WIDEFIELD WATER AND SANITATION DISTRICT

2 MG ROLLING HILLS TANK

SITE DEVELOPMENT PLAN FINAL DRAINAGE REPORT

January 2021

JDS Project Number 102.121

Prepared By:

CONSULTANTS, INC.

Design Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Elizabeth Steffens, PE #53332

Owner/Developer's Statement:

I, the owner/developer have read and will comply with all of the requirements specified in this drainage report and plan.

Lucas Hale Widefield Water and Sanitation District 8495 Fontaine Blvd., Colorado Springs, CO 80925

Date

El Paso County:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Jennifer Irvine, P.E. County Engineer / ECM Administrator Date

Conditions:

January 29, 2021

El Paso County Planning & Community Development 2880 International Circle, Suite 110 Colorado Springs, CO 80910-3127 Attn: Gabe Sevigny

RE: Widefield Water and Sanitation District 2 MG Potable Water Tank 1041 Submittal – Drainage Letter Address: TBD (Schedule 5500000385)

Dear Mr. Sevigny:

The purpose of this drainage letter is to satisfy requirements of the El Paso County Planning and Community Development division pertaining to the proposed 1041 Submittal for the project referenced above.

Property Description:

The intention of the applicant is to construct a storage tank to provide water service to areas within the existing Widefield Water and Sanitation District (WWSD) service area boundaries.

The site for Rolling Hills 2MG Tank is located in the Northwest 1/4 of Section 1, Township 15 South, Range 65 West of the 6th Principle Meridian, El Paso County, Colorado (El Paso County Parcel #: 5500000385). The subject facility is a proposed potable water tank and will be located on a 3.472 acre proposed site within the 802.42-acre overall parcel.

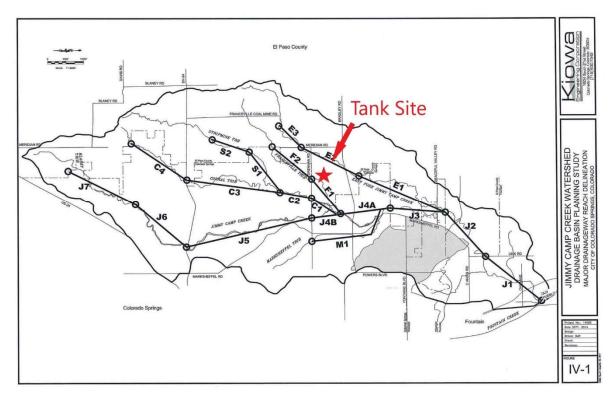
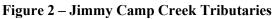




Figure 1 – Jimmy Camp Creek Drainage Basins

This project is located in the Jimmy Camp Creek Drainage Basin (FOFO2000) with Jimmy Camp Creek being the receiving water shed. A Drainage Basin Planning Study (DBPS) was prepared for this basin in 2015 by Kiowa Engineering Corporation. This study was authorized by the City of Colorado Springs, but due to the extensive regional implications of the study, input and review to the technical scope of the project was provided by the City of Fountain and El Paso County.

The site borders Drennan Road to the north and South Meridian Road to the east. The site for this project is used as grazing land for cattle and does not have an address. The address for the new facility will be determined and granted by the Pikes Peak Regional Building Department during their review of the building permit.

<u>Soils</u>

Soils for this project are delineated as Tassel fine sandy loam, 3 to 18 percent slopes (89) and are characterized as Hydrologic Soil Group D (high runoff potential when thoroughly wet). Soils were mapped using the NRCS Web Soil Survey. According to a geotechnical evaluation report by Vivid Engineering Group, dated 3/5/2020, site soils were comprised predominately of Piney Creek Alluvium deposits of mostly clayey and silty sand underlain by interbedded sandstone, claystone, and shale bedrock of the Pierre Shale Formation. A total of seven (7) exploratory borings within or near the general area to be occupied by the proposed tank were drilled to depths ranging from approximately 29 to 45 feet below the existing ground surface. The ground surface consists of gently rolling topography and was covered predominantly with grasses and yucca plants. A copy of NRCS Web Soil Survey is included in Appendix A.

Flood Plain Statement

The Floodplain Insurance Rate Map (FIRM) for El Paso County (map number 08041C0790G, dated December 7, 2018) was reviewed to determine any potential floodplain delineation. A copy of the relevant portion of this FIRM panel can be found in Appendix B. As shown, the proposed site lies within Zone X, defined as areas outside the 100-year floodplain. There is a FEMA floodplain zone AE on the parcel approximately 1400 feet the east of the site.

Drainage Criteria

This drainage analysis has been prepared in accordance with the current El Paso County Drainage Criteria Manual (Volumes 1 and 2). Volume 1 was established in 1991 with subsequent revisions in 1994. In 2002, the City of Colorado Springs Drainage Criteria Manual Volume 2 (DCMV2) was adopted as El Paso County's stormwater quality design criteria with Appendix H of the El Paso County's Engineering Criteria manual (ECM) to provide additions and revisions applicable to the County. In 2015, El Paso County adopted portions of the City of Colorado Springs Drainage Criteria Manual Volume 1 dated May 2014 including Chapter 6 and Section 3.2.1 of Chapter 13. In addition, the Urban Storm Drainage Criteria Manuals, Volumes 1-3 published by the Mile High Flood District (MHFD), formerly known as the Urban Drainage and Flood Control District, and dated November 2010 with subsequent updates were used to prepare this drainage report.

The Site is located within the Jimmy Camp Creek Drainage Basin (FOFO2000) with Jimmy Camp Creek being the receiving water shed. A Drainage Basin Planning Study (DBPS) was prepared for this basin in 2015 by Kiowa Engineering Corporation. A Master Development Drainage Plan for the Rolling Hills Ranch development will be prepared in the future. The proposed water storage tank will serve the future Rolling Hills Ranch development and will be owned and operated by WWSD.

Four Step Process

The Four Step Process for stormwater quality management listed below was utilized during planning for the proposed water tank site when applicable. Further details on how this was implemented for the proposed project is discussed throughout this drainage report.

Step 1: Employ Runoff Reduction Practices

Gravel driveway rather than a paved driveway is planned. Reduces runoff by disconnecting impervious area, eliminating "unnecessary" impervious area and encouraging infiltration into soils that are suitable.

Step 2: Stabilize Drainageways.

By implementing a sand filter basin the runoff from the water tank site will be reduced to pre-development conditions and therefore not anticipated to have negative effects on downstream drainageways. All drainageways proposed within the water tank site will be stabilized by revegetation with a native seed mix.

Step 3: Provide Water Quality Capture Volume (WQCV).

Sand filter basin is proposed to encourage infiltration of the WQCV.

Step 4: Consider Need for Industrial and Commercial BMPs

Spill containment and control for equipment fueling and maintenance and bulk storage will be implemented on the site. In addition, silt fence, sediment control logs, vehicle tracking control pad, concrete washout area, and mulching and reseeding will be used to mitigate the potential for erosion on the site. Further details will be provided in the site's stormwater management plan (SWMP).

Hydrologic Calculations

The hydrologic calculations were prepared following guidance from El Paso County Drainage Criteria Manual and resources from the MHFD (formerly known as UDFCD). The tank and access road easements are less than 100 acres, so the Rational Method is utilized as recommended in El Paso County Drainage Criteria Manual Volume 1. The Rational Method was used to determine estimated runoff peak discharges from storms between 2-year and 100-year storm recurrence intervals. Figure 6-5 IDF Curves are based on the rainfall depths for an elevation of 6,840 feet in the Colorado Springs area and were used for the hydrologic calculations. The 1-hr rainfall depths for each storm recurrence interval were obtained from the NOAA Atlas 14 Volume 8 Version 2 on the NOAA website.

1-hr rainfall depth, P1 (in)							
2-yr	5-yr	10-yr	25-yr	50-yr	100-yr	500-yr	
0.69	0.98	1.23	1.58	1.86	2.14	2.84	

Table 1 – 1-hr Rainfall Depths

Runoff coefficients were established based on Table 6-6 and Equation 6-6 of the El Paso County Drainage Criteria Manual Volume 1 Update. The percent impervious values for the site was calculated using the existing conditions for pre-development and proposed improvements for post-development. Time of concentration (Tc) for the basin for both historic and developed flows was calculated using Equations 6-7 through 6-9 of the El Paso County Drainage Criteria Manual Volume 1 Update. The El Paso Drainage Criteria Manual recommends limiting overland flow to a maximum of 300 feet in nonurban land uses. Calculations can be found in Appendix C.

Hydraulic Calculations

Hydraulic calculations were estimated using methods described in the El Paso County Drainage Criteria Manual and resources from the MHFD.

Drainage swale hydraulic calculations were performed using Manning's Equation to determine the drainage swale geometry needed to convey the developed runoff based on the site conditions. Calculations can be found in Appendix C.

Access to the tank site is provided from Drennan Rd. The proposed culvert is located near a high point and will convey flows from an approximately 0.99-acre area which includes 500 feet of gravel driveway and grassed drainage swale adjacent to the access road. Hydraulic calculations for the proposed culvert were prepared using HY-8. Based on the calculations and the City of Colorado Springs minimum culvert size requirement, a 15-inch CMP culvert is proposed for the temporary access road. Culvert calculations are provided in Appendix E.

Further discussion of the hydraulic calculations for the sand filter basin outlet works is included in the Sand Filter Basin section.

Existing Drainage Conditions

The developed land for the potable water tank will occur on the 3.472-acre easement, located at the high point of the surrounding area, and is not impacted from off-site flows. An access road from Drennan Rd. will serve the tank site. Historically, Subbasin A drains to the west and enters Franceville Tributary either by entering the roadside ditch along Drennan Road and flowing west or by overland flow. Subbasin B drains to the southeast and enters the Jimmy Camp East Tributary. The site is covered with native vegetation and includes grass and herbaceous species typical of vegetative assemblages in pastures routinely grazed by livestock. There are no existing drainage facilities (storm pipes, inlets, culverts, etc.) on the site.

The site evaluated for this study includes the 3.472-acre easement for the tank site and 1.24-acre easement for the access road. The drainage is subdivided into two basins (Subbasin A and B) for this evaluation. Drainage basin delineation is included in Appendix F.

Subbasin A

Runoff is conveyed via overland sheet flow at a slope of 4.9% resulting in a time of concentration (Tc) of 12.18 minutes to the northwest to a point identified as Design Point DP-EX-A. Table 2 – Pre-Development Runoff for Subbasin A provides the calculated runoff flows for the pre-development condition.

Table 2 – Pre-Development Runoff for Subbasin A

	10-year	100-year
Peak Flow, cfs	2.10	6.05

Subbasin B

Runoff is conveyed via overland sheet flow at a slope of 9.7% resulting in a time of concentration (Tc) of 10.57 minutes to the southeast to a point identified as Design Point DP-EX-B. Table 3 – Pre-Development Runoff for Subbasin B provides the calculated runoff flows for the pre-development condition.

Table 3 – Pre-Development Runoff for Subbasin B

	10-year	100-year
Peak Flow, cfs	1.26	3.63

Proposed Drainage Conditions

General Concept

Proposed drainage will generally remain the same as the existing drainage. The addition of the water tank will add 7,620 square feet of new impervious area based on the roof of the tank. The gravel access road up to the tank and 15 ft clear area around the tank will add 30,700 square feet.

The proposed drainage for the tank site has been divided into three subbasins (Subbasins A, B, & C). Subbasin A is generally unchanged and flows off-site via sheet flow to the west and into the Franceville Tributary drainage basin. Subbasin B is generally unchanged and flows off-site via sheet flow to the southeast and into the East Fork Tributary. Subbasin C (historically included in Subbasin A & B) is a new small subbasin and includes the tank access road and drainage swale, tank roof, and 15 ft gravel area around the tank. Flow from Subbasin C is discharged into the East Fork Tributary. Drainage in Subbasin C will be conveyed via drainage swale around the tank and continues in a vegetated drainage swale

JDS-HYDR CONSULTANTS, INC.

adjacent to the access road to a sand filter basin (SFB) located at a natural low point before discharging off-site and into the East Fork Tributary drainage basin. The proposed SFB will treat additional drainage produced from impervious areas that will be added to the site as a result of the tank construction including the tank roof and gravel areas. The SFB provides full spectrum detention and will be used to treat the Water Quality Capture Volume (WQCV) and detain the 100-yr flood event to pre-development release rates before leaving the site. The SFB is based on a drain time of 12 hours for the WQCV and 10-yr and 100-year release rate based on draining at 90% of predevelopment flows. Note that Colorado law requires 97% of the 5-year storm event to drain within 72 hours.

The SFB is included in the access road easement and language was included in the easement that the structure may only be abandoned when the future Rolling Hills Ranch Development agrees to accept and treat the developed runoff from the site. Subbasins A will generally not be changed and will drain into the undisturbed existing area to the northwest. Subbasin B will generally not be changed and will drain into the undisturbed existing area to the southeast. The natural division of drainage between Subbasin A and B will be shifted east to allow portions of the land previously included in Subbasin B to drain into the detention area created in Subbasin C.

Approximately 500 LF of the access road drains to the northwest and into the Drennan Rd. drainage ditch. The access road location was driven by grade restraints at the intersection of Drennan Rd and to limit excavation in the exposed sandstone. The drainage area for the access road culvert was designated Subbasin D. Prior to the proposed development, the Drennan Rd. roadside ditch only captured flow from the road north of the proposed access road. With the addition of the access road, drainage from approximately 500 LF of the access road and a small undeveloped area north of the proposed access road will flow into the proposed drainage swale adjacent to the access road. This additional flow will then be conveyed to the proposed access road culvert. The culvert was designed to convey flow for the post-development Subbasin D.

Developed drainage basin delineation is included in Appendix F.

Specific Design Details

Subbasin A & B

Subbasin A & B result in a reduction in post-development runoff due to the reduced size of the drainage area. Developed flows from Subbasin A & B are presented in Table 4 – Post-Development Runoff Estimates for Subbasin A & B below.

	10-year	100-year
Subbasin A		
Peak Flow, cfs	1.62	3.63
	30% E) ecrease
Subbasin B		
Peak Flow, cfs	1.04	3.63
	22% Decrease	

Table 4 – Post-Development Runoff for Subbasin A & B

Subbasin C

Subbasin C is a new subbasin created due to the site improvements and was previously included within pre-development Subbasin A & B. Subbasin C is 1.76 acres and includes the access road easement and tank site easement. Subbasin C is located at a high point and is not impacted from off-site flows. Developed runoff is routed in drainage swales around the tank to a drainage swale

CONSULTANTS. INC.

located adjacent to the access road and into the proposed SFB at a natural low-point on the access road alignment. Drainage from the access road on the west side of the SFB is also conveyed in a drainage swale to the proposed SFB.

The calculated Tc is 14.66 minutes. Proposed developed flows are greater than pre-development flows due to the additional impervious area for the new gravel access road and water storage tank. Subbasin C generates the developed flow presented in Table 5 – Post-Development Runoff Estimates for Subbasin C below.

Table 5 - Post-Development Runon Estimates for Subbasin C				
	10-yr	100-yr		
Post-Development, cfs (into SFB)	3.19	6.43		
Post-Development, cfs (release rate out of SFB)	0.10	0.75		

|--|

Subbasin D

Subbasin D is a new subbasin created due to the proposed site access road. Drainage from this subbasin flows to the access road culvert at the intersection of Drennan Rd. Flow from the culvert is conveyed west in the Drennan Rd. drainage ditch and contributes to the Franceville Tributary of Jimmy Camp Creek.

The calculated Tc is 14.54 minutes. Proposed developed flows are greater than pre-development flows due to the additional impervious area for the new gravel access road. Subbasin D generates the developed flow presented in Table 6 - Post-Development Runoff Estimates for Subbasin D below.

Table 6 - Post-Development Runoff Estimates for Subbasin
--

	10-yr	100-yr
Post-Development, cfs	1.32	3.22

Sand Filter Basin (SFB)

The SFB provides an 18-inch layer of filter material with an underdrain system that discharges into the proposed outlet structure. The SFB will allow for partial infiltration and the stormwater that does not infiltrate is collected and removed by the underdrain system. An orifice plate on the underdrain pipe is sized to drain the design volume in approximately 12 hours or more. The proposed outlet structure is comprised of a sloped inlet concrete box with circular orifice and overflow weir including an outlet pipe with circular orifice plate designed to constrict flow to no more than 90% of the pre-development release rate for the 100-yr event. The underdrain pipe with orifice plate discharges into the outlet structure. A 15-inch RCP outlet pipe discharges flows off-site and into the East Fork Tributary.

