Traffic Impact Study

Mayberry Communities
Sketch Plan
El Paso County, Colorado
August 30, 2023

Traffic Impact Studies

Traffic Engineer's Statement

The attached traffic report and supporting information were prepared under my responsible charge and they comport with the standard of care. So far as is consistent with the standard of care, said report was prepared in general conformance with the criteria established by the County for traffic reports.

Joshua Hoffmann, P.E. \# 0062304
[Name, P.E. \#]

August 30, 2023
Date

Developer's Statement

I, the Developer, have read and will comply with all commitments made on my behalf within this report.
[Name, Title]
Date
[Business Name]
[Address]

Contents

Introduction 4
Summary of Findings 4
Existing Conditions 7
Description of Existing Major Roads 7
Proposed Development and Trip Generation 7
Trip Generation and Adjustments 7
Site Distribution 11
Other Traffic Studies in the Area. 11
Intersection and Roadway Evaluation 13
Roadway Sizing and Classification 13
Trigger Analysis 15
On-Site Intersection Analysis 15
Recommendations 28
References 30
Appendices 31
Appendix A - Highway Capacity Manual 32
Appendix B - Threshold Analysis 34
Appendix C - Level of Service Outputs 35
Table of Figures
Figure 1: Area Location Map 6
Figure 2: Generated Traffic Trip Distribution 12
Figure 3: Sketch Plan ADT 14
Figure 4: N Mayberry Dr and Village Main St Lane Designations 16
Figure 5: S Mayberry Dr and Village Main St Lane Designation 16
Figure 6: N Maryberry Dr and Positive PI Lane Designation 17
Figure 7: S Mayberry Dr and Postive PI Lane Designation 18
Figure 8: Mayberry Dr and Boulevard A Lane Designation 18
Figure 9: Spring Rd and Positive PI Lane Designation 19
Figure 10: Springs Rd and Boulevard A Lane Designation 19
Figure 11: Mayberry Dr and Boulevard B Lane Designation 20
Figure 12: North Sketch Plan Turning Movement Volumes 21
Figure 13: North Sketch Plan + Commercial District Turning Movement Volume 24
Figure 14: Full Build Out Turning Movement Volumes 27
Table of Tables
Table 1: Trigger Analysis Summary 5
Table 2: Summary of Unadjusted Daily and Peak Hour Trip Generation for the Mayberry Sketch Plan 9
Table 3: Summary of Pass-by and Internally Captured Adjusted Daily and Peak Hour Trip Generation for the Mayberry Sketch Plan. 10
Table 4: Trigger Analysis Summary 15
Table 5: Land Use for North Sketch Plan 20
Table 6: North Sketch Plan Level of Service Summary 22
Table 7: Land Use for Commerical District 23
Table 8: North Sketch Plan Plus Commercial District Level of Service Summary 25
Table 9: Land Use for South Sketch Plan. 26
Table 10: Full Sketch Plan Level of Service Summary 28
Table 11. Signalized Intersection: Level of Service Measurement and Qualitative Descriptions 32
Table 12. Unsignalized Intersection: Level of Service Measurement. 33

Introduction

Mayberry Communities have retained HDR Engineering, Inc. to perform a Traffic Impact Study (TIS) for the proposed Sketch Plan development located in the southeast quadrant of Mayberry Drive and SH 94, as shown in Figure 1. The development is anticipated to consist of the following:

- Between 900-1800 single-family detached housing,
- Between 750-1410 mid-rise and multifamily housing.
- 105.7 KSF commercial and industrial (commercial service, retail, and groceries)

The project site is has 98 lots platted, with another 142 lots pending recording, and the development is expected to be complete by 2034. This study serves as part of an update to the approved 2020 - June - Ellicott Town Center Commercial Rezone TIS Report (LSC 194060) (Ref 1) and uses assumptions and traffic data from the 2022 - September - Mayberry Filing No. 3 (Ref 2) TIS. The Sketch Plan is the ultimate proposed vision for the Mayberry Communities Development just west of Ellicott between Peyton Highway and Log Road. This community is being developed in phases; however, this report details the traffic impacts of the entire proposed site. please also include that filing

$$
4 \text { and filing } 5 \text { traffic studies }
$$ are currently in review.

Summary of Findings

Through the iterative process of analyzing the traffic impact of the Sketch Plan development, two main recommendations have emerged to ensure efficient traffic flow and management in the area.

Internal Signalized Controls: The analysis indicates that implementing signalized controls at the intersections of N Mayberry Dr \& Village Main St and S Mayberry Dr \& Village Main St can effectively improve mobility after the full build-out of the commercial district. Therefore, it is recommended to implement signalized controls at these intersections to manage the increased traffic flow.

SH 94 and Mayberry Dr: A threshold analysis was conducted for the intersection of SH 94 and Mayberry Dr and SH 94. The summary of those findings is provided in the following table.
the filing 3 TIS by LSC is dated October 2022. Please revise (see PCD File No.
SF2219) and also indicate the name of the consultant that prepared the report.

Table 1: Trigger Analysis Summary

Stages	Improvement	Configuration Description	Dwelling Units and Commerical Area
Stage 1	"Florida T" Configuration	westbound left-turn lane with a westbound acceleration lane	$\begin{aligned} & \text { 728 DU } \\ & \text { 26.5 KSF } \end{aligned}$
Stage 2a	Highway Improvement to SH 94	Add capacity to SH 94, which will accommodate the generated traffic for entire build-out	$\begin{aligned} & \text { 739 DU } \\ & \text { 105.7 KSF } \end{aligned}$
Stage 2b	Signalized intersection	Add signals to existing TIntersection configuration	$\begin{aligned} & \text { 959 DU } \\ & \text { 105.7 KSF } \end{aligned}$
Stage 3	Added capacity	Increase capacity to northbound dual left-turn, Add additional eastbound through lane	Final Development

Monitor and Adjust: As the full Sketch Plan is built out, it is essential to regularly monitor intersections' performance. The analysis shows increased delays at both signalized and stopcontrolled intersections in the full Sketch Plan scenario. Depending on the actual traffic patterns and congestion levels, adjustments to signal timings or further improvements to intersection designs may be required.

Existing Conditions

This section provides an overview of the existing major roads near the proposed development.

Description of Existing Major Roads
 SH 94

please also include Mayberry drive (fka New Log Rd), Springs Rd, and Positive Place (fka Mayberrt Drive), Log rd and their classifications
CDOT classifies SH 94 as a Minor Arterial functional type. The highway is an access control type Non-Rural Principal Highway (NR-A) west of County Road 493 and a Regional Highway (R-A) east of County Road 493. The posted speed limit is 65 miles per hour near the development. An OTIS straight-line diagram of SH 94 near the project site is provided in Appendix A. According to CDOT's traffic volume database, the existing daily traffic volume on SH 94 is listed below:

4,000 vpd between Peyton Highway and Ellicott Highway
3,000 vpd east of Ellicott Highway

Peyton Highway

The El Paso County 2040 Major Transportation Corridor Plan (MTCP) Highway as a Minor Arterial with a speed limit of 55 mph .

Ellicott Highway

The El Paso County MTCP classifies Ellicott Highway as a Minor Arte of 55 mph .

Abstract

please clarify if the commercial district is both the northwest and east/northeast commercial parcels shown on the sketch plan (C1, CS3, CS4, CS5). Provide a separate exhibit or show on the provided figures the boundaries of the north, south, and commercial phases.

Proposed Development and Trip Generation

The proposed sketch plan is set to be developed incrementally from 2024 to 2034. The traffic impact study is structured in three stages to assess the effects of each development phase: first, the development of the north sketch plan; second, the addition of the commercial district; and finally, the addition of the south sketch plan as the ultimate configuration. This approach enables a thorough evaluation of the traffic impacts for each stage of development.

Trip Generation and Adjustments

Determining site-generated traffic, or traffic resulting from the development of the Sketch Plan, is a crucial component of this analysis. Unadjusted daily trips and peak hour traffic associated with these filings were estimated using recommendations and data from the Institute of Transportation Engineers Trip Generation, 11th Edition (Ref. 4). Upon build-out, the Sketch Plan is expected to generate approximately 38,497 unadjusted daily trips. A detailed traffic generation summary of the assumed land use plan is provided in Table 2.

The traffic impact analysis process relies on primary data and engineering judgment applied to transferable parameters. In particular, engineering judgment is necessary to estimate background traffic growth, pass-by capture, and internal capture. Pass-by trips are assumed for specific land uses, such as gas stations and grocery stores, within the analysis. Internal capture is also considered due to the commercial land use anticipated to serve the development's residents. Considering the Sketch Plan's intention to develop a live, work, and play
development, engineering judgment was applied to adjust the trips to and from the development. Utilizing the internal capture and pass-by trip adjustments for land use code 945 from the ITE Trip Generation, the development is estimated to generate approximately 31,043 adjusted daily trips upon build-out. Table 3 also presents a comprehensive traffic generation summary of the assumed land use plan, considering these adjustments.

Table 2: Summary of Unadjusted Daily and Peak Hour Trip Generation for the Mayberry Sketch Plan

Land Use Code	Land Uge Description	Trip Generation Units		Average Weekday	AM			PM			
				Total	In	Out	Total	In	Out		
210	Single Family Detarched Housing	1,527	DU		14,726	1,084	282	802	1,467	924	543
110	General Light Industrial	250	KSF	990	174	153	21	78	11	67	
220	Multifamily Housing (Low-Rise)	788	DU	5,461	359	86	272	442	278	163	
215	Single Family Attached Housing	473	KSF	3,402	223	69	154	268	153	115	
630	Clinic	4	KSF	178	17	14	3	17	5	12	
712	Small Office Building	4	KSF	58	7	5	1	9	3	6	
814	Variety Store	8.5	KSF	541	26	14	12	57	29	28	
815	Free-Standing Discount Store	4	KSF	454	7	5	2	32	16	16	
850	Supermarket	40	KSF	3,875	114	67	47	368	184	184	
876	Apparel Store	4	KSF	266	4	3	1	16	8	8	
880	Pharmacy/Drug Store without Drive-Through Window	13	KSF	1,152	57	37	20	111	54	56	
899	Liquor Store	3.6	DU	612	2	2	0	91	46	46	
912	Drive-In Bank	4	KSF	401	40	23	17	84	42	42	
930	Fast Casual Restaurant	4	DU	389	6	3	3	56	31	25	
932	High Turnover (Sit-Down) Restaurant	4	DU	429	38	21	17	36	22	14	
934	Fast-Food Restaurant with Drive-Through Window	3.6	KSF	1,683	161	82	79	119	62	57	
945	Convenience Store/Gas Station	6	DU	3,914	339	170	170	327	164	164	

Comments were provided by planning staff to provide maximum units proposed in the sketch plan as opposed to a range. Please coordinate with the project planner and update the trip gen \& analysis as needed to ensure that any changes/max values are accounted for in the design.

