Please add a signatures page after the cover page. Visit https://planningdevelopment.elpasoco.com/planning-deve lopment-forms/\#1584029763943-19bc4c03-3586 for El Paso County standard signature blocks.

TRAFFIC ANALYSIS REPORT

Lewis Palmer Middle School
Monument, CO

Prepared for:
Lewis Palmer District Transportation
99 Santa Fe Ave
Monument, CO 80132

Prepared by:
Felsburg Holt \& Ullevig
6400 South Fiddlers Green Circle, Suite 1500
Greenwood Village, CO 801 I I
303.72I.I440

Project Manager: Lyle DeVries, PE, PTOE
Project Engineer: Faith Kelley, El

FHU Reference No. I22227-OI
January 2023
Please add "PCD File No. CDR-23-005"

TABLE OF CONTENTS

Page
I. INTRODUCTION I
II. EXISTING CONDITIONS 4
II.A. Surrounding Land Use 4
II.B. School Traffic Circulation 4
II.C. Roadway Network 4
II.D. Traffic Volumes 6
II.E. Traffic Operations 6
III. FUTURE CONDITIONS 8
III.A. Redistributed Traffic 8
III.B. Future Traffic Conditions 8
III.C. Traffic Control Needs 9
III.D. Access Design Considerations 14
III.E. Pedestrian and Bicyclist Safety 14
IV. SUMMARY AND RECOMMENDATIONS 16

Appendices

Appendix A. Existing Traffic Counts
Appendix B. Existing Level of Service Worksheets
Appendix C. Short-term Future Level of Service Worksheets
Appendix D. Long-term Future Level of Service Worksheets

List of Figures

Page
Figure I. Vicinity Map 2
Figure 2. Site Plan 3
Figure 3. LPMS Parking Lots and Lot Access Locations 5
Figure 4. Existing (2022) Traffic Conditions 7
Figure 5. Existing (2022) Redistributed Traffic Conditions II
Figure 6. Short-term Future Traffic Conditions 12
Figure 7. Long-term Future Traffic Conditions 13
Figure 8. AutoTurn Bus Results 15
List of Tables
Page
Table I. Proposed Reconfigurations to Parking and Access 8
Table 2. Current Traffic Control 9
Table 3. Slowing Distance - Woodmoor Drive/New Bus Access 14

I. INTRODUCTION

The Lewis-Palmer School District \#38 is proposing to reconfigure an existing parking lot at the Lewis Palmer Middle School (LPMS) in unincorporated El Paso County, Colorado to only serve buses during school peak hours and implement a one-way inbound access to this lot for buses. The new access would be located north of the existing parking lot access on Woodmoor Drive. Woodmoor Drive is an important transportation connector located in Monument, Colorado. The collector roadway serves multiple residential developments and provides access to highway (HWY) 105 and Interstate (I-) 25. The roadway network adjacent to the site can be seen on Figure I.

The proposed parking lot/access reconfiguration is intended to improve school traffic circulation and provide exclusive bus access and parking. Figure 2 shows the layout of the proposed bus access. This access will serve as an inbound only bus access during school peak hours and provide parking for buses. During off peak hours, parents and visitors will be allowed to use this lot for parking purposes outside of normal school houff

FHU has completed an assessment of current and future (with reconfiguration) transportation conditions along Woodmoor Drive and surrounding the Lewis Palmer Middle School. This assessment provides considerations for future improvements and determines safety and efficiency needs for the proposed new access while serving the needs of multiple user types. The parameters of this analysis have been coordinated with El Paso County Staff. Based on staff input, this report includes information on existing traffic conditions, redistributed traffic with implementation of the bus only parking lot, total traffic volume projections, sight distance needs, multimodal circulation needs, and any recommended roadway improvements.

The following two future scenarios have been anklyzed for this report:

- Short-term Future - Time period for the completion of the bus only access, currently anticipated as the Year 2023.
- Long-term Future - The Long-term Future scenario reflects projected Year 2045 traffic conditions.

Please indicate whether parents/visitors/students etc. will be allowed to use the inbound only entrance during non peak hour

NORTH
FIGURE I

II. EXISTING CONDITIONS

II.A. Surrounding Land Use

Much of the area adjacent to the project site has been developed. The land uses surrounding the site are primarily residential with some commercial development north of the Middle School.

II.B. School Traffic Circulation

Currently, there are four parking lots which serve the school, one parking lot north of the school near the track field, two rows of parking along the one-way drive adjacent to the school, and one parking lot south of the school. Each of these lots and their accesses serve multiple users and vehicle types. Figure 3 shows the current and proposed lots and access locations and current usage is described as follows:

- Lot A: provides 39 spaces, including accessible parking. Provides student drop-off and pickup from the north along Woodmoor Drive. It is accessed via full movement Access 3.
- Lot B: provides I5 spaces. Accessed via full movement Access I to Woodmoor Drive.
- Lot C: provides 38 parking spaces, including accessible parking. Parking aisle is one-way southbound during peak periods. During AM school peak, aisle serves bus only traffic. During PM school peak, aisle sequentially serves bus traffic then student pickup. Lot provides general parking during off peak hours.
- Lot D: provides approximately 35 unmarked spaces for faculty and staff. Student drop-off provided from the south via Woodmoor Drive adjacent the Willow Park Way curb line.

II.C. Roadway Network

The existing roadway network adjacent to the vicinity of the site includes Woodmoor Drive and Willow Park Way. The roadway network is as follows:

Woodmoor Drive: Woodmoor Drive is a three-lane collector in the project area serving mainly residential developments and provides connectivity to HWY 105 and I-25. The posted speed limit is 30 miles per hour (mph); however, during school peaks the speed limit is reduced to 20 mph 620 feet north of the parking lot access to 250 feet south of Willow Park Way. Given this study is primarily focused on school hours, this roadway was analyzed with a posted speed of 20 mph .

Willow Park Way: Willow Park Way is a two-lane minor local street which provides access to the Lewis Palmer Middle School as well as a few other commercial developments. There is no posted speed limit, but, for the purpose of this study, the speed limit was assumed to be 20 mph .

