WIDEFIELD WATER AND SANITATION DISTRICT

8945 Fontaine Blvd. Colorado Springs, CO 80925

District Water and Wastewater Report Annual Update

Date of Update January 1, 2020

Update Author

Burnt-Robert K. Bannister, P.E. District Engineer

Widefield Water and Sanitation District

Attachments

- Widefield Water Facilities Map
- Widefield 2019 Water Quality Consumer Confidence Report
- End of 2019 Year Commitment Balance Sheet

WATER REPORT UPDATE

1. Water General

The Widefield Water and Sanitation District's (the District) Water System was originally created in the 1960's and has been expanded for nearly 60 years. The system serves approximately 9350 single family equivalent households.

All water supply is based on surface water rights, renewable groundwater, and a mix of various sources. The system does not rely on any non-renewable water sources.

The current Legal Water Supply Holding of the District are estimated at 7,900 annual acre-feet.

The current Developed Physical Supply is 5271 annual acre-feet. The three-year running average actual use is 2615 acre-feet which is roughly 48% of the existing available physical supply.

A revised table of active commitments, and completed subdivisions is attached. This table is valid as of January 1, 2019.

2. <u>Recent Water Volumes Used</u>

The recent three-year water use and tap data are as follows:

Year	Annual Use (Acre-Feet)	Single Family Equivalent (Taps in SFE)
2017	2612	8521
2018	2702	8927
2019	2531	9350

3. Water Supply

<u>Changes in Water Supply:</u> In 2019, the District placed the Fontaine Water Treatment Facility online. This plant uses ion exchange to remove PFOS and PFOA from the District's water supply. This plant added an additional 500 gpm of treated water to the system.

The District added an additional raw water pipeline to include additional wells in the Widefield Aquifer to the Southmoor Water Treatment Facility. This increased the production in the facility to maximum capacity of 2,200 gpm and allowed for five wells to be treated by the facility, up from three wells previously.

The District hired consultants to design a new Booster 2 Pump Station to provide additional pumping for the West to East Project. This pump station is expected to be constructed in 2021.

The District hired consultants to design a new Zone 6 Storage Tank known as the Rolling Hills Tank. Design is in its infancy and size has not been determined by the end of 2019. Construction is expected in 2020 and 2021.

Listing of Water Supplies:

Renewable Groundwater - All sources previously documented at County Attorney's Office.

- Widefield Aquifer The District is allocated the use of 2,650 annual acre-feet through the Widefield Aquifer Stipulation.
- Jimmy Camp Aquifer The District is allocated 650 annual acre-feet through the Widefield Aquifer Stipulation.
- Vennetucci Lease The District is perpetually leased an allocation of 596 annual acre-feet through a Public Trust Partnership which provides for funding of the Vennetucci Trust farm through water revenues on a perpetual basis. The Vennetucci Lease has become contaminated and the District has suspended the lease until treatment has been established. This is expected in 2021.

Surface Water Supplies – Sources documented at County Attorney's Office.

- The District owns 1,500 annual acre-feet of the Fountain Valley Authority Project which safely yields 1,425 annual acre-feet of fully consumable water.

- The District has 812 shares of Fountain Mutual Irrigation Water and is the owner/operator of the Crews Gulch Augmentation Station as this supply is used in augmentation or leased out on an annual basis, as it has never been fully needed.
- The District owns roughly 1,931 annual acre-feet of return flows from CSU's portion of the FVA project. This is used in augmentation.
- The District owns a mix of senior surface water supplies and out-of-priority water supplies that total 1,274 annual acre-feet. This is the fully consumable water right for future growth that is currently leased to a third party.

Potential or Intended Future Supplies

Although the District does have active cases that are intended to extend supplies, the District does not wish to disclose the volumes or nature of those supplies that are in active acquisition states.

Legal Documentation Accompanying New Water Acquisitions and Augmentations Plans

None.

4. The District's Water Quality

The water quality provided by the District meets or exceeds all required State and Federal Drinking Water Standards. For detailed water quality report, please see the Widefield Consumer Confidence Report which is updated annually and accessible at https://www.wwsdonline.com/media/WWSD.2018CCR.2019.pdf. A copy is attached.

5. The District's Physical Water System

The District's system is too large to show all lines and facilities, the attached Facilities Map shows the major facilities. The District's System consists of:

Service area of roughly 16.2 square miles.

Over 665,000 lineal feet of water mains varying in size from 4 to 30-inches in diameter.

Six water tanks totaling approximately 9.8 million gallons of storage.

Six Pressure Zones.

Four booster stations.

24-inch transmission main from Fountain Valley Authority.

Participation in Pueblo Reservoir and Frying Pan Arkansas Water project.

Two Ion Exchange Water Treatment Plant, one includes an Air Stripper Water Treatment Plant.

Eleven active wells (not including inactive wells or Venetucci wells).

6. <u>Major Capital Improvement Projects Accomplished During Recent Years and Anticipated</u> <u>Improvements for the Upcoming Years</u>

Widefield Water and Sanitation District

Page 3 of 5

Most Recent Three Years – Upgrades to water facilities include the following:

- Continuation of the West to East Transmission line. This project includes certain transmission line upgrades which will continue over the next 10 years.
- Construction of an Ion Exchange plant to remove PFC's from the District's drinking water.
- Construction of the Veterans Affairs Pikes Peak National Cemetery Water Delivery System.
- Development of Zone 6 in the northeast section of the District.
- Well Manifold to bring additional wells to the Ion Exchange water treatment facility.

Expected Upcoming Three-Year Improvements - These are all system-wide capital projects.

- Additional construction of the West to East Transmission line.
- Upgrade of the Booster #2 Pump Station.
- Refurbishment of the existing air stripper facility to ion exchange technology.
- Construction of new Zone 6 tank (Developer funded).
- Construction of new Zone 7a Booster Station (Developer funded).

WASTEWATER REPORT UPDATE

1. Wastewater General

The Widefield Water and Sanitation District's (the District) Wastewater System was originally created in the 1960's and has been expanded for nearly 60 years. The system serves over 8737 single family equivalent households.

The current hydraulic capacity of the Widefield Wastewater Treatment Plant is 2.14 MGD. *Note* – *WWTO are rated on the basis of Average Daily Maximum Monthly Flow, which differs from Max Day Flow.* There has been no increase to plant capacity since 2001, however, the plant was rerated in 2016 to 2.14 MGD due to lack of air processing capabilities.

The treatment plant discharges to the Lower Fountain Creek.

Current 3 year running average loading is 1.67 MGD which is roughly 78% of Plant Capacity.

