        | D     | D     | А     | С     | D     | A     |
| Approach Delay               |            | 47.2     |              |            | 32.2        |          |       | 40.5  |       |       | 36.4  |       |
| Approach LOS                 |            | D        |              |            | C           |          |       | D     |       |       | D     |       |
| Intersection Summary         |            |          |              |            |             |          |       |       |       |       |       |       |
| Cycle Length: 120            |            |          |              |            |             |          |       |       |       |       |       |       |
| Actuated Cycle Length: 12    | .0         |          |              |            |             |          |       |       |       |       |       |       |
| Offset: 0 (0%), Referenced   |            | :NBT and | 6:SBTL,      | Start of C | Green       |          |       |       |       |       |       |       |
| Natural Cycle: 105           |            |          |              |            |             |          |       |       |       |       |       |       |
| Control Type: Actuated-Co    | ordinated  |          |              |            |             |          |       |       |       |       |       |       |
| Maximum v/c Ratio: 1.00      |            |          |              |            |             |          |       |       |       |       |       |       |
| Intersection Signal Delay:   | 40.2       |          |              | Ir         | ntersection | n LOS: D |       |       |       |       |       |       |
| Intersection Capacity Utiliz |            | )        |              |            | CU Level    |          | Ε     |       |       |       |       |       |
| Analysis Period (min) 15     |            |          |              |            |             |          |       |       |       |       |       |       |
| <b>.</b>                     |            |          |              |            |             |          |       |       |       |       |       |       |
| Splits and Phases: 9: US     | S 24 & Woo | dmen Rd  |              |            |             |          |       |       |       |       |       |       |





## Timings 10: US 24 & Meridian Rd

|                                                  | ٦            | -          | $\mathbf{r}$ | 4         | -          | *         | 1     | 1     | ۲     | 1     | Ļ       | -     |
|--------------------------------------------------|--------------|------------|--------------|-----------|------------|-----------|-------|-------|-------|-------|---------|-------|
| Lane Group                                       | EBL          | EBT        | EBR          | WBL       | WBT        | WBR       | NBL   | NBT   | NBR   | SBL   | SBT     | SBF   |
| Lane Configurations                              | ľ            | <u></u>    | 1            | 1         | <u></u>    | 1         | ሻሻ    | ተተተ   | 1     | ľ     | <u></u> | 1     |
| Traffic Volume (vph)                             | 80           | 350        | 425          | 60        | 500        | 235       | 825   | 1757  | 80    | 170   | 1152    | 60    |
| Future Volume (vph)                              | 80           | 350        | 425          | 60        | 500        | 235       | 825   | 1757  | 80    | 170   | 1152    | 60    |
| Turn Type                                        | pm+pt        | NA         | Free         | pm+pt     | NA         | Free      | Prot  | NA    | Perm  | pm+pt | NA      | Pern  |
| Protected Phases                                 | 5            | 2          |              | 1         | 6          |           | 3     | 8     |       | 7     | 4       |       |
| Permitted Phases                                 | 2            |            | Free         | 6         |            | Free      |       |       | 8     | 4     |         | 4     |
| Detector Phase                                   | 5            | 2          |              | 1         | 6          |           | 3     | 8     | 8     | 7     | 4       | 4     |
| Switch Phase                                     |              |            |              |           |            |           |       |       |       |       |         |       |
| Minimum Initial (s)                              | 5.0          | 5.0        |              | 5.0       | 5.0        |           | 5.0   | 5.0   | 5.0   | 5.0   | 5.0     | 5.0   |
| Minimum Split (s)                                | 11.0         | 20.0       |              | 11.0      | 20.0       |           | 11.0  | 20.0  | 20.0  | 11.0  | 20.0    | 20.0  |
| Total Split (s)                                  | 11.0         | 21.0       |              | 11.0      | 21.0       |           | 28.0  | 42.0  | 42.0  | 16.0  | 30.0    | 30.0  |
| Total Split (%)                                  | 12.2%        | 23.3%      |              | 12.2%     | 23.3%      |           | 31.1% | 46.7% | 46.7% | 17.8% | 33.3%   | 33.3% |
| Yellow Time (s)                                  | 3.0          | 5.0        |              | 3.0       | 5.0        |           | 3.0   | 4.5   | 4.5   | 3.0   | 4.5     | 4.5   |
| All-Red Time (s)                                 | 3.0          | 2.0        |              | 3.0       | 2.0        |           | 3.0   | 2.0   | 2.0   | 3.0   | 2.0     | 2.0   |
| Lost Time Adjust (s)                             | 0.0          | 0.0        |              | 0.0       | 0.0        |           | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Total Lost Time (s)                              | 6.0          | 7.0        |              | 6.0       | 7.0        |           | 6.0   | 6.5   | 6.5   | 6.0   | 6.5     | 6.5   |
| Lead/Lag                                         | Lead         | Lag        |              | Lead      | Lag        |           | Lead  | Lag   | Lag   | Lead  | Lag     | Lag   |
| Lead-Lag Optimize?                               | Yes          | Yes        |              | Yes       | Yes        |           | Yes   | Yes   | Yes   | Yes   | Yes     | Yes   |
| Recall Mode                                      | None         | C-Max      |              | None      | C-Max      |           | None  | None  | None  | None  | None    | None  |
| Act Effct Green (s)                              | 21.2         | 16.2       | 90.0         | 21.2      | 16.2       | 90.0      | 22.0  | 36.3  | 36.3  | 33.2  | 23.5    | 23.5  |
| Actuated g/C Ratio                               | 0.24         | 0.18       | 1.00         | 0.24      | 0.18       | 1.00      | 0.24  | 0.40  | 0.40  | 0.37  | 0.26    | 0.26  |
| v/c Ratio                                        | 0.45         | 0.58       | 0.29         | 0.26      | 0.84       | 0.16      | 1.05  | 0.91  | 0.11  | 0.68  | 0.92    | 0.10  |
| Control Delay                                    | 28.2         | 32.9       | 0.8          | 26.7      | 50.4       | 0.2       | 78.5  | 33.7  | 0.3   | 31.3  | 45.3    | 0.3   |
| Queue Delay                                      | 0.0          | 0.0        | 0.0          | 0.0       | 0.0        | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0   |
| Total Delay                                      | 28.2         | 32.9       | 0.8          | 26.7      | 50.4       | 0.2       | 78.5  | 33.7  | 0.3   | 31.3  | 45.3    | 0.3   |
| LOS                                              | С            | С          | Α            | С         | D          | А         | Е     | С     | А     | С     | D       | ŀ     |
| Approach Delay                                   |              | 16.5       |              |           | 33.8       |           |       | 46.6  |       |       | 41.6    |       |
| Approach LOS                                     |              | В          |              |           | C          |           |       | D     |       |       | D       |       |
| Intersection Summary                             |              |            |              |           |            |           |       |       |       |       |         |       |
| Cycle Length: 90                                 |              |            |              |           |            |           |       |       |       |       |         |       |
| Actuated Cycle Length: 90                        |              |            |              |           |            |           |       |       |       |       |         |       |
| Offset: 71 (79%), Reference<br>Natural Cycle: 90 | ced to phase | e 2:EBTL a | and 6:WE     | 3TL, Star | t of FDW ( | or yellow |       |       |       |       |         |       |
| Control Type: Actuated-Co                        | ordinated    |            |              |           |            |           |       |       |       |       |         |       |
| Maximum v/c Ratio: 1.05                          |              |            |              |           |            |           |       |       |       |       |         |       |
| Intersection Signal Delay:                       | 39.1         |            |              | l         | ntersectio | n LOS: D  |       |       |       |       |         |       |
| Intersection Capacity Utiliz                     |              | ,<br>D     |              |           | CU Level   |           | еE    |       |       |       |         |       |
| Analysis Period (min) 15                         |              |            |              |           |            |           |       |       |       |       |         |       |
|                                                  |              |            |              |           |            |           |       |       |       |       |         |       |

Splits and Phases: 10: US 24 & Meridian Rd

| <b>√</b> Ø1 |      | <b>1</b> Ø3 | <b>♦</b> Ø4 |  |
|-------------|------|-------------|-------------|--|
| 11 s        | 21 s | 28 s        | 30 s        |  |
|             |      | Ø7          | t øs        |  |
| 11 s        | 21 s | 16 s        | 42 s        |  |

0

#### Intersection

| Movement               | EBL   | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|-------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations    |       |      | 1    |      |      | 1    |      | 111  | 1    |      | 1    | 1    |
| Traffic Vol, veh/h     | 0     | 0    | 75   | 0    | 0    | 175  | 0    | 1942 | 130  | 0    | 1307 | 15   |
| Future Vol, veh/h      | 0     | 0    | 75   | 0    | 0    | 175  | 0    | 1942 | 130  | 0    | 1307 | 15   |
| Conflicting Peds, #/hr | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Stop  | Stop | Stop | Stop | Stop | Stop | Free | Free | Free | Free | Free | Free |
| RT Channelized         | -     | -    | Free | -    | -    | Free | -    | -    | None | -    | -    | None |
| Storage Length         | -     | -    | 0    | -    | -    | 0    | -    | -    | -    | -    | -    | -    |
| Veh in Median Storage  | , # - | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -     | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 90    | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 2     | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow              | 0     | 0    | 83   | 0    | 0    | 194  | 0    | 2158 | 144  | 0    | 1452 | 17   |
|                        |       |      |      |      |      |      |      |      |      |      |      |      |

| Major/Minor          | Minor2                                  |     | Ν     | inor1    |      | Ν   | 1ajor1 |   | M | ajor2 |   |   |
|----------------------|-----------------------------------------|-----|-------|----------|------|-----|--------|---|---|-------|---|---|
| Conflicting Flow All | -                                       | -   | -     | -        | -    | -   | -      | 0 | 0 | -     | - | 0 |
| Stage 1              | -                                       | -   | -     | -        | -    | -   |        | - | - | -     | - | - |
| Stage 2              | -                                       | -   | -     | -        | -    | -   | -      | - | - | -     | - | - |
| Critical Hdwy        | -                                       | -   | -     | -        | -    | -   | -      | - | - | -     | - | - |
| Critical Hdwy Stg 1  | -                                       | -   | -     | -        | -    | -   | -      | - | - | -     | - | - |
| Critical Hdwy Stg 2  | -                                       | -   | -     | -        | -    | -   | -      | - | - | -     | - | - |
| Follow-up Hdwy       | -                                       | -   | -     | -        | -    | -   | -      | - | - | -     | - | - |
| Pot Cap-1 Maneuver   | 0                                       | 0   | 0     | 0        | 0    | 0   | 0      | - | - | 0     | - | - |
| Stage 1              | 0                                       | 0   | 0     | 0        | 0    | 0   | 0      | - | - | 0     | - | - |
| Stage 2              | 0                                       | 0   | 0     | 0        | 0    | 0   | 0      | - | - | 0     | - | - |
| Platoon blocked, %   |                                         |     |       |          |      |     |        | - | - |       | - | - |
| Mov Cap-1 Maneuver   |                                         | -   | -     | -        | -    | -   | -      | - | - | -     | - | - |
| Mov Cap-2 Maneuver   | -                                       | -   | -     | -        | -    | -   | -      | - | - | -     | - | - |
| Stage 1              | -                                       | -   | -     | -        | -    | -   | -      | - | - | -     | - | - |
| Stage 2              | -                                       | -   | -     | -        | -    | -   | -      | - | - | -     | - | - |
|                      |                                         |     |       |          |      |     |        |   |   |       |   |   |
| Approach             | EB                                      |     |       | WB       |      |     | NB     |   |   | SB    |   |   |
| HCM Control Delay, s |                                         |     |       | 0        |      |     | 0      |   |   | 0     |   |   |
| HCM LOS              | A                                       |     |       | Ă        |      |     | U      |   |   | U     |   |   |
|                      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |     |       |          |      |     |        |   |   |       |   |   |
|                      |                                         |     |       | <b>.</b> |      |     |        |   |   |       |   |   |
| Minor Lane/Major Mvn | nt                                      | NBT | NBR E | BLn1WE   | 3Ln1 | SBT | SBR    |   |   |       |   |   |
| Capacity (veh/h)     |                                         | -   | -     | -        | -    | -   | -      |   |   |       |   |   |
| HCM Lane V/C Ratio   |                                         | -   | -     | -        | -    | -   | -      |   |   |       |   |   |

| HCM Lane V/C Ratio    | - | - | - | - | - | - |  |  |
|-----------------------|---|---|---|---|---|---|--|--|
| HCM Control Delay (s) | - | - | 0 | 0 | - | - |  |  |
| HCM Lane LOS          | - | - | Α | А | - | - |  |  |
| HCM 95th %tile Q(veh) | - | - | - | - | - | - |  |  |

2.9

#### Intersection

| <b>,</b>               |      |      |      |          |              |      |      |      |      |      |      |      |  |
|------------------------|------|------|------|----------|--------------|------|------|------|------|------|------|------|--|
| Movement               | EBL  | EBT  | EBR  | WBL      | WBT          | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations    | - ሽ  | - î> |      | <u>۲</u> | - <b>1</b> 2 |      |      | - 43 |      |      | - 44 |      |  |
| Traffic Vol, veh/h     | 0    | 68   | 0    | 16       | 110          | 11   | 0    | 0    | 49   | 22   | 0    | 0    |  |
| Future Vol, veh/h      | 0    | 68   | 0    | 16       | 110          | 11   | 0    | 0    | 49   | 22   | 0    | 0    |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0        | 0            | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free | Free | Free     | Free         | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None | -        | -            | None | -    | -    | None | -    | -    | None |  |
| Storage Length         | 135  | -    | -    | 190      | -            | -    | -    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage, | # -  | 0    | -    | -        | 0            | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -        | 0            | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 92   | 92   | 92   | 92       | 92           | 92   | 92   | 92   | 92   | 92   | 92   | 92   |  |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2        | 2            | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 0    | 74   | 0    | 17       | 120          | 12   | 0    | 0    | 53   | 24   | 0    | 0    |  |
|                        |      |      |      |          |              |      |      |      |      |      |      |      |  |
|                        |      |      |      |          |              |      |      |      |      |      |      |      |  |

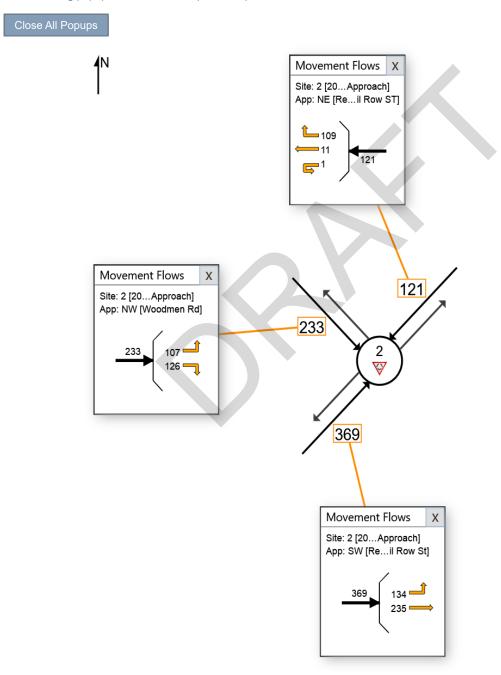
| Major/Minor          | Major1 |       | ľ   | Major2 |     |     | Minor1 |       |       | Minor2 |       |       |  |
|----------------------|--------|-------|-----|--------|-----|-----|--------|-------|-------|--------|-------|-------|--|
| Conflicting Flow All | 132    | 0     | 0   | 74     | 0   | 0   | 234    | 240   | 74    | 261    | 234   | 126   |  |
| Stage 1              | -      | -     | -   | -      | -   | -   | 74     | 74    | -     | 160    | 160   | -     |  |
| Stage 2              | -      | -     | -   | -      | -   | -   | 160    | 166   | -     | 101    | 74    | -     |  |
| Critical Hdwy        | 4.12   | -     | -   | 4.12   | -   | -   | 7.12   | 6.52  | 6.22  | 7.12   | 6.52  | 6.22  |  |
| Critical Hdwy Stg 1  | -      | -     | -   | -      | -   | -   | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |  |
| Critical Hdwy Stg 2  | -      | -     | -   | -      | -   | -   | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |  |
| Follow-up Hdwy       | 2.218  | -     | -   | 2.218  | -   | -   | 3.518  | 4.018 | 3.318 | 3.518  | 4.018 | 3.318 |  |
| Pot Cap-1 Maneuver   | 1453   | -     | -   | 1526   | -   | -   | 721    | 661   | 988   | 692    | 666   | 924   |  |
| Stage 1              | -      | -     | -   | -      | - ) | -   | 935    | 833   | -     | 842    | 766   | -     |  |
| Stage 2              | -      | -     | -   | -      | -   |     | 842    | 761   | -     | 905    | 833   | -     |  |
| Platoon blocked, %   |        | -     | -   |        | -   | -   |        |       |       |        |       |       |  |
| Mov Cap-1 Maneuver   | 1453   | -     | -   | 1526   | -   | -   | 715    | 654   | 988   | 649    | 659   | 924   |  |
| Mov Cap-2 Maneuver   | -      | -     | -   | -      | -   | -   | 715    | 654   | -     | 649    | 659   | -     |  |
| Stage 1              | -      | -     | -   | -      | -   | -   | 935    | 833   | -     | 842    | 758   | -     |  |
| Stage 2              | -      | -     | -   | -      | - 1 | -   | 833    | 753   | -     | 856    | 833   | -     |  |
|                      |        |       |     |        |     |     |        |       |       |        |       |       |  |
| Approach             | EB     |       |     | WB     |     |     | NB     |       |       | SB     |       |       |  |
| HCM Control Delay, s | 0      |       |     | 0.9    |     |     | 8.9    |       |       | 10.8   |       |       |  |
| HCM LOS              |        |       |     |        |     |     | А      |       |       | В      |       |       |  |
|                      |        |       |     |        |     |     |        |       |       |        |       |       |  |
| Minor Lane/Major Mvr | nt N   | IBLn1 | EBL | EBT    | EBR | WBL | WBT    | WBR   | SBLn1 |        |       |       |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL  | EBT | EBR | WBL   | WBT | WBR S | SBLn1 |  |
|-----------------------|-------|------|-----|-----|-------|-----|-------|-------|--|
| Capacity (veh/h)      | 988   | 1453 | -   | -   | 1526  | -   | -     | 649   |  |
| HCM Lane V/C Ratio    | 0.054 | -    | -   | -   | 0.011 | -   | -     | 0.037 |  |
| HCM Control Delay (s) | 8.9   | 0    | -   | -   | 7.4   | -   | -     | 10.8  |  |
| HCM Lane LOS          | A     | Α    | -   | -   | Α     | -   | -     | В     |  |
| HCM 95th %tile Q(veh) | 0.2   | 0    | -   | -   | 0     | -   | -     | 0.1   |  |

# **MOVEMENT FLOWS FOR SITE (INPUT)**

Approach movement input flow rates (veh/h)

#### All Movement Classes


### V Site: 2 [2043 Total AM - Single Southeastbound Approach (Site

Folder: General)]

Woodmen/Retail Row

Site Category: 2043 Total AM Roundabout

Use the button below to open or close all popup boxes. Click value labels to open selected ones. Click and drag popup boxes to move to preferred positions.



