Final Drainage Report

FOR
 FALCON DISTRICT 49 TRANSPORTATION FACILITY, FALCON, CO

Owner: RTA Architects, 19 South Tejon St, Suite 300, Colorado Springs, CO. 80903.

Engineer: JVA, Inc.
1319 Spruce Street
Boulder, CO 80301
Attn. Cooper W. Karsh
(303)565-4961

May 23, 2022
Revised September 20, 2022
Revised February 01, 2023

Engineer of Record:

Cooper W. Karsh P.E.
Registered Professional Engineer
State of Colorado No. 50723

PPR2236

Design Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions ortmy part in preparing this report.

Owner/Developer's Statement:

I, the owner/developer have read and will comply with all of the requirements specified in this drainage report and plan.

2/1/23 14:58 MST
[Name, Title] Lou Fletcher, Executive Director Date
[Business Name]
[Address]

El Paso County:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Joshua Palmer, P.E.
Date
County Engineer / ECM Administrator

Conditions:

Table of Contents

A. GENERAL LOCATION AND DESCRIPTION 4

1. Location 4
2. Description of Existing Site 4
B. DRAINAGE BASINS AND SUB-BASINS 5
3. Major Basin Description 5
4. Existing Sub-basin Description 5
5. Proposed Sub-basin Description 6
C. DRAINAGE DESIGN CRITERIA 8
6. Development Criteria Reference 8
7. Previous Drainage Studies 8
8. Floodplain Analysis 8
9. Hydrologic Criteria 8
D. DRAINAGE FACILITY DESIGN 9
10. General Concept 9
11. Specific Details 10
12. BMP Selection Process 11
E. CONCLUSION 12
13. Summary of Concept 12
F. REFERENCES 13
APPENDICESAppendix A - Site MapsAppendix B - CalculationsAppendix C - Figures

A. GENERAL LOCATION AND DESCRIPTION

1. Location

District 49 (D49) Transportation Centre is in Falcon at 12050 Falcon Highway. The subject site is located east of Meridian Road, west of Chief Road and south of Highway 24.

The site is bound by Saint Benedict Church to the east, residential homes to the west and Highway 24 to the north. The site is in the jurisdiction of El Paso County. The property is accessed at two locations: via Falcon Highway south of the subject site and Swingline Road, north of the site. Refer to Figure 1 for the site location.

The subject site is in the Falcon CHWS1400 drainage basin. There is an existing creek which runs in a north-south direction, along the western boundary of the site and parallel to Gelbvieh Road.

Figure 1-Site Location Map (Google © 2022 Imagery)

2. Description of Existing Site

The existing development site area is 54 acres and approximately 40% of impermeable surfaces. The site comprises of an elementary school building, a running track with granular finish, a baseball field and a maintenance yard building.

The site generally falls in a north-south direction, from an existing elevation of 6,820 ft northwest of the site to $6,782 \mathrm{ft}$ southwest of the site. This fall in elevation is over $2,714 \mathrm{ft}$ in length or 1.4% in gradient. An internal gravel access road within the site acts as catchment
divide with one basin discharging in a south easterly direction and a second in a south westerly direction. Refer to the JVA General Location Map drawing which shows sub-basins H-1, OS-1 \& OS-2 discharging into a local depression, sub-basins OS-3, H-2 \& H3 discharging into a wetland on-site, which eventually discharge into the Falcon Highway culvert.

The site is covered with soils found in hydrologic soil group A.
There is an existing creek which runs along the western boundary of the site which is a tributary to the Black Squirrel Creek and forms part of the Falcon CHWS1400 drainage basin. Refer to Appendix A which shows the site on El Paso Drainage Basins Map, extract from the Muller Engineering Company (1988).

Refer to the JVA Existing Condition Drainage Map drawing for the existing development and site boundary. Design point at Falcon Highway is highlighted to show historic peak storm runoff rates.

B. DRAINAGE BASINS AND SUB-BASINS

1. Major Basin Description

D49 Transportation Centre lies in the Falcon CHWS1400 drainage basin and a review of the Falcon Drainage Basin Planning Study (DBPS) - Final, dated September 2015 was carried out. The main findings were:

- The Falcon watershed flows southeasterly from the southern slope of the Black Forest. The subject site is in the Middle Tributary Basin as shown on Figure 3-2 of the Falcon DBPS report.
- Figure 2-1 Environmental Features from the Falcon DBPS indicates that the subject site lies outside of the shallow (greater than 20 ft below surface) ground water area.
- No improvements from the DBPS are intended to be included in this project. The project is lofated within FEMA flood map number 08041C0561G effective July 12, 2018. Part of the site is located within Zone AE, which is defined by FEMA as areas predicted to be in special flood hazard zone with base flood elevations determined. Note, the FEMA maps display information on a larger scale. A survey was commissioned to plot the
 Append Elaborate and explain why/provide justification. ling Zone AE. Refer to the J Per DCM 1.4.2 "Developers in and along a drainage way are required to implement the proper
There al measures to maintain or create stable propose characteristics of the drainage way. The principal ovjective is to limit excessive erosion in and along the channel..."

2. Existing Sub-basin Description

D49 Transportation Centre is split into three drainage catchments. An internal gravel access road within the site acts as catchment divide with one basin discharging in a south easterly direction and the remaining basins in a south westerly direction. Refer to the JVA Existing Condition Drainage map which shows sub-basin OS-1 discharging into a local depression
northeast, sub-basins OS-2 and $\mathrm{H}-1$ discharging into a local depression east of the site and OS-3, H-2 \& H-3 discharging into a wetland south of the site. The existing site has five drainage sub-basins which sheetflow to the tree design points as described below.

- Basin OS-1 is covered by vegetation, located northeast of the site. The sub-basin will remain undeveloped as per existing configurations. OS-1 sheetflows to design point 1. Sub-basin OS-1 has peak rate of runoff of 2.26 cfs and 8.82 cfs for the minor and major storm respectively.
- Basin OS-2 is covered by vegetation and asphalt paving, located north of the site. OS-2 sheetflows to design point 2. Sub-basin OS-2 has peak rate of runoff of 8.36 cfs and 16.26 cfs for the minor and major storm respectively.
- Basin OS-3 is the existing school, car parking lot and local access. The sub-basin is located northwest of the site. OS-3 sheetflows to design point 3. Sub-basin OS-3 has peak rate of runoff of 16.80 cfs and 32.57 cfs for the minor and major storm respectively.
- Basin H-1 is the existing baseball field, gravel road and maintenance yard. The subbasin is located east of the site. $\mathrm{H}-1$ sheetflows to design point 2 . Sub-basin $\mathrm{H}-1$ has peak rate of runoff of 13.02 cfs and 34.00 cfs for the minor and major storm respectively.
- Basin H-2 is the existing gravel running track, gravel road and wetland. The subbasin is located west of the site. H-2 sheetflows to design point 3. Sub-basin H-2 has peak rate of runoff of 16.66 cfs and 41.34 cfs for the minor and major storm respectively.
- Basin H-3 is the existing school, parking lot and local access. The sub-basin is located south of the site. H-3 sheetflows to design point 4 . Sub-basin H-3 has peak rate of runoff of 25.08 cfs and 47.11 cfs for the minor and major storm respectively.

Refer to Fig 1 in Appendix C for a copy of the existing condition drainage map which shows existing sub-basins and peak storm runoff rates.

3. Proposed Sub-basin Description

The proposed development will include 13 sub-basins which are shown on the JVA drawing Proposed Drainage Plan, Figure 2.

The new development will have five off-site drainage basins including OS-1, OS-2, OS-3, OS-4 and OS-5. Sub-basins OS-2, OS-3 and OS-4 will be intercepted to discharge into the existing Black Squirrel Creek. OS1 and OS-5 will remain as is and will discharge into the existing design points as per historical drainage configurations.

The remaining eight sub-basins include the following:

- Basin A1 is a future buildout as part of Phase 2. The basin is located north of the proposed building and comprises of soft and hard surfaces equivalent to 2.61ac. As part of Phase 2, basin A1 will be collected via a storm system to discharge into the extended basin which will be built as part of Phase 1. The proposed storm system for basin A1 will be built as part of Phase 2. Water quality and detention will be provided. Prior to construction, a final drainage report will be submitted to show that
drainage requirements are met. Basin A1 has peak rate of runoff of 8.46 cfs and

Unresolved. Explain why basin A2 does not drain into a permanent WQ facility. See ECM I.7.1.B for exclusions from permanent WQ. If this is intended to be undeveloped land that will remain undeveloped they state as such. 17.56 cfs for the minor and major storm respectively.

- Basin A2 is an existing wetland west of the proposed detention basin equivalent to $\$.66 \mathrm{ac}$. The basin is covered by vegetation, located downstream of the detention basin. The basin will remain undeveloped as per existing configurations. Basin A2 has peak rate of runoff of 2.02 cfs and 7.37 cfs for the minor and major storm respectively.
Basin A3 is the proposed bus lot located northeast and half of the proposed building's roof equivalent to 9.72 ac . It is anticipated that the parking lot will be paved in the near future, therefore, this bus lot is added as a paved area in the calculations for water quality and detention. Runoff from this basin will be collected by an inlet to discharge into the pond using a pipework system. A swale which will act as an overflow conveyance system will be constructed to run parallel to the storm system. During critical events and where storm flows exceed 8.0 cfs , flows will bypass the

State the specific exclusion from water quality. See ECM I.7.1.B for allowable exclusions.
inlet to discharge into the adjacent swale, which has a discharge capacity of 95.64 cfs. Basin A3 has peak rate of runoff of 38.26 cfs and 72.38 cfs for the minor and major storm respectively.

- Basin A4 is the existing workshop equivalent to 2.92 ac . It is located southwest of the proposed building. The basin mainly comprises of existing buildings and gravel surface. Basin A4 runoff sheet flows into the proposed overflow swale to discharge into the detention pond for water quality and attenuation. Basin A4 has peak rate of runoff of 9.07 cfs and 16.23 cfs for the minor and major storm respectively.
- Basin A5 is half of the proposed building and staff car parking lot equivalent to 1.11 ac. It comprises of roofs, concrete and gravel surfaces. Runoff from this basin will be collected via series of downspouts and pipework system to discharge into adjacent manhole and swale which will eventually discharge into the water quality and attenuation. Basin A5 has peak rate of runoff of 2.35 cfs and 5.12 cfs for the minor and major storm respectively.
- Basin A6 is located south of the proposed building and is mainly a gravel yard with a concrete base to store fuel on site equivalent to 6.58 ac . Basin A6 runoff sheet flows into the proposed overflow swale to discharge into the detention pond for water quality and attenuation. Basin A6 has peak rate of runoff of 12.69 cfs and 25.88 cfs for the minor and major storm respectively.
- Basin A7 is the proposed detention basin and a gravel access road east of the basin equivalent to 2.63 ac . Basin A7 runoff sheet flows inft the detention pond for water quality and attenuation. It has peak rate of runoff of 2.40 cfs and 6.82 cfs for the minor and major storm respectively.
- Basin A8 is the proposed staff parking lot and access, adjacent to the elementary school equivalent to 1.02 ac . Runoff from this basin sheet flows and discharge onto the proposed grass buffer for water quality prior to discharge to the dutfall point at Falcon Highway. Basin A8 has peak rate of runoff of 1.84 cfs and 3.73 ffs for the minor and major storm respectively.

Unresolved. See review \#1 comment to the site plan and Traffic Study.

This needs to be asphalt paving if
the projected ADT is 200 trips. Update narrative once TIS is updated in the next submittal.

C. DRAINAGE DESIGN CRITERIA

1. Development Criteria Reference

- El Paso County Colorado Drainage Criteria Manual.
- Falcon Drainage Basin Planning Study - Selected Plan Report - Final - September 2015.
- Intensity, Duration, Frequency (IDF) values for the 2-year, 5-year, 10-year, 25-year, 50year \& 100-year from the City of Colorado Springs Drainage Criteria Manual Vol 1, May 2014 were used for the analysis for the site.

2. Previous Drainage Studies

D49 Transportation Centre lies in the Falcon CHWS1400 drainage basin and a review of the Falcon Drainage Basin Planning Study (DBPS) - Final, dated September 2015 was carried out. The proposed site layout takes cognizance of the findings of the above-named report.