The SFB proposed for the site includes volumes, release rates, and components matching the design guidelines in the EPC DCM (Volumes I and II) and the ECM as well as guidance from USDCM. Due to the very small size of the drainage basin, a time step interval of 1-minute was used for the inflow hydrograph to more accurately represent the incoming flow. This resulted in different stage and volume calculations for each zone than what was calculated using the simplified equations. Below is a list of the SFB's major characteristics:

CONSULTANTS, INC.

Description (Zone)	Depth	Volume	Release Rate
WQCV	0.10 ft	0.003 acre-ft	0.004 cfs
EURV	0.27 ft	0.010 acre-ft	0.025 cfs
10-yr	0.33 ft	0.013 acre-ft	0.100 cfs
100-yr	0.57 ft	0.024 acre-ft	0.750 cfs

An emergency spillway with a crest length of 1 foot, 4:1 sideslopes, and minimum of 1-foot freeboard above the water surface when the emergency spillway is conveying the maximum design flow. Refer to the detention basin outlet structure design calculations in Appendix D for the outlet structure and spillway design.

A riprap basin is provided where the drainage swale discharges into the sand filter basin for energy dissipation and filtration. Construction details are provided in the drainage plans in Appendix F.

Water Quality Provisions and Maintenance

The proposed SFB provides water quality treatment for runoff produced on the Rolling Hills Tank Site. This water quality basin is designed to treat approximately 1.76 acres and provide 2,044 cubic feet of water quality storage (below the emergency spillway invert). The SFB will be private and maintained by the property owner. Access to be granted to the owner and El Paso County for access and maintenance of the private WQCV facility. A private maintenance agreement accompanies the submittal. The WQCV facility sizing calculations are included as an attachment of this report.

An access road on the north side of the SFB will provide maintenance access to the filter. Cleanouts will be installed on the underdrain pipes to provide access for inspection (by camera) immediately following construction to ensure that the underdrain pipe was not crushed during construction and to provide ongoing maintenance.

The runoff from a small portion of the site, designated as Subbasin D is not captured and is excluded in accordance with Appendix I of the Engineering Criteria Manual, section 7.1.C.1. The area of subbasin D does not exceed 20% of the site and includes an area of 0.99 acre. Increased post-development flow in Subbasin D is due to the proposed gravel access road resulting in increased impervious area and channelized flow. Due to the small increase in captured area (less than 1 acre), the post-development flow at DP-D is of negligible increase.

Erosion Control

A Grading, Erosion, and Sediment Control Plan will be prepared for the site during site development phase and submitted to El Paso County. This drainage report accompanies the El Paso County 1041 Application for the Rolling Hills Tank Site.

Environmental Evaluations:

The project area, which encompasses the proposed tank site, waterline easement, and access road easement, was investigated by a qualified biologist on June 2, 2020 for the purpose of delineating all waterbodies and wetlands and identifying suitable habitat for federally listed threatened and endangered species.

No waters or wetlands were observed within the project area. Two shallow swales were observed but do not exhibit Ordinary High Water Marks (OHWM).

Drainage Fees

No significant drainage structures are planned for this project and therefore no reimbursement will be requested for additional development that occurs within the area of the study. It is anticipated that in the future, the area around the tank will be developed and at that time, a detailed drainage plan and associated infrastructure will be developed. If development occurs around the tank site, the drainage from the tank site will be redirected to storm sewers planned as part of the Rolling Hills Ranch development.

This site is within the Jimmy Camp Creek Drainage Basin. The El Paso County Drainage Basin Fees associated with the site will be paid when the developer plats the land.

Summary

Recommendations are made within this report concerning necessary improvements that will be required as a result of development of this property. The Rolling Hills Tank site is proposing to construct a sand filter basin that will detain developed flows and release at or below historic rates for the 10-yr and 100-yr storm events, as well as provide WQCV treatment. The sand filter basin will sufficiently mitigate the developed flows. The development of the proposed site does not significantly impact any downstream facility or property to an extent greater than that which currently exists due to historic conditions. Overall, proposed drainage characteristics will generally remain the same as existing, with the addition of a sand filter basin to address the developed flow from the site improvements and a driveway culvert along the Drennan Rd. drainage ditch to facilitate access to the site.

Respectfully, JDS-Hydro Consultants, Inc.

Elizabeth Steffens, P.E.

Enclosed

Appendix A – Soils Map and Report Appendix B – FIRM Map Appendix C – Hydrologic Calculations Appendix D – Sand Filter Basin/Grass Swale Sizing Calculations Appendix E – Driveway Culvert Sizing Calculations Appendix F – Drainage Plans

Appendix A

United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for El Paso County Area, Colorado

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	8
Soil Map (ROLLING HILLS TANK)	
Legend	
Map Unit Legend (ROLLING HILLS TANK)	11
Map Unit Descriptions (ROLLING HILLS TANK)	
El Paso County Area, Colorado	
2—Ascalon sandy loam, 1 to 3 percent slopes	13
28—Ellicott loamy coarse sand, 0 to 5 percent slopes	14
52—Manzanst clay loam, 0 to 3 percent slopes	15
56—Nelson-Tassel fine sandy loams, 3 to 18 percent slopes	17
78—Sampson loam, 0 to 3 percent slopes	19
89—Tassel fine sandy loam, 3 to 18 percent slopes	20
108—Wiley silt loam, 3 to 9 percent slopes	
References	23

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

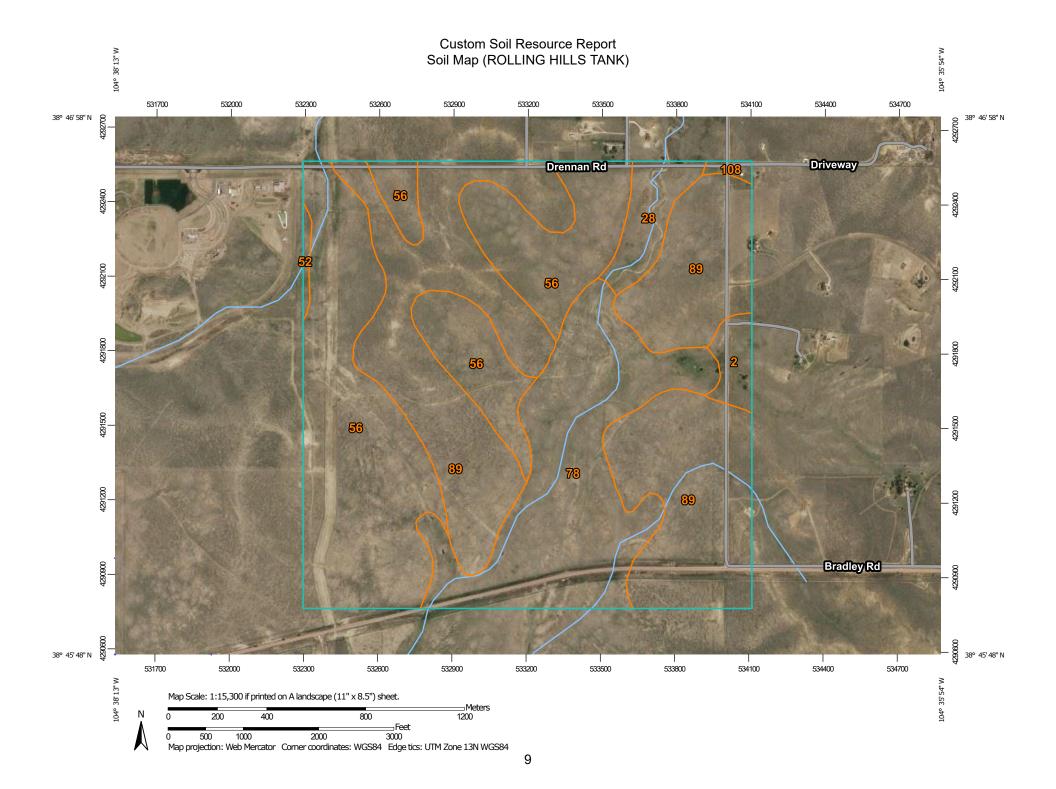
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP L	EGEND		MAP INFORMATION
Area of Int	erest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:24,000.
Soils	Soil Map Unit Polygons Soil Map Unit Lines	00 V	Very Stony Spot Wet Spot	Please rely on the bar scale on each map sheet for map measurements.
D Special	Soil Map Unit Points Point Features	~	Other Special Line Features	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
o X	Blowout Borrow Pit Clay Spot	Water Fea	Streams and Canals	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more
◇ ¥	Closed Depression Gravel Pit Gravelly Spot	~	Interstate Highways US Routes	accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
©	Landfill Lava Flow	ackgrou	Major Roads Local Roads nd	Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 17, Sep 13, 2019
*	Marsh or swamp Mine or Quarry Miscellaneous Water		Aerial Photography	Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.
0 ×	Perennial Water Rock Outcrop			Date(s) aerial images were photographed: Sep 8, 2018—May 26, 2019 The orthophoto or other base map on which the soil lines were
+ ≎°	Saline Spot Sandy Spot			compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
⊕ ♦ ♦	Severely Eroded Spot Sinkhole Slide or Slip			
ø	Sodic Spot			

Map Unit Legend (ROLLING HILLS TANK)

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
2	Ascalon sandy loam, 1 to 3 percent slopes	13.3	1.6%
28	Ellicott loamy coarse sand, 0 to 5 percent slopes	25.0	3.1%
52	Manzanst clay loam, 0 to 3 percent slopes	2.9	0.4%
56	Nelson-Tassel fine sandy loams, 3 to 18 percent slopes	276.3	34.1%
78	Sampson loam, 0 to 3 percent slopes	164.9	20.4%
89	Tassel fine sandy loam, 3 to 18 percent slopes	324.7	40.1%
108	Wiley silt loam, 3 to 9 percent slopes	2.9	0.4%
Totals for Area of Interest		810.1	100.0%

Map Unit Descriptions (ROLLING HILLS TANK)

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a

given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

2—Ascalon sandy loam, 1 to 3 percent slopes

Map Unit Setting

National map unit symbol: 367q Elevation: 5,500 to 6,500 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 47 to 50 degrees F Frost-free period: 130 to 150 days Farmland classification: Prime farmland if irrigated

Map Unit Composition

Ascalon and similar soils: 98 percent Minor components: 2 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ascalon

Setting

Landform: Flats Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Mixed alluvium and/or eolian deposits

Typical profile

A - 0 to 8 inches: sandy loam Bt - 8 to 21 inches: sandy clay loam BC - 21 to 27 inches: sandy loam Ck1 - 27 to 48 inches: sandy loam Ck2 - 48 to 60 inches: loamy sand

Properties and qualities

Slope: 1 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 10 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: Moderate (about 7.1 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Ecological site: Sandy Plains LRU's A & B (R069XY026CO) Other vegetative classification: SANDY PLAINS (069BY026CO) Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 1 percent *Hydric soil rating:* No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

28—Ellicott loamy coarse sand, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 3680 Elevation: 5,500 to 6,500 feet Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 47 to 50 degrees F Frost-free period: 125 to 145 days Farmland classification: Not prime farmland

Map Unit Composition

Ellicott and similar soils: 97 percent *Minor components:* 3 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Ellicott

Setting

Landform: Flood plains, stream terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy alluvium

Typical profile

A - 0 to 4 inches: loamy coarse sand C - 4 to 60 inches: stratified coarse sand to sandy loam

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: Frequent
Frequency of ponding: None
Available water storage in profile: Low (about 4.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7w Hydrologic Soil Group: A Ecological site: Sandy Bottomland LRU's A & B (R069XY031CO) Other vegetative classification: SANDY BOTTOMLAND (069AY031CO) Hydric soil rating: No

Minor Components

Fluvaquentic haplaquoll

Percent of map unit: 1 percent Landform: Swales Hydric soil rating: Yes

Other soils

Percent of map unit: 1 percent Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

52—Manzanst clay loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2w4nr Elevation: 4,060 to 6,660 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 50 to 54 degrees F Frost-free period: 130 to 170 days Farmland classification: Prime farmland if irrigated

Map Unit Composition

Manzanst and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Manzanst

Setting

Landform: Terraces, drainageways Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear, concave Parent material: Clayey alluvium derived from shale

Typical profile

A - 0 to 3 inches: clay loam Bt - 3 to 12 inches: clay *Btk - 12 to 37 inches:* clay *Bk1 - 37 to 52 inches:* clay *Bk2 - 52 to 79 inches:* clay

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 15 percent
Gypsum, maximum in profile: 3 percent
Salinity, maximum in profile: Slightly saline (4.0 to 7.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 10.0
Available water storage in profile: High (about 9.0 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4c Hydrologic Soil Group: C Ecological site: Saline Overflow (R067BY037CO) Hydric soil rating: No

Minor Components

Ritoazul

Percent of map unit: 7 percent Landform: Drainageways, interfluves Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Ecological site: Clayey Plains (R067BY042CO) Hydric soil rating: No

Arvada

Percent of map unit: 6 percent Landform: Drainageways, interfluves Down-slope shape: Linear Across-slope shape: Linear Ecological site: Salt Flat (R067BY033CO) Hydric soil rating: No

Wiley

Percent of map unit: 2 percent Landform: Interfluves Down-slope shape: Linear Across-slope shape: Linear Ecological site: Loamy Plains (R067BY002CO) Hydric soil rating: No

56—Nelson-Tassel fine sandy loams, 3 to 18 percent slopes

Map Unit Setting

National map unit symbol: 3690 Elevation: 5,600 to 6,400 feet Mean annual precipitation: 12 to 14 inches Mean annual air temperature: 48 to 52 degrees F Frost-free period: 135 to 155 days Farmland classification: Not prime farmland

Map Unit Composition

Nelson and similar soils: 55 percent Tassel and similar soils: 40 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Nelson

Setting

Landform: Hills Landform position (three-dimensional): Crest, side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Calcareous residuum weathered from interbedded sedimentary rock

Typical profile

A - 0 to 5 inches: fine sandy loam Ck - 5 to 23 inches: fine sandy loam Cr - 23 to 27 inches: weathered bedrock

Properties and qualities

Slope: 3 to 12 percent
Depth to restrictive feature: 20 to 40 inches to paralithic bedrock
Natural drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.06 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 10 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: Very low (about 2.8 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: B *Ecological site:* Shaly Plains (R067BY045CO) *Other vegetative classification:* SHALY PLAINS (069AY046CO) *Hydric soil rating:* No

Description of Tassel

Setting

Landform: Hills Landform position (three-dimensional): Crest, side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Calcareous slope alluvium over residuum weathered from sandstone

Typical profile

A - 0 to 4 inches: fine sandy loam C - 4 to 10 inches: fine sandy loam Cr - 10 to 14 inches: weathered bedrock

Properties and qualities

Slope: 3 to 18 percent
Depth to restrictive feature: 6 to 20 inches to paralithic bedrock
Natural drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 10 percent
Available water storage in profile: Very low (about 1.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: D Ecological site: Shaly Plains (R067BY045CO) Other vegetative classification: SHALY PLAINS (069AY046CO) Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 4 percent Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

78—Sampson loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 369s Elevation: 5,500 to 6,500 feet Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 47 to 50 degrees F Frost-free period: 135 to 155 days Farmland classification: Prime farmland if irrigated

Map Unit Composition

Sampson and similar soils: 95 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Sampson

Setting

Landform: Depressions, alluvial fans, terraces Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

Typical profile

A - 0 to 15 inches: loam Bt - 15 to 34 inches: clay loam Bk - 34 to 60 inches: sandy clay loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 15 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: High (about 9.2 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 3c Hydrologic Soil Group: B Ecological site: Loamy Foothill (R049BY202CO) Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 4 percent Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

89—Tassel fine sandy loam, 3 to 18 percent slopes

Map Unit Setting

National map unit symbol: 36b5 Elevation: 5,600 to 6,400 feet Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 47 to 51 degrees F Frost-free period: 135 to 155 days Farmland classification: Not prime farmland

Map Unit Composition

Tassel and similar soils: 95 percent *Minor components:* 5 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Tassel

Setting

Landform: Hills Landform position (three-dimensional): Crest, side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Calcareous slope alluvium over residuum weathered from sandstone

Typical profile

A - 0 to 4 inches: fine sandy loam C - 4 to 10 inches: sandy loam Cr - 10 to 14 inches: weathered bedrock

Properties and qualities

Slope: 3 to 18 percent
Depth to restrictive feature: 6 to 20 inches to paralithic bedrock
Natural drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None

Frequency of ponding: None *Calcium carbonate, maximum in profile:* 10 percent *Available water storage in profile:* Very low (about 1.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: D Ecological site: Sandy Plains (R067BY024CO) Other vegetative classification: SANDY PLAINS (069AY026CO) Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 5 percent Hydric soil rating: No

108—Wiley silt loam, 3 to 9 percent slopes

Map Unit Setting

National map unit symbol: 367b Elevation: 5,200 to 6,200 feet Mean annual precipitation: 12 to 14 inches Mean annual air temperature: 48 to 52 degrees F Frost-free period: 135 to 155 days Farmland classification: Not prime farmland