## LANE SUMMARY

# W Site: 2 [2043 Total AM - Single Southeastbound Approach (Site Folder: General)]

Woodmen/Retail Row

Site Category: 2043 Total AM Roundabout

| Lane Use a          | and Peri              | forman | ce    |              |               |                |                     |                          |      |                |                |     |                 |
|---------------------|-----------------------|--------|-------|--------------|---------------|----------------|---------------------|--------------------------|------|----------------|----------------|-----|-----------------|
|                     | DEM<br>FLO<br>[ Total |        | Cap.  | Deg.<br>Satn | Lane<br>Util. | Aver.<br>Delay | Level of<br>Service | 95% BAC<br>QUEI<br>[ Veh |      | Lane<br>Config | Lane<br>Length |     | Prob.<br>Block. |
|                     | veh/h                 | %      | veh/h | v/c          | %             | sec            |                     |                          | ft   |                | ft             | %   | %               |
| NorthEast: F        | Retail Rov            | N ST   |       |              |               |                |                     |                          |      |                |                |     |                 |
| Lane 1 <sup>d</sup> | 132                   | 2.0    | 1163  | 0.113        | 100           | 4.1            | LOS A               | 0.5                      | 12.8 | Full           | 1600           | 0.0 | 0.0             |
| Approach            | 132                   | 2.0    |       | 0.113        |               | 4.1            | LOS A               | 0.5                      | 12.8 |                |                |     |                 |
| NorthWest:          | Woodme                | n Rd   |       |              |               |                |                     |                          |      |                |                |     |                 |
| Lane 1 <sup>d</sup> | 253                   | 2.0    | 1335  | 0.190        | 100           | 4.3            | LOS A               | 1.0                      | 24.2 | Full           | 1600           | 0.0 | 0.0             |
| Approach            | 253                   | 2.0    |       | 0.190        |               | 4.3            | LOS A               | 1.0                      | 24.2 |                |                |     |                 |
| SouthWest:          | Retail Ro             | ow St  |       |              |               |                |                     |                          |      |                |                |     |                 |
| Lane 1 <sup>d</sup> | 401                   | 2.0    | 1197  | 0.335        | 100           | 6.2            | LOS A               | 1.9                      | 48.5 | Full           | 1600           | 0.0 | 0.0             |
| Approach            | 401                   | 2.0    |       | 0.335        |               | 6.2            | LOS A               | 1.9                      | 48.5 |                |                |     |                 |
| Intersection        | 786                   | 2.0    |       | 0.335        |               | 5.2            | LOS A               | 1.9                      | 48.5 |                |                |     |                 |

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

#### SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LSC TRANSPORTATION CONSULTANTS, INC. | Licence: PLUS / 1PC | Processed: Friday, October 6, 2023 10:09:44 AM Project: G:\Shared drives\CS Engineering - 2019-current\2020\204120 - FalconField Prelim Plan\Sidra\2020-06-June\Woodmen & Retail Row St single sb approach.sip9

| Inte | ersection |  |
|------|-----------|--|
|      |           |  |

| Int Delay, s/veh |  |
|------------------|--|
|------------------|--|

| Int Delay, s/veh       | 2.6  |          |         |      |      |      |  |
|------------------------|------|----------|---------|------|------|------|--|
| Movement               | EBL  | EBT      | WBT     | WBR  | SBL  | SBR  |  |
| Lane Configurations    | 7    | <b>†</b> | el<br>e |      | Y    |      |  |
| Traffic Vol, veh/h     | 45   | 67       | 90      | 0    | 0    | 30   |  |
| Future Vol, veh/h      | 45   | 67       | 90      | 0    | 0    | 30   |  |
| Conflicting Peds, #/hr | 0    | 0        | 0       | 0    | 0    | 0    |  |
| Sign Control           | Free | Free     | Free    | Free | Stop | Stop |  |
| RT Channelized         | -    | None     | -       | None | -    | None |  |
| Storage Length         | 120  | -        | -       | -    | 0    | -    |  |
| Veh in Median Storage, | # -  | 0        | 0       | -    | 0    | -    |  |
| Grade, %               | -    | 0        | 0       | -    | 0    | -    |  |
| Peak Hour Factor       | 92   | 92       | 92      | 92   | 92   | 92   |  |
| Heavy Vehicles, %      | 2    | 2        | 2       | 2    | 2    | 2    |  |
| Mvmt Flow              | 49   | 73       | 98      | 0    | 0    | 33   |  |
|                        |      |          |         |      |      |      |  |

| Major/Minor          | Major1 | Ν     | /lajor2 |     | Vinor2 |       |  |  |
|----------------------|--------|-------|---------|-----|--------|-------|--|--|
| Conflicting Flow All | 98     | 0     | -       | 0   | 269    | 98    |  |  |
| Stage 1              | -      | -     | -       | -   | 98     | -     |  |  |
| Stage 2              | -      | -     | -       | -   | 171    | -     |  |  |
| Critical Hdwy        | 4.12   | -     | -       | -   | 6.42   | 6.22  |  |  |
| Critical Hdwy Stg 1  | -      | -     | -       | -   | 5.42   | -     |  |  |
| Critical Hdwy Stg 2  | -      | -     | -       | -   | 5.42   |       |  |  |
| Follow-up Hdwy       | 2.218  | -     | -       | -   | 3.518  | 3.318 |  |  |
| Pot Cap-1 Maneuver   | 1495   | -     | -       | -   | 720    | 958   |  |  |
| Stage 1              | -      | -     | -       | -   | 926    | -     |  |  |
| Stage 2              | -      | -     | -       | -   | 859    |       |  |  |
| Platoon blocked, %   |        | -     | -       | -   |        |       |  |  |
| Mov Cap-1 Maneuver   |        | -     | -       | -   | 696    | 958   |  |  |
| Mov Cap-2 Maneuver   | -      | -     | -       | -   | 696    | -     |  |  |
| Stage 1              | -      | -     | -       | -   | 895    | -     |  |  |
| Stage 2              | -      | -     | -       | -   | 859    | -     |  |  |
|                      |        |       |         |     |        |       |  |  |
| Approach             | EB     |       | WB      |     | SB     |       |  |  |
| HCM Control Delay, s | 3      |       | 0       |     | 8.9    |       |  |  |
| HCM LOS              |        |       |         |     | А      |       |  |  |
|                      |        |       |         |     |        |       |  |  |
| Minor Lane/Major Mvn | nt     | EBL   | EBT     | WBT | WBR    | SBLn1 |  |  |
| Capacity (veh/h)     |        | 1495  | -       | -   | -      | 958   |  |  |
| HCM Lane V/C Ratio   |        | 0.033 | -       | -   | -      | 0.034 |  |  |
| HCM Control Delay (s | )      | 7.5   | -       | -   | -      | 8.9   |  |  |
| HCM Lane LOS         | ,      | А     | -       | -   | -      | А     |  |  |
| HCM 95th %tile Q(veh | ı)     | 0.1   | -       | -   | -      | 0.1   |  |  |
|                      |        |       |         |     |        |       |  |  |

| Intersection           |            |       |          |      |              |       |  |
|------------------------|------------|-------|----------|------|--------------|-------|--|
| Int Delay, s/veh       | 5.6        |       |          |      |              |       |  |
| Movement               | EBL        | EBT   | WBT      | WBR  | SBL          | SBR   |  |
| Lane Configurations    | <u> </u>   | 1     | <b>1</b> |      | Y            | ODIX  |  |
| Traffic Vol, veh/h     | 55         | 12    | 36       | 0    | 0            | 53    |  |
| Future Vol, veh/h      | 55         | 12    | 36       | 0    | 0            | 53    |  |
| Conflicting Peds, #/hr | 0          | 0     | 0        | 0    | 0            | 0     |  |
| Sign Control           | Free       | Free  | Free     | Free | Stop         | Stop  |  |
| RT Channelized         | -          | None  | -        |      | -            | None  |  |
| Storage Length         | 100        | -     | -        | -    | 0            | -     |  |
| Veh in Median Storage  |            | 0     | 0        | -    | Ũ            | -     |  |
| Grade, %               | -          | 0     | 0        | -    | 0            | -     |  |
| Peak Hour Factor       | 92         | 92    | 92       | 92   | 92           | 92    |  |
| Heavy Vehicles, %      | 2          | 2     | 2        | 2    | 2            | 2     |  |
| Mvmt Flow              | 60         | 13    | 39       | 0    | 0            | 58    |  |
|                        |            |       |          |      | -            |       |  |
| Major/Minor            | Major1     | N     | Anior?   |      | Minor2       |       |  |
|                        | Major1     |       | Major2   |      |              | 20    |  |
| Conflicting Flow All   | 39         | 0     | -        | 0    | 172          | 39    |  |
| Stage 1                | -          | -     | -        | -    | 39           | -     |  |
| Stage 2                | -          | -     | -        | -    | 133          | -     |  |
| Critical Hdwy          | 4.12       | -     | -        | -    | 6.42<br>5.42 | 6.22  |  |
| Critical Hdwy Stg 1    | -          | -     | -        | -    | 5.42<br>5.42 |       |  |
| Critical Hdwy Stg 2    | -<br>2.218 | -     | -        | -    |              | 3.318 |  |
| Follow-up Hdwy         | 1571       | -     | -        |      | 818          | 1033  |  |
| Pot Cap-1 Maneuver     | 10/1       | -     | -        | -    | 983          | 1033  |  |
| Stage 1<br>Stage 2     | -          | -     | -        | -    | 893          |       |  |
| Platoon blocked, %     | -          | -     | -        | -    | 095          | -     |  |
| Mov Cap-1 Maneuver     | 1571       |       |          | -    | 787          | 1033  |  |
| Mov Cap-1 Maneuver     |            | -     | -        | -    | 787          | 1035  |  |
| Stage 1                | -          | _     | -        | -    | 946          | -     |  |
| Stage 1                | -          |       | -        | -    | 893          | -     |  |
| Slage 2                | -          | -     | -        | _    | 095          | -     |  |
|                        |            |       |          |      |              |       |  |
| Approach               | EB         |       | WB       |      | SB           |       |  |
| HCM Control Delay, s   | 6.1        |       | 0        |      | 8.7          |       |  |
| HCM LOS                |            |       |          |      | А            |       |  |
|                        |            |       |          |      |              |       |  |
| Minor Lane/Major Mvn   | nt         | EBL   | EBT      | WBT  | WBR \$       | SBLn1 |  |
| Capacity (veh/h)       |            | 1571  | -        | -    | -            | 1033  |  |
| HCM Lane V/C Ratio     |            | 0.038 | -        | -    |              | 0.056 |  |
| HCM Control Delay (s)  | )          | 7.4   | -        | -    | -            | 8.7   |  |
|                        |            |       |          |      |              |       |  |

HCM Lane LOS

HCM 95th %tile Q(veh)

А

0.1

-

\_

-

-

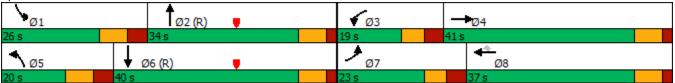
А

0.2

-

-

| Intersection           |        |      |        |      |        |       |  |
|------------------------|--------|------|--------|------|--------|-------|--|
| Int Delay, s/veh       | 0.3    |      |        |      |        |       |  |
| Movement               | EBT    | EBR  | WBL    | WBT  | NBL    | NBR   |  |
| Lane Configurations    | ef 👘   |      |        | र्भ  | ۰¥     |       |  |
| Traffic Vol, veh/h     | 53     | 0    | 1      | 57   | 0      | 3     |  |
| Future Vol, veh/h      | 53     | 0    | 1      | 57   | 0      | 3     |  |
| Conflicting Peds, #/hr | 0      | 0    | 0      | 0    | 0      | 0     |  |
| Sign Control           | Free   | Free | Free   | Free | Stop   | Stop  |  |
| RT Channelized         | -      | None | -      |      | -      | None  |  |
| Storage Length         | -      | -    | -      | -    | 0      | -     |  |
| Veh in Median Storag   | e, # 0 | -    | -      | 0    | 0      | -     |  |
| Grade, %               | 0      | -    | -      | 0    | 0      | -     |  |
| Peak Hour Factor       | 92     | 92   | 92     | 92   | 92     | 92    |  |
| Heavy Vehicles, %      | 2      | 2    | 2      | 2    | 2      | 2     |  |
| Mvmt Flow              | 58     | 0    | 1      | 62   | 0      | 3     |  |
|                        |        |      |        |      |        |       |  |
| Major/Minor            | Major1 |      | Major2 |      | Vinor1 |       |  |
| Conflicting Flow All   | 0      | 0    | 58     | 0    | 122    | 58    |  |
| Stage 1                | -      | -    | -      | -    | 58     | -     |  |
| Stage 2                | -      | -    | -      | -    | 64     | -     |  |
| Critical Hdwy          | -      | -    | 4.12   | -    | 6.42   | 6.22  |  |
| Critical Hdwy Stg 1    | -      | -    | -      | -    | 5.42   | -     |  |
| Critical Hdwy Stg 2    | -      | -    | -      | -    | 5.42   | -     |  |
| Follow-up Hdwy         | -      | -    | 2.218  | -    |        | 3.318 |  |
| Pot Cap-1 Maneuver     | -      | -    | 1546   | -    | 873    | 1008  |  |
| Stage 1                | -      | -    | -      | -    | 965    | -     |  |
| Stage 2                | -      | -    | -      | -    | 959    |       |  |
| Platoon blocked, %     | -      | -    |        | -    |        |       |  |
| Mov Cap-1 Maneuver     | -      | -    | 1546   | -    | 872    | 1008  |  |
| Mov Cap-2 Maneuver     | -      | -    | -      | -    | 872    | -     |  |
| Stage 1                | -      | -    | -      | -    | 965    | -     |  |
| Stage 2                | -      | -    | -      | -    | 958    | -     |  |
|                        |        |      |        |      |        |       |  |
| Approach               | EB     |      | WB     |      | NB     |       |  |
| HCM Control Delay, s   | 0      |      | 0.1    |      | 8.6    |       |  |


| now control Delay, s  | 0     | 0.1 |     | 0.0   |     |  |  |  |
|-----------------------|-------|-----|-----|-------|-----|--|--|--|
| HCM LOS               |       |     |     | A     |     |  |  |  |
|                       |       |     |     |       |     |  |  |  |
|                       |       |     |     |       |     |  |  |  |
| Minor Lane/Major Mvmt | NBLn1 | EBT | EBR | WBL   | WBT |  |  |  |
| Canacity (yeh/h)      | 1008  | _   | _   | 15/16 | _   |  |  |  |

| Capacity (ven/n)      | 1008  | - | - 1546  | - |  |  |
|-----------------------|-------|---|---------|---|--|--|
| HCM Lane V/C Ratio    | 0.003 | - | - 0.001 | - |  |  |
| HCM Control Delay (s) | 8.6   | - | - 7.3   | 0 |  |  |
| HCM Lane LOS          | А     | - | - A     | А |  |  |
| HCM 95th %tile Q(veh) | 0     | - | - 0     | - |  |  |

# Timings 7: Meridian Rd & Woodmen Rd

|                                                               | ≯       | -        | $\mathbf{r}$ | 4           | +           | •          | 1          | 1        | 1     | 1     | ţ        | 4     |
|---------------------------------------------------------------|---------|----------|--------------|-------------|-------------|------------|------------|----------|-------|-------|----------|-------|
| Lane Group                                                    | EBL     | EBT      | EBR          | WBL         | WBT         | WBR        | NBL        | NBT      | NBR   | SBL   | SBT      | SBR   |
| Lane Configurations                                           | ሻሻ      | <b>^</b> | 1            | ካካ          | - <b>††</b> | 1          | ሻሻ         | <b>^</b> | 1     | ሻሻ    | <u>^</u> | 1     |
| Traffic Volume (vph)                                          | 472     | 486      | 175          | 150         | 846         | 168        | 328        | 344      | 100   | 294   | 941      | 1041  |
| Future Volume (vph)                                           | 472     | 486      | 175          | 150         | 846         | 168        | 328        | 344      | 100   | 294   | 941      | 1041  |
| Turn Type                                                     | Prot    | NA       | Free         | Prot        | NA          | Perm       | Prot       | NA       | Free  | Prot  | NA       | Free  |
| Protected Phases                                              | 7       | 4        |              | 3           | 8           |            | 5          | 2        |       | 1     | 6        |       |
| Permitted Phases                                              |         |          | Free         |             |             | 8          |            |          | Free  |       |          | Free  |
| Detector Phase                                                | 7       | 4        |              | 3           | 8           | 8          | 5          | 2        |       | 1     | 6        |       |
| Switch Phase                                                  |         |          |              |             |             |            |            |          |       |       |          |       |
| Minimum Initial (s)                                           | 5.0     | 15.0     |              | 5.0         | 15.0        | 15.0       | 5.0        | 15.0     |       | 5.0   | 15.0     |       |
| Minimum Split (s)                                             | 12.5    | 22.0     |              | 12.5        | 22.0        | 22.0       | 13.5       | 22.0     |       | 13.5  | 22.0     |       |
| Total Split (s)                                               | 23.0    | 41.0     |              | 19.0        | 37.0        | 37.0       | 20.0       | 34.0     |       | 26.0  | 40.0     |       |
| Total Split (%)                                               | 19.2%   | 34.2%    |              | 15.8%       | 30.8%       | 30.8%      | 16.7%      | 28.3%    |       | 21.7% | 33.3%    |       |
| Yellow Time (s)                                               | 4.0     | 5.0      |              | 4.0         | 5.0         | 5.0        | 5.0        | 5.0      |       | 5.0   | 5.0      |       |
| All-Red Time (s)                                              | 3.5     | 2.0      |              | 3.5         | 2.0         | 2.0        | 3.5        | 2.0      |       | 3.5   | 2.0      |       |
| Lost Time Adjust (s)                                          | 0.0     | 0.0      |              | 0.0         | 0.0         | 0.0        | 0.0        | 0.0      |       | 0.0   | 0.0      |       |
| Total Lost Time (s)                                           | 7.5     | 7.0      |              | 7.5         | 7.0         | 7.0        | 8.5        | 7.0      |       | 8.5   | 7.0      |       |
| Lead/Lag                                                      | Lead    | Lag      |              | Lead        | Lag         | Lag        | Lead       | Lag      |       | Lead  | Lag      |       |
| Lead-Lag Optimize?                                            | Yes     | Yes      |              | Yes         | Yes         | Yes        | Yes        | Yes      |       | Yes   | Yes      |       |
| Recall Mode                                                   | None    | None     |              | None        | None        | None       | None       | C-Max    |       | None  | C-Max    |       |
| Act Effct Green (s)                                           | 15.5    | 35.3     | 120.0        | 10.2        | 30.0        | 30.0       | 11.5       | 29.1     | 120.0 | 15.4  | 33.0     | 120.0 |
| Actuated g/C Ratio                                            | 0.13    | 0.29     | 1.00         | 0.08        | 0.25        | 0.25       | 0.10       | 0.24     | 1.00  | 0.13  | 0.28     | 1.00  |
| v/c Ratio                                                     | 1.11    | 0.49     | 0.11         | 0.53        | 1.00        | 0.33       | 1.04       | 0.42     | 0.07  | 0.70  | 1.01     | 0.68  |
| Control Delay                                                 | 124.2   | 37.1     | 0.1          | 59.4        | 74.6        | 6.4        | 113.6      | 40.6     | 0.1   | 58.8  | 74.1     | 2.4   |
| Queue Delay                                                   | 0.0     | 0.0      | 0.0          | 0.0         | 0.0         | 0.0        | 0.0        | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Delay                                                   | 124.2   | 37.1     | 0.1          | 59.4        | 74.6        | 6.4        | 113.6      | 40.6     | 0.1   | 58.8  | 74.1     | 2.4   |
| LOS                                                           | F       | D        | Α            | E           | E           | А          | F          | D        | А     | E     | E        | A     |
| Approach Delay                                                |         | 67.7     |              |             | 62.8        |            |            | 66.4     |       |       | 39.3     |       |
| Approach LOS                                                  |         | E        |              |             | E           |            |            | E        |       |       | D        |       |
| Intersection Summary                                          |         |          |              |             |             |            |            |          |       |       |          |       |
| Cycle Length: 120                                             |         |          |              |             |             |            |            |          |       |       |          |       |
| Actuated Cycle Length: 120                                    |         |          |              | Ť           |             |            |            |          |       |       |          |       |
| Offset: 0 (0%), Referenced to                                 | phase 2 | :NBT and | 6:SBT, 5     | Start of FD | W or yel    | low, Mast  | er Interse | ection   |       |       |          |       |
| Natural Cycle: 130                                            |         |          |              |             |             |            |            |          |       |       |          |       |
| Control Type: Actuated-Coord                                  | linated |          |              |             |             |            |            |          |       |       |          |       |
| Maximum v/c Ratio: 1.11                                       |         |          |              |             |             |            |            |          |       |       |          |       |
| Intersection Signal Delay: 54.4                               | Λ       |          |              | Ir          | tersectio   | n LOS: D   |            |          |       |       |          |       |
|                                                               |         |          |              |             |             |            |            |          |       |       |          |       |
| Intersection Capacity Utilization<br>Analysis Period (min) 15 |         | )        |              |             |             | of Service | e F        |          |       |       |          |       |