Current projected use plus active commitments are projected to be roughly 1.72 MG which represents approximately 69% of Current Hydraulic Plant Capacity. *Note – wastewater treatment plants are rated on the basis of Average Daily Maximum Monthly Flow, which differs from Max Day Flow.*

2. Actual Wastewater Volumes Treated

The three most recent years of wastewater plant loads and tap data are as follows:

Year	Average Daily Flow (MGD)	Single Family Equivalent (Taps in SFE)
2017	1.75	8326
2018	1.71	8737
2019	1.56	9253

3. Existing Widefield Wastewater System

The District's Wastewater System consist of:

Service area of roughly 14.3 square miles.

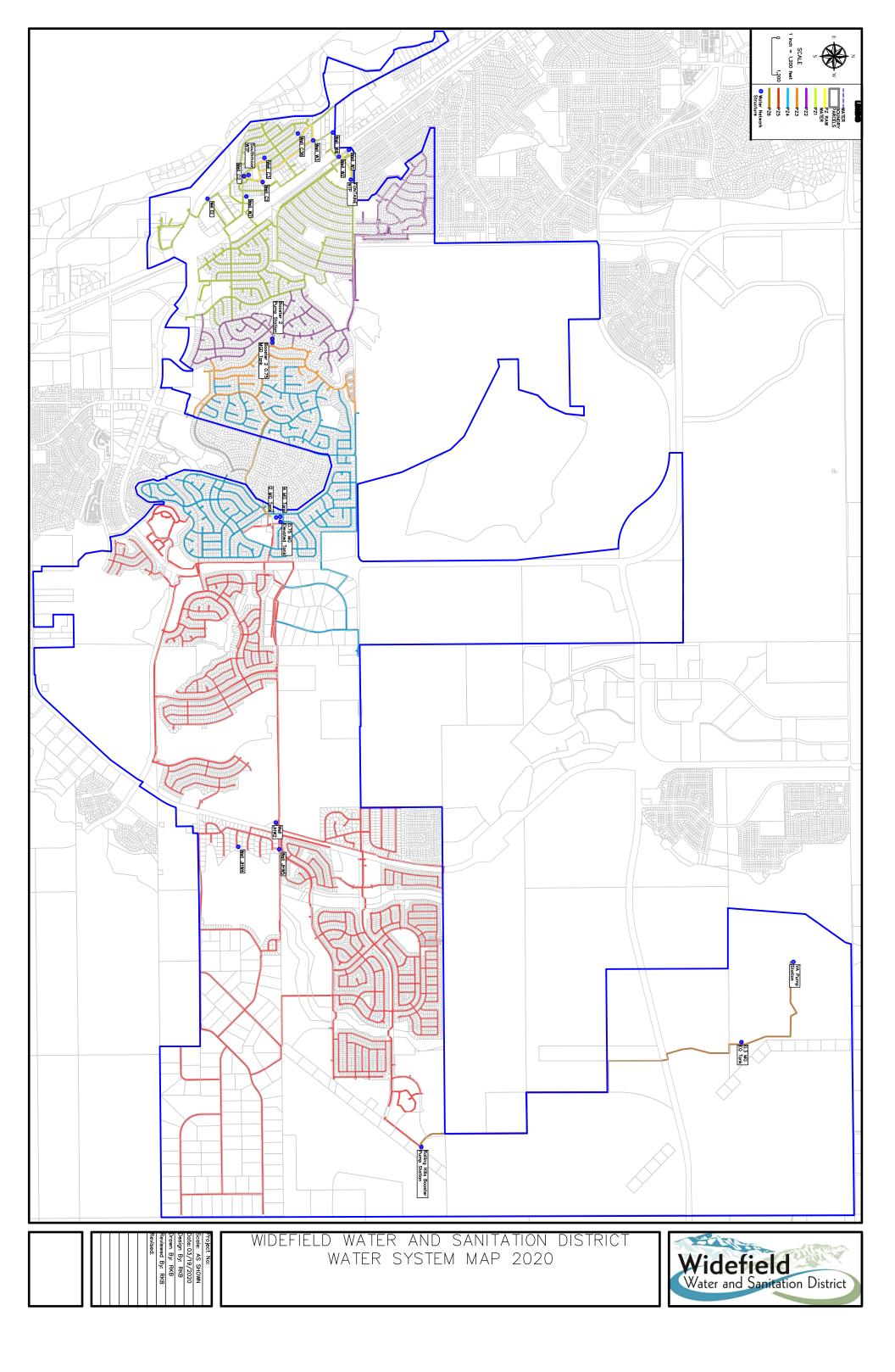
Over 530,000 lineal feet of pipeline varying in size from 4 to 24-inches in diameter.

Over 23,00 lineal feet of pressure pipeline varying in size from 4 to 12-inches in diameter.

Five lift stations.

Wastewater Treatment Plant – 2.14 MGD capacity.

The existing wastewater plant remains in compliance with CDPHE Discharge Standards.


4. <u>Major Capital Improvements Accomplished during the Past Year and Anticipated</u> <u>Improvements for the Upcoming Years</u>

Most Recent Three Years – Upgrades to wastewater facilities include the following:

- Some replacement of older lines in older areas of the District.
- Installed 3rd pump at the Jimmy Camp Lift Station.
- Continued construction of East Jimmy Camp Interceptor along the East Jimmy Camp Creek (Developer funded).
- Upgrade of treatment system to meet Regulation 85 requirements. This upgrade includes Bionutrient Removal. This is not expected to increase capacity.
- Upgrade of solids handling to perform dewatering of sludge.
- -

Expected Upcoming Three-Year Improvements – These are all system wide capital projects:

- Continued replacement of older lines or relining of existing pipe.
- Upgrade air handling equipment.
- Upgrade step screen.

Public Water System ID: CO0121900

Esta es información importante. Si no la pueden leer, necesitan que alguien se la traduzca.

We are pleased to present to you this year's water quality report. Our constant goal is to provide you with a safe and dependable supply of drinking water. Please contact BRANDON BERNARD at 719-464-2051 with any questions or for public participation opportunities that may affect water quality.

General Information

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (1-800-426-4791) or by visiting http://water.epa.gov/drink/contaminants.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV-AIDS or other immune system disorders, some elderly, and infants can be particularly at risk of infections. These people should seek advice about drinking water from their health care providers. For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and microbiological contaminants call the EPA Safe Drinking Water Hotline at (1-800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

•Microbial contaminants: viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

•Inorganic contaminants: salts and metals, which can be naturallyoccurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

•Pesticides and herbicides: may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses. •Radioactive contaminants: can be naturally occurring or be the result of oil and gas production and mining activities.

•Organic chemical contaminants: including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff, and septic systems.

In order to ensure that tap water is safe to drink, the Colorado Department of Public Health and Environment prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health.

Lead in Drinking Water

If present, elevated levels of lead can cause serious health problems (especially for pregnant women and young children). It is possible that lead levels at your home may be higher than other homes in the community as a result of materials used in your home's plumbing. If you are concerned about lead in your water, you may wish to have your water tested. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. Additional information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/safewater/lead.