Map Unit Composition

Wiley and similar soils: 95 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Wiley

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Calcareous silty eolian deposits

Typical profile

A - 0 to 4 inches: silt loam Bt - 4 to 16 inches: silt loam Bk - 16 to 60 inches: silt loam

Properties and qualities

Slope: 3 to 9 percent *Depth to restrictive feature:* More than 80 inches *Natural drainage class:* Well drained Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 15 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: High (about 11.5 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: B Ecological site: Loamy Plains (R067BY002CO) Other vegetative classification: LOAMY PLAINS (069AY006CO) Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 4 percent Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

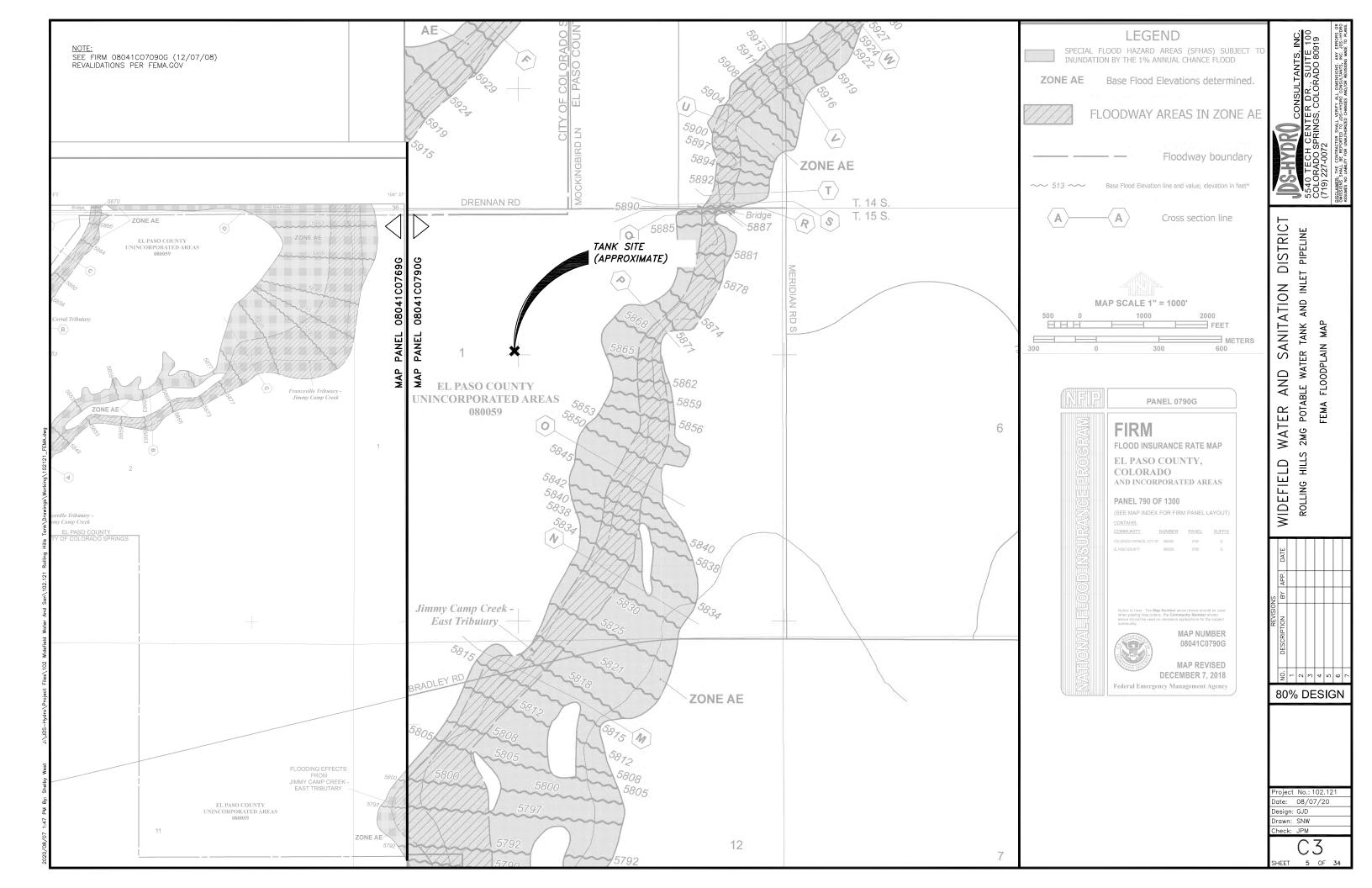
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374


United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Appendix B

Appendix C

DRAINAGE CALCULATIONS Widefield Water and Sanitation District Rolling Hills Tank

1 - RUNOFF COEFFICIENT CALCULATION

Developed Area								
Surface Type	Area (SF)	Area (AC) C5	C10	C100				
Undeveloped Land - Pasture/Meadow	63,162	1.45	0.15	0.25	0.50			
Subbasin B (East Fork Tributary)								
Developed Area								
Surface Type	Area (SF)	Area (AC) C5	C10	C100				
Undeveloped Land - Pasture/Meadow	38,333	0.88	0.15	0.25	0.50			
Subbasin C - Tank Site Improvements Developed Area						Composite	Composite	Composite
Surface Type	Area (SF)	Area (AC) C5	C10	C100		C5	C10	C100
Roof	7620	0.1749341	0.75	0.77	0.83	5715	5867	632
Gravel Driveway	25,343	0.5817852	0.63	0.66	0.74	15966	16726	1875
Vegetated Swale	5,950	0.1365932	0.15	0.25	0.50	893	1488	297
Undeveloped Land - Pasture/Meadow	37,753	0.8666875	0.15	0.25	0.50	5663	9438	1887
	76,666	1.76				0.37	0.44	0.6

Developed Area								
					Cor	nposite Com	posite	Composite
Surface Type	Area (SF)	Area (AC) C5	C10	C100	C5	C10		C100
Gravel Driveway	7,320	0.1680441	0.63	0.66	0.74	4611.6	4831.2	5416.80
Vegetated Swale	2,440	0.0560147	0.15	0.25	0.50	366	610	1220.00
Undeveloped Land - Pasture Meadow	33,500	0.7690542	0.15	0.25	0.50	5025	8375	16750.00
	43,260	0.9931129				0.23	0.32	0.54

2 -TIME OF CONCENTRATION CALCULATION *Developed*

El Paso County Drainage Criteria Manual	V1 Update (Eqn. 6-7, 6-8, 6-9)
Er i abo county Branage criteria tranaar	(10) paule (12411 0 7, 0 01 0 7)

Deretopea	
Subbasin A	(Franceville Tributary)

Subbasin A (Franceville Tributary)	
Overland Flow Length (ft)based on Design	
Point DP-EX-A	144
C5	0.15
Land Slope ft/ft)	0.049
Ti (min)	12.18
Channelized Length (ft)	0.00
NRCS Conveyance Factor	20.00
Waterway Slope ft/ft)	0.02
Tt (min)	0.00
Tc (min)	12.18
Subbasin B (East Fork Tributary)	
Overland Flow Length (ft)	170
C5	0.15
Land Slope ft/ft)	0.097
Ti (min)	10.57
Channelized Length (ft)	0.00
NRCS Conveyance Factor	20.00
5	
Waterway Slope ft/ft)	0.02
Tt (min)	0.00
Tc (min)	10.57
Subbasin C - Tank Site Improvements	
Overland Flow Length (ft)	50
C5	0.37
Land Slope ft/ft)	0.02
Ti (min)	7.43
Channelized Length (ft)	950.00
NRCS Conveyance Factor	20.00
Waterway Slope ft/ft)	0.01
Tt (min)	7.23
Tc (min)	14.66
Subbasin D - Drainage to Access Rd. Culve	ert
Overland Flow Length (ft)	120
C5	0.23
Land Slope ft/ft)	0.02
Ti (min)	13.67
Channelized Length (ft)	200.00
NRCS Conveyance Factor	20.00
Waterway Slope ft/ft)	0.04
Tt (min)	0.87
Tc (min)	14.54
· ·	

3 - HISTORICAL AND DEVELOPED FLOWRATE CALCULATIONS

Q = CiA, calculated I using Figure 6-5 of the El Paso County Drainage Criteria Manual V1 Update

10-Year Storm Subbasin A (Franceville Tributary)

Subbasin A Increase (CFS)

Subbasin A (Franceville	1 ributary)		
Undeveloped Drainage B	asin 10-Year Storm		
Area (acres)	C10	i (in/hr) Q (acre-in/hr) Q (CFS)
	1.88	0.2500 4.47 2.10	2.10
Developed Drainage Basi	n 10-Year Storm		
Area (acres)	C10	i (in/hr) Q (acre-in/hr) Q (CFS)
	1.45	0.2500 4.47 1.62	1.62

-30% Runoff Reduction

-0.48

Subbasin B (East Fork Tril	butary)				
Historic Drainage Basin 10-	-Year Storm				
Area (acres)	C10	i (ir	n/hr) Q (a	cre-in/hr) Q (CFS	5)
	1.07	0.2500	4.72	1.26	1.26
Developed Drainage Basin	10-Year Storm				
Area (acres)	C10	i (ir	n/hr) Q (a	cre-in/hr) Q (CFS	5)
	0.88	0.2500	4.72	1.04	1.04
Subbasin B Increase (CFS))				-0.22

-22% Runoff Reduction

Subbasin C - Tank Site Improvements

Developed Drainage Basin 10-Ye	ar Storm				
Area (acres)	C10	i (ii	n/hr) (Q (acre-in/hr)	Q (CFS)
	1.76	0.4372	4.15	3.19	3.19

Subbasin D - Drainage to Access Rd. Culvert

Developed Drainage Basi	n 10-Year Storm				
Area (acres)	C10	i (ii	n/hr) Q (a	cre-in/hr) Q (CF	S)
	0.99	0.3194	4.16	1.32	1.32

100-Year Storm	Tuihutam)				
Subbasin A (Franceville 2 Undeveloped Drainage Ba					
Area (acres)	C100	i (in/ł	nr) Q	(acre-in/hr) Q (CFS)	
· · · ·	1.88	0.5000	6.43	6.05	6.05
Developed Drainage Basir	100-Year Storm				
Area (acres)	C100	i (in/l	nr) Q	(acre-in/hr) Q (CFS)	
	1.45	0.5000	6.43	4.67	4.67
Subhasin A Increase (CE	(5)				_1 39
Subbasin A Increase (CF Subbasin B (East Fork T	,				-1.38
Subbasin B (East Fork T	ributary)				-1.38
, , , , , , , , , , , , , , , , , , ,	ributary)	i (in/ł	nr) Q	(acre-in/hr) Q (CFS)	-1.38
Subbasin B (East Fork The Historic Drainage Basin 1	ributary) 00-Year Storm	i (in/ł 0.5000	ur) Q 6.79	(acre-in/hr) Q (CFS) 3.63	
Subbasin B (East Fork The Historic Drainage Basin 1	<i>ibutary)</i> 00-Year Storm C100 1.07	· · · · · · · · · · · · · · · · · · ·	/		
Subbasin B (East Fork Tr Historic Drainage Basin 1 Area (acres)	<i>ibutary)</i> 00-Year Storm C100 1.07	· · · · · · · · · · · · · · · · · · ·	6.79		3.63

Subbasin	В	Increase	(CFS)

Subbasin C -	Tank Site	Improvements
Subbusin C -	Tunk Suc	improvements

Developed Drainage Basi	n 100-Year Storm					
Area (acres)	C100		i (in/hr)	Q (acre-in/hr)	Q (CFS)	
	1.76	0.6121	5.97	6.43		6.43

Subbasin D - Drainage to Access Rd. Culvert							
Developed Drainage Basin 100-Year Storm							
Area (acres)	C100	i	(in/hr)	Q (acre-in/hr) Q (CFS)			
	0.99	0.5406	5.99	3.22			

-30% Runoff Reduction

-22% Runoff Reduction

2.99 -0.65

3.22

Appendix D

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

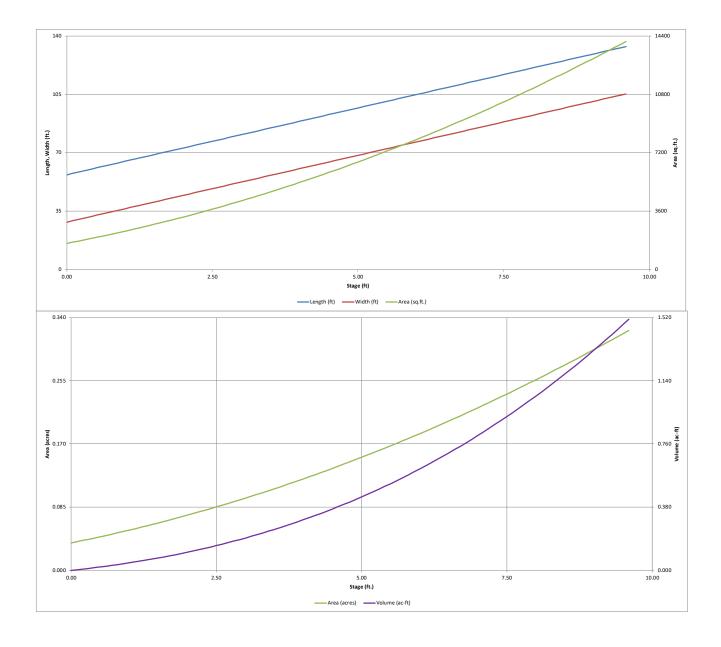
MHFD-Detention, Version 4.00 (December 2019)

Project: <u>Widefield Water and Sanitation District - Rolling Hills Tank</u> Basin ID: <u>Subbasin C</u> ZONE S

	ZONE 2 ZONE 1	
VOLUME EURY WOCY		
	ZONE 1 AND 2	100-YEAR ORIFICE
POOL	Example Zone Configuration	on (Retention Pond)

Depth Increment = 0.10 ft

Selected BMP Type =	SF		Note: L / W	Ratio :
Watershed Area =	1.76	acres	L / W Ratio = 13.	
Watershed Length =	1,000	ft		
Watershed Length to Centroid =	650	ft		
Watershed Slope =	0.012	ft/ft		
Watershed Imperviousness =	36.00%	percent		
Percentage Hydrologic Soil Group A =	0.0%	percent		
Percentage Hydrologic Soil Group B =	0.0%	percent		
Percentage Hydrologic Soil Groups C/D =	100.0%	percent		
Target WQCV Drain Time =	12.0	hours		
Location for 1-hr Rainfall Depths =	User Input	1		
After providing required inputs above inc depths, click 'Run CUHP' to generate runo the embedded Colorado Urban Hydro	ff hydrographs	using	Optional User	Overric
Water Quality Capture Volume (WQCV) =	0.020	acre-feet		acre-fe
Excess Urban Runoff Volume (EURV) =	0.058	acre-feet		acre-fe
2-yr Runoff Volume (P1 = 0.69 in.) =	0.028	acre-feet	0.69	inches
5-yr Runoff Volume (P1 = 0.98 in.) =	0.048	acre-feet	0.98	inches
10-yr Runoff Volume (P1 = 1.23 in.) =	0.076	acre-feet	1.23	inches
25-yr Runoff Volume (P1 = 1.58 in.) =	0.134	acre-feet	1.58	inches
50-yr Runoff Volume (P1 = 1.86 in.) =	0.174	acre-feet	1.86	inches
100-yr Runoff Volume (P1 = 2.14 in.) =	0.222	acre-feet	2.14	inches
500-yr Runoff Volume (P1 = 2.84 in.) =	0.330	acre-feet	2.84	inches
Approximate 2-yr Detention Volume =	0.029	acre-feet		
Approximate 5-yr Detention Volume =	0.053	acre-feet		
Approximate 10-yr Detention Volume =	0.065	acre-feet		
Approximate 25-yr Detention Volume =	0.081	acre-feet		
Approximate 50-yr Detention Volume =	0.089	acre-feet		
Approximate 100-yr Detention Volume =	0.109	acre-feet		
efine Zones and Basin Geometry				
7 (1)/ (1)/0010	0.020			


The zones and basin deometry		
Zone 1 Volume (WQCV) =	0.020	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.039	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.051	acre-feet
Total Detention Basin Volume =	0.109	acre-feet
Initial Surcharge Volume (ISV) =	N/A	ft ³
Initial Surcharge Depth (ISD) =	N/A	ft
Total Available Detention Depth (H _{total}) =	2.00	ft
Depth of Trickle Channel (H _{TC}) =	N/A	ft
Slope of Trickle Channel (S _{TC}) =	N/A	ft/ft
Slopes of Main Basin Sides (S _{main}) =	4	H:V
Basin Length-to-Width Ratio $(R_{L/W}) =$	2	I
		-