Splits and Phases: 7: Meridian Rd & Woodmen Rd



# Timings 8: McLaughlin Rd & Woodmen Rd

|                                                           | ≯           | -        | $\mathbf{r}$ | •          | -            | •         | 1     | 1        | 1     | 1     | ţ        | ~     |
|-----------------------------------------------------------|-------------|----------|--------------|------------|--------------|-----------|-------|----------|-------|-------|----------|-------|
| Lane Group                                                | EBL         | EBT      | EBR          | WBL        | WBT          | WBR       | NBL   | NBT      | NBR   | SBL   | SBT      | SBR   |
| Lane Configurations                                       | ሻ           | <b>^</b> | 1            | ሻ          | - <b>†</b> † | 1         | ሻ     | <b>↑</b> | 1     | ሻ     | <b>↑</b> | 7     |
| Traffic Volume (vph)                                      | 100         | 680      | 100          | 50         | 790          | 159       | 75    | 50       | 50    | 134   | 125      | 300   |
| Future Volume (vph)                                       | 100         | 680      | 100          | 50         | 790          | 159       | 75    | 50       | 50    | 134   | 125      | 300   |
| Turn Type                                                 | pm+pt       | NA       | Perm         | pm+pt      | NA           | Perm      | pm+pt | NA       | Perm  | pm+pt | NA       | Perm  |
| Protected Phases                                          | 5           | 2        |              | 1          | 6            |           | 3     | 8        |       | 7     | 4        |       |
| Permitted Phases                                          | 2           |          | 2            | 6          |              | 6         | 8     |          | 8     | 4     |          | 4     |
| Detector Phase                                            | 5           | 2        | 2            | 1          | 6            | 6         | 3     | 8        | 8     | 7     | 4        | 4     |
| Switch Phase                                              |             |          |              |            |              |           |       |          |       |       |          |       |
| Minimum Initial (s)                                       | 5.0         | 5.0      | 5.0          | 5.0        | 5.0          | 5.0       | 5.0   | 5.0      | 5.0   | 5.0   | 5.0      | 5.0   |
| Minimum Split (s)                                         | 12.5        | 25.0     | 25.0         | 12.5       | 25.0         | 25.0      | 13.5  | 25.0     | 25.0  | 13.5  | 25.0     | 25.0  |
| Total Split (s)                                           | 14.0        | 37.0     | 37.0         | 14.0       | 37.0         | 37.0      | 14.0  | 25.0     | 25.0  | 14.0  | 25.0     | 25.0  |
| Total Split (%)                                           | 15.6%       | 41.1%    | 41.1%        | 15.6%      | 41.1%        | 41.1%     | 15.6% | 27.8%    | 27.8% | 15.6% | 27.8%    | 27.8% |
| Yellow Time (s)                                           | 4.0         | 5.0      | 5.0          | 4.0        | 5.0          | 5.0       | 5.0   | 5.0      | 5.0   | 5.0   | 5.0      | 5.0   |
| All-Red Time (s)                                          | 3.5         | 2.0      | 2.0          | 3.5        | 2.0          | 2.0       | 3.5   | 2.0      | 2.0   | 3.5   | 2.0      | 2.0   |
| Lost Time Adjust (s)                                      | 0.0         | 0.0      | 0.0          | 0.0        | 0.0          | 0.0       | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Lost Time (s)                                       | 7.5         | 7.0      | 7.0          | 7.5        | 7.0          | 7.0       | 8.5   | 7.0      | 7.0   | 8.5   | 7.0      | 7.0   |
| Lead/Lag                                                  | Lead        | Lag      | Lag          | Lead       | Lag          | Lag       | Lead  | Lag      | Lag   | Lead  | Lag      | Lag   |
| Lead-Lag Optimize?                                        | Yes         | Yes      | Yes          | Yes        | Yes          | Yes       | Yes   | Yes      | Yes   | Yes   | Yes      | Yes   |
| Recall Mode                                               | None        | C-Max    | C-Max        | None       | C-Max        | C-Max     | None  | Max      | Max   | None  | Max      | Max   |
| Act Effct Green (s)                                       | 39.0        | 35.6     | 35.6         | 37.4       | 32.8         | 32.8      | 22.0  | 18.0     | 18.0  | 23.7  | 20.8     | 20.8  |
| Actuated g/C Ratio                                        | 0.43        | 0.40     | 0.40         | 0.42       | 0.36         | 0.36      | 0.24  | 0.20     | 0.20  | 0.26  | 0.23     | 0.23  |
| v/c Ratio                                                 | 0.39        | 0.50     | 0.13         | 0.16       | 0.63         | 0.22      | 0.23  | 0.14     | 0.10  | 0.37  | 0.30     | 0.52  |
| Control Delay                                             | 17.7        | 23.4     | 0.3          | 14.0       | 27.2         | 1.3       | 22.9  | 30.8     | 0.4   | 26.3  | 32.7     | 8.9   |
| Queue Delay                                               | 0.0         | 0.0      | 0.0          | 0.0        | 0.0          | 0.0       | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Delay                                               | 17.7        | 23.4     | 0.3          | 14.0       | 27.2         | 1.3       | 22.9  | 30.8     | 0.4   | 26.3  | 32.7     | 8.9   |
| LOS                                                       | В           | С        | Α            | В          | С            | А         | С     | С        | А     | С     | С        | A     |
| Approach Delay                                            |             | 20.1     |              |            | 22.4         |           |       | 18.8     |       |       | 18.4     |       |
| Approach LOS                                              |             | С        |              |            | C            |           |       | В        |       |       | В        |       |
| Intersection Summary                                      |             |          |              |            |              |           |       |          |       |       |          |       |
| Cycle Length: 90                                          |             |          |              |            |              |           |       |          |       |       |          |       |
| Actuated Cycle Length: 90                                 |             |          |              |            |              |           |       |          |       |       |          |       |
| Offset: 0 (0%), Referenced                                | to phase 2  | :EBTL an | d 6:WBTI     | _, Start o | f Green      |           |       |          |       |       |          |       |
| Natural Cycle: 80                                         | P           |          |              |            |              |           |       |          |       |       |          |       |
| Control Type: Actuated-Co                                 | ordinated   |          |              |            |              |           |       |          |       |       |          |       |
| Maximum v/c Ratio: 0.63                                   |             |          |              |            |              |           |       |          |       |       |          |       |
| Intersection Signal Delay: 2                              |             |          |              |            | ntersectio   |           |       |          |       |       |          |       |
| Intersection Capacity Utiliza<br>Analysis Period (min) 15 | ation 62.7% | )        |              | 10         | CU Level     | of Servic | еВ    |          |       |       |          |       |
|                                                           |             |          |              |            |              |           |       |          |       |       |          |       |

Splits and Phases: 8: McLaughlin Rd & Woodmen Rd

| Ø1          | 🖉 🖉 🖉 🖉       | <b>▲</b> Ø3 | <b>↓</b> Ø4            |
|-------------|---------------|-------------|------------------------|
| 14 s        | 37 s          | 14 s        | 25 s                   |
| <u>∕</u> ø₅ | ●<br>● Ø6 (R) | Ø7          | <b>↓</b> <sub>Ø8</sub> |
| 14 s        | 37 s          | 14 s        | 25 s                   |

# Timings 9: US 24 & Woodmen Rd

|                              | ٦           | -        | $\mathbf{r}$ | 4          | -          | •          | 1     | 1        | ۲     | 1        | Ļ     | ~     |
|------------------------------|-------------|----------|--------------|------------|------------|------------|-------|----------|-------|----------|-------|-------|
| Lane Group                   | EBL         | EBT      | EBR          | WBL        | WBT        | WBR        | NBL   | NBT      | NBR   | SBL      | SBT   | SB    |
| Lane Configurations          | ኘካ          | 1        | 1            | <u>ک</u>   | <u></u>    | *          | ኘኘ    | <b>^</b> | 1     | <u>۲</u> | ተተተ   | 7     |
| Traffic Volume (vph)         | 372         | 145      | 347          | 70         | 118        | 54         | 399   | 744      | 40    | 72       | 917   | 48    |
| Future Volume (vph)          | 372         | 145      | 347          | 70         | 118        | 54         | 399   | 744      | 40    | 72       | 917   | 48    |
| Turn Type                    | Prot        | NA       | Free         | pm+pt      | NA         | Free       | Prot  | NA       | Perm  | pm+pt    | NA    | Fre   |
| Protected Phases             | 7           | 4        |              | 3          | 8          |            | 5     | 2        |       | 1        | 6     |       |
| Permitted Phases             |             |          | Free         | 8          |            | Free       |       |          | 2     | 6        |       | Fre   |
| Detector Phase               | 7           | 4        |              | 3          | 8          |            | 5     | 2        | 2     | 1        | 6     |       |
| Switch Phase                 |             |          |              |            |            |            |       |          |       |          |       |       |
| Minimum Initial (s)          | 20.0        | 15.0     |              | 5.0        | 15.0       |            | 5.0   | 15.0     | 15.0  | 5.0      | 15.0  |       |
| Minimum Split (s)            | 25.0        | 23.0     |              | 10.0       | 23.0       |            | 10.0  | 23.0     | 23.0  | 10.0     | 23.0  |       |
| Total Split (s)              | 27.0        | 37.0     |              | 15.0       | 25.0       |            | 20.0  | 58.0     | 58.0  | 10.0     | 48.0  |       |
| Total Split (%)              | 22.5%       | 30.8%    |              | 12.5%      | 20.8%      |            | 16.7% | 48.3%    | 48.3% | 8.3%     | 40.0% |       |
| Yellow Time (s)              | 3.0         | 3.0      |              | 3.0        | 3.0        |            | 3.0   | 3.0      | 3.0   | 3.0      | 3.0   |       |
| All-Red Time (s)             | 2.0         | 2.0      |              | 2.0        | 2.0        |            | 2.0   | 2.0      | 2.0   | 2.0      | 2.0   |       |
| Lost Time Adjust (s)         | 0.0         | 0.0      |              | 0.0        | 0.0        |            | 0.0   | 0.0      | 0.0   | 0.0      | 0.0   |       |
| Total Lost Time (s)          | 5.0         | 5.0      |              | 5.0        | 5.0        |            | 5.0   | 5.0      | 5.0   | 5.0      | 5.0   |       |
| Lead/Lag                     | Lead        | Lag      |              | Lead       | Lag        |            | Lead  | Lag      | Lag   | Lead     | Lag   |       |
| Lead-Lag Optimize?           | Yes         | Yes      |              | Yes        | Yes        |            | Yes   | Yes      | Yes   | Yes      | Yes   |       |
| Recall Mode                  | None        | None     |              | None       | None       |            | None  | C-Max    | C-Max | None     | C-Max |       |
| Act Effct Green (s)          | 20.6        | 29.3     | 120.0        | 23.5       | 15.0       | 120.0      | 20.7  | 58.8     | 58.8  | 51.5     | 43.7  | 120.0 |
| Actuated g/C Ratio           | 0.17        | 0.24     | 1.00         | 0.20       | 0.12       | 1.00       | 0.17  | 0.49     | 0.49  | 0.43     | 0.36  | 1.00  |
| v/c Ratio                    | 0.67        | 0.34     | 0.23         | 0.27       | 0.29       | 0.04       | 0.72  | 0.32     | 0.05  | 0.22     | 0.53  | 0.32  |
| Control Delay                | 52.8        | 41.4     | 0.3          | 31.1       | 49.6       | 0.0        | 54.5  | 19.7     | 0.1   | 14.4     | 31.4  | 0.5   |
| Queue Delay                  | 0.0         | 0.0      | 0.0          | 0.0        | 0.0        | 0.0        | 0.0   | 0.0      | 0.0   | 0.0      | 0.0   | 0.0   |
| Total Delay                  | 52.8        | 41.4     | 0.3          | 31.1       | 49.6       | 0.0        | 54.5  | 19.7     | 0.1   | 14.4     | 31.4  | 0.5   |
| LOS                          | D           | D        | Α            | С          | D          | А          | D     | В        | А     | В        | С     | ŀ     |
| Approach Delay               |             | 29.8     |              |            | 33.3       |            |       | 30.8     |       |          | 20.5  |       |
| Approach LOS                 |             | С        |              |            | C          |            |       | С        |       |          | С     |       |
| Intersection Summary         |             |          |              |            |            |            |       |          |       |          |       |       |
| Cycle Length: 120            |             |          |              |            |            |            |       |          |       |          |       |       |
| Actuated Cycle Length: 12    | 0           |          |              |            |            |            |       |          |       |          |       |       |
| Offset: 0 (0%), Referenced   | to phase 2  | :NBT and | 6:SBTL,      | Start of C | Green      |            |       |          |       |          |       |       |
| Natural Cycle: 85            |             |          |              |            |            |            |       |          |       |          |       |       |
| Control Type: Actuated-Co    | ordinated   |          |              |            |            |            |       |          |       |          |       |       |
| Maximum v/c Ratio: 0.72      |             |          |              |            |            |            |       |          |       |          |       |       |
| Intersection Signal Delay:   | 26.7        |          |              | Ir         | ntersectio | n LOS: C   |       |          |       |          |       |       |
| Intersection Capacity Utiliz | ation 70.8% | )        |              | 10         | CU Level   | of Service | e C   |          |       |          |       |       |
| Analysis Period (min) 15     |             |          |              |            |            |            |       |          |       |          |       |       |

Splits and Phases: 9: US 24 & Woodmen Rd

| Ø1 Ø2 (R)     | <b>√</b> Ø3     | <b>→</b> <sub>Ø4</sub> |
|---------------|-----------------|------------------------|
| 10 s 58 s     | 15 s            | 37 s                   |
| ▲ øs 🖡 🖡 øs ( | ▶ <sub>Ø7</sub> | <b>₩</b> Ø8            |
| 20 s 48 s     | 27 s            | 25 s                   |

### Timings 10: US 24 & Meridian Rd

| EBL     | EBT<br>††                                                                                                                                                 | EBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30      |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SBF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | TT                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>††</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ሻሻ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ተተተ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         | 524                                                                                                                                                       | 991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 30      | 524                                                                                                                                                       | 991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| pm+pt   | NA                                                                                                                                                        | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pm+pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Prot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pm+pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5       | 2                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2       |                                                                                                                                                           | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5       | 2                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5.0     | 5.0                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11.0    | 20.0                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11.0    | 21.0                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 42.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 42.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12.2%   | 23.3%                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.0     | 5.0                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3.0     | 2.0                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.0     | 0.0                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6.0     | 7.0                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Lead    | Lag                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Yes     | Yes                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| None    | C-Max                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C-Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 29.7    | 24.7                                                                                                                                                      | 90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.33    | 0.27                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.08    | 0.55                                                                                                                                                      | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 18.5    | 30.2                                                                                                                                                      | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 51.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.0     | 0.0                                                                                                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 18.5    | 30.2                                                                                                                                                      | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 51.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| В       | С                                                                                                                                                         | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ŀ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         | 13.4                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | В                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| o phase | e 2:EBTL a                                                                                                                                                | and 6:WE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STL, Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of FDW of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | or yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| nated   |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | -                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 69.4% | )                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CU Level o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | еС                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | om+pt<br>5<br>2<br>5<br>5<br>11.0<br>11.0<br>12.2%<br>3.0<br>3.0<br>0.0<br>6.0<br>Lead<br>Yes<br>None<br>29.7<br>0.33<br>0.08<br>18.5<br>0.0<br>18.5<br>B | om+pt         NA           5         2           2         5           5         2           5         2           5         2           5         2           5         2           5         2           5         2           5         2           5         2           5         2           5         2           5         2           5         2           5         2           5         2           5         2           5         2           5         2           0.11.0         21.0           12.2%         23.3%           3.0         2.0           0.0         0.0           14.0         1.0           29.7         24.7           0.08         0.55           18.5         30.2           0.0         0.0           18.5         30.2           B         C           13.4         B           20         phase 2:EBTL a           hated< | NA         Free           5         2           2         Free           5         2           5.0         5.0           11.0         20.0           11.0         21.0           12.2%         23.3%           3.0         5.0           3.0         2.0           0.0         0.0           6.0         7.0           Lead         Lag           Yes         Yes           29.7         24.7         90.0           0.33         0.27         1.00           0.08         0.55         0.64           18.5         30.2         4.3           0.0         0.0         0.0           18.5         30.2         4.3           B         C         A           13.4         B         D           p phase 2:EBTL and 6:WE         D         D | bm+pt         NA         Free         pm+pt           5         2         1           2         Free         6           5         2         1           5.0         5.0         5.0           11.0         20.0         11.0           11.0         21.0         11.0           11.0         21.0         11.0           12.2%         23.3%         12.2%           3.0         5.0         3.0           3.0         2.0         3.0           3.0         2.0         3.0           0.0         0.0         0.0           6.0         7.0         6.0           Lead         Lag         Lead           Yes         Yes         Yes           None         C-Max         None           29.7         24.7         90.0         30.1           0.33         0.27         1.00         0.33           0.08         0.55         0.64         0.14           18.5         30.2         4.3         21.8           B         C         A         C           13.4         B         C           < | Dm+pt         NA         Free         pm+pt         NA           5         2         1         6           2         Free         6         6           5         2         1         6           5         2         1         6           5         2         1         6           5         2         1         6           5         2         1         6           5         2         1         6           5         2         1         6           5         2         1         6           5         2         1         6           5         2         1         6           11.0         20.0         11.0         20.0           11.0         21.0         11.0         21.0           12.2%         23.3%         12.2%         23.3%           3.0         5.0         3.0         2.0           0.0         0.0         0.0         0.0           6.0         7.0         6.0         7.0           18.5         30.2         4.3         21.8         29.8 | bm+pt         NA         Free         pm+pt         NA         Free           5         2         1         6         Free           5         2         3         6         Free           5         2         3         7         7         7           10         11.0         21.0         11.0         21.0         10.0           10.0         0.0         0.0         0.0         10.0         10.0         10.0           12.97         24.7         90.0         30.1         24.8         90.0         20 | bm+pt         NA         Free         pm+pt         NA         Free         Prot           5         2         1         6         3           2         Free         6         Free           5         2         1         6         3           5.0         5.0         5.0         5.0         11.0           11.0         20.0         11.0         20.0         11.0           11.0         21.0         11.0         21.0         16.0           12.2%         23.3%         12.2%         23.3%         17.8%           3.0         5.0         3.0         5.0         3.0           3.0         2.0         3.0         2.0         3.0           3.0         2.0         3.0         2.0         3.0           3.0         2.0         3.0         2.0         3.0           0.0         0.0         0.0         0.0         0.0           1.28         Yes         Yes         Yes         Yes           Yes         Yes         Yes         Yes         Yes           0.0         0.0         0.0         0.0         0.0         0.0 | NA         Free         pm+pt         NA         Free         Prot         NA           5         2         1         6         3         8           2         Free         6         Free         5         2         1         6         3         8           5.0         5.0         5.0         5.0         5.0         5.0         5.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         10.0         20.0 | NA         Free         prit         NA         Free         Prot         NA         Perm           5         2         1         6         3         8         8           2         Free         6         Free         8         8           5         2         1         6         3         8         8           5.0         5.0         5.0         5.0         5.0         5.0         5.0         10           11.0         20.0         11.0         20.0         11.0         20.0         42.0         42.0           12.2%         23.3%         12.2%         23.3%         17.8%         46.7%         46.7%           3.0         5.0         3.0         5.0         3.0         2.0         2.0           0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0           10.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0           10.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0           10.8         0.27         1.00         0.33         0.28 | NA         Free         pm+pt         NA         Free         Prot         NA         Perm         pm+pt           5         2         1         6         3         8         7           2         Free         6         Free         8         4           5         2         1         6         3         8         7           2         Free         6         Free         8         4           5         2         1         6         3         8         8         7           5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0 <td>NA         Free         pm+pt         NA         Free         Prot         NA         Perm         pm+pt         NA           5         2         1         6         3         8         7         4           2         Free         6         Free         8         4           5         2         1         6         3         8         7         4           5         2         1         6         3         8         8         7         4           5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         3.0         4.5         3.0         4.5         3.0         4.5         3.0         4.5         3.0         4.5         3.0         4.5         3.0         4.5         3.0         4.5         3.0         4.5         3.0         4.5         3.0         4.5         3.0</td> | NA         Free         pm+pt         NA         Free         Prot         NA         Perm         pm+pt         NA           5         2         1         6         3         8         7         4           2         Free         6         Free         8         4           5         2         1         6         3         8         7         4           5         2         1         6         3         8         8         7         4           5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         11.0         20.0         3.0         4.5         3.0         4.5         3.0         4.5         3.0         4.5         3.0         4.5         3.0         4.5         3.0         4.5         3.0         4.5         3.0         4.5         3.0         4.5         3.0         4.5         3.0 |

Splits and Phases: 10: US 24 & Meridian Rd

| <b>√</b> Ø1 |      | <b>▲</b> Ø3 | <b>↓</b> <sub>Ø4</sub> |
|-------------|------|-------------|------------------------|
| 11 s        | 21 s | 16 s        | 42 s                   |
|             |      | Ø7          | ¶ø8                    |
| 11 s        | 21 s | 16 s        | 42 s                   |