3. Floodplain Analysis

Proposed structures and access are located outside of the predicted flooding Zone AE. In addition, proposed finished elevations are above base flood zone elevations in the vicinity. Note, the survey information shown on our layouts was created based on a local adjacent site datum. The adjacent base flood elevation of 6808 is shown in NAVD88. Per surveyor, 3.8 ft must be added to the survey elevations to convert from the local datum to navd88. Therefore, the building's finished floor elevation is approximately 3.8 ft above 100-year flood elevation. The proposed Maintenance Building is located approximately 220 ft away from the predicted flooding zone. Refer to the JVA Grading \& Drainage Plan drawing which shows outline of the predicted flooding Zone AE and the proposed site layout, outside of this zone. No significant disturbance within the floodplain is anticipated with this project.

4. Hydrologic Criteria

Rainfall data and intensity values were determined using the criteria in El Paso County Drainage Criteria Manual and the Mile High Flood District Urban Storm Drainage Criteria Manual (USDCM). Intensity, Duration, Frequency (IDF) values for the 2-year, 5-year, 10-year, 25-year, 50 -year \& 100-year from the City of Colorado Springs Drainage Criteria Manual Vol 1, May 2014 were used for the analysis for the site. Output calculation spreadsheets are provided in Appendix B.

The Rational Method (Q=CIA) was used to determine the storm runoff (Q) from the areas tributary to the proposed storm system, with composite runoff coefficients (C) and contributing areas (A) given for design points in sub-basins. Rainfall, basin coefficients, and other calculated site characteristics are shown in Appendix B.

The design frequencies are the 5 and 100-year events for the minor and major storms respectively. The 5 -year storm with a 1 -hour point rainfall of 1.50 inches and the 100 -year storm, with a 1 -hour point rainfall of 2.52 inches were used.

Detention volume and WQCV was obtained by calculating the required volume of storage using the Mile High Flood District (MHFD) detention design V4.06 in line with El Paso County drainage requirements. The proposed detention basin is an extended 40-hour drain time. A full The Rational Formula and C-values based on the El Paso County Colorado Drainage Criteria

Manual were used to estimate storage requirements. The proposed detention basin is also designed to accommodate Phase 2 of the proposed development. Output calculation spreadsheets are provided in Appendix B.

D. DRAINAGE FACILITY DESIGN

1. General Concept

The proposed development has been designed to meet the requirements of El Paso County Drainage Criteria Manual. Off-site flow analysis was carried out for the fully developed conditions. The hydrologic analysis was based on existing site characteristics as the site is fully developed. The off-site area forms part of the Falcon major drainage basin. As part of the proposed works, runoff from this basin will be intercepted at the property boundary and diverted to discharge into the creek running along the western boundary of the site. Refer to the JVA drawing Proposed Drainage Plan which shows off-site drainage diversion and discharge into the creek.

The proposed development includes the construction of a maintenance building, an internal access road and car parking equivalent to 25.64 acres. The proposed development will also include the construction of a new detention basin as part of the proposed drainage system. The proposed works form part of a phased development. Refer to the Architect drawings and report for an outline of the phased works. Runoff from the site will be collected through a series of inlets and swales. Onsite run off will be routed to a new detention basin which will provide attenuation and water quality enhancement. Overflow from the detention basin will discharge onto the existing creek running along the western boundary of the site. The onsite detention basin will treat rainfall runoff for water quality and provide attenuation for most of the site. Storm discharges from the detention basin comply with El Paso County criteria for allowable release rates. The detention basin is designed to cater for the future development as

In order to achieve WQ Treatment requirements, please provide runoff reduction calculations, not calculations for a grass buffer.
part of phased works. Due to site constraints including site elevation, storm runoff from the developed southern portion of the site equivalent to 1.02 acres will not be routed to the new detention basin but to a grass buffer to provide water quality. Refer to Appendix B for a copy of UD-BMP design sheet for this area.

Soils on the property have been classified by the Natural Resources Conservation Service (NRCS) as hydrologic soil type ' A '. Group A sonls are described as soil with high infiltration rate and low runoff potential. Appendix A of this report provides more information on the soil type, report obtained from the NRCS.

Part of the site area is located within Zone AE of the FEMA flood map number 08041 C0561G effective July 12, 2018. Zone AE is defined by FEMA as areas determined to be in special flood hazard zone with base flood elevations determined. The proposed site layout is located outside of this zone. The proposed maintenange building is located 220 ft away from the flooding zone. The subject site is in the Falcon CKWS1400 drainage basin, see Figure 2 and Appendix A for further information.

> Unresolved. Identify what basin this section southern portion is in. As stated in the previous comment, provide an exhibit showing the grass bugger area and the tributary area.

Figure 2 - Subject Site's Major Basin - Source Falcon Drainage Basin Planning Study report

2. Specific Details

Runoff from the new car park south of the detention basin will be treated prior to release into the wetland. Due to site constrain this area equivalent to 1.02 ac is downstream of the detention pond. Therefore, a grass buffer is provided.

A section of the gravel road equivalent to 0.4 ac will not discharge into the proposed detention basin due to site constraints. This section is added to OS-4 and A2 sub-basins. Water quality will be provided via swales and vegetated wetland.

Storm system east of the proposed building is designed to overflow into the adjacent swale during extreme events. The swale is designed to accommodate runoff from the site for storms up to and including the 100-year return period. Please refer to Appendix B for a copy of the swale calculations, hydraulic grade lines and pipe properties.

A limited amount of irrigation is proposed as part of the improvements.

The proposed improvements will provide adequate storage and water quality enhancement via extended detention basin, which will limit peak runoff rates to allowable release rates. In addition, the proposed drainage system will have no impact to adjacent properties and or storm conveyance systems in the vicinity.

The stormwater detention pond facility and all its components will be constructed by the Applicant in accordance with the plans and specifications described in this report and Final Construction Plans. The storm drain system and detention facilities are private and will remain private. Maintenance of the storm infrastructure will be carried out by School District 49. The detention pond and its outlet structure will operate and be maintained in good working order and as directed by El Paso County. The project is located within the Falcon Drainage Basin which is part of the El Paso County Drainage fee program. However, no drainage and bridge are assed with the site development plan application. It is our understanding that all drainage fees are waived as part of the proposed development and will not be assessed with this application. The detention pond and its outlet structure will be inspected quarterly and after any signifiont rainfall during the first years of operation. Inspection and maintenance will be carried Dut by the Operation Crew on-site. At any time during the inspections appropriate means will be-selected to clean and maintain the facility to its intended working order. The Post-Construction Stermwater Control Operations and Maintenance Agreement entered by the Applicant and EXPaso County shall constitute a contract or as directed by El Paso County.

Delete this sentence.

3. BMP Selection Process

The following steps were considered in selecting structural BMP's for the project.

Step 1: Runoff reduction practices

Efforts are employed to reduce runoff rates and volume by the use of grass-lined swales, grass buffer and gravel roads. These measures will promote infiltration which reduce runoff volumes. The use of swales will increase travel time, which will attenuate peak runoff rates.

Step 2: Stabilize Drainageways

To reduce erosion risks and improve water quality an extended detention basin with concretelined channel and level spreaders are used. These measures will allow runoff to attenuate and suspended sediments to settle. At the outfall level spreader will reduce the risk of erosion and stabilize drainageways.

Step 3: Provide Water Capture Volume

Water capture volume is provided for the redevelopment including Phase 2 as per City of Colorado Springs requirements. WQCV is provided in the extended detention basin with a 40 hour drain time. This measure will promote settling of suspended particles to offer a greater water quality. $W Q$ is also provided via runoff reduction

Step 3: Consider Need for Industrial and Commercial BMP's

The nature of this redevelopment will not require a specialized BMP's. However, as part of the construction an extended sediment basin will be used to manage runoff from the site. The proposed Grading and Erosion Control will be implemented to ensure spills and runoff are under control.

E. CONCLUSION

The above drainage reports have been prepared in accordance with the El Paso County Drainage Criteria Manual.

1. Summary of Concept

- The site is protected from adverse stormwater drainage impacts to the maximum extent possible.
- Measures are proposed to provide adequate on-site drainage and enhancement to stormwater quality. Stormwater quality is provided through extended detention basin.
- The proposed development has no effect on adjacent, upstream, and downstream sites.

> Provide a section for the pond cost estimate. This estimate will need to be included in the Financial Assurance Estimate Form.

2022 Financial Assurance Estimate Form
(with pre-plat construction)

F. REFERENCES

- "El Paso County Drainage Criteria Manual," October 2018.
- City of Colorado Springs Drainage Criteria Manual Vol 1, May 2014
- "Urban Storm Drainage Criteria Manual," Urban Drainage and Flood Control District, Revised 2018.
- Point Precipitation Frequency Estimates, NOAA National Weather Service. Online at https://hdsc.nws.noaa.gov, accessed February 2022.
- FEMA Flood Map Service Center. Online at https://msc.fema.gov/portal, accessed February 2022.
- Web Soil Survey, Natural Resources Conservation Service, United States Department of Agriculture. Online at: http://websoilsurvey.nrcs.usda.gov, accessed February 2022.

In accordance with the MHFD, runoff reduction has several requirements that must be met:

- All RPA/SPA areas will need to be within a no build/drainage easement (or tract) and discussed in the maintenance agreement and O\&M manual.
-RPA vegetation should be turf grass (from seed [provide appropriate seed mix] or sod).
- Turf grass vegetation should have a uniform density of at least 80%.
- Irrigation (temp or permanent) is necessary to establish sufficient vegetation and not just weeds.
- Show suitability of topsoil of RPA and steps for proper preparation of topsoil per recommendations in MHFD detail T-0 Table RR-3
- RPA/SPA limits must be shown on GEC Plans (not just FDR) so our SW inspectors and the QSM know that these areas are to remain pervious, vegetated (80%), and irrigated post-construction. Our SW inspectors do not look at drainage reports.
- Provide a figure showing all proposed UIA, RPA and SPA areas to be utilized for runoff reduction.
- Provide a detail for the UIA:RPA interface that shows the recommended vertical drop of 4 ".
- Show signage to be posted in RPAs so maintenance personnel and owners know that the area is a water quality treatment area (not just a regular grassy area and/or an SPA).

Appendix A - Drainage Basins El Paso County, Co.

Drainage Basins

El Paso County

Colorado

Legend
Drainage Basins
US Interstate Highways

- US Highways
- Colorado State Highways
- Major Roadways
—— Local Streets \& Roads

Creeks
$\xrightarrow{\text { Pect }}$
5
5 Lakes \& Reservoirs
Summits Unincorporated Urban Areas Forest

- County Lines

Appendix B - Calculations

Table 6-6. Runoff Coefficients for Retional Method

$$
\begin{array}{rccccc}
& 1 \% & \mathrm{C} 2 & \mathrm{C} & \mathrm{C} 10 & \mathrm{C} 100 \\
\text { Streets Paved } & 10 \% \% & 0.89 & 0.90 & 0.92 & 0.96 \\
\text { Concrete Drives Walks } & 1000 \% & 0.89 & 0.90 & 0.92 & 0.96 \\
\text { Roof } & 90 \% & 0.71 & 0.75 & 0.75 & 0.81 \\
\text { Gravel } & 80 \% & 0.57 & 0.63 & 0.63 & 0.81 \\
\text { Landscapaning } 8 \text { Bsoil } & 0 \% & 0.02 & 0.15 & 0.15 & 0.35 \\
\text { Landscaping (C/D Doil) } & 0 \% & 0.02 & 0.15 & 0.15 & 0.35 \\
\text { Playground } & 13 \% & 0.07 & 0.23 & 0.24 & 0.41 \\
\text { Arfificial Turf } & 0 \% & 0.02 & 0.15 & 0.15 & 0.35
\end{array}
$$