Initial Surcharge Area (A _{ISV}) =	0	ft ²
Surcharge Volume Length $(L_{ISV}) =$	0.0	ft
Surcharge Volume Width (W _{ISV}) =	0.0	ft
Depth of Basin Floor $(H_{FLOOR}) =$	0.00	ft
Length of Basin Floor $(L_{FLOOR}) =$	56.8	ft
Width of Basin Floor $(W_{FLOOR}) =$	28.4	ft
Area of Basin Floor (A _{FLOOR}) =	1,612	ft ²
Volume of Basin Floor (V _{FLOOR}) =	0	ft ³
Depth of Main Basin $(H_{MAIN}) =$	2.00	ft
Length of Main Basin $(L_{MAIN}) =$	72.8	ft
Width of Main Basin (W_{MAIN}) =	44.4	ft
Area of Main Basin (A _{MAIN}) =	3,231	ft ²
Volume of Main Basin (V _{MAIN}) =	4,750	ft ³
Calculated Total Basin Volume (V _{total}) =	0.109	acre-feet

	Depth Increment =	0.10	ft			1	Optional		T	1
Pond)	Stage - Storage	Stage	Optional Override	Length	Width	Area	Override	Area	Volume	Volume
,	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft 3)	(ac-ft)
	Media Surface	0.00		56.8	28.4	1,612		0.037		
Note: L / W Ratio > 8		0.10		57.6	29.2	1,681		0.039	165	0.004
L / W Ratio = 13.04		0.20		58.4	30.0	1,751		0.040	336	0.008
		0.30		59.2	30.8	1,822		0.042	515	0.012
		0.40		60.0	31.6	1,895		0.043	701	0.016
	Zone 1 (WQCV)	0.49		60.7	32.3	1,961		0.045	874	0.020
		0.50		60.8	32.4	1,969		0.045	894	0.021
		0.60		61.6	33.2	2,044		0.047	1,094	0.025
		0.70		62.4	34.0	2,120		0.049	1,303	0.030
		0.80		63.2	34.8	2,198		0.050	1,519	0.035
		0.90		64.0	35.6	2,277		0.052	1,742	0.040
						1				
		1.00		64.8	36.4	2,357		0.054	1,974	0.045
		1.10		65.6	37.2	2,439		0.056	2,214	0.051
		1.20		66.4	38.0	2,522		0.058	2,462	0.057
Optional User Overrides	Zone 2 (EURV)	1.24		66.7	38.3	2,555		0.059	2,563	0.059
acre-feet		1.30		67.2	38.8	2,606		0.060	2,718	0.062
acre-feet		1.40		68.0	39.6	2,691		0.062	2,983	0.068
0.69 inches		1.50		68.8	40.4	2,778		0.064	3,257	0.075
0.98 inches		1.60		69.6	41.2	2,866		0.066	3,539	0.081
1.23 inches		1.70		70.4	42.0	2,955		0.068	3,830	0.088
1.58 inches		1.80		71.2	42.8	3,046		0.070	4,130	0.095
1.86 inches		1.90		72.0	43.6	3,138		0.072	4,439	0.102
2.14 inches	Zone 3 (100-year)	2.00		72.8	44.4	3,231		0.072	4,758	0.102
	Lone 5 (100-year)					1				
2.84 inches		2.10		73.6	45.2	3,325	-	0.076	5,085	0.117
		2.20		74.4	46.0	3,421		0.079	5,423	0.124
		2.30		75.2	46.8	3,518		0.081	5,770	0.132
		2.40		76.0	47.6	3,616		0.083	6,126	0.141
		2.50		76.8	48.4	3,715		0.085	6,493	0.149
		2.60		77.6	49.2	3,816		0.088	6,869	0.158
		2.70		78.4	50.0	3,918		0.090	7,256	0.167
		2.80		79.2	50.8	4,022		0.092	7,653	0.176
		2.90		80.0	51.6	4,126		0.095	8,060	0.185
		3.00		80.8	52.4	4,232		0.097	8,478	0.195
		3.10		81.6	53.2	4,339		0.100	8,907	0.204
		3.20		82.4	54.0	4,448		0.100	9,346	0.215
						1				
		3.30		83.2	54.8	4,558		0.105	9,796	0.225
		3.40		84.0	55.6	4,669		0.107	10,258	0.235
		3.50		84.8	56.4	4,781		0.110	10,730	0.246
		3.60		85.6	57.2	4,894		0.112	11,214	0.257
		3.70		86.4	58.0	5,009		0.115	11,709	0.269
		3.80		87.2	58.8	5,125		0.118	12,216	0.280
		3.90		88.0	59.6	5,243		0.120	12,734	0.292
		4.00		88.8	60.4	5,362		0.123	13,265	0.305
		4.10		89.6	61.2	5,482		0.126	13,807	0.317
						1		0.120		
		4.20		90.4	62.0	5,603			14,361	0.330
		4.30		91.2	62.8	5,725		0.131	14,927	0.343
		4.40		92.0	63.6	5,849		0.134	15,506	0.356
		4.50		92.8	64.4	5,974		0.137	16,097	0.370
		4.60		93.6	65.2	6,101		0.140	16,701	0.383
		4.70		94.4	66.0	6,228		0.143	17,317	0.398
		4.80		95.2	66.8	6,357		0.146	17,947	0.412
		4.90		96.0	67.6	6,487		0.149	18,589	0.427
		5.00		96.8	68.4	6,619		0.152	19,244	0.442
		5.10		97.6	69.2	6,752		0.155	19,913	0.457
		5.20		98.4	70.0	6,886		0.158	20,594	0.473
		5.30		99.2	70.8	7,021		0.161	21,290	0.489
		5.40		100.0	71.6	7,158		0.164	21,999	0.505
		5.50		100.8	72.4	7,296		0.167	22,721	0.522
		5.60		101.6	73.2	7,435		0.171	23,458	0.539
		5.70		102.4	74.0	7,575		0.174	24,208	0.556
		5.80 5.90		103.2	74.8	7,717	-	0.177	24,973	0.573
		6.00		104.0 104.8	75.6 76.4	7,860 8,004		0.180	25,752 26,545	0.591 0.609
		6.10		101.0	77.2	8,150		0.187	27,353	0.628
		6.20		106.4	78.0	8,297		0.190	28,175	0.647
		6.30 6.40		107.2 108.0	78.8 79.6	8,445 8,594		0.194 0.197	29,012 29,864	0.666
		6.40		108.0	80.4	8,594 8,745		0.197	29,864 30,731	0.686
		6.60		109.6	81.2	8,897		0.204	31,613	0.726
		6.70		110.4	82.0	9,050		0.208	32,510	0.746
		6.80		111.2 112.0	82.8 83.6	9,205 9,361		0.211 0.215	33,423 34,351	0.767
		7.00		112.0	84.4	9,501		0.215	35,295	0.789
		7.10		113.6	85.2	9,676		0.222	36,255	0.832
		7.20		114.4	86.0	9,836	-	0.226	37,231	0.855
		7.30 7.40		115.2 116.0	86.8 87.6	9,997 10,159		0.229 0.233	38,222 39,230	0.877
		7.50		116.8	88.4	10,322		0.237	40,254	0.924
		7.60		117.6	89.2	10,487		0.241	41,294	0.948
		7.70 7.80		118.4	90.0 90.8	10,653		0.245	42,351	0.972
		7.80		119.2 120.0	90.8 91.6	10,821 10,989		0.248	43,425 44,516	0.997
		8.00		120.0	92.4	11,159		0.256	45,623	1.047
	-	8.10		121.6	93.2	11,330		0.260	46,747	1.073
				122.4	94.0	11,503	-	0.264	47,889	1.099
		8.20						0.268	49,048	1.126
		8.30		123.2	94.8	11,676		0 272		
		8.30 8.40		123.2 124.0	95.6	11,851		0.272	50,224	1.153
		8.30		123.2	95.6 96.4 97.2			0.272 0.276 0.280		
		8.30 8.40 8.50 8.60 8.70		123.2 124.0 124.8 125.6 126.4	95.6 96.4 97.2 98.0	11,851 12,028 12,205 12,384		0.276 0.280 0.284	50,224 51,418 52,630 53,859	1.153 1.180 1.208 1.236
		8.30 8.40 8.50 8.60 8.70 8.80		123.2 124.0 124.8 125.6 126.4 127.2	95.6 96.4 97.2 98.0 98.8	11,851 12,028 12,205 12,384 12,564		0.276 0.280 0.284 0.288	50,224 51,418 52,630 53,859 55,107	1.153 1.180 1.208 1.236 1.265
		8.30 8.40 8.50 8.60 8.70 8.80 8.90		123.2 124.0 124.8 125.6 126.4 127.2 128.0	95.6 96.4 97.2 98.0 98.8 99.6	11,851 12,028 12,205 12,384 12,564 12,746		0.276 0.280 0.284 0.288 0.293	50,224 51,418 52,630 53,859 55,107 56,372	1.153 1.180 1.208 1.236 1.265 1.294
		8.30 8.40 8.50 8.60 8.70 8.80 8.90 9.00		123.2 124.0 124.8 125.6 126.4 127.2 128.0 128.8	95.6 96.4 97.2 98.0 98.8 99.6 100.4	11,851 12,028 12,205 12,384 12,564 12,746 12,928		0.276 0.280 0.284 0.288 0.293 0.297	50,224 51,418 52,630 53,859 55,107 56,372 57,656	1.153 1.180 1.208 1.236 1.265 1.294 1.324
		8.30 8.40 8.50 8.60 8.70 8.80 8.90		123.2 124.0 124.8 125.6 126.4 127.2 128.0	95.6 96.4 97.2 98.0 98.8 99.6	11,851 12,028 12,205 12,384 12,564 12,746		0.276 0.280 0.284 0.288 0.293	50,224 51,418 52,630 53,859 55,107 56,372	1.153 1.180 1.208 1.236 1.265 1.294
		8.30 8.40 8.50 8.60 8.70 8.80 9.00 9.10 9.20 9.30		123.2 124.0 124.8 125.6 126.4 127.2 128.0 128.8 129.6 130.4 131.2	95.6 96.4 97.2 98.0 98.8 99.6 100.4 101.2 102.0 102.8	11,851 12,028 12,205 12,384 12,564 12,746 12,928 13,112 13,298 13,484		0.276 0.280 0.284 0.288 0.293 0.297 0.301 0.305 0.310	50,224 51,418 52,630 53,859 55,107 56,372 57,656 58,958 60,279 61,618	1.153 1.180 1.208 1.236 1.265 1.294 1.324 1.353 1.384 1.415
		8.30 8.40 8.50 8.60 8.70 8.80 8.90 9.00 9.10 9.20		123.2 124.0 124.8 125.6 126.4 127.2 128.0 128.8 129.6 130.4	95.6 96.4 97.2 98.0 98.8 99.6 100.4 101.2 102.0	11,851 12,028 12,205 12,384 12,564 12,746 12,928 13,112 13,298		0.276 0.280 0.284 0.288 0.293 0.297 0.301 0.305	50,224 51,418 52,630 53,859 55,107 56,372 57,656 58,958 60,279	1.153 1.180 1.208 1.236 1.265 1.294 1.324 1.353 1.384

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.00 (December 2019)