II.D. Traffic Volumes

Weekday AM and PM school peak hour turning movement counts (TMCs) were collected on
Wednesday, December 14, 2022, at the following intersections:

- Woodmoor Drive \& Existing Parking Lot Access
- Woodmoor Drive \& Main School Access
- Woodmoor Drive \& Willow Park Way
- Willow Park Way \& Secondary School Access

The peak hour traffic counts were collected in 15-minute intervals between 6:30 and 8:30 AM and 2:00 to 4:00 PM. The AM peak hour was found to be 7:00 to 8:00 AM, and the PM peak was 2:15 to 3:15 PM. Appendix A contains the TMCs. Peak hour traffic volumes are shown on Figure 4.

Based on the counts collected, Peak Hour Factors (PHFs) were found to range from 0.33 to 0.92 . The majority of heavy vehicle percentages were found to be under 8 percent; however, the southbound volume at the secondary school access as well as the eastbound movements at the intersection of Woodmoor Drive with Willow Park Way were found to be a bit higher, likely reflecting buses leaving the school. In order to reflect school peaking conditions, existing PHFs and heavy vehicle percentages were applied for both existing and future conditions by approach at each study intersection.

II.E. Traffic Operations

Existing operational conditions were analyzed at each study intersection. The analysis is based on procedures documented in the Highway Capacity Manual (6th Edition). This analysis procedure provides a Level of Service (LOS), a qualitative measure of traffic operational conditions, based on intersection capacity and vehicle delay. LOS is described by a letter designation ranging from A to F, LOS A represents almost free-flow conditions, while LOS F represents congested conditions. LOS is calculated for movements which must yield right-of-way for unsignalized intersections.

Figure 4 shows the results of the existing conditions analysis. Appendix B contains LOS worksheets. As shown, all stop-controlled movements operate at LOS D or better with the exception of the eastbound and westbound movements at Willow Park Way with oodmoor Drive during the AM peak hour which currently operate at LOS F.

The parking lot access intersection indicates a LOS of E on the westbound thru/left turn. Revise accordingly.

FIGURE 4

III. FUTURE CONDITIONS

III.A. Redistributed Traffic

The new bus access would restrict the north parking lot to bus only during school peak hours, and all buses are anticipated to use the reconfigured lot to the north, which would have one inbound only access (proposed) and the second access would be outbound only for buses. Further, new circulation patterns for buses will cause all buses to arrive and depart from the school traveling southbound, meaning no school buses are anticipated to make a northbound left turn into this lot. Table I outlines the current and proposed users and accesses for each lot.

Table I. Proposed Reconfigurations to Parking and Access

Parking Lot	Current			Future w/ Reconfiguration		
	Uses	Entrance Access	Exit Access	Use	Entrance Access	Exit Access
A	Student pickup/drop-off	3	3	Bus only during school peaks	3 a	3
	Visitors	3	3	Visitors at other times	3	3
B	Faculty and Staff	I	1	Faculty and Staff	1	1
C	Bus Only During School Peaks	1	2	Student pickup/drop-off	1	2
	Student Pickup/Drop-off	1	2	Visitors	I	2
	Visitors	I	2			
D	Faculty and Staff	4, 2	4, 2	Faculty and Staff	4, 2	4, 2

III.B. Future Traffic Conditions

Because the implementation of the new parking lot access will restrict the parking lot to allow only buses during the peak hours, peak hour volumes had to be redistributed so all buses use the parking lot and all passenger cars and heavy vehicles only use the main and secondary school accesses. Figure 5 shows the redistributed existing volumes and subsequent traffic operations.

Future traffic was estimated for the short-term (2023) and long-term (2045) timeframes and accounts for existing traffic already using the transportation system, plus a general upward factoring of current traffic levels to capture the effects of anticipated future growth in the area. Because the Middle School is not anticipated to increase attendance in the future and the surrounding area is mostly developed, only the northbound and southbound through traffic along Woodmoor Drive was increased to account for growth. The Pikes Peak Area Council of Governments (PPACG) regional model was used to determine an annual growth rate of 0.6% per year along Woodmoor Drive.

Short-term Future Traffic Operations

Year 2023 traffic projections were developed assuming 0.6 percent growth per year for one year, this results in very minimal growth along Woodmoor Drive. It is important to note that the growth factor was applied to only the northbound and southbound through movements on Woodmoor Drive.

Figure 6 depicts short-term future AM and PM peak hour turning movement projections for the study area intersections and Appendix C contains the LOS worksheets. Using the existing PHFs and heavy vehicle percentages outlined in Section II.D, all unsignalized movements are anticipated to remain at acceptable operations with the exception of the eastbound and westbound movements at Woodmoor

Drive with Willow Park Way in the AM peak hour. The westbound movement is not anticipated to queue longer than 50 feet and the volume to capacity ratio (v/c) is well below I. However, the eastbound movement is expected to experience a queue length of 375 feet, and the v / c is 1.05 . This movement experience a v / c of just under I in existing conditions and the current queue length is 300 feet; therefore, the redistribution of traffic is not anticipated to drastically reduce these operations.

Long-term Future Traffic Operations

Figure 7 shows the long-term peak hour turning movement projections for the study area intersections and Appendix D contains the LOS worksheets. It is important to note that the growth factor was only applied to northbound and southbound through movements on Woodmoor Drive.

Using the existing PHFs and heavy vehicle percentages outlined in Section II.D, all unsignalized movements are projected to remain acceptable with the exception of the eastbound and westbound through movements at the intersection of Woodmoor Drive with Willow Park Way in the AM peak hour. The westbound movement is not anticipated to queue longer than 50 feet and the volume to capacity ratio (v/c) is well below I . However, the eastbound movement is expected to experience a queue length of 475 feet, and the v / c is I.2. This movement experiences a v / c of just under I in existing conditions and the current queue length is 300 feet; therefore, the redistribution of traffic is not anticipated to drastically worsen these operations.

III.C. Traffic Control Needs

Current traffic control at the study intersections is shown in Table 2.