D49 Transportation Center

Historic Runoff Coefficient \& Time of Concentration Calculations

EI Paso Count

Soil Type

Basin Design Data																													
	$1(\%)=$	100\%	100\%	90\%	80\%	13\%	0\%	0\%	0\%			(\%)	Runoff Coeff's				Initial Overland Time (t)			Travel Time ($\mathrm{t}_{\text {) }}$						t_{c} comp Time of Conc $\mathrm{t}_{\mathrm{i}}+\mathrm{t}_{\mathrm{t}}=\mathrm{t}_{\mathrm{t}}$	tc Urbanized Check		$\begin{array}{\|c\|} \hline \mathrm{t}_{\mathrm{t}} \\ \text { Final } \end{array}$
$\begin{aligned} & \text { Basin } \\ & \text { Name } \end{aligned}$	$\begin{aligned} & \text { Design } \\ & \text { Point } \end{aligned}$	$\begin{array}{\|c} \hline \begin{array}{c} A_{\text {peved }} \\ \text { streas } \\ \text { (sf) } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \left.\mathrm{A}_{\mathrm{A} \text { divesco }}^{\mathrm{nco}} \text { (} \mathrm{sf}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\text {toof }}(\mathrm{sff}) \end{aligned}$	$\left\lvert\, \begin{gathered} \mathrm{A}_{\text {gavel }}(\mathrm{sf)} \end{gathered}\right.$	$\begin{gathered} A_{\text {plynd }} \\ (\mathrm{sff}) \end{gathered}$		$\underset{(\mathrm{sf})}{\mathrm{A}_{\text {scape (A soli) }}}$	$\begin{gathered} A_{\text {scapeo }} \\ \substack{\text { coicsoin } \\ (\mathrm{sf})} \end{gathered}$	$\begin{gathered} \mathrm{A}_{\substack{ \\ (\mathrm{s})}} \end{gathered}$	$\mathrm{A}_{\text {Total }}(\mathrm{ac})$	Imp (\%)	C2	C5	C10	C100	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { Hestart } \\ \text { Lentit } \\ \text { (tit) } \end{array}$	$\begin{aligned} & \text { Slope } \\ & (\%) \end{aligned}$	$\left.\begin{gathered} \dagger_{(\text {min })} \end{gathered} \right\rvert\,$	$\underset{(\mathrm{tr})}{\substack{\text { Length }}}$	$\left\lvert\, \begin{gathered} \text { slope } \\ (\%) \end{gathered}\right.$	Type of Land Surface	к	$\underset{\substack{\text { velocitity } \\(\text { (ps) }}}{\substack{y}}$	$\underset{(\text { min })}{t_{1}}$		$\begin{array}{\|c} \hline \text { Total } \\ \text { Length } \\ (t) \end{array}$	$\left.\begin{gathered} \mathrm{t}_{\mathrm{t}}=(\mathrm{L} / 180)+ \\ 10 \text { (min.) } \end{gathered} \right\rvert\,$	
os-1	1							194,156		194,156	4.46	0.0\%	0.02	0.15	0.15	0.35	100	1.1\%	16.9	869	1.3\%	Short Pasture and lawns	7	0.8	18.1	35.0	969	15.4	15.4
OS-2	2	95,838						37,602		133,440	3.06	71.8\%	0.64	0.69	0.70	0.79	100	1.0\%	7.5	500	2.3\%	Paved areas $\&$ shallow paved swales	20	3.0	2.7	10.3	600	13.3	10.3
os-3	3	214,581						93,687		308,268	7.08	69.6\%	0.63	0.67	0.69	0.77	100	1.0\%	7.8	610	2.0\%	$\begin{array}{\|l\|} \hline \text { Sarved ssales } \\ \hline \text { Shoastre and } \\ \text { lawns } \end{array}$	7	1.0	10.3	18.1	710	13.9	13.9
H-1	2	4,281	3,888	5,392	159,153			434,626		607,340	13.94	23.1\%	0.18	0.29	0.29	0.45	100	1.1\%	14.4	1328	1.1\%	Short Pasture and lawns	7	0.7	30.1	44.5	1428	17.9	17.9
H-2	3	30,298	820		219,316			494,028		744,462	17.09	27.7\%	0.22	0.32	0.32	0.48	100	3.0\%	9.9	1824	2.5\%	Short Pasture and lawns	7	1.1	27.5	37.3	1924	20.7	20.7
H-3	3	236,323	16,837	44,852	13,512			54,048		365,572	8.39	83.2\%	0.73	0.76	0.77	0.84	100	5.0\%	3.6	650	5.0\%	$\underset{\substack{\text { Short Pasture and } \\ \text { lawns }}}{\text { and }}$	7	1.6	6.9	10.6	750	14.2	10.6
SITE (FAL	On HWY)	481,201	17,657	44,852	23, 828	0	0	641,763	0	1,418,301	32.56	51.2\%	0.44	0.51	0.52	0.64													

			Runoff Coeff's				Rainfall Intensities (inhr)				Area		Flow Rates (cfs)			
Basin Name	$\begin{aligned} & \text { Design } \\ & \text { Point } \end{aligned}$	$\left\|\begin{array}{c} \text { Time of } \\ \text { Conc } \\ \text { (toc } \end{array}\right\|$	C2	C5	C10	C100	2	5	10	100	$A_{\text {Toal }}(\mathrm{sf})$	$A_{\text {Total }}(\mathrm{ac})$	Q2	Q5	Q10	Q100
os-1	1	15.4	0.02	0.15	0.15	0.35	2.68	3.37	3.97	5.65	194,156	4.46	0.24	2.26	2.65	8.82
OS-2	2	10.3	0.64	0.69	0.70	0.79	3.17	3.96	4.66	6.73	133,440	3.06	6.26	8.36	10.03	16.26
OS-3	3	13.9	0.63	0.67	0.69	0.77	2.81	3.53	4.15	5.94	308,268	7.08	12.44	16.80	20.17	32.57
H-1	2	17.9	0.18	0.29	0.29	0.45	2.56	3.21	3.77	5.37	607,340	13.94	6.48	13.02	15.31	34.00
H-2	3	20.7	0.22	0.32	0.32	0.48	2.42	3.02	3.54	5.05	744,462	17.09	9.01	16.66	19.60	41.34
H-3	3	10.6	0.73	0.76	0.77	0.84	3.14	3.93	4.62	6.67	366,572	8.39	19.17	25.08	30.01	47.11
								TOTAL SITE (FALCON HWY)			1,418,301	32.56	40.62	58.53	69.77	121.02

JVA Incorporated 214 8th Street, S 210
Glenwood Springs, CO 81601 Ph: (970) 4043100

Job Name: D49 Transportation Center Job Number: 3456c

Date: 1/30/23
By: AMB

D49 Transportation Center
Composite Runoff Coefficient Calculations

Location:	El Paso County
Minor Design Storm:	5
Major Design Storm:	100
Soil Type:	

asin De	Data															
	$1(\%)=$	100\%	100\%	90\%	80\%	13\%	0\%	0\%	0\%			I (\%)		Run	eff's	
Basin Name	Design Point	$\mathrm{A}_{\text {paved }}$ streets (sf)	$A_{\text {drives/c }}$ onc (sf)	$\mathrm{A}_{\text {roof }}$ (sf)	A $_{\text {gravel }}$ (sf)	A plygnd (sf)	$\mathrm{A}_{\text {art. turf }}$ (sf)	$\mathrm{A}_{\text {lscape (A }}$ soil) (sf)	$\mathrm{A}_{\text {Iscape }}$ (C/D soil) (sf)	$\mathrm{A}_{\text {Total }}$ (sf)	$\mathrm{A}_{\text {Total }}$ (ac)	$\begin{gathered} \text { Imp } \\ \text { (\%) } \end{gathered}$	C2	C5	C10	C100
OS-1	1							194,298		194,298	4.46	0.0\%	0.02	0.15	0.15	0.35
OS-2	2	82,559						81,826		164,385	3.77	50.2\%	0.46	0.53	0.54	0.66
OS-3	3	115,416			Unresolved. Site plan					227,860	5.23	56.8\%	0.50	0.57	0.58	0.69
A1	3	87,000	0	0	shows the bus					117,000	2.69	74.4\%	0.67	0.71	0.72	0.80
A2	5	0	0	0	parking as gravel.					159,462	3.66	3.8\%	0.05	0.17	0.17	0.37
A3	6	393,733	$<13,027$	16,624	Adjust or explain in the basin description					423,381	9.72	99.6\%	0.88	0.89	0.91	0.95
A4	7	126,589	0	0						126,589	2.91	100.0\%	0.89	0.90	0.92	0.96
A5	8		12,410	17,441	why you assumed asphalt paving.					48,184	1.11	58.3\%	0.49	0.56	0.57	0.67
A6	9									286,599	6.58	67.9\%	0.49	0.56	0.56	0.65
A7	10	0			26,707			88,072		114,779	2.63	18.6\%	0.15	0.26	0.26	0.43
A8	11		3,717		28,778			11,895		44,390	1.02	60.2\%	0.45	0.52	0.53	0.63
OS-4	4	14,874			11,406			42,889		69,169	1.59	34.7\%	0.30	0.39	0.39	0.54
OS-5	12	180,746	19,641	37,209				76,798		314,394	7.22	74.4\%	0.66	0.70	0.71	0.79

Table 6-6. Runoff Coefficients for Rational Method
(Source: UDFCD 2001)

```
A composite runoft coofricient is calculated using the
```



```
\mp@subsup{c}{1}{}}=\frac{\mathrm{ individual runotf coetticient corresponding to surface}}{\mathrm{ typet }
    \mp@subsup{\lambda}{i}{}
    A
    n = total number of surface types in drainage areas; and
    c - the composite runoff coefficient.
```

Land Use er Surface Charateristics	$\left\lvert\, \begin{gathered} \text { Percent } \\ \text { Imperious } \end{gathered}\right.$	Ranoff Coetticients													
		2 vear		Spear		10 year		25.vear		Sa vear		100 vea			
Commercal Areas	5	Q79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	088	0.88	089		
Neypribertoed Areas	70	0.45	0.49	0.99	0.53	0.53	0.5	0.58	0.2	0.50	aes	0,2	$0 \cdot 6$		
Residential															
1/8Acreortios	65	0.41	0.45	0.45	0.49	0.93	0.54	0.54	0.59	057	0.2	059	0.65		
1/4Acre	4	0.33	0.28	0.30	0.35	0.35	0.42	0.2	050	046	as 4	0.30	058		
2/3Acre	30	a 18	0.22	0.25	0.30	0.32	0.38	03	0.7	0.43	0.52	0.47	0.57		
1/2Acre	25	0.15	020	032	028	0.30	036	0.37	0.65	0.41	0.51	0.46	056		
1 Acze	20	0^{12}	0.17	0.20	0.26	0.77	0.3	0.35	0.4	040	0.50	044	ass		
\|ndustiol															
Hementan	50	Q71	$0{ }^{2} 3$	073	0.75	0.75	0.7	078	0.80	030	0.82	0.81	083		
Parks and Cemetenies	7	005	0.09	0.12	0.19	0.20	0.8	0.30	000	034	0.46	039	0.52		
meyrgrounds	13	007	Q13	0.16	0.23	0.24	0.31	0.2	0.4	037	048	0.41	0.54		
zallcoad Yard Actar	50	0.33	0.88	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58		
UndewelopedAreas															
Histonic Fiow Analysib-	2	0.09	005	009	0.16	0.17	0.5	0.5	a 3	033	045	036			
Pature/Medatow	0	002	0.04	0.08	0.15	0.15	0.25	0.8	0.3	030	a4	035	aso		
Forest	\bigcirc	0.02	0.04	0.08	0.15	0.15	0.35	0×8	037	030	044	0.35	aso		
Exposedroak	100	089	0 0\%	aso	0.90	0.92	0.92	0.94	09	0\%	as	0%	0%		
Offite Flow Analysis (when landuter is undefined!	5	076	031	an	0.37	0.38	0.44	0.45	0.51	0.48	0.55	0.51	059		
Streets															
Paved	100	0.89	0×9	0.90	090	092	092	0.94	094	08	as	as	0.9\%		
Grwel	80	95	0.60	0.59	0.63	063	0.6	0.66	90	0 cs	072	970	074		
Ofine and with					0.00				09				0.96		
Sats	90	an	0.38	097	0.75	075	07	078	000	0.80	0.82	081	0.33		
Hwns	0	002	0.04	0.08	0.5	0.15	088	08	037	030	0.4	015	050		

JVA Incorporated
214 8th Street, S 210
Glenwood Springs, CO 81601
Ph: (970) 4043100

Job Name: D49 Transportation Center Job Number: 3456c

Date: $1 / 30 / 23$
By: AMB

D49 Transportation Center

Time of Concentration Calculations

Location:	El Paso County
Minor Design Storm:	5
Major Design Storm:	100
	Soil Type:

Sub-Basin Data				Initial Overland Time (t_{i})			$\begin{gathered} \text { Travel Time }\left(\mathrm{t}_{\mathrm{t}}\right) \\ \mathrm{t}_{\mathrm{t}}=\text { Length } /(\text { Velocity } \times 60) \end{gathered}$						t_{c} Comp	tc Urbanized Check ON		t_{c} Final
Basin Name	Design Point	$\mathrm{A}_{\text {Total }}$ (ac)	C5	Upper most Length (ft)	Slope (\%)	$\begin{gathered} \mathrm{t}_{\mathrm{i}} \\ (\mathrm{~min}) \end{gathered}$	Length (ft)	Slope (\%)	Type of Land Surface	C_{v}	Velocity (fps)	$\begin{gathered} \mathrm{t}_{\mathrm{t}} \\ (\mathrm{~min}) \end{gathered}$	$\begin{gathered} \text { Time of } \\ \text { Conc } \\ t_{i}+t_{t}=t_{c} \end{gathered}$	Total Length (ft)	$\left\|\begin{array}{c} \mathrm{t}_{\mathrm{c}}=(\mathrm{L} / 180)+ \\ 10(\mathrm{~min}) \end{array}\right\|$	$\begin{gathered} \operatorname{Min} \\ \mathrm{t}_{\mathrm{c}} \end{gathered}$
OS-1	1	4.46	0.15	100	1.7\%	14.5	400	1.0\%	Short Pasture and lawns	7	0.7	9.5	24.1	500	12.8	12.8
OS-2	2	3.77	0.53	100	2.0\%	8.3	2790	0.5\%	Short Pasture and lawns	7	0.5	93.9	102.3	2890	26.1	26.1
OS-3	3	5.23	0.57	100	1.7\%	8.2	2285	0.5\%	Short Pasture and lawns	7	0.5	76.9	85.1	2385	23.3	23.3
A1	3	2.69	0.71	100	2.0\%	5.7	150	1.0\%	Paved areas \& shallow paved swales	20	2.0	1.3	7.0	250	11.4	7.0
A2	5	3.66	0.17	100	1.8\%	14.0	1210	0.6\%	Short Pasture and lawns	7	0.5	37.2	51.2	1310	17.3	17.3
A3	6	9.72	0.89	100	2.0\%	3.0	780	2.0\%	Paved areas \& shallow paved swales	20	2.8	4.6	7.6	880	14.9	7.6
A4	7	2.91	0.90	100	1.6\%	3.1	700	0.8\%	Short Pasture and lawns	7	0.6	19.2	22.4	800	14.4	14.4
A5	8	1.11	0.56	100	1.0\%	9.9	350	4.0\%	Paved areas \& shallow paved swales	20	4.0	1.5	11.4	450	12.5	11.4
A6	9	6.58	0.56	100	1.0\%	10.0	1100	4.0\%	Paved areas \& shallow paved swales	20	4.0	4.6	14.5	1200	16.7	14.5
A7	10	2.63	0.26	100	2.8\%	10.9	437	0.5\%	Paved areas \& shallow paved swales	20	1.4	5.2	16.1	537	13.0	13.0
A8	11	1.02	0.52	100	3.0\%	7.3	680	0.5\%	Short Pasture and lawns	7	0.5	22.9	30.2	780	14.3	14.3
OS-4	4	1.59	0.39	100	2.2\%	10.0	1965	0.6\%	Short Pasture and lawns	7	0.5	60.4	70.4	2065	21.5	21.5
OS-5	12	7.22	0.70	100	1.5\%	6.4	615	0.5\%	Paved areas \& shallow paved swales	20	1.4	7.2	13.7	715	14.0	13.7

Figure 6-5. Colorado Springs Rainfall Inteasity Duration Frequency

JVA Incorporated
214 8th Street, S 210
Glenwood Springs, CO 81601
Ph: (970) 4043100

Job Name: D49 Transportation Center Job Number: 3456c

Date: $1 / 30 / 23$
By: AMB

D49 Transportation Center

Time of Concentration Calculations

	Location:
Lel Paso County	
Minor Design Storm:	5
Major Design Storm:	100
	Soil Type:

Sub-Basin Data				Initial Overland Time (t_{i})			$\begin{gathered} \text { Travel Time }\left(\mathrm{t}_{\mathrm{t}}\right) \\ \mathrm{t}_{\mathrm{t}}=\text { Length } /(\text { Velocity } \times 60) \end{gathered}$						t_{c} Comp	tc Urbanized Check ON		t_{c} Final
Basin Name	Design Point	$\mathrm{A}_{\text {Total }}$ (ac)	C100	Upper most Length (ft)	Slope (\%)	$\begin{gathered} \mathrm{t}_{\mathrm{i}} \\ (\mathrm{~min}) \end{gathered}$	Length (ft)	Slope (\%)	Type of Land Surface	C_{v}	Velocity (fps)	$\begin{gathered} \mathrm{t}_{\mathrm{t}} \\ (\mathrm{~min}) \end{gathered}$	Time of Conc $t_{i}+t_{t}=t_{c}$	Total Length (ft)	$\left\|\begin{array}{c} \mathrm{t}_{\mathrm{t}}=(\mathrm{L} / 180)+ \\ 10(\mathrm{~min}) \end{array}\right\|$	$\underset{\mathrm{t}_{\mathrm{c}}}{\mathrm{Min}}$
OS-1	1	4.46	0.35	100	1.7\%	11.5	400	1.0\%	Short Pasture and lawns	7	0.7	9.5	21.0	500	12.8	12.8
OS-2	2	3.77	0.66	100	2.0\%	6.5	2790	0.5\%	Short Pasture and lawns	7	0.5	93.9	100.4	2890	26.1	26.1
OS-3	3	5.23	0.69	100	1.7\%	6.4	2285	0.5\%	Short Pasture and lawns	7	0.5	76.9	83.3	2385	23.3	23.3
A1	3	2.69	0.80	100	2.0\%	4.3	150	1.0\%	Paved areas \& shallow paved swales	20	2.0	1.3	5.6	250	11.4	5.6
A2	5	3.66	0.37	100	1.8\%	11.1	1210	0.6\%	Short Pasture and lawns	7	0.5	37.2	48.2	1310	17.3	17.3
A3	6	9.72	0.95	100	2.0\%	2.1	780	2.0\%	Paved areas \& shallow paved swales	20	2.8	4.6	6.7	880	14.9	6.7
A4	7	2.91	0.96	100	1.6\%	2.2	700	0.8\%	Short Pasture and lawns	7	0.6	19.2	21.4	800	14.4	14.4
A5	8	1.11	0.67	100	1.0\%	7.8	350	4.0\%	Paved areas \& shallow paved swales	20	4.0	1.5	9.3	450	12.5	9.3
A6	9	6.58	0.65	100	1.0\%	8.3	1100	4.0\%	Paved areas \& shallow paved swales	20	4.0	4.6	12.9	1200	16.7	12.9
A7	10	2.63	0.43	100	2.8\%	8.7	437	0.5\%	Paved areas \& shallow paved swales	20	1.4	5.2	13.8	537	13.0	13.0
A8	11	1.02	0.63	100	3.0\%	6.0	680	0.5\%	Short Pasture and lawns	7	0.5	22.9	28.9	780	14.3	14.3
OS-4	4	1.59	0.54	100	2.2\%	7.9	1965	0.6\%	Short Pasture and lawns	7	0.5	60.4	68.3	2065	21.5	21.5
OS-5	12	7.22	0.79	100	1.5\%	4.9	615	0.5\%	Paved areas \& shallow paved swales	20	1.4	7.2	12.2	715	14.0	12.2

Summary Table Developed Runoff				
Basins	Design Points	Area (Acres)	5-Year	100-Year
OS-2	2	3.52	5.14	10.69
OS-3	3	5.23	8.12	16.43
OS-4	4	1.59	1.76	4.07
OS-5	12	7.22	17.80	35.28
A2	5	3.66	1.97	7.18
A8	11	1.02	1.84	3.73
Detention Basin (Restricted Discharge)	10	22.79	10.50	41.50
Total (Falcon HWY)			47.13	118.88
Existing			58.53	121.02

Subbasin Summary

SN Subbasin ID	Area	Weighted Runoff Coefficient	Total Rainfall	Total Runoff	Total Runoff Volume	Peak Runoff	Time of Concentration
	(ac)		(in)	(in)	(ac-in)	(cfs)	(days hh:mm:ss)
1 A1	2.61	0.7100	0.53	0.38	0.99	8.46	0 00:07:00
2 A2	3.66	0.1700	0.91	0.16	0.57	1.97	0 00:17:18
3 A3	9.72	0.8900	0.57	0.50	4.89	38.26	0 00:07:36
4 A4	2.92	0.9000	0.83	0.74	2.17	9.07	0 00:14:24
5 A5	1.11	0.5600	0.71	0.40	0.44	2.35	0 00:11:24
6 A7	2.63	0.2600	0.78	0.20	0.53	2.46	0 00:13:00
7 A8	1.02	0.5200	0.83	0.43	0.44	1.84	0 00:14:18
8 OS-1	4.46	0.1500	0.77	0.12	0.52	2.42	0 00:12:48
9 OS-2	3.77	0.5300	1.12	0.60	2.24	5.14	0 00:26:06
10 OS-3	5.23	0.5700	1.06	0.60	3.16	8.12	0 00:23:18
11 OS-4	1.59	0.3900	1.02	0.40	0.63	1.76	0 00:21:30
12 OS-5	7.22	0.7000	0.80	0.56	4.05	17.80	0 00:13:42
$13 \text { Sub-A6 }$	6.58	0.5600	0.83	0.47	3.07	12.69	0 00:14:30
				Refer to previous page for schematic layout			

Update the narrative to describe the software used.

Node Summary

SN Element ID	Element Type	Invert Elevation	Ground/Rim (Max) Elevation	Initial Water Elevation	Surcharge Elevation	Ponded Area	Peak Inflow	Max HGL Elevation Attained	Max Surcharge Depth Attained	Freeboard Attained	Time of Peak Flooding Occurrence	Total Flooded Volume	Total Time Flooded
		(ft)	(ft)	(ft)	(ft)	(ft ${ }^{\text {2 }}$)	(cfs)	(ft)	(ft)	(ft)	(days hh:mm)	(ac-in)	(min)
1 DIV-501A	Junction	6800.23	6802.39	6800.23	0.00	0.00	38.26	6801.56	0.00	0.83	0 00:00	0.00	0.00
2 DIV-FES-201	Junction	6811.55	6815.42	6811.55	0.00	0.00	5.14	6812.08	0.00	3.34	0 00:00	0.00	0.00
3 DIV-FES-202	Junction	6809.01	6812.20	6809.01	0.00	0.00	5.14	6809.79	0.00	3.29	0 00:00	0.00	0.00
4 DIV-FES-203	Junction	6805.69	6807.03	6805.69	0.00	0.00	5.03	6806.47	0.00	3.29	0 00:00	0.00	0.00
5 DIV-FES-205	Junction	6801.76	6810.09	6804.09	0.00	0.00	12.26	6802.89	0.00	7.19	0 00:00	0.00	0.00
6 DIV-INLT-101	Junction	6815.35	6816.30	6815.35	0.00	0.00	2.42	6816.00	0.00	0.51	0 00:00	0.00	0.00
7 DIV--INLT-300	Junction	6809.13	6815.13	6809.13	6815.13	0.00	0.00	6809.13	0.00	6.00	0 00:00	0.00	0.00
8 DIV-INLT-302	Junction	6804.71	6809.12	6804.71	0.00	0.00	10.89	6805.72	0.00	3.40	0 00:00	0.00	0.00
9 DIV-MH-204	Junction	6803.24	6809.60	6804.35	0.00	0.00	12.29	6805.36	0.00	4.24	0 00:00	0.00	0.00
10 Dummy/405	Junction	6796.69	6797.69	6796.69	0.00	0.00	2.14	6797.28	0.00	0.41	0 00:00	0.00	0.00
11 Jun-05	Junction	0.00	6.00	0.00	6.00	0.00	1.97	0.00	0.00	6.00	0 00:00	0.00	0.00
12 STM-A-S(2)	Junction	6790.65	6795.41	6790.65	6795.41	0.00	2.46	6791.21	0.00	4.21	0 00:00	0.00	0.00
13 STM-FES-403	Junction	6800.64	6801.97	6800.64	0.00	0.00	2.22	6801.24	0.00	0.89	0 00:00	0.00	0.00
14 STM-FES-404	Junction	6800.00	6801.34	6800.00	0.00	0.00	2.22	6800.60	0.00	0.90	0 00:00	0.00	0.00
15 STM-FES-406	Junction	6793.53	6796.40	6793.53	0.00	0.00	14.43	6794.38	0.00	2.03	0 00:00	0.00	0.00
16 STM-FES-407	Junction	6793.07	6799.07	6793.07	6799.07	0.00	14.36	6793.91	0.00	5.15	0 00:00	0.00	0.00
17 STM-FES-507	Junction	6793.35	6799.35	6793.35	6799.35	0.00	39.99	6794.71	0.00	4.64	0 00:00	0.00	0.00
18 STM-INLT-401	Junction	6804.25	6807.00	6804.25	0.00	0.00	2.35	6804.84	0.00	2.16	0 00:00	0.00	0.00
19 STM-INLT-402	Junction	6802.04	6802.70	6802.04	0.00	0.00	2.24	6802.64	0.00	1.10	0 00:00	0.00	0.00
20 STM-MH-502	Junction	6797.36	6802.32	6797.36	0.00	0.00	0.00	6797.36	0.00	4.96	0 00:00	0.00	0.00
21 STM-MH-503	Junction	6795.70	6799.11	6795.70	0.00	0.00	0.00	6795.70	0.00	3.41	0 00:00	0.00	0.00
22 STM-MH-504	Junction	6794.29	6797.77	6794.29	0.00	0.00	0.00	6794.29	0.00	3.48	0 00:00	0.00	0.00
23 STM-MH-505	Junction	6793.88	6797.71	6793.88	0.00	0.00	0.00	6793.95	0.00	3.76	0 00:00	0.00	0.00
24 STM-MH-506	Junction	6793.77	6797.96	6793.70	0.00	0.00	40.00	6796.64	0.00	1.32	0 00:00	0.00	0.00
25 D\#13	Outfall	6777.00					19.55	6777.00					
$26 \mathrm{D}-1$	Outfall	6811.48					2.28	6812.11					
27 D-4	Outfall	6796.74					12.96	6798.69					
28 STM-FES-602	Outfall	6790.50					26.42	6793.00					
29 STM-INLT-501	Flow Diversions	6797.72	6800.47	6797.72		0.00	0.00	6800.47				0.00	0.00
30 Detention	Storage Node	6790.65	6795.33	6790.65		18019.69	50.81	6795.95				0.00	24.00