0

#### Intersection

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT      | NBR  | SBL  | SBT      | SBR  |  |
|------------------------|------|------|------|------|------|------|------|----------|------|------|----------|------|--|
| Lane Configurations    |      |      | 1    |      |      | 1    |      | <b>^</b> | 1    |      | <b>^</b> | 1    |  |
| Traffic Vol, veh/h     | 0    | 0    | 50   | 0    | 0    | 130  | 0    | 1053     | 130  | 0    | 1299     | 35   |  |
| Future Vol, veh/h      | 0    | 0    | 50   | 0    | 0    | 130  | 0    | 1053     | 130  | 0    | 1299     | 35   |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0        | 0    |  |
| Sign Control           | Stop | Stop | Stop | Stop | Stop | Stop | Free | Free     | Free | Free | Free     | Free |  |
| RT Channelized         | -    | -    | Free | -    | -    | Free | -    | -        | None | -    | -        | None |  |
| Storage Length         | -    | -    | 0    | -    | -    | 0    | -    | -        | -    | -    | -        | -    |  |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0        | -    | -    | 0        | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0        | -    | -    | 0        | -    |  |
| Peak Hour Factor       | 94   | 94   | 94   | 94   | 94   | 94   | 94   | 94       | 94   | 94   | 94       | 94   |  |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2        | 2    | 2    | 2        | 2    |  |
| Mvmt Flow              | 0    | 0    | 53   | 0    | 0    | 138  | 0    | 1120     | 138  | 0    | 1382     | 37   |  |
|                        |      |      |      |      |      |      |      |          |      |      |          |      |  |

| Major/Minor I        | Minor2 |     | M      | inor1  |      | N   | lajor1 |   | M | ajor2 |   |   |
|----------------------|--------|-----|--------|--------|------|-----|--------|---|---|-------|---|---|
| Conflicting Flow All | -      | -   | -      | -      | -    | -   | -      | 0 | 0 | -     | - | 0 |
| Stage 1              | -      | -   | -      | -      | -    | -   | -      | - | - | -     | - | - |
| Stage 2              | -      | -   | -      | -      | -    | -   | -      | - | - | -     | - | - |
| Critical Hdwy        | -      | -   | -      | -      | -    | -   | -      | - | - | -     | - | - |
| Critical Hdwy Stg 1  | -      | -   | -      | -      | -    |     | -      | - | - | -     | - | - |
| Critical Hdwy Stg 2  | -      | -   | -      | -      | -    | -   |        | - | - | -     | - | - |
| Follow-up Hdwy       | -      | -   | -      | -      | -    | -   | -      | - | - | -     | - | - |
| Pot Cap-1 Maneuver   | 0      | 0   | 0      | 0      | 0    | 0   | 0      | - | - | 0     | - | - |
| Stage 1              | 0      | 0   | 0      | 0      | 0    | 0   | 0      | - | - | 0     | - | - |
| Stage 2              | 0      | 0   | 0 <    | 0      | 0    | 0   | 0      | - | - | 0     | - | - |
| Platoon blocked, %   |        |     |        |        |      |     |        | - | - |       | - | - |
| Mov Cap-1 Maneuver   | -      | -   | -      | -      | -    | -   | -      | - | - | -     | - | - |
| Mov Cap-2 Maneuver   | -      | -   | -      | -      | -    | -   | -      | - | - | -     | - | - |
| Stage 1              | -      | -   | -      | -      | -    | -   | -      | - | - | -     | - | - |
| Stage 2              | -      | -   | -      | -      | -    | -   | -      | - | - | -     | - | - |
|                      |        |     |        |        |      |     |        |   |   |       |   |   |
| Approach             | EB     |     |        | WB     |      |     | NB     |   |   | SB    |   |   |
| HCM Control Delay, s | 0      |     | -      | 0      |      |     | 0      |   |   | 0     |   |   |
| HCM LOS              | А      |     |        | А      |      |     |        |   |   |       |   |   |
|                      |        |     |        |        |      |     |        |   |   |       |   |   |
| Minor Lane/Major Mvm | nt     | NBT | NBR EI | 3Ln1Wl | 3Ln1 | SBT | SBR    |   |   |       |   |   |
| Capacity (veh/h)     |        | -   | -      | -      | -    | -   | -      |   |   |       |   |   |
| HCM Lane V/C Patio   |        | _   | _      |        |      |     |        |   |   |       |   |   |

| HCM Lane V/C Ratio    | - | - | - | - | - | - |  |  |
|-----------------------|---|---|---|---|---|---|--|--|
| HCM Control Delay (s) | - | - | 0 | 0 | - | - |  |  |
| HCM Lane LOS          | - | - | А | А | - | - |  |  |
| HCM 95th %tile Q(veh) | - | - | - | - | - | - |  |  |

|    |    |    |   |           | •  |   |  |
|----|----|----|---|-----------|----|---|--|
| In | tΟ | rc | 0 | <u>et</u> | 10 | n |  |
|    | LC | 13 |   | υL        | IU |   |  |
|    |    |    |   |           |    |   |  |

| Int | Delav | s/veh |  |
|-----|-------|-------|--|

| Int Delay, s/veh       | 0.5  |      |      |      |      |      |  |
|------------------------|------|------|------|------|------|------|--|
| Movement               | EBL  | EBR  | NBL  | NBT  | SBT  | SBR  |  |
| Lane Configurations    | Y    |      |      | ÷    | et - |      |  |
| Traffic Vol, veh/h     | 2    | 1    | 4    | 52   | 53   | 4    |  |
| Future Vol, veh/h      | 2    | 1    | 4    | 52   | 53   | 4    |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Stop | Stop | Free | Free | Free | Free |  |
| RT Channelized         | -    | None | -    | None | -    | None |  |
| Storage Length         | 0    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage, | # 0  | -    | -    | 0    | 0    | -    |  |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |  |
| Peak Hour Factor       | 92   | 92   | 92   | 92   | 92   | 92   |  |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 2    | 1    | 4    | 57   | 58   | 4    |  |
|                        |      |      |      |      |      |      |  |

| Major/Minor          | Minor2 |       | Major1 | Ma | ajor2 |   |                                                                                                                |
|----------------------|--------|-------|--------|----|-------|---|----------------------------------------------------------------------------------------------------------------|
| Conflicting Flow All | 125    | 60    | 62     | 0  | · -   | 0 |                                                                                                                |
| Stage 1              | 60     | -     | -      | -  | -     | - | The second s |
| Stage 2              | 65     | -     | -      | -  | -     | - |                                                                                                                |
| Critical Hdwy        | 6.42   | 6.22  | 4.12   | -  | -     | - |                                                                                                                |
| Critical Hdwy Stg 1  | 5.42   | -     | -      | -  | -     | - |                                                                                                                |
| Critical Hdwy Stg 2  | 5.42   | -     | -      | -  | -     | - |                                                                                                                |
| Follow-up Hdwy       | 3.518  | 3.318 | 2.218  | -  | -     | - |                                                                                                                |
| Pot Cap-1 Maneuver   | 870    | 1005  | 1541   | -  | -     | - |                                                                                                                |
| Stage 1              | 963    | -     | -      | -  | - )   | - |                                                                                                                |
| Stage 2              | 958    | -     | -      | -  |       |   |                                                                                                                |
| Platoon blocked, %   |        |       |        | -  | -     | - |                                                                                                                |
| Mov Cap-1 Maneuver   |        | 1005  | 1541   | -  | -     | - |                                                                                                                |
| Mov Cap-2 Maneuver   |        | _     | -      | -  | -     | - |                                                                                                                |
| Stage 1              | 960    | -     | -      | -  | -     | - |                                                                                                                |
| Stage 2              | 958    |       | -      | -  | -     | - |                                                                                                                |
|                      |        |       |        |    |       |   |                                                                                                                |
| Approach             | EB     |       | NB     |    | SB    |   |                                                                                                                |
| HCM Control Delay, s | ; 9    |       | 0.5    |    | 0     |   |                                                                                                                |
| HCM LOS              | А      |       |        |    |       |   |                                                                                                                |

| Minor Lane/Major Mvmt | NBL   | NBTI | EBLn1 | SBT | SBR |
|-----------------------|-------|------|-------|-----|-----|
| Capacity (veh/h)      | 1541  | -    | 909   | -   | -   |
| HCM Lane V/C Ratio    | 0.003 | -    | 0.004 | -   | -   |
| HCM Control Delay (s) | 7.3   | 0    | 9     | -   | -   |
| HCM Lane LOS          | А     | А    | Α     | -   | -   |
| HCM 95th %tile Q(veh) | 0     | -    | 0     | -   | -   |

3.4

#### Intersection

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR   | SBL  | SBT  | SBR  |  |
|------------------------|------|------|------|------|------|------|------|------|-------|------|------|------|--|
| Lane Configurations    | 7    | et 👘 |      | ۲.   | et - |      |      | 4    |       |      | \$   |      |  |
| Traffic Vol, veh/h     | 0    | 270  | 0    | 53   | 258  | 23   | 0    | 0    | 21    | 85   | 0    | 0    |  |
| Future Vol, veh/h      | 0    | 270  | 0    | 53   | 258  | 23   | 0    | 0    | 21    | 85   | 0    | 0    |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0    | 0    | 0    |  |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop  | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None | -    | -    | None | -    | -    | None  | -    | -    | None |  |
| Storage Length         | 135  | -    | -    | 190  | -    | -    | -    | -    | -     | -    | -    | -    |  |
| Veh in Median Storage, | # -  | 0    | -    | -    | 0    | -    | -    | 0    | -     | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -     | -    | 0    | -    |  |
| Peak Hour Factor       | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92   | 92    | 92   | 92   | 92   |  |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2     | 2    | 2    | 2    |  |
| Mvmt Flow              | 0    | 293  | 0    | 58   | 280  | 25   | 0    | 0    | 23    | 92   | 0    | 0    |  |
|                        |      |      |      |      |      |      |      |      |       |      |      |      |  |
|                        |      |      |      |      |      |      |      |      | . 🗸 👘 |      |      |      |  |

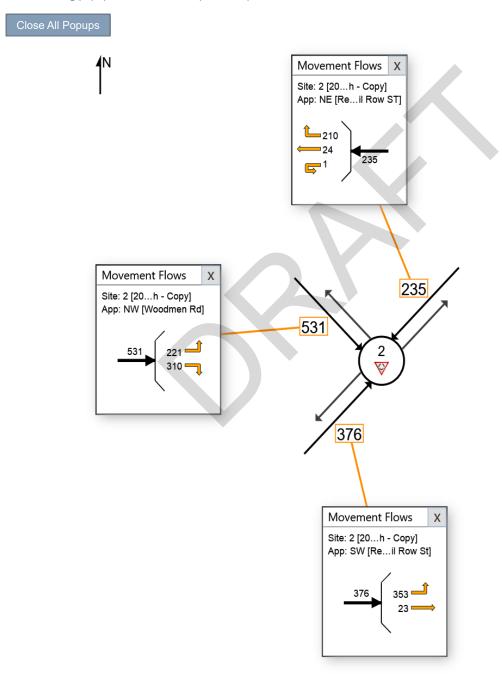
| Major/Minor          | Major1 |       | [   | Major2 |     |     | Minor1 |       |       | Minor2 |       |       |  |
|----------------------|--------|-------|-----|--------|-----|-----|--------|-------|-------|--------|-------|-------|--|
| Conflicting Flow All | 305    | 0     | 0   | 293    | 0   | 0   | 702    | 714   | 293   | 714    | 702   | 293   |  |
| Stage 1              | -      | -     | -   | -      | -   | -   | 293    | 293   | -     | 409    | 409   | -     |  |
| Stage 2              | -      | -     | -   | -      | -   | -   | 409    | 421   | -     | 305    | 293   | -     |  |
| Critical Hdwy        | 4.12   | -     | -   | 4.12   | -   | -   | 7.12   | 6.52  | 6.22  | 7.12   | 6.52  | 6.22  |  |
| Critical Hdwy Stg 1  | -      | -     | -   | -      | -   | -   | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |  |
| Critical Hdwy Stg 2  | -      | -     | -   | -      | -   | -   | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |  |
| Follow-up Hdwy       | 2.218  | -     | -   | 2.218  | -   | -   | 3.518  | 4.018 | 3.318 | 3.518  | 4.018 | 3.318 |  |
| Pot Cap-1 Maneuver   | 1256   | -     | -   | 1269   | -   | -   | 353    | 357   | 746   | 346    | 362   | 746   |  |
| Stage 1              | -      | -     | -   | -      | -   | -   | 715    | 670   | -     | 619    | 596   | -     |  |
| Stage 2              | -      | -     | -   | -      | -   |     | 619    | 589   | -     | 705    | 670   | -     |  |
| Platoon blocked, %   |        | -     | -   |        | -   | -   |        |       |       |        |       |       |  |
| Mov Cap-1 Maneuver   | 1256   | -     | -   | 1269   | -   | -   | 341    | 341   | 746   | 324    | 345   | 746   |  |
| Mov Cap-2 Maneuver   | -      | -     | -   | -      | -   | -   | 341    | 341   | -     | 324    | 345   | -     |  |
| Stage 1              | -      | -     | -   | -      | -   | -   | 715    | 670   | -     | 619    | 569   | -     |  |
| Stage 2              | -      | -     | -   | -      | -   | -   | 591    | 562   | -     | 683    | 670   | -     |  |
|                      |        |       |     |        |     |     |        |       |       |        |       |       |  |
| Approach             | EB     |       |     | WB     |     |     | NB     |       |       | SB     |       |       |  |
| HCM Control Delay, s | 0      |       |     | 1.3    |     |     | 10     |       |       | 20.5   |       |       |  |
| HCM LOS              |        |       |     |        |     |     | В      |       |       | С      |       |       |  |
|                      |        |       |     |        |     |     |        |       |       |        |       |       |  |
| Minor Lane/Maior Myr | nt N   | VBLn1 | EBL | EBT    | EBR | WBL | WBT    | WBR   | SBLn1 |        |       |       |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL  | EBT | EBR | WBL   | WBT | WBR \$ | SBLn1 |  |
|-----------------------|-------|------|-----|-----|-------|-----|--------|-------|--|
| Capacity (veh/h)      | 746   | 1256 | -   | -   | 1269  | -   | -      | 324   |  |
| HCM Lane V/C Ratio    | 0.031 | -    | -   | -   | 0.045 | -   | -      | 0.285 |  |
| HCM Control Delay (s) | 10    | 0    | -   | -   | 8     | -   | -      | 20.5  |  |
| HCM Lane LOS          | В     | А    | -   | -   | А     | -   | -      | С     |  |
| HCM 95th %tile Q(veh) | 0.1   | 0    | -   | -   | 0.1   | -   | -      | 1.2   |  |

# **MOVEMENT FLOWS FOR SITE (INPUT)**

Approach movement input flow rates (veh/h)

#### All Movement Classes


### V Site: 2 [2043 Total PM - Single Southeastbound Approach -

Copy (Site Folder: General)]

Woodmen/Retail Row

Site Category: 2043 Total PM Roundabout

Use the button below to open or close all popup boxes. Click value labels to open selected ones. Click and drag popup boxes to move to preferred positions.



# LANE SUMMARY

### W Site: 2 [2043 Total PM - Single Southeastbound Approach -

Copy (Site Folder: General)]

Woodmen/Retail Row

Site Category: 2043 Total PM Roundabout

| Lane Use a          | and Per               | formand | e     |              |               |                |                     |                          |      |                |                |     |                 |
|---------------------|-----------------------|---------|-------|--------------|---------------|----------------|---------------------|--------------------------|------|----------------|----------------|-----|-----------------|
|                     | DEM<br>FLO<br>[ Total |         | Cap.  | Deg.<br>Satn | Lane<br>Util. | Aver.<br>Delay | Level of<br>Service | 95% BAC<br>QUEL<br>[ Veh |      | Lane<br>Config | Lane<br>Length |     | Prob.<br>Block. |
|                     | veh/h                 | %       | veh/h | v/c          | %             | sec            |                     | [                        | ft   |                | ft             | %   | %               |
| NorthEast: F        | Retail Rov            | N ST    |       |              |               |                |                     |                          |      |                |                |     |                 |
| Lane 1 <sup>d</sup> | 255                   | 2.0     | 908   | 0.281        | 100           | 6.9            | LOS A               | 1.3                      | 34.0 | Full           | 1600           | 0.0 | 0.0             |
| Approach            | 255                   | 2.0     |       | 0.281        |               | 6.9            | LOS A               | 1.3                      | 34.0 |                |                |     |                 |
| NorthWest: \        | Noodme                | n Rd    |       |              |               |                |                     |                          |      |                |                |     |                 |
| Lane 1 <sup>d</sup> | 577                   | 2.0     | 1315  | 0.439        | 100           | 7.1            | LOS A               | 3.1                      | 78.5 | Full           | 1600           | 0.0 | 0.0             |
| Approach            | 577                   | 2.0     |       | 0.439        |               | 7.1            | LOS A               | 3.1                      | 78.5 |                |                |     |                 |
| SouthWest:          | Retail Ro             | ow St   |       |              |               |                |                     |                          |      |                |                |     |                 |
| Lane 1 <sup>d</sup> | 409                   | 2.0     | 1053  | 0.388        | 100           | 7.5            | LOS A               | 2.2                      | 55.5 | Full           | 1600           | 0.0 | 0.0             |
| Approach            | 409                   | 2.0     |       | 0.388        |               | 7.5            | LOS A               | 2.2                      | 55.5 |                |                |     |                 |
| Intersection        | 1241                  | 2.0     |       | 0.439        |               | 7.2            | LOS A               | 3.1                      | 78.5 |                |                |     |                 |

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula.

Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

#### SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: LSC TRANSPORTATION CONSULTANTS, INC. | Licence: PLUS / 1PC | Processed: Friday, October 6, 2023 10:09:45 AM Project: G:\Shared drives\CS Engineering - 2019-current\2020\204120 - FalconField Prelim Plan\Sidra\2020-06-June\Woodmen & Retail Row St single sb approach.sip9