Table 2. Current Traffic Control

Intersection	Traffic Control Type
Woodmoor Drive \& Parking Lot Access	Two-Way Stop Control (TWSC) (EB \& WB)
Woodmoor Drive \& Main School Access	TWSC (EB)
Woodmoor Drive \& Willow Park Way	TWSC (EB \& WB)
Willow Park Way \& Secondary School Access	TWSC (NB \& SB)

As shown, all of the study intersections are currently unsignalized. The Manual on Uniform Traffic Control Devices (MUTCD, 2009 Edition) outlines 9 warrants that may be used to justify installing a traffic signal at an intersection. The warrants are listed as follows:
I. Eight-Hour Vehicular Volume
2. Four-Hour Vehicular Volume
3. Peak Hour
4. Pedestrian Volume
5. School Crossing
6. Coordinated Signal System
7. Crash Experience
8. Roadway Network
9. Intersection Near a Grade Crossing

Of these nine, warrants I, 2 , and 5 are applicable to conditions at the study intersections. Given the failing LOS on the eastbound and westbound approaches, the intersection of Woodmoor Drive with Willow Park Way is the only intersection that may need a signal in order to facilitate acceptable operations. Projected vehicular traffic volumes and pedestrian volumes were compared with warrant criteria to assess this potential. Because the intersection traffic counts only covered peak periods, a scaling factor was used to estimate the fourth and eighth highest hour volumes using information from
the Missouri Department of Transportation (MoDOT). Based on this information, it is estimated that the eighth highest hour comprises approximately 75 percent of the peak recorded hour. Each of the eight highest hours are estimated by scaling in linear fashion.

Utilizing the scaling assumptions, the evaluation of traffic-volume based Warrant I (eight-hour volume) and 2 (Four-Hour Volume) indicates that traffic volumes do not meet any of the specified conditions. A review of pedestrian volumes at the study intersections revealed a maximum of only 4 pedestrians crossing the intersection of Woodmoor Drive with Willow Park Way during the peak hour. Warrant 5 of the MUTCD specifies a need for at least 20 pedestrians during the peak hour to satisfy this warrant. Therefore, none of the study intersections are anticipated to meet signal warrant criteria.

NORTH
FIGURE 6

NORTH
FIGURE 7

Please address the ECM 2.4 access criteria for the proposed access. If criteria such as access spacing is not met then please submit a deviation request for consideration by the ECM administrator.
staff recommends stating that volume thresholds for a right turn aux. lane are not met at this proposed access

Considerations

be inbound only meaning sight distance for outbound movements will ited spacing between the proposed access and the existing handicap spaces along Woodmoor Drive result is a small auxiliary right turn lane of only 60 feet. The minimal storage space introduces a concern for vehicles coming around the Woodmoor Drife horizontal curve lacking adequate sight distance to see buses slowing at the proposed access. Calculations were completed to determine the distance needed for buses to slow to a reasonable turning speed in order to enter the parking lot. Table $\mathbf{3}$ outlines the calculation parameters and results. provide specs of turn lane to include

Table 3. Slowing Distance - Woodmoor Drive/New Bus Acrecommended

Movement	Planned Storage Length	Sosted Speed					Turning Distance for School Buses Speed
	Assumed Deceleration	Slowing Time	Slowing Distance				
Southbound Right	60 ft	20 mph	9 mph	$-4.49 \mathrm{ft}^{2} / \mathrm{sec}^{2}$	3.59 sec	52.5 ft	

As shown above, the planned 60 feet of storage is anticipated to be enough room for buses to slow from the posted speed of 20 mph during school hours to a safe right turning speed of 9 mph . Buses will need just over 50 feet of space to make this adjustment. Therefore, buses will not need to slow down until fully in the storage lane and should not create sight distance safety issues.

Figure 8 shows the turning template for a typical bus. The new bus access configuration is anticipated to acceptably accommodate the turning movements of a typical bus. It should be noted that due to size constraints, bus drivers will likely need to coordinate to ensure all parking lots are filled and emptied during arrival and departure. If not used properly, buses will block entrances and exits which could lead to blockages and queueing onto Woodmoor Drive.

III.E. Pedestrian and Bicyclist Safety

Pedestrian and bicyclist counts were taken at each intersection within the study area. Pedestrian and bicyclist volumes were generally low with no more than 4 crossings at any location during the peak hours. Currently, there are sidewalks along the school property; however, there are no sidewalks along Woodmoor Drive or controlled crossings. Due to the low volume of pedestrians and cyclists in this area, the lack of sidewalks, crosswalks, and bicycle lanes may not be an issue. However, to accommodate transportation safety for students, it is essential to have adequate sidewalks to the school access. It is recommended that a six-foot sidewalk be constructed on the west side of Woodmoor Drive from Willow Park Way to the new bus access.

Please discuss the turn lanes at the main entrance. Are the existing right turn lane and two-way left turn lane sufficient for the additional traffic being added at this access? are any modifications/improvements needed? do they currently meet ECM criteria? please address.

Also discuss/analyze queuing length for school drop off and loading zones. Refer to MSTA guidelines. see link below:https://connect.ncdot.gov/municipalities/Sch ool/pages/default.aspx

Lewis Palmer Middle School

PARKING LOT A - AUTOTURN

IV. SUMMARY AND RECOMMENDATIONS

A new inbound only bus access is proposed for the Lewis Palmer Middle School parking lot to convert to bus only during school peaks. The proposed bus access would be constructed north of the existing parking lot access along Woodmoor Drive in Monument, Colorado. Surrounding areas are primarily residential with some commercial space north of the school.

Two future scenarios were analyzed for this report:

- Short-term Future - Time period for the completion of the new access, estimated as the Year 2023.
- Long-term Future - The year 2045 was used to assess traffic impacts of the development in the long-term future.