			DASIN OU			SIGN			
	Widefield Water a Subbasin C	nd Sanitation Dist	rict - Rolling Hills T	ank					
ZONE 3	Subbasine			Estimated	Estimated				
				Stage (ft)	Volume (ac-ft)	Outlet Type			
OLUME EURY WOCY			Zone 1 (WQCV)	0.49	0.020	Filtration Media	1		
	100-YEAR		Zone 2 (EURV)		0.039	Circular Orifice			
ZONE 1 AND 2 ORIFICES	ORIFICE		Zone 3 (100-year)	2.00	0.051	Weir&Pipe (Circular)			
POOL Example Zone	Configuration (Re	tention Pond)	20110 0 (200) 00.)	Total (all zones)	0.109		1		
er Input: Orifice at Underdrain Outlet (typical	ly used to drain W	QCV in a Filtration I	BMP)				Calculated Parame	ters for Underdrain	
Underdrain Orifice Invert Depth =	1.83	ft (distance below	the filtration media	a surface)	Under	drain Orifice Area =	0.0	ft²	
Underdrain Orifice Diameter =	0.35	inches			Underdrair	n Orifice Centroid =	0.01	feet	
ser Input: Orifice Plate with one or more orifi Invert of Lowest Orifice =	N/A		ed to drain WQCV a n bottom at Stage =			ice Area per Row =	Calculated Parame N/A	<u>ters for Plate</u> ft ²	
Depth at top of Zone using Orifice Plate =	N/A N/A		n bottom at Stage =		-	iptical Half-Width =	N/A N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches	in bottom at Stage .	- 0 10)		ical Slot Centroid =	N/A N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	inches				Elliptical Slot Area =	-	ft ²	
		1							
ser Input: Stage and Total Area of Each Orific				Daw 4 (anti-anti-	Dow E (antian 1)	Dow 6 (Dow 7 (cottone)	Dow 9 (cottoool)	
Stage of Orifice Centroid (ft)	Row 1 (optional)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	
onnee Area (sq. menes)	IN/A	N/A	NA	N/A	N/A	NA	1975	NA	
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Orifice Area (sq. inches)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
							<u></u>		~
ser Input: Vertical Orifice (Circular or Rectand	Zone 2 Circular	Not Selected	1				Zone 2 Circular	ters for Vertical Ori Not Selected	rice
Invert of Vertical Orifice =	0.15	N/A	ft (relative to basi	n bottom at Stage	=0ft) Ve	rtical Orifice Area =	0.05	N/A	ft²
Depth at top of Zone using Vertical Orifice =	0.50	N/A		n bottom at Stage	•	I Orifice Centroid =	0.13		feet
Vertical Orifice Diameter =	3.00	N/A	inches	5	,			,	
er Innut: Overflow Weir (Dronboy with Flat	or Sloped Grate and		ectangular/Transzo	idal Weir (and No (Jutlet Pine)		Calculated Parame	ters for Overflow M	loir
	Zone 3 Weir	Not Selected				e Upper Edge, H. =	Zone 3 Weir	ters for Overflow W Not Selected	
Overflow Weir Front Edge Height, Ho =	Zone 3 Weir 0.45				ft) Height of Grat	e Upper Edge, H _t = Veir Slope Length =			<u>/eir</u> feet feet
	Zone 3 Weir	Not Selected N/A	ft (relative to basin	bottom at Stage = 0	ft) Height of Grat Overflow W	e Upper Edge, H _t = Veir Slope Length =)0-yr Orifice Area =	Zone 3 Weir 1.78	Not Selected N/A	feet
Overflow Weir Front Edge Length =	Zone 3 Weir 0.45 4.00	Not Selected N/A N/A	ft (relative to basin feet	bottom at Stage = 0 Gr	ft) Height of Grat Overflow V ate Open Area / 10	Veir Slope Length =	Zone 3 Weir 1.78 4.22	Not Selected N/A N/A	feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope =	Zone 3 Weir 0.45 4.00 3.00 4.00 70%	Not Selected N/A N/A N/A N/A N/A	ft (relative to basin feet H:V	bottom at Stage = 0 Gr Ov	ft) Height of Grat Overflow W ate Open Area / 10 erflow Grate Open	Veir Slope Length = 00-yr Orifice Area =	Zone 3 Weir 1.78 4.22 86.58	Not Selected N/A N/A N/A N/A	feet feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	Zone 3 Weir 0.45 4.00 3.00 4.00	Not Selected N/A N/A N/A N/A	ft (relative to basin feet H:V feet	bottom at Stage = 0 Gr Ov	ft) Height of Grat Overflow W ate Open Area / 10 erflow Grate Open	Veir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris =	Zone 3 Weir 1.78 4.22 86.58 11.81	Not Selected N/A N/A N/A N/A	feet feet ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	Zone 3 Weir 0.45 4.00 3.00 4.00 70% 0%	Not Selected N/A N/A N/A N/A N/A N/A	ft (relative to basin feet H:V feet %, grate open are %	bottom at Stage = 0 Gr Ov a/total area C	ft) Height of Grat Overflow V ate Open Area / 10 rerflow Grate Open Iverflow Grate Open	Veir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris = en Area w/ Debris =	Zone 3 Weir 1.78 4.22 86.58 11.81 11.81	Not Selected N/A N/A N/A N/A N/A	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	Zone 3 Weir 0.45 4.00 3.00 4.00 70% 0% e (Circular Orifice, 1	Not Selected N/A N/A N/A N/A N/A Restrictor Plate, or	ft (relative to basin feet H:V feet %, grate open are %	bottom at Stage = 0 Gr Ov a/total area C	ft) Height of Grat Overflow V ate Open Area / 10 rerflow Grate Open Iverflow Grate Open	Veir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris =	Zone 3 Weir 1.78 4.22 86.58 11.81 11.81 s for Outlet Pipe w/	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pia	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plat	Zone 3 Weir 0.45 4.00 3.00 4.00 70% 0% e (Circular Orifice, Zone 3 Circular	Not Selected N/A N/A N/A N/A N/A Restrictor Plate, or Not Selected	ft (relative to basin feet H:V feet %, grate open are % <u>Rectangular Orifice</u>	bottom at Stage = 0 Gr Ov va/total area C	ft) Height of Grat Overflow V ate Open Area / 10 verflow Grate Open iverflow Grate Open <u>Ca</u>	Veir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris = 2 m Area w/ Debris = 2 m Area w/ Debris = 2 alculated Parameters	Zone 3 Weir 1.78 4.22 86.58 11.81 11.81 s for Outlet Pipe w/ Zone 3 Circular	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected	feet feet ft ² ft ² <u>ate</u>
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	Zone 3 Weir 0.45 4.00 3.00 4.00 70% 0% e (Circular Orifice, Zone 3 Circular 2.25	Not Selected N/A N/A N/A N/A N/A Restrictor Plate, or	ft (relative to basin feet H:V feet %, grate open are % <u>Rectangular Orifice</u>	bottom at Stage = 0 Gr Ov a/total area C	ft) Height of Grat Overflow W ate Open Area / 10 terflow Grate Open Iverflow Grate Open <u>Ca</u> = 0 ft) O	Veir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris = en Area w/ Debris =	Zone 3 Weir 1.78 4.22 86.58 11.81 11.81 s for Outlet Pipe w/	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pia Not Selected	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plat Depth to Invert of Outlet Pipe =	Zone 3 Weir 0.45 4.00 3.00 4.00 70% 0% e (Circular Orifice, Zone 3 Circular 2.25	Not Selected N/A N/A N/A N/A N/A N/A Restrictor Plate, or Not Selected N/A	ft (relative to basin feet H:V feet %, grate open are % <u>Rectangular Orifice</u> ft (distance below b	bottom at Stage = 0 Gr va/total area C 2) asin bottom at Stage	ft) Height of Grat Overflow V ate Open Area / 10 verflow Grate Open verflow Grate Ope <u>Ca</u> = 0 ft) O Outle	Veir Slope Length = 10-yr Orifice Area = Area w/o Debris = In Area w/	Zone 3 Weir 1.78 4.22 86.58 11.81 11.81 s for Outlet Pipe w/ Zone 3 Circular 0.14	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pli Not Selected N/A	feet feet ft ² ft ² <u>ate</u> ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plat Depth to Invert of Outlet Pipe = Circular Orifice Diameter =	Zone 3 Weir 0.45 4.00 3.00 4.00 70% 0% e (Circular Orifice, I Zone 3 Circular 2.25 5.00	Not Selected N/A N/A N/A N/A N/A N/A Restrictor Plate, or Not Selected N/A	ft (relative to basin feet H:V feet %, grate open are % <u>Rectangular Orifice</u> ft (distance below b	bottom at Stage = 0 Gr va/total area C 2) asin bottom at Stage	ft) Height of Grat Overflow V ate Open Area / 10 verflow Grate Open verflow Grate Ope <u>Ca</u> = 0 ft) O Outle	Veir Slope Length = 10-yr Orifice Area = Area w/o Debris = In Area w/ Debris = Alculated Parameters utlet Orifice Area = t Orifice Centroid =	Zone 3 Weir 1.78 4.22 86.58 11.81 11.81 5 for Outlet Pipe w/ Zone 3 Circular 0.14 0.21 N/A	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pli Not Selected N/A N/A N/A	feet feet ft ² <u>ate</u> ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plat Depth to Invert of Outlet Pipe = Circular Orifice Diameter =	Zone 3 Weir 0.45 4.00 3.00 4.00 70% 0% e (Circular Orifice, 1 Zone 3 Circular 2.25 5.00 r Trapezoidal)	Not Selected N/A N/A N/A N/A N/A Restrictor Plate, or Not Selected N/A N/A	ft (relative to basin feet H:V feet %, grate open are % <u>Rectangular Orifice</u> ft (distance below b inches	bottom at Stage = 0 Gr va/total area C 2) asin bottom at Stage Half-Cent	ft) Height of Grat Overflow V ate Open Area / 10 rerflow Grate Open vverflow Grate Open vverflow Grate Ope <u>Ca</u> = 0 ft) O Outle ral Angle of Restric	Veir Slope Length = 10-yr Orifice Area = Area w/o Debris = an Area w/	Zone 3 Weir 1.78 4.22 86.58 11.81 11.81 s for Outlet Pipe w/ Zone 3 Circular 0.14 0.21 N/A Calculated Parame	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pli Not Selected N/A N/A N/A N/A ters for Spillway	feet feet ft ² <u>ate</u> ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plat Depth to Invert of Outlet Pipe = Circular Orifice Diameter = Ser Input: Emergency Spillway (Rectangular o Spillway Invert Stage=	Zone 3 Weir 0.45 4.00 3.00 4.00 70% 0% e (Circular Orifice, 1 Zone 3 Circular 2.25 5.00 r Trapezoidal) 0.60	Not Selected N/A N/A N/A N/A N/A Restrictor Plate, or Not Selected N/A N/A ft (relative to basin	ft (relative to basin feet H:V feet %, grate open are % <u>Rectangular Orifice</u> ft (distance below b	bottom at Stage = 0 Gr va/total area C 2) asin bottom at Stage Half-Cent	ft) Height of Grat Overflow V ate Open Area / 10 verflow Grate Open iverflow Grate Open <u>Ca</u> = 0 ft) 0 Outle ral Angle of Restric Spillway D	Veir Slope Length = 10-yr Orifice Area = Area w/o Debris = an Area w/	Zone 3 Weir 1.78 4.22 86.58 11.81 11.81 s for Outlet Pipe w/ Zone 3 Circular 0.14 0.21 N/A Calculated Parame 0.36	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pic Not Selected N/A N/A N/A N/A N/A ters for Spillway feet	feet feet ft ² ft ² <u>ate</u> ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plat Depth to Invert of Outlet Pipe = Circular Orifice Diameter = ser Input: Emergency Spillway (Rectangular o Spillway Invert Stage= Spillway Crest Length =	Zone 3 Weir 0.45 4.00 3.00 70% 0% e (Circular Orifice, 1 Zone 3 Circular 2.25 5.00 r Trapezoidal) 0.60 1.00	Not Selected N/A N/A N/A N/A N/A Restrictor Plate, or Not Selected N/A N/A ft (relative to basis feet	ft (relative to basin feet H:V feet %, grate open are % <u>Rectangular Orifice</u> ft (distance below b inches	bottom at Stage = 0 Gr va/total area C 2) asin bottom at Stage Half-Cent	ft) Height of Grat Overflow V ate Open Area / 10 verflow Grate Open iverflow Grate Open verflow Grate Ope <u>Ca</u> = 0 ft) O Outle ral Angle of Restric Spillway D Stage at	Veir Slope Length = 10-yr Orifice Area = Area w/o Debris = In Area w/ Debris = Alculated Parameters utlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard =	Zone 3 Weir 1.78 4.22 86.58 11.81 11.81 s for Outlet Pipe w/ Zone 3 Circular 0.14 0.21 N/A Calculated Parame 0.36 1.96	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pia Not Selected N/A N/A N/A N/A ters for Spillway feet	feet feet ft ² ft ² <u>ate</u> ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plat Depth to Invert of Outlet Pipe = Circular Orifice Diameter = ser Input: Emergency Spillway (Rectangular o Spillway Invert Stage=	Zone 3 Weir 0.45 4.00 3.00 4.00 70% 0% e (Circular Orifice, 1 Zone 3 Circular 2.25 5.00 r Trapezoidal) 0.60	Not Selected N/A N/A N/A N/A N/A Restrictor Plate, or Not Selected N/A N/A ft (relative to basin	ft (relative to basin feet H:V feet %, grate open are % <u>Rectangular Orifice</u> ft (distance below b inches	bottom at Stage = 0 Gr va/total area C 2) asin bottom at Stage Half-Cent	ft) Height of Grat Overflow V erflow Grate Open iverflow Grate Open (verflow Grate Open) (verflow Grate Open) (ver	Veir Slope Length = 10-yr Orifice Area = Area w/o Debris = an Area w/	Zone 3 Weir 1.78 4.22 86.58 11.81 11.81 s for Outlet Pipe w/ Zone 3 Circular 0.14 0.21 N/A Calculated Parame 0.36 1.96 0.07	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pic Not Selected N/A N/A N/A N/A N/A ters for Spillway feet	feet feet ft ² ft ² <u>ate</u> ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plat Depth to Invert of Outlet Pipe = Circular Orifice Diameter = Ser Input: Emergency Spillway (Rectangular o Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	Zone 3 Weir 0.45 4.00 3.00 4.00 70% 0% e (Circular Orifice, Zone 3 Circular 2.25 5.00 r Trapezoidal) 0.60 1.00 4.00	Not Selected N/A N/A N/A N/A N/A N/A Restrictor Plate, or Not Selected N/A N/A N/A ft (relative to basis feet H:V	ft (relative to basin feet H:V feet %, grate open are % <u>Rectangular Orifice</u> ft (distance below b inches	bottom at Stage = 0 Gr va/total area C 2) asin bottom at Stage Half-Cent	ft) Height of Grat Overflow V erflow Grate Open iverflow Grate Open (verflow Grate Open) (verflow Grate Open) (ver	Veir Slope Length = 10-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard =	Zone 3 Weir 1.78 4.22 86.58 11.81 11.81 11.81 s for Outlet Pipe w/ Zone 3 Circular 0.14 0.21 N/A Calculated Parame 0.36 1.96 0.07	Not Selected N/A N/A N/A N/A N/A N/A NA N/A N/A N/A	feet feet ft ² ft ² ate ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = wer Input: Outlet Pipe w/ Flow Restriction Plat Depth to Invert of Outlet Pipe = Circular Orifice Diameter = Circular Orifice Diameter = Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Zone 3 Weir 0.45 4.00 3.00 70% 0% e (Circular Orifice, Zone 3 Circular 2.25 5.00 r Trapezoidal) 0.60 1.00 4.00 1.00	Not Selected N/A N/A N/A N/A N/A Restrictor Plate, or Not Selected N/A N/A ft (relative to basis feet H:V feet	ft (relative to basin feet H:V feet % <u>Rectangular Orifice</u> ft (distance below b inches	bottom at Stage = 0 Gr Ov ea/total area O 2) asin bottom at Stage Half-Cent = 0 ft)	ft) Height of Grat Overflow V erflow Grate Open verflow Grate Open 2 = 0 ft) O Outle ral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at	Veir Slope Length = 10-yr Orifice Area = Area w/o Debris = In Area w/ Debris = alculated Parameters utlet Orifice Area = t Orifice Centroid = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard =	Zone 3 Weir 1.78 4.22 86.58 11.81 11.81 11.81 s for Outlet Pipe w/ Zone 3 Circular 0.14 0.21 N/A Calculated Parame 0.36 1.96 0.07 0.11	Not Selected N/A N/A N/A N/A N/A N/A NA Selected N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft	feet feet ft ² ft ² <u>ate</u> ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plat Depth to Invert of Outlet Pipe = Circular Orifice Diameter = Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Deted Hydrograph Results Design Storm Return Period =	Zone 3 Weir 0.45 4.00 3.00 4.00 70% 0% e (Circular Orifice, I Zone 3 Circular 2.25 5.00 r Trapezoidal) 0.60 1.00 4.00 1.00 The user can over WQCV	Not Selected N/A N/A N/A N/A N/A N/A Restrictor Plate, or Not Selected N/A N/A t (relative to basis feet H:V feet H:V feet EURV	ft (relative to basin feet H:V feet %, grate open are % Rectangular Orifice ft (distance below b inches n bottom at Stage =	bottom at Stage = 0 Gr Ov ea/total area C 2) asin bottom at Stage Half-Cent = 0 ft) 5 Year	ft) Height of Grat Overflow V ate Open Area / 10 (rerflow Grate Open verflow Grate Open (<u>Ca</u> = 0 ft) 0 Outle ral Angle of Restrict Spillway D Stage at Basin Area at Basin Area at Basin Area at (<u>Spillway D</u> Stage at (<u>Spillway D</u> (<u>Spillway D</u>) (<u>Spillway D</u>	Veir Slope Length = 10-yr Orifice Area = Area w/o Debris = an Area w/	Zone 3 Weir 1.78 4.22 86.58 11.81 11.81 11.81 s for Outlet Pipe w/ Zone 3 Circular 0.14 0.21 N/A Calculated Parame 0.36 1.96 0.07 0.07 0.11 vdrographs table (C 50 Year	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pli Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft Columns W through 100 Year	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plat Depth to Invert of Outlet Pipe = Circular Orifice Diameter = Circular Orifice Diameter = Spillway (Rectangular o Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Design Storm Return Period = One-Hour Rainfall Depth (in) =	Zone 3 Weir 0.45 4.00 3.00 4.00 70% 0% e (Circular Orifice, I) Zone 3 Circular Zone 3 Circular 2.25 5.00 r Trapezoidal) 0.60 1.00 4.00 1.00 7.00 7.00 7.00 0.53	Not Selected N/A N/A N/A N/A N/A N/A Restrictor Plate, or Not Selected N/A N/A ft (relative to basis feet H:V feet H:V feet H:V feet 1.07	ft (relative to basin feet H:V feet % Rectangular Orifice % ft (distance below b inches n bottom at Stage = ////////////////////////////////////	bottom at Stage = 0 Gr va/total area C 2) asin bottom at Stage Half-Cent = 0 ft) <u>5 Year</u> 0.98	ft) Height of Grat Overflow V ate Open Area / 10 verflow Grate Open verflow Grate Open call of the open call	Veir Slope Length = 20-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameters utlet Orifice Area = t Orifice Centroid = Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 1.58	Zone 3 Weir 1.78 4.22 86.58 11.81 11.81 11.81 2 one 3 Circular 0.14 0.21 N/A Calculated Parame 0.36 1.96 0.07 0.11 Vdrographs table (C 50 Year 1.86	Not Selected N/A N/A N/A N/A N/A N/A NA NA NA NA NA NA N/A N/	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plat Depth to Invert of Outlet Pipe = Circular Orifice Diameter = Circular Orifice Diameter = Spillway (Rectangular o Spillway Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface = Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acreft) =	Zone 3 Weir 0.45 4.00 3.00 4.00 70% 0% e (Circular Orifice, Zone 3 Circular 2.25 5.00 r Trapezoidal) 0.60 1.00 4.00 1.00 700 0.53 0.020	Not Selected N/A N/A N/A N/A N/A N/A N/A Restrictor Plate, or Not Selected N/A N/A ft (relative to basin feet H:V feet tide the default CU EURV 1.07 0.058	ft (relative to basin feet H:V feet %, grate open are % ft (distance below b inches n bottom at Stage = // <i>HP hydrographs ar</i> 2. Year 0.69 0.028	bottom at Stage = 0 Gr Ov ea/total area C ea/total area C ea	ft) Height of Grat Overflow V ate Open Area / 10 erflow Grate Open verflow Grate Open call of Comparison (Call of Comparison Open call of Comparison O	Veir Slope Length = 0-yr Orifice Area = Area w/o Debris = an Area w/o Debris = Cop of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 1.58 0.134	Zone 3 Weir 1.78 4.22 86.58 11.81 11.81 11.81 s for Outlet Pipe w/ Zone 3 Circular 0.14 0.21 N/A Calculated Parame 0.36 1.96 0.07 0.11 vdrographs table (C 50 Year 1.86 0.174	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plat Depth to Invert of Outlet Pipe = Circular Orifice Diameter = Circular Orifice Diameter = Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Duted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Predevelopment Peak Q (cfs) =	Zone 3 Weir 0.45 4.00 3.00 4.00 70% 0% e (Circular Orifice, Zone 3 Circular 2.25 5.00 r Trapezoidal) 0.60 1.00 4.00 1.00 70% 0.53 0.020 0.004 0.0	Not Selected N/A N/A N/A N/A N/A N/A Restrictor Plate, or Not Selected N/A N/A ft (relative to basis feet H:V feet H:V feet 1.07 0.058 0.011 0.0	ft (relative to basin feet H:V feet % Rectangular Orifice ft (distance below b inches n bottom at Stage = //// hydrographs ar 2 Year 0.69	bottom at Stage = 0 Gr va/total area C 2) asin bottom at Stage Half-Cent = 0 ft) <u>5 Year</u> 0.98	ft) Height of Grat Overflow V ate Open Area / 10 verflow Grate Open verflow Grate Open call of the open call	Veir Slope Length = 20-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameters utlet Orifice Area = t Orifice Centroid = Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 1.58	Zone 3 Weir 1.78 4.22 86.58 11.81 11.81 11.81 2 one 3 Circular 0.14 0.21 N/A Calculated Parame 0.36 1.96 0.07 0.11 Vdrographs table (C 50 Year 1.86	Not Selected N/A N/A N/A N/A N/A N/A NA NA NA NA NA NA N/A N/	feet feet ft ² ft ² ft ² feet radians 500 Ye 2.84 0.33 0.06
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plat Depth to Invert of Outlet Pipe = Circular Orifice Diameter = Ser Input: Emergency Spillway (Rectangular o Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Outed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	Zone 3 Weir 0.45 4.00 3.00 4.00 70% 0% e (Circular Orifice, Zone 3 Circular 2.25 5.00 r Trapezoidal) 0.60 1.00 1.00 1.00 7 <i>he user can over</i> WQCV 0.53 0.020 0.00 0.0	Not Selected N/A N/A N/A N/A N/A N/A N/A Restrictor Plate, or Not Selected N/A N/A ft (relative to basis feet H:V feet EURV L07 0.058 0.011 0.0 0.0	ft (relative to basin feet H:V feet %, grate open are % ft (distance below b inches n bottom at Stage = //// 0.69 0.028 0.006 0.0	bottom at Stage = 0 Gr Ov ea/total area C e) asin bottom at Stage Half-Cent = 0 ft) 0.048 0.010 0.0	ft) Height of Grat Overflow V ate Open Area / 10 erflow Grate Open verflow Grate Open = 0 ft) O Outle ral Angle of Restrict Spillway D Stage at Basin Area at Basin Area at Dy <u>entering new va</u> 1.23 0.076 0.015 0.1	Veir Slope Length = 0-yr Orifice Area = Area w/o Debris = in Area w/o Debris = Design Flow Depth = Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 1.58 0.134 0.027 0.4	Zone 3 Weir 1.78 4.22 86.58 11.81 11.81 11.81 s for Outlet Pipe w/ Zone 3 Circular 0.14 0.21 N/A Calculated Parame 0.36 1.96 0.07 0.11 vdrographs table (C 50 Year 1.86 0.174 0.035 0.6	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plat Depth to Invert of Outlet Pipe = Circular Orifice Diameter = Ser Input: Emergency Spillway (Rectangular o Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = Outed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	Zone 3 Weir 0.45 4.00 3.00 4.00 70% 0% e (Circular Orifice, Zone 3 Circular 2.25 5.00 r Trapezoidal) 0.60 1.00 4.00 1.00 70% 0.00 0.00 0.00	Not Selected N/A N/A N/A N/A N/A N/A Restrictor Plate, or Not Selected N/A N/A ft (relative to basis feet H:V feet H:V feet 1.07 0.058 0.011 0.0	ft (relative to basin feet H:V feet %, grate open are % ft (distance below b inches n bottom at Stage = ////////////////////////////////////	bottom at Stage = 0 Gr Ov ea/total area C 2) asin bottom at Stage Half-Cent = 0 ft) 5 Year 0.98 0.048 0.010	ft) Height of Grat Overflow V ate Open Area / 10 rerflow Grate Open verflow Grate Open (Car (Car (Car)(Car)(Car)(Car)(Car)(Car)(Car)(Car)	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/o Debris = an A	Zone 3 Weir 1.78 4.22 86.58 11.81 11.81 11.81 s for Outlet Pipe w/ Zone 3 Circular 0.14 0.21 N/A Calculated Parame 0.36 1.96 0.07 0.07 0.11 vdrographs table (C 50 Year 1.86 0.174 0.035	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pli Not Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft Columns W through 100 Year 2.14 0.222 0.044	feet feet ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plat Depth to Invert of Outlet Pipe = Circular Orifice Diameter = Ser Input: Emergency Spillway (Rectangular o Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Outed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) =	Zone 3 Weir 0.45 4.00 3.00 4.00 70% 0% e (Circular Orifice, Zone 3 Circular 2.25 5.00 r Trapezoidal) 0.60 1.00 4.00 1.00 70% 0.53 0.020 0.004 0.0 0.0 0.1 0.004	Not Selected N/A D.058 0.01 0.02 0.3 0.025	ft (relative to basin feet H:V feet %, grate open are % Rectangular Orifice ft (distance below b inches n bottom at Stage = 1HP hydrographs ar 0.69 0.028 0.006 0.0 0.0 0.0 0.1 0.0	bottom at Stage = 0 Gr Ov ea/total area C 2) asin bottom at Stage Half-Cent = 0 ft) 0.048 0.010 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ft) Height of Grat Overflow V ate Open Area / 10 erflow Grate Open verflow Grate Open (verflow Grate Open	Veir Slope Length = 0-yr Orifice Area = Area w/o Debris = in Area w/o Debris = Design Flow Depth = Top of Freeboard = Top of Freeboard = Top of Freeboard = 1.58 0.134 0.027 0.4 0.2 0.2	Zone 3 Weir 1.78 4.22 86.58 11.81 11.81 11.81 s for Outlet Pipe w/ Zone 3 Circular 0.14 0.21 N/A Calculated Parame 0.36 1.96 0.07 0.11 vdrographs table (C 50 Year 1.86 0.174 0.035 0.6 0.33 1.1 0.5	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plat Depth to Invert of Outlet Pipe = Circular Orifice Diameter = Spillway Invert Stage= Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Cuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Peak Q	Zone 3 Weir 0.45 4.00 3.00 4.00 70% 0% e (Circular Orifice, Zone 3 Circular 2.25 5.00 r Trapezoidal) 0.60 1.00 4.00 1.00 70% 0.020 0.004 0.0 0.00 0.1 0.004 N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Restrictor Plate, or Not Selected N/A N/A ft (relative to basis feet H:V feet tide the default CU EURV 1.07 0.058 0.011 0.0 0.0 0.0 0.0 0.3 0.025 N/A	ft (relative to basin feet H:V feet %, grate open are % Rectangular Orifice ft (distance below b inches n bottom at Stage = (HP hydrographs arr 0.69 0.028 0.006 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	bottom at Stage = 0 Gr Ov ca/total area C 2) asin bottom at Stage Half-Cent = 0 ft) 0 ft 0.048 0.010 0.01 0.01 0.01 0.01 0.0 1.5	ft) Height of Grat Overflow V ate Open Area / 10 rerflow Grate Open verflow Grate Open verflow Grate Open at Open solution of the open solution of the open at the open solution of the open solution open at the open solution op	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/o Debris = an Area w/ Debris = an Area w	Zone 3 Weir 1.78 4.22 86.58 11.81 11.81 11.81 s for Outlet Pipe w/ Zone 3 Circular 0.14 0.21 N/A Calculated Parame 0.36 1.96 0.07 0.07 0.07 0.07 0.11 wdrographs table (C 50 Year 1.86 0.174 0.035 0.6 0.33 1.1 0.5 0.8	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pli Not Selected N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft Columns W through 100 Year 2.14 0.222 0.044 0.8 0.47 1.4 0.75 0.9	feet feet ft ² ft ² ft ² feet radians 500 Ye 2.84 0.033 0.06 1.3 0.05 2.1 1.2 0.75 0.90
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plat Depth to Invert of Outlet Pipe = Circular Orifice Diameter = Spillway Invert Stage= Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Outed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Inflow q (cfs) area Peak Inflow q (cfs) = Peak Untflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	Zone 3 Weir 0.45 4.00 3.00 4.00 70% 0% e (Circular Orifice, Zone 3 Circular 2.25 5.00 r Trapezoidal) 0.60 1.00 4.00 1.00 4.00 1.00 70% 0.53 0.020 0.04 0.0 0.00 0.1 0.004 N/A Filtration Media N/A	Not Selected N/A feet H:V feet 0.058 0.011 0.0 0.3 0.025 N/A Vertical Orifice 1 N/A	ft (relative to basin feet H:V feet %, grate open are % ft (distance below b inches n bottom at Stage = 1HP hydrographs ar 0.69 0.028 0.006 0.0 0.0 0.0 0.1 0.0 N/A Filtration Media N/A	bottom at Stage = 0 Gr Ov ea/total area C b) asin bottom at Stage Half-Cent = 0 ft) 0.048 0.010 0.0 0.0 0.0 0.0 1.5 Vertical Orifice 1 N/A	ft) Height of Grat Overflow V ate Open Area / 10 erflow Grate Open verflow Grate Open (22) = 0 ft) O Outle ral Angle of Restrice Spillway D Stage at Basin Area at Basin Area at 10 Year 1.23 0.076 0.015 0.1 0.4 0.1 0.4 0.1 0.4 0.1 0.4 0.1 0.4	Veir Slope Length = 0-yr Orifice Area = Area w/o Debris = in Area w/o Debris = Design Flow Depth = Top of Freeboard = 1.58 0.134 0.027 0.4 0.23 0.8 0.2 0.5 Overflow Weir 1 0.0	Zone 3 Weir 1.78 4.22 86.58 11.81 11.81 11.81 s for Outlet Pipe w/ Zone 3 Circular 0.14 0.21 N/A Calculated Parame 0.36 1.96 0.07 0.11 vdrographs table (C 50 Year 1.86 0.174 0.035 0.6 0.33 1.1 0.5 0.8 Overflow Weir 1 0.0	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft² ft² ft² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plat Depth to Invert of Outlet Pipe = Circular Orifice Diameter = Ser Input: Emergency Spillway (Rectangular o Spillway Invert Stage= Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Cuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q (cfs) = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	Zone 3 Weir 0.45 4.00 3.00 4.00 70% 0% e (Circular Orifice, Zone 3 Circular 2.25 5.00 r Trapezoidal) 0.60 1.00 4.00 1.00 70% 0.020 0.004 0.0 0.00 0.1 0.004 N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Restrictor Plate, or Not Selected N/A N/A t (relative to basis feet H:V feet tide the default CU EURV 1.07 0.058 0.011 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	ft (relative to basin feet H:V feet %, grate open are % ft (distance below b inches n bottom at Stage = 1HP hydrographs are 0.69 0.028 0.006 0.0 0.0 0.0 0.0 0.0 0.0 0.0 N/A Filtration Media N/A	bottom at Stage = 0 Gr Ov ca/total area C	ft) Height of Grat Overflow V ate Open Area / 10 (rerflow Grate Open verflow Grate Open verflow Grate Open (reflow Grate Open (Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/o Debris = an A	Zone 3 Weir 1.78 4.22 86.58 11.81 11.81 11.81 20ne 3 Circular 0.14 0.21 N/A Calculated Parame 0.36 1.96 0.07 0.11 vdrographs table (C 50 Year 1.86 0.174 0.035 0.6 0.33 1.1 0.5 0.8 Overflow Weir 1 0.0 N/A	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pli Not Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft Columns W through 100 Year 2.14 0.222 0.044 0.8 0.47 1.4 0.75 0.9 Overflow Weir 1 0.1 N/A	feet feet ft² ft² ft² feet ft² feet foot 500 Ye 2.84 0.33 0.066 1.3 0.75 2.1 1.2 0.9 Spillwa 0.1 N/A
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plat Depth to Invert of Outlet Pipe = Circular Orifice Diameter = Spillway Invert Stage= Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Outed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Inflow q (cfs) area Peak Inflow q (cfs) = Peak Untflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	Zone 3 Weir 0.45 4.00 3.00 4.00 70% 0% e (Circular Orifice, Zone 3 Circular 2.25 5.00 r Trapezoidal) 0.60 1.00 4.00 1.00 4.00 1.00 70% 0.53 0.020 0.04 0.0 0.00 0.1 0.004 N/A Filtration Media N/A	Not Selected N/A feet H:V feet 0.058 0.011 0.0 0.3 0.025 N/A Vertical Orifice 1 N/A	ft (relative to basin feet H:V feet %, grate open are % ft (distance below b inches n bottom at Stage = 1HP hydrographs ar 0.69 0.028 0.006 0.0 0.0 0.0 0.1 0.0 N/A Filtration Media N/A	bottom at Stage = 0 Gr Ov ea/total area C b) asin bottom at Stage Half-Cent = 0 ft) 0.048 0.010 0.0 0.0 0.0 0.0 1.5 Vertical Orifice 1 N/A	ft) Height of Grat Overflow V ate Open Area / 10 erflow Grate Open verflow Grate Open (22) = 0 ft) O Outle ral Angle of Restrice Spillway D Stage at Basin Area at Basin Area at 10 Year 1.23 0.076 0.015 0.1 0.4 0.1 0.4 0.1 0.4 0.1 0.4 0.1 0.4	Veir Slope Length = 0-yr Orifice Area = Area w/o Debris = in Area w/o Debris = Design Flow Depth = Top of Freeboard = 1.58 0.134 0.027 0.4 0.23 0.8 0.2 0.5 Overflow Weir 1 0.0	Zone 3 Weir 1.78 4.22 86.58 11.81 11.81 11.81 s for Outlet Pipe w/ Zone 3 Circular 0.14 0.21 N/A Calculated Parame 0.36 1.96 0.07 0.11 vdrographs table (C 50 Year 1.86 0.174 0.035 0.6 0.33 1.1 0.5 0.8 Overflow Weir 1 0.0	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft² ft² ft² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = er Input: Outlet Pipe w/ Flow Restriction Plat Depth to Invert of Outlet Pipe = Circular Orifice Diameter = er Input: Emergency Spillway (Rectangular o Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Uted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Predevelopment Peak Q (cfs) = ProtoNL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (nours)	Zone 3 Weir 0.45 4.00 3.00 4.00 70% 0% e (Circular Orifice, Zone 3 Circular 2.25 5.00 r Trapezoidal) 0.60 1.00 4.00 1.00 70% 0.60 0.00 0.00 0.00 0.00 0.00 0.1 0.004 N/A N/A 11	Not Selected N/A Restrictor Plate, or Not Selected N/A N/A N/A N/A Retrictor Plate, or N/A N/A N/A N/A feet H:V feet H:V feet 0.011 0.0 0.00 0.3 0.025 N/A Vertical Orifice 1 N/A 22	ft (relative to basin feet H:V feet %, grate open are % ft (distance below b inches n bottom at Stage = 0.69 0.028 0.006 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.1	bottom at Stage = 0 Gr Ov ea/total area C b) asin bottom at Stage Half-Cent = 0 ft) d runoff volumes l 5 Year 0.98 0.048 0.010 0.0 0.01 0.3 0.0 1.5 Vertical Orifice 1 N/A N/A 21	ft) Height of Grat Overflow V ate Open Area / 10 verflow Grate Open verflow Grate Open a Open e 0 ft) O Outle ral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at Overtering new var 10 Year 1.23 0.076 0.015 0.1 0.4 0.4 Vertical Orifice 1 N/A N/A 23	Veir Slope Length = 00-yr Orifice Area = A rea w/o Debris = an Area w/ Debris = an Area w	Zone 3 Weir 1.78 4.22 86.58 11.81 11.81 11.81 s for Outlet Pipe w/ Zone 3 Circular 0.14 0.21 N/A Calculated Parame 0.36 1.96 0.07 0.11 vdrographs table (C 50 Year 1.86 0.174 0.035 0.6 0.6 0.8 Overflow Weir 1 0.0 N/A 22	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	AF). 500 Ye 2.84 0.33 0.06 1.3 0.75 2.11 1.2 0.9 Spillw 0.11 N/A 1.9