#### Intersection

| Int Delay, s/veh       | 4     |      |      |      |      |      |  |
|------------------------|-------|------|------|------|------|------|--|
| Movement               | EBL   | EBT  | WBT  | WBR  | SBL  | SBR  |  |
| Lane Configurations    | ľ     | •    | el 👘 |      | Y    |      |  |
| Traffic Vol, veh/h     | 105   | 139  | 121  | 1    | 1    | 113  |  |
| Future Vol, veh/h      | 105   | 139  | 121  | 1    | 1    | 113  |  |
| Conflicting Peds, #/hr | 0     | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free  | Free | Free | Free | Stop | Stop |  |
| RT Channelized         | -     | None | -    | None | -    | None |  |
| Storage Length         | 120   | -    | -    | -    | 0    | -    |  |
| Veh in Median Storage, | , # - | 0    | 0    | -    | 0    | -    |  |
| Grade, %               | -     | 0    | 0    | -    | 0    | -    |  |
| Peak Hour Factor       | 92    | 92   | 92   | 92   | 92   | 92   |  |
| Heavy Vehicles, %      | 2     | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 114   | 151  | 132  | 1    | 1    | 123  |  |
|                        |       |      |      |      |      |      |  |

| Major/Minor          | Major1 | Ν     | Aajor2 |     | Minor2 |       |  |  |  |
|----------------------|--------|-------|--------|-----|--------|-------|--|--|--|
| Conflicting Flow All | 133    | 0     | -      | 0   | 512    | 133   |  |  |  |
| Stage 1              | -      | -     | -      | -   | 133    | -     |  |  |  |
| Stage 2              | -      | -     | -      | -   | 379    | -     |  |  |  |
| Critical Hdwy        | 4.12   | -     | -      | -   | 0.12   | 6.22  |  |  |  |
| Critical Hdwy Stg 1  | -      | -     | -      | -   | 5.42   | -     |  |  |  |
| Critical Hdwy Stg 2  | -      | -     | -      | -   | 5.42   | -     |  |  |  |
| Follow-up Hdwy       | 2.218  | -     | -      | -   | 3.518  |       |  |  |  |
| Pot Cap-1 Maneuver   | 1452   | -     | -      | -   | 522    | 916   |  |  |  |
| Stage 1              | -      | -     | -      | -   | 893    | -     |  |  |  |
| Stage 2              | -      | -     | -      | -   | 692    |       |  |  |  |
| Platoon blocked, %   |        | -     | -      | -   |        |       |  |  |  |
| Mov Cap-1 Maneuver   |        | -     | -      | -   | 481    | 916   |  |  |  |
| Mov Cap-2 Maneuver   | -      | -     | -      | -   | 481    | -     |  |  |  |
| Stage 1              | -      | -     | -      | -   | 822    | -     |  |  |  |
| Stage 2              | -      | -     | -      | -   | 692    | -     |  |  |  |
|                      |        |       |        |     |        |       |  |  |  |
| Approach             | EB     |       | WB     |     | SB     |       |  |  |  |
| HCM Control Delay, s | 3.3    |       | 0      |     | 9.6    |       |  |  |  |
| HCM LOS              |        |       |        |     | А      |       |  |  |  |
|                      |        |       |        |     |        |       |  |  |  |
| Minor Lane/Major Mvr | nt     | EBL   | EBT    | WBT | WBR    | SBLn1 |  |  |  |
| Capacity (veh/h)     |        | 1452  | -      | -   | -      | 909   |  |  |  |
| HCM Lane V/C Ratio   |        | 0.079 | -      | -   | -      | 0.136 |  |  |  |
| HCM Control Delay (s | )      | 7.7   | -      | -   | -      | 9.6   |  |  |  |
| HCM Lane LOS         |        | А     | -      | -   | -      | А     |  |  |  |
| HCM 95th %tile Q(veh | ו)     | 0.3   | -      | -   | -      | 0.5   |  |  |  |
|                      |        |       |        |     |        |       |  |  |  |

| Intersection           |        |       |        |      |          |              |  |
|------------------------|--------|-------|--------|------|----------|--------------|--|
| Int Delay, s/veh       | 6.4    |       |        |      |          |              |  |
| Movement               | EBL    | EBT   | WBT    | WBR  | SBL      | SBR          |  |
| Lane Configurations    | 5      | •     | el 👘   |      | Y        |              |  |
| Traffic Vol, veh/h     | 102    | 38    | 16     | 0    | 0        | 106          |  |
| Future Vol, veh/h      | 102    | 38    | 16     | 0    | 0        | 106          |  |
| Conflicting Peds, #/hr | 0      | 0     | 0      | 0    | 0        | 0            |  |
| Sign Control           | Free   | Free  | Free   | Free | Stop     | Stop         |  |
| RT Channelized         | -      | None  | -      | None | -        | None         |  |
| Storage Length         | 100    | -     | -      | -    | 0        | -            |  |
| Veh in Median Storage  | ,# -   | 0     | 0      | -    | 0        | -            |  |
| Grade, %               | -      | 0     | 0      | -    | 0        | -            |  |
| Peak Hour Factor       | 92     | 92    | 92     | 92   | 92       | 92           |  |
| Heavy Vehicles, %      | 2      | 2     | 2      | 2    | 2        | 2            |  |
| Mvmt Flow              | 111    | 41    | 17     | 0    | 0        | 115          |  |
|                        |        |       |        |      |          |              |  |
| Major/Minor            | Major1 | ľ     | Major2 | 1    | Minor2   |              |  |
| Conflicting Flow All   | 17     | 0     | -      | 0    | 280      | 17           |  |
| Stage 1                | -      | -     | -      | -    | 17       | -            |  |
| Stage 2                | -      | -     | -      | -    | 263      | -            |  |
| Critical Hdwy          | 4.12   | -     | -      | -    | 6.42     | 6.22         |  |
| Critical Hdwy Stg 1    | -      | -     | -      | -    | 5.42     |              |  |
| Critical Hdwy Stg 2    | -      | -     | -      | -    | 5.42     | -            |  |
| Follow-up Hdwy         | 2.218  | -     | -      | -    | 3.518    | 3.318        |  |
| Pot Cap-1 Maneuver     | 1600   | -     | -      | -    | 710      | 1062         |  |
| Stage 1                | -      | -     | -      | -    | 1006     | -            |  |
| Stage 2                | -      | -     | -      | -    | 781      |              |  |
| Platoon blocked, %     |        | -     | -      | -    |          |              |  |
| Mov Cap-1 Maneuver     | 1600   | -     | -      | -    | 661      | 1062         |  |
| Mov Cap-2 Maneuver     | -      |       | -      | -    | 661      | -            |  |
| Stage 1                | -      | -     | -      | -    | 937      | -            |  |
| Stage 2                | -      |       | -      | -    | 781      | -            |  |
|                        |        |       |        |      |          |              |  |
| Approach               | EB     |       | WB     |      | SB       |              |  |
| HCM Control Delay, s   | 5.4    |       | 0      |      | 8.8      |              |  |
| HCM LOS                | 0.7    |       | 0      |      | 0.0<br>A |              |  |
|                        |        |       |        |      | ~        |              |  |
| Minor Lane/Major Mvm   | t      | EBL   | EBT    | WBT  | WBR      | SBLn1        |  |
| Capacity (veh/h)       |        | 1600  | -      | _    | -        | 1062         |  |
| HCM Lane V/C Ratio     |        | 0.069 | -      | -    |          | 0.108        |  |
| HCM Control Delay (s)  |        | 7.4   | -      | -    | -        | 8.8          |  |
| HCM Lane LOS           |        | A     | -      | -    | -        | A            |  |
| HCM 95th %tile Q(veh)  |        | 0.2   | -      | -    | -        | 0.4          |  |
|                        |        | J.L   |        |      |          | <b>9</b> . 1 |  |

| Intersection           |        |      |        |      |        |       |  |
|------------------------|--------|------|--------|------|--------|-------|--|
| Int Delay, s/veh       | 0.1    |      |        |      |        |       |  |
| Movement               | EBT    | EBR  | WBL    | WBT  | NBL    | NBR   |  |
| Lane Configurations    | f,     |      |        | र्च  | ۰Y     |       |  |
| Traffic Vol, veh/h     | 106    | 0    | 3      | 104  | 0      | 1     |  |
| Future Vol, veh/h      | 106    | 0    | 3      | 104  | 0      | 1     |  |
| Conflicting Peds, #/hr | 0      | 0    | 0      | 0    | 0      | 0     |  |
| Sign Control           | Free   | Free | Free   | Free | Stop   | Stop  |  |
| RT Channelized         | -      | None | -      | None | -      | None  |  |
| Storage Length         | -      | -    | -      | -    | 0      | -     |  |
| Veh in Median Storage  | e, # 0 | -    | -      | 0    | 0      | -     |  |
| Grade, %               | 0      | -    | -      | 0    | 0      | -     |  |
| Peak Hour Factor       | 92     | 92   | 92     | 92   | 92     | 92    |  |
| Heavy Vehicles, %      | 2      | 2    | 2      | 2    | 2      | 2     |  |
| Mvmt Flow              | 115    | 0    | 3      | 113  | 0      | 1     |  |
|                        |        |      |        |      |        |       |  |
| Major/Minor            | Major1 |      | Major2 |      | Minor1 |       |  |
| Conflicting Flow All   | 0      | 0    | 115    | 0    | 234    | 115   |  |
| Stage 1                | -      | -    | -      | -    | 115    | -     |  |
| Stage 2                | -      | -    | -      | -    | 119    | -     |  |
| Critical Hdwy          | -      | -    | 4.12   | -    | 6.42   | 6.22  |  |
| Critical Hdwy Stg 1    | -      | -    | -      | -    | 5.42   | -     |  |
| Critical Hdwy Stg 2    | -      | -    | -      | -    | 5.42   | -     |  |
| Follow-up Hdwy         | -      | -    | 2.218  | -    | 3.518  | 3.318 |  |
| Pot Cap-1 Maneuver     | -      | -    | 1474   | -    | 754    | 937   |  |
| Stage 1                | -      | -    | -      | -    | 910    | -     |  |
| Stage 2                | -      | -    | -      | -    | 906    | -     |  |
| Platoon blocked, %     | -      | -    |        | -    |        |       |  |
| Mov Cap-1 Maneuver     | -      | -    | 1474   | -    | 752    | 937   |  |
| Mov Cap-2 Maneuver     |        | -    | -      | -    | 752    | -     |  |
| Stage 1                | -      | -    | -      | -    | 910    | -     |  |
| Stage 2                | -      | -    | -      | -    | 904    | -     |  |
|                        |        |      |        |      |        |       |  |
| Approach               | EB     |      | WB     |      | NB     |       |  |
| HCM Control Delay, s   | 0      |      | 0.2    | -    | 8.8    |       |  |

| Minor Lane/Major Mvmt | NBLn1 | EBT | EBR | WBL   | WBT |
|-----------------------|-------|-----|-----|-------|-----|
| Capacity (veh/h)      | 937   | -   | -   | 1474  | -   |
| HCM Lane V/C Ratio    | 0.001 | -   | -   | 0.002 | -   |
| HCM Control Delay (s) | 8.8   | -   | -   | 7.4   | 0   |
| HCM Lane LOS          | А     | -   | -   | А     | А   |
| HCM 95th %tile Q(veh) | 0     | -   | -   | 0     | -   |

# Timings 7: Meridian Rd & Woodmen Rd

|                               | ٦          | +            | *        | 4           | ł          | *          | <          | 1        | 1     | 1     | ţ            | ~     |
|-------------------------------|------------|--------------|----------|-------------|------------|------------|------------|----------|-------|-------|--------------|-------|
| Lane Group                    | EBL        | EBT          | EBR      | WBL         | WBT        | WBR        | NBL        | NBT      | NBR   | SBL   | SBT          | SBR   |
| Lane Configurations           | ካካ         | - <b>†</b> † | 1        | ካካ          | <u></u>    | 1          | ሻሻ         | <u>^</u> | 1     | ካካ    | - <b>†</b> † | 1     |
| Traffic Volume (vph)          | 785        | 704          | 373      | 229         | 622        | 299        | 468        | 875      | 203   | 499   | 700          | 602   |
| Future Volume (vph)           | 785        | 704          | 373      | 229         | 622        | 299        | 468        | 875      | 203   | 499   | 700          | 602   |
| Turn Type                     | Prot       | NA           | Free     | Prot        | NA         | Perm       | Prot       | NA       | Free  | Prot  | NA           | Free  |
| Protected Phases              | 7          | 4            |          | 3           | 8          |            | 5          | 2        |       | 1     | 6            |       |
| Permitted Phases              |            |              | Free     |             |            | 8          |            |          | Free  |       |              | Free  |
| Detector Phase                | 7          | 4            |          | 3           | 8          | 8          | 5          | 2        |       | 1     | 6            |       |
| Switch Phase                  |            |              |          |             |            |            |            |          |       |       |              |       |
| Minimum Initial (s)           | 5.0        | 15.0         |          | 5.0         | 15.0       | 15.0       | 5.0        | 15.0     |       | 5.0   | 15.0         |       |
| Minimum Split (s)             | 12.5       | 22.0         |          | 12.5        | 22.0       | 22.0       | 13.5       | 22.0     |       | 13.5  | 22.0         |       |
| Total Split (s)               | 32.0       | 43.0         |          | 18.0        | 29.0       | 29.0       | 23.0       | 36.0     |       | 23.0  | 36.0         |       |
| Total Split (%)               | 26.7%      | 35.8%        |          | 15.0%       | 24.2%      | 24.2%      | 19.2%      | 30.0%    |       | 19.2% | 30.0%        |       |
| Yellow Time (s)               | 3.0        | 3.0          |          | 3.0         | 3.0        | 3.0        | 3.0        | 3.0      |       | 3.0   | 3.0          |       |
| All-Red Time (s)              | 2.0        | 2.0          |          | 2.0         | 2.0        | 2.0        | 2.0        | 2.0      |       | 2.0   | 2.0          |       |
| Lost Time Adjust (s)          | 0.0        | 0.0          |          | 0.0         | 0.0        | 0.0        | 0.0        | 0.0      |       | 0.0   | 0.0          |       |
| Total Lost Time (s)           | 5.0        | 5.0          |          | 5.0         | 5.0        | 5.0        | 5.0        | 5.0      |       | 5.0   | 5.0          |       |
| Lead/Lag                      | Lead       | Lag          |          | Lead        | Lag        | Lag        | Lead       | Lag      |       | Lead  | Lag          |       |
| Lead-Lag Optimize?            | Yes        | Yes          |          | Yes         | Yes        | Yes        | Yes        | Yes      |       | Yes   | Yes          |       |
| Recall Mode                   | None       | None         |          | None        | None       | None       | None       | C-Max    |       | None  | C-Max        |       |
| Act Effct Green (s)           | 27.0       | 38.7         | 120.0    | 12.2        | 23.9       | 23.9       | 18.1       | 31.0     | 120.0 | 18.1  | 31.0         | 120.0 |
| Actuated g/C Ratio            | 0.22       | 0.32         | 1.00     | 0.10        | 0.20       | 0.20       | 0.15       | 0.26     | 1.00  | 0.15  | 0.26         | 1.00  |
| v/c Ratio                     | 1.06       | 0.64         | 0.25     | 0.69        | 0.92       | 0.57       | 0.94       | 1.00     | 0.13  | 1.00  | 0.80         | 0.40  |
| Control Delay                 | 94.0       | 38.1         | 0.4      | 78.9        | 50.9       | 11.5       | 78.4       | 73.7     | 0.2   | 91.7  | 49.2         | 0.7   |
| Queue Delay                   | 0.0        | 0.0          | 0.0      | 0.0         | 0.0        | 0.0        | 0.0        | 0.0      | 0.0   | 0.0   | 0.0          | 0.0   |
| Total Delay                   | 94.0       | 38.1         | 0.4      | 78.9        | 50.9       | 11.5       | 78.4       | 73.7     | 0.2   | 91.7  | 49.2         | 0.7   |
| LOS                           | F          | D            | Α        | E           | D          | В          | E          | E        | А     | F     | D            | A     |
| Approach Delay                |            | 54.1         |          |             | 46.2       |            |            | 65.5     |       |       | 44.8         |       |
| Approach LOS                  |            | D            |          |             | D          |            |            | E        |       |       | D            |       |
| Intersection Summary          |            |              |          |             |            |            |            |          |       |       |              |       |
| Cycle Length: 120             |            |              |          |             |            |            |            |          |       |       |              |       |
| Actuated Cycle Length: 120    |            |              |          |             |            |            |            |          |       |       |              |       |
| Offset: 0 (0%), Referenced    | to phase 2 | :NBT and     | 6:SBT, 5 | Start of FE | W or yell  | ow, Mast   | er Interse | ection   |       |       |              |       |
| Natural Cycle: 110            |            |              |          |             |            |            |            |          |       |       |              |       |
| Control Type: Actuated-Coo    | rdinated   |              |          |             |            |            |            |          |       |       |              |       |
| Maximum v/c Ratio: 1.06       |            |              |          |             |            |            |            |          |       |       |              |       |
| Intersection Signal Delay: 5  | 2.8        |              |          | lr          | ntersectio | n LOS: D   |            |          |       |       |              |       |
| Intersection Capacity Utiliza |            | )            |          | 10          | CU Level   | of Service | ə F        |          |       |       |              |       |
| Analysis Period (min) 15      |            |              |          |             |            |            |            |          |       |       |              |       |

Splits and Phases: 7: Meridian Rd & Woodmen Rd

| Ø1   | Ø2 (R) | • | <b>√</b> Ø3 | <b>→</b> Ø4 |                |
|------|--------|---|-------------|-------------|----------------|
| 23 s | 36 s   |   | 18 s        | 43 s        |                |
| ▲ ø5 | Ø6 (R) | • | ▶<br>Ø7     | •           | <u>●</u><br>Ø8 |
| 23 s | 36 s   |   | 32 s        | 29 :        | S              |

### Timings 8: McLaughlin Rd & Woodmen Rd

|                                                     | ٦          | -         | $\mathbf{r}$ | 4         | +          | *     | 1     | 1     | 1     | 1     | ŧ     | ~     |
|-----------------------------------------------------|------------|-----------|--------------|-----------|------------|-------|-------|-------|-------|-------|-------|-------|
| Lane Group                                          | EBL        | EBT       | EBR          | WBL       | WBT        | WBR   | NBL   | NBT   | NBR   | SBL   | SBT   | SBR   |
| Lane Configurations                                 | ľ          | <u></u>   | 1            | 1         | <u></u>    | 1     | ľ     | •     | 1     | ľ     | •     | 1     |
| Traffic Volume (vph)                                | 300        | 957       | 150          | 100       | 800        | 291   | 150   | 200   | 150   | 217   | 150   | 200   |
| Future Volume (vph)                                 | 300        | 957       | 150          | 100       | 800        | 291   | 150   | 200   | 150   | 217   | 150   | 200   |
| Turn Type                                           | pm+pt      | NA        | Perm         | pm+pt     | NA         | Perm  | pm+pt | NA    | Perm  | pm+pt | NA    | Perm  |
| Protected Phases                                    | 5          | 2         |              | 1         | 6          |       | 3     | 8     |       | 7     | 4     |       |
| Permitted Phases                                    | 2          |           | 2            | 6         |            | 6     | 8     |       | 8     | 4     |       | 4     |
| Detector Phase                                      | 5          | 2         | 2            | 1         | 6          | 6     | 3     | 8     | 8     | 7     | 4     | 4     |
| Switch Phase                                        |            |           |              |           |            |       |       |       |       |       |       |       |
| Minimum Initial (s)                                 | 5.0        | 5.0       | 5.0          | 5.0       | 5.0        | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   |
| Minimum Split (s)                                   | 12.5       | 25.0      | 25.0         | 12.5      | 25.0       | 25.0  | 13.5  | 25.0  | 25.0  | 13.5  | 25.0  | 25.0  |
| Total Split (s)                                     | 24.0       | 57.0      | 57.0         | 15.0      | 48.0       | 48.0  | 15.0  | 29.0  | 29.0  | 19.0  | 33.0  | 33.0  |
| Total Split (%)                                     | 20.0%      | 47.5%     | 47.5%        | 12.5%     | 40.0%      | 40.0% | 12.5% | 24.2% | 24.2% | 15.8% | 27.5% | 27.5% |
| Yellow Time (s)                                     | 4.0        | 5.0       | 5.0          | 4.0       | 5.0        | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   |
| All-Red Time (s)                                    | 3.5        | 2.0       | 2.0          | 3.5       | 2.0        | 2.0   | 3.5   | 2.0   | 2.0   | 3.5   | 2.0   | 2.0   |
| Lost Time Adjust (s)                                | 0.0        | 0.0       | 0.0          | 0.0       | 0.0        | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Lost Time (s)                                 | 7.5        | 7.0       | 7.0          | 7.5       | 7.0        | 7.0   | 8.5   | 7.0   | 7.0   | 8.5   | 7.0   | 7.0   |
| Lead/Lag                                            | Lead       | Lag       | Lag          | Lead      | Lag        | Lag   | Lead  | Lag   | Lag   | Lead  | Lag   | Lag   |
| Lead-Lag Optimize?                                  | Yes        | Yes       | Yes          | Yes       | Yes        | Yes   | Yes   | Yes   | Yes   | Yes   | Yes   | Yes   |
| Recall Mode                                         | None       | C-Max     | C-Max        | None      | C-Max      | C-Max | None  | Max   | Max   | None  | Max   | Max   |
| Act Effct Green (s)                                 | 64.4       | 50.2      | 50.2         | 48.4      | 41.6       | 41.6  | 27.0  | 22.0  | 22.0  | 35.0  | 26.0  | 26.0  |
| Actuated g/C Ratio                                  | 0.54       | 0.42      | 0.42         | 0.40      | 0.35       | 0.35  | 0.22  | 0.18  | 0.18  | 0.29  | 0.22  | 0.22  |
| v/c Ratio                                           | 0.86       | 0.67      | 0.20         | 0.44      | 0.67       | 0.40  | 0.51  | 0.60  | 0.31  | 0.73  | 0.38  | 0.38  |
| Control Delay                                       | 55.0       | 51.6      | 15.6         | 27.0      | 42.3       | 12.3  | 39.7  | 53.4  | 1.7   | 48.2  | 43.5  | 4.2   |
| Queue Delay                                         | 0.0        | 0.0       | 0.0          | 0.0       | 0.0        | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Total Delay                                         | 55.0       | 51.6      | 15.6         | 27.0      | 42.3       | 12.3  | 39.7  | 53.4  | 1.7   | 48.2  | 43.5  | 4.2   |
| LOS                                                 | D          | D         | В            | С         | D          | В     | D     | D     | А     | D     | D     | A     |
| Approach Delay                                      |            | 48.5      |              |           | 33.7       |       |       | 33.7  |       |       | 31.4  |       |
| Approach LOS                                        |            | D         |              |           | C          |       |       | С     |       |       | С     |       |
| Intersection Summary                                |            |           |              |           |            |       |       |       |       |       |       |       |
| Cycle Length: 120                                   |            |           |              |           |            |       |       |       |       |       |       |       |
| Actuated Cycle Length: 120                          |            |           |              |           |            |       |       |       |       |       |       |       |
| Offset: 118 (98%), Reference                        | ed to phas | se 2:EBTI | L and 6:W    | /BTL, Sta | rt of Gree | n     |       |       |       |       |       |       |
| Natural Cycle: 90                                   |            |           |              |           |            |       |       |       |       |       |       |       |
| Control Type: Actuated-Cool                         | rdinated   |           |              |           |            |       |       |       |       |       |       |       |
| Maximum v/c Ratio: 0.86                             |            |           |              |           |            |       |       |       |       |       |       |       |
| Intersection Signal Delay: 39.0 Intersection LOS: D |            |           |              |           |            |       |       |       |       |       |       |       |
| Intersection Capacity Utilizat                      |            | ,<br>D    |              |           | CU Level   |       |       |       |       |       |       |       |
| Analysis Period (min) 15                            |            |           |              |           |            |       |       |       |       |       |       |       |
|                                                     |            |           |              |           |            |       |       |       |       |       |       |       |