The following is a summary of the findings and recommendations related to the analysis for the development:

- No geometric or traffic control improvements are anticipated for the existing intersections in the study area based on the redevelopment.
- The planned 60 feet of storage for the southbound right turn lane at the new bus access is anticipated to provide enough space for buses to slow from the posted speed of 20 mph to a safe turning speed of 9 mph without causing sight distance issues for vehicles traveling around the Woodmoor Drive horizontal curve.
- Monitoring of both bus and parent traffic within the study area should occur upon implementation of these changes to determine if adjustments should be made if problems emerge.
- Access 3 should be monitored to ensure parents and visitors are aware of the new access restriction and do not use this lot during peak hours.
- Access 3A should be monitored to ensure efficiency entering the parking lot. Woodmoor Drive should not experience blockages due to the new access.
- Access 2 should be monitored to ensure drivers unfamiliar with this access treat it as outbound only.
- Access I and parking area C should be monitored to ensure that additional student drop-off and pickup activities do not cause concern.
- Lewis Palmer Middle School facilitates the need for pedestrian and bicyclist improvements in the area. A six-foot sidewalk will need to be constructed on the west side of Woodmoor Drive between the new bus access and Willow Park Way.

APPENDIX A. EXISTING TRAFFIC COUNTS

(303) 216-2439 www.alltrafficdata.net

Location: 1 WOODMOOR DR \& PARKING LOT ACCESS AM
Date: Wednesday, December 14, 2022
Peak Hour: 07:00 AM - 08:00 AM
Peak 15-Minutes: 07:15 AM - 07:30 AM

Note: Total study counts contained in parentheses.
Traffic Counts - Motorized Vehicles

Interval Start Time	PARKING LOT ACCESS Eastbound				PARKING LOT ACCESS Westbound				WOODMOOR DR Northbound					WOODMOOR DR Southbound					Total	Rolling Hour	Pedestrian Crossings			
	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right		U-Turn	Left	Thru	Right	U-Turn	Left		Thru	Right			West	East	South	
6:30 AM	0	0	0	0	0	2	0	0		0	0	4	1	0	0		21	0	28	559	0	0	0	0
6:45 AM	0	1	0	1	0	1	0	0		0	7	14	0	0	0		34	3	61	612	0	0	0	0
7:00 AM	0	9	2	63	0	2	0	0		0	45	16	0	0	0		34	41	212	652	0	0	0	0
7:15 AM	0	6	3	93	0	0	1	2		0	36	30	1	0	0		46	40	258	540	0	0	0	0
7:30 AM	0	0	0	0	0	1	0	0		0	0	24	0	0	0		56	0	81	363	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	1		0	0	36	4	0	0		60	0	101		0	0	0	0
8:00 AM	0	0	2	0	0	0	0	0		0	0	58	0	0	0		40	0	100		0	0	0	0
8:15 AM	0	0	0	0	0	1	0	0		0	0	34	0	0	0		46	0	81		0	0	0	0
Count Total	0	16	7	157	0	7	1	3		0	88	216	6	0	0		337	84	922		0	0	0	0
Peak Hour	0	15	5	156	0	3	1	3		0	81	106	5	0		0	196	81	65	52	0	0	0	0

Note: Total study counts contained in parentheses.
Traffic Counts - Motorized Vehicles

Interval	MAIN	Eastb	L ACC	CESS	West	und	WOODMOOR DR Northbound					WOODMOOR DR Southbound					Total	Rolling Hour	Pedestrian Crossings			
Start Time	U-Turn	Left	Thru	Right	U-Turn Left	Thru Right	U-Turn	Left	Thru R	Right		J-Turn	Left		Thru	Right			West	East	South	
6:30 AM	0	1	0	0			0	5	5	0		0	0		22	1	34	525	0		0	0
6:45 AM	0	0	0	0			0	17	21	0		0	0		28	8	74	579	0		0	0
7:00 AM	0	0	0	0			0	38	67	0		1	0		88	8	202	613	0		0	0
7:15 AM	0	0	0	0			0	11	60	0		0	0		141	3	215	515	0		0	0
7:30 AM	0	0	0	0			0	8	25	0		0	0		52	3	88	388	0		0	0
7:45 AM	0	0	0	0			0	5	40	0		0	0		60	3	108		0		0	0
8:00 AM	0	0	0	0			0	4	59	0		0	0		41	0	104		0		0	0
8:15 AM	0	0	0	0			0	6	33	0		0	0		49	0	88		0		0	0
Count Total	0	1	0	0			0	94	310	0	0	1	0	0	481	26	913		0		0	0
Peak Hour	0	0	0	0			0	62	192	0	0	1		0	341	17	613	3	0		0	0

aLL TRAFFIC DATA SERVICES
(303) 216-2439 www.alltrafficdata.net

Peak Hour - Bicycles

Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

Traffic Counts - Motorized Vehicles

Interval	WILLOW PARK WAY Eastbound				WILLOW PARK WAY Westbound					WOODMOOR DR Northbound				WOODMOOR DR Southbound					Total		Rolling Hour	Pedestrian Crossings				
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru R	Right		U-Turn	Left	Thru	Right		J-Turn	Left	Thru	Right			West	East	South			
6:30 AM	0	0	0	2	0	0	0	1	1	0	10	9	0		0	0	23	0		45		794	0	0	0	0
6:45 AM	0	2	0	10	0	0	0	0	0	0	26	37	1		0	0	27	0		103	853	0	0	0	0	
7:00 AM	0	0	0	90	0	1	0	1	1	0	62	108	0		0	0	75	1		338	865	0	0	0	4	
7:15 AM	0	2	0	60	0	1	0	1	1	0	36	61	0		0	1	145	1		308	642	0	0	0	0	
7:30 AM	0	5	0	15	0	1	0	2	2	0	3	26	0		0	1	50	1		104	434	0	0	0	0	
7:45 AM	0	2	0	5	0	0	0	2	2	0	6	38	1		0	1	60	0		115		0	0	0	0	
8:00 AM	0	0	0	7	0	0	0		1	0	3	64	0		0	0	39	1		115		0	0	0	0	
8:15 AM	0	4	0	8	0	0	0	0	0	1	4	36	0		0	0	47	0		100		0	0	0	0	
Count Total	0	15	0	197	0	3	0	8	8	1	150	379	2	2	0	3	466		4	1,228		0	0	0	4	
Peak Hour	0	9	0	170	0	3	0	6	6	0	107	233	1	1	0	3	330		3	86	5	0	0	0	4	

aLL TRAFFIC DATA SERVICES
(303) 216-2439 www.alltrafficdata.net

Note: Total study counts contained in parentheses.