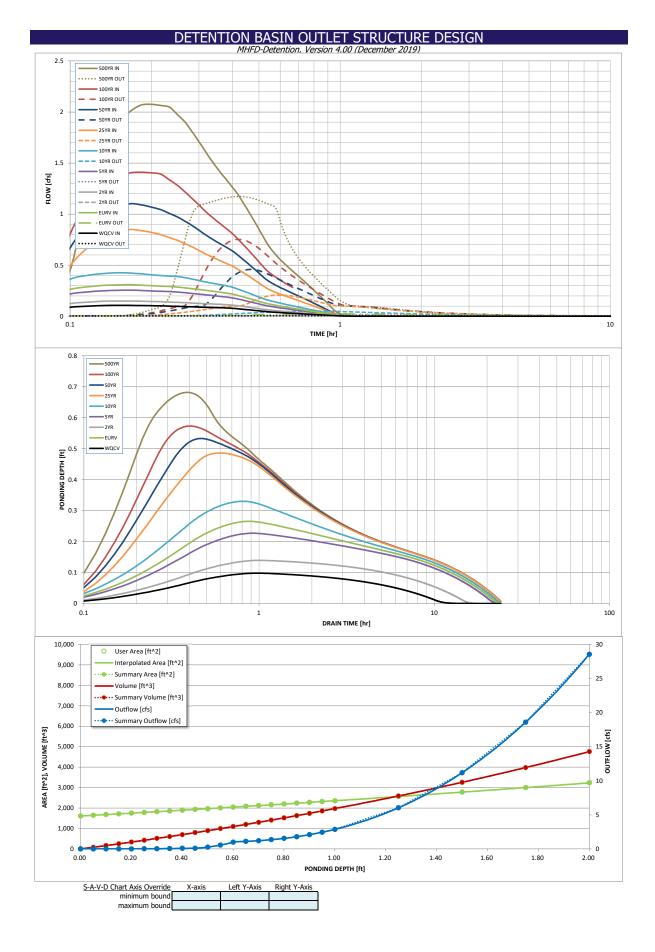
Maximum Ponding Depth (ft) = Area at Maximum Ponding Depth (acres) = Maximum Volume Stored (acre-ft) =