A school is indicated in the sketch plan but it has not been accounted for in the traffic analysis. Please include the proposed school in your analysis

Table 3: Summary of Pass-by and Internally Captured Adjusted Daily and Peak Hour Trip Generation for the Mayberry Sketch Plan

Land Use Code	Land Use Description	Trip Generation Units		Average Weekday	AM		PM			
					Total	In	Out	Total	In	Out
210	Single Family Detached Housing	1,527	DU	14,726	1,084	282	802	1,467	924	543
110	General Light Industrial	250	KSF	990	174	153	21	78	11	67
220	Multifamily Housing (Low-Rise)	788	DU	5,461	359	86	272	442	278	163
215	Single Family Attached Housing	473	KSF	3,402	223	69	154	268	153	115
630	Clinic	4	KSF	178	17	14	3	17	5	12
712	Small Office Building	4	KSF	58	7	5	1	9	3	6
814	Variety Store	8.5	KSF	541	26	14	12	57	29	28
815	Free-Standing Discount Store	4	KSF	454	7	5	2	32	16	16
850	Supermarket	40	KSF	3,875	114	67	47	368	184	184
876	Apparel Store	4	KSF	266	4	3	1	16	8	8
880	Pharmacy/Drug Store without Drive-Through Window	13	KSF	1,152	57	37	20	111	54	56
899	Liquor Store	3.6	DU	612	2	2	0	91	46	46
912	Drive-In Bank	4	KSF	401	40	23	17	84	42	42
930	Fast Casual Restaurant	4	DU	389	6	3	3	56	31	25
932	High Turnover (Sit-Down) Restaurant	4	DU	429	38	21	17	36	22	14
934	Fast-Food Restaurant with Drive-Through Window	3.6	KSF	1,683	161	82	79	119	62	57
945	Convenience Store/Gas Station	6	DU	939	81	41	41	79	39	39

Site Distribution

The study follows the assumption established in the September 2022 Mayberry Filing No. 3, which states that 90% of vehicle trips originate from and are destined for points west of the development, while 10% are associated with points east of the development. Figure 2 provides a detailed summary of the AM and PM site distribution.

Other Traffic Studies in the Area

As no relevant studies were available in the area, data or methods were only used from other TIS within the ones mentioned in this report.

Intersection and Roadway Evaluation

Roadway Sizing and Classification

The roading sizing and classification criteria are found in the Engineering Criteria Manual County of El Paso Chapter 2, Table 2-7 (Ref 5). Below is a brief overview of the criteria.

- Major arterials: These roads provide major travel routes within urban areas and connect to other major arterials or freeways. Major arterials are typically classified as such if they have a daily average traffic volume (ADT) of 20,000 or more vehicles.
- Minor arterials: These roads provide secondary travel routes within urban areas and connect to major arterials or collectors. Minor arterials are typically classified as such if they have an ADT of 10,000 to 20,000 vehicles.
- Collectors: These roads provide access to individual properties within urban areas and connect to major or minor arterials. Collectors are typically classified as such if they have 5,000 to 10,000 vehicles ADT.
- Locals: These roads provide access to individual properties within urban areas and connect to collectors or other locals. Locals are typically classified as such if they have less than 5,00Qvehicles ADT.

From this set of criteria, the roadways within the Sketch Plan range from Urban Collectors to Urban Locals. Figure 4 provides the ADT and classification for the studied roadways.

Please clarify if this is for the full build-out or just the north sketch plan area.

Please also discuss/analyze improvements to Spring Rd/Hwy 94 intersection. Previous studies identified an

Trigger Analysis

 eastbound right turn acceleration lane. Indicate whatA trigger analysis was performed on the adjacent intersection of the development site, focusing on the intersection of Mayberry Drive and SH 94 and the SH 94 Roadway. This analysis determined the number of dwelling units and commercial square footage that the intersection can accommodate before improvements are required to mitigate the impacts of the development. An indepth analysis and findings are provided in Appendix B. The summary of those findings are provided in the following table.

Table 4: Trigger Analysis Summary

Stages	Improvement	Configuration Description	Dwelling Units and Commerical Area
Stage 1	"Florida T" Configuration	westbound left-turn lane with a westbound acceleration lane	$\begin{aligned} & 728 \mathrm{DU} \\ & \text { 26.5 KSF } \end{aligned}$
Stage 2a	Highway Improvement to SH 94	Add capacity to SH 94, which will accommodat/the generated traffic/for entire build-out	$\begin{aligned} & \text { 739 DU } \\ & \text { 105.7 KSF } \end{aligned}$
Stage 2b	Signalized intersection	Add signals to existing TIntersection фonfiguration	$\begin{aligned} & \text { 959 DU } \\ & \text { 105.7 KSF } \end{aligned}$
Stage 3	Added capacity	Increase copacity to northbound dual left-turn, Add additiona eastbound through lane	Final Development

The intersections assessed for the on-site analysis, including the initial geometric design, are described below:

N Mayberry Drive and Village Main Street is a stopped-control intersection with the following lane assignments.

- Northbound Mayberry Drive has one shared lane for the left-turn, through, and right-turn traffic.
- Eastbound Village Main Styeet has one shared left-turn and through lane.
- Westbound Village Main Street has one shared through and right-turn lane.

Please identify the anticipated improvements needed. Be a bit more specific. are additional through lanes needed at this stage?

Please identify whether these initial geometric designs are sufficient with each stage or if improvements (i.e. additional lanes)will be needed to achieve the LOS stated with each stage.

Figure 4: N Mayberry Dr and Village Main St Lane Designations
S Mayberry Drive and Village Main Street is a stopped-control intersection with the following lane assignments.

- Southbound Mayberry Drive has one shared lane for the left-turn, through, and right-turn traffic.
- Village Main Street has one shared through and right-turn lane.
- Village Main Street has one shared left-turn and through lane.

N Mayberry Drive and Postive Place is a stopped-control intersection with the following lane assignments.

- Northbound Mayberry Drive has one shared lane for the left-turn, through, and right-turn traffic.
- Eastbound Village Main Street has one shared left-turn and through lane.
- Westbound Village Main Street has one shared through and right-turn lane.

Figure 6: N Maryberry Dr and Positive PI Lane Designation
S Mayberry Drive and Positive Place is a stopped-control intersection with the following lane assignments.

- Southbound Mayberry Drive has one shared lane for the left-turn, through, and right-turn traffic.
- Eastbound Postive Place has one shared through and right-turn lane.
- Westbound Postive Place has one shared left-turn and through lane.

Figure 7: S Mayberry Dr and Postive PI Lane Designation
Mayberry Drive and Boulevard A is a single-lane roundabout with shared movements on all approaches.

Figure 8: Mayberry Dr and Boulevard A Lane Designation
Positive Place and Springs Road is a single-lane roundabout with shared movements on all approaches.

Figure 9: Spring Rd and Positive PI Lane Designation

Springs Road and Boulevard A is a single-lane roundabout with shared movements on all approaches.

Figure 10: Springs Rd and Boulevard A Lane Designation

Mayberry Drive Boulevard B is a single-lane roundabout with shared movements on all approaches. The intersection is a T-intersection on the south side.

table 5 as table 4 is the trigger analysis

These intersections were analyzed for the three stages corresponding to the assumed phased development of the Sketch Plan. A detailed analysis is proyided in the following sections.

North Sketch Plan

The north Sketch $\sqrt{\text { plan encompasses a development area defined by Mayberry Drive to the }}$ west, Boulevard 2 to the south, Log Road to the east, and SH 94 to the north. This area is anticipated to primarily consist of residential units, with a detailed breakdown of the number of units for each land use provided in Table 4 and Figure 5 provides the turning movement volumes for the North Sketch Plan intersections.

Table 5: Land Use for North Sketch Plan

Land Use Code	Land Use Description		
Trip Generation Units			
210	Single-Family Detached Housing	842	DU
110	General Light Industrial	250	KSF
220	Multifamily Housing (Low-Rise)	572	DU
215	Single Family Attached Housing	220	KSF

figure 5 is the lane configuration of Mayberry and Village Main intersection. Revise accordingly.

NORTH SKETCH PLAN LEVEL OF SERVICE ANALYSIS

With the development of the North Sketch Plan, the LOS analysis for the key intersections is summarized in Table 6. The intersections include a mix of stop-controlled intersections and roundabouts. The stop-controlled intersections at N Mayberry Dr \& Village Main St, S Mayberry Dr \& Village Main St, N Mayberry Dr \& Positive PI, and S Mayberry Dr \& Positive PI exhibit LOS B during the AM peak hour and LOS B or C during the PM peak hour, indicating acceptable traffic flow with moderate delays.

On the other hand, the roundabout intersections at Mayberry Dr \& Boulevard A, Springs Rd \& Boulevard A, Positive PI \& Springs Rd maintain a LOS A during both AM and PM peak hours, indicating smooth traffic flow with minimal delays. Table 5 provides a summary of the LOS for the North Sketch Plan.

Table 6: North Sketch Plan Level of Service Summary

Intersection	Intersection Type	AM Peak Hour (Sec/veh)	PM Peak Hour (Sec/veh)
N Mayberry Dr \& Village Main St	Stop	B (14.9)	B (13.7
S Mayberry Dr \& Village Main St	Stop	B (10.5)	C (16.6)
N Mayberry Dr \& Positive PI	Stop	B(10.9)	B (10.7)
S Mayberry Dr \& Positive PI	Stop	A (9.8)	B(11.8)
Mayberry Dr \& Boulevard A	Roundabout	A (3.2)	A (3.3)
Mayberry Dr \& Boulevard AB	Roundabout	A (2.8)	A (2.9)
Positive PI \& Springs Rd	Roundabout	A (3.3)	A (3.5)

provide analysis of Positive Place/Log Rd, Boulevard A/Log
Rd, Hwy 94/Log Rd, Hwy94/Mayberry, Hwy 94/Springs
Rd, Hwy 94/Peyton hwy, and Hwy 94/Ellicott Hwy. Typical for each phase.
is this correct? there is no commercial development south of Positive place on the sketch plan.
Revise accordingly.

Commercial Development

The commercal development encompasses an area defined by Mayberry Drive to the east, Boulevard B to the south and SH 94 to the north. This area is anticipated to primarily consist of retail and commercial space. A detailed breakdown of anticipated land uses is provided in Table 6. These land uses provide a conservative estimate of daily trip. If a commercial business goes beyondthat of the estimated total trips for the commercial development, then that business will need to be revaluated for County approval. Figure 6provides the turning movement volume with
the additional traffic table 7

Table 7: Land Use for Commerical District Figure 13 indicated in the next page. Verify/update figure labels throughout the narrative

Land Use Code	Land Use Description		
630^{*}	Clinic	4	KSF
712^{*}	Small Office Building	4	KSF
814^{*}	Variety Store	8.5	KSF
815^{*}	Free-Standing Discount Store	4	KSF
850	Supermarket	40	KSF
876^{*}	Apparel Store	4	KSF
880	Pharmacy/Drug Store without Drive-Through Window	13	KSF
899	Liquor Store	3.6	KSF
912^{*}	Drive-In Bank	4	KSF
930	Fast Casual Restaurant	4	KSF
932	High Turnover (Sit-Down) Restaurant	4	KSF
934^{*}	Fast-Food Restaurant with Drive-Through Window	3.6	KSF
945	Convenience Store/Gas Station	6	KSF

Units
KSF
KSF
KSF KSF KSF KSF KSF KSF KSF KSF KSF KSF

Figure 13: North Sketch Plan + Commercial District Turning Movement Volume

LEGEND:

NORTH SKETCH PLAN PLUS COMMERCIAL DISTRICT LEVEL OF SERVICE ANALYSIS

With the full build-out of the commercial district, it is anticipated that the stop-controlled intersections on Mayberry Drive and Village Main Street will be unable to handle the generated traffic entering and exiting the district. Signalized controls at these two intersections will have the ability to increase mobility into and out of the district and the development.