Traffic Counts - Motorized Vehicles

Interval Start Time	WILLOW PARK WAY Eastbound				WILLOW PARK WAY Westbound				SECONDARY SCHOOL ACCESS Northbound				SECONDARY SCHOOL ACCESS Southbound						Rolling	Pedestrian Crossings			
	U-Turn	Left	Thru	Right	U-Turn	eft	Thru R		U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right		Total	Hour	West	East	uth	
6:30 AM	0	0	2	0	0	0	3	7	0	0	0	0	0	0	0	0	0	12	300	0	0	0	0
6:45 AM	0	0	5	0	0	1	12	13	0	0	0	0	0	7	0	0	0	38	310	0	0	0	0
7:00 AM	0	0	52	0	0	0	62	1	0	0	0	0	0	36	0		0	151	285	0	0	0	0
7:15 AM	0	0	42	0	0	0	38	0	0	0	0	0	0	19	0	0	0	99	145	0	0	0	0
7:30 AM	0	0	4	0	0	0	4	0	0	0	0	0	0	14	0	0	0	22	63	0	0	0	0
7:45 AM	0	0	2	0	0	1	5	0	0	0	0	0	0	5	0	0	0	13		0	0	0	0
8:00 AM	0	0	1	0	0	1	3	0	0	0	0	1	0	5	0	0	0	11		0	0	0	0
8:15 AM	0	0	4	0	1	2	2	0	0	0	0	3	0	5	0	0	0	17		0	0	0	0
Count Total	0	0	112	0	1	5	129	21	0	0	0	4	0	91	0		0	363		0	0	0	0
Peak Hour	0	0	103	0	0	1	116	14	0	0	0	0	0	76	0	0	0	31	10	0	0	0	0

(303) 216-2439 www.alltrafficdata.net

Location: 1 WOODMOOR DR \& PARKING LOT ACCESS PM
Date: Wednesday, December 14, 2022
Peak Hour: 02:30 PM - 03:30 PM
Peak 15-Minutes: 02:30 PM - 02:45 PM

Peak Hour - Bicycles

Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.
Traffic Counts - Motorized Vehicles

Interval Start Time	PARKING LOT ACCESS Eastbound				PARKING LOT ACCESS Westbound					WOODMOOR DR Northbound					WOODMOOR DR Southbound				Total	Rolling Hour	Pedestrian Crossings			
	U-Turn	Left	Thru	Right	U-Turn	Left		Thru R	Right		U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right			West	East	South	
2:00 PM	0	0	1	0	0	1		0	1		0	14	29	2	0	0	29	3	80	485	0	0	0	0
2:15 PM	0	0	0	4	0	1		0	0		2	3	39	3	0	1	28	0	81	491	0	0	0	0
2:30 PM	0	2	0	45	0	2		0	4		2	19	42	3	4	1	32	23	179	499	4	0	4	0
2:45 PM	0	9	0	25	0	1		0	0		1	7	48	1	0	0	49	4	145	400	2	0	2	0
3:00 PM	0	3	0	5	0	1		0	0		0	2	41	1	0	0	32	1	86	340	0	0	0	0
3:15 PM	0	0	0	0	0	0		0	0		0	0	51	1	0	0	37	0	89		0	0	0	0
3:30 PM	0	1	1	0	0	2		0	0		0	1	37	2	0	0	36	0	80		0	0	0	0
3:45 PM	0	0	2	1	0	1		0	0		0	3	41	0	0	0	37	0	85		0	0	1	0
Count Total	0	15	4	80	0	9		0	5		5	49	328	13	4	2	280	31	825		6	0	7	0
Peak Hour	0	14	0	75	0	4		0	4		3	28	182	6	4	1	150	28	499	9	6	0	6	0

(303) 216-2439
www.alltrafficdata.net
Location: 2 WOODMOOR DR \& MAIN SCHOOL ACCESS PM
Date: Wednesday, December 14, 2022
Peak Hour: 02:00 PM - 03:00 PM
Peak 15-Minutes: 02:45 PM - 03:00 PM

Note: Total study counts contained in parentheses.

Interval	MAIN SCHOOL ACCESS Eastbound				Westbound		WOODMOOR DR Northbound				WOODMOOR DR Southbound					Total	Rolling Hour		Pedestrian Crossings			
Start Time	U-Turn	Left	Thru	Right	U-Turn Left	Thru Right	U-Turn	Left	Thru R	Right	U-Turn	Left		Thru	Right				West	East	South	
2:00 PM	0	0	0	0			0	25	45	0	0	0		30	2	102		508	0		0	0
2:15 PM	0	1	0	2			0	5	50	0	0	0		31	0	89		498	0		0	0
2:30 PM	0	1	0	1			0	14	56	0	0	0		82	0	15		502	0		0	0
2:45 PM	0	0	0	2			0	24	56	0	0	0		76	5	163		431	0		0	0
3:00 PM	0	2	0	6			0	4	41	0	0	0		39	0	92		360	0		0	0
3:15 PM	0	0	0	0			0	5	51	0	0	0		37	0	93			0		0	0
3:30 PM	0	0	0	0			0	1	42	0	0	0		40	0	83			0		0	0
3:45 PM	0	0	0	0			0	4	47	0	0	0		41	0	92			0		0	0
Count Total	0	4	0	11			0	82	388	0	0	0		376	7	86			0		0	0
Peak Hour	0	2	0	5			0	68	207	0	0	0	0	219		7	508		0		0	0