Source Water Assessment and Protection (SWAP)

The Colorado Department of Public Health and Environment may have provided us with a Source Water Assessment Report for our water supply. For general information or to obtain a copy of the report please visit www.colorado.gov/cdphe/ccr. The report is located under "Guidance: Source Water Assessment Reports". Search the table using 121900, WIDEFIELD WSD, or by contacting BRANDON BERNARD at 719-464-2051. The Source Water Assessment Report provides a screening-level evaluation of potential contamination that *could* occur. It *does not* mean that the contamination *has or will* occur. We can use this information to evaluate the need to improve our current water treatment capabilities and prepare for future contamination threats. This can help us ensure that quality finished water is delivered to your homes. In addition, the source water assessment results provide a starting point for developing a source water protection plan. Potential sources of contamination in our source water area are listed on the next page.

Please contact us to learn more about what you can do to help protect your drinking water sources, any questions about the Drinking Water Quality Report, to learn more about our system, or to attend scheduled public meetings. We want you, our valued customers, to be informed about the services we provide and the quality water we deliver to you every day.

Our Water Sources

Sources (Water Type - Source Type)	Potential Source(s) of Contamination
WELL W4 (Groundwater-Well)	
WELL W2Groundwater-Well)	
WELL W3 (Groundwater-Well)	
WELL C1 (Groundwater-Well)	
WELL W7 (Groundwater-Well)	
WELL E2 (Groundwater-Well)	
WELL C3 (Groundwater-Well)	
WELL C36 (Groundwater-Well)	
JHW2 WELL REDRILL (Groundwater-Well)	
JHW5R WELL (Groundwater-Well)	Environment, Industry, Soil runoff, and erosion of natural
JHW4R WELL (Groundwater-Well)	deposits
WELL C2 REDRILL (Groundwater-Well)	
PURCHASED FROM CO0121275 (Groundwater-Consecutive	
Connection)	
WELL W1 (Groundwater-Well)	
PURCHASED FROM CO0121775 (Surface Water-Consecutive	
Connection)	
PURCHASED FROM CO0121300 (Surface Water-Consecutive	
Connection)	

Terms and Abbreviations

- Maximum Contaminant Level (MCL) The highest level of a contaminant allowed in drinking water.
- Treatment Technique (TT) A required process intended to reduce the level of a contaminant in drinking water.
- Health-Based A violation of either a MCL or TT.
- Non-Health-Based A violation that is not a MCL or TT.
- Action Level (AL) The concentration of a contaminant which, if exceeded, triggers treatment and other regulatory requirements.
- Maximum Residual Disinfectant Level (MRDL) The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- Maximum Contaminant Level Goal (MCLG) The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- Maximum Residual Disinfectant Level Goal (MRDLG) The level of a drinking water disinfectant, below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- Violation (No Abbreviation) Failure to meet a Colorado Primary Drinking Water Regulation.
- Formal Enforcement Action (No Abbreviation) Escalated action taken by the State (due to the risk to public health, or number or severity of violations) to bring a non-compliant water system back into compliance.
- Variance and Exemptions (V/E) Department permission not to meet a MCL or treatment technique under certain conditions.
- **Gross Alpha (No Abbreviation)** Gross alpha particle activity compliance value. It includes radium-226, but excludes radon 222, and uranium.
- Picocuries per liter (pCi/L) Measure of the radioactivity in water.
- Nephelometric Turbidity Unit (NTU) Measure of the clarity or cloudiness of water. Turbidity in excess of 5 NTU is just noticeable to the typical person.
- **Compliance Value (No Abbreviation)** Single or calculated value used to determine if regulatory contaminant level (e.g. MCL) is met. Examples of calculated values are the 90th Percentile, Running Annual Average (RAA) and Locational Running Annual Average (LRAA).
- Average (x-bar) Typical value.
- **Range** (**R**) Lowest value to the highest value.
- Sample Size (n) Number or count of values (i.e. number of water samples collected).

- Parts per million = Milligrams per liter (ppm = mg/L) One part per million corresponds to one minute in two years or a single penny in \$10,000.
- **Parts per billion = Micrograms per liter (ppb = ug/L)** One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- Not Applicable (N/A) Does not apply or not available.
- Level 1 Assessment A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
- Level 2 Assessment A very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Detected Contaminants

WIDEFIELD WSD routinely monitors for contaminants in your drinking water according to Federal and State laws. The following table(s) show all detections found in the period of January 1 to December 31, 2018 unless otherwise noted. The State of Colorado requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. Therefore, some of our data, though representative, may be more than one year old. Violations and Formal Enforcement Actions, if any, are reported in the next section of this report.

Note: Only detected contaminants sampled within the last 5 years appear in this report. If no tables appear in this section then no contaminants were detected in the last round of monitoring.

	Disinfectants Sampled in the Distribution System TT Requirement: At least 95% of samples per period (month or quarter) must be at least 0.2 ppm <u>OR</u> If sample size is less than 40 no more than 1 sample is below 0.2 ppm Typical Sources: Water additive used to control microbes									
Disinfectant Name	Time Period	Results	Number of Samples Below Level	Sample Size	TT Violation	MRDL				
Chlorine	March, 2018	<u>Lowest period</u> percentage of samples meeting TT requirement: 95%	1	20	No	4.0 ppm				

Contaminant Name	TT Requirement	TT Violatior
Total Coliform	We were required to conduct an assessment of our system due to one of the following: More than 5.0% positive samples per period (If sample size is greater than or equal to 40) <u>OR</u> More than 1 positive sample per period (If sample size is less than 40) <u>OR</u> Repeat samples not collected after positive sample.	No
waterborne pathog distribution systen	eria that are naturally present in the environment and are used as an indicator that other, potentially harr tens may be present or that a potential pathway exists through which contamination may enter the drinkin. We found coliforms indicating the need to look for potential problems in water treatment or distribution uired to conduct assessment(s) to identify problems and to correct any problems that were found during	ng water on. When this

During the past year we were required to conduct ZERO Level 1 assessment(s)!