0.04

0.04

0.04

0.04


0.04

0.04

0.05

0.05

0.05

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

calculated inflow hydrographs from this workbook with inflow hydrographs developed in a the narate

1								ped in a separate		
User-Defined	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
1.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:01:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:02:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:03:00	0.00	0.01	0.00	0.01	0.02	0.02	0.02	0.02	0.04
	0:04:00	0.02	0.07	0.03	0.05	0.07	0.05	0.07	0.08	0.13
	0:05:00	0.06 0.09	0.19 0.26	0.08	0.16 0.22	0.23	0.15 0.49	0.20	0.23 0.81	0.45
	0:07:00	0.10	0.29	0.12	0.24	0.40	0.68	0.89	1.12	1.67
	0:08:00	0.11	0.30	0.15	0.25	0.42	0.78	1.01	1.27	1.88
	0:09:00	0.11	0.31	0.15	0.25	0.43	0.82	1.06	1.36	2.00
	0:10:00	0.11	0.31	0.15	0.26	0.42	0.85	1.10	1.40	2.07
	0:11:00	0.11	0.31	0.15	0.25	0.42	0.84	1.09	1.41	2.07
	0:12:00	0.10	0.30	0.14	0.25	0.41	0.82	1.07	1.40	2.06
	0:13:00 0:14:00	0.10	0.30 0.29	0.14	0.24	0.40	0.80	1.04	1.39 1.33	2.05 1.97
	0:15:00	0.10	0.29	0.14	0.24	0.39	0.74	0.97	1.33	1.97
	0:16:00	0.09	0.25	0.13	0.23	0.38	0.71	0.93	1.20	1.80
	0:17:00	0.09	0.27	0.13	0.22	0.36	0.68	0.89	1.15	1.71
	0:18:00	0.09	0.26	0.13	0.22	0.35	0.65	0.84	1.09	1.62
	0:19:00	0.09	0.26	0.12	0.21	0.34	0.61	0.80	1.03	1.53
	0:20:00	0.09	0.25	0.12	0.20	0.33	0.58	0.76	0.98	1.45
	0:21:00	0.08	0.24	0.12	0.20	0.32	0.56	0.73	0.93	1.38
	0:22:00 0:23:00	0.08	0.23	0.12	0.19	0.31	0.53	0.70	0.89	1.32
	0:23:00	0.08	0.23	0.11 0.11	0.19 0.18	0.30	0.51 0.49	0.67	0.85	1.26
	0:25:00	0.07	0.22	0.10	0.10	0.20	0.46	0.60	0.76	1.13
	0:26:00	0.07	0.19	0.10	0.16	0.25	0.43	0.57	0.71	1.06
	0:27:00	0.07	0.18	0.09	0.15	0.24	0.41	0.53	0.67	0.99
	0:28:00	0.06	0.17	0.09	0.14	0.22	0.38	0.49	0.62	0.92
	0:29:00	0.06	0.16	0.08	0.13	0.20	0.35	0.46	0.58	0.85
	0:30:00	0.05	0.15	0.07	0.12	0.19	0.33	0.42	0.53	0.79
	0:31:00 0:32:00	0.05	0.14	0.07	0.11 0.10	0.17 0.16	0.30	0.39	0.49	0.72
	0:33:00	0.03	0.13	0.06	0.10	0.15	0.26	0.34	0.43	0.63
	0:34:00	0.04	0.11	0.06	0.09	0.14	0.24	0.32	0.40	0.59
	0:35:00	0.04	0.11	0.05	0.09	0.14	0.23	0.30	0.37	0.56
	0:36:00	0.04	0.10	0.05	0.08	0.13	0.22	0.28	0.35	0.52
	0:37:00	0.03	0.09	0.05	0.08	0.12	0.21	0.27	0.33	0.50
	0:38:00	0.03	0.09	0.05	0.07	0.11	0.19	0.25	0.32	0.47
	0:39:00	0.03	0.08	0.04	0.07	0.11 0.10	0.18	0.24	0.30	0.44
	0:41:00	0.03	0.08	0.04	0.06	0.10	0.16	0.23	0.28	0.39
	0:42:00	0.03	0.07	0.04	0.06	0.09	0.15	0.20	0.25	0.37
	0:43:00	0.02	0.07	0.03	0.05	0.08	0.14	0.19	0.24	0.35
[0:44:00	0.02	0.06	0.03	0.05	0.08	0.14	0.18	0.22	0.32
	0:45:00	0.02	0.06	0.03	0.05	0.07	0.13	0.16	0.21	0.30
	0:46:00	0.02	0.05	0.03	0.04	0.07	0.12	0.15	0.19	0.28
	0:47:00	0.02	0.05	0.03	0.04	0.06	0.11	0.14	0.18	0.26
	0:49:00	0.02	0.05	0.02	0.04	0.05	0.10	0.13	0.16	0.23
	0:50:00	0.01	0.04	0.02	0.03	0.05	0.08	0.10	0.13	0.19
	0:51:00	0.01 0.01	0.04	0.02	0.03	0.04	0.07	0.09	0.12 0.10	0.17 0.15
	0:52:00 0:53:00	0.01	0.03	0.02	0.03	0.04	0.07	0.08	0.10	0.15
	0:54:00	0.01	0.02	0.01	0.02	0.03	0.05	0.06	0.07	0.10
	0:55:00 0:56:00	0.01 0.01	0.02	0.01	0.02	0.02	0.04	0.05	0.06 0.04	0.08
	0:58:00	0.01	0.01	0.01	0.01	0.02	0.02	0.03	0.03	0.04
	0:58:00	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.03
	0:59:00 1:00:00	0.00 0.00	0.01	0.01	0.01 0.01	0.01 0.01	0.01	0.02 0.01	0.02 0.01	0.03
l	1:01:00	0.00	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.02
	1:02:00 1:03:00	0.00	0.01	0.00	0.00	0.01	0.01	0.01	0.01 0.01	0.01 0.01
	1:04:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01
	1:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	1:06:00 1:07:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	1:08:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	1:09:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	1:10:00 1:11:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	1:12:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.00 (December 2019) Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
	0.00	1,612	0.037	0	0.000	0.000	For best results, include the
	0.05	1,646	0.038	81	0.002	0.004	stages of all grade slope
	0.10	1,681	0.039	165	0.004	0.004	changes (e.g. ISV and Floor
	0.15	1,716	0.039	250	0.006	0.005	from the S-A-V table on
	0.20	1,751	0.040	336	0.008	0.009	Sheet 'Basin'.
	0.25	1,786	0.041	425	0.010	0.021	Also include the inverts of al
	0.30	1,822	0.042	515	0.012	0.038	outlets (e.g. vertical orifice,
	0.35	1,858	0.043	607	0.014	0.061	overflow grate, and spillway
	0.40	1,895	0.043	701	0.016	0.088	where applicable).
	0.45	1,932	0.044	796	0.018	0.104	
	0.50	1,969	0.045	894	0.021	0.270	
	0.55	2,006	0.046	993	0.023	0.575	
	0.60	2,044	0.047	1,094	0.025	0.983	
	0.65	2,082	0.048	1,198	0.027	1.116	
	0.70	2,120	0.049	1,303	0.030	1.212	
	0.75	2,159	0.050	1,410	0.032	1.355	
	0.80	2,198	0.050	1,519	0.035	1.547	
	0.85	2,237	0.051	1,629	0.037	1.791	
	0.90	2,277	0.052	1,742	0.040	2.092	-
	0.95	2,317	0.053	1,857	0.043	2.453	-
	1.00	2,357	0.054	1,974	0.045	2.875	-
	1.25	2,564	0.059	2,589	0.059	6.033	
	1.50	2,778	0.064	3,257	0.075	11.174	
	1.75	3,000	0.069	3,979	0.091	18.59	
	2.00	3,231	0.074	4,758	0.109	28.55	
							-
							-
							-
							-
	1						
							-
							-
							-
							4
							4
	1						1
							1
							4
							4
							1
							-

GRASS SWALE CALCULATIONS Widefield Water and Sanitation District Rolling Hills Tank

Proposed Grass Swale (typ.), Subbasin C Open Channel Flow Evaluation

Manning's Formula

 $Q=(1.486/n)AR_{h}^{2/3}S^{1/2}$

Q=V*A

Q=Discharge, cfs R=Hydraulic Radius, A/P, ft A=cross sectional area, ft^2 P=wetter perimeter, ft S=slope of channel n=Manning's roughness coefficient z=sideslope d=Depth, ft b=Bottom Width, ft

n (grass)=	0.033	Mannings coeff
S=	0.01	in/in
b=	1.0	
d=	0.75	ft
Z=	3.0	
Z=	3.0	

					Solution to N	Manning's	Equation
		Wetted					
		Perimeter	Hydraulic	Тор			
		, ft	Radius, ft	Width	Velocity	Flow	
Depth, ft	Area, ft ²	Perimeter	Radius, ft	Width, ft	ft/s	cfs	
0.75	2.44	5.74	0.42	5.50	2.79	6.79	

GRASS SWALE CALCULATIONS Widefield Water and Sanitation District Rolling Hills Tank

Proposed Grass Swale (typ.), Subbasin D Open Channel Flow Evaluation

Manning's Formula

 $Q=(1.486/n)AR_{h}^{2/3}S^{1/2}$

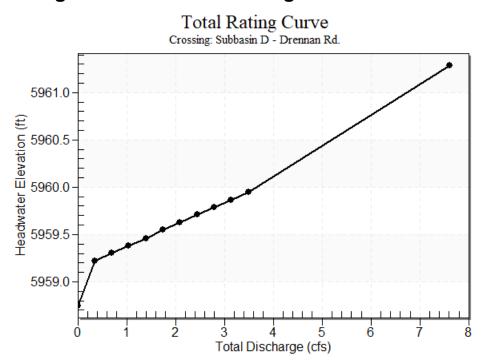
Q=V*A

Q=Discharge, cfs R=Hydraulic Radius, A/P, ft A=cross sectional area, ft^2 P=wetter perimeter, ft S=slope of channel n=Manning's roughness coefficient z=sideslope d=Depth, ft b=Bottom Width, ft

n (grass)=	0.033	Mannings coeff
S=	0.02	in/in
b=	1.0	ft
d=	0.75	ft
Z=	3.0	
Z=	3.0	

					Solution to I	Manning's E	Equation
		Wetted					
		Perimeter	Hydraulic	Тор			
		, ft	Radius, ft	Width	Velocity	Flow	
Depth, ft	Area, ft ²	Perimeter	Radius, ft	Width, ft	ft/s	cfs	
0.75	2.44	5.74	0.42	5.50	3.60	8.77	

Appendix E


HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 0 cfs Design Flow: 1.4 cfs Maximum Flow: 3.49 cfs

Headwater Elevation	Total Discharge (c	Culvert 1 Discharg (cfs)	Roadway Discharç (cfs)	Iterations
5958.75	0.00	0.00	0.00	1
5959.22	0.35	0.35	0.00	1
5959.31	0 70	0.70	0.00	1
5959.38	1.05	1.05	0.00	1
5959 46	1 40	1 40	0.00	1
5959.55	1.75	1.75	0.00	1
5959.63	2.09	2.09	0.00	1
5959.71	2.44	2.44	0.00	1
5959.79	2.79	2.79	0.00	1
5959.86	3 14	3 14	0.00	1
5959.95	3.49	3.49	0.00	1
5961.25	7.12	7.12	0.00	Overtopping

Table 1 - Summary of Culvert Flows at Crossing: Subbasin D - Drennan Rd.

Rating Curve Plot for Crossing: Subbasin D - Drennan Rd.

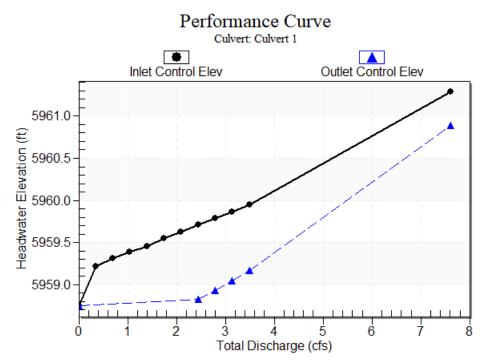
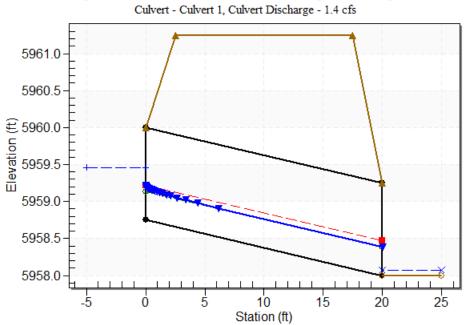

Total Dischar e (cfs)	Dischar	Headwa r Elevatio (ft)	Control		Туре	Normal Depth (f			Tailwate Depth (f		
0.00	0.00	5958.7	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
0.35	0.35	5959.22	0.466	0.0*	1-S2	0.193	0.229	0.193	0.030	2.907	1.097
0.70	0.70	5959.31	0.558	0.0*	1-S2r	0.270	0.326	0.270	0.046	3.571	1.426
1.05	1.05	5959.38	0.635	0.0*	1-S2	0.332	0.402	0.332	0.058	4.014	1.654
1.40	1.40	5959.46	0.707	0.0*	1-S2r	0.385	0.468	0.385	0.069	4.357	1.836
1.75		5959.5	0.797	0.0*	1-S2	0.432	0.525	0.432	0.078	4.636	1.985
2.09	2.09	5959.6	0.880	0.0*	1-S2	0.476	0.577	0.476	0.087	4.874	2.118
2.44	2.44	<u>5959.71</u>	0.958	0.077	1-S2	0.518	0.625	0.518	0.095	<u>5.081</u>	2.234
2.79	2.79	5959.79	1.035	0.184	1-S2	0.558	0.671	0.558	0.103	5.263	2.340
3.14	3.14	<u>5959.8</u>	1.114	0.297	1-S2r	0.597	0.713	0.597	0.110	<u>5.426</u>	2.436
3.49	3.49	5959.9	1.196	_0.415	1-S2	_0.635_	_0.754	_0.635_	_0.117	5.571	2.522

Table 2 - Culvert Summary Table: Culvert 1


* Full Flow Headwater elevation is below inlet invert.