aLL TRAFFIC DATA SERVICES
(303) 216-2439 www.alltrafficdata.net

Peak Hour - Bicycles

Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

Traffic Counts - Motorized Vehicles

Interval	WILLOW PARK WAY Eastbound				WILLOW PARK WAY Westbound					WOODMOOR DR Northbound				WOODMOOR DR Southbound					Total		Rolling Hour	Pedestrian Crossings				
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right		U-Turn	Left	Thru	Right			Left	Thru	Right			West	East	South	orth		
2:00 PM	0	1	0	11	0	1	0		0	0	10	53	0		0	0	30	1		107		716	0	0	0	0
2:15 PM	0	2	0	6	0	0	0		0	0	19	76	0		1	0	30	0		134	723	0	0	0	0	
2:30 PM	0	0	0	64	0	2	0		1	0	23	64	5		0	1	70	1		231	701	0	0	0	12	
2:45 PM	0	5	0	70	0	1	0		3	0	7	72	1		0	1	80	4		244	591	0	0	0	0	
3:00 PM	0	1	0	17	0	0	0		0	0	9	41	1		0	1	43	1		114	449	0	0	0	0	
3:15 PM	0	5	0	14	0	0	0		1	0	4	52	0		0	0	36	0		112		0	0	0	0	
3:30 PM	0	1	0	23	0	1	0		2	0	11	41	0		0	1	39	2		121		0	0	0	0	
3:45 PM	0	3	0	4	0	1	0		0	0	3	49	0		0	1	41	0		102		0	0	0	0	
Count Total	0	18	0	209	0	6	0	0	7	0	86	448	7	7	1	5	369	9	9	1,165		0	0	0	12	
Peak Hour	0	8	0	157	0	3	0	-	4	0	58	253	7	7	1	3	223		6	72	23	0	0	0	12	

(303) 216-2439 www.alltrafficdata.net

Location: 4 SECONDARY SCHOOL ACCESS \& WILLOW PARK WAY PM
Date: Wednesday, December 14, 2022
Peak Hour: 02:15 PM - 03:15 PM
Peak 15-Minutes: 02:30 PM - 02:45 PM

Peak Hour - Bicycles

Peak Hour - Pedestrians

Note: Total study counts contained in parentheses.

Traffic Counts - Motorized Vehicles

Interval Start Time	WILLOW PARK WAY Eastbound				WILLOW PARK WAY Westbound				SECONDARY SCHOOL ACCESS\qquad Northbound				SECONDARY SCHOOL ACCESS Southbound					Total	Rolling Hour	Pedestrian Crossings			
	U-Turn	Left	Thru	Right	U-Turn	Left	Thru R	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right				West	East	South	
2:00 PM	0	0	6	0	0	0	10	1	0	0	0	0	0	6	0		0	23	228	0	0	0	0
2:15 PM	0	0	0	0	0	1	20	0	0	0	0	3	0	4	0		0	28	233	1	0	0	0
2:30 PM	0	0	44	1	0	2	21	0	0	0	0	3	0	21	0		0	92	228	38	0	0	1
2:45 PM	0	0	14	0	0	0	11	0	0	0	0	11	0	47	0		2	85	173	1	0	0	0
3:00 PM	0	0	1	0	0	3	5	2	20	0	0	4	0	13	0		0	28	97	2	0	0	0
3:15 PM	0	0	6	0	0	0	4	0	0	0	0	4	0	9	0		0	23		0	0	0	0
3:30 PM	0	0	7	0	0	5	6	2	0	0	0	2	0	15	0		0	37		0	0	0	0
3:45 PM	0	0	4	0	0	0	3	0	0	0	0	0	0	2	0		0	9		0	0	0	0
Count Total	0	0	82	1	0	11	80	5	50	0	0	27	0	117	0		2	325		42	0	0	1
Peak Hour	0	0	59	1	0	6	57	2	20	0	0	21	0	85	0	0	2	233		42	0	0	1

APPENDIX B. EXISTING LEVEL OF SERVICE WORKSHEETS

Intersection													
Int Delay, s/veh	18.9												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\dagger			\leqslant		${ }^{7}$	\uparrow		${ }^{*}$	\uparrow		
Traffic Vol, veh/h	9	0	170	3	0	6	107	233	1	3	330	3	
Future Vol, veh/h	9	0	170	3	0	6	107	233	1	3	330	3	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control Star	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	100	-	-	100	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	47	47	47	75	75	75	50	50	50	57	57	57	
Heavy Vehicles, \%	13	13	13	0	0	0	6	6	6	0	0	0	
Mvmt Flow	19	0	362	4	0	8	214	466	2	5	579	5	

Intersection												
Int Delay, s/veh 3.9												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\stackrel{+}{*}$			\&			*			4	
Traffic Vol, veh/h	0	100	0	1	109	1	0	0	0	74	0	0
Future Vol, veh/h	0	100	0	1	109	1	0	0	0	74	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	48	48	48	44	44	44	92	92	92	51	51	51
Heavy Vehicles, \%	1	1	1	1	1	1	2	2	2	28	28	28
Mvmt Flow	0	208	0	2	248	2	0	0	0	145	0	0

Intersection														
Int Delay, s/veh	3.7													
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Lane Configurations		\$			\uparrow	F		${ }^{7}$	\uparrow	F		${ }^{7}$	\uparrow	F
Traffic Vol, veh/h	14	0	79	5	0	4	5	31	170	8	4	2	141	28
Future Vol, veh/h	14	0	79	5	0	4	5	31	170	8	4	2	141	28
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control S	Stop	Stop	Stop	Stop	Stop	Stop	Free							
RT Channelized	-	-	None	-	-	None	-	-	-	None	-	-	-	None
Storage Length	-	-	-	-	-	0	-	100	-	100	-	100	-	125
Veh in Median Storage, \#	\#	0	-	-	0	-	-	-	0	-	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	-	0	-	-	-	0	-
Peak Hour Factor	43	43	43	46	46	46	92	81	81	81	92	65	65	65
Heavy Vehicles, \%	0	0	0	0	0	0	2	3	3	3	2	0	0	0
Mumt Flow	33	0	184	11	0	9	5	38	210	10	4	3	217	43

Approach	EB	WB	NB	SB
HCM Control Delay, s	11.8	13.6		
HCM LOS	B	B		

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1WBLn2	SBL	SBT	SBR		
Capacity (veh/h)	+	-	-	741	312	835	\sim	-

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds $300 s \quad+$: Computation Not Defined \quad : All major volume in platoon