	Lead and Copper Sampled in the Distribution System										
Contaminant Name	Time Period	90 th Percentile	Sample Size	Unit of Measure	90 th Percentile AL	Sample Sites Above AL	90 th Percentile AL Exceedance	Typical Sources			
Copper	02/22/2018 to 03/14/2018	0.38	60	ppm	1.3	0	No	Corrosion of household plumbing systems; Erosion of natural deposits			
Lead	07/31/2018 to 12/12/2018	2.8	60	ррЬ	15	0	No	Corrosion of household plumbing systems; Erosion of natural deposits			
Copper	07/31/2018 to 12/12/2018	0.33	60	ppm	1.3	0	No	Corrosion of household plumbing systems; Erosion of natural deposits			
Lead	02/22/2018 to 03/14/2018	2.6	60	ррb	15	1	No	Corrosion of household plumbing systems; Erosion of natural deposits			

	Disinfection Byproducts Sampled in the Distribution System											
Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	MCL	MCLG	MCL Violation	Typical Sources			
Total Haloacetic Acids (HAA5)	2018	12.3	1.41 to 30	16	ррb	60	N/A	No	Byproduct of drinking water disinfection			
Total Trihalome thanes (TTHM)	2018	28.62	4.1 to 59.71	16	ррb	80	N/A	No	Byproduct of drinking water disinfection			

	Radionuclides Sampled at the Entry Point to the Distribution System									
Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	MCL	MCLG	MCL Violation	Typical Sources	

Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	MCL	MCLG	MCL Violation	Typical Sources
Gross Alpha	2017	1.68	0.71 to 2.65	2	pCi/L	15	0	No	Erosion of natural deposits
Combined Radium	2017	1.5	1.5 to 1.5	1	pCi/L	5	0	No	Erosion of natural deposits
Combined Uranium	2017	6.83	6.1 to 8.2	3	ppb	30	0	No	Erosion of natural deposits
Gross Beta Particle Activity	2017	2	2 to 2	1	pCi/L*	50	0	No	Decay of natural and man-made deposits

Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	MCL	MCLG	MCL Violation	Typical Sources
Barium	2018	0.01	0.01 to 0.01	2	ppm	2	2	No	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Fluoride	2018	0.89	0.89 to 0.89	1	ppm	4	4	No	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Nitrate	2018	4.39	0.85 to 6.9	7	ppm	10	10	No	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits

Volatile Organic Contaminants Sampled at the Entry Point to the Distribution System

Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	MCL	MCLG	MCL Violation	Typical Sources
Tetrachloroethy lene	2018	0.13	0 to 0.63	5	ppb	5	0	No	Discharge from factories and dry cleaners

Secondary Contaminants**

**Secondary standards are <u>non-enforceable</u> guidelines for contaminants that may cause cosmetic effects (such as skin, or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water.

Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure	Secondary Standard
Sodium	2018	180	180 to 180	2	ppm	N/A
Total Dissolved Solids	2014	1105	1100 to 1110	2	ppm	500

Unregulated Contaminants***

EPA has implemented the Unregulated Contaminant Monitoring Rule (UCMR) to collect data for contaminants that are suspected to be present in drinking water and do not have health-based standards set under the Safe Drinking Water Act. EPA uses the results of UCMR monitoring to learn about the occurrence of unregulated contaminants in drinking water and to decide whether or not these contaminants will be regulated in the future. We performed monitoring and reported the analytical results of the monitoring to EPA in accordance with its Unregulated Contaminant Monitoring Rule (UCMR). Once EPA reviews the submitted results, the results are made available in the EPA's National Contaminant Occurrence Database (NCOD) (http://www.epa.gov/dwucmr/national-contaminant-occurrence-database-ncod) Consumers can review UCMR results by accessing the NCOD. Contaminants that were detected during our UCMR sampling and the corresponding analytical results are provided below.

Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure
Bromochloroacetic Acid	2018	2.41	0.909-4.53	8	Parts per Billion
Chlorodibromoacetic Acid	2018	0.90	0.379-1.58	8	Parts per Billion
Dibromoacetic Acid	2018	1.92	1.14-2.91	8	Parts per Billion
Bromodichloroacetic Acid	2018	1.43	0-3.7	8	Parts per Billion
Dichloroacetic Acid	2018	4.24	0-10.8	8	Parts per Billion
Monobromoacetic Acid	2018	0.25	0-0.83	8	Parts per Billion
Trichloroacetic Acid	2018	2.88	0-7.14	8	Parts per Billion
Manganese	2018	4.8	0.412-9.35	2	Part per Billion
Perfluorobutanesulfonic acid	2018	Non-Detect	Non-Detect	12	Parts per Trillion
Perfluorheptanoic acid	2018	Non-Detect	Non-Detect	12	Parts per Trillion

Unregulated Contaminants***

EPA has implemented the Unregulated Contaminant Monitoring Rule (UCMR) to collect data for contaminants that are suspected to be present in drinking water and do not have health-based standards set under the Safe Drinking Water Act. EPA uses the results of UCMR monitoring to learn about the occurrence of unregulated contaminants in drinking water and to decide whether or not these contaminants will be regulated in the future. We performed monitoring and reported the analytical results of the monitoring to EPA in accordance with its Unregulated Contaminant Monitoring Rule (UCMR). Once EPA reviews the submitted results, the results are made available in the EPA's National Contaminant Occurrence Database (NCOD) (http://www.epa.gov/dwucmr/national-contaminant-occurrence-database-ncod) Consumers can review UCMR results by accessing the NCOD. Contaminants that were detected during our UCMR sampling and the corresponding analytical results are provided below.

Contaminant Name	Year	Average	Range Low – High	Sample Size	Unit of Measure
Perfluorohexanesulfonic	2018	Non-Detect	Non-Detect	12	Parts per Trillion
Acid					
Perfluorooctanesulfonic Acid	2018	Non-Detect	Non-Detect	12	Parts per Trillion
Perfluorooctanoic Acid	2018	Non-Detect	Non-Detect	12	Parts per Trillion
***More information about the	contamina	nts that were included	l in UCMR monitoring	can be found at: <u>htt</u>	os://drinktap.org/Water-
Info/Whats-in-My-Water/Unreg	ulated-Cor	taminant-Monitoring	<u>e-Rule-UCMR</u> . Learn m	ore about the EPA	UCMR at:
http://www.epa.gov/dwucmr/lea	rn-about-u	nregulated-contamina	ant-monitoring-rule or o	contact the Safe Drin	nking Water Hotline at (800)
426-4791 or http://water.epa.gov	/drink/cor	tact.cfm.			

Violations, Significant Deficiencies, Backflow/Cross-Connection, and Formal Enforcement Actions

No Violations or Formal Enforcement Actions

CITY OF FOUNTAIN - 2018 MONITORING RESULTS

The table below displays the levels of contaminants detected from water samples taken throughout the 2018 calendar year from the City of Fountain. This table also reflects Fountain Valley (FVA) Authority's (PWSID #CO0121300) test results for 2018 as the City of Fountain purchases 99% of it's drinking water from FVA. If you have any questions regarding the FVA's results, please contact them directly. The City of Fountain joined with Security Water District and Widefield Water & Sanitation District on a water exchange joint project; therefore, Security and Widefield's CCR information has also been included. If you would like a complete copy of their CCR, you are welcome to contact them directly. If you would like to view all test results for the City of Fountain's Water Department, they are available at 301 E. Iowa Avenue, Fountain, CO during normal business hours. NOTE: Only detected contaminants sampled within the last five years appear in this report. If no tables appear in this section, that means the City of Fountain did not detect any contaminants in the last round of monitoring.