Splits and Phases: 8: McLaughlin Rd & Woodmen Rd

| <b>√</b> Ø1 |            | <b>▲</b> Ø3 | <b>↓</b> <sub>Ø4</sub> |
|-------------|------------|-------------|------------------------|
| 15 s        | 57 s       | 15 s        | 33 s                   |
|             | ● ♥ Ø6 (R) | Ø7          | <b>√</b> Ø8            |
| 24 s        | 48 s       | 19 s        | 29 s                   |

### Timings 9: US 24 & Woodmen Rd

|                                                    | ≯            | -         | $\mathbf{r}$ | 4          | -        | •          | 1     | 1        | 1     | 1        | Ŧ       | -     |
|----------------------------------------------------|--------------|-----------|--------------|------------|----------|------------|-------|----------|-------|----------|---------|-------|
| Lane Group                                         | EBL          | EBT       | EBR          | WBL        | WBT      | WBR        | NBL   | NBT      | NBR   | SBL      | SBT     | SBF   |
| Lane Configurations                                | ሻሻ           | 1         | 1            | 5          | <u></u>  | 1          | ሻሻ    | <b>^</b> | 1     | <u>۲</u> | <u></u> | 5     |
| Traffic Volume (vph)                               | 786          | 306       | 232          | 74         | 303      | 186        | 436   | 1572     | 171   | 107      | 1052    | 45    |
| Future Volume (vph)                                | 786          | 306       | 232          | 74         | 303      | 186        | 436   | 1572     | 171   | 107      | 1052    | 45    |
| Turn Type                                          | Prot         | NA        | Free         | pm+pt      | NA       | Free       | Prot  | NA       | Perm  | pm+pt    | NA      | Free  |
| Protected Phases                                   | 7            | 4         |              | 3          | 8        |            | 5     | 2        |       | 1        | 6       |       |
| Permitted Phases                                   |              |           | Free         | 8          |          | Free       |       |          | 2     | 6        |         | Free  |
| Detector Phase                                     | 7            | 4         |              | 3          | 8        |            | 5     | 2        | 2     | 1        | 6       |       |
| Switch Phase                                       |              |           |              |            |          |            |       |          |       |          |         |       |
| Minimum Initial (s)                                | 5.0          | 15.0      |              | 5.0        | 15.0     |            | 20.0  | 15.0     | 15.0  | 5.0      | 15.0    |       |
| Minimum Split (s)                                  | 10.0         | 23.0      |              | 10.0       | 23.0     |            | 25.0  | 23.0     | 23.0  | 10.0     | 23.0    |       |
| Total Split (s)                                    | 38.0         | 53.0      |              | 12.0       | 27.0     |            | 27.0  | 45.0     | 45.0  | 10.0     | 28.0    |       |
| Total Split (%)                                    | 31.7%        | 44.2%     |              | 10.0%      | 22.5%    |            | 22.5% | 37.5%    | 37.5% | 8.3%     | 23.3%   |       |
| Yellow Time (s)                                    | 3.0          | 3.0       |              | 3.0        | 3.0      |            | 3.0   | 3.0      | 3.0   | 3.0      | 3.0     |       |
| All-Red Time (s)                                   | 2.0          | 2.0       |              | 2.0        | 2.0      |            | 2.0   | 2.0      | 2.0   | 2.0      | 2.0     |       |
| Lost Time Adjust (s)                               | 0.0          | 0.0       |              | 0.0        | 0.0      |            | 0.0   | 0.0      | 0.0   | 0.0      | 0.0     |       |
| Total Lost Time (s)                                | 5.0          | 5.0       |              | 5.0        | 5.0      |            | 5.0   | 5.0      | 5.0   | 5.0      | 5.0     |       |
| Lead/Lag                                           | Lead         | Lag       |              | Lead       | Lag      |            | Lead  | Lag      | Lag   | Lead     | Lag     |       |
| Lead-Lag Optimize?                                 | Yes          | Yes       |              | Yes        | Yes      |            | Yes   | Yes      | Yes   | Yes      | Yes     |       |
| Recall Mode                                        | None         | None      |              | None       | None     |            | None  | C-Max    | C-Max | None     | C-Max   |       |
| Act Effct Green (s)                                | 32.0         | 44.2      | 120.0        | 23.7       | 16.9     | 120.0      | 21.7  | 42.2     | 42.2  | 38.5     | 29.5    | 120.0 |
| Actuated g/C Ratio                                 | 0.27         | 0.37      | 1.00         | 0.20       | 0.14     | 1.00       | 0.18  | 0.35     | 0.35  | 0.32     | 0.25    | 1.00  |
| v/c Ratio                                          | 0.91         | 0.48      | 0.16         | 0.32       | 0.65     | 0.13       | 0.75  | 0.94     | 0.27  | 0.58     | 0.90    | 0.30  |
| Control Delay                                      | 76.9         | 38.0      | 0.2          | 26.0       | 55.0     | 0.2        | 54.7  | 49.0     | 5.1   | 37.4     | 54.7    | 0.5   |
| Queue Delay                                        | 0.0          | 0.0       | 0.0          | 0.0        | 0.0      | 0.0        | 0.0   | 0.0      | 0.0   | 0.0      | 0.0     | 0.0   |
| Total Delay                                        | 76.9         | 38.0      | 0.2          | 26.0       | 55.0     | 0.2        | 54.7  | 49.0     | 5.1   | 37.4     | 54.7    | 0.5   |
| LOS                                                | E            | D         | Α            | С          | D        | А          | D     | D        | А     | D        | D       | ŀ     |
| Approach Delay                                     |              | 54.4      |              |            | 33.0     |            |       | 46.7     |       |          | 38.4    |       |
| Approach LOS                                       |              | D         |              |            | C        |            |       | D        |       |          | D       |       |
| Intersection Summary                               |              |           |              |            |          |            |       |          |       |          |         |       |
| Cycle Length: 120                                  |              |           |              |            |          |            |       |          |       |          |         |       |
| Actuated Cycle Length: 12                          | 20           |           |              |            |          |            |       |          |       |          |         |       |
| Offset: 61 (51%), Reference                        | ced to phase | e 2:NBT a | nd 6:SBT     | L, Start c | of Green |            |       |          |       |          |         |       |
| Natural Cycle: 105                                 |              |           |              |            |          |            |       |          |       |          |         |       |
| Control Type: Actuated-Co                          | ordinated    |           |              |            |          |            |       |          |       |          |         |       |
| Maximum v/c Ratio: 0.94                            |              | -         |              |            |          |            |       |          |       |          |         |       |
| ntersection Signal Delay: 44.8 Intersection LOS: D |              |           |              |            |          |            |       |          |       |          |         |       |
| Intersection Capacity Utiliz                       | ation 88.6%  | þ         |              | 10         | CU Level | of Service | θE    |          |       |          |         |       |
| Analysis Period (min) 15                           |              |           |              |            |          |            |       |          |       |          |         |       |
|                                                    | 0.04.0.144   |           |              |            |          |            |       |          |       |          |         |       |

Splits and Phases: 9: US 24 & Woodmen Rd

| Ø1   | Ø2 (R) | •      | <b>√</b> ø3 | <b>→</b> Ø4 |             |
|------|--------|--------|-------------|-------------|-------------|
| 10 s | 45 s   |        | 12 s        | 53 s        |             |
| ▲ ø5 |        | Ø6 (R) |             |             | <b>↓</b> Ø8 |
| 27 s |        | 28 s   | 38 s        |             | 27 s        |

### Timings 10: US 24 & Meridian Rd

|                               | ۶           | -          | $\mathbf{r}$ | 4         | -           | ×          | 1     | Ť       | 1     | ×     | Ļ       | -     |
|-------------------------------|-------------|------------|--------------|-----------|-------------|------------|-------|---------|-------|-------|---------|-------|
| Lane Group                    | EBL         | EBT        | EBR          | WBL       | WBT         | WBR        | NBL   | NBT     | NBR   | SBL   | SBT     | SBF   |
| Lane Configurations           | ľ           | <u></u>    | 1            | ľ         | <u></u>     | 1          | ሻሻ    | <u></u> | 1     | ľ     | <u></u> | 5     |
| Traffic Volume (vph)          | 80          | 347        | 412          | 60        | 495         | 240        | 804   | 1814    | 80    | 173   | 1185    | 6     |
| Future Volume (vph)           | 80          | 347        | 412          | 60        | 495         | 240        | 804   | 1814    | 80    | 173   | 1185    | 6     |
| Turn Type                     | pm+pt       | NA         | Free         | pm+pt     | NA          | Free       | Prot  | NA      | Perm  | pm+pt | NA      | Pern  |
| Protected Phases              | 5           | 2          |              | 1         | 6           |            | 3     | 8       |       | 7     | 4       |       |
| Permitted Phases              | 2           |            | Free         | 6         |             | Free       |       |         | 8     | 4     |         | 4     |
| Detector Phase                | 5           | 2          |              | 1         | 6           |            | 3     | 8       | 8     | 7     | 4       | 4     |
| Switch Phase                  |             |            |              |           |             |            |       |         |       |       |         |       |
| Minimum Initial (s)           | 5.0         | 5.0        |              | 5.0       | 5.0         |            | 5.0   | 5.0     | 5.0   | 5.0   | 5.0     | 5.0   |
| Minimum Split (s)             | 11.0        | 20.0       |              | 11.0      | 20.0        |            | 11.0  | 20.0    | 20.0  | 11.0  | 20.0    | 20.0  |
| Total Split (s)               | 11.0        | 21.0       |              | 11.0      | 21.0        |            | 28.0  | 42.0    | 42.0  | 16.0  | 30.0    | 30.0  |
| Total Split (%)               | 12.2%       | 23.3%      |              | 12.2%     | 23.3%       |            | 31.1% | 46.7%   | 46.7% | 17.8% | 33.3%   | 33.3% |
| Yellow Time (s)               | 3.0         | 5.0        |              | 3.0       | 5.0         |            | 3.0   | 4.5     | 4.5   | 3.0   | 4.5     | 4.    |
| All-Red Time (s)              | 3.0         | 2.0        |              | 3.0       | 2.0         |            | 3.0   | 2.0     | 2.0   | 3.0   | 2.0     | 2.0   |
| Lost Time Adjust (s)          | 0.0         | 0.0        |              | 0.0       | 0.0         |            | 0.0   | 0.0     | 0.0   | 0.0   | 0.0     | 0.0   |
| Total Lost Time (s)           | 6.0         | 7.0        |              | 6.0       | 7.0         |            | 6.0   | 6.5     | 6.5   | 6.0   | 6.5     | 6.    |
| Lead/Lag                      | Lead        | Lag        |              | Lead      | Lag         |            | Lead  | Lag     | Lag   | Lead  | Lag     | Lag   |
| Lead-Lag Optimize?            | Yes         | Yes        |              | Yes       | Yes         |            | Yes   | Yes     | Yes   | Yes   | Yes     | Ye    |
| Recall Mode                   | None        | C-Max      |              | None      | C-Max       |            | None  | None    | None  | None  | None    | None  |
| Act Effct Green (s)           | 21.2        | 16.2       | 90.0         | 21.2      | 16.2        | 90.0       | 22.0  | 36.3    | 36.3  | 33.2  | 23.5    | 23.5  |
| Actuated g/C Ratio            | 0.24        | 0.18       | 1.00         | 0.24      | 0.18        | 1.00       | 0.24  | 0.40    | 0.40  | 0.37  | 0.26    | 0.26  |
| v/c Ratio                     | 0.45        | 0.58       | 0.28         | 0.25      | 0.83        | 0.16       | 1.02  | 0.94    | 0.11  | 0.69  | 0.95    | 0.10  |
| Control Delay                 | 28.2        | 32.7       | 0.8          | 26.7      | 49.7        | 0.2        | 71.0  | 37.1    | 0.3   | 32.0  | 48.9    | 0.3   |
| Queue Delay                   | 0.0         | 0.0        | 0.0          | 0.0       | 0.0         | 0.0        | 0.0   | 0.0     | 0.0   | 0.0   | 0.0     | 0.0   |
| Total Delay                   | 28.2        | 32.7       | 0.8          | 26.7      | 49.7        | 0.2        | 71.0  | 37.1    | 0.3   | 32.0  | 48.9    | 0.3   |
| LOS                           | С           | С          | Α            | С         | D           | А          | E     | D       | А     | С     | D       | ŀ     |
| Approach Delay                |             | 16.6       |              |           | 33.1        |            |       | 46.1    |       |       | 44.8    |       |
| Approach LOS                  |             | В          |              |           | C           |            |       | D       |       |       | D       |       |
| Intersection Summary          |             |            |              |           |             |            |       |         |       |       |         |       |
| Cycle Length: 90              |             |            |              |           |             |            |       |         |       |       |         |       |
| Actuated Cycle Length: 90     |             |            |              | Ť         |             |            |       |         |       |       |         |       |
| Offset: 71 (79%), Reference   | ed to phase | e 2:EBTL a | and 6:WE     | BTL, Star | t of FDW o  | or yellow  |       |         |       |       |         |       |
| Natural Cycle: 90             |             |            |              |           |             |            |       |         |       |       |         |       |
| Control Type: Actuated-Coc    | ordinated   |            |              |           |             |            |       |         |       |       |         |       |
| Maximum v/c Ratio: 1.02       |             |            |              |           |             |            |       |         |       |       |         |       |
| Intersection Signal Delay: 3  |             |            |              | li        | ntersectior | n LOS: D   |       |         |       |       |         |       |
| Intersection Capacity Utiliza | ition 85.2% | þ          |              | 10        | CU Level o  | of Service | эE    |         |       |       |         |       |
| Analysis Period (min) 15      |             |            |              |           |             |            |       |         |       |       |         |       |

Splits and Phases: 10: US 24 & Meridian Rd

| <b>√</b> Ø1 |      | <b>1</b> Ø3 | <b>↓</b> <sub>Ø4</sub> |
|-------------|------|-------------|------------------------|
| 11 s        | 21 s | 28 s        | 30 s                   |
|             |      | Ø7          | ¶øs                    |
| 11 s        | 21 s | 16 s        | 42 s                   |

0

#### Intersection

| Lane Configurations         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r                                                                 | Movement               | EBL   | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT         | NBR  | SBL  | SBT      | SBR  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------|------|------|------|------|------|------|-------------|------|------|----------|------|
| Future Vol, veh/h       0       0       75       0       0       175       0       2004       130       0       1343       15         Conflicting Peds, #/hr       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                          | Lane Configurations    |       |      | 1    |      |      | 1    |      | <b>†</b> †† | 1    |      | <b>^</b> | 1    |
| Conflicting Peds, #/hr         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                              | Traffic Vol, veh/h     | 0     | 0    | 75   | 0    | 0    | 175  | 0    | 2004        | 130  | 0    | 1343     | 15   |
| Sign ControlStopStopStopStopStopStopStopStopFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFree <td>Future Vol, veh/h</td> <td>0</td> <td>0</td> <td>75</td> <td>0</td> <td>0</td> <td>175</td> <td>0</td> <td>2004</td> <td>130</td> <td>0</td> <td>1343</td> <td>15</td>                                                                                                                                                                                                                                                                                                                                           | Future Vol, veh/h      | 0     | 0    | 75   | 0    | 0    | 175  | 0    | 2004        | 130  | 0    | 1343     | 15   |
| RT Channelized       -       -       Free       -       -       Free       -       -       None       -       None         Storage Length       -       0       -       0       -       0       -       -       0       -       -       None       -       None         Veh in Median Storage, #       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0                                                                                                                                                                      | Conflicting Peds, #/hr | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0           | 0    | 0    | 0        | 0    |
| Storage Length       -       -       0       -       -       0       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       0                                                                                                                                                                                        | Sign Control           | Stop  | Stop | Stop | Stop | Stop | Stop | Free | Free        | Free | Free | Free     | Free |
| Veh in Median Storage, #       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       - </td <td>RT Channelized</td> <td>-</td> <td>-</td> <td>Free</td> <td>-</td> <td>-</td> <td>Free</td> <td>-</td> <td>-</td> <td>None</td> <td>-</td> <td>-</td> <td>None</td> | RT Channelized         | -     | -    | Free | -    | -    | Free | -    | -           | None | -    | -        | None |
| Grade, %       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       -       0       0       0       0       0<                                                                                                                                                                                     | Storage Length         | -     | -    | 0    | -    | -    | 0    | -    | -           | -    | -    | -        | -    |
| Peak Hour Factor         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90                  | Veh in Median Storage  | , # - | 0    | -    | -    | 0    | -    | -    | 0           | -    | -    | 0        | -    |
| Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Grade, %               | -     | 0    | -    | -    | 0    | -    | -    | 0           | -    | -    | 0        | -    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Peak Hour Factor       | 90    | 90   | 90   | 90   | 90   | 90   | 90   | 94          | 90   | 90   | 94       | 90   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Heavy Vehicles, %      | 2     | 2    | 2    | 2    | 2    | 2    | 2    | 2           | 2    | 2    | 2        | 2    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | 0     | 0    | 83   | 0    | 0    | 194  | 0    | 2132        | 144  | 0    | 1429     | 17   |

| Major/Minor          | Minor2 |     | М     | inor1  |      | Ν   | /lajor1 |   | М | ajor2 |   |   |
|----------------------|--------|-----|-------|--------|------|-----|---------|---|---|-------|---|---|
| Conflicting Flow All | -      | -   | -     | -      | -    | -   | -       | 0 | 0 | -     | - | 0 |
| Stage 1              | -      | -   | -     | -      | -    | -   |         |   | - | -     | - | - |
| Stage 2              | -      | -   | -     | -      | -    | -   | -       | - | - | -     | - | - |
| Critical Hdwy        | -      | -   | -     | -      | -    | -   | -       | - | - | -     | - | - |
| Critical Hdwy Stg 1  | -      | -   | -     | -      | -    | -   | -       | - | - | -     | - | - |
| Critical Hdwy Stg 2  | -      | -   | -     | -      | -    | -   |         | - | - | -     | - | - |
| Follow-up Hdwy       | -      | -   | -     | -      | -    | -   | -       | - | - | -     | - | - |
| Pot Cap-1 Maneuver   | 0      | 0   | 0     | 0      | 0    | 0   | 0       | - | - | 0     | - | - |
| Stage 1              | 0      | 0   | 0     | 0      | 0    | 0   | 0       | - | - | 0     | - | - |
| Stage 2              | 0      | 0   | 0     | 0      | 0    | 0   | 0       | - | - | 0     | - | - |
| Platoon blocked, %   |        |     |       |        |      |     |         | - | - |       | - | - |
| Mov Cap-1 Maneuver   | -      | -   | -     | -      | -    | -   | -       | - | - | -     | - | - |
| Mov Cap-2 Maneuver   | -      | -   | -     | -      | -    | -   | -       | - | - | -     | - | - |
| Stage 1              | -      | -   | -     | -      | -    | -   | -       | - | - | -     | - | - |
| Stage 2              | -      | -   | -     | -      | -    | -   | -       | - | - | -     | - | - |
|                      |        |     |       |        |      |     |         |   |   |       |   |   |
| Approach             | EB     |     |       | WB     |      |     | NB      |   |   | SB    |   |   |
| HCM Control Delay, s | 0      |     |       | 0      |      |     | 0       |   |   | 0     |   |   |
| HCM LOS              | А      |     |       | А      |      |     |         |   |   |       |   |   |
|                      |        |     |       |        |      |     |         |   |   |       |   |   |
| Minor Lane/Major Mvm | nt     | NBT | NBR E | BLn1WE | 3Ln1 | SBT | SBR     |   |   |       |   |   |
| Capacity (veh/h)     |        | -   | -     | -      | -    | -   | -       |   |   |       |   |   |
| HCM Lane V/C Ratio   |        | _   | -     | -      | _    | -   | _       |   |   |       |   |   |

| HCM Lane V/C Ratio    | - | - | - | - | - | - |
|-----------------------|---|---|---|---|---|---|
| HCM Control Delay (s) | - | - | 0 | 0 | - | - |
| HCM Lane LOS          | - | - | А | А | - | - |
| HCM 95th %tile Q(veh) | - | - | - | - | - | - |