Link Summary

SN Element ID	Element Type	From (Inlet) Node	To (Outlet) Node	Length		$\begin{aligned} & \text { Outlet } \\ & \text { Invert } \\ & \text { Elevation } \end{aligned}$	Average Slope	Diameter or Height	Manning's Roughness	Peak Flow	Design Flow Capacity	Peak Flow/ Design Flow Ratio	Peak Flow Velocity	Peak Flow Depth	Peak Flow Depth/ Total Depth Ratio	Total Time Reported Surcharged Condition
				(ft)	(ft)	(ft)	(\%)	(in)		(cfs)	(cfs)		(ft/sec)	(ft)		(min)
1 DIV-B-P-201	Pipe	DIV-FES-201	DIV-FES-202	77.09	6811.55	6809.01	3.3000	18.000	0.0130	5.14	19.07	0.27	9.16	0.53	0.35	0.00 Calculated
2 DIV-B-P-204	Pipe	DIV-MH-204	DIV-FES-205	223.69	6803.24	6801.90	0.6000	36.000	0.0130	12.26	51.66	0.24	5.99	0.99	0.33	0.00 Calculated
3 DIV-C--P-302	Pipe	DIV-INLT-302	DIV-MH-204	60.82	6804.71	6804.35	0.5900	30.000	0.0130	10.83	31.56	0.34	5.84	1.01	0.40	0.00 Calculated
4 DUMMY2	Pipe	STM-FES-507	Detention	447.75	6793.35	6790.65	0.6000	0.000	0.0150	39.99	0.00	0.01	0.00	0.78	0.19	0.00 Calculated
5 DUMMY3	Pipe	STM-FES-407	Detention	441.60	6793.07	6790.65	0.5500	0.000	0.0150	14.36	0.00	0.01	0.00	0.78	0.19	0.00 Calculated
6 STM-A-P(1)	Pipe	STM-A-S(2)	Detention	1.07	6791.00	6790.65	32.7100	18.000	0.0130	2.46	60.08	0.04	16.72	0.21	0.14	0.00 Calculated
7 STM-D-P-403	Pipe	STM-FES-403	STM-FES-404	64.00	6800.64	6800.00	0.9900	18.000	0.0130	2.22	10.47	0.21	4.71	0.47	0.31	0.00 Calculated
8 STM-D-P-406	Pipe	STM-FES-406	STM-FES-407	91.95	6793.53	6793.07	0.5000	30.000	0.0130	14.36	58.24	0.25	4.92	0.85	0.34	0.00 Calculated
9 STM-E-P-501	Pipe	STM-INLT-501	STM-MH-502	71.49	6797.72	6797.36	0.5000	18.000	0.0130	0.00	7.43	0.00	0.00	0.00	0.00	0.00 Calculated
10 STM-E-P-502	Pipe	STM-MH-502	STM-MH-503	332.31	6797.36	6795.70	0.5000	18.000	0.0130	0.00	7.43	0.00	0.00	0.00	0.00	0.00 Calculated
11 STM-E-P-503	Pipe	STM-MH-503	STM-MH-504	282.08	6795.45	6794.29	0.4100	12.000	0.0130	0.00	2.52	0.00	0.00	0.00	0.00	0.00 Calculated
12 STM-E-P-504	Pipe	STM-MH-504	STM-MH-505	66.89	6794.29	6793.95	0.5000	18.000	0.0150	0.00	6.44	0.00	0.00	0.00	0.00	0.00 Calculated
13 STM-E-P-505	Pipe	STM-MH-505	STM-MH-506	14.35	6793.88	6793.70	1.2500	18.000	0.0150	0.00	8.04	0.00	0.00	0.00	0.00	0.00 Calculated
14 STM-E-P-506	Pipe	STM-MH-506	STM-FES-507	83.73	6793.77	6793.35	0.5000	36.000	0.0130	39.99	94.34	0.42	6.40	1.36	0.45	0.00 Calculated
15 STM-F-P-601	Pipe	Detention	STM-FES-602	38.38	6790.65	6790.50	0.4000	30.000	0.0130	26.42	25.86	1.02	12.57	2.29	0.92	0.00 > CAPACITY
16 DIV-A-SW-101	Channel	DIV-INLT-101	D-1	387.00	6815.35	6811.48	1.0000	13.920	0.0300	2.28	11.44	0.20	6.42	0.63	0.54	0.00
17 DIV-B-P-203	Channel	DIV-FES-203	DIV-MH-204	61.35	6805.69	6804.61	1.7700	30.600	0.0320	5.03	148.65	0.03	3.02	0.72	0.28	0.00
18 DIV-B-SW-205	Channel	DIV-FES-205	D-4	766.20	6801.90	6797.80	0.5400	28.800	0.0320	11.87	164.74	0.07	2.28	0.89	0.37	0.00
19 DIV-C-SW-301	Channel	DIV-INLT-300	DIV-INLT-302	118.51	6809.13	6805.69	2.9000	14.400	0.0320	0.00	80.73	0.00	0.00	0.00	0.00	0.00
20 DIV-SW-202	Channel	DIV-FES-202	DIV-FES-203	331.48	6809.01	6805.69	1.0000	48.840	0.0320	5.03	415.78	0.01	3.80	0.78	0.19	0.00
21 OV/SW502A	Channel	DIV-501A	STM-MH-506	665.00	6800.23	6795.38	0.7300	24.000	0.0320	33.92	89.63	0.38	7.10	1.24	0.62	0.00
22 OVERLOW	Channel	STM-INLT-501	DIV-501A	57.87	6800.47	6800.23	0.4100	24.000	0.0320	0.00	67.59	0.00	0.00	0.00	0.00	0.00
23 STM-D-SW-401	Channel	STM-INLT-401	STM-INLT-402	231.95	6804.25	6802.04	0.9500	20.400	0.0320	2.24	40.08	0.06	5.34	0.57	0.34	0.00
24 STM-D-SW-402	Channel	STM-INLT-402	STM-FES-403	135.86	6802.04	6800.64	1.0300	12.000	0.0320	2.22	8.60	0.26	2.07	0.60	0.60	0.00
25 STM-D-SW-404	Channel	STM-FES-404	Dummy/405	313.50	6800.00	6796.69	1.0600	12.000	0.0320	2.14	8.71	0.25	2.20	0.59	0.59	0.00
26 STM-D-SW-405	Channel	Dummy/405	STM-FES-406	240.42	6796.69	6793.51	1.3200	12.000	0.0320	2.11	9.71	0.22	2.27	0.56	0.56	0.00

Junction Results

SN Element ID	Peak Inflow (cfs)	Peak Lateral Inflow (cfs)	Max HGL Elevation Attained	Max HGL Depth Attained (ft)	Max Surcharge Depth Attained (ft)	Freeb Attained	Average HGL Elevation Attained	Average HGL Depth Attained (ft)	Time of Max HGL Occurrence (days hh:mm)	Time of Peak Flooding Occurrence (days hh:mm)	Total Flooded Volume (ac-in)	Total Time Flooded (\min)
1 DIV-501A	38.26	38.26	6801.56	1.33	0.00	0.83	6800.24	0.01	0 00:07	0 00:00	0.00	0.00
2 DIV-FES-201	5.14	5.14	6812.08	0.53	0.00	3.34	6811.56	0.01	0 00:26	0 00:00	0.00	0.00
3 DIV-FES-202	5.14	0.00	6809.79	0.78	0.00	3.29	6809.03	0.02	0 00:26	0 00:00	0.00	0.00
4 DIV-FES-203	5.03	0.00	6806.47	0.78	0.00	3.29	6805.72	0.03	0 00:27	0 00:00	0.00	0.00
5 DIV-FES-205	12.26	0.00	6802.89	1.13	0.00	7.19	6801.93	0.17	0 00:24	0 00:00	0.00	0.00
6 DIV-INLT-101	2.42	2.42	6816.00	0.65	0.00	0.51	6815.36	0.01	0 00:13	0 00:00	0.00	0.00
7 DIV--INLT-300	0.00	0.00	6809.13	0.00	0.00	6.00	6809.13	0.00	0 00:00	0 00:00	0.00	0.00
8 DIV-INLT-302	10.89	10.89	6805.72	1.01	0.00	3.40	6805.69	0.98	0 00:07	0 00:00	0.00	0.00
9 DIV-MH-204	12.29	0.00	6805.36	2.12	0.00	4.24	6804.63	1.39	0 00:07	0 00:00	0.00	0.00
10 Dummy/405	2.14	0.00	6797.28	0.59	0.00	0.41	6796.70	0.01	0 00:15	0 00:00	0.00	0.00
11 Jun-05	1.97	1.97	0.00	0.00	0.00	6.00	0.00	0.00	0 00:00	0 00:00	0.00	0.00
12 STM-A-S(2)	2.46	2.46	6791.21	0.56	0.00	4.21	6791.00	0.35	0 00:13	0 00:00	0.00	0.00
13 STM-FES-403	2.22	0.00	6801.24	0.60	0.00	0.89	6800.65	0.01	0 00:13	0 00:00	0.00	0.00
14 STM-FES-404	2.22	0.00	6800.60	0.60	0.00	0.90	6800.01	0.01	0 00:13	0 00:00	0.00	0.00
15 STM-FES-406	14.43	12.69	6794.38	0.85	0.00	2.03	6793.55	0.02	0 00:14	0 00:00	0.00	0.00
16 STM-FES-407	14.36	0.00	6793.91	0.84	0.00	5.15	6793.08	0.01	0 00:14	0 00:00	0.00	0.00
17 STM-FES-507	39.99	0.00	6794.71	1.36	0.00	4.64	6793.37	0.02	0 00:10	0 00:00	0.00	0.00
18 STM-INLT-401	2.35	2.35	6804.84	0.59	0.00	2.16	6804.26	0.01	0 00:11	0 00:00	0.00	0.00
19 STM-INLT-402	2.24	0.00	6802.64	0.60	0.00	1.10	6802.05	0.01	0 00:12	0 00:00	0.00	0.00
20 STM-MH-502	0.00	0.00	6797.36	0.00	0.00	4.96	6797.36	0.00	0 00:00	0 00:00	0.00	0.00
21 STM-MH-503	0.00	0.00	6795.70	0.00	0.00	3.41	6795.70	0.00	0 00:00	0 00:00	0.00	0.00
22 STM-MH-504	0.00	0.00	6794.29	0.00	0.00	3.48	6794.29	0.00	0 00:00	0 00:00	0.00	0.00
23 STM-MH-505	0.00	0.00	6793.95	0.07	0.00	3.76	6793.95	0.07	0 00:00	0 00:00	0.00	0.00
24 STM-MH-506	40.00	9.07	6796.64	2.87	0.00	1.32	6795.39	1.62	0 00:09	0 00:00	0.00	0.00