	Fountain did not detect any contaminants in the last round of monitoring.															
INORGANIC	UNIT	MCLG	MCL		I	SAMPLE	YEAR			SAMPLE	YEAR	LEVEL	1	SAMPLE	YEAR	TYPICAL SOURCES
CONTAMINATES	-		_	RANGE	AVERAGE	SIZE	SAMPLED	RANGE	AVERAGE	SIZE	SAMPLED	DETECTED	AVERAGE	SIZE	SAMPLED	
ARSENIC	ppb	0	10	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1 - 1	1	1	2016	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production waste.
BARIUM	ppm	2	2	.0405	0.04	2	2017	0.01 - 0.01	0.01	2	2018	0.06	N/A	N/A	2018	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.
CHROMIUM	ppb	100	100	N/A	N/A	N/A	N/A	0 - 1	0.25	4	2017	N/A	N/A	N/A	N/A	Discharge from steel and pulp mills; erosion of natural deposits.
FLOURIDE	ppm	4	4	1.7 - 1.8	1.75	2	2017	0.89 - 0.89	0.89	1	2018	0.53	N/A	N/A	2018	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
NICKEL	ppb	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.53	N/A	N/A	2018	Erosion of natural deposits; discharge from industries; discharge from refineries and steel mills.
NITRATE	ppm	10	10	1.6 - 3	2.3	2	2018	0.85 - 6.9	4.39	7	2018	0.44	N/A	N/A	2018	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits.
SELENIUM	ppb	50	50	4 - 7.4	5.7	2	2017	N/A	N/A	N/A	N/A	6	N/A	N/A	2018	Discharge from pertroleum and metal refineries; erosion of natural deposits; discharge from mines.
TETRACHLOROETHYLENE	ppb	0	5	N/A	N/A	N/A	N/A	0 - 0.63	0.13	5	2018	N/A	N/A	N/A	N/A	Discharge from factories and dry cleaners.
TRICHLOROETHYLENE	ppb	0	5	N/A	N/A	N/A	N/A	0 - 1	0.17	6	2017	N/A	N/A	N/A	N/A	Discharge from metal degreasing sites and other factories.
SECONDARY				F	OUNTAIN	I WATER		,	WIDEFIELD	VATER FOUNTAIN VALLEY AUT			EY AUTH	ORITY		
CONTAMINATES	UNIT	MCLG	MCL	RANGE	AVERAGE	SAMPLE SIZE	YEAR SAMPLED	RANGE	AVERAGE	SAMPLE SIZE	YEAR SAMPLED	RANGE	AVERAGE	SAMPLE SIZE	YEAR SAMPLED	TYPICAL SOURCES
SODIUM	ppm	N/A	N/A	120 - 140	130	2	2017	180 - 180	180	2	2018	19.6	N/A	N/A	2018	Erosion of natural deposits
TOTAL DISSOLVED SOLIDS	ppm	N/A	N/A	N/A	N/A	N/A	N/A	1100 - 1110	1105	2	2014	N/A	N/A	N/A	N/A	Secondary Standard: 500
DIBROMOACETIC ACID	ppb	N/A	N/A	N/A	N/A	N/A	N/A	1.14 - 2.91	1.92	8	2018	N/A	N/A	N/A	N/A	N/A
DICHLOROACETIC ACID	ppb	N/A	N/A	N/A	N/A	N/A	N/A	0 - 10.8	4.24	8	2018	N/A	N/A	N/A	N/A	N/A
TIRCHLOROACETIC ACID	ppb	N/A	N/A	N/A	N/A	N/A	N/A	0 - 7.14	2.88	8	2018	N/A	N/A	N/A	N/A	N/A
ORGANIC				F	OUNTAIN	WATER			WIDEFIELD	WATER		FOUNT	AIN VALL	EY AUTH	ORITY	
CONTAMINANTS	UNIT	MCLG	MCL	RANGE	AVERAGE	SAMPLE	YEAR	RANGE	AVERAGE	SAMPLE	YEAR	RANGE	AVERAGE	SAMPLE	YEAR	TYPICAL SOURCES
HEXACHLOROCYCLO- PENTADIENE	ppb	50	50	N/A	N/A	SIZE N/A	SAMPLED N/A	N/A	N/A	SIZE N/A	SAMPLED N/A	006	0.03	SIZE 2	SAMPLED 2016	N/A
							DISI	NFECTANTS	SAMPLED	IN THE [DISTRIBU	TION SYST	EM			
DISINFECTANT	DISINFECTANT UNIT Lowest paried FOUNTAIN WATER						WIDEFIELD	WATER		FOUNT	AIN VALL	EY AUTH	ORITY	TYPICAL SOURCES		
CHLORINE	ppm	percentage of samples meeting Number of Samp		•	30	2018	Number of Samples Below Level: <u>1</u>		20	2018	TT= No More Than 4 Hours With Sample Below 0.2 MG/L		2018	Disinfectants Sampled in the Distribution System - TT Requirements: At least 95% of samples per period (month or quarter) must be at least 0.2 ppm OR if sample size is less than 40 no more than 1 sample is below 0.2 ppm. Typical Sources: Water additive used to control microbes.		