| Intersection           |      |      |      |      |      |      |                                         |
|------------------------|------|------|------|------|------|------|-----------------------------------------|
| Int Delay, s/veh       | 0.9  |      |      |      |      |      |                                         |
| Movement               | EBL  | EBR  | NBL  | NBT  | SBT  | SBR  |                                         |
| Lane Configurations    | ۰¥   |      |      | - सी | 4    |      |                                         |
| Traffic Vol, veh/h     | 10   | 8    | 6    | 96   | 98   | 6    |                                         |
| Future Vol, veh/h      | 10   | 8    | 6    | 96   | 98   | 6    |                                         |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |                                         |
| Sign Control           | Stop | Stop | Free | Free | Free | Free |                                         |
| RT Channelized         | -    | None | -    | None | -    | None |                                         |
| Storage Length         | 0    | -    | -    | -    | -    | -    |                                         |
| Veh in Median Storage, | ,# 0 | -    | -    | 0    | 0    | -    |                                         |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |                                         |
| Peak Hour Factor       | 92   | 92   | 92   | 92   | 92   | 92   | ▲ · · · · · · · · · · · · · · · · · · · |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    |                                         |
| Mvmt Flow              | 11   | 9    | 7    | 104  | 107  | 7    |                                         |
|                        |      |      |      |      |      |      |                                         |

| Major/Minor          | Minor2 |       | Major1 | Ma | ajor2 |   | <b>*</b> |  |
|----------------------|--------|-------|--------|----|-------|---|----------|--|
| Conflicting Flow All | 229    | 111   | 114    | 0  | -     | 0 |          |  |
| Stage 1              | 111    | -     | -      | -  | -     | - |          |  |
| Stage 2              | 118    | -     | -      | -  | -     | - |          |  |
| Critical Hdwy        | 6.42   | 6.22  | 4.12   | -  | -     | - |          |  |
| Critical Hdwy Stg 1  | 5.42   | -     | -      | -  | -     | - |          |  |
| Critical Hdwy Stg 2  | 5.42   | -     | -      | -  | -     | - |          |  |
| Follow-up Hdwy       | 3.518  | 3.318 | 2.218  | -  | -     | - |          |  |
| Pot Cap-1 Maneuver   | 759    | 942   | 1475   | -  | -     | - |          |  |
| Stage 1              | 914    | -     | -      | -  | - )   | - |          |  |
| Stage 2              | 907    | -     | -      | -  | /     |   |          |  |
| Platoon blocked, %   |        |       |        | -  | -     | - |          |  |
| Mov Cap-1 Maneuver   |        | 942   | 1475   | -  | -     | - |          |  |
| Mov Cap-2 Maneuver   |        | _     | -      | -  | -     | - |          |  |
| Stage 1              | 909    | -     | -      | -  | -     | - |          |  |
| Stage 2              | 907    | -     | -      | -  | -     | - |          |  |
|                      |        |       |        |    |       |   |          |  |
| Approach             | EB     |       | NB     |    | SB    |   |          |  |
| HCM Control Delay, s | 9.5    |       | 0.4    | ×  | 0     |   |          |  |
| HCM LOS              | А      |       |        |    |       |   |          |  |

| Minor Lane/Major Mvmt | NBL   | NBTI | EBLn1 | SBT | SBR |
|-----------------------|-------|------|-------|-----|-----|
| Capacity (veh/h)      | 1475  | -    | 828   | -   | -   |
| HCM Lane V/C Ratio    | 0.004 | -    | 0.024 | -   | -   |
| HCM Control Delay (s) | 7.5   | 0    | 9.5   | -   | -   |
| HCM Lane LOS          | А     | А    | Α     | -   | -   |
| HCM 95th %tile Q(veh) | 0     | -    | 0.1   | -   | -   |

# **Queuing Reports**



### Intersection: 1: Nunbird Ct/Dunlin Dr & Retail Row St

| Movement              | WB  | NB  | SB  |
|-----------------------|-----|-----|-----|
| Directions Served     | L   | LTR | LTR |
| Maximum Queue (ft)    | 17  | 55  | 38  |
| Average Queue (ft)    | 1   | 27  | 15  |
| 95th Queue (ft)       | 10  | 52  | 39  |
| Link Distance (ft)    |     | 143 | 96  |
| Upstream Blk Time (%) |     |     |     |
| Queuing Penalty (veh) |     |     |     |
| Storage Bay Dist (ft) | 190 |     |     |
| Storage Blk Time (%)  |     |     |     |
| Queuing Penalty (veh) |     |     |     |

### Intersection: 3: Retail Row St & Willet Way

| Movement              | EB  | SB  |  |
|-----------------------|-----|-----|--|
| Directions Served     | L   | LR  |  |
| Maximum Queue (ft)    | 35  | 57  |  |
| Average Queue (ft)    | 5   | 21  |  |
| 95th Queue (ft)       | 24  | 48  |  |
| Link Distance (ft)    |     | 174 |  |
| Upstream Blk Time (%) |     |     |  |
| Queuing Penalty (veh) |     |     |  |
| Storage Bay Dist (ft) | 120 |     |  |
| Storage Blk Time (%)  |     |     |  |
| Queuing Penalty (veh) |     |     |  |
|                       |     |     |  |

## Intersection: 5: Retail Row St & Rio Ln

| Directions Served     L     LR       Maximum Queue (ft)     25     68       Average Queue (ft)     2     27       95th Queue (ft)     12     54       Link Distance (ft)     472       Upstream Blk Time (%)     472       Storage Bay Dist (ft)     100       Storage Blk Time (%)     100 | N4                    | <b>FD</b> | 0.0 |  |  |  | 1 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|-----|--|--|--|---|
| Maximum Queue (ft)2568Average Queue (ft)22795th Queue (ft)1254Link Distance (ft)472Upstream Blk Time (%)Queuing Penalty (veh)Storage Bay Dist (ft)100Storage Blk Time (%)100                                                                                                                | Movement              | EB        | SB  |  |  |  |   |
| Average Queue (ft)     2     27       95th Queue (ft)     12     54       Link Distance (ft)     472       Upstream Blk Time (%)       Queuing Penalty (veh)       Storage Bay Dist (ft)     100       Storage Blk Time (%)                                                                 | Directions Served     | L         | LR  |  |  |  |   |
| 95th Queue (ft)1254Link Distance (ft)472Upstream Blk Time (%)472Queuing Penalty (veh)100Storage Bay Dist (ft)100Storage Blk Time (%)100                                                                                                                                                     | Maximum Queue (ft)    | 25        | 68  |  |  |  |   |
| Link Distance (ft)<br>Upstream Blk Time (%)<br>Queuing Penalty (veh)<br>Storage Bay Dist (ft)<br>Storage Blk Time (%)                                                                                                                                                                       | Average Queue (ft)    | 2         | 27  |  |  |  |   |
| Upstream Blk Time (%)<br>Queuing Penalty (veh)<br>Storage Bay Dist (ft) 100<br>Storage Blk Time (%)                                                                                                                                                                                         | 95th Queue (ft)       | 12        | 54  |  |  |  |   |
| Queuing Penalty (veh)<br>Storage Bay Dist (ft) 100<br>Storage Blk Time (%)                                                                                                                                                                                                                  | Link Distance (ft)    |           | 472 |  |  |  |   |
| Storage Bay Dist (ft) 100<br>Storage Blk Time (%)                                                                                                                                                                                                                                           | Upstream Blk Time (%) |           |     |  |  |  |   |
| Storage Blk Time (%)                                                                                                                                                                                                                                                                        | Queuing Penalty (veh) |           |     |  |  |  |   |
|                                                                                                                                                                                                                                                                                             | Storage Bay Dist (ft) | 100       |     |  |  |  |   |
| Queuing Penalty (yeh)                                                                                                                                                                                                                                                                       | Storage Blk Time (%)  |           |     |  |  |  |   |
|                                                                                                                                                                                                                                                                                             | Queuing Penalty (veh) |           |     |  |  |  |   |

### Intersection: 1: Nunbird Ct/Dunlin Dr & Retail Row St

| Movement              | WB  | NB  | SB  |
|-----------------------|-----|-----|-----|
| Directions Served     | L   | LTR | LTR |
| Maximum Queue (ft)    | 34  | 34  | 70  |
| Average Queue (ft)    | 10  | 15  | 35  |
| 95th Queue (ft)       | 33  | 40  | 61  |
| Link Distance (ft)    |     | 143 | 96  |
| Upstream Blk Time (%) |     |     | 0   |
| Queuing Penalty (veh) |     |     | 0   |
| Storage Bay Dist (ft) | 190 |     |     |
| Storage Blk Time (%)  |     |     |     |
| Queuing Penalty (veh) |     |     |     |

### Intersection: 3: Retail Row St & Willet Way

| Movement              | EB  | SB  |  |
|-----------------------|-----|-----|--|
| Directions Served     | L   | LR  |  |
| Maximum Queue (ft)    | 47  | 69  |  |
| Average Queue (ft)    | 9   | 36  |  |
| 95th Queue (ft)       | 34  | 61  |  |
| Link Distance (ft)    |     | 174 |  |
| Upstream Blk Time (%) |     |     |  |
| Queuing Penalty (veh) |     |     |  |
| Storage Bay Dist (ft) | 120 |     |  |
| Storage Blk Time (%)  |     |     |  |
| Queuing Penalty (veh) |     |     |  |
|                       |     |     |  |

## Intersection: 5: Retail Row St & Rio Ln

| Movement              | EB  | SB  |  |  |
|-----------------------|-----|-----|--|--|
| Directions Served     | L   | LR  |  |  |
| Maximum Queue (ft)    | 24  | 57  |  |  |
| Average Queue (ft)    | 1   | 35  |  |  |
| 95th Queue (ft)       | 10  | 55  |  |  |
| Link Distance (ft)    |     | 472 |  |  |
| Upstream Blk Time (%) |     |     |  |  |
| Queuing Penalty (veh) |     |     |  |  |
| Storage Bay Dist (ft) | 100 |     |  |  |
| Storage Blk Time (%)  |     |     |  |  |
| Queuing Penalty (veh) |     |     |  |  |
|                       |     |     |  |  |

### Intersection: 9: US 24 & Woodmen Rd

| Movement              | EB  | EB  | EB  | B31 | WB  | WB  | WB  | NB  | NB  | NB   | NB   | NB   |
|-----------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| Directions Served     | L   | L   | Т   | Т   | L   | Т   | Т   | L   | L   | Т    | Т    | T    |
| Maximum Queue (ft)    | 328 | 339 | 272 | 4   | 137 | 186 | 196 | 243 | 258 | 443  | 476  | 492  |
| Average Queue (ft)    | 227 | 243 | 131 | 0   | 51  | 97  | 113 | 112 | 144 | 216  | 261  | 280  |
| 95th Queue (ft)       | 309 | 323 | 218 | 3   | 104 | 156 | 171 | 194 | 229 | 355  | 405  | 415  |
| Link Distance (ft)    |     |     | 643 | 433 |     | 452 | 452 |     |     | 2146 | 2146 | 2146 |
| Upstream Blk Time (%) |     |     |     |     |     |     |     |     |     |      |      |      |
| Queuing Penalty (veh) |     |     |     |     |     |     |     |     |     |      |      |      |
| Storage Bay Dist (ft) | 350 | 350 |     |     | 260 |     |     | 855 | 855 |      |      |      |
| Storage Blk Time (%)  | 0   | 0   |     |     |     |     |     |     |     |      |      |      |
| Queuing Penalty (veh) | 0   | 0   |     |     |     |     |     |     |     |      |      |      |

### Intersection: 9: US 24 & Woodmen Rd

| Movement              | NB  | B36 | B36 | B36 | SB  | SB   | SB   | SB   | SB  |  |
|-----------------------|-----|-----|-----|-----|-----|------|------|------|-----|--|
| Directions Served     | R   | Т   | Т   | Т   | L   | Т    | Т    | Т    | R   |  |
| Maximum Queue (ft)    | 64  | 10  | 11  | 11  | 255 | 392  | 401  | 379  | 95  |  |
| Average Queue (ft)    | 7   | 0   | 0   | 0   | 77  | 259  | 250  | 216  | 3   |  |
| 95th Queue (ft)       | 36  | 8   | 8   | 8   | 171 | 365  | 355  | 325  | 69  |  |
| Link Distance (ft)    |     | 539 | 539 | 539 |     | 1706 | 1706 | 1706 |     |  |
| Upstream Blk Time (%) |     |     |     |     |     |      |      |      |     |  |
| Queuing Penalty (veh) |     |     |     |     |     |      |      |      |     |  |
| Storage Bay Dist (ft) | 600 |     |     |     | 700 |      |      |      | 375 |  |
| Storage Blk Time (%)  |     |     |     |     |     |      |      | 1    |     |  |
| Queuing Penalty (veh) |     |     |     |     |     |      |      | 2    |     |  |
|                       |     |     |     |     |     |      |      |      |     |  |

### Zone Summary

Zone wide Queuing Penalty: 3

### Intersection: 9: US 24 & Woodmen Rd

| Movement              | EB  | EB  | EB  | WB  | WB  | WB  | NB  | NB  | NB   | NB   | NB   | NB  |
|-----------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|-----|
| Directions Served     | L   | L   | Т   | L   | Т   | Т   | L   | L   | Т    | Т    | Т    | R   |
| Maximum Queue (ft)    | 195 | 218 | 222 | 103 | 93  | 117 | 231 | 240 | 162  | 192  | 208  | 25  |
| Average Queue (ft)    | 109 | 128 | 97  | 44  | 45  | 52  | 123 | 147 | 57   | 86   | 104  | 1   |
| 95th Queue (ft)       | 184 | 200 | 176 | 85  | 85  | 93  | 203 | 218 | 135  | 170  | 185  | 11  |
| Link Distance (ft)    |     |     | 643 |     | 452 | 452 |     |     | 2146 | 2146 | 2146 |     |
| Upstream Blk Time (%) |     |     |     |     |     |     |     |     |      |      |      |     |
| Queuing Penalty (veh) |     |     |     |     |     |     |     |     |      |      |      |     |
| Storage Bay Dist (ft) | 350 | 350 |     | 260 |     |     | 855 | 855 |      |      |      | 600 |
| Storage Blk Time (%)  |     |     |     |     |     |     |     |     |      |      |      |     |
| Queuing Penalty (veh) |     |     |     |     |     |     |     |     |      |      |      |     |

### Intersection: 9: US 24 & Woodmen Rd

| Movement              | B36 | B36 | SB  | SB   | SB   | SB   | SB  |         |
|-----------------------|-----|-----|-----|------|------|------|-----|---------|
| Directions Served     | Т   | Т   | L   | Т    | Т    | Т    | R   |         |
| Maximum Queue (ft)    | 9   | 14  | 116 | 284  | 270  | 246  | 25  |         |
| Average Queue (ft)    | 0   | 0   | 39  | 188  | 177  | 143  | 1   |         |
| 95th Queue (ft)       | 7   | 10  | 83  | 258  | 252  | 229  | 18  |         |
| Link Distance (ft)    | 539 | 539 |     | 1706 | 1706 | 1706 |     | · · · · |
| Upstream Blk Time (%) |     |     |     |      |      |      |     |         |
| Queuing Penalty (veh) |     |     |     |      |      |      |     |         |
| Storage Bay Dist (ft) |     |     | 700 |      |      |      | 375 |         |
| Storage Blk Time (%)  |     |     |     |      |      |      |     |         |
| Queuing Penalty (veh) |     |     |     |      |      |      |     |         |
|                       |     |     |     |      |      |      |     |         |
| Zone Summary          |     |     |     |      |      |      |     |         |
| 7                     |     |     |     |      |      |      |     |         |

Zone wide Queuing Penalty: 0

# NCHRP Report 684 Internal Trip Capture Estimation Tool





|                       | NCHRP 684 Internal Trip C   | Cap | ture Estimation Tool |                                     |
|-----------------------|-----------------------------|-----|----------------------|-------------------------------------|
| Project Name:         | The Commons at Falcon Field |     | Organization:        | LSC Transportation Consultants, Inc |
| Project Location:     | El Paso County, CO          | Ι   | Performed By:        | KDF                                 |
| Scenario Description: | Buildout                    | Ι   | Date:                | 5/23/2023                           |
| Analysis Year:        | 2043                        | Ī   | Checked By:          |                                     |
| Analysis Period:      | AM Street Peak Hour         |     | Date:                |                                     |

|                                  | Table 1-A: Base Vehicle-Trip Generation Estimates (Single-Use Site Estimate) |                           |                 |   |                                      |          |         |  |  |  |  |
|----------------------------------|------------------------------------------------------------------------------|---------------------------|-----------------|---|--------------------------------------|----------|---------|--|--|--|--|
| Land Use                         | Developme                                                                    | ent Data ( <i>For Int</i> | formation Only) |   | Estimated Vehicle-Trips <sup>3</sup> |          |         |  |  |  |  |
| Land Use                         | ITE LUCs <sup>1</sup>                                                        | Quantity                  | Units           | 1 | Total                                | Entering | Exiting |  |  |  |  |
| Office                           |                                                                              |                           |                 | T | 0                                    |          |         |  |  |  |  |
| Retail                           |                                                                              |                           |                 | Ī | 145                                  | 90       | 55      |  |  |  |  |
| Restaurant                       |                                                                              |                           |                 | T | 0                                    |          |         |  |  |  |  |
| Cinema/Entertainment             |                                                                              |                           |                 | T | 0                                    |          |         |  |  |  |  |
| Residential                      |                                                                              |                           |                 | T | 119                                  | 30       | 89      |  |  |  |  |
| Hotel                            |                                                                              |                           |                 | T | 0                                    |          |         |  |  |  |  |
| All Other Land Uses <sup>2</sup> |                                                                              |                           |                 | Ī | 0                                    |          |         |  |  |  |  |
|                                  |                                                                              |                           |                 |   | 264                                  | 120      | 144     |  |  |  |  |

|                                  | Table 2-A: Mode Split and Vehicle Occupancy Estimates |              |                 |  |                        |               |                 |  |  |  |  |  |
|----------------------------------|-------------------------------------------------------|--------------|-----------------|--|------------------------|---------------|-----------------|--|--|--|--|--|
| Land Use                         |                                                       | Entering Tri | ps              |  |                        | Exiting Trips |                 |  |  |  |  |  |
| Land Use                         | Veh. Occ.4                                            | % Transit    | % Non-Motorized |  | Veh. Occ. <sup>4</sup> | % Transit     | % Non-Motorized |  |  |  |  |  |
| Office                           |                                                       |              |                 |  |                        |               |                 |  |  |  |  |  |
| Retail                           |                                                       |              |                 |  |                        |               |                 |  |  |  |  |  |
| Restaurant                       |                                                       |              |                 |  |                        |               |                 |  |  |  |  |  |
| Cinema/Entertainment             |                                                       |              |                 |  |                        |               |                 |  |  |  |  |  |
| Residential                      |                                                       |              |                 |  |                        |               |                 |  |  |  |  |  |
| Hotel                            |                                                       |              |                 |  |                        |               |                 |  |  |  |  |  |
| All Other Land Uses <sup>2</sup> |                                                       |              |                 |  |                        |               |                 |  |  |  |  |  |

|                      | Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance) |        |            |                      |             |       |  |  |  |  |  |  |
|----------------------|---------------------------------------------------------------------------|--------|------------|----------------------|-------------|-------|--|--|--|--|--|--|
| Origin (From)        | Destination (To)                                                          |        |            |                      |             |       |  |  |  |  |  |  |
| Origin (From)        | Office                                                                    | Retail | Restaurant | Cinema/Entertainment | Residential | Hotel |  |  |  |  |  |  |
| Office               |                                                                           |        |            |                      |             |       |  |  |  |  |  |  |
| Retail               |                                                                           |        |            |                      |             |       |  |  |  |  |  |  |
| Restaurant           |                                                                           |        |            |                      |             |       |  |  |  |  |  |  |
| Cinema/Entertainment |                                                                           |        |            |                      |             |       |  |  |  |  |  |  |
| Residential          |                                                                           |        |            |                      |             |       |  |  |  |  |  |  |
| Hotel                |                                                                           |        |            | r                    |             |       |  |  |  |  |  |  |

|                      | Table 4-A: Internal Person-Trip Origin-Destination Matrix* |        |            |                      |             |       |  |  |  |  |  |
|----------------------|------------------------------------------------------------|--------|------------|----------------------|-------------|-------|--|--|--|--|--|
| Origin (From)        | Destination (To)                                           |        |            |                      |             |       |  |  |  |  |  |
| Oligin (From)        | Office                                                     | Retail | Restaurant | Cinema/Entertainment | Residential | Hotel |  |  |  |  |  |
| Office               |                                                            | 0      | 0          | 0                    | 0           | 0     |  |  |  |  |  |
| Retail               | 0                                                          |        | 0          | 0                    | 1           | 0     |  |  |  |  |  |
| Restaurant           | 0                                                          | 0      |            | 0                    | 0           | 0     |  |  |  |  |  |
| Cinema/Entertainment | 0                                                          | 0      | 0          |                      | 0           | 0     |  |  |  |  |  |
| Residential          | 0                                                          | 1      | 0          | 0                    |             | 0     |  |  |  |  |  |
| Hotel                | 0                                                          | 0      | 0          | 0                    | 0           |       |  |  |  |  |  |

| Table 5-A                                 | : Computatio | ns Summary |         | Table 6-A: Interna   | Table 6-A: Internal Trip Capture Percentages by Land Use |               |  |  |  |  |
|-------------------------------------------|--------------|------------|---------|----------------------|----------------------------------------------------------|---------------|--|--|--|--|
|                                           | Total        | Entering   | Exiting | Land Use             | Entering Trips                                           | Exiting Trips |  |  |  |  |
| All Person-Trips                          | 264          | 120        | 144     | Office               | N/A                                                      | N/A           |  |  |  |  |
| Internal Capture Percentage               | 2%           | 2%         | 1%      | Retail               | 1%                                                       | 2%            |  |  |  |  |
|                                           |              |            |         | Restaurant           | N/A                                                      | N/A           |  |  |  |  |
| External Vehicle-Trips <sup>5</sup>       | 260          | 118        | 142     | Cinema/Entertainment | N/A                                                      | N/A           |  |  |  |  |
| External Transit-Trips <sup>6</sup>       | 0            | 0          | 0       | Residential          | 3%                                                       | 1%            |  |  |  |  |
| External Non-Motorized Trips <sup>6</sup> | 0            | 0          | 0       | Hotel                | N/A                                                      | N/A           |  |  |  |  |

<sup>1</sup>Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

<sup>2</sup>Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.
<sup>3</sup>Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

<sup>4</sup>Enter vehicle occupancy assumed in Table 1-A vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made to Tables 5-A, 9-A (O and D). Enter transit, non-motorized percentages that will result with proposed mixed-use project complete.