Subbasin Summary

SN Subbasin ID	Area	Weighted Runoff Coefficient	Total Rainfall	Total Runoff	Total Runoff Volume	Peak Runoff	Time of Concentration
	(ac)		(in)	(in)	(ac-in)	(cfs)	(days hh:mm:ss)
1 A1	2.61	0.8000	0.80	0.64	1.66	17.56	0 00:05:36
2 A 2	3.66	0.3700	1.53	0.57	2.07	7.18	0 00:17:18
3 A3	9.72	0.9500	0.87	0.83	8.04	72.38	0 00:06:42
4 A4	2.92	0.9600	1.38	1.33	3.88	16.23	0 00:14:24
5 A5	1.11	0.6700	1.07	0.72	0.80	5.12	0 00:09:18
6 A7	2.63	0.4300	1.31	0.56	1.48	6.82	0 00:13:00
7 A8	1.02	0.6300	1.39	0.87	0.89	3.73	0 00:14:18
8 OS-1	4.46	0.3500	1.30	0.45	2.02	9.47	0 00:12:48
9 OS-2	3.77	0.6600	1.87	1.24	4.66	10.69	0 00:26:06
10 OS-3	5.23	0.6900	1.77	1.22	6.39	16.43	0 00:23:18
11 OS-4	1.59	0.5400	1.70	0.92	1.46	4.07	0 00:21:30
12 OS-5	7.22	0.7900	1.25	0.99	7.16	35.28	0 00:12:12
13 Sub-A6	6.58	0.6500	1.29	0.84	5.53	25.88	0 00:12:54

Node Summary

SN Element ID	Element Type	Invert Elevation	Ground/Rim (Max) Elevation	Initial Water Elevation	Surcharge Elevation	Ponded Area	Peak Inflow	Max HGL Elevation Attained	Max Surcharge Depth Attained	Freeboard Attained	Time of Peak Flooding Occurrence	Total Flooded Volume	Total Time Flooded
		(ft)	(ft)	(ft)	(ft)	(ft ${ }^{\text {2 }}$)	(cfs)	(ft)	(ft)	(ft)	(days hh:mm)	(ac-in)	(min)
1 DIV-501A	Junction	6800.23	6802.39	6800.23	0.00	0.00	72.38	6802.04	0.00	0.35	0 00:00	0.00	0.00
2 DIV-FES-201	Junction	6811.55	6815.42	6811.55	0.00	0.00	10.69	6812.35	0.00	3.07	0 00:00	0.00	0.00
3 DIV-FES-202	Junction	6809.01	6812.20	6809.01	0.00	0.00	10.67	6810.04	0.00	3.04	0 00:00	0.00	0.00
4 DIV-FES-203	Junction	6805.69	6807.03	6805.69	0.00	0.00	10.49	6806.72	0.00	3.05	0 00:00	0.00	0.00
5 DIV-FES-205	Junction	6801.76	6810.09	6804.09	0.00	0.00	25.16	6803.38	0.00	6.71	0 00:00	0.00	0.00
6 DIV-INLT-101	Junction	6815.35	6816.30	6815.35	0.00	0.00	9.47	6816.43	0.00	0.08	0 00:00	0.00	0.00
7 DIV--INLT-300	Junction	6809.13	6815.13	6809.13	6815.13	0.00	0.00	6809.13	0.00	6.00	0 00:00	0.00	0.00
8 DIV-INLT-302	Junction	6804.71	6809.12	6804.71	0.00	0.00	21.55	6806.23	0.00	2.90	0 00:00	0.00	0.00
9 DIV-MH-204	Junction	6803.24	6809.60	6804.35	0.00	0.00	25.23	6805.86	0.00	3.74	0 00:00	0.00	0.00
10 Dummy/405	Junction	6796.69	6797.69	6796.69	0.00	0.00	4.67	6797.48	0.00	0.21	0 00:00	0.00	0.00
11 Jun-05	Junction	0.00	6.00	0.00	6.00	0.00	7.18	0.00	0.00	6.00	0 00:00	0.00	0.00
12 STM-A-S(2)	Junction	6790.65	6795.41	6790.65	6795.41	0.00	6.82	6791.34	0.00	4.07	0 00:00	0.00	0.00
13 STM-FES-403	Junction	6800.64	6801.97	6800.64	0.00	0.00	4.84	6801.45	0.00	0.69	0 00:00	0.00	0.00
14 STM-FES-404	Junction	6800.00	6801.34	6800.00	0.00	0.00	4.84	6800.80	0.00	0.70	0 00:00	0.00	0.00
15 STM-FES-406	Junction	6793.53	6796.40	6793.53	0.00	0.00	30.26	6794.81	0.00	1.60	0 00:00	0.00	0.00
16 STM-FES-407	Junction	6793.07	6799.07	6793.07	6799.07	0.00	30.11	6794.34	0.00	4.72	0 00:00	0.00	0.00
17 STM-FES-507	Junction	6793.35	6799.35	6793.35	6799.35	0.00	73.76	6795.35	0.00	4.00	0 00:00	0.00	0.00
18 STM-INLT-401	Junction	6804.25	6807.00	6804.25	0.00	0.00	5.12	6805.04	0.00	1.96	0 00:00	0.00	0.00
19 STM-INLT-402	Junction	6802.04	6802.70	6802.04	0.00	0.00	4.89	6802.85	0.00	0.89	0 00:00	0.00	0.00
20 STM-MH-502	Junction	6797.36	6802.32	6797.36	0.00	0.00	0.00	6797.36	0.00	4.96	0 00:00	0.00	0.00
21 STM-MH-503	Junction	6795.70	6799.11	6795.70	0.00	0.00	0.00	6795.70	0.00	3.41	0 00:00	0.00	0.00
22 STM-MH-504	Junction	6794.29	6797.77	6794.29	0.00	0.00	0.00	6794.29	0.00	3.48	0 00:00	0.00	0.00
23 STM-MH-505	Junction	6793.88	6797.71	6793.88	0.00	0.00	0.00	6793.95	0.00	3.76	0 00:00	0.00	0.00
24 STM-MH-506	Junction	6793.77	6797.96	6793.70	0.00	0.00	73.78	6797.09	0.00	0.87	0 00:00	0.00	0.00
25 D\#13	Outfall	6777.00					38.45	6777.00					
$26 \mathrm{D}-1$	Outfall	6811.48					9.09	6812.54					
27 D-4	Outfall	6796.74					27.15	6798.97					
28 STM-FES-602	Outfall	6790.50					25.88	6793.00					
29 STM-INLT-501	Flow Diversions	6797.72	6800.47	6797.72		0.00	0.00	6800.47				0.00	0.00
30 Detention	Storage Node	6790.65	6795.33	6790.65		18019.69	96.50	6797.46				0.01	45.00

Link Summary

SN Element ID	Element Type	From (Inlet) Node	To (Outlet) Node	Length		Outlet Invert Elevation	Average Slope	Diameter or Height	Manning's Roughness	Peak Flow	Design Flow Capacity	Peak Flow/ Design Flow Ratio	Peak Flow Velocity	Peak Flow Depth	Peak Flow Depth Total Depth Ratio	Total Time Reported Surcharged Condition
				(ft)	(ft)	(ft)	(\%)	(in)		(cfs)	(cfs)		(ft/sec)	(ft)		(min)
1 DIV-B-P-201	Pipe	DIV-FES-201	DIV-FES-202	77.09	6811.55	6809.01	3.3000	18.000	0.0130	10.67	19.07	0.56	11.10	0.80	0.54	0.00 Calculated
2 DIV-B-P-204	Pipe	DIV-MH-204	DIV-FES-205	223.69	6803.24	6801.90	0.6000	36.000	0.0130	25.16	51.66	0.49	7.27	1.48	0.49	0.00 Calculated
3 DIV-C--P-302	Pipe	DIV-INLT-302	DIV-MH-204	60.82	6804.71	6804.35	0.5900	30.000	0.0130	21.39	31.56	0.68	6.93	1.51	0.60	0.00 Calculated
4 DUMMY2	Pipe	STM-FES-507	Detention	447.75	6793.35	6790.65	0.6000	0.000	0.0150	73.76	0.00	0.03	0.00	1.02	0.25	0.00 Calculated
5 DUMMY3	Pipe	STM-FES-407	Detention	441.60	6793.07	6790.65	0.5500	0.000	0.0150	30.11	0.00	0.03	0.00	1.02	0.25	0.00 Calculated
6 STM-A-P(1)	Pipe	STM-A-S(2)	Detention	1.07	6791.00	6790.65	32.7100	18.000	0.0130	6.82	60.08	0.11	22.54	0.34	0.23	0.00 Calculated
7 STM-D-P-403	Pipe	STM-FES-403	STM-FES-404	64.00	6800.64	6800.00	0.9900	18.000	0.0130	4.84	10.47	0.46	5.81	0.72	0.48	0.00 Calculated
8 STM-D-P-406	Pipe	STM-FES-406	STM-FES-407	91.95	6793.53	6793.07	0.5000	30.000	0.0130	30.11	58.24	0.52	5.99	1.27	0.51	0.00 Calculated
9 STM-E-P-501	Pipe	STM-INLT-501	STM-MH-502	71.49	6797.72	6797.36	0.5000	18.000	0.0130	0.00	7.43	0.00	0.00	0.00	0.00	0.00 Calculated
10 STM-E-P-502	Pipe	STM-MH-502	STM-MH-503	332.31	6797.36	6795.70	0.5000	18.000	0.0130	0.00	7.43	0.00	0.00	0.00	0.00	0.00 Calculated
11 STM-E-P-503	Pipe	STM-MH-503	STM-MH-504	282.08	6795.45	6794.29	0.4100	12.000	0.0130	0.00	2.52	0.00	0.00	0.00	0.00	0.00 Calculated
12 STM-E-P-504	Pipe	STM-MH-504	STM-MH-505	66.89	6794.29	6793.95	0.5000	18.000	0.0150	0.00	6.44	0.00	0.00	0.00	0.00	0.00 Calculated
13 STM-E-P-505	Pipe	STM-MH-505	STM-MH-506	14.35	6793.88	6793.70	1.2500	18.000	0.0150	0.00	8.04	0.00	0.00	0.00	0.00	0.00 Calculated
14 STM-E-P-506	Pipe	STM-MH-506	STM-FES-507	83.73	6793.77	6793.35	0.5000	36.000	0.0130	73.76	94.34	0.78	7.39	2.00	0.67	0.00 Calculated
15 STM-F-P-601	Pipe	Detention	STM-FES-602	38.38	6790.65	6790.50	0.4000	30.000	0.0130	25.88	25.86	1.00	12.62	2.28	0.91	0.00 > CAPACIT
16 DIV-A-SW-101	Channel	DIV-INLT-101	D-1	387.00	6815.35	6811.48	1.0000	13.920	0.0300	9.09	11.44	0.79	8.43	1.06	0.91	0.00
17 DIV-B-P-203	Channel	DIV-FES-203	DIV-MH-204	61.35	6805.69	6804.61	1.7700	30.600	0.0320	10.49	148.65	0.07	3.63	0.94	0.37	0.00
18 DIV-B-SW-205	Channel	DIV-FES-205	D-4	766.20	6801.90	6797.80	0.5400	28.800	0.0320	24.50	164.74	0.15	2.59	1.17	0.49	0.00
19 DIV-C-SW-301	Channel	DIV--INLT-300	DIV-INLT-302	118.51	6809.13	6805.69	2.9000	14.400	0.0320	0.00	80.73	0.00	0.00	0.00	0.00	0.00
20 DIV-SW-202	Channel	DIV-FES-202	DIV-FES-203	331.48	6809.01	6805.69	1.0000	48.840	0.0320	10.49	415.78	0.03	4.44	1.02	0.25	0.00
21 OV/SW502A	Channel	DIV-501A	STM-MH-506	665.00	6800.23	6795.38	0.7300	24.000	0.0320	64.39	89.63	0.72	8.82	1.69	0.84	0.00
22 OVERLOW	Channel	STM-INLT-501	DIV-501A	57.87	6800.47	6800.23	0.4100	24.000	0.0320	0.00	67.59	0.00	0.00	0.00	0.00	0.00
23 STM-D-SW-401	Channel	STM-INLT-401	STM-INLT-402	231.95	6804.25	6802.04	0.9500	20.400	0.0320	4.89	40.08	0.12	6.48	0.77	0.45	0.00
24 STM-D-SW-402	Channel	STM-INLT-402	STM-FES-403	135.86	6802.04	6800.64	1.0300	12.000	0.0320	4.84	8.60	0.56	2.52	0.81	0.81	0.00
25 STM-D-SW-404	Channel	STM-FES-404	Dummy/405	313.50	6800.00	6796.69	1.0600	12.000	0.0320	4.67	8.71	0.54	2.61	0.79	0.79	0.00
26 STM-D-SW-405	Channel	Dummy/405	STM-FES-406	240.42	6796.69	6793.51	1.3200	12.000	0.0320	4.60	9.71	0.47	2.75	0.75	0.75	0.00