				F	OUNTAIN	I WATER			WIDEFIELD	WATER		FOUNT	AIN VALL	EY AUTH	ORITY		
LEAD & COPPER (Sampled in the distribution System)	UNIT	90 PERCEN		90th PERCENTILE	SITES ABOVE AL	SAMPLE SIZE	DATES	90th PERCENTILE	SITES ABOVE AL	SAMPLE SIZE	DATES	90th PERCENTILE	SITES ABOVE AL	SAMPLE SIZE	DATES		TYPICAL SOURCES
COPPER	ppm	1.	.3	0.38	0	60	11/8/18 - 11/16/18	0.33 - 0.38	0	60	2/22/18 - 12/12/18	N/A	N/A	N/A	N/A	Corrosion of househol deposits.	d plumbing systems; erosion of natural
LEAD	ppb	1	5	6.3	2	60	11/8/18 - 11/16/18	2.6 - 2.8	1	60	2/22/18 - 12/12/18	N/A	N/A	N/A	N/A	Corrosion of househol deposits.	d plumbing systems; erosion of natural
			(1	DISINFECTI	ON BYPR	ODUCTS	S PRECUR	SOR) REMO	VAL RATIO	OF RAV	V AND FIN	VISHED W	ATER - F	OUNTAI	N VALLE	Y AUTHORITY	
TOTAL ORGANIC	UNIT	MCLG		MCL		MPLE DA		AVER	RAGE	RA	NGE	MCL VIO	LATION				TYPICAL SOURCES
CARBON	RATIO	N/A	<u>TT MIN</u>	<u>. RATIO:</u> 1.00		verage (20		1.(1.28	NC				Naturally present in th	e environment
FOUNTAIN VALLEY AUTHORITY (FVA) MICROBIOLOGICAL CONTAMINANTS																	
CONTAMINANT		NIT	A۷	/ERAGE	SAMPL	LE SIZE	DATE					ETECTED		VIOLA			TYPICAL SOURCES
TURBIDITY	Ν	ITU					Sept. 2018					surement: 0.		N	0	Soil Runoff	
TURBIDITY	Ν	ITU					Dec. 2018					ercentage of uirements: 1		N	0	Soil Runoff	
FOUNTAIN VALLEY AUTHORITY (FVA) CRYPTOSPORIDIUM AND RAW SOURCE WATER E. COLI																	
CONTAMINANT	U	NIT	MCL	RANGE DETECTED	YEAR		DESCRIPTION								TYPICAL SOURCES		
CRYPTOSPORIDIUM	00	cysts	0	0	2018	common water and	Cryptosporidium is a microbial pathogen found in surface water throughout the United States. Although filtration removes cryptosporidium, the most commonly used filtration methods cannot guarantee 100 percent removal. Our monitoring indicates the presence of these organisms in our source water and/or finished water. Current test methods do not allow us to determine if the organisms are dead or if they are capeable of causing disease. Ingestion of cryptosporidium may cause cryptosporidiosis, an abdpminal infection. Symptoms of infection include nausea, diarrhea, and abdominal								Naturally present in the environment		
E. COLI	N	1PN	N/A	0 - 10	2018	cramp developin	os. Most healt g life threate	hy individuals c ning illness. We	an overcome tl encourage imr	he disease v nuno-comp	within a few v primised indiv	weeks. Howev viduals to cons	ver, immun sult their do	o-comprimi octor regarc	sed people ling approp	are at greater risk of	Naturally present in the environment
				F	OUNTAIN	I WATER			WIDEFIELD	WATER		FOUNT	AIN VALL	EY AUTH	ORITY		
DISINFECTION BY- PRODUCTS	UNIT	MCLG	MCL	RANGE	AVERAGE	SAMPLE SIZE	YEAR SAMPLED	RANGE	AVERAGE	SAMPLE SIZE	YEAR SAMPLED	RANGE	AVERAGE	SAMPLE SIZE	YEAR SAMPLED		TYPICAL SOURCES
TOTAL HALOCETIC ACIDS (HAA5)	ppb	N/A	60	9.2 - 27	19.2	16	2018	1.41 - 30	12.3	16	2018	N/A	N/A	N/A	N/A	By-product of drinking	water disinfection.
TOTAL TRIHALOMETHANES (TTHM)	ppb	N/A	80	25.5 - 53.8	40.68	16	2018	4.1 - 59.71	28.62	16	2018	N/A	N/A	N/A	N/A	By-product of drinking	water disinfection.
RADIONUCLIDES		MCLG	MCI	F	OUNTAIN				WIDEFIELD			FOUNT	AIN VALL				
				RANGE	AVERAGE	SAMPLE SIZE	YEAR SAMPLED	RANGE	AVERAGE	SAMPLE SIZE	YEAR SAMPLED	RANGE	AVERAGE	SAMPLE SIZE	YEAR SAMPLED	TYPICAL SOURCES	
GROSS ALPHA	pCi/L	0	15	4.2 - 4.2	4.2	1	2017	0.71 - 2.65	1.68	2	2017	N/A	N/A	N/A	N/A	Erosion of natural deposits	
GROSS BETA PARTICLE ACTIVITY	pCi/L	0	50	N/A	N/A	N/A	N/A	2 - 2	2	1	2017	N/A	N/A	N/A	N/A	Decay of natural and man-made deposits	
RADIUM, COMBINED (226, 228)	pCi/L	0	5	1.34 - 1.34	1.34	1	2017	1.5 - 1.5	1.5	1	2017	N/A	N/A	N/A	N/A	Erosion of natural dep	
URANIUM - COMBINED	ppb	0	30	7.2 - 7.2	7.2	1	2017	6.1 - 8.2	6.83	3	2017	N/A	N/A	N/A	N/A	Erosion of natural dep	osits

EPA has implemented the Unregulated Contaminant Monitoring Rule (UCMR) to collect data for contaminants that are suspected to be present in drinking water and do not have health-based standards set under the Safe Drinking Water Act. EPA uses the results of UCMR monitoring to learn about the occurrence of unregulated contaminants in drinking water and to decide whether or not these contaminants will be regulated in the future. We performed monitoring and reported the analytical results of the monitoring to EPA in accordance with its Third Unregulated Contaminant Monitoring Rule (UCMR3). Once EPA reviews the submitted results, the results are made available in the EPA's National Contaminant Occurrence Database (NCOD) (http://www.epa.gov/dwucmr/national-contaminant-occurrence-database-ncod) Consumers can review UCMR results by accessing the NCOD. Contaminants that were detected during our UCMR3 sampling and the corresponding analytical results are