<sup>5</sup>Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A.

<sup>6</sup>Person-Trips

\*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

| Project Name:    | The Commons at Falcon Field |
|------------------|-----------------------------|
| Analysis Period: | AM Street Peak Hour         |

|                      | Table 7-A: Conversion of Vehicle-Trip Ends to Person-Trip Ends |                   |               |  |           |                              |               |  |  |  |  |  |
|----------------------|----------------------------------------------------------------|-------------------|---------------|--|-----------|------------------------------|---------------|--|--|--|--|--|
| Land Use             | Tab                                                            | le 7-A (D): Enter | ing Trips     |  |           | Table 7-A (O): Exiting Trips | i             |  |  |  |  |  |
|                      | Veh. Occ.                                                      | Vehicle-Trips     | Person-Trips* |  | Veh. Occ. | Vehicle-Trips                | Person-Trips* |  |  |  |  |  |
| Office               | 1.00                                                           | 0                 | 0             |  | 1.00      | 0                            | 0             |  |  |  |  |  |
| Retail               | 1.00                                                           | 90                | 90            |  | 1.00      | 55                           | 55            |  |  |  |  |  |
| Restaurant           | 1.00                                                           | 0                 | 0             |  | 1.00      | 0                            | 0             |  |  |  |  |  |
| Cinema/Entertainment | 1.00                                                           | 0                 | 0             |  | 1.00      | 0                            | 0             |  |  |  |  |  |
| Residential          | 1.00                                                           | 30                | 30            |  | 1.00      | 89                           | 89            |  |  |  |  |  |
| Hotel                | 1.00                                                           | 0                 | 0             |  | 1.00      | 0                            | 0             |  |  |  |  |  |

| Origin (From)        |        |        |            | Destination (To)     |             |       |
|----------------------|--------|--------|------------|----------------------|-------------|-------|
| Origin (From)        | Office | Retail | Restaurant | Cinema/Entertainment | Residential | Hotel |
| Office               |        | 0      | 0          | 0                    | 0           | 0     |
| Retail               | 16     |        | 7          | 0                    | 8           | 0     |
| Restaurant           | 0      | 0      |            | 0                    | 0           | 0     |
| Cinema/Entertainment | 0      | 0      | 0          |                      | 0           | 0     |
| Residential          | 2      | 1      | 18         | 0                    |             | 0     |
| Hotel                | 0      | 0      | 0          | 0                    | 0           |       |

| Table 8-A (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination) |        |        |            |                      |             |       |  |
|-----------------------------------------------------------------------------------------|--------|--------|------------|----------------------|-------------|-------|--|
| Destination (To)                                                                        |        |        |            |                      |             |       |  |
| Origin (From)                                                                           | Office | Retail | Restaurant | Cinema/Entertainment | Residential | Hotel |  |
| Office                                                                                  |        | 29     | 0          | 0                    | 0           | 0     |  |
| Retail                                                                                  | 0      |        | 0          | 0                    | 1           | 0     |  |
| Restaurant                                                                              | 0      | 7      |            | 0                    | 2           | 0     |  |
| Cinema/Entertainment                                                                    | 0      | 0      | 0          |                      | 0           | 0     |  |
| Residential                                                                             | 0      | 15     | 0          | 0                    |             | 0     |  |
| Hotel                                                                                   | 0      | 4      | 0          | 0                    | 0           |       |  |

|                                  | Та                    | ble 9-A (D): Inte | ernal and Externa | l Tri | ips Summary (Entering   | l Trips)             |                            |  |
|----------------------------------|-----------------------|-------------------|-------------------|-------|-------------------------|----------------------|----------------------------|--|
| Destination Land Use             | Person-Trip Estimates |                   |                   |       | External Trips by Mode* |                      |                            |  |
| Destination Land Use             | Internal              | External          | Total             |       | Vehicles <sup>1</sup>   | Transit <sup>2</sup> | Non-Motorized <sup>2</sup> |  |
| Office                           | 0                     | 0                 | 0                 |       | 0                       | 0                    | 0                          |  |
| Retail                           | 1                     | 89                | 90                |       | 89                      | 0                    | 0                          |  |
| Restaurant                       | 0                     | 0                 | 0                 |       | 0                       | 0                    | 0                          |  |
| Cinema/Entertainment             | 0                     | 0                 | 0                 |       | 0                       | 0                    | 0                          |  |
| Residential                      | 1                     | 29                | 30                |       | 29                      | 0                    | 0                          |  |
| Hotel                            | 0                     | 0                 | 0                 |       | 0                       | 0                    | 0                          |  |
| All Other Land Uses <sup>3</sup> | 0                     | 0                 | 0                 |       | 0                       | 0                    | 0                          |  |

|                                  | т        | able 9-A (O): In | ternal and Extern | al T | rips Summary (Exiting   | Trips)               |                            |  |
|----------------------------------|----------|------------------|-------------------|------|-------------------------|----------------------|----------------------------|--|
|                                  |          | Person-Trip Esti | mates             |      | External Trips by Mode* |                      |                            |  |
| Origin Land Use                  | Internal | External         | Total             |      | Vehicles <sup>1</sup>   | Transit <sup>2</sup> | Non-Motorized <sup>2</sup> |  |
| Office                           | 0        | 0                | 0                 |      | 0                       | 0                    | 0                          |  |
| Retail                           | 1        | 54               | 55                |      | 54                      | 0                    | 0                          |  |
| Restaurant                       | 0        | 0                | 0                 |      | 0                       | 0                    | 0                          |  |
| Cinema/Entertainment             | 0        | 0                | 0                 |      | 0                       | 0                    | 0                          |  |
| Residential                      | 1        | 88               | 89                |      | 88                      | 0                    | 0                          |  |
| Hotel                            | 0        | 0                | 0                 |      | 0                       | 0                    | 0                          |  |
| All Other Land Uses <sup>3</sup> | 0        | 0                | 0                 |      | 0                       | 0                    | 0                          |  |

<sup>1</sup>Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A

<sup>2</sup>Person-Trips

<sup>3</sup>Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator \*Indicates computation that has been rounded to the nearest whole number.

|                       | NCHRP 684 Internal Trip Capture Estimation Tool |  |               |                                     |  |  |  |  |  |
|-----------------------|-------------------------------------------------|--|---------------|-------------------------------------|--|--|--|--|--|
| Project Name:         | The Commons at Falcon Field                     |  | Organization: | LSC Transportation Consultants, Inc |  |  |  |  |  |
| Project Location:     | El Paso County, CO                              |  | Performed By: | KDF                                 |  |  |  |  |  |
| Scenario Description: | Buildout                                        |  | Date:         | 45069                               |  |  |  |  |  |
| Analysis Year:        | 2043                                            |  | Checked By:   |                                     |  |  |  |  |  |
| Analysis Period:      | PM Street Peak Hour                             |  | Date:         |                                     |  |  |  |  |  |

|                                  | Table 1               | I-P: Base Vehic                         | le-Trip Generation | Es | timates (Single-Use Site | Estimate)                            |         |  |  |
|----------------------------------|-----------------------|-----------------------------------------|--------------------|----|--------------------------|--------------------------------------|---------|--|--|
|                                  | Developme             | Development Data (For Information Only) |                    |    |                          | Estimated Vehicle-Trips <sup>3</sup> |         |  |  |
| Land Use                         | ITE LUCs <sup>1</sup> | Quantity                                | Units              | Ī  | Total                    | Entering                             | Exiting |  |  |
| Office                           |                       |                                         |                    | Ī  | 0                        |                                      |         |  |  |
| Retail                           |                       |                                         |                    | Ī  | 436                      | 214                                  | 222     |  |  |
| Restaurant                       |                       |                                         |                    | Ī  | 0                        |                                      |         |  |  |
| Cinema/Entertainment             |                       |                                         |                    | Ī  | 0                        |                                      |         |  |  |
| Residential                      |                       |                                         |                    | Ī  | 159                      | 100                                  | 59      |  |  |
| Hotel                            |                       |                                         |                    | Ī  | 0                        |                                      |         |  |  |
| All Other Land Uses <sup>2</sup> |                       |                                         |                    | I  | 0                        |                                      |         |  |  |
|                                  |                       |                                         |                    | Ī  | 595                      | 314                                  | 281     |  |  |

|                                  | Table 2-P: Mode Split and Vehicle Occupancy Estimates |           |                 |  |                        |           |                 |  |
|----------------------------------|-------------------------------------------------------|-----------|-----------------|--|------------------------|-----------|-----------------|--|
| Land Use                         | Entering Trips                                        |           |                 |  | Exiting Trips          |           |                 |  |
| Land Use                         | Veh. Occ.4                                            | % Transit | % Non-Motorized |  | Veh. Occ. <sup>4</sup> | % Transit | % Non-Motorized |  |
| Office                           |                                                       |           |                 |  |                        |           |                 |  |
| Retail                           |                                                       |           |                 |  |                        |           |                 |  |
| Restaurant                       |                                                       |           |                 |  |                        |           |                 |  |
| Cinema/Entertainment             |                                                       |           |                 |  |                        |           |                 |  |
| Residential                      |                                                       |           |                 |  |                        |           |                 |  |
| Hotel                            |                                                       |           |                 |  |                        |           |                 |  |
| All Other Land Uses <sup>2</sup> |                                                       |           |                 |  |                        |           |                 |  |

| Table 3-P: Average Land Use Interchange Distances (Feet Walking Distance) |        |        |            |                      |                  |       |  |
|---------------------------------------------------------------------------|--------|--------|------------|----------------------|------------------|-------|--|
| De                                                                        |        |        |            | Destination (To)     | Destination (To) |       |  |
| Origin (From)                                                             | Office | Retail | Restaurant | Cinema/Entertainment | Residential      | Hotel |  |
| Office                                                                    |        |        |            |                      |                  |       |  |
| Retail                                                                    |        |        |            |                      | 5280             |       |  |
| Restaurant                                                                |        |        |            |                      |                  |       |  |
| Cinema/Entertainment                                                      |        |        |            |                      |                  |       |  |
| Residential                                                               |        |        |            |                      |                  |       |  |
| Hotel                                                                     |        |        |            |                      |                  |       |  |

|                      |        | Table 4-P: I | nternal Person-Trip | o Origin-Destination Matrix* |             |       |  |  |
|----------------------|--------|--------------|---------------------|------------------------------|-------------|-------|--|--|
| Destination (To)     |        |              |                     |                              |             |       |  |  |
| Origin (From)        | Office | Retail       | Restaurant          | Cinema/Entertainment         | Residential | Hotel |  |  |
| Office               |        | 0            | 0                   | 0                            | 0           | 0     |  |  |
| Retail               | 0      |              | 0                   | 0                            | 6           | 0     |  |  |
| Restaurant           | 0      | 0            |                     | 0                            | 0           | 0     |  |  |
| Cinema/Entertainment | 0      | 0            | 0                   |                              | 0           | 0     |  |  |
| Residential          | 0      | 21           | 0                   | 0                            |             | 0     |  |  |
| Hotel                | 0      | 0            | 0                   | 0                            | 0           |       |  |  |

| Table 5-P: Computations Summary           |       |          |         | Table 6-P: Internal Trip Capture Percentages by Land Use |                |               |
|-------------------------------------------|-------|----------|---------|----------------------------------------------------------|----------------|---------------|
|                                           | Total | Entering | Exiting | Land Use                                                 | Entering Trips | Exiting Trips |
| All Person-Trips                          | 595   | 314      | 281     | Office                                                   | N/A            | N/A           |
| Internal Capture Percentage               | 9%    | 9%       | 10%     | Retail                                                   | 10%            | 3%            |
|                                           |       |          |         | Restaurant                                               | N/A            | N/A           |
| External Vehicle-Trips <sup>5</sup>       | 541   | 287      | 254     | Cinema/Entertainment                                     | N/A            | N/A           |
| External Transit-Trips <sup>6</sup>       | 0     | 0        | 0       | Residential                                              | 6%             | 36%           |
| External Non-Motorized Trips <sup>6</sup> | 0     | 0        | 0       | Hotel                                                    | N/A            | N/A           |

| <sup>1</sup> Land Use Codes (LUCs) from <i>Trip Generation Manual</i> , published by the Institute of Transportation Engineers.                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <sup>2</sup> Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.   |
| <sup>3</sup> Enter trips assuming no transit or non-motorized trips (as assumed in ITE <i>Trip Generation Manual</i> ).                                     |
| Enter venicle occupancy assumed in Table 1-P venicle trips. If venicle occupancy changes for proposed mixed-use project, manual adjustments must be made to |
| Tables & D. O. D. (O. and D). Enter transit, non-motorized percentages that will require with proposed mixed use project complete                           |
| <sup>S</sup> Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P.                                                |
| <sup>6</sup> Person-Trips                                                                                                                                   |
| *Indicates computation that has been rounded to the nearest whole number.                                                                                   |
| Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1                                                                        |

| Analysis Period: |                             |
|------------------|-----------------------------|
| Project Name:    | The Commons at Falcon Field |

| Table 7-P: Conversion of Vehicle-Trip Ends to Person-Trip Ends |                               |               |               |     |                              |               |               |  |
|----------------------------------------------------------------|-------------------------------|---------------|---------------|-----|------------------------------|---------------|---------------|--|
| Land Use                                                       | Table 7-P (D): Entering Trips |               |               |     | Table 7-P (O): Exiting Trips |               |               |  |
|                                                                | Veh. Occ.                     | Vehicle-Trips | Person-Trips* | 1 [ | Veh. Occ.                    | Vehicle-Trips | Person-Trips* |  |
| Office                                                         | 1.00                          | 0             | 0             | 1 [ | 1.00                         | 0             | 0             |  |
| Retail                                                         | 1.00                          | 214           | 214           | 1 [ | 1.00                         | 222           | 222           |  |
| Restaurant                                                     | 1.00                          | 0             | 0             | 1 [ | 1.00                         | 0             | 0             |  |
| Cinema/Entertainment                                           | 1.00                          | 0             | 0             | 1 [ | 1.00                         | 0             | 0             |  |
| Residential                                                    | 1.00                          | 100           | 100           | 1 [ | 1.00                         | 59            | 59            |  |
| Hotel                                                          | 1.00                          | 0             | 0             | 1 [ | 1.00                         | 0             | 0             |  |

| Origin (From)        | Destination (To) |        |            |                      |             |       |  |  |  |
|----------------------|------------------|--------|------------|----------------------|-------------|-------|--|--|--|
|                      | Office           | Retail | Restaurant | Cinema/Entertainment | Residential | Hotel |  |  |  |
| Office               |                  | 0      | 0          | 0                    | 0           | 0     |  |  |  |
| Retail               | 4                |        | 64         | 9                    | 6           | 11    |  |  |  |
| Restaurant           | 0                | 0      |            | 0                    | 0           | 0     |  |  |  |
| Cinema/Entertainment | 0                | 0      | 0          |                      | 0           | 0     |  |  |  |
| Residential          | 2                | 25     | 12         | 0                    |             | 2     |  |  |  |
| Hotel                | 0                | 0      | 0          | 0                    | 0           |       |  |  |  |

| Origin (From)        | Destination (To) |        |            |                      |             |       |  |  |  |
|----------------------|------------------|--------|------------|----------------------|-------------|-------|--|--|--|
|                      | Office           | Retail | Restaurant | Cinema/Entertainment | Residential | Hotel |  |  |  |
| Office               |                  | 17     | 0          | 0                    | 4           | 0     |  |  |  |
| Retail               | 0                |        | 0          | 0                    | 46          | 0     |  |  |  |
| Restaurant           | 0                | 107    |            | 0                    | 16          | 0     |  |  |  |
| Cinema/Entertainment | 0                | 9      | 0          |                      | 4           | 0     |  |  |  |
| Residential          | 0                | 21     | 0          | 0                    |             | 0     |  |  |  |
| Hotel                | 0                | 4      | 0          | 0                    | 0           |       |  |  |  |

|                                  | Tab                   | le 9-P (D): Inter | nal and External T | rips | Summary (Entering Ti    | ips)                 |                            |  |
|----------------------------------|-----------------------|-------------------|--------------------|------|-------------------------|----------------------|----------------------------|--|
| Destination Land Use             | Person-Trip Estimates |                   |                    |      | External Trips by Mode* |                      |                            |  |
|                                  | Internal              | External          | Total              |      | Vehicles <sup>1</sup>   | Transit <sup>2</sup> | Non-Motorized <sup>2</sup> |  |
| Office                           | 0                     | 0                 | 0                  | 1 [  | 0                       | 0                    | 0                          |  |
| Retail                           | 21                    | 193               | 214                | 1 [  | 193                     | 0                    | 0                          |  |
| Restaurant                       | 0                     | 0                 | 0                  | 1 [  | 0                       | 0                    | 0                          |  |
| Cinema/Entertainment             | 0                     | 0                 | 0                  | 1 [  | 0                       | 0                    | 0                          |  |
| Residential                      | 6                     | 94                | 100                | ΙΓ   | 94                      | 0                    | 0                          |  |
| Hotel                            | 0                     | 0                 | 0                  | 1 [  | 0                       | 0                    | 0                          |  |
| All Other Land Uses <sup>3</sup> | 0                     | 0                 | 0                  | 1 [  | 0                       | 0                    | 0                          |  |
|                                  |                       |                   |                    |      |                         |                      |                            |  |

| Table 9-P (O): Internal and External Trips Summary (Exiting Trips) |                       |          |       |  |                         |                      |                            |  |
|--------------------------------------------------------------------|-----------------------|----------|-------|--|-------------------------|----------------------|----------------------------|--|
| Origin Land Use                                                    | Person-Trip Estimates |          |       |  | External Trips by Mode* |                      |                            |  |
|                                                                    | Internal              | External | Total |  | Vehicles <sup>1</sup>   | Transit <sup>2</sup> | Non-Motorized <sup>2</sup> |  |
| Office                                                             | 0                     | 0        | 0     |  | 0                       | 0                    | 0                          |  |
| Retail                                                             | 6                     | 216      | 222   |  | 216                     | 0                    | 0                          |  |
| Restaurant                                                         | 0                     | 0        | 0     |  | 0                       | 0                    | 0                          |  |
| Cinema/Entertainment                                               | 0                     | 0        | 0     |  | 0                       | 0                    | 0                          |  |
| Residential                                                        | 21                    | 38       | 59    |  | 38                      | 0                    | 0                          |  |
| Hotel                                                              | 0                     | 0        | 0     |  | 0                       | 0                    | 0                          |  |
| All Other Land Uses <sup>3</sup>                                   | 0                     | 0        | 0     |  | 0                       | 0                    | 0                          |  |

<sup>1</sup>Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P <sup>2</sup>Person-Trips <sup>3</sup>Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator

\*Indicates computation that has been rounded to the nearest whole number.