Junction Results

SN Element ID	Peak Inflow (cfs)	Peak Lateral Inflow (cfs)	Max HGL Elevation Attained	Max HGL Depth Attained (ft)	Max Surcharge Depth Attained (ft)	Freeb Attained	Average HGL Elevation Attained	Average HGL Depth Attained (ft)	Time of Max HGL Occurrence (days hh:mm)	Time of Peak Flooding Occurrence (days hh:mm)	Total Flooded Volume (ac-in)	Total Time Flooded (\min)
1 DIV-501A	72.38	72.38	6802.04	1.81	0.00	0.35	6800.24	0.01	0 00:06	0 00:00	0.00	0.00
2 DIV-FES-201	10.69	10.69	6812.35	0.80	0.00	3.07	6811.57	0.02	0 00:26	0 00:00	0.00	0.00
3 DIV-FES-202	10.67	0.00	6810.04	1.03	0.00	3.04	6809.04	0.03	0 00:26	0 00:00	0.00	0.00
4 DIV-FES-203	10.49	0.00	6806.72	1.03	0.00	3.05	6805.72	0.03	0 00:27	0 00:00	0.00	0.00
5 DIV-FES-205	25.16	0.00	6803.38	1.62	0.00	6.71	6801.94	0.18	0 00:24	0 00:00	0.00	0.00
6 DIV-INLT-101	9.47	9.47	6816.43	1.08	0.00	0.08	6815.36	0.01	0 00:13	0 00:00	0.00	0.00
7 DIV--INLT-300	0.00	0.00	6809.13	0.00	0.00	6.00	6809.13	0.00	0 00:00	0 00:00	0.00	0.00
8 DIV-INLT-302	21.55	21.55	6806.23	1.52	0.00	2.90	6805.70	0.99	0 00:05	0 00:00	0.00	0.00
9 DIV-MH-204	25.23	0.00	6805.86	2.62	0.00	3.74	6804.64	1.40	0 00:05	0 00:00	0.00	0.00
10 Dummy/405	4.67	0.00	6797.48	0.79	0.00	0.21	6796.70	0.01	0 00:12	0 00:00	0.00	0.00
11 Jun-05	7.18	7.18	0.00	0.00	0.00	6.00	0.00	0.00	0 00:00	0 00:00	0.00	0.00
12 STM-A-S(2)	6.82	6.82	6791.34	0.69	0.00	4.07	6791.00	0.35	0 00:13	0 00:00	0.00	0.00
13 STM-FES-403	4.84	0.00	6801.45	0.81	0.00	0.69	6800.65	0.01	0 00:11	0 00:00	0.00	0.00
14 STM-FES-404	4.84	0.00	6800.80	0.80	0.00	0.70	6800.01	0.01	0 00:11	0 00:00	0.00	0.00
15 STM-FES-406	30.26	25.88	6794.81	1.28	0.00	1.60	6793.55	0.02	0 00:13	0 00:00	0.00	0.00
16 STM-FES-407	30.11	0.00	6794.34	1.27	0.00	4.72	6793.08	0.01	0 00:13	0 00:00	0.00	0.00
17 STM-FES-507	73.76	0.00	6795.35	2.00	0.00	4.00	6793.37	0.02	0 00:08	0 00:00	0.00	0.00
18 STM-INLT-401	5.12	5.12	6805.04	0.79	0.00	1.96	6804.26	0.01	0 00:09	0 00:00	0.00	0.00
19 STM-INLT-402	4.89	0.00	6802.85	0.81	0.00	0.89	6802.05	0.01	0 00:10	0 00:00	0.00	0.00
20 STM-MH-502	0.00	0.00	6797.36	0.00	0.00	4.96	6797.36	0.00	0 00:00	0 00:00	0.00	0.00
21 STM-MH-503	0.00	0.00	6795.70	0.00	0.00	3.41	6795.70	0.00	0 00:00	0 00:00	0.00	0.00
22 STM-MH-504	0.00	0.00	6794.29	0.00	0.00	3.48	6794.29	0.00	0 00:00	0 00:00	0.00	0.00
23 STM-MH-505	0.00	0.00	6793.95	0.07	0.00	3.76	6793.95	0.07	0 00:00	0 00:00	0.00	0.00
24 STM-MH-506	73.78	16.23	6797.09	3.32	0.00	0.87	6795.39	1.62	0 00:08	0 00:00	0.00	0.00

Channel Results

SN Element ID	Peak Flow (cfs)	Time of Peak Flow Occurrence (days hh:mm)	Design Flow Capacity (cfs)	Peak Flow/ Design Flow Ratio	Peak Flow Velocity (ft/sec)	Travel Time (\min)	Peak Flow Depth	Peak Flow Depth/ Total Depth Ratio	Total Time Surcharged (\min)	Froude Reported Number Condition
1 DIV-A-SW-101	9.09	0 00:14	11.44	0.79	8.43	0.77	1.06	0.91	0.00	
2 DIV-B-P-203	10.49	0 00:27	148.65	0.07	3.63	0.28	0.94	0.37	0.00	
3 DIV-B-SW-205	24.50	0 00:29	164.74	0.15	2.59	4.93	1.17	0.49	0.00	
4 DIV-C-SW-301	0.00	0 00:00	80.73	0.00	0.00		0.00	0.00	0.00	
5 DIV-SW-202	10.49	0 00:27	415.78	0.03	4.44	1.24	1.02	0.25	0.00	
6 OV/SW502A	64.39	0 00:08	89.63	0.72	8.82	1.26	1.69	0.84	0.00	
7 OVERLOW	0.00	0 00:00	67.59	0.00	0.00		0.00	0.00	0.00	
8 STM-D-SW-401	4.89	0 00:10	40.08	0.12	6.48	0.60	0.77	0.45	0.00	
9 STM-D-SW-402	4.84	0 00:11	8.60	0.56	2.52	0.90	0.81	0.81	0.00	
10 STM-D-SW-404	4.67	0 00:12	8.71	0.54	2.61	2.00	0.79	0.79	0.00	
11 STM-D-SW-405	4.60	0 00:14	9.71	0.47	2.75	1.46	0.75	0.75	0.00	

Pipe Results

SN Element ID	Peak Flow (cfs)	Time of Peak Flow Occurrence (days hh:mm)	Design Flow Capacity (cfs)	Peak Flow/ Design Flow Ratio	Peak Flow Velocity (ft/sec)	Travel Time (min)	Peak Flow Depth	Peak Flow Depth/ Total Depth Ratio	Total Time Surcharged (\min)	Froude Reported Number Condition
1 DIV-B-P-201	10.67	0 00:26	19.07	0.56	11.10	0.12	0.80	0.54	0.00	Calculated
2 DIV-B-P-204	25.16	0 00:24	51.66	0.49	7.27	0.51	1.48	0.49	0.00	Calculated
3 DIV-C--P-302	21.39	0 00:05	31.56	0.68	6.93	0.15	1.51	0.60	0.00	Calculated
4 DUMMY2	73.76	0 00:08	0.00	0.03	0.00		1.02	0.25	0.00	Calculated
5 DUMMY3	30.11	0 00:13	0.00	0.03	0.00		1.02	0.25	0.00	Calculated
6 STM-A-P(1)	6.82	0 00:13	60.08	0.11	22.54	0.00	0.34	0.23	0.00	Calculated
7 STM-D-P-403	4.84	0 00:11	10.47	0.46	5.81	0.18	0.72	0.48	0.00	Calculated
8 STM-D-P-406	30.11	0 00:13	58.24	0.52	5.99	0.26	1.27	0.51	0.00	Calculated
9 STM-E-P-501	0.00	0 00:00	7.43	0.00	0.00		0.00	0.00	0.00	Calculated
10 STM-E-P-502	0.00	0 00:00	7.43	0.00	0.00		0.00	0.00	0.00	Calculated
11 STM-E-P-503	0.00	0 00:00	2.52	0.00	0.00		0.00	0.00	0.00	Calculated
12 STM-E-P-504	0.00	0 00:00	6.44	0.00	0.00		0.00	0.00	0.00	Calculated
13 STM-E-P-505	0.00	0 00:00	8.04	0.00	0.00		0.00	0.00	0.00	Calculated
14 STM-E-P-506	73.76	0 00:08	94.34	0.78	7.39	0.19	2.00	0.67	0.00	Calculated
15 STM-F-P-601	25.88	0 00:04	25.86	1.00	12.62	0.05	2.28	0.91	0.00	> CAPACITY

OS-1_Diversion Swale

Project Description		
Friction Method	Manning Formula	
Solve For	Discharge	
Input Data		
Roughness Coefficient	0.030	
Channel Slope	$0.011 \mathrm{ft} / \mathrm{ft}$	
Normal Depth	12.0 in	
Left Side Slope	$3.000 \mathrm{H}: \mathrm{V}$	
Right Side Slope	$3.000 \mathrm{H}: \mathrm{V}$	
Results		
Discharge	9.48 cfs	
Flow Area	$3.0 \mathrm{ft}^{2} \mathrm{~N}$	
Wetted Perimeter	$6.3 \mathrm{ft}$	
Hydraulic Radius	$5.7 \text { in }$	
Top Width	$6.00 \mathrm{ft}$	
Critical Depth	$10.9 \text { in }$	Swale discharge capacity, note peak inflow
Critical Slope	$0.018 \mathrm{ft} / \mathrm{ft}$	equivalent to 9.47 cfs for the 100 year
Velocity	$3.16 \mathrm{ft} / \mathrm{s}$	return period.
Velocity Head	0.16 ft	$9.48>9.47 \mathrm{cfs}$
Specific Energy	1.16 ft 0.788	OK
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	$0.00 \mathrm{ft} / \mathrm{s}$	
Upstream Velocity	$0.00 \mathrm{ft} / \mathrm{s}$	
Normal Depth	12.0 in	
Critical Depth	10.9 in	
Channel Slope	$0.011 \mathrm{ft} / \mathrm{ft}$	
Critical Slope	$0.018 \mathrm{ft} / \mathrm{ft}$	

OS-2_Diversion Swale

Project Description		
Friction Method	Manning Formula	
Solve For	Discharge	
Input Data		
Roughness Coefficient	0.030	
Channel Slope	$0.011 \mathrm{ft} / \mathrm{ft}$	
Normal Depth	30.6 in	
Left Side Slope	$3.000 \mathrm{H}: \mathrm{V}$	
Right Side Slope	$3.000 \mathrm{H}: \mathrm{V}$	
Results		
Discharge	115.04 cfs	
Flow Area	$19.5 \mathrm{ft}^{2}$	
Wetted Perimeter	16.1 ft	
Hydraulic Radius	14.5 in	
Top Width	15.30 ft	Swale discharge capacity, note peak inflow
Critical Depth	$29.6 \text { in }$	
Critical Slope	$\begin{gathered} 0.013 \mathrm{ft} / \mathrm{ft} \\ 5.90 \mathrm{ft} / \mathrm{s} \end{gathered}$	equivalent to 16.66 cfs for the 100 year return period
Velocity Head	0.54 ft	$115.04>16.66 \mathrm{cfs}$
Specific Energy	3.09 ft	
Froude Number	0.921	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	$0.00 \mathrm{ft} / \mathrm{s}$	
Upstream Velocity	$0.00 \mathrm{ft} / \mathrm{s}$	
Normal Depth	30.6 in	
Critical Depth	29.6 in	
Channel Slope	$0.011 \mathrm{ft} / \mathrm{ft}$	
Critical Slope	$0.013 \mathrm{ft} / \mathrm{ft}$	

OS-2 \& OS-3_Diversion Swale

Project Description		
Friction Method	Manning Formula	
Solve For	Discharge	
Input Data		
Roughness Coefficient	0.030	
Channel Slope	$0.005 \mathrm{ft} / \mathrm{ft}$	
Normal Depth	28.8 in	
Left Side Slope	$7.500 \mathrm{H}: \mathrm{V}$	
Right Side Slope	$7.500 \mathrm{H}: \mathrm{V}$	
Results		
Discharge	173.22 cfs	
Flow Area	$43.2 \mathrm{ft}^{2} \mathrm{~N}$	
Wetted Perimeter	$36.3 \mathrm{ft}$	
Hydraulic Radius	$14.3 \text { in }$	
Top Width Critical Depth	$\begin{array}{r} 36.00 \mathrm{ft} \\ 24.2 \mathrm{in} \end{array}$	Swale discharge capacity, note peak inflow
Critical Slope	$0.013 \mathrm{ft} / \mathrm{ft}$	equivalent to 42.10 cfs for the 100 year
Velocity	$4.01 \mathrm{ft} / \mathrm{s}$	return period.
Velocity Head	0.25 ft	$173.22>42.10 \mathrm{cfs}$
Specific Energy	2.65 ft	OK
Froude Number	0.645	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	$0.00 \mathrm{ft} / \mathrm{s}$	
Upstream Velocity	$0.00 \mathrm{ft} / \mathrm{s}$	
Normal Depth	28.8 in	
Critical Depth	24.2 in	
Channel Slope	$0.005 \mathrm{ft} / \mathrm{ft}$	
Critical Slope	$0.013 \mathrm{ft} / \mathrm{ft}$	

Provide hydraulic analysis for the swale in basin OS-4.

OS-3_Diversion Swale

Project Description	Manning		
Formula			
Discharge		\quad	Friction Method
:---			
Solve For			

A-3 \& A4 _ Swale

Project Description		
Friction Method	Manning Formula	
Solve For	Discharge	
Input Data		
Roughness Coefficient	0.030	
Channel Slope	$0.007 \mathrm{ft} / \mathrm{ft}$	
Normal Depth	24.0 in	
Left Side Slope	$3.000 \mathrm{H}: \mathrm{V}$	
Right Side Slope	$3.000 \mathrm{H}: \mathrm{V}$	
Bottom Width	4.00 ft	
Results		
Discharge	95.64 cfs	
Flow Area	$20.0 \mathrm{ft}^{2}$	
Wetted Perimeter	16.6 ft	
Hydraulic Radius	14.4 in	
Top Width	16.00 ft	
Critical Depth	$20.9 \text { in }$	Swale discharge capacity, note peak inflow equivalent to 73.78 cfs for the 100 year
Critical Slope Velocity	$0.013 \mathrm{ft} / \mathrm{ft}$ $4.78 \mathrm{ft} / \mathrm{s}$	equivalent to 73.78 cfs for the 100 year return period
Velocity Head	0.36 ft	$95.64>73.78$ cfs
Specific Energy	2.36 ft	
Froude Number	0.754	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	(N/A) ft/s	
Upstream Velocity	(N/A) ft/s	
Normal Depth	24.0 in	
Critical Depth	20.9 in	
Channel Slope	$0.007 \mathrm{ft} / \mathrm{ft}$	
Critical Slope	$0.013 \mathrm{ft} / \mathrm{ft}$	

A-5_Swale

Project Description		
Friction Method	Manning Formula	
Solve For	Discharge	
Input Data		
Roughness Coefficient	0.030	
Channel Slope	$0.013 \mathrm{ft} / \mathrm{ft}$	
Normal Depth	12.0 in	
Left Side Slope	$3.000 \mathrm{H}: \mathrm{V}$	
Right Side Slope	$3.000 \mathrm{H}: \mathrm{V}$	
Results		
Discharge	10.38 cfs	
Flow Area	$3.0 \mathrm{ft}^{2} \mathrm{~N}$	
Wetted Perimeter	$6.3 \mathrm{ft}$	
Hydraulic Radius Top Width	$\begin{aligned} & 5.7 \mathrm{in} \\ & 6.00 \mathrm{ft} \end{aligned}$	
Critical Depth	$\begin{aligned} & 6.00 \mathrm{ft} \\ & 11.3 \text { in } \end{aligned}$	Swale discharge capacity, note peak inflow
Critical Slope	$0.018 \mathrm{ft} / \mathrm{ft}$	equivalent to 4.67 cfs for the 100 year
Velocity	$3.46 \mathrm{ft} / \mathrm{s}$	return period.
Velocity Head	0.19 ft	10.38 > 4.67 cfs
Specific Energy	1.19 ft	OK
Froude Number	0.863	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	$0.00 \mathrm{ft} / \mathrm{s}$	
Upstream Velocity	$0.00 \mathrm{ft} / \mathrm{s}$	
Normal Depth	12.0 in	
Critical Depth	11.3 in	
Channel Slope	$0.013 \mathrm{ft} / \mathrm{ft}$	
Critical Slope	$0.018 \mathrm{ft} / \mathrm{ft}$	

A grass buffer alone does not provide WQ. Please provide runoff reduction calculations (separate tab in UD-BMP form).

Design Procedure Form: Grass Buffer (GB)

UD-BMP (Version 3.07, March 2018)

Designer: Company: AMB Date: JVA Project: January 30, 2023 Location: South Transportation Center	

Depth to Invert of Outlet Pipe $=$Circular Orifice Diameter $=$	Zone 3 Circular	Not Selected	ft (distance below basin bottom at Stage $=0 \mathrm{ft}$) inches
	0.00	N/A	
	30.00	N/A	

| Calculated Parameters for Outlet Pipe w/ Flow Restriction Plec | |
| ---: | :--- | :--- |
| Outlet Orifice Area | $=$ Zone 3 Circular
 Not Selected
 Outlet Orifice Centroid $=1.91$
 Restrictor Plate on Pipe $=1.25$
 $\mathrm{~N} / \mathrm{A}$
 N / A |

Spillway Invert Stage=	4.35	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Spillway Crest Length $=$	20.00	feet
Spillway End Slopes =	3.00	$\mathrm{H}: \mathrm{V}$
Freeboard above Max Water Surface $=$	1.00	feet

	Calculated Parameters for Spillway	
Spillway Design Flow Depth=	1.10	feet
Stage at Top of Freeboard =	6.45	feet
Basin Area at Top of Freeboard =	1.62	acre
Basin Volume at Top of Freeboard $=$	3.89	acre-ft

the narrative why you included an oredevelopment flows and describe ss and method used to obtain these typically left blank and calculated CUHP Predevelopment Peak Q are used.

Ratio Peak Outflow to Predevelopment Q	$=$
Structure Controlling Flow	$=$
Max Velocity through Grate $1(\mathrm{fps})$	$=$
Max Velocity through Grate $2(\mathrm{fps})$	$=\square$
Time to Drain 97% of Inflow Volume (hours)	$=\square$
Time to Drain 99\% of Inflow Volume (hours)	$=-$
Maximum Ponding Depth (ft)	$=$
Area at Maximum Ponding Depth (acres)	$=$
Maximum Volume Stored (acre-ft)	$=$
WSE (Stage $0=6790.65)$	

S-A-V-D Chart Axis Override	Left X -Axis	Right Y-Axis
minimum bound maximum bound		

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.45	0.04	2.16
	0:15:00	0.00	0.00	3.98	6.47	8.01	5.38	6.68	6.54	10.74
	0:20:00	0.00	0.00	13.94	18.20	21.33	13.42	15.59	16.74	24.25
	0:25:00	0.00	0.00	27.86	36.54	43.39	27.41	31.54	33.70	48.92
	0:30:00	0.00	0.00	31.70	40.42	46.82	53.48	62.16	69.20	101.13
	0:35:00	0.00	0.00	28.17	35.34	40.66	57.58	66.70	78.71	113.88
	0:40:00	0.00	0.00	24.24	29.86	34.31	52.77	61.10	72.06	104.19
	0:45:00	0.00	0.00	19.89	25.06	29.04	45.15	52.18	63.29	91.71
	0:50:00	0.00	0.00	16.48	21.29	24.28	39.15	45.14	54.45	79.03
	0:55:00	0.00	0.00	14.25	18.41	21.25	32.20	36.99	45.61	66.10
	1:00:00	0.00	0.00	12.65	16.25	19.00	27.45	31.47	39.75	57.65
	1:05:00	0.00	0.00	11.17	14.29	16.88	23.84	27.31	35.46	51.51
	1:10:00	0.00	0.00	9.15	12.49	14.92	19.91	22.75	28.57	41.33
	1:15:00	0.00	0.00	7.48	10.61	13.34	16.47	18.75	22.65	32.59
	1:20:00	0.00	0.00	6.44	9.19	11.81	13.15	14.90	16.91	24.17
	1:25:00	0.00	0.00	5.89	8.42	10.36	10.95	12.37	12.96	18.42
	1:30:00	0.00	0.00	5.59	7.97	9.37	9.25	10.43	10.58	14.94
	1:35:00	0.00	0.00	5.43	7.67	8.68	8.14	9.17	9.14	12.82
	1:40:00	0.00	0.00	5.32	6.89	8.19	7.39	8.33	8.15	11.35
	1:45:00	0.00	0.00	5.23	6.27	7.86	6.91	7.78	7.50	10.38
	1:50:00	0.00	0.00	5.17	5.83	7.62	6.57	7.39	7.03	9.69
	1:55:00	0.00	0.00	4.47	5.50	7.24	6.35	7.14	6.72	9.24
	2:00:00	0.00	0.00	3.91	5.09	6.55	6.20	6.97	6.58	9.03
	2:05:00	0.00	0.00	2.85	3.72	4.74	4.54	5.10	4.82	6.62
	2:10:00	0.00	0.00	2.01	2.61	3.33	3.19	3.58	3.40	4.66
	2:15:00	0.00	0.00	1.40	1.82	2.33	2.24	2.51	2.40	3.29
	2:20:00	0.00	0.00	0.96	1.23	1.61	1.54	1.73	1.66	2.27
	2:25:00	0.00	0.00	0.64	0.81	1.08	1.04	1.16	1.11	1.52
	2:30:00	0.00	0.00	0.41	0.54	0.72	0.71	0.79	0.76	1.03
	2:35:00	0.00	0.00	0.24	0.34	0.44	0.45	0.50	0.48	0.65
	2:40:00	0.00	0.00	0.12	0.19	0.23	0.24	0.27	0.26	0.35
	2:45:00	0.00	0.00	0.05	0.08	0.09	0.10	0.11	0.11	0.15
	2:50:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.03
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

JVA Incorporated
214 8th Street, S 210
Glenwood Springs, CO 81601
Ph: (970) 4043100

Date: $1 / 31 / 23$
By: AMB

RIPRAP PROTECTION DOWNSTREAM OF PIPE OUTLETS (UDFCD VOL 1 - MAJOR DRAINAGE)

Can be used for Froude Parameter ($\mathrm{Q} / \mathrm{D}^{\wedge} 2.5$) <6.0 This only applies to Circular Pipes

	Allowable Velocity	5.5 fps
	For Erosive Soils	
	7.7 fps	For Erosive Resistant Soils
Lp=(ex factor)(At/yt -D)		
At=Q/allowable Velocity		
Min Lp=3D		
W = height of culvert or Normal Depth		

Median (i.e., $D_{s o}$) Size of District's Riprap

100-year Flow Conditions

Location	Flow Q (cfs)	Diameter D (ft)	Froude Q/D^2.5	V (ft/s)	Ytaeptn or water at outlet (ft)	Yt/D	$\begin{array}{\|c\|} \hline \text { Rrprap size } \\ \text { (from Fig MD- } \\ 21 \text {) } \\ \hline \end{array}$	d50 (in)	Expansion Factor (from MD-23)	Soil Erodibility	At (ft^2)	T (ft)	L (ft)	W (ft)	Total (cf)	Total (cy)
Outfall at Pond	41.5	2.5	4.20	5.3	0.3	0.1	L	9	2.1	Erosive	7.55	1.1	47.6	10.0	535	19.8
Inlet at subbasin OS-4	25.2	3.0	1.61	7.27	0.3	0.1	L	9	2.1	Erosive	4.57	1.1	25.7	12.0	347	12.9
Inlet at subbasin A1	10.7	1.5	3.88	11.1	0.3	0.2	L	9	2.1	Erosive	1.94	1.1	10.5	6.0	71	2.6

Figure MD-21-Riprap Erosion Protection at Circular Conduit Outiot Valid for $81 \mathrm{In}^{25} \leq 6.0$

3456c_Riprap Sizing_01-31-2023

NOTES: 1. Headwall with wingwalls or llared end section required at all culvert outters
 . Provide joint fasteners for liarecl end sections.

Figure MD-25-Culvert and Pipe Outlet Erosion Protection RIPRAP

TAILWATER DEPTH/CONDUIT HEIGHT, Y_{1} / D

Figure MD-23-Expansion Factor for Circular Conduits
Page 1 of 4