Intersection						

Major/Minor	Minor2	Minor1				Major1			Major2				
Conflicting Flow All	818	819	328	955	819	329	332	0	0	-	333	0	0
Stage 1	336	338	-	477	477	-	-	-	-	-	-	-	-
Stage 2	482	481		478	342	-		-	-	-	-	-	-
Critical Hdwy	7.23	6.63	6.33	7.1	6.5	6.2	4.19	-	-	-	4.1	-	-
Critical Hdwy Stg 1	6.23	5.63	-	6.1	5.5	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.23	5.63	-	6.1	5.5	-	-	-	-	-	-	-	-
Follow-up Hdwy	3.617	4.117	3.417	3.5	4	3.3	2.281	-	-	-	2.2	-	-
Pot Cap-1 Maneuver	282	298	689	240	312	717	1189	-	-	-	1238	-	-
Stage 1	656	621	-	573	559	-	-	-	-	- -	-	-	-
Stage 2	545	536	-	572	642	-	-	-	-	- -	-	-	-
Platoon blocked, \%								-	-			-	-
Mov Cap-1 Maneuver	264	280	689	134	293	717	1189	-		~-5	~-5	-	-
Mov Cap-2 Maneuver	264	280	-	134	293	-	-	-	-	- -	-	-	-
Stage 1	615	621	-	537	524	-	-	-	-	-	-	-	-
Stage 2	503	503	-	335	642	-	-	-	-	- -	-	-	-
Approach	EB			WB			NB			SB			
HCM Control Delay, s	15.5			20.6			1.5						
HCM LOS	C			C									
Minor Lane/Major Mvm		NBL	NBT	NBR	EBLn1	BLn1	SBL	SBT	SBR				
Capacity (veh/h)		1189	-	-	639	250	+	-	-				
HCM Lane V/C Ratio		0.063	-	-	0.469	0.08	-	-	-				
HCM Control Delay (s)		8.2	-	-	15.5	20.6	-	-	-				
HCM Lane LOS		A	-	-	C	C	-	-	-				
HCM 95th \%tile Q(veh)		0.2	-		2.5	0.3	-	-	-				
Notes													
\sim : Volume exceeds cap	apacity	\$: Dela	lay exc	eeds 3	00s	: Com	putatio	Not D	fined	*: All	major volur	e	atoon

Intersection												
Int Delay, s/veh	6.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\&			*			4	
Traffic Vol, veh/h	0	59	1	6	57	2	0	0	21	85	0	2
Future Vol, veh/h	0	59	1	6	57	2	0	0	21	85	0	2
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	33	33	33	65	65	65	48	48	48	45	45	45
Heavy Vehicles, \%	0	0	0	3	3	3	0	0	0	25	25	25
Mvmt Flow	0	179	3	9	88	3	0	0	44	189	0	4

APPENDIX C. SHORT-TERM FUTURE LEVEL OF SERVICE WORKSHEETS

Intersection						
Int Delay, s/veh	3.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			4	4	$\mathbf{7}$
Traffic Vol, veh/h	16	100	124	113	207	97
Future Vol, veh/h	16	100	124	113	207	97
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	100	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	64	64	60	60
Heavy Vehicles, \%	2	2	8	8	1	1
Mvmt Flow	17	109	194	177	345	162

Major/Minor	Minor2		Major1		ajor2	
Conflicting Flow All	910	345	507	0	-	0
Stage 1	345	-	-	-	-	-
Stage 2	565	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.18	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.272	-	-	-
Pot Cap-1 Maneuver	305	698	1028	-	-	-
Stage 1	717	-	-	-	-	-
Stage 2	569	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	247	698	1028	-	-	-
Mov Cap-2 Maneuver	375	-	-	-	-	-
Stage 1	581	-	-	-	-	-
Stage 2	569	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	12.2		4.9		0	
HCM LOS	B					
Minor Lane/Major Mvmt		NBL	NBT EBLn1		SBT	SBR
Capacity (veh/h)		1028	-	624	-	-
HCM Lane V/C Ratio		0.188	-	0.202	-	-
HCM Control Delay (s)		9.3	-	12.2	-	-
HCM Lane LOS		A	-	B	-	-
HCM 95th \%tile Q(veh)		0.7	-	0.8	-	-

Intersection												
Int Delay, s/veh	6.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\&			\&			\$	
Traffic Vol, veh/h	0	100	0	1	109	0	0	0	0	110	0	0
Future Vol, veh/h	0	100	0	1	109	0	0	0	0	110	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	48	48	48	44	44	44	92	92	92	51	51	51
Heavy Vehicles, \%	1	1	1	1	1	1	2	2	2	28	28	28
Mvmt Flow	0	208	0	2	248	0	0	0	0	216	0	0

Intersection						

Intersection												
Int Delay, s/veh	6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\&			\uparrow			\&	
Traffic Vol, veh/h	0	59	1	6	57	0	0	0	21	79	0	2
Future Vol, veh/h	0	59	1	6	57	0	0	0	21	79	0	2
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\# -	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	33	33	33	65	65	65	48	48	48	45	45	45
Heavy Vehicles, \%	0	0	0	3	3	3	0	0	0	25	25	25
Mvmt Flow	0	179	3	9	88	0	0	0	44	176	0	4

APPENDIX D. LONG-TERM FUTURE LEVEL OF SERVICE WORKSHEETS

Intersection												
Int Delay, s/veh 1.3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\uparrow	「	${ }^{1}$	4	F	${ }^{*}$	4	「
Traffic Vol, veh/h	3	0	21	5	0	3	0	138	7	0	314	0
Future Vol, veh/h	3	0	21	5	0	3	0	138	7	0	314	0
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control S	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	0	100	-	-	100	-	125
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	42	42	42	36	36	36	60	60	60	72	72	72
Heavy Vehicles, \%	2	2	2	0	0	0	0	0	0	0	0	0
Mumt Flow	7	0	50	14	0	8	0	230	12	0	436	0

Intersection						
Int Delay, s/veh	3.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			4	4	$\mathbf{7}$
Traffic Vol, veh/h	16	100	124	129	236	97
Future Vol, veh/h	16	100	124	129	236	97
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	100	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	64	64	60	60
Heavy Vehicles, \%	2	2	8	8	1	1
Mvmt Flow	17	109	194	202	393	162

Intersection												
Int Delay, s/veh	41.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			*		${ }^{1}$	F		${ }^{4}$	\uparrow	
Traffic Vol, veh/h	10	0	205	3	0	6	107	247	1	3	339	3
Future Vol, veh/h	10	0	205	3	0	6	107	247	1	3	339	3
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	100	-	-	100	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	47	47	47	75	75	75	50	50	50	57	57	57
Heavy Vehicles, \%	13	13	13	0	0	0	6	6	6	0	0	0
Mvmt Flow	21	0	436	4	0	8	214	494	2	5	595	5

Approach	EB	WB	NB	SB
HCM Control Delay, s	144.1	$\$ 497.4$	3	0.1
HCM LOS	F	F		

| Minor Lane/Major Mvmt | NBL | NBT | NBR EBLn1WBLn1 | SBL | SBT | SBR | | |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Capacity (veh/h) | 958 | - | -381 | 15 | 1078 | - | - | |
| HCM Lane V/C Ratio | 0.223 | - | -1.201 | 0.8 | 0.005 | - | - | |
| HCM Control Delay (s) | 9.8 | - | $-144.1 \$ ~ 497.4$ | 8.4 | - | - | | |
| HCM Lane LOS | A | - | - | F | F | A | - | - |
| HCM 95th \%tile Q(veh) | 0.9 | - | - | 18.7 | 1.9 | 0 | - | - |

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds 300s $\quad+$: Computation Not Defined *: All major volume in platoon

Intersection												
Int Delay, s/veh	6.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\&			\&			\$	
Traffic Vol, veh/h	0	100	0	1	109	0	0	0	0	110	0	0
Future Vol, veh/h	0	100	0	1	109	0	0	0	0	110	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	48	48	48	44	44	44	92	92	92	51	51	51
Heavy Vehicles, \%	1	1	1	1	1	1	2	2	2	28	28	28
Mvmt Flow	0	208	0	2	248	0	0	0	0	216	0	0

HCMLOS B B

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1WBLn2	SBL	SBT	SBR			
Capacity (veh/h)	1258	-	-724	392	785	\sim	-	-	
HCM Lane V/C Ratio	-	-	-0.077	0.028	0.011	\sim	-	-	
HCM Control Delay (s)	0	-	-	10.4	14.4	9.6	-	-	-
HCM Lane LOS	A	-	-	B	B	A	-	-	-
HCM 95th \%tile Q(veh)	0	-	-	0.2	0.1	0	\sim	-	-

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds $300 s \quad+$: Computation Not Defined \quad : All major volume in platoon

Intersection						

Intersection												
Int Delay, s/veh	6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\&			\$			4	
Traffic Vol, veh/h	0	59	1	6	57	0	0	0	21	79	0	2
Future Vol, veh/h	0	59	1	6	57	0	0	0	21	79	0	2
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	33	33	33	65	65	65	48	48	48	45	45	45
Heavy Vehicles, \%	0	0	0	3	3	3	0	0	0	25	25	25
Mvmt Flow	0	179	3	9	88	0	0	0	44	176	0	4

V1_Traffic Impact Study Redlines.pdf Markup Summary

Carlos (4)		
 Lewia Pilmer Muddile School Monumean co	Subject: Text Box Page Label: 1 Author: Carlos Date: 3/14/2023 2:21:59 PM Length: 0 Area: 0 Volume: 0	Please add a signatures page after the cover page. Visit https://planningdevelopment.elpasoco.com/plannin g-development-forms/\#1584029763943-19bc4c033586 for El Paso County standard signature blocks.
	Subject: Text Box Page Label: 1 Author: Carlos Date: 3/9/2023 2:03:47 PM Length: 0 Area: 0 Volume: 0	Please add "PCD File No. CDR-23-005"
	Subject: Cloud+ Page Label: 18 Author: Carlos Date: 3/21/2023 4:52:07 PM Length: 0 Area: 0 Volume: 0	Diagram shows buses driving through parking spaces for buses. Should the diagram follow the other route shown instead to prevent backing into woodmoor and reduce turning radius?
	Subject: Highlight Page Label: 18 Author: Carlos Date: 3/16/2023 5:10:44 PM Length: 0 Area: 0 Volume: 0	

Daniel Torres (13)

Subject: Callout
Page Label: 4
Please indicate whether parents/visitors/students
Author: Daniel Torres etc. will be allowed to use the inbound only

Date: 3/21/2023 3:20:56 PM
Length: 0
Area: 0
Volume: 0 entrance during non peak hour

Subject: Callout
 Page Label: 9

Author: Daniel Torres
Date: 3/21/2023 2:18:51 PM
Length: 0
Area: 0
Volume: 0

	Subject: Text Box Page Label: 10 Author: Daniel Torres Date: 3/21/2023 4:11:55 PM Length: 0 Area: 0 Volume: 0	show ADT on all figures as indicated in ECM appendix B. 8
\qquad	Subject: Callout Page Label: 12 Author: Daniel Torres Date: 3/21/2023 4:30:41 PM Length: 0 Area: 0 Volume: 0	Please identify possible solutions to the deficient turn movements.
\qquad	Subject: Callout Page Label: 13 Author: Daniel Torres Date: 3/21/2023 3:52:31 PM Length: 0 Area: 0 Volume: 0	identify what the scaling factor is that is used
	Subject: Callout Page Label: 14 Author: Daniel Torres Date: 3/21/2023 4:10:19 PM Length: 0 Area: 0 Volume: 0	Please explain the large amount of exiting vehicles from the main school entrance (\#1) if the exit point for the students/visitors is at Willow Park Wy. (exit \#2) during peak hrs. Revise as necessary the peak hr traffic at the entrance and exit.
	Subject: Highlight Page Label: 14 Author: Daniel Torres Date: 3/21/2023 4:08:51 PM Length: 0 Area: 0 Volume: 0	
	Subject: Highlight Page Label: 14 Author: Daniel Torres Date: 3/21/2023 4:08:54 PM Length: 0 Area: 0 Volume: 0	
$x=2$ $2=2$	Subject: Text Box Page Label: 17 Author: Daniel Torres Date: 3/21/2023 4:38:16 PM Length: 0 Area: 0 Volume: 0	staff recommends stating that volume thresholds for a right turn aux. lane are not met at this proposed access