Straight Culvert Inlet Elevation (invert): 5958.75 ft, Outlet Elevation (invert): 5958.00 ft Culvert Length: 20.02 ft, Culvert Slope: 0.0375 Inlet Throat Elevation: 5958.75 ft, Inlet Crest Elevation: 5959.06 ft

Culvert Performance Curve Plot: Culvert 1

Water Surface Profile Plot for Culvert: Culvert 1

Crossing - Subbasin D - Drennan Rd., Design Discharge - 1.4 cfs

Site Data - Culvert 1

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 5959.00 ft Outlet Station: 20.00 ft Outlet Elevation: 5958.00 ft Number of Barrels: 1

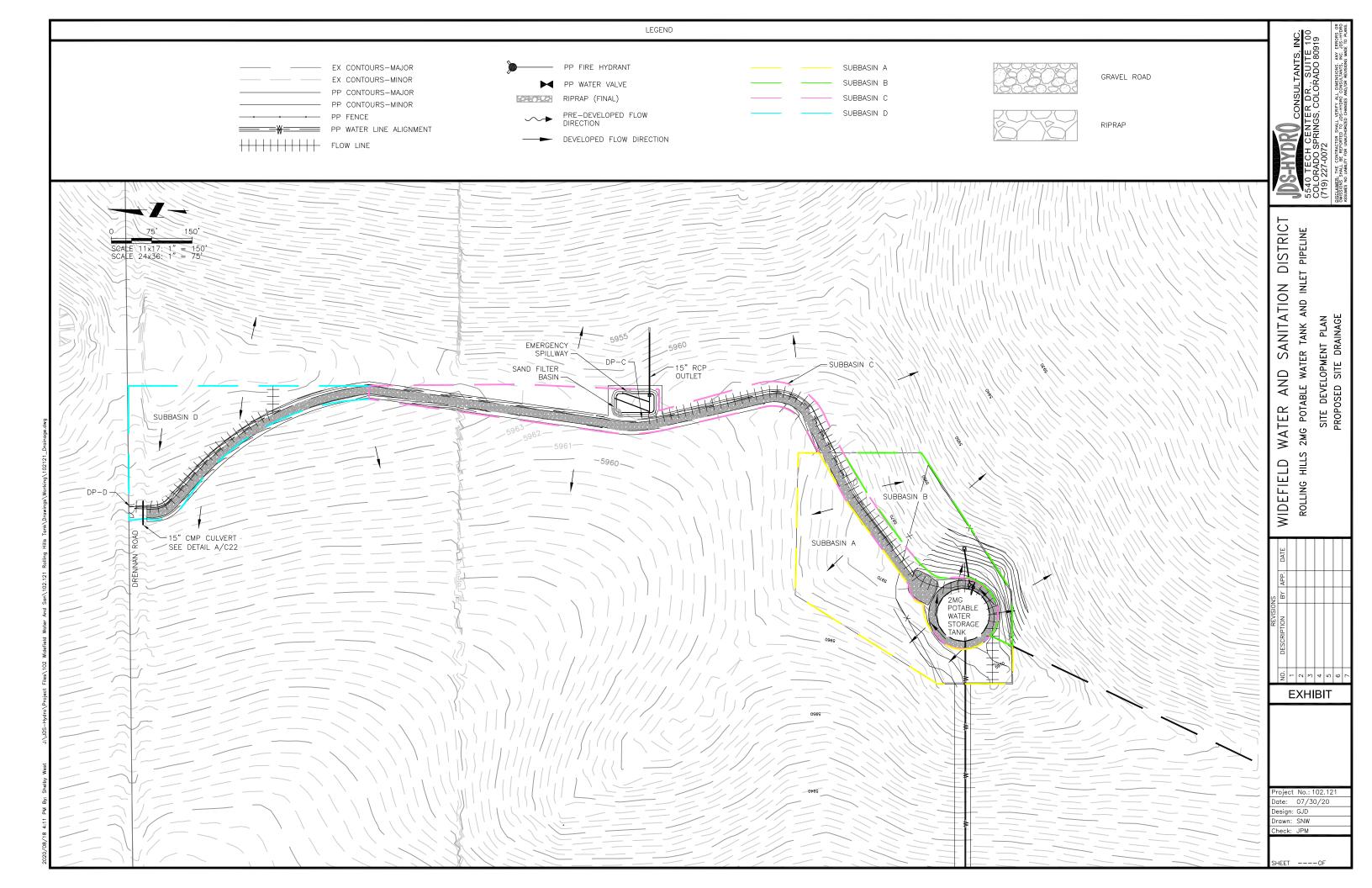
Culvert Data Summary - Culvert 1

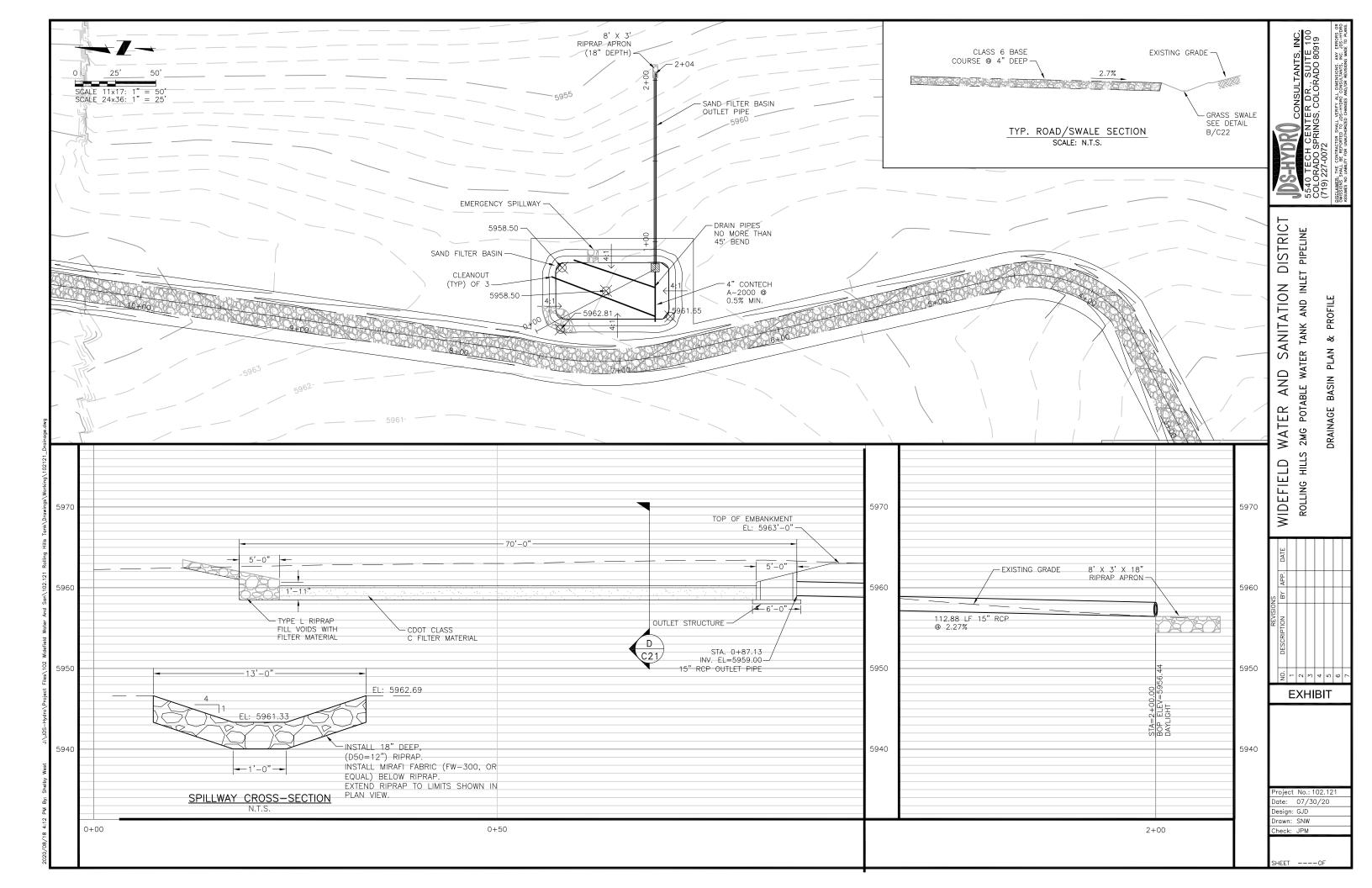
Barrel Shape: Circular Barrel Diameter: 1.25 ft Barrel Material: Corrugated Steel Embedment: 0.00 in Barrel Manning's n: 0.0240 Culvert Type: Straight Inlet Configuration: Mitered to Conform to Slope Inlet Depression: Yes

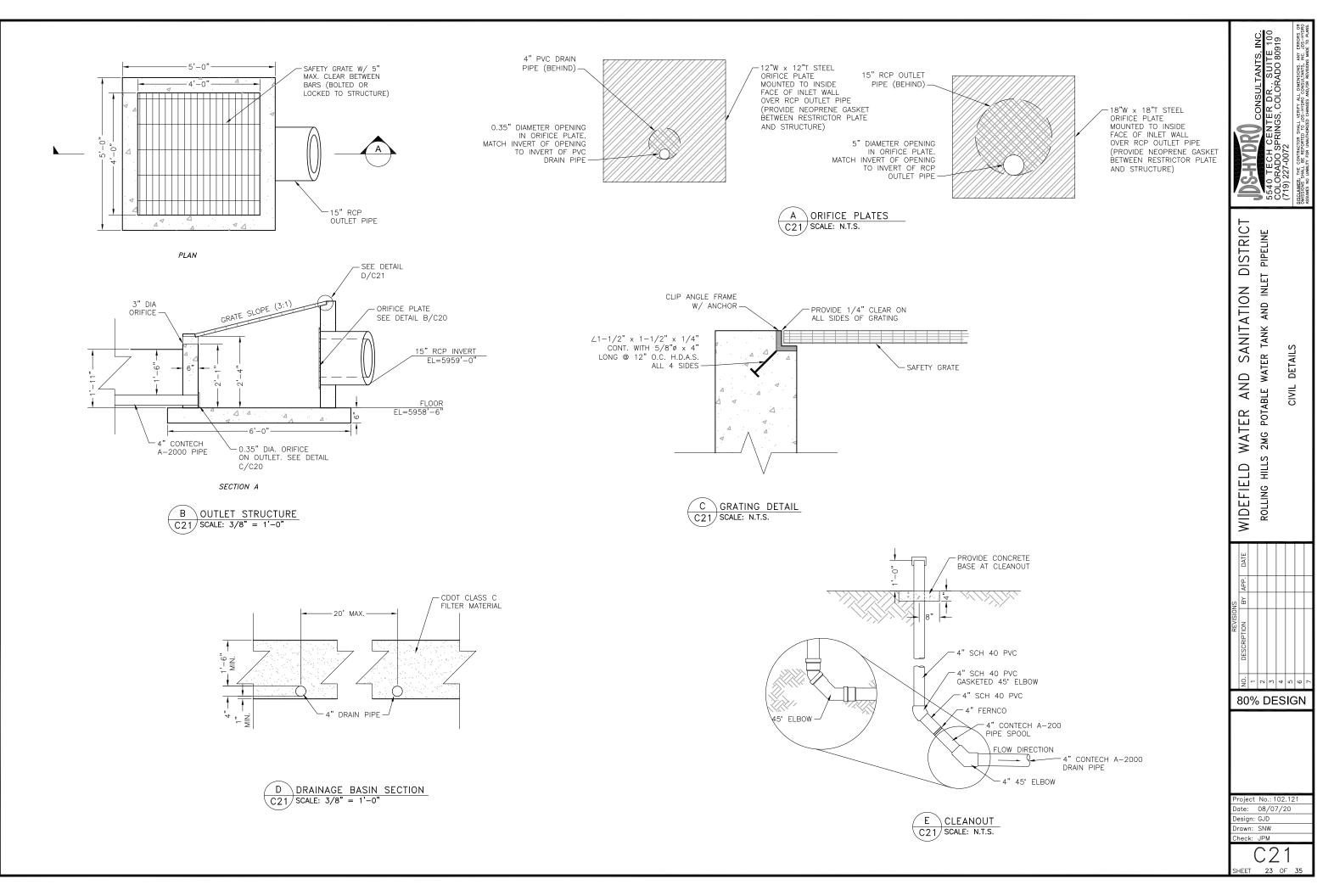
Flow (cfs)	Water Surfac Elev (ft)	Depth (ft)	Velocity (ft/s	Shear (psf)	Froude Numbe
0.00	5958.00	0.00	0.00	0.00	0.00
0.35	5958.03	0.03	1.10	0.13	1.14
0 70	5958.05	0.05	1 43	0 19	1 22
1.05	5958.06	0.06	1.65	0.24	1.26
1.40	5958.07	0.07	1.84	0.29	1.29
1.75	5958.08	0.08	1.98	0.33	1.32
2.09	5958.09	0.09	2.12	0.36	1.34
2 44	<u>5958 09</u>	0.09	2 23	0.40	1.36
2.79	5958,10	0.10	2.34	0.43	1.38
3.14	5958.11	0.11	2.44	0.46	1.39
3.49	5958.12	0.12	2.52	0.49	1.40

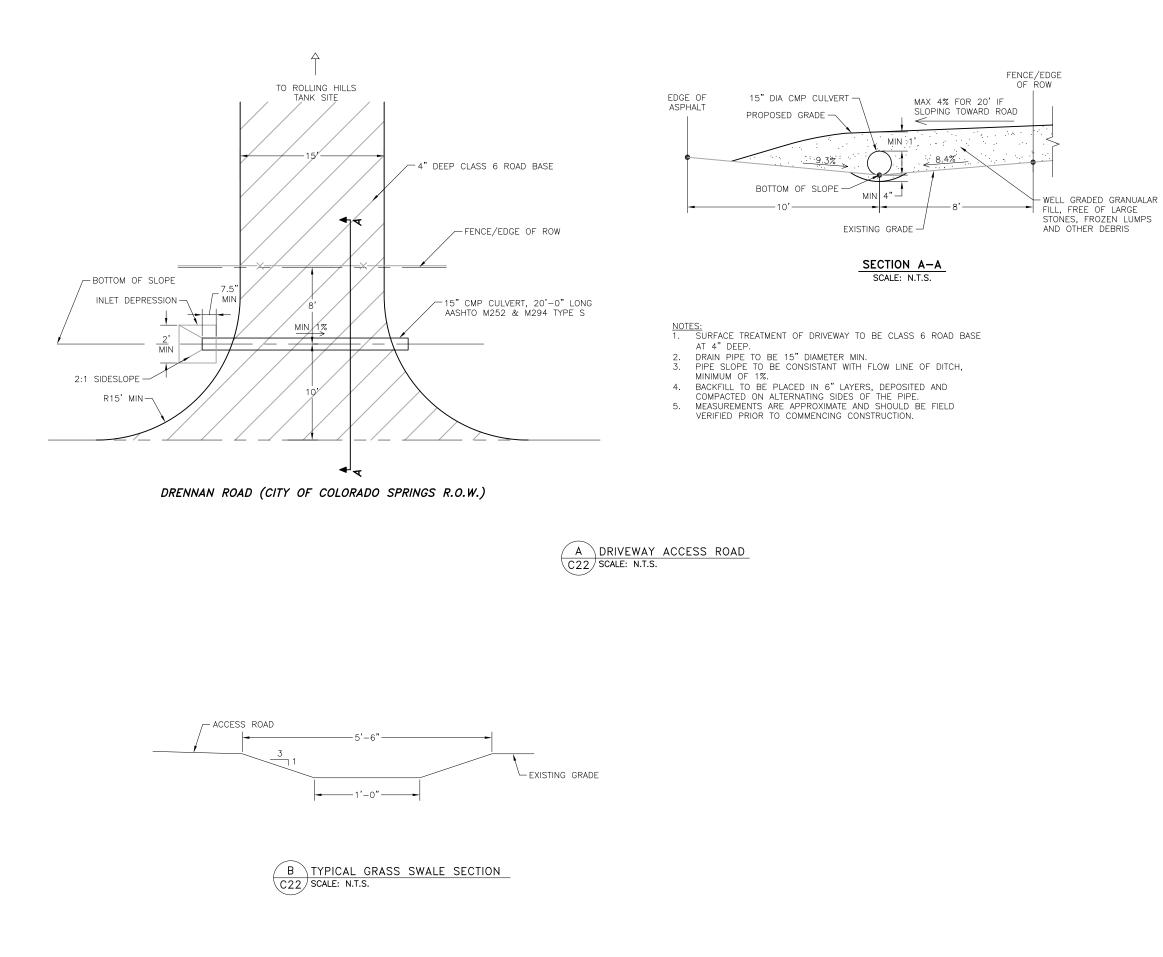
Table 3 - Downstream Channel Rating Curve (Crossing: Subbasin D - Drennan


Tailwater Channel Data - Subbasin D - Drennan Rd.


Tailwater Channel Option: Trapezoidal Channel Bottom Width: 10.00 ft Side Slope (H:V): 16.00 (_:1) Channel Slope: 0.0670 Channel Manning's n: 0.0330 Channel Invert Elevation: 5958.00 ft


Roadway Data for Crossing: Subbasin D - Drennan Rd.


Roadway Profile Shape: Constant Roadway Elevation Crest Length: 20.00 ft Crest Elevation: 5961.25 ft Roadway Surface: Gravel Roadway Top Width: 15.00 ft


Appendix F

				5540 TECH CENTER DR., SUITE 100	CULURADU SPRINGS, CULURADU 80919	(113) ZZI-DOIZ	DISCLAIMER: THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS. ANY ERRORS OR OMISSIONS SHALL BE REPORTED TO JDS-HYDRO CONSULTANTS. INC. JDS-HYDRO	ASSUMES NO LIABILITY FOR UNAUTHORIZED CHANGES AND/OR REVISIONS MADE TO PLANS.
	IDEFIELD WATER AND SANITATION DISTRICT		ROLLING HILLS 2MG POTARLE WATER TANK AND INLET PIPELINE			CIVIL DETAILS		
	WIDEF	 - -	ROI					
	DATE V		L C A					
S	≥		ROI					
REVISIONS	APP. DATE W		ROI					
REVISIONS	NO. DESCRIPTION BY APP. DATE W		2	3	4	5	9	7
REVISIONS	APP. DATE W		2	3			-	
	00 NO. DESCRIPTION BY APP. DATE W		2	P DE	S		GN	
	at o DESCRIPTION BY APP. DATE W			2 DE	02	.12	GN	
	10 10 10 DESCRIPTION BY APP. DATE W			DE	02	.12	GN	
	Image:			DE	02	.12	GN	