									provid	ded below						
				F	OUNTAIN	WATER			WIDEFIELD	WATER	-	FOUNT	AIN VALL	EY AUTH	ORITY	
UNREGULATED CONTAMINATES	UNIT	MCLG	MCL	RANGE	AVERAGE	SAMPLE SIZE	YEARS SAMPLED	RANGE	AVERAGE	SAMPLE SIZE	YEARS SAMPLED	LEVEL DETECTED	AVERAGE	SAMPLE SIZE	YEARS SAMPLED	TYPICAL SOURCES
BROMOCHLOROACETIC ACID	ppb	N/A	N/A	N/A	N/A	N/A	N/A	.909 - 4.53	2.41	8	2018	N/A	N/A	N/A	N/A	N/A
CHLORODIBROMOACETIC ACID	ppb	N/A	N/A	N/A	N/A	N/A	N/A	.379 - 1.58	0.90	8	2018	N/A	N/A	N/A	N/A	N/A
CHROMIUM	ppb	N/A	N/A	09	0.19	49	2014-2015	.2 - 1.1	0.19	49	2014-2015	N/A	N/A	N/A	N/A	N/A
BROMODICHLOROACETIC ACID	ppb	N/A	N/A	N/A	N/A	N/A	N/A	0 - 3.7	1.43	8	2018	N/A	N/A	N/A	N/A	N/A
COBALT	ppb	N/A	N/A	0 - 1.35	0.03	48	2014-2015	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MANGANESE	ppb	N/A	N/A	N/A	N/A	N/A	N/A	.412 - 9.35	4.8	2	2018	N/A	N/A	N/A	N/A	N/A
MONOBROMOACETIC ACID	PPB	N/A	N/A	N/A	N/A	N/A	N/A	0 - 0.83	0.25	8	2018	N/A	N/A	N/A	N/A	N/A
MOLYBDENUM	ppb	N/A	N/A	0 - 7.07	3.5	49	2014-2015	1.3 - 6.	3.5	49	2014-2015	N/A	N/A	N/A	N/A	N/A
CHROMIUM	ppb	N/A	N/A	09	0.19	49	2014-2015	.2 - 1.1	0.19	49	2014-2015	N/A	N/A	N/A	N/A	N/A
STRONTIUM	ppb	N/A	N/A	460 - 640	447	49	2014-2015	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
VANADIUM	ppb	N/A	N/A	005	0.45	49	2014-2015	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CHROMIUM, HEXAVALENT (DISSOLVED)	ppb	N/A	N/A	005	0.14	53	2014-2015	.03262	0.14	53	2014-2015	N/A	N/A	N/A	N/A	N/A
CHLORATE	ppb	N/A	N/A	N/A	45	49	2014-2015	25 - 390	45	49	2014-2015	N/A	N/A	N/A	N/A	N/A
1,4-DIOXANE	ppb	N/A	N/A	019	0.059	17	2014-2015	.0713	0.059	17	2014-2015	N/A	N/A	N/A	N/A	N/A
PERFLUOROBUTANESULFONIC ACID (PFBS)	ppb	N/A	N/A	N/A	N/A	N/A	N/A	Non-Detect	Non-Detect	12	2018	N/A	N/A	N/A	N/A	N/A
PERFLUOROHEPTANOIC ACID (PFHpA)	ppb	N/A	N/A	001	0.0096	18	2014-2015	Non-Detect	Non-Detect	12	2018	N/A	N/A	N/A	N/A	N/A
PERFLUOROHEXANESULFONIC ACID (PFHxS)	ppb	N/A	N/A	006	0.098	18	2014-2015	Non-Detect	Non-Detect	12	2018	N/A	N/A	N/A	N/A	N/A
PERFLUOROOCTANESULFONIC ACID (PFOS)	ppb	N/A	N/A	004	0.033	18	2014-2015	Non-Detect	Non-Detect	12	2018	N/A	N/A	N/A	N/A	N/A
PERFLUOROOCTANOIC ACID (PFOA)	ppb	N/A	N/A	.0204	0.017	18	2014-2015	Non-Detect	Non-Detect	12	2018	N/A	N/A	N/A	N/A	N/A
***More information abo	out the	contam	ninants t	hat were inc	luded in l	UCMR3 r	nonitoring	can be foun	d at: http://	www.drii	nktap.org/	water-info,	/whats-in	i-my-wat	er/unreg	ulated-contaminant-monitoring-rule.aspx. Learn more about
the EPA UCMR	at: <mark>htt</mark>	p://www	w.epa.go	v/dwucmr/	earn-abo	ut-unreg	ulated-cor	ntaminant-m	onitoring-ru	<mark>le</mark> or con	tact the Sa	ife Drinking	g Water ⊦	lotline at	(800) 42	6-4791 or http://water.epa.gov/drink/contact.cfm
																ISTRIBUTORS TO LIST ANY DETECTED CONTAMINANTS THAT SIVEN NOTIFICATION OF THE STATE'S FINDINGS REGARDING
					-		ANY ANI	O ALL VIOLAT	TONS, IF AN	Y, WITH ⁻	THE RESUL	TS LISTED I	BELOW:			
NAME		CATEGOF	RY	TIME PERIOD	HEALTH	EFFECTS								TIVE MEA		
Cross Connection Rule	Conne	e to mee ection/Ba ements - based	ackflow	11/14/18 - Open	May pos public		by failing to ensure that these 6 backflow prevention devices were tested in 2017. All 6 of the backflow prevention devices were tested on March 8, 2018 and passed the tests. Therefore, FV/									

Fountain Valley Authority (PWSID # CO0121300) 2019 Water Quality Report Information for the 2018 Calendar Year for: City of Fountain (PWSID # CO0121275) Colorado Springs Utilities (PWSID # CO0121150) Security Water District (PWSID # CO0121775) Stratmoor Hills Water District (PWSID # CO0121800) Widefield Water District (PWSID # CO0121900)

WATER SOURCE INFORMATION

Fountain Valley Authority treats surface water received from the Fryingpan-Arkansas Project. The Fryingpan-Arkansas Project is a system of pipes and tunnels that collects water in the Hunter-Fryingpan Wilderness Area near Aspen. Waters collected from the system are diverted to the Arkansas River, near Buena Vista, and then flows approximately 150 miles downstream to Pueblo Reservoir. From Pueblo Reservoir, the water travels through a pipeline to the water treatment plant.

COLORADO SOURCE WATER ASSESSMENT AND PROTECTION

The Colorado Department of Public Health and Environment may has provided us with a Source Water Assessment Report for our water supply. For general information or to obtain a copy of the report please visit www.colorado.gov/cdphe/ccr. The report is located under "Guidance: Source Water Assessment Reports". Search the table using 121300, FOUNTAIN VALLEY AUTHORITY or by contacting Colorado Springs Utilities Laboratory Services at 719-668-4560. The Source Water Assessment Report provides a screening-level evaluation of potential contamination that <u>could</u> occur. It <u>does not</u> mean that the contamination <u>has or will</u> occur. We can use this information to evaluate the need to improve our current water treatment capabilities and prepare for future contamination threats. This can help us ensure that quality finished water is delivered to your homes. In addition, the source water assessment results provide a starting point for developing a source water protection plan. Potential sources of contamination in our source water area are listed below.

Potential sources of contamination to our source water areas may come from:

- EPA Superfund Sites
- EPA Abandoned Contaminated Sites
- EPA Hazardous Waste Generators
- EPA Chemical Inventory/Storage Sites
- EPA Toxic Release Inventory Sites

- Permitted Wastewater Discharge Sites
- Aboveground, Underground and Leaking Storage Tank Sites
- Solid Waste Sites
- Existing/Abandoned Mine Sites
- Concentrated Animal Feeding Operations
- Other Facilities
- Commercial/Industrial Transportation
- High-and-Low-Intensity Residential
- Urban Recreational Grasses
- Quarries/Strip Mines/Gravel Pits
- Agricultural Land (row crops, small grain, pasture/hay, orchards/vineyards, fallow and other)
- Forest
- Septic Systems
- Oil/Gas Wells
- Road Miles

Fountain Valley Authority is dedicated to protecting our source water and ensuring quality treated water is delivered to our customers. The results of the source water assessment are not a reflection of our treated water quality received at the system connections, but rather a rating of the susceptibility of contamination under the guidelines of the Colorado SWAP program.

POSSIBLE WATER CONTAMINANTS

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (1-800-426-4791) or by visiting http://water.epa.gov/drink/contaminants.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV-AIDS or other immune system disorders, some elderly, and infants can be particularly at risk of infections. These people should seek advice about drinking water from their health care providers. For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and microbiological contaminants call the EPA Safe Drinking Water Hotline at (1-800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants: viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants: salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides: may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses.
- Radioactive contaminants: can be naturally occurring or be the result of oil and gas production and mining activities.

• Organic chemical contaminants: including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff, and septic systems.

In order to ensure that tap water is safe to drink, the Colorado Department of Public Health and Environment prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration regulations establish limits for contaminants in bottled water that must provide the same protection for public health.