With the addition of the commercial district, the LOS at the intersections experiences some changes, as shown in Table 8. The signals at N Mayberry Dr \& Village Main St and S Mayberry Dr \& Village Main St exhibit improved mobility, with LOS A and B during the AM and PM peak hours, respectively. Meanwhile, the stop-controlled intersections at N Mayberry $\operatorname{Dr} \&$ Positive PI and S Mayberry Dr \& Positive PI maintain their LOS, with slightly increased delays during the peak periods. The roundabout intersections at Mayberry Dr \& Boulevard A, Mayberry Dr \& Boulevard B, and Positive PI \& Springs Rd maintain excellent LOS A during AM and PM peak hours. A summary of the LOS and delay data can be found in Table 7.

Table 8: North Sketch Plan Plus Commercial District Level of Service Summary

| Intersection | Intersection Type | AM Peak
 Hour
 (Sec/veh) | PM Peak
 Hour
 (Sec/veh) |
| :--- | :---: | :---: | :---: | :---: |
| N Mayberry Dr \& Village Main St | Signals | A (9.9) | A (9.6) |
| S Mayberry Dr \& Village Main St | Signals | A (9.9) | B(18.1) |
| N Mayberry Dr \& Positive PI | Stop | B(10.9) | B(10.8) |
| S Mayberry Dr \& Positive PI | Stop | A (9.8) | B(12.3) |
| Mayberry Dr \& Boulevard A | Roundabout | A (3.2) | A (3.3) |
| Mayberry Dr and Boulevard B | Roundabout | A (2.8) | A (2.9) |
| Positive PI \& Springs Rd | Roundabout | A (3.3) | A (3.5) |

See comment on page 22

Boulevard A?

Full Build Out

The south Sketch Plan encompasses a development area defined by Boulevarad 2 to the north. This area is anticipated to primarily consist of residential units, with a detailed breakdown of the number of units for each land use provided in Table 8 and Figure 7 provides the turning movement volume for the full build out.

Table $\%$ Land Use for South Sketch Plan

A or B?

FULL SKETCH PLAN LEVEL OF SERVICE ANALYSIS

A per sketch plan

Upon the completion of the full Sketch Plan development, the LOS at the analyzed intersections is expected to change further, as summarized in Table 10. With the full Sketch Plan development, the signalized infersections at N Mayberry Dr \& /illage Main St and S Mayberry Dr \& Village Main St experience increased delays but maintain acceptable LOS during the AM and PM peak hours, with LO C and B for the former and $L \varnothing S B$ and C for the latter.

The stop-controlled intersections at N Mayberry Dr \& Posjive PI and S Mayberry Dr \& Positive Pl also show increased delpys. Both intersections operate at LOS C during the PM peak period while maintaining LOS B and C during the AM peak period. The roundabout intersections at Mayberry Dr \& Boulevard 2, Springs Rd \& Boulevard ${ }^{2}$, Positive PI \& Springs Rd, and Springs Rd \& Mayberry Dr exhibit excellent LOS A during both AM and PM peak hours. Table 9 provides the summary of the LOS for the internal intersection of the Sketch Plan

Table 10: Full Sketch Plan Level of Service Summary			
Intersection	Intersection Type	AM Peak Hour (Sec/veh)	PM Peak Hour (Sec/veh)
N Mayberry Dr \& Village Main St	Signals	C (23.7)	B (15.3)
S Mayberry Dr \& Village Main St	Signals	B (12.2)	C (23.3)
N Mayberry Dr \& Positive/PI	Stop	C (19.1)	C (15.7)
S Mayberry Dr \& Positive PI	Stop	B (11.0)	C (20.4)
Mayberry Dr \& Boulevard A	Roundabout	A (4.9)	A (6.0)
Mayberry Dr \& Boulevard B	Roundabout	A (3.1)	A (3.5)
Positive PI \& Springs/Rd	Roundabout	A (3.4)	A (4.2)
Springs Rd \& Mayberry Dr	Roundabout	A (3.4)	A (3.5)

See comment on page 22

Recommendations

Through the iterative process of analyzing the traffic impact of the Sketch Plan development, two main recommendations have emerged to ensure efficient traffic flow and management in the area.

Signalized Controls: The analysis indicates that implementing signalized controls at the intersections of N Mayberry Dr \& Village Main St and S Mayberry Dr \& Village Main St can effectively improve mobility after the full build-out of the commercial district. Therefore, it is recommended to implement signalized controls at these intersections to manage the increased traffic flow.

Monitor and Adjust: As the full Sketch Plan is built out, it is essential to regularly monitor intersections' performance. The analysis shows increased delays at both signalized and stopcontrolled intersections in the full Sketch Plan scenario. Depending on the actual traffic patterns and congestion levels, adjustments to signal timings or further improvements to intersection designs may be required.
-Please provide analysis for existing, short range and long range as indicated in ECM B.2.2
-Provide counts (new) at the study area intersections per ECM App. B and as indicated in the early assistance meeting with staff and the developer.
-Please refer to ECM Appendix B.2.3 for study area criteria for Master TIS. Address the bullet points especially points pertaining to adequacy of pedestrian and bicycle facilities, public transportation, pedestrian routes within 2 miles of a school.
-Refer to ECM B.2.4 for evaluation elements for a Master TIS. Address the elements such as conformity with the MTCP, appropriateness of access locations such as those along Log Rd., Pedestrain/bicycle requirements and improvements, Safety and accident analysis, etc.
-Clearly state in text what the ADT and peak hour traffic levels are at all accesses currently, at full development, and long term.
-State whether the MTCP or other approved corridor study calls for the construction of improvements in the immediate area
-State that the development will be subject to the road impact fee.
-Please provide a table of improvements for all intersections in the study area due to the developments traffic. Please be sure to address any improvements to the intersections Hwy 94/Peyton Hwy, Hwy 94/Ellicott Hwy, Log Rd/hwy 94, Log Rd/Boulevard A, Log Rd/Positive Place, Hwy 94/Springs Rd.
-Address the capacity of Log Rd and any improvements needed to Log Rd due to the developments traffic.

Due to the type of comments provided and missing analysis needed, additional new comments may be generated on the re-submittal.

References

1. 2020 - June - Ellicott Town Center Commercial Rezone TIS Report
2. 2022 - September - Mayberry Filing No. 3
3. El Paso County 2016 Major Transportation Corridor Plan Update
4. Institute of Transportation Engineers 2017 Trip Generation Manual, An Informational Report, 11th Edition, Washington D.C.
5. Engineering Criteria Manual County of El Paso, 2020
6. Transportation Research Board 2016 Highway Capacity Manual, 6th Edition, Washington, D.C.
7. Trafficware Ltd 2017 Synchro 11, Sugar Land, Texas

Appendices

Appendix A - Highway Capacity Manual

Signalized Intersection Level of Service

Intersection level of service (LOS) is determined by delay, which measures driver discomfort, frustration, fuel consumption, and lost travel time. LOS is based on driver acceptability of various delays, with factors such as lane geometrics, percentage of trucks, peak hour factor, number of lanes, signal progression, volume, signal green time to total cycle time ratio, roadway grades, parking conditions, and pedestrian flows affecting the delay calculation.

Delay and its relationship to capacity are complex. Table 1 summarizes the service levels for different average control delays and provides a qualitative description for each. The HCM 6th Edition uses the average control delay criteria, including initial deceleration, delay, queue moveup time, stopped delay, and final acceleration delay (Ref. 6).

Table 11. Signalized Intersection: Level of Service Measurement and Qualitative Descriptions

Level of Service	Control Delay Per Vehicle (sec)	Qualitative Description
A	<10	Good progression and short cycle lengths
B	>10 and < 20	Good progression or short cycle lengths, more vehicle stops
C	>20 and < 35	Fair progression and/or longer cycle lengths, some cycle failures
D	> 35 and < 55	Congestion becomes noticeable, high volume to capacity ratio
E	> 55 and < 80	Limit of acceptable delay, poor progression, long cycles, and/or high volume
F	> 80	Unacceptable to drivers, volume greater than capacity

Unsignalized Intersection Level of Service

Unsignalized intersection LOS is determined by average control delay and, in some cases, v/c ratio. Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay and is attributed to traffic control measures such as traffic signals or stop signs.

At two-way stop-controlled intersections, the traffic on the major approach remains unaffected by minor street flows, with stop or yield signs assigning right-of-way to the major street. Controlled leg capacity relies on gap distribution in the major street traffic stream and driver judgment in selecting gaps for executing maneuvers. The LOS procedure computes movement capacity based on critical time gap and opposing traffic volume. The average control delay is calculated as a function of approach capacity and degree of saturation (v/c ratio).

The HCM 6th Edition methodology bases overall intersection LOS on minor street movement average control delay and adjusts individual movement delay for v / c ratios greater than 1.0. Engineering judgment determines overall intersection LOS and whether unacceptable minor street movement LOS reflects overall intersection LOS.

Table 2 presents the relationship between average control delay and LOS, with unsignalized intersections having different LOS ranges than signalized intersections due to different performance expectations and traffic volumes. Overall approach LOS, computed as a weighted average of vehicle delay for each movement, may differ from individual movement LOS.

Analysis was performed using the microcomputer program "Synchro 11" by Trafficware (Ref. 5), based on the procedures in the Highway Capacity Manual.

Table 12. Unsignalized Intersection: Level of Service Measurement

Level of Service	Control Delay Per Vehicle (sec)
A	<10
B	>10 and <15
C	>15 and <25
D	>25 and <35
E	>35 and <50
F	>50

Appendix B - Threshold Analysis

remove extra sheet

Appendix C - Level of Service Outputs

remove extra sheet

Appendix B - Threshold Analysis

New Log Road SH 94 Threshold Analysis
 Mayberry Communities

EL Paso County, CO
December 29, 2022

Introduction

aka Mayberry Dr. Please use the same naming convention throughout the study. You may include both names listing Mayberry Dr (formerly known as New Log Rd) if you'd like.

HDR conducted a threshold analysis for the New Log Road and SH 94 intersection, analyzing two (2) different alternatives. Each alternative provides three (3) stages that will accommodate increasing levels of development. This report includes assumptions used in the threshold analysis and detailed analysis findings.

Assumptions

To begin the threshold analysis, HDR reviewed the Mayberry Filing Number 3 documentation submitted in September 2022 and used the base data for the analysis. The total planned development includes 3,422 dwelling units as a mixture of single-family and multi-family lowrise, as well as 105,700 square feet of retail space. HDR followed the phasing proposed in the sketch plan, which outlines the construction of 728 dwelling units, then 105,700 square feet of retail space before constructing the remaining 2,694 dwelling units. To guide the threshold analysis, HDR used three criteria:

- Colorado Access Permit Code
- Level of Service (LOS) of D/E for both unsignalized and signalized intersections
- LOS D/E for a two-lane highway

To generate additional traffic on top of the existing traffic for all development phases, the ITE Trip Generation Manual $11^{\text {th }}$ Edition was used.

The following sections discuss the different alternatives in the analysis and the amount of development that each stage for each alternative will accommodate.

Base Stage

The base stage configuration has the capacity to handle 163 dwelling units. However, based on the Colorado Access Permit Code, this intersection will need to be modified to accommodate the 65 DU of Filing 3. Once unit 65 is occupied, the westbound left-turn is anticipated to have ten vehicles in the peak hour, necessitating a westbound left-turn lane per the Colorado Access Permit Code. Figure 1 shows the existing geometry of the New Log Road and SH 94 intersection, which is Stage 0.

state in narrative or
enlarge

HDR analyzed two different alternatives for the progression of the intersection configuration beyond Stage 0, described in the following sections.

Alternative 1

Stage 1

Please be aware that the westbound

After adding a westbound left turn lane, the intersection will have the capacity for an additional 565 dwelling units and one 5,000 -square-foot retail facility. Current phasing plans indicate retail space development will begin affer constructing 728 total dwelling units. The capacity of the stop-controlled intersection with a westbound left turn lane is shown in Figure 1.

Figure 1: Intersection Alternative 1 Stage 1 Threshold

Stage 2

After building 728 dwelling units and 5,000 square feet of retail, the intersection will need to be signalized to accommodate development traffic volume. Intersection signalization will accommodate the full scope of planned commercial development to 105,700 square feet and accommodate an additional 231 dwelling units. Figure 3 provides the threshold for the signalized intersection.

Figure 2: Alternative 1 Stage 2 Signalized Intersection Threshold
HIGHWAY 94 CAPACITY IMPROVEMENT
Although the Alternative 1 Stage 2 intersection will accommodate the traffic generated from 959 DU and 105.7 sqft of retail, State Highway 94 between Ellicott and Colorado Springs will reach
capacity before the Alternative 1 Stage 2 intersection. This limits development to 739 DU and 105.7 sqft of retail, after which the highway will need to be improved. Figure 4 provides the threshold for the two-lane roadway.

Figure 3: Highway 94 Improvement Threshold

Stage 3

Stage 3 will incorporate SH 94 improvements and further add capacity to the intersection and is anticipated to accommodate the generated traffic of the whole development build-out.

Figure 4: Stage 3 Ultimate Buildout Configuration

Alternative 2

Stage 1

Alternative 2 Stage 1 will incorporate the warranted westbound left-turn lane with a westbound acceleration lane. This geometric design is anticipated to accommodate 728 dwelling units; however, what sets this alternative apart from Alternative 1 is that 26,500 square feet of commercial development can be developed before additional improvements are needed. The capacity of the stop-controlled intersection with a westbound left turn lane is shown in Figure 5: Alternative 2 Stage 1 "Florida T" Configuration.

Figure 5: Alternative 2 Stage 1 "Florida T" Configuration

Stage 2/Highway 94 Capacity Improvement

After building 728 dwelling units and 26,500 square feet of retail, the intersection will need to be signalized to accommodate development traffic volume. Intersection signalization will accommodate the full scope of planned commercial development to 105,700 square feet and accommodate an additional 231 dwelling units. Figure 7 provides the threshold for the signalized intersection.

Figure 6: Alternative 2 Stage 2 Threshold

HIGHWAY 94 CAPACITY IMPROVEMENT

Similar to the anticipated progression of Alternative 1, the Alternative 2 Stage 2 intersection will accommodate the traffic generated from 959 DU and 105,700 sqft of retail. Still, SH 94 will likely need to be expanded before reaching the intersection's capacity. Development is limited to 739 DU and 105.7 sqft of commercial development until the highway is expanded. Figure 8 provides the threshold for the two-lane roadway.

Figure 7: Highway 94 Improvement Threshold

Stage 3

Stage 3 will incorporate SH 94 improvements and add further capacity to the intersection and is anticipated to accommodate the generated traffic of the whole development build-out.

Figure 8: Alternative 2 Ultimate Configuration

Appendix C - Level of Service Outputs

update so that the

General Information
Site Info and the narrative

Analyst	HDR
Agency or Co.	
Date Performed	$4 / 26 / 2023$
Analysis Year	
Time Analyzed	
Project Description	Mayberry Community North...

Volume Adjustments and Site Characteristics

Approach	EB				WB				NB				SB			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	0	0	0	0	1	0
Lane Assignment																
Volume (V), veh/h	0	69	4	0	0	0	2	46					0	16		31
Percent Heavy Vehicles, \%	3	3	3	3	3	3	3	3					3	3		3
Flow Rate (VPCE), pc/h	0	77	4	0	0	0	2	52					0	18		35
Right-Turn Bypass	None															
Conflicting Lanes	1				1								1			
Pedestrians Crossing, p/h	0				0								0			
Proportion of CAVs	0															

Critical and Follow-Up Headway Adjustment

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Critical Headway, s		4.9763			4.9763						4.9763	
Follow-Up Headway, s		2.6087			2.6087						2.6087	

Flow Computations, Capacity and v/c Ratios

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Entry Flow (ve), pc/h		81			54						53	
Entry Volume, veh/h		79			52						51	
Circulating Flow (v_{c}, pc / h	18			77			99			2		
Exiting Flow (Vex), pc/h	22			37			129			0		
Capacity (cpce $^{\text {) , }} \mathrm{pc} / \mathrm{h}$		1355			1276						1377	
Capacity (c), veh/h		1315			1239						1337	
v / c Ratio (x)		0.06			0.04						0.04	
Delay and Level of Service												
Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Lane Control Delay (d), s/veh		3.2			3.2						3.0	
Lane LOS		A			A						A	
95\% Queue, veh		0.2			0.1						0.1	
Approach Delay, s/veh	3.2			3.2						3.0		
Approach LOS	A			A						A		
Intersection Delay, s/veh \| LOS	3.2						A					

Critical and Follow-Up Headway Adjustment

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Critical Headway, s		4.9763			4.9763						4.9763	
Follow-Up Headway, s		2.6087			2.6087						2.6087	

Flow Computations, Capacity and v/c Ratios

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Entry Flow (ve), pc/h		60			39						134	
Entry Volume, veh/h		58			38						130	
Circulating Flow (v_{c}, pc / h	59			57			119			4		
Exiting Flow (vex), pc/h	62			79			92			0		
Capacity (cpee $^{\text {) , pc/h }}$		1299			1302						1374	
Capacity (c), veh/h		1262			1264						1334	
v / c Ratio (x)		0.05			0.03						0.10	
Delay and Level of Service												
Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Lane Control Delay (d), s/veh		3.2			3.1						3.5	
Lane LOS		A			A						A	
95\% Queue, veh		0.1			0.1						0.3	
Approach Delay, s/veh	3.2			3.1						3.5		
Approach LOS	A			A						A		
Intersection Delay, s/veh \| LOS	3.3						A					

HCS Roundabouts Report																
General Information							Site Information									
Analyst	HDR								Intersection							
Agency or Co.										eet			Postive Place			
Date Performed	4/26/2023								N/S Street Name				Springs			
Analysis Year									Analysis Time Period, hrs				0.25			
Time Analyzed	AM Peak								Peak Hour Factor				0.92			
Project Description	Mayberry Community North...								Jurisdiction				El Paso County			
Volume Adjustments and Site Characteristics																
Approach	EB				WB				NB				SB			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment	LTR						LTR		LTR						LTR	
Volume (V), veh/h	0	6	13	5	0	1	51	7	0	28	3	5	0	13	16	49
Percent Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Flow Rate (vpce), pc/h	0	7	15	6	0	1	57	8	0	31	3	6	0	15	18	55
Right-Turn Bypass	None															
Conflicting Lanes	1				1				1				1			
Pedestrians Crossing, p/h	0				0				0				0			
Proportion of CAVs	0															

Critical and Follow-Up Headway Adjustment

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Critical Headway, s		4.9763			4.9763			4.9763			4.9763	
Follow-Up Headway, s		2.6087			2.6087			2.6087			2.6087	

Flow Computations, Capacity and v/c Ratios

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Entry Flow (ve), pc/h		28			66			40			88	
Entry Volume, veh/h		27			64			39			85	
Circulating Flow (v_{c}, pc / h	34			41			37			89		
Exiting Flow (Vex), pc/h	36			143			18			25		
Capacity (cpce), pc/h		1333			1323			1329			1260	
Capacity (c), veh/h		1294			1285			1290			1224	
v/c Ratio (x)		0.02			0.05			0.03			0.07	
Delay and Level of Service												
Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Lane Control Delay (d), s/veh		2.9			3.2			3.0			3.5	
Lane LOS		A			A			A			A	
95\% Queue, veh		0.1			0.2			0.1			0.2	
Approach Delay, s/veh	2.9			3.2			3.0			3.5		
Approach LOS	A			A			A			A		
Intersection Delay, s/veh \| LOS	3.3						A					

HCS Roundabouts Report																
General Information							Site Information									
Analyst	HDR								Intersection							
Agency or Co.										eet			Postive Place			
Date Performed	4/26/2023								N/S Street Name				Springs			
Analysis Year									Analysis Time Period, hrs				0.25			
Time Analyzed	PM Peak								Peak Hour Factor				0.92			
Project Description	Mayberry Community North...								Jurisdiction				El Paso County			
Volume Adjustments and Site Characteristics																
Approach	EB				WB				NB				SB			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment	LTR						LTR		LTR						LTR	
Volume (V), veh/h	0	4	22	5	0	4	43	6	0	19	2	5	0	38	51	47
Percent Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Flow Rate (vpce), pc/h	0	4	25	6	0	4	48	7	0	21	2	6	0	43	57	53
Right-Turn Bypass	None															
Conflicting Lanes	1				1				1				1			
Pedestrians Crossing, p/h	0				0				0				0			
Proportion of CAVs	0															

Critical and Follow-Up Headway Adjustment

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Critical Headway, s		4.9763			4.9763			4.9763			4.9763	
Follow-Up Headway, s		2.6087			2.6087			2.6087			2.6087	

Flow Computations, Capacity and v/c Ratios

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Entry Flow (ve), pc/h		35			59			29			153	
Entry Volume, veh/h		34			57			28			149	
Circulating Flow (v_{c}, pc / h	104			27			72			73		
Exiting Flow (Vex), pc/h	74			122			13			67		
Capacity (cpce), pc/h		1241			1343			1282			1281	
Capacity (c), veh/h		1205			1303			1245			1244	
v/c Ratio (x)		0.03			0.04			0.02			0.12	
Delay and Level of Service												
Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Lane Control Delay (d), s/veh		3.2			3.1			3.1			3.9	
Lane LOS		A			A			A			A	
95\% Queue, veh		0.1			0.1			0.1			0.4	
Approach Delay, s/veh	3.2			3.1			3.1			3.9		
Approach LOS	A			A			A			A		
Intersection Delay, s/veh \| LOS	3.5						A					

Critical and Follow-Up Headway Adjustment

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Critical Headway, s		4.9763			4.9763						4.9763	
Follow-Up Headway, s		2.6087			2.6087						2.6087	

Flow Computations, Capacity and v/c Ratios

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Entry Flow (ve), pc/h		81			54						53	
Entry Volume, veh/h		79			52						51	
Circulating Flow (v_{c}, pc / h	18			77			99			2		
Exiting Flow (Vex), pc/h	22			37			129			0		
Capacity (cpee $^{\text {) , pc/h }}$		1355			1276						1377	
Capacity (c), veh/h		1315			1239						1337	
v / c Ratio (x)		0.06			0.04						0.04	
Delay and Level of Service												
Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Lane Control Delay (d), s/veh		3.2			3.2						3.0	
Lane LOS		A			A						A	
95\% Queue, veh		0.2			0.1						0.1	
Approach Delay, s/veh	3.2			3.2						3.0		
Approach LOS	A			A						A		
Intersection Delay, s/veh \| LOS	3.2						A					

Critical and Follow-Up Headway Adjustment

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Critical Headway, s		4.9763			4.9763						4.9763	
Follow-Up Headway, s		2.6087			2.6087						2.6087	

Flow Computations, Capacity and v/c Ratios

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Entry Flow (ve), pc/h		21			26						13	
Entry Volume, veh/h		20			25						13	
Circulating Flow (v_{c}, pc / h	7			6			28			20		
Exiting Flow (Vex), pc/h	22			26			12			0		
Capacity ($\mathrm{cpce}^{\text {) , }} \mathrm{pc} / \mathrm{h}$		1370			1372						1352	
Capacity (c), veh/h		1330			1332						1313	
v/c Ratio (x)		0.02			0.02						0.01	
Delay and Level of Service												
Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Lane Control Delay (d), s/veh		2.8			2.9						2.8	
Lane LOS		A			A						A	
95\% Queue, veh		0.0			0.1						0.0	
Approach Delay, s/veh	2.8			2.9						2.8		
Approach LOS	A			A						A		
Intersection Delay, s/veh \| LOS	2.8						A					

Intersection												
Int Delay, s/veh	1.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow						\&	
Traffic Vol, veh/h	0	18	5	5	5	0	0	0	0	110	119	31
Future Vol, veh/h	0	18	5	5	5	0	0	0	0	110	119	31
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	20	5	5	5	0	0	0	0	120	129	34

	4						4	\uparrow		\downarrow	\dagger	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\hat{F}			\uparrow						\uparrow	\%
Trafic Volume (vph)	0	358	5	5	5	0	0	0	0	63	90	369
Future Volume (vph)	0	358	5	5	5	0	0	0	0	63	90	369
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.998										0.850
FIt Protected					0.976						0.980	
Satd. Flow (prot)	0	1859	0	0	1818	0	0	0	0	0	1825	1583
Flt Permitted					0.887						0.980	
Satd. Flow (perm)	0	1859	0	0	1652	0	0	0	0	0	1825	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		1										401
Link Speed (mph)		30			30			30			30	
Link Distance (t)		456			444			387			456	
Travel Time (s)		10.4			10.1			8.8			10.4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	389	5	5	5	0	0	0	0	68	98	401
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	394	0	0	10	0	0	0	0	0	166	401
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(tt)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(tt)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type		NA		Perm	NA					Perm	NA	Perm
Protected Phases		4			8						6	
Permitted Phases				8						6		6
Minimum Split (s)		22.5		22.5	22.5					22.5	22.5	22.5
Total Split (s)		39.0		39.0	39.0					41.0	41.0	41.0
Total Split (\%)		48.8\%		48.8\%	48.8\%					51.3\%	51.3\%	51.3\%
Maximum Green (s)		34.5		34.5	34.5					36.5	36.5	36.5
Yellow Time (s)		3.5		3.5	3.5					3.5	3.5	3.5
All-Red Time (s)		1.0		1.0	1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0						0.0	0.0
Total Lost Time (s)		4.5			4.5						4.5	4.5
Lead/Lag												
Lead-Lag Optimize?												
Walk Time (s)		7.0		7.0	7.0					7.0	7.0	7.0
Flash Dont Walk (s)		11.0		11.0	11.0					11.0	11.0	11.0
Pedestrian Calls (\#/hr)		0		0	0					0	0	0
Act Effct Green (s)		34.5			34.5						36.5	36.5
Actuated g/C Ratio		0.43			0.43						0.46	0.46
v/c Ratio		0.49			0.01						0.20	0.43
Control Delay		19.0			21.3						13.8	3.1
Queue Delay		0.0			0.0						0.0	0.0
Total Delay		19.0			21.3						13.8	3.1

	\rangle	\rightarrow	7	1	\leftarrow	4	*	\uparrow	p		\dagger	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
LOS		B			C						B	A
Approach Delay		19.0			21.3						6.2	
Approach LOS		B			C						A	

Intersection Summary	
Area Type:	Other

Cycle Length: 80
Actuated Cycle Length: 80
Offset: 0 (0%), Referenced to phase 2: and 6:SBTL, Start of Green
Natural Cycle: 45
Control Type: Pretimed
Maximum v/c Ratio: 0.49
Intersection Signal Delay: 11.6 Intersection LOS: B
Intersection Capacity Utilization 34.9\% ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 7: S Mayberry Dr \& Village Main St

	4						4	4	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow			\uparrow			\uparrow				
Traffic Volume (vph)	358	63	0	0	5	245	5	289	5	0	0	0
Future Volume (vph)	358	63	0	0	5	245	,	289	5	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	200		0	0		0
Storage Lanes	1		0	0		0	1		0	0		0
Taper Length (tt)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	1.00	1.00	1.00
Frt					0.867			0.998				
Flt Protected	0.950							0.999				
Satd. Flow (prot)	1770	1863	0	0	1615	0	0	3529	0	0	0	0
Flt Permitted	0.320							0.999				
Satd. Flow (perm)	596	1863	0	0	1615	0	0	3529	0	0	0	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					266			2				
Link Speed (mph)		30			30			30			30	
Link Distance (f)		444			427			384			446	
Travel Time (s)		10.1			9.7			8.7			10.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	389	68	0	0	5	266	5	314	5	0	0	0
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	389	68	0	0	271	0	0	324	0	0	0	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		12			12			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2			2		1	2				
Detector Template	Left	Thru			Thru		Left	Thru				
Leading Detector (ft)	20	100			100		20	100				
Trailing Detector (ft)	0	0			0		0	0				
Detector 1 Position(ft)	0	0			0		0	0				
Detector 1 Size(ft)	20	6			6		20	6				
Detector 1 Type	Cl+Ex	Cl+Ex			Cl+Ex		Cl+Ex	Cl+Ex				
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0			0.0		0.0	0.0				
Detector 1 Queue (s)	0.0	0.0			0.0		0.0	0.0				
Detector 1 Delay (s)	0.0	0.0			0.0		0.0	0.0				
Detector 2 Position(ft)		94			94			94				
Detector 2 Size(ft)		6			6			6				
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex				
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0				
Turn Type	pm+pt	NA			NA		Perm	NA				
Protected Phases	7	,			8			2				
Permitted Phases	4						2					

	\rangle						4	4			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	7	4			8		2	2				
Switch Phase												
Minimum Initial (s)	5.0	5.0			5.0		5.0	5.0				
Minimum Split (s)	9.5	22.5			22.5		22.5	22.5				
Total Split (s)	28.0	53.0			25.0		27.0	27.0				
Total Split (\%)	35.0\%	66.3\%			31.3\%		33.8\%	33.8\%				
Maximum Green (s)	23.5	48.5			20.5		22.5	22.5				
Yellow Time (s)	3.5	3.5			3.5		3.5	3.5				
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0				
Lost Time Adjust (s)	0.0	0.0			0.0			0.0				
Total Lost Time (s)	4.5	4.5			4.5			4.5				
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Vehicle Extension (s)	3.0	3.0			3.0		3.0	3.0				
Recall Mode	None	None			None		C-Max	C-Max				
Walk Time (s)		7.0			7.0		7.0	7.0				
Flash Dont Walk (s)		11.0			11.0		11.0	11.0				
Pedestrian Calls (\#/hr)		0			0		0	0				
Act Effct Green (s)	33.9	33.9			7.9			37.1				
Actuated g/C Ratio	0.42	0.42			0.10			0.46				
V/c Ratio	0.69	0.09			0.68			0.20				
Control Delay	41.9	12.3			13.9			14.3				
Queue Delay	0.0	0.0			0.0			0.0				
Total Delay	41.9	12.3			13.9			14.3				
LOS	D	B			B			B				
Approach Delay		37.5			13.9			14.3				
Approach LOS		D			B			B				
Intersection Summary												
Area Type: Other												
Cycle Length: 80												
Actuated Cycle Length: 80												
Offset: 0 (0\%), Referenced to phase 2:NBTL and 6:, Start of Green												
Natural Cycle: 60												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 0.69												
Intersection Signal Delay: 24.3				Intersection LOS: C								
Intersection Capacity Utilization 54.8\%				ICU Level of Service A								
Analysis Period (min) 15												
Splits and Phases: 15: Village Main St												
$4_{02(R)}$			$\rightarrow{ }^{4} 4$									
275			535									
			07					\leftarrow				

	\rangle	\rightarrow		\checkmark			4	9	p		\dagger	\pm
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow						\uparrow	「
Traffic Volume (vph)	0	489	5	5	5	0	0	0	0	203	259	553
Future Volume (vph)	0	489	5	5	5	0	0	0	0	203	259	553
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.999										0.850
Flt Protected					0.976						0.979	
Satd. Flow (prot)	0	1861	0	0	1818	0	0	0	0	0	1824	1583
Flt Permitted					0.820						0.979	
Satd. Flow (perm)	0	1861	0	0	1527	0	0	0	0	0	1824	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		1										601
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		456			444			387			456	
Travel Time (s)		10.4			10.1			8.8			10.4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	532	5	5	5	0	0	0	0	221	282	601
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	537	0	0	10	0	0	0	0	0	503	601
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors		2		1	2					1	2	1
Detector Template		Thru		Left	Thru					Left	Thru	Right
Leading Detector (ft)		100		20	100					20	100	20
Trailing Detector (ft)		0		0	0					0	0	0
Detector 1 Position(ft)		0		0	0					0	0	0
Detector 1 Size(ft)		6		20	6					20	6	20
Detector 1 Type		$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$					Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$
Detector 1 Channel												
Detector 1 Extend (s)		0.0		0.0	0.0					0.0	0.0	0.0
Detector 1 Queue (s)		0.0		0.0	0.0					0.0	0.0	0.0
Detector 1 Delay (s)		0.0		0.0	0.0					0.0	0.0	0.0
Detector 2 Position(ft)		94			94						94	
Detector 2 Size(ft)		6			6						6	
Detector 2 Type		$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$						$\mathrm{Cl}+\mathrm{Ex}$	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0						0.0	
Turn Type		NA		Perm	NA					Perm	NA	Perm
Protected Phases		4			8						6	
Permitted Phases				8						6		6
Detector Phase		4		8	8					6	6	6
Switch Phase												
Minimum Initial (s)		5.0		5.0	5.0					5.0	5.0	5.0

	$\stackrel{ }{*}$							\dagger			\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)		22.5		22.5	22.5					22.5	22.5	22.5
Total Split (s)		31.0		31.0	31.0					49.0	49.0	49.0
Total Split (\%)		38.8\%		38.8\%	38.8\%					61.3\%	61.3\%	61.3\%
Maximum Green (s)		26.5		26.5	26.5					44.5	44.5	44.5
Yellow Time (s)		3.5		3.5	3.5					3.5	3.5	3.5
All-Red Time (s)		1.0		1.0	1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0						0.0	0.0
Total Lost Time (s)		4.5			4.5						4.5	4.5
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)		3.0		3.0	3.0					3.0	3.0	3.0
Recall Mode		C-Max		C-Max	C-Max					Max	Max	Max
Walk Time (s)		7.0		7.0	7.0					7.0	7.0	7.0
Flash Dont Walk (s)		11.0		11.0	11.0					11.0	11.0	11.0
Pedestrian Calls (\#/hr)		0		0	0					0	0	0
Act Effct Green (s)		26.5			26.5						44.5	44.5
Actuated g/C Ratio		0.33			0.33						0.56	0.56
v/c Ratio		0.87			0.02						0.50	0.52
Control Delay		42.2			18.3						11.8	1.9
Queue Delay		0.0			0.0						0.0	0.0
Total Delay		42.2			18.3						11.8	1.9
LOS		D			B						B	A
Approach Delay		42.2			18.3						6.4	
Approach LOS		D			B						A	
Intersection Summary												

Area Type: \quad Other	
Cycle Length: 80	
Actuated Cycle Length: 80	
Offset: 70 (88\%), Referenced to phase 4:EBT and 8:WBTL, Start of Green	
Natural Cycle: 45	
Control Type: Actuated-Coordinated	
Maximum v/c Ratio: 0.87 Intersection Signal Delay: 18.1 Intersection LOS: B Intersection Capacity Utilization 58.4% Analysis Period (min) 15	

Splits and Phases: 7: S Mayberry Dr \& Village Main St

	4		\checkmark	7			4	\dagger	p		$\frac{1}{1}$	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	4			\uparrow			*T				
Traffic Volume (vph)	489	203	0	0	5	173	5	196	5	0	0	0
Future Volume (vph)	489	203	0	0	5	173	5	196	5	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	200		0	0		0
Storage Lanes	1		0	0		0	1		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	1.00	1.00	1.00
Frt					0.868			0.997				
Flt Protected	0.950							0.999				
Satd. Flow (prot)	1770	1863	0	0	1617	0	0	3525	0	0	0	0
Flt Permitted	0.525							0.999				
Satd. Flow (perm)	978	1863	0	0	1617	0	0	3525	0	0	0	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					188			3				
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		444			427			384			446	
Travel Time (s)		10.1			9.7			8.7			10.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	532	221	0	0	5	188	5	213	5	0	0	0
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	532	221	0	0	193	0	0	223	0	0	0	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		12			12			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2			2		1	2				
Detector Template	Left	Thru			Thru		Left	Thru				
Leading Detector (ft)	20	100			100		20	100				
Trailing Detector (ft)	0	0			0		0	0				
Detector 1 Position(ft)	0	0			0		0	0				
Detector 1 Size(ft)	20	6			6		20	6				
Detector 1 Type	$\mathrm{Cl}+\mathrm{Ex}$	$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$		$\mathrm{Cl}+\mathrm{Ex}$	Cl+Ex				
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0			0.0		0.0	0.0				
Detector 1 Queue (s)	0.0	0.0			0.0		0.0	0.0				
Detector 1 Delay (s)	0.0	0.0			0.0		0.0	0.0				
Detector 2 Position(ft)		94			94			94				
Detector 2 Size(ft)		6			6			6				
Detector 2 Type		$\mathrm{Cl}+\mathrm{Ex}$			$\mathrm{Cl}+\mathrm{Ex}$			Cl+Ex				
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0				
Turn Type	pm+pt	NA			NA		Perm	NA				
Protected Phases	7	4			8			2				
Permitted Phases	4						2					

	4							\dagger			,	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	7	4			8		2	2				
Switch Phase												
Minimum Initial (s)	5.0	5.0			5.0		5.0	5.0				
Minimum Split (s)	22.5	22.5			22.5		22.5	22.5				
Total Split (s)	32.0	56.9			24.9		23.1	23.1				
Total Split (\%)	40.0\%	71.1\%			31.1\%		28.9\%	28.9\%				
Maximum Green (s)	27.5	52.4			20.4		18.6	18.6				
Yellow Time (s)	3.5	3.5			3.5		3.5	3.5				
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0				
Lost Time Adjust (s)	0.0	0.0			0.0			0.0				
Total Lost Time (s)	4.5	4.5			4.5			4.5				
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Vehicle Extension (s)	3.0	3.0			3.0		3.0	3.0				
Recall Mode	None	C-Max			None		Max	Max				
Walk Time (s)	7.0	7.0			7.0		7.0	7.0				
Flash Dont Walk (s)	11.0	11.0			11.0		11.0	11.0				
Pedestrian Calls (\#hr)	0	0			0		0	0				
Act Effct Green (s)	52.4	52.4			29.9			18.6				
Actuated g/C Ratio	0.66	0.66			0.37			0.23				
v / C Ratio	0.65	0.18			0.27			0.27				
Control Delay	6.8	2.9			4.9			25.9				
Queue Delay	0.5	0.0			0.0			0.0				
Total Delay	7.2	2.9			4.9			25.9				
LOS	A	A			A			C				
Approach Delay		6.0			4.9			25.9				
Approach LOS		A			A			C				
Intersection Summary												
Area Type: Other												
Cycle Length: 80												
Actuated Cycle Length: 80												
Offset: 68 (85\%), Referenced to phase 4:EBTL, Start of Green												
Natural Cycle: 70												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 0.65												
Intersection Signal Delay: 9.6					Intersection LOS: A							
Intersection Capacity Utilization 55.0\%Analysis Period (min) 15					ICU Level of Service B							

Splits and Phases: 15: Village Main St

HCS Roundabouts Report																
General Information							Site Information									
Analyst	HDR								Intersection							
Agency or Co.									E/W	et			Postive Place			
Date Performed	4/26/2023								N/S Street Name				Springs			
Analysis Year									Analysis Time Period, hrs				0.25			
Time Analyzed	AM Peak								Peak Hour Factor				0.92			
Project Description	Mayberry Community Full Sk...								Jurisdiction				El Paso County			
Volume Adjustments and Site Characteristics																
Approach	EB				WB				NB				SB			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment	LTR						LTR		LTR						LTR	
Volume (V), veh/h	0	191	7	5	0	5	2	102	0	5	194	4	0	44	63	66
Percent Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Flow Rate (vpce), pc/h	0	214	8	6	0	6	2	114	0	6	217	4	0	49	71	74
Right-Turn Bypass	None															
Conflicting Lanes	1				1				1				1			
Pedestrians Crossing, p/h	0				0				0				0			
Proportion of CAVs	0															

Critical and Follow-Up Headway Adjustment

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Critical Headway, s		4.9763			4.9763			4.9763			4.9763	
Follow-Up Headway, s		2.6087			2.6087			2.6087			2.6087	

Flow Computations, Capacity and v/c Ratios

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Entry Flow (ve), pc/h		228			122			227			194	
Entry Volume, veh/h		221			118			220			188	
Circulating Flow (v_{c}, pc / h	126			437			271			14		
Exiting Flow (vex), pc/h	61			82			545			83		
Capacity (cpee $^{\text {) , pc/h }}$		1214			884			1047			1360	
Capacity (c), veh/h		1178			858			1016			1321	
v/c Ratio (x)		0.19			0.14			0.22			0.14	
Delay and Level of Service												
Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Lane Control Delay (d), s/veh		4.7			5.6			5.6			3.9	
Lane LOS		A			A			A			A	
95\% Queue, veh		0.7			0.5			0.8			0.5	
Approach Delay, s/veh	4.7			5.6			5.6			3.9		
Approach LOS	A			A			A			A		
Intersection Delay, s/veh \| LOS	4.9						A					

HCS Roundabouts Report																
General Information							Site Information									
Analyst	HDR								Intersection							
Agency or Co.									E/W	et			Postive Place			
Date Performed	4/26/2023								N/S Street Name				Springs			
Analysis Year									Analysis Time Period, hrs				0.25			
Time Analyzed	PM Peak								Peak Hour Factor				0.92			
Project Description	Mayberry Community Full Sk...								Jurisdiction				El Paso County			
Volume Adjustments and Site Characteristics																
Approach	EB				WB				NB				SB			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment	LTR						LTR		LTR						LTR	
Volume (V), veh/h	0	133	5	5	0	5	4	69	0	5	130	2	0	133	189	176
Percent Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Flow Rate (vpce), pc/h	0	149	6	6	0	6	4	77	0	6	146	2	0	149	212	197
Right-Turn Bypass	None															
Conflicting Lanes	1				1				1				1			
Pedestrians Crossing, p/h	0				0				0				0			
Proportion of CAVs	0															

Critical and Follow-Up Headway Adjustment

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Critical Headway, s		4.9763			4.9763			4.9763			4.9763	
Follow-Up Headway, s		2.6087			2.6087			2.6087			2.6087	

Flow Computations, Capacity and v/c Ratios

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Entry Flow (ve), pc/h		161			87			154			558	
Entry Volume, veh/h		156			84			150			542	
Circulating Flow (v_{c}, pc / h	367			301			304			16		
Exiting Flow (Vex), pc/h	157			207			372			224		
Capacity (cpce $^{\text {) , }} \mathrm{pc} / \mathrm{h}$		949			1015			1012			1358	
Capacity (c), veh/h		921			986			983			1318	
v/c Ratio (x)		0.17			0.09			0.15			0.41	
Delay and Level of Service												
Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Lane Control Delay (d), s/veh		5.6			4.4			5.1			6.7	
Lane LOS		A			A			A			A	
95\% Queue, veh		0.6			0.3			0.5			2.1	
Approach Delay, s/veh	5.6			4.4			5.1			6.7		
Approach LOS	A			A			A			A		
Intersection Delay, s/veh \| LOS	6.0						A					

HCS Roundabouts Report																
General Information							Site Information									
Analyst	HDR								Intersection							
Agency or Co.										eet			Boulevard 2			
Date Performed	4/26/2023								N/S Street Name				Springs			
Analysis Year									Analysis Time Period, hrs				0.25			
Time Analyzed	AM Peak								Peak Hour Factor				0.92			
Project Description	Mayberry Community Full Sk..								Jurisdiction				El Paso County			
Volume Adjustments and Site Characteristics																
Approach	EB				WB				NB				SB			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment	LTR						LTR		LTR						LTR	
Volume (V), veh/h	0	14	18	5	0	3	21	5	0	35	7	7	0	6	34	5
Percent Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Flow Rate (vpce), pc/h	0	16	20	6	0	3	24	6	0	39	8	8	0	7	38	6
Right-Turn Bypass	None															
Conflicting Lanes	1				1				1				1			
Pedestrians Crossing, p/h	0				0				0				0			
Proportion of CAVs	0															

Critical and Follow-Up Headway Adjustment

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Critical Headway, s		4.9763			4.9763			4.9763			4.9763	
Follow-Up Headway, s		2.6087			2.6087			2.6087			2.6087	

Flow Computations, Capacity and v/c Ratios

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Entry Flow (ve), pc/h		42			33			55			51	
Entry Volume, veh/h		41			32			53			50	
Circulating Flow (v_{c}, pc / h	48			63			43			66		
Exiting Flow (Vex), pc/h	35			69			30			47		
Capacity ($\mathrm{cpce}^{\text {) , pc/h }}$		1314			1294			1321			1290	
Capacity (c), veh/h		1276			1256			1282			1253	
v / c Ratio (x)		0.03			0.03			0.04			0.04	
Delay and Level of Service												
Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Lane Control Delay (d), s/veh		3.1			3.1			3.1			3.2	
Lane LOS		A			A			A			A	
95\% Queue, veh		0.1			0.1			0.1			0.1	
Approach Delay, s/veh	3.1			3.1			3.1			3.2		
Approach LOS	A			A			A			A		
Intersection Delay, s/veh \| LOS	3.1						A					

HCS Roundabouts Report																
General Information							Site Information									
Analyst	HDR								Intersection							
Agency or Co.										eet			Boulevard 2			
Date Performed	4/26/2023								N/S Street Name				Springs			
Analysis Year									Analysis Time Period, hrs				0.25			
Time Analyzed	PM Peak								Peak Hour Factor				0.92			
Project Description	Mayberry Community Full Sk..								Jurisdiction				El Paso County			
Volume Adjustments and Site Characteristics																
Approach	EB				WB				NB				SB			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment	LTR						LTR		LTR				LTR			
Volume (V), veh/h	0	10	26	5	0	10	24	5	0	24	5	5	0	19	108	5
Percent Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Flow Rate (vpce), pc/h	0	11	29	6	0	11	27	6	0	27	6	6	0	21	121	6
Right-Turn Bypass	None															
Conflicting Lanes	1				1				1				1			
Pedestrians Crossing, p/h	0				0				0				0			
Proportion of CAVs	0															

Critical and Follow-Up Headway Adjustment

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Critical Headway, s		4.9763			4.9763			4.9763			4.9763	
Follow-Up Headway, s		2.6087			2.6087			2.6087			2.6087	

Flow Computations, Capacity and v/c Ratios

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Entry Flow (ve), pc/h		46			44			39			148	
Entry Volume, veh/h		45			43			38			144	
Circulating Flow (v_{c}, pc / h	153			44			61			65		
Exiting Flow (Vex), pc/h	56			60			23			138		
Capacity ($\mathrm{cpce}^{\text {) , pc/h }}$		1181			1319			1297			1291	
Capacity (c), veh/h		1146			1281			1259			1254	
v / c Ratio (x)		0.04			0.03			0.03			0.11	
Delay and Level of Service												
Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Lane Control Delay (d), s/veh		3.5			3.1			3.1			3.8	
Lane LOS		A			A			A			A	
95\% Queue, veh		0.1			0.1			0.1			0.4	
Approach Delay, s/veh	3.5			3.1			3.1			3.8		
Approach LOS	A			A			A			A		
Intersection Delay, s/veh \| LOS	3.5						A					

HCS Roundabouts Report																
General Information							Site Information									
Analyst	HDR								Intersection							
Agency or Co.									E/W	et			Springs			
Date Performed	4/26/2023								N/S Street Name				Mayberry Drive			
Analysis Year									Analysis Time Period, hrs				0.25			
Time Analyzed	AM Peak								Peak Hour Factor				0.92			
Project Description	Mayberry Community Full Sk..								Jurisdiction				El Paso County			
Volume Adjustments and Site Characteristics																
Approach	EB				WB				NB				SB			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	0	0	0	0	1	0
Lane Assignment			LT				TR								LR	
Volume (V), veh/h	5	36	5		5		5	105					5	30		13
Percent Heavy Vehicles, \%	3	3	3		3		3	3					3	3		3
Flow Rate (VpCE), pc/h	6	40	6		6		6	118					6	34		15
Right-Turn Bypass	None															
Conflicting Lanes	1				1								1			
Pedestrians Crossing, p/h	0				0								0			
Proportion of CAVs	0															

Critical and Follow-Up Headway Adjustment

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Critical Headway, s		4.9763			4.9763						4.9763	
Follow-Up Headway, s		2.6087			2.6087						2.6087	

Flow Computations, Capacity and v/c Ratios

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Entry Flow (ve), pc/h		52			130						55	
Entry Volume, veh/h		50			126						53	
Circulating Flow (v_{c}, pc / h	46			52			98			18		
Exiting Flow (vex), pc/h	46			27			164			0		
Capacity ($\mathrm{cpce}^{\text {) , }} \mathrm{pc} / \mathrm{h}$		1317			1309						1355	
Capacity (c), veh/h		1278			1271						1315	
v/c Ratio (x)		0.04			0.10						0.04	
Delay and Level of Service												
Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Lane Control Delay (d), s/veh		3.1			3.6						3.1	
Lane LOS		A			A						A	
95\% Queue, veh		0.1			0.3						0.1	
Approach Delay, s/veh	3.1			3.6						3.1		
Approach LOS	A			A						A		
Intersection Delay, s/veh \| LOS	3.4						A					

Critical and Follow-Up Headway Adjustment

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Critical Headway, s		4.9763			4.9763						4.9763	
Follow-Up Headway, s		2.6087			2.6087						2.6087	

Flow Computations, Capacity and v/c Ratios

Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Entry Flow (ve), pc/h		39			93						153	
Entry Volume, veh/h		38			90						149	
Circulating Flow (v_{c}, pc / h	116			39			155			18		
Exiting Flow (Vex), pc/h	116			55			114			0		
Capacity ($\mathrm{cpce}^{\text {) , pc/h }}$		1226			1326						1355	
Capacity (c), veh/h		1190			1288						1315	
v / c Ratio (x)		0.03			0.07						0.11	
Delay and Level of Service												
Approach	EB			WB			NB			SB		
Lane	Left	Right	Bypass									
Lane Control Delay (d), s/veh		3.3			3.4						3.6	
Lane LOS		A			A						A	
95\% Queue, veh		0.1			0.2						0.4	
Approach Delay, s/veh	3.3			3.4						3.6		
Approach LOS	A			A						A		
Intersection Delay, s/veh \| LOS	3.5						A					

	\rangle	\rightarrow		\checkmark		4	4	\dagger	p	(\pm	\pm
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow						\uparrow	F
Traffic Volume (vph)	0	495	5	5	5	0	0	0	0	63	228	511
Future Volume (vph)	0	495	5	5	5	0	0	0	0	63	228	511
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.999										0.850
Flt Protected					0.976						0.989	
Satd. Flow (prot)	0	1861	0	0	1818	0	0	0	0	0	1842	1583
Flt Permitted					0.871						0.989	
Satd. Flow (perm)	0	1861	0	0	1622	0	0	0	0	0	1842	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		1										555
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		456			444			387			456	
Travel Time (s)		10.4			10.1			8.8			10.4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	538	5	5	5	0	0	0	0	68	248	555
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	543	0	0	10	0	0	0	0	0	316	555
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors		2		1	2					1	2	1
Detector Template		Thru		Left	Thru					Left	Thru	Right
Leading Detector (ft)		100		20	100					20	100	20
Trailing Detector (ft)		0		0	0					0	0	0
Detector 1 Position(ft)		0		0	0					0	0	0
Detector 1 Size(ft)		6		20	6					20	6	20
Detector 1 Type		$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex	Cl+Ex					Cl+Ex	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$
Detector 1 Channel												
Detector 1 Extend (s)		0.0		0.0	0.0					0.0	0.0	0.0
Detector 1 Queue (s)		0.0		0.0	0.0					0.0	0.0	0.0
Detector 1 Delay (s)		0.0		0.0	0.0					0.0	0.0	0.0
Detector 2 Position(ft)		94			94						94	
Detector 2 Size(ft)		6			6						6	
Detector 2 Type		$\mathrm{Cl}+\mathrm{Ex}$			Cl+Ex						$\mathrm{Cl}+\mathrm{Ex}$	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0						0.0	
Turn Type		NA		Perm	NA					Perm	NA	Perm
Protected Phases		4			8						6	
Permitted Phases				8						6		6
Detector Phase		4		8	8					6	6	6
Switch Phase												
Minimum Initial (s)		5.0		5.0	5.0					5.0	5.0	5.0

	$\stackrel{ }{*}$							\dagger			\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)		22.5		22.5	22.5					22.5	22.5	22.5
Total Split (s)		38.0		38.0	38.0					32.0	32.0	32.0
Total Split (\%)		54.3\%		54.3\%	54.3\%					45.7\%	45.7\%	45.7\%
Maximum Green (s)		33.5		33.5	33.5					27.5	27.5	27.5
Yellow Time (s)		3.5		3.5	3.5					3.5	3.5	3.5
All-Red Time (s)		1.0		1.0	1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0						0.0	0.0
Total Lost Time (s)		4.5			4.5						4.5	4.5
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)		3.0		3.0	3.0					3.0	3.0	3.0
Recall Mode		C-Max		C-Max	C-Max					Max	Max	Max
Walk Time (s)		7.0		7.0	7.0					7.0	7.0	7.0
Flash Dont Walk (s)		11.0		11.0	11.0					11.0	11.0	11.0
Pedestrian Calls (\#/hr)		0		0	0					0	0	0
Act Effct Green (s)		33.5			33.5						27.5	27.5
Actuated g/C Ratio		0.48			0.48						0.39	0.39
v/c Ratio		0.61			0.01						0.44	0.58
Control Delay		17.1			9.2						18.0	4.3
Queue Delay		0.0			0.0						0.0	0.0
Total Delay		17.1			9.2						18.0	4.3
LOS		B			A						B	A
Approach Delay		17.1			9.2						9.2	
Approach LOS		B			A						A	
Intersection Summary												

Area Type: \quad Other	
Cycle Length: 70	
Actuated Cycle Length: 70	
Offset: 60 (86\%), Referenced to phase 4:EBT and $8:$ WBTL, Start of Green	
Natural Cycle: 50 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.61 Intersection Signal Delay: 12.2 Intersection LOS: B Intersection Capacity Utilization 49.3\% ICU Level of Service A Analysis Period (min) 15	

Splits and Phases: 7: S Mayberry Dr \& Village Main St

	4						4	4	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow			\uparrow			4 1				
Traffic Volume (vph)	495	63	0	0	5	298	5	696	5	0	0	0
Future Volume (vph)	495	63	0	0	5	298	5	696	5	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	200		0	0		0
Storage Lanes	1		0	0		0	1		0	0		0
Taper Length (tt)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	1.00	1.00	1.00
Frt					0.867			0.999				
Flt Protected	0.950											
Satd. Flow (prot)	1770	1863	0	0	1615	0	0	3536	0	0	0	0
Flt Permitted	0.330											
Satd. Flow (perm)	615	1863	0	0	1615	0	0	3536	0	0	0	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					92			1				
Link Speed (mph)		30			30			30			30	
Link Distance (f)		444			427			384			446	
Travel Time (s)		10.1			9.7			8.7			10.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	538	68	0	0	5	324	5	757	5	0	0	0
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	538	68	0	0	329	0	0	767	0	0	0	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		12			12			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2			2		1	2				
Detector Template	Left	Thru			Thru		Left	Thru				
Leading Detector (ft)	20	100			100		20	100				
Trailing Detector (ft)	0	0			0		0	0				
Detector 1 Position(ft)	0	0			0		0	0				
Detector 1 Size(ft)	20	6			6		20	6				
Detector 1 Type	Cl+Ex	Cl+Ex			Cl+Ex		Cl+Ex	Cl+Ex				
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0			0.0		0.0	0.0				
Detector 1 Queue (s)	0.0	0.0			0.0		0.0	0.0				
Detector 1 Delay (s)	0.0	0.0			0.0		0.0	0.0				
Detector 2 Position(ft)		94			94			94				
Detector 2 Size(ft)		6			6			6				
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex				
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0				
Turn Type	pm+pt	NA			NA		Perm	NA				
Protected Phases	7	4			8			2				
Permitted Phases	4						2					

Intersection													
Int Delay, s/veh	1.8												
Movement E	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		$\hat{\beta}$			\uparrow						\uparrow		
Traffic Vol, veh/h	0	30	5	5	5	0	0	0	0	46	173	10	
Future Vol, veh/h	0	30	5	5	5	0	0	0	0	46	173	10	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control S	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	33	5	5	5	0	0	0	0	50	188	11	

	\rangle	\rightarrow		\checkmark		4	4	\dagger	p	,	\pm	\pm
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow						\uparrow	「
Traffic Volume (vph)	0	489	5	5	5	0	0	0	0	203	679	553
Future Volume (vph)	0	489	5	5	5	0	0	0	0	203	679	553
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.999										0.850
Flt Protected					0.976						0.989	
Satd. Flow (prot)	0	1861	0	0	1818	0	0	0	0	0	1842	1583
Flt Permitted					0.820						0.989	
Satd. Flow (perm)	0	1861	0	0	1527	0	0	0	0	0	1842	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		1										601
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		456			444			387			456	
Travel Time (s)		10.4			10.1			8.8			10.4	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	532	5	5	5	0	0	0	0	221	738	601
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	537	0	0	10	0	0	0	0	0	959	601
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors		2		1	2					1	2	1
Detector Template		Thru		Left	Thru					Left	Thru	Right
Leading Detector (ft)		100		20	100					20	100	20
Trailing Detector (ft)		0		0	0					0	0	0
Detector 1 Position(ft)		0		0	0					0	0	0
Detector 1 Size(ft)		6		20	6					20	6	20
Detector 1 Type		$\mathrm{Cl}+\mathrm{Ex}$		Cl+Ex	Cl+Ex					Cl+Ex	Cl+Ex	$\mathrm{Cl}+\mathrm{Ex}$
Detector 1 Channel												
Detector 1 Extend (s)		0.0		0.0	0.0					0.0	0.0	0.0
Detector 1 Queue (s)		0.0		0.0	0.0					0.0	0.0	0.0
Detector 1 Delay (s)		0.0		0.0	0.0					0.0	0.0	0.0
Detector 2 Position(ft)		94			94						94	
Detector 2 Size(ft)		6			6						6	
Detector 2 Type		$\mathrm{Cl}+\mathrm{Ex}$			Cl+Ex						$\mathrm{Cl}+\mathrm{Ex}$	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0						0.0	
Turn Type		NA		Perm	NA					Perm	NA	Perm
Protected Phases		4			8						6	
Permitted Phases				8						6		6
Detector Phase		4		8	8					6	6	6
Switch Phase												
Minimum Initial (s)		5.0		5.0	5.0					5.0	5.0	5.0

	$\stackrel{ }{*}$							\dagger			\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)		22.5		22.5	22.5					22.5	22.5	22.5
Total Split (s)		31.0		31.0	31.0					49.0	49.0	49.0
Total Split (\%)		38.8\%		38.8\%	38.8\%					61.3\%	61.3\%	61.3\%
Maximum Green (s)		26.5		26.5	26.5					44.5	44.5	44.5
Yellow Time (s)		3.5		3.5	3.5					3.5	3.5	3.5
All-Red Time (s)		1.0		1.0	1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0						0.0	0.0
Total Lost Time (s)		4.5			4.5						4.5	4.5
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)		3.0		3.0	3.0					3.0	3.0	3.0
Recall Mode		C-Max		C-Max	C-Max					Max	Max	Max
Walk Time (s)		7.0		7.0	7.0					7.0	7.0	7.0
Flash Dont Walk (s)		11.0		11.0	11.0					11.0	11.0	11.0
Pedestrian Calls (\#/hr)		0		0	0					0	0	0
Act Effct Green (s)		26.5			26.5						44.5	44.5
Actuated g/C Ratio		0.33			0.33						0.56	0.56
v/c Ratio		0.87			0.02						0.94	0.52
Control Delay		42.2			17.8						26.5	1.3
Queue Delay		0.0			0.0						0.0	0.0
Total Delay		42.2			17.8						26.5	1.3
LOS		D			B						C	A
Approach Delay		42.2			17.8						16.8	
Approach LOS		D			B						B	
Intersection Summary												

Area Type: \quad Other	
Cycle Length: 80	
Actuated Cycle Length: 80	
Offset: 70 (88%), Referenced to phase 4:EBT and $8:$ WBTL, Start of Green	
Natural Cycle: 80	
Control Type: Actuated-Coordinated	
Maximum v/c Ratio: 0.94 Intersection Signal Delay: 23.3 Intersection LOS: C Intersection Capacity Utilization 80.5% ICU Level of Service D Analysis Period (min) 15	

Splits and Phases: 7: S Mayberry Dr \& Village Main St

	4						4	4	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	4			\uparrow			¢ 1				
Traffic Volume (vph)	489	203	0	0	5	210	5	471	5	0	0	0
Future Volume (vph)	489	203	0	0	5	210	5	471	5	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	200		0	0		0
Storage Lanes	1		0	0		0	1		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Utili. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	0.95	1.00	1.00	1.00
Frt					0.868			0.999				
Flt Protected	0.950											
Satd. Flow (prot)	1770	1863	0	0	1617	0	0	3536	0	0	0	0
Flt Permitted	0.481											
Satd. Flow (perm)	896	1863	0	0	1617	0	0	3536	0	0	0	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					187			1				
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		444			427			384			446	
Travel Time (s)		10.1			9.7			8.7			10.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	532	221	0	0	5	228	5	512	5	0	0	0
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	532	221	0	0	233	0	0	522	0	0	0	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(t)		12			12			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2			2		1	2				
Detector Template	Left	Thru			Thru		Left	Thru				
Leading Detector (ft)	20	100			100		20	100				
Trailing Detector (ft)	0	0			0		0	0				
Detector 1 Position(ft)	0	0			0		0	0				
Detector 1 Size(ft)	20	6			6		20	6				
Detector 1 Type	Cl+Ex	Cl+Ex			Cl+Ex		Cl+Ex	Cl+Ex				
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0			0.0		0.0	0.0				
Detector 1 Queue (s)	0.0	0.0			0.0		0.0	0.0				
Detector 1 Delay (s)	0.0	0.0			0.0		0.0	0.0				
Detector 2 Position(t)		94			94			94				
Detector 2 Size(ft)		6			6			6				
Detector 2 Type		Cl+Ex			Cl+Ex			Cl+Ex				
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0				
Turn Type	pm+pt	NA			NA		Perm	NA				
Protected Phases	7	4			8			2				
Permitted Phases	4						2					

V1_Traffic Impact Study.pdf Markup Summary

| Daniel Torres (57) |
| :--- | | Subject: Callout |
| :--- |
| Page Label: |
| Author: Daniel Torres |
| Date: $11 / 13 / 2023$ 4:36:21 PM |
| Status: |
| Color: |
| Layer: |
| Space: |

Subject: Callout
Page Label: $8 \quad$ please clarify if the commercial district is both the
Author: Daniel Torres northwest and east/northeast commercial parcels
Date: 11/13/2023 3:57:00 PM
Status: shown on the sketch plan (C1, CS3, CS4, CS5).

Color:
Provide a separate exhibit or show on the provided Layer: figures the boundaries of the north, south, and commercial phases.
Space:

Subject: Text Box

Page Label: 10
Author: Daniel Torres
Date: 11/13/2023 1:02:43 PM
Status:
Color:
Layer:
Space:
Comments were provided by planning staff to provide maximum units proposed in the sketch plan as opposed to a range. Please coordinate with the project planner and update the trip gen \& analysis as needed to ensure that any changes/max values are accounted for in the design.

	Subject: Callout Page Label: 22 Author: Daniel Torres Date: 11/14/2023 7:31:24 AM Status: Color: Layer: Space:	provide analysis these intersections as well.
	Subject: Callout Page Label: 22 Author: Daniel Torres Date: 11/14/2023 7:32:23 AM Status: Color: Layer: Space:	include Peyton hwy/Hwy 94 in your analysis and Ellicott hwy/Hwy 94
	Subject: Text Box Page Label: 24 Author: Daniel Torres Date: 11/14/2023 7:32:57 AM Status: Color: Layer: Space:	provide analysis of Positive Place/Log Rd, Boulevard A/Log Rd, Hwy 94/Log Rd, Hwy94/Mayberry, Hwy 94/Springs Rd, Hwy 94/Peyton hwy, and Hwy 94/Ellicott Hwy. Typical for each phase.
	Subject: Callout Page Label: 25 Author: Daniel Torres Date: 11/13/2023 3:58:44 PM Status: Color: Layer: Space:	is this correct? there is no commercial development south of Positive place on the sketch plan. Revise accordingly.
$=2$ $x=2$ $=2$	Subject: Callout Page Label: 25 Author: Daniel Torres Date: 11/13/2023 3:59:19 PM Status: Color: Layer: Space:	table 7
	Subject: Callout Page Label: 25 Author: Daniel Torres Date: 11/13/2023 4:01:15 PM Status: Color: Layer: Space:	Figure 13 indicated in the next page. Verify/update figure labels throughout the narrative

monooeora stoer	Subject: Text Box Page Label: 37 Author: Daniel Torres Date: 11/13/2023 4:36:51 PM Status: Color: Layer: Space:	remove extra sheet
remoeosasa sear	Subject: Text Box Page Label: 38 Author: Daniel Torres Date: 11/13/2023 4:36:56 PM Status: Color: Layer: Space:	remove extra sheet
	Subject: Callout Page Label: NewLogRoad_Threshold_Analysis_20221229 1 Author: Daniel Torres Date: 11/13/2023 4:34:10 PM Status: Color: Layer: Space:	aka Mayberry Dr. Please use the same naming convention throughout the study. You may include both names listing Mayberry Dr (formerly known as New Log Rd) if you'd like.
"Nuvis the threshold anal: 1 in September 20́ ient includes 3,42¢ ıell as 105,700 sau	Subject: Highlight Page Label: NewLogRoad_Threshold_Analysis_20221229 1 Author: Daniel Torres Date: 11/14/2023 9:45:43 AM Status: Color: Layer: Space:	September
	Subject: Callout Page Label: NewLogRoad_Threshold_Analysis_20221229 1 Author: Daniel Torres Date: 11/14/2023 10:41:45 AM Status: Color: Layer: Space:	volumes shown in figures are not readable. Please state in narrative or enlarge
	Subject: Callout Page Label: NewLogRoad_Threshold_Analysis_20221229 1 Author: Daniel Torres Date: 11/14/2023 10:53:51 AM Status: Color: Layer: Space:	Please be aware that the westbound acceleration lane is to be installed in conjuction with the westbound deceleration lane

	Subject: Highlight Page Label: 3.1-Blvd2SpringsFS_PM 1
levard 2	
	Date: 11/13/2023 4:38:35 PM
-..-	Status:
	Color:
	Layer:
	Space:

lpackman (1)

| | Subject: Callout
 Page Label: 1
 Author: Ipackman
 Date: $11 / 8 / 2023$ 12:54:20 PM
 Status:
 Color:

 Space: |
| :--- | :--- |\quad Add PCD File No. SKP236