FLUORIDE INFORMATION

Fluoride is a compound found naturally in many places, including soil, food, plants, animals and the human body. It is also found naturally in Fountain Valley Authority's water source. Fountain Valley Authority does not add additional fluoride to the treated water. Any fluoride in the treated water results from what occurs naturally in the source water.

LEAD INFORMATION

If present, elevated levels of lead can cause serious health problems (especially for pregnant women and young children). It is possible that lead levels at your home may be higher than other homes in the community as a result of materials used in your home's plumbing. If you are concerned about lead in your water, you may wish to have your water tested. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. Additional information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/safewater/lead.

DEFINITIONS

- Maximum Contaminant Level (MCL) The highest level of a contaminant allowed in drinking water.
- Treatment Technique (TT) A required process intended to reduce the level of a contaminant in drinking water.
- Health-Based A violation of either a MCL or TT.
- Non-Health-Based A violation that is not a MCL or TT.
- Action Level (AL) The concentration of a contaminant which, if exceeded, triggers treatment and other regulatory requirements.
- Maximum Residual Disinfectant Level (MRDL) The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- Maximum Contaminant Level Goal (MCLG) The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- Maximum Residual Disinfectant Level Goal (MRDLG) The level of a drinking water disinfectant, below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- Violation (No Abbreviation) Failure to meet a Colorado Primary Drinking Water Regulation.
- Formal Enforcement Action (No Abbreviation) Escalated action taken by the State (due to the risk to public health, or number or severity of violations) to bring a non-compliant water system back into compliance.
- Variance and Exemptions (V/E) Department permission not to meet a MCL or treatment technique under certain conditions.
- Gross Alpha (No Abbreviation) Gross alpha particle activity compliance value. It includes radium-226, but excludes radon 222, and uranium.
- **Picocuries per liter (pCi/L)** Measure of the radioactivity in water.
- Nephelometric Turbidity Unit (NTU) Measure of the clarity or cloudiness of water. Turbidity in excess of 5 NTU is just noticeable to the typical person.

- **Compliance Value (No Abbreviation)** Single or calculated value used to determine if regulatory contaminant level (e.g. MCL) is met. Examples of calculated values are the 90th Percentile, Running Annual Average (RAA) and Locational Running Annual Average (LRAA).
- Average (x-bar) Typical value.
- Range (R) Lowest value to the highest value.
- Sample Size (n) Number or count of values (i.e. number of water samples collected).
- Parts per million = Milligrams per liter (ppm = mg/L) One part per million corresponds to one minute in two years or a single penny in \$10,000.
- Parts per billion = Micrograms per liter (ppb = ug/L) One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- Not Applicable (N/A) Does not apply or not available.
- Level 1 Assessment A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
- Level 2 Assessment A very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

WANT MORE INFORMATION

For questions concerning this report, please call Colorado Springs Utilities Laboratory Services at (719) 668-4560.

TABLE OF DETECTED CONTAMINANTS

Fountain Valley Authority routinely monitors for contaminants in your drinking water according to Federal and State laws. The following table(s) show all detections found in the period of January 1 to December 31, 2018 unless otherwise noted. The State of Colorado requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. Therefore, some of our data, though representative, may be more than one year old. Violations and Formal Enforcement Actions, if any, are reported in the next section of this report.

Only detected contaminants sampled within the last 5 years appear in this report. If no tables appear in this section, then no contaminants were detected in the last round of monitoring.

Fountain Valley Authority (PWSID CO0121300)

Monitored at the Treatment Plant (entry point to the transmission system)												
Contaminant	MCL	MCLG	Units	Level Detected	MCL Violation	Sample Dates	Possible Source(s) of Contamination					
Barium	2	2	ppm	0.06	No	April 2018	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits					
Fluoride	4	4	ppm	0.53	No	April 2018	Erosion of natural deposits; discharge from fertilizer and aluminum factories					
Nitrate (as Nitrogen)	10	10	ppm	0.44	No	April 2018	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits					
Nickel	N/A	N/A	ppb	0.53	N/A	April 2018	Erosion of natural deposits, discharge from industries, discharge from refineries and steel mills					
Selenium	50	50	ppb	6	No	April 2018	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines					
Sodium	N/A	N/A	ppm	19.6	N/A	April 2018	Erosion of natural deposits					

Inorganic Contaminants ponitored at the Treatment Plant (entry point to the transmission system

Organic Contaminants Monitored at the Treatment Plant (entry point to the transmission system)

Contaminant	MCL	MCLG	Units	Average	Range	MCL Violation	Sample Dates	Possible Source(s) of Contamination
Hexachlorocyclopentadiene	50	50	ppb	0.03	0 - 0.06	No	April, July 2016	Discharge from chemical factories

Turbidity Continuously monitored at the Treatment Plant (entry point to the transmission system)

Contaminant	TT Requirement	Level Detected	TT Violation	Sample Dates	Possible Source(s) of Contamination
Turbidity	Maximum 1 NTU for any single measurement	Highest Single Measurement: 0.128 NTU	No	Sept 2018	Soil Runoff
Turbidity	In any month, at least 95% of samples must be less than 0.3NTU	Lowest Monthly percentage of samples meeting TT requirement: 100%	No	Dec 2018	Soil Runoff

Contaminant	MCL	MCLG	Units	Average	Range	MCL	Sample Dates	Possible Source(s) of Contamination
					Low - High	Violation		
Total Organic Carbon	ТТ	N/A	N/A	1.08	1 – 1.28	No	Monthly - Running	Naturally present in the environment
(TOC)	minimum						Annual Average	
	ratio =							
	1.00							

	Disinfectants Continuously monitored at the Treatment Plant (entry point to the transmission system)										
Contaminant	MRDL	Units	Level Detected	MRDL Violation	Sample Dates	Possible Source(s) of Contamination					
Chlorine	TT= No more than 4 hours with a sample below 0.2 ppm	ppm	0 samples above or below the level	No	Jan – Dec 2018	Water additive used to control microbes					

Violations, Significant, Backflow/Cross Connection, and Formal Enforcement Actions

Name	Category	Time Period	Health Effects	Compliance Value	TT Level or MCL
Cross Connection Rule	Failure to meet Cross Connection/Backflow Requirements – Health-based	11/14/18 - Open	May pose a risk to public health	N/A	N/A

Additional Violation Information

State drinking water regulations require that all public drinking water systems, such as FVA, test a percentage of the backflow prevention devices located within their systems annually. In March of 2018, FVA identified 6 backflow prevention devices within its water system that were not tested as required in 2017. This means that FVA violated State drinking water regulations by failing to ensure that these 6 backflow prevention devices were tested in 2017. All 6 of the backflow prevention devices were tested on March 8, 2018 and passed the tests. Therefore, FVA is not aware of any uncontrolled cross connections to its water supply system. FVA is providing the state with an updated Backflow Prevention Cross-Connection Program Plan that includes measures to avoid this type of violation in the